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Avant-propos 

Ce présent travail d’histopathologie spectrale infrarouge (IR) est composé de deux objectifs 

principaux. Le premier d'entre eux était de développer une méthodologie pour l'application de 

l'imagerie spectrale IR pour les tissus de côlon. 

Pour ce faire, l'imagerie IR spectrale a été réalisée sur des coupes de tissus congelées en vu 

d'établir la méthodologie. L'analyse des images spectrales en utilisant des analyses 

multivariées ont permis le développement d'un nouveau concept de code-barres spectraux qui 

constitue un outil facile pour la représentation et l’interprétation des marqueurs spectraux 

discriminants entre les signatures normales et tumorales des tissus du côlon. 

Cette approche d'imagerie a ensuite été effectuée sur des tissu arrays paraffinés constitués 

d’échantillons de plus grande taille provenant de banque de tumeurs. Initialement, l'imagerie 

spectrale IR a été mise en œuvre sur un petit nombre de tissu arrays afin de standardiser la 

méthodologie. Étant donné que ces tissu arrays sont paraffinés et stabilisés au sein d’une 

matrice d'agarose, les interférences spectrales dues à ces deux constituants ont été neutralisé à 

l'aide d'une correction mathématique appellée « Extended Multiplicative Signal Correction ». 

Comme ces coupes de tissu sont relativement grandes par rapport aux tissu microarray, la 

méthode de clustering par k-means, connue pour l’obtention d’une classification des données 

de manière rapide et robuste, a été appliquée pour classer les différents spectres des images 

IR en fonction des constituants caractéristiques histologiques des coupes de tissu. La 

comparaison de ces images spectrales aux images colorées de manière conventionnelle en 

histologie, a permis l'identification et l'attribution de classes caractéristiques des différentes 

structures tissulaires à l’aide de l'expertise d'une pathologiste. Cette méthodologie constitue 

l’histopathologie spectrale d'une manière non-destructive et ne nécessitant aucun marquage. 
Jusqu'à ce point, la méthodologie d’imagerie spectrale IR adaptée à des tissu arrays paraffinés 

a été créée constituant l’histopathologie spectrale. Une fois que cette méthodologie a été 

disponible, le deuxième objectif était d’appliquer cette nouvelle approche à un plus grand 

nombre d'échantillon à des fins diagnostiques. En utilisant un petit nombre d’échantillon, un 

modèle de prédiction a été développé décrivant l’histologie des tissus normaux et des tissus 

tumoraux de côlon. Ce modèle a ensuite été appliqué sur des échantillons de tissu colique 

inconnu afin d’identifier leurs différents constituants caractéristiques histologiques, et ainsi 

de prédire si les échantillons sont cancéreux. 



  Avant-propos 

 

2 
 

Ce travail est présenté en cinq chapitres. Le chapitre introduit brièvement les principaux 

aspects du cancer du côlon, les aspects cliniques de diagnostic, et les aspects techniques 

relatifs à l'imagerie spectrale IR. 

Le deuxième chapitre décrit l’instrumentation et les aspects méthodologiques, depuis la 

préparation des échantillons au sein du laboratoire d’anatomopathologie, l'acquisition par 

imagerie spectrale IR, jusqu’à l'analyse statistique multivariée des données spectrales. 

Les résultats obtenus au cours de ce travail  interdisciplinaire sont présentés dans le troisième 

chapitre. Ce chapitre comprend trois articles qui ont été soumis pour publication dans 

différents journaux internationaux. 

Le quatrième chapitre porte sur un travail supplémentaire qui a été mené au cours de ce 

projet. Il décrit essentiellement l’utilisation d’autres approches de spectroscopie 

vibrationnelle comme l’imagerie IR en mode transmission, l’imagerie IR en mode réflexion 

totale atténuée (ATR), et l'imagerie Raman. Les avantages et les limitations de chaque 

méthode ont été élucidés en réalisant une comparaison de ces différentes approches. Puis, un 

autre travail d'imagerie IR appliquée aux tissus mammaires est également décrit. 

Enfin, le cinquième chapitre décrit les conclusions importantes observées dans cette étude, 

ainsi que les perspectives en recherche et dans le domaine clinique, basées sur les potentiels 

de ce travail interdisciplinaire. 
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Summary 

The current work of infrared (IR) spectral histopathology principally consisted of two main 

objectives. The first of these was to develop a methodology for the application of IR spectral 

imaging to colonic tissues.  

For this, IR spectral imaging was performed on frozen tissue sections in order to establish the 

methodology. The analysis of the spectral images using multivariate analyses enabled the 

development of a new concept of spectral barcodes which constituted an easy-to-interpret 

representation of the discriminant spectral markers between normal and tumoral signatures of 

the colonic tissues.   

This imaging approach was then carried on onto paraffinized tissue arrays that constituted a 

larger sample size accessible from the tumor bank. Initially, the IR spectral imaging was 

implemented on a small number of tissue array cores in order to standardize the 

methodology. Since these tissue arrays were paraffinized and stabilized in an agarose matrix, 

their interference with the tissue spectra was neutralized using a modified version of the 

Extended Multiplicative Signal Correction (EMSC). Due to the relatively large size of the 

tissue arrays compared to tissues microarrays, k-means clustering method, known for its rapid 

and robust data classification, was applied to cluster the IR spectral images into their 

constituent histological features. Comparison of these clustered images to the conventionally 

stained histological images allowed identification and class attribution of various tissue 

structural features using a pathologist’s expertise. This methodology constituted spectral 

histopathology in a non-destructive and label-free manner. 

Up to this point, IR spectral imaging methodology adapted to paraffinized tissue arrays was 

established constituting a spectral histopathology. Once this was available, the second 

objective was to apply it to large scale sample set for diagnostic purposes. Multivariate 

analyses were then employed in order to develop a prediction model describing the normal 

and the tumoral histology of the colonic tissues. This model was then applied on unknown 

colonic tissue sample to identify their different constituent histological features, and also to 

predict if the samples are cancerous.  

The current work is categorized into five chapters. The introductory chapter briefly covers the 

major aspects of colon cancer, the clinical aspects of diagnosis, and the technical aspects 

pertaining to infrared spectral imaging.  
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The second chapter describes the instrumentation and the methodological aspects, starting 

from sample preparation in the pathological laboratory, data acquisition in the imaging 

systems, to the multivariate analysis of the spectral data.   

This highly interdisciplinary work is reflected in third chapter which assimilates the 

important results obtained during the course of this work. This chapter includes three articles 

that have been submitted for publication in different international journals. 

The fourth chapter describes other supplementary work that has been carried out during this 

project. It basically describes the approaches tested using conventional IR-transmission, IR-

attenuated total reflection, and Raman imaging and a comparison among them in order to 

elucidate various advantages and limitations. An alternative work of IR imaging applied to 

breast tissues is also described.  

Finally, the concluding chapter 5 describes the important conclusions observed in this study, 

and also the foreseen perspectives in research and clinical aspects based on the potentials of 

this inter-disciplinary work.   
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I.1: Résumé: 

Les cancers colorectaux, tous sexes confondus, présentent des taux de morbidité et de 

mortalité très important. Les principaux facteurs de risques associés à ces cancers sont le 

vieillissement, les habitudes alimentaires, la consommation d’alcool, l'obésité, le tabagisme, 

les maladies inflammatoires de l'intestin, certains facteurs génétiques et les antécédents 

familiaux. La détection de polypes adénomateux est considérée l’un des facteurs de risque 

importants pour les cancers colorectaux.  

Les facteurs génétiques impliqués dans les cancers colorectaux entrainent une évolution de la 

maladie de l’adénome vers le carcinome via une séquence de mutations génétiques bien 

connues. Ces mutations concernent les gènes suppresseurs de tumeurs, les oncogènes et les 

gènes impliqués dans la réparation de l’ADN. La mutation du gène suppresseur de tumeur 

Apc (adenosis polyposis coli) est considérée comme initiatrice de cette progression adénome-

carcinome. L’initiation de cette séquence est appuyée par d’autres mutations, comme celles 

de l’oncogène Ras qui est impliqué dans la progression et la différenciation cellulaire. Par la 

suite, les mutations touchant les gènes DCC, SMAD 4 et p53 (mutations des deux allèles) 

aboutissent à la formation d’une tumeur carcinomateuse. Par ailleurs, les tumeurs présentant 

une instabilité dans les séquences microsatellites sont connues pour avoir une transition plus 

rapide adénome-carcinome.   

La majorité des cancers colorectaux sont des adénocarcinomes. L’adénocarcinome est une 

tumeur maligne qui se caractérise histologiquement par une modification de l'architecture de 

l’épithélium glandulaire au niveau de la muqueuse colorectale. Le diagnostic précoce et 

précis des cancers augmente considérablement les chances de survies et peut permettre une 

meilleure compréhension des mécanismes biomoléculaires responsables des modifications 

morphologiques et pathologiques. Actuellement, les méthodes de dépistages les plus utilisées 

comprennent le test de fecal occult blood (FOBT), la coloscopie et la sigmoïdoscopie. 

L’examen anatomopathologique est la méthode de référence pour identifier des modifications 

morphologiques et déterminer la malignité d’une tumeur. Cet examen est basé sur la 

visualisation au microscope d’un échantillon tissulaire. 

De nouvelles méthodes d’analyses, complémentaires de l’examen anatomopathologique, sont 

en cours de développement. La spectroscopie infrarouge (IR) se place comme étant l’une des 

techniques les plus prometteuses. Elle permet de fournir des informations sur la composition 
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biomoléculaire des tissus sans colorations ou marquages au préalable. De plus, l’association 

d’un imageur et d’un spectromètre IR permet l’acquisition rapide d’images spectrales IR 

apportant simultanément des informations sur la morphologie et sur la composition 

biomoléculaire de l’échantillon.   

Dans ce contexte, la technique d’imagerie IR couplée avec des analyses multivariées (k-

means, Mann-Whitney U test, et l'analyse discriminante linéaire) a été appliquée sur des 

échantillons tissulaires de côlon. Les principaux objectifs de cette étude étaient d’identifier 

les structures histologiques présentent dans le côlon et de mettre en évidence de marqueurs 

spectraux caractéristiques de l’état histopathologique des tissus. Dans un premier temps, cette 

étude visait à exploiter ces markers spectroscopiques pour créer un code-barres spectral 

spécifique de l’adénocarcinome modérément différencié. Dans un deuxième temps, ces 

markers spectroscopiques ont été utilisés pour développer un modèle de prédiction afin de 

détecter et d’identifier numériquement la malignité d’une tumeur au sein des échantillons 

analysés en « aveugle ». Cette méthodologie vise à proposer un diagnostic automatisé de 

l’adénocarcinome du côlon.  
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I.2: Summary: 

Colorectal cancer (CRC) is one of the leading cancers in terms of both morbidity and 

mortality, and which is common to both sexes. Several risk factors are associated with CRCs 

that include old age, diet habits, alcohol, obesity, smoking, inflammatory bowel disease, 

genetic factors and family history. Presence of adenomatous polyps is considered as one of 

the important risk factors.  

The genetic factors involved in CRCs are known to follow a sequence of adenoma-carcinoma 

progression that is associated with defined genetic events. This sequence consists of 

characteristic mutations categorized into mutations of tumor suppressor genes, oncogenes and 

DNA repair genes. The mutation of the adenosis polyposis coli (APC) regulatory pathway is 

considered to be the first, early stage step of this process. This initial step is sustained by 

other genetic mutations like RAS that promote progression of the genetic events. 

Furthermore, mutations in genes such as DCC, SMAD 4, and finally loss of both alleles of 

p53 drive progression to carcinoma. Additionally, microsatellite instable tumors are 

considered to have faster rate of adenoma-carcinoma progression.  

Adenocarcinoma, which is a malignant tumor originating from glandular epithelium of the 

colorectal mucosa accounts for the majority of the CRC types. Early and accurate diagnosis 

of cancers which enhance biomolecular level understanding of the morphological and 

pathological changes occurring in the host tissue, and which can improve the chances of 

survival are two of the most important factors. At present, different detection and screening 

methods such as fecal occult blood test (FOBT), sigmoidoscopy, colonoscopy, etc are utilized 

for colorectal cancers. However, the final diagnosis is based on the microscopic examination 

of the symptomatic tissue with the ‘gold standard’ histopathology using which various tissue 

morphological aberrations are visualized.  

At the same time, techniques that could provide complementary information of the diseased 

condition to histopathology are being tried and tested. Of these, a biophotonic approach of 

infrared (IR) spectroscopy is being considered as one of the promising candidates due to its 

ability to provide biomolecular fingerprint of cells and tissues. Combined with an imaging 

device, spectral imaging can be performed to obtain IR spectral images in a rapid and in a 

label-free manner, the information from which can be exploited to gain insights into the 

histopathological aspects of a diseased state.  
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In this context, IR imaging in conjunction with multivariate analyses (k-means clustering, 

Mann-Whitney U test, and linear discriminant analysis) was carried out on colonic tissue 

samples. The main objectives of the study were to identify spectral markers representative of 

various histological structures and histopathological aspects of the colonic tissues. Further, it 

was aimed to use these markers to construct “spectral-barcodes” specific to moderately 

differentiated colon adenocarcinoma; and also to construct a prediction model to digitally 

detect and identify malignancy and its associated features in unknown tissues, thereby 

constituting an automated diagnostic approach for colon adenocarcinoma.  
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I.3: Introduction to colorectal cancers: Basic features of colorectal 

histology, carcinogenesis and current diagnostic methods: 

 

I.3.1: Colorectal cancers and incidence 

Colorectal cancer (CRC) is one of the most common cancer types affecting both sexes. It is 

the third and second most common cancer in men and women respectively among all cancers 

worldwide (figure 1). It is estimated that about 8 % of all cancer deaths would be from CRCs 

making it the fourth most common cause of death from cancers. About 60 % of the cases 

occur in developed regions of the world (Ferlay, 2010). Although CRC manifests in several 

types, a majority of them are the adenocarcinomas which accounts for about 90-95% of 

CRCs. The other less prevalent types include soft tissue sarcomas (leiomyosarcoma), 

lymphomas, squamous cell cancers, and carcinoid tumors.           

 

I.3.2: Causes and risk factors (non-genetic and genetic) 

There are several risk factors associated with CRCs and most of them affect subjects with 

little or no genetic risk. Risk factors include old age, diet habits with high fat intake, alcohol 

and red meat, obesity, smoking, inflammatory bowel diseases, genetic factors, and family 

history. Below the age of 40, CRC without a genetic predisposition are rare and the risk 

increases with increasing age (IARC, 2004).  

 

High fat diet 

High fat diet and low fiber diet are considered risk factors for CRCs although there are 

exceptions (Rose 1986). The breakdown products of fat metabolism are believed to produce 

carcinogens and predispose individuals to CRCs, while high fiber diet is believed to have a 

protective effect. Other dietary components like vitamin B6, calcium, and folate have been 

proposed as protective factors (Giovannucci 1998).  
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Figure 1: Cancer incidence and mortality.  

Estimated numbers (in thousands) of new cancer cases (incidence) and deaths 

(mortality) in developed and developing regions of the world in 2008: (a) in men and 

(b) in women. (Source: Int J Cancer 2010; 127(12), 2893-2917). 
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Inflammatory bowel disease 

Studies indicate that individuals with inflammatory bowel disease (ulcerative 

colitis and Crohn's disease) are at an increased risk of CRCs. The risk is greater the longer the 

patient has had the disease, along with the severity of the inflammation (Triantafillidis, 

2009). Although both these disorders are inflammatory conditions, they are differentiated 

based on the location, and on the nature of the inflammatory changes. The Crohn's disease 

can affect any part of the gastrointestinal tract, from mouth to anus, although a majority of the 

cases start in the terminal ileum. In contrast, ulcerative colitis is restricted to the colon and the 

rectum. Microscopically, ulcerative colitis is restricted to the mucosa, while Crohn's disease 

affects the whole bowel wall ("transmural lesions"). Crohn's disease, also known as regional 

enteritis, is caused by interactions between environmental, immunological, and bacterial 

factors in genetically susceptible individuals. This result in a chronic inflammatory disorder, 

in which the body's immune system attacks the gastrointestinal tract possibly directed at 

microbial antigens. Genetic susceptibility has been associated to the Crohn's disease, 

primarily with variations of the NOD2 gene and its protein (Hugot 2001). Ulcerative colitis 

on the other hand is a form of colitis that includes characteristic ulcers, or open sores. 

Although no known cause exists, genetic susceptibility is presumed. Ulcerative colitis is 

treated as an autoimmune disease. The disease may be triggered in a susceptible person by 

environmental factors.    

 

Adenomatous polyps 

Presence of precancerous polyps is one of the important risk factors for CRC (Winawer, 

1993). Polyps are fleshy growths that occur on the inside of the colon or rectum (figure 2) 

which are increasingly observed with increasing age. Although polyps are associated with 

CRC they are often benign. Polyps are generally classified as hyperplastic, neoplastic 

(adenomatous & malignant), hamartomatous, and inflammatory. Neoplastic polyps that 

constitute adenoma or the adenomatous polyps are the most significant polyp types that are 

associated with CRC. Several subtypes of adenoma exist that differ primarily in the way the 

cells of the polyp are assembled when examined under the microscope, like tubular, villous, 

or tubulo-villous adenomas. Villous adenomas are associated with the highest malignant 

potential as they generally have the largest surface area and are most likely to become 

cancerous, while the tubular adenomas are the least likely. 
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Figure 2: A cross section representation of a polyp lining the mucosa of the large 

intestine.  

 

Genetics 

A majority of CRCs are sporadic. However, among individuals with a family history of CRC, 

genetic contribution is indicated, that follow a pattern of autosomal dominant inheritance of 

cancer susceptibility (each child has a 50% chance of inheriting the predisposition with both 

sexes carrying the same risk, and 3 times more with CRCs occurring in first-degree relative). 

In around 5% to 6% of CRCs, genetic mutations have been identified as the cause of 

inherited cancer risk in few colon cancer prone families (Burt, 2004). Over 70% of CRCs, 

regardless of etiology, arise from adenomatous polyps. Hereditary and somatic mutations 

have been identified in adenomatous polyps, and are thought to follow a multistep process 

beginning with early adenoma before transforming into invasive carcinoma (Fearon, 1990) 

(see figure 3). This adenoma-carcinoma sequence includes characteristic mutations that are 

categorized into three types: mutations of tumor suppressor genes (autosomal recessive trait 

where both alleles need to be damaged to lose function), oncogenes (mutated proto-

oncogenes where only one allele need to be mutated to cause dysfunction), or DNA repair 

genes. These alterations result in mucosal proliferation forming a polyp and finally 

carcinoma. In the sequence of events, mutation of the adenosis polyposis coli (APC) 

regulatory pathway is believed to be the first, early stage step of this process (Laken, 1999).  
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A. 

 

B. 

 

Figure 3: The adenoma-carcinoma progression. 

The multistep process of colorectal adenoma - carcinoma progression (A) together with 

the morphology of colorectal cancer progression (B). This classical pathway is 

characterized by traditional adenoma morphology, slow progression, and high 

adenoma: carcinoma ratio, frequent chromosomal instability and aneuploidy, and rare 

microsatellite instability (Original source: Fearon and Vogelstein, 1990). 
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The APC represses β-catenin, which is known to promote cell growth (via enhancing c-Myc 

expression that promotes cellular division), thereby reducing abnormal tissue expansion. As 

cells migrate from the base of the crypts toward the epithelial surface, a rise in APC 

expression which represses β-catenin, is associated with increased apoptosis, necessary to 

balance production from the base of crypt. The tumors lacking APC mutations frequently 

harbor β-catenin mutations that resist repression by APC. Disruption of the APC pathway 

may be sufficient to start a small adenomatous growth (Alberici 2006). The APC and the β-

catenin signaling form part of the WNT signaling pathway that has been shown to be 

associated with gastrointestinal tumors.  

This crucial initiation step is sustained by mutation of other genes like RAS that often occur 

among the next genetic events of progression (Fearon, 1990; Janssen, 2006). The strong 

tendency for APC mutations to appear in the early morphological stages, and RAS mutations 

to occur only in later morphological stages suggests the important role of the order of 

mutational steps in colorectal carcinogenesis. Additional genetic events are associated with 

continuing morphological progression through late adenoma and early carcinoma stages, with 

the genes DCC, SMAD4, and SMAD2 in 18q21. Finally, the loss of both alleles of the 

functional p53 drives progression to carcinomas (Fearon 1990).   

 

Chromosomal instability  

About 85 percent of colorectal tumors have major chromosomal aberrations (Alberici, 2007). 

Often, part of a chromosome or a whole chromosome is lost. A lost chromosome is usually 

replaced by duplication of the remaining chromosome from the original pair. Duplication 

creates two copies of the same allele at a locus, with loss of one of the original parental 

alleles called loss of heterozygosity (LOH) and is known to accelerate the genetic changes 

that drive carcinogenesis (Thiagalingam 2001). Chromosomal instability (CIN) arises from 

mutations and other genomic changes that abrogate the normal controls on chromosome 

duplication and segregation in mitosis. Because CIN increases the rate at which genetic 

changes occur, it can accelerate the sequence of genetic events that drive carcinogenesis. 

Most solid tissue tumors have CIN, but it remains controversial whether CIN arises early in 

carcinogenesis and thus plays a key role in driving genetic change, or CIN develops late in 

tumorogenesis as the genome becomes increasingly disrupted by the later stages of 

carcinogenesis (Kinzler, 1998).  
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Other genetic/molecular causes 

While the majority of CRCs are due to events that result in chromosomal instability, 20% to 

30% of CRCs display characteristic patterns of gene hypermethylation, termed CpG island 

methylator phenotype (CIMP), of which a portion display microsatellite instability (15% of 

CRCs) (Lengauer, 1998; Kinzler, 1998; Weisenberger, 2006). The chromosomal instability 

cancers include alterations in chromosome number (aneuploidy) and detectable losses at the 

molecular level of portions of chromosome 5q, chromosome 18q, and chromosome 17p; and 

mutation of the KRAS oncogene (Vogelstein, 1993, Vogelstein, 2002).  

 

Microsatellite instability 

Approximately 15 percent of colorectal tumors do not have CIN or widespread chromosomal 

abnormalities. Instead, these tumors usually have mutations in their mismatch repair (MMR) 

system that is a component of DNA repair. Loss of mismatch repair function increases 

mutations in repeated DNA sequences, such as in the microsatellite regions and alters the 

length of repetitive microsatellites at a higher rate than normal during DNA replication 

resulting in microsatellite instability (MSI). Genes with repetitive sequences seem to be at 

greater risk for mutation in microsatellite instable tumors. Most colorectal tumors have either 

MSI or CIN, but not both. Compared with microsatellite-stable tumors, microsatellite-

instable tumors appear to have faster rate of adenoma-to-carcinoma progression. In such 

tumors, characteristic histological changes such as increased mucin production are also 

observed, while some mucin types are decreased, suggesting that some molecular events 

contribute to the histological features of the tumors (Ionov 1993; Thibodeau, 1993).  
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 I.3.3: Anatomy and histology of the colon  

 

Anatomy of the colon 

The colon constitutes a part of the digestive system, followed by the rectum which is the end 

of the colon, adjacent to the anus. The colon and the rectum, together with the cecum make 

up the large intestine. The human colon as a whole consists of four sections: the ascending 

colon, the transverse colon, the descending colon, and the sigmoid colon (figure 4). The 

ascending colon and transverse colon together are usually referred to as the proximal colon.  

 

        

Figure 4: Anatomy of a normal human colon.  

A general view (top left), detailed view (A), and (B) represent the anal canal. (Copyright 

© The McGraw-Hill Companies, Inc). 
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The ascending colon is present on the right side of the abdomen measuring about 13 cm long 

that starts from the cecum to the hepatic flexure. The colonic part from the hepatic flexure to 

the splenic flexure constitutes the transverse colon. This part is supported to the the stomach, 

attached by a wide band of tissue called the greater omentum. On the posterior side, the 

transverse colon is connected to the posterior abdominal wall by a mesentery known as 

the transverse mesocolon. The transverse colon is encased in peritoneum, and is therefore 

mobile (unlike the parts of the colon immediately before and after it). Cancers are formed 

more frequently further along the large intestine as the contents become more solid to 

form feces. The colonic part from the splenic flexure to the beginning of the sigmoid colon 

constitutes the descending colon. Finally, the sigmoid (S-shaped) colon follows the 

descending colon before the rectum. The walls of the sigmoid colon are muscular, and 

contract to increase the pressure inside the colon, causing the stool to move into the rectum.  

 

Histology of the colon 

Microscopic observation of a normal colonic tissue biopsy section via hematoxylin and eosin 

(H&E) staining consists of defined histological structures namely mucosa, areolar 

(submucosa), muscular and serous as shown in figure 5.        

 

Figure 5: Histology of a normal human colon (A: schematic and, B: HE stained tissue 

section). Microscopic observation shows the main histological features namely mucosa, 

areolar tissue (submucosa), muscularis mucosa and serosa.  

(A. Copyright © The McGraw-Hill Companies, Inc., B. Blue Histology, The University 

of Western Ausralia). 
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The mucous membrane (tunica mucosa): The mucous membrane in the colon is smooth, 

without villi, raised into numerous crescentic folds which correspond to the intervals 

between the sacculi. In the rectum it is thicker, more vascular, and connected loosely to the 

muscular coat, as in the esophagus. Similar to the small intestine, the mucous 

membrane consists of a muscular layer called the muscularis mucosæ; a retiform tissue in 

which the vessels ramify; a basement membrane and an epithelium which is of the columnar 

variety. The mucous membrane of the large intestine consists of glands and solitary 

lymphatic nodules. The glands are minute tubular prolongations of the mucous membrane 

arranged perpendicularly, side by side, over its entire surface. They are longer and more 

numerous than those of the small intestine, and open by minute rounded orifices upon the 

surface, giving it a cribriform appearance. Each gland is lined by short columnar epithelium 

and contains numerous goblet cells. The functional glands of the colon are constituted by 

crypts. These are shaped into straight tubular glands by a simple columnar epithelium. There 

are no villi. In cellular composition, the epithelium of the large intestine resembles that of the 

small intestine, but with a higher proportion of goblet cells interspersed among the absorptive 

cells. Although the absorptive cells remain more numerous throughout, goblet cells in the 

colon are so numerous and so large (bulging against the adjacent absorptive cells) that the 

colon epithelium sometimes appears to consist mostly of goblet cells. The crypt epithelium 

also includes stem cells which replenish the epithelium every few days, enteroendocrine cells, 

and paneth cells. The crypts are separated by the lamina propria, a loose connective tissue 

infiltrated by many white blood cells, with capillaries and thin strands of smooth muscle. 

Occasional neutrophils are present in the lamina propria of normal colonic biopsies. 

Lymphoid follicles of B-lymphocytes are present in colonic mucosa and may extend through 

the muscularis mucosae into the submucosa.  

 

The areolar coat (tela submucosa; submucous coat): The areolar coat connects the 

muscular and mucous layers closely together. The submucosa is a loose connective tissue 

supporting the mucosa. It allows the mucosa to move flexibly during peristalsis. The 

submucosa contains a vascular plexus, relatively large veins and arteries which give rise to 

the capillary bed of the mucosa.  
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The muscular coat (tunica muscularis): The muscular coat consists of an external 

longitudinal, and an internal circular, layer of non-striped muscular fibers. The longitudinal 

fibers form a discontinuous layer over the whole surface of the large intestine. In the cecum 

and colon they are especially collected into three flat longitudinal bands (tænæi coli), each of 

about 12 mm wide. These bands serve to produce the sacculi which are characteristic of the 

cecum and colon; accordingly, when they are dissected off, the tube can be lengthened, and 

its sacculated character disappears. In the sigmoid colon the longitudinal fibers become more 

scattered; and around the rectum they spread out and form a layer, which completely 

encircles this portion of the gut. The circular fibers form a thin layer over the cecum and 

colon, being especially accumulated in the intervals between the sacculi; in the rectum they 

form a thick layer. The Muscularis mucosa of the lower tract forms a thin layer (only a few 

muscle fibres in thickness) beneath the deep ends of the crypts.  

 

Serous coat (tunica serosa): The serous coat is derived from the peritoneum, and invests 

different portions of the large intestine to a variable extent. The serous membrane almost 

completely covers the cecum. The ascending, descending, and iliac parts of the colon are 

usually covered only in front and at the sides, and a variable amount of the posterior surface 

is uncovered. The transverse colon is almost completely invested, except the parts 

corresponding to the attachment of the greater omentum and transverse mesocolon. The 

sigmoid colon is entirely surrounded. The rectum is covered above on its anterior surface and 

its sides, and below on its anterior surface.  
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I.3.4: Patho-physiology of colorectal cancer 

CRC originates in the epithelial cells lining the colon or rectum of the gastrointestinal tract. 

Adenocarcinoma accounts for the most common colorectal cancers types. A conventional 

histopathological comparison between a normal and a moderately differentiated colon 

adenocarcinoma is presented in figure 6.    

   A.       B.  

             

 

Figure 6: Histological comparison of normal and cancerous colon tissue section.  

The normal tissue (A) shows well-differentiated crypts and the surrounding connective 

tissue, while the differentiation is reduced in the cancerous regions of the tissue (B). The 

tissue sections are stained with HE. (A. Copyright © The McGraw-Hill Companies, Inc., 

B. Source: Histology Atlas).  

 

An adenocarcinoma is a malignant tumor, originating from glandular epithelium of the 

colorectal mucosa. The well-differentiated normal architecture of the colonic epithelium (as 

described in the sub-section ‘Histology of the colon’) is lost as the carcinoma advances. The 

crypts show less open lumen, darkly stained nucleus, decreased cytoplasm which are the 

signs of malignancy. When the tumor is restricted to the glandular epithelium and has not yet 

begun to invade the wall of the colon or rectum it is called carcinoma in situ. However, once 

cancer forms in the large intestine, in time it can invade the lining of the colonic or rectal 

wall. Such cancers can also penetrate blood vessels or lymph vessels. Cancer cells typically 
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spread first into nearby lymph nodes and can also be carried in blood vessels to the liver or 

lungs, or can spread in the abdominal cavity to other areas, such as the ovary. The process is 

called as metastasis. Tumor cells describe irregular tubular structures, harboring 

pluristratification, multiple lumens and reduced stroma. Sometimes, tumor cells are 

discohesive and secrete mucus, which invades the interstitium producing large pools of 

mucus called mucinous (colloid) adenocarcinoma which is poorly differentiated. If the mucus 

remains inside the tumor cell, it pushes the nucleus at the periphery called as signet-ring cell. 

Depending on glandular architecture, cellular pleomorphism, and mucosecretion of the 

predominant pattern, adenocarcinoma may present three degrees of differentiation: well, 

moderately, and poorly differentiated.  

Most adenocarcinomas are moderately differentiated and lack specific histological features, 

although colorectal tumors tend to show cribriform patterns with central necrosis; a feature 

that is useful if a metastatic tumor is encountered when no colorectal primary has been 

diagnosed. Dysplasia in adjacent mucosa may be seen, but frequently the invasive tumor 

obliterates any pre-existing polyp from which it may have arisen. Mucinous adenocarcinoma 

is a subtype of adenocarcinoma which secretes extracellular mucin and is known to be 

associated with MSI. At least 50% of the tumor must be mucinous in order to make this 

diagnosis.   

 

I.3.5: Colorectal cancer screening and diagnostic tests 

Most individuals with early CRC do not have symptoms of the disease. Symptoms usually 

only appear with more advanced stage of the disease, and hence, screening tests play an 

important role in identifying the early suspicions indicative of the disease. A positive 

indication would be a sign to perform the diagnostic tests to find out the cause of the disease. 

Screening tests involves looking for cancer in individuals who do not have symptoms of the 

disease. The common screening tests employed for CRC are:  

 

Fecal occult blood test  

The fecal occult blood test (FOBT) is used to find occult blood in fecal material (Miyoshi, 

2000). The presence of blood in the feces indicates fragile and easily damaged blood vessels 
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due to the passage of stool at the surface of larger colorectal polyps or cancers. There are two 

types of FOBTs available. One type, called the guaiac FOBT, uses the chemical guaiac to 

detect heme, the iron-containing component of the blood protein hemoglobin in samples of 

stool. The other type of FOBT, called immunochemical (or immunohistochemical) FOBT, 

uses antibodies to detect human hemoglobin protein in samples of stool. A positive test 

requires a colonoscopy to find the cause of bleeding and for further investigations.   

 

Double-contrast barium enema 

The double-contrast barium enema (DCBE) also called an air-contrast barium enema is 

basically a type of X-ray examination of the large intestine. The intestine is made visible on 

an X-ray picture by outlining the inner part of the intestine with the contrast material barium 

sulphate and air poured in through a tube inserted into the anus. The barium blocks the X-

rays, causing the barium-filled colon to show up clearly on the X-ray picture. A colonoscopy 

will be needed for further examination if any areas are suspected for abnormalities. 

 

Flexible sigmoidoscopy 

Flexible sigmoidoscopy enables examining the inside of the large intestine from the rectum 

through the last part of the sigmoid colon, with a sigmoidoscope (Zuber, 2001). A small 

video camera fixed at the end of this flexible lighted tube aids to view the images on a display 

monitor. Since the sigmoidoscope is only 60 cm long, abnormalities in only less than half of 

the colon that includes the entire rectum can be detected with this procedure. With flexible 

sigmoidoscopy, intestinal bleeding, inflammation, abnormal growths, ulcers, benign and 

malignant polyps, as well as early signs of cancer in the descending colon and rectum can 

also be viewed. The detected abnormalities (e.g. polyp) can be possibly removed and the 

biopsy sent for further examination. 

 

CT colonography (virtual colonoscopy)  

This test is an advanced type of computed tomography (CT or CAT) scan of the colon and 

rectum. A CT scan is an X-ray examination that produces detailed cross-sectional images of 

the body. Instead of obtaining a single picture, as in a regular X-ray, a CT scanner takes many 
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pictures as it rotates around the individual. A computer then combines these pictures into 

images of slices of the part of the body being studied. For CT colonography, special 

computer programs create both 2-dimensional X-ray pictures and a 3-dimensional view of the 

inside of the colon and rectum, which allows one to look for polyps or cancer. In case of 

detection of an abnormality, a colonoscopy will still likely be needed to remove them or to 

explore them further.  

 

Colonoscopy 

Colonoscopy is basically longer version of a sigmoidoscope that enables examination of the 

entire length of the colon and rectum with a colonoscope (Rex, 2000). This tube, inserted 

through the rectum all the way to the beginning of the colon (cecum) via a video camera on 

the end connected to a display monitor, helps in visualization and closer examination of the 

inside of the colon. Special instruments can be passed through the colonoscope to remove 

(biopsy) any suspicious looking areas such as polyps, and if needed are sent for further 

laboratory examinations. 

 

I.3.6: Histopathology for cancer diagnosis  

The cure for cancer relies to a large extent on its diagnosis. The two important factors 

concerned with diagnosis are, the early detection, which improves the chances of survival, 

and the biomolecular level understanding of the morphological and pathological changes 

occurring in the host tissue (Kendall, 2009). The different screening methods in use including 

the fecal occult blood test (FOBT) (Miyoshi, 2000), colonoscopy (Rex, 2000), 

sigmoidoscopy (Zuber, 2001), etc., provide firsthand information on the commencement of 

the disease and show different grades of sensitivity. In case of a positive identification, the 

tissue is subjected to histopathological analysis. As of now, the diagnosis of cancers is always 

confirmed and settled upon by microscopic examination of the excised tissue biopsy using 

histopathology.    

The microscopic visualization of the histological components is enhanced by staining the 

microtome sectioned tissues biopsies. The most widely used staining technique is H&E, in 

which the nuclei of cells are stained blue by the hematoxylin, while the cytoplasm and the 
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extracellular connective tissue is stained pink by the eosin. This enables visualization of 

specific cell types and morphological changes (size, shape, coloration of the nucleus and 

other tissue features) indicative of disease as shown in figure 6. In certain cases, presence, 

localization and abundance of specific proteins is detected by antibody based techniques like 

immunohistochemistry (IHC) that enhances further understanding of the disease. Using such 

microscopic examination, cancer is staged into different categories which are based on 

several aspects. As an example, in case of CRC, the staging describes the severity of the 

cancer in an individual based on the extent of the primary tumor and its penetration to 

adjacent tissues and organs in the body. Thus, the staging system assesses the extent of local 

invasion, the degree of lymph node involvement and whether there is distant metastasis. It is 

performed for diagnostic and research purposes, and to determine the best method of 

treatment and estimate the individual’s prognosis. The TNM staging system [from the 

American Joint Committee on Cancer (AJCC)] is one of the most commonly used staging 

systems which is based on three categories, "T" denotes the degree of invasion of the 

intestinal wall, "N" the degree of lymphatic node involvement, and "M" the degree 

of metastasis. The broader stage of a cancer is usually quoted by a number I, II, III, IV 

derived from the TNM value grouped by prognosis; the higher the number, the more 

advanced is the cancer and more likely a worse outcome. Details of this classification system 

are presented in table I.  

 

At present histopathology is the gold standard method for cancer diagnosis. At the same time, 

several techniques are being tried and tested that could provide complementary information 

of the diseased condition to histopathology (Kendall, 2003). Of these techniques, biophotonic 

approaches such as infrared (IR) and Raman spectroscopies are being seen as promising 

candidates due to their ability to provide biomolecular information from cells and tissues.     
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Table I: TNM staging criteria for colorectal cancers 

 

AJCC 

stage 
TNM stage 

2002 6th edition TNM stage criteria for 

colorectal cancer (superceded by 2010 7th 

edition) 

Stage 0 Tis N0 M0 Tis: Tumor confined to mucosa; cancer-in-situ 

Stage I T1 N0 M0 T1: Tumor invades submucosa 

Stage I T2 N0 M0 T2: Tumor invades muscularis propria 

Stage II-A T3 N0 M0 
T3: Tumor invades subserosa or beyond (without 

other organs involved) 

Stage II-B T4 N0 M0 
T4: Tumor invades adjacent organs or perforates 

the visceral peritoneum 

Stage III-A T1-2 N1 M0 
N1: Metastasis to 1 to 3 regional lymph nodes. T1 

or T2. 

Stage III-B T3-4 N1 M0 
N1: Metastasis to 1 to 3 regional lymph nodes. T3 

or T4. 

Stage III-C any T, N2 M0 
N2: Metastasis to 4 or more regional lymph nodes. 

Any T. 

Stage IV any T, any N, M1 M1: Distant metastases present. Any T, any N. 
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I.4: Introduction to infrared spectroscopy and rationale of the work: 

 

The diagnosis using histopathology is based to a large extent on the microscopic examination 

of the symptomatic tissue in which preferential stains are used to enhance visualization of the 

tissue morphological aberrations (Kendall, 2009). Such pre-cancerous or cancerous 

aberrations are the manifestations of the biomolecular changes that have already undergone 

the provocative changes for malignancy. However, the ongoing state of the tissue molecular 

changes during the onset or progression of malignancy, without any visible morphological 

signatures, poses a challenge for identification. In certain cases, immunohistochemistry (IHC) 

is used to identify specific proteins of interest, which can give a molecular level 

understanding of the malignant condition. Histopathology requires precise human expertise 

which is a limit for high-throughput diagnosis. Therefore, if it can be combined with 

approaches that could provide complementary biochemical information in a rapid, cost 

effective manner and reducing human involvement, the efficacy of the histopathological 

diagnosis could be completed.   

In this regard, potential diagnostic methods based on vibrational spectroscopic approaches are 

foreseen as one of the contenders (Kendall, 2009). Vibrational spectroscopy enables one to 

understand the structural organization and functional properties of simple molecules and, 

complex systems such as cells and tissues based on the interaction of light with vibrational 

states of biomolecules (Martin, 2010). The two most important modalities in vibrational 

spectroscopies are IR absorption and Raman scattering. Although, both these techniques have 

different physical origins, they involve the vibrational modes of molecules.  

 

I.4.1: Infrared spectroscopy 

In the electromagnetic spectrum, IR radiation covers the region from 14000 cm-1 to 10 cm-1 

(0.8 μm to 1000 μm), which are at longer wavelengths and lower frequencies than the visible 

light (figure 7). This IR portion is further divided into three regions; the near-, mid- and far- 

IR. As per ISO 20473 scheme, the higher energy near-IR, approximately from 14000 cm-1 to 

4000 cm-1 (0.8 μm to 3 μm) can excite overtones or harmonic vibrational modes. The mid-IR, 
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approximately from 4000 cm-1 to 400 cm-1 (3 μm to 50 μm), is used to study the fundamental 

vibrations and associated rotational vibrational structure.  

The far-IR, approximately from 400 cm-1 to 10 cm-1 (50 μm to 1000 μm), lying adjacent to 

the microwave region, has low energy and may be used for rotational spectroscopy.  
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Figure 7: The electromagnetic spectrum showing the location of the IR spectral range 

 

IR spectroscopy is based on the principle of absorption of light by molecules. At the atomic 

level, IR energy provokes vibrational modes in a molecule through a change in the dipole 

moment, making it a useful frequency range for study of the energy states of the proper 

symmetry. Each molecule has its natural vibrational modes with characteristic vibrational 

frequencies and energies. The energy of molecular vibration is measured by its amplitude (the 

distance moved by the atoms during the vibration); the higher the vibrational energy, the 

larger is the amplitude of the motion.  

 

 



  Introduction 
 

35 
 

A molecular vibration is excited when the molecule absorbs a quantum of energy

corresponding to the vibrational frequency according to the relation (equation 1): 

E = hν   (1) 

where, 

E = energy 

ν = vibrational frequency (Hz) 

h = Planck's constant (6.626 x 10-34 J.s) 

A fundamental vibration is excited when one such quantum of energy is absorbed by the 

molecule in its ground state. However, for the molecule to be IR active, this absorption 

should cause a change in dipole moment of the molecule. A molecule with N atoms, if is 

linear has 3N-5 degrees of freedom whereas if is a non-linear molecule, it has 3N-6 degrees 

of freedom where, six corresponds to translations and rotations of the molecule itself. The 

vibrational modes are named as stretching (a change in the length of a bond), bending or 

scissoring (a change in the angle between two bonds), wagging (a change in angle between 

the plane of a group of atoms), twisting (a change in the angle between the planes of two 

groups of atoms), and rocking (a change in angle between a group of atoms). These different 

fundamental modes are shown in figure 8.   

 

Figure 8: Different vibrational modes of molecules. 



  Introduction 

 

36 
 

The covalent bonding could be compared to a stiff spring that can be stretched and bent. The 

energy required to stretch (or compress) a bond is more than to bend it. The energy or 

frequency that characterizes the stretching vibration of a given bond is proportional to the 

bond dissociation energy. The major factors that influence the stretching frequency of a 

covalent bond between two atoms of mass m1 and m2 can be represented by the equation (2) 

where the force constant (f) is proportional to the strength of the covalent bond between 

m1 and m2.  

 

   (2) 

 

 

 

 

 

Hence, a C=N double bond is about twice stronger than a C-N single bond and hence the 

energy required to stretch would also increase based on the bond strength.  

 

When IR light is passed through an IR active sample, some of the wavelengths are absorbed 

by the sample and some are transmitted through. Any absorption band can be characterized 

by two parameters: the wavelength at which maximum absorption occurs and the intensity of 

absorption at this wavelength. Examination of the transmitted light reveals how much energy 

was absorbed at each frequency (or wavelength). It can be represented by the equation 3: 

 

Transmittance T = I / Io 

 

Absorbance A = log (1 / T) = log (Io / I) = Σcl (3)  

 

This is also called the Beer-Lambert Law. 

where, 

Io = Intensity of incident radiation 

I = Intensity of transmitted radiation 

Σ = molar extinction coefficient (L mol-1 cm-1) 

c = concentration (mole / L) 

l = sample path length (cm) 
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The absorbance or transmittance over the whole mid-IR range is represented in the form of an 

IR spectrum that can be exploited both qualitatively and quantitatively. This information 

gives the IR spectral fingerprint of the biomolecules in cells and tissues which gives an 

insight into the molecular composition, structural and metabolic changes occurring in these 

tissues.   

 

I.4.2: Infrared spectroscopy in biomedical research 

Since the mid- 20th century, IR spectroscopy coupled to microscopy was recognized with 

several potential applications in the field of biomedical research importantly cancer (Barer, 

1949; Blout 1949; Woernley, 1952). The IR spectra originating from tissue sections and 

blood smears were determined in some of these studies.  

The micro-level analysis became possible in 1980s with the advent of commercially available 

FTIR micro-spectroscopy. Further advances in the development of IR spectroscopy for 

biomedical studies were started by the coupling of interferometer, a microscope and an 

automated stage in the recent decades (Kwiatkoski, 1987; Wetzel, 1999; Gremlich, 2000). In 

the following years, several other biomedical studies of IR spectroscopy were carried out on 

cells (Wood, 1998), blood cells (Liu, 2007) cell lines (Mourant, 2003; White, 2006), etc.  

Combined with an imaging set up, it was possible to acquire images of tissue sections which 

led to large scale biomedical applications especially as a potential cancer diagnostic tool. 

Several studies were undertaken to exploit these capabilities on different tissue types for 

discrimination between normal and the malignant features of the tissues, classification of 

different grades of tumors etc. 

The cancerous tissues were analyzed for the diagnosis of benign and malignant lesions of 

breast tissue using IR imaging (Fabian, 2006). Classification of malignant glioma, including 

different malignancy grades, was reported (Krafft, 2007). Discrimination was achieved 

between basal layer, dysplastic lesions and squamous cell carcinoma of cervical tissues 

(Steller, 2006), and between malignant and benign nodules of thyroid (Zhang, 2010). IR 

imaging was also feasible in the quantification of endogenous biomolecules from the tissues 

originating from esophagus (Wang, 2007), and segregation of different types of prostate cells 

(German, 2006). These studies were carried out on fresh or frozen tissue samples. More 

recently, with the employment of effective spectral pre-treatment algorithms that can 
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neutralize the contributions of paraffin, a common tissue embedding medium, IR imaging has 

been applied directly to paraffinized tissues section without any chemical pretreatments. (Ly, 

2008; Travo, 2010).  

As far as colonic tissue are concerned, such tissues displaying abnormal spectra were 

detected by IR spectroscopy (Rigas, 1990; Rigas, 1992). In these studies it has been shown 

that the tumors display abnormal signatures compared to normal tissues involving vibrational 

modes such as phosphates and C-O vibrations. Following studies reported characterization of 

IR spectra of colon adenocarcinoma (Salman, 2001; Lasch 2002; Conti 2008). These studies 

presented various multivariate analyses to characterize the spectral images, and to develop 

topological images for histopathological verification. Also changes corresponding to 

RNA/DNA ratio, phosphate and carbohydrate were highlighted. Few studies on the 

inflammatory conditions of the colonic tissues in relation to the tumoral tissues were also 

reported (Argov, 2004, Katukuri, 2010). The inflammatory conditions that reflect themselves 

as intermediate stages between normal and malignant conditions were shown by IR 

spectroscopy. The importance of mucin as a diagnostic marker has been elucidated in colon 

cancers by IR imaging methodology (Travo, 2010). The significant IR spectral variations to 

discriminate between the normal and adenocarcinomatous tissues were associated with the 

secondary structure of mucin. In recent years Synchrotron based FTIR studies have also been 

implemented to cells in view of its high brightness, which permits to record high-quality 

spectra at diffraction-limited spot sizes (Pijanka, 2010; Pijanka, 2010).  

 

I.4.3: Implementation of the work  

Based on the capabilities of the IR spectroscopy, it was envisaged to exploit them as a 

potential diagnostic tool for histopathology. IR spectroscopy probes intrinsic chemical bond 

vibrations of biomolecules and thus provides a biochemical fingerprint of cells and tissues (Martin, 

2010). Combined with an imaging device with an array detector, spectral images can be obtained 

rapidly in a label-free manner, in which each pixel element harbors an IR spectrum 

containing biochemical information at each wavenumber. Such IR images can be exploited 

using computer based multivariate cluster analysis to generate digital false-color maps of the 

tissue histology. Since the constituent IR spectra of each digitally stained histological class 

represent its biochemical signature, such as collagen features in the connective tissue, specific 

spectral signatures can be identified from different histological classes. Such signatures can 
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be used to train predictive algorithms for identification of unknown tissues in a rapid and user 

friendly manner. One of the key points in using this methodology is the automation of the 

protocol, which can reduce human burden and provide a biochemical based diagnostic 

approach.  

In this regard, IR imaging in conjunction with multivariate analyses (k-means clustering and 

Mann-Whitney U test) was carried out on colonic tissue samples. Initially, a feasibility test 

was carried out on frozen colonic tissues. This pilot scale study constituted the basis for the 

development of a new concept of spectral barcodes, which enabled easy representation and 

interpretation of the discriminant spectral signatures between normal and tumoral colonic 

epithelial features. 

In order to extend IR spectral imaging to larger sample size, paraffinized colonic tissue arrays 

from the tumor bank were recruited for the study. The tissue arrays were paraffinized and 

embedded in an agarose matrix which necessitated employment of pre-processing methods. 

Once again, a small sample set of the paraffinized tissue arrays were initially analyzed prior 

to extending the methodology to the entire sample set. Primarily, a modified Extended 

Multiplicative Signal Correction (EMSC) method was employed in order to neutralize the 

spectral interferences arising from paraffin and agarose. The samples were then analyzed 

using multivariate statistical analyses (k-means clustering, Mann Whitney U test, and 

Principal component analysis) which formed the basis for the development of the concept of 

IR spectral histopathology for colon tissue arrays. 

Once the IR imaging methodology was standardized and established for the tissue arrays, it 

was expanded to the remaining tissue arrays constituting a larger sample set. The main 

objectives of the study were to develop spectral markers representative of various histological 

structures and histopathological aspects of the colonic tissues. Further, it was aimed to use 

these markers to construct a prediction model (based on linear discriminant analysis) to 

digitally detect and identify malignancy and its associated features in unknown tissues 

without any chemical staining, and constituting an automated diagnostic approach for colon 

adenocarcinoma. These objectives were aimed at validating the concept of IR spectral 

histopathology of colon tissue arrays on a larger scale.  

Alongside, in order to characterize complementary approaches to IR spectral histopathology, 

other imaging modalities employing IR- attenuated total reflection (ATR) and Raman micro-

spectroscopy have been tested on frozen colonic tissue samples. An approach similar to IR 
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spectral imaging of colon tissue arrays has also been tested on paraffinized breast tissues. 

This approach constituted a preliminary approach to establish IR spectral imaging for breast 

tissues in order to characterize IR spectral markers associated with breast cancers.    
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CHAPTER II 

Materials and methods 
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II.1: Sample preparation:  

II.1.1:  Choice of samples 

The IR spectral imaging studies have been carried out on different types of tissue samples. 

They principally included human colon tissues that were formalin fixed, paraffin embedded 

and obtained in the form of tissue arrays, and secondarily obtained in the form of frozen 

tissues. Additionally, in a feasibility study, this approach was extended to formalin fixed 

paraffinized human breast tissues. In total, 84 paraffinized human colon tissues (33 non-

tumoral, 47 tumoral, and 4 adenomatous) from 39 individuals were analyzed. In the case of 

frozen human colon tissues, 12 samples (7 non-tumoral and 5 tumoral) from 7 patients were 

analyzed. The number of paraffinized breast tissues analyzed was 32 (16 non-tumoral and 16 

tumoral) from 16 patients. All the samples were obtained with the approval of the 

Institutional Review Board of CHU Reims. The sample details are presented in the table I.  

 

Table I: Sample numbers utilized in the study 

  
Colon tissue array 

(paraffinized) 
Colon tissues 

(frozen) 
Breast tissues 
(paraffinized) 

  
  

  
Number of 

samples 84 12                       32 
  

  
  

Non-tumoral 33 7 16  
Tumoral  47 5                       16 

Adenomatous 4 
 

  
  

  
  

Number of 
patients 39 7 16  

 

II.1.2: Tissue array   

The principal tissue types analyzed in this study consisted of normal and moderately 

differentiated colon adenocarcinoma, which were obtained in the form tissue arrays. The 

tissue arrays consisted of an assembly of selected tissue spots originating from different 

paraffinized tissue blocks. Such arrays facilitated multiplexing the samples on a single optical 

substrate for measurements of the tissues without disturbing the sample compartment. The 
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tissue arrays were constructed manually in the pathology laboratory as shown in figure 1. The 

tissue arrays were embedded in paraffin and stabilized in an agarose matrix. For this, 4 % 

agarose was cast in a mold to obtain a gel of 2 to 3 mm thick. After polymerization, it was cut 

to the dimension of a standard laboratory embedding cassette (28.5 x 41 x 6.7 mm). The 

cassette with the solidified agarose was then passed into the vacuum infiltration processor 

(VIP) instrument for automated standard protocol of dehydration of agarose, and paraffin 

infiltration, as commonly used for tissues. Once chilled, this paraffin-agarose matrix then 

served as the recipient block for constructing the tissue arrays. 

 

 

Figure 1: A schematic representations of a manual tissue array slide construction. 

 

Holes were punched in the recipient block manually using a tissue punch of diameter 3 mm. 

Paraffin blocks containing non-tumoral and tumoral colon tissues served as the donor blocks. 

Cylindrical tissues cores were excised from the donor block using a tissue punch and 
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introduced into the punched holes, in the paraffin-agarose recipient block in an array of 

choice with defined coordinates. The most stable cylindrical tissue cores were placed on the 

top row of the tissue array block for maximum mechanical stability and to ensure uniform 

microtome sectioning. The tissue array block was then transferred into an inclusion mold and 

filled with molten paraffin to completely integrate the cylindrical tissue cores into the matrix. 

This paraffin-agarose block is now referred to as the tissue array block. Once cooled, the 

tissue array blocks were taken out of the molds and stored at normal room conditions until 

sectioning. Each tissue array block consisted of 12 to 16 tissue cores (3 mm in diameter) of 

selected colon tissue type. Before sectioning the paraffin-agarose tissue array block, the block 

was chilled to -20C for 30 min.  

For the initial feasibility study of IR spectral imaging, and complementary approaches 

involving IR-ATR, and Raman micro-spectroscopies, the frozen human colorectal tissues 

were sectioned (10 µm) using cryo-microtome and an optimal cutting temperature (OCT) 

embedding medium. For the preliminary study on human breast tissues, the samples were 

obtained in the form of paraffinized microtome sections (10 µm). 

  

II.2: Instrumentation:  

 

II.2.1: FTIR spectral imaging system 

 

The FTIR imaging system consisted of a microscope (Spectrum Spotlight 300, Perkin Elmer, 

France) coupled to a spectrometer (Spectrum One, Perkin Elmer, France) (figure 2). The 

microscope was equipped with liquid nitrogen-cooled 16-element MCT detector and a visible 

camera (resolution power 0.8 µm) that enabled to capture visible images of the sample via the 

microscope. Guided by a motorized stage, this permitted to select the regions of interest of 

the samples for IR spectroscopy. The visible images were obtained under a LED white light 

illumination source. The spectrometer contained a Globar ® source that was projected in such 

a way that it coincided with the selected zone of the white light image. The imaging system 

enabled collecting IR spectral information either in point mode where a single element MCT 

detector was used or in the image mode where the multi-element (16 pixels) detector was 
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used. Both MCT detectors are placed in the same Dewar. One detector is selected at a time 

using a mask. The system has been upgraded with a second Dewar placed on top of the first 

one that serves as a liquid nitrogen reservoir. In this way, autonomy of 23 hours was reached, 

allowing the imaging of large samples. In the image mode, two options were available: pixel 

size of 6.25x6.25 µm2 or 25x25 µm2 for rapid sampling.  

Further, in an effort to limit the effects of atmospheric (CO2 and water vapor) contribution on 

the spectra, the sample compartment was equipped with a purge box where a continuous flow 

of dry air was maintained. In this way, a stable environment was reached.    

 

 

 
 

 

Figure 2: The infrared imaging system (Spotlight 300 from Perkin Elmer, Courtaboeuf, 

France).   

 

An interferometer enabled to examine all frequencies in a wide spectral range 

simultaneously. A schematic representation of the FTIR instrumentation and a Michelson 

interferometer is shown in figure 3.  
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Figure 3: A typical representation of the instrumentation of a FTIR spectrometer (A), 

and, a schematic of a Michelson interferometer (B). 

 

In this system, an interference pattern is produced by splitting the IR light into two paths by 

using a KBr beam splitter, and then recombining the light beams. In the recombined beam, 

the superposition of the signals from different wavelengths generates an interferogram. The 

interferogram contains all the vibrational information and is displayed as the light intensity as 

a function of the optical path difference. The interferogram is then converted into a spectrum 

using a Fourier transform algorithm, over the entire mid-IR spectral range. A typical IR 

spectrum consisted of wavenumbers presented on the X-axis and the intensity of absorption 
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(or % transmission) at each wavenumber on the Y-axis. The absorbance is proportional to the 

concentration of the analyte based on the Beer-Lambert’s law (see equation 3).  

 

II.2.2: FTIR spectral image acquisition methodology 

A schematic representing the methodology for IR imaging of a spot from a tissue array is 

shown in Figure 4. The IR images were obtained from ten microns thick microtome sections 

cut from the tissue array block. The first 10 µm section was chemically deparaffinized for 

conventional histopathological analysis via HPS staining that served as a morphological 

reference. An adjacent 10 µm thick paraffinized tissue section was directly mounted onto an 

IR transparent calcium fluoride (CaF2) (Crystran, UK) window for IR imaging without any 

chemical deparaffinization. This procedure was followed for all the tissue array blocks 

included in the study. Spots were selected for IR analysis by an expert pathologist using a 3 

µm HPS stained image as the reference that provided finer tissue details.  

The acquisition parameters used were 6.25x6.25 µm2 pixel size, and 4 cm-1 spectral resolution 

averaged over 16 scans in the mid-IR range from 750 to 4000 cm-1. These parameters 

permitted to obtain good quality IR images which after multivariate processing enabled high-

degree of morphological correlation to the reference HPS image. Before settling on these 

parameters, IR imaging using a pixel size of 25x25 µm2 was tested. However, the spectral 

images were not resolved enough in order to provide good enough correlation to the reference 

HPS images. Similarly, to reduce the acquisition time, spectral resolution of 4 cm-1 was used 

averaged to 8 scans per pixel. However, the images acquired using 16 scans per pixel at same 

spectral resolution gave marginally better correspondence to the reference images.   

Each time, prior to an image acquisition, a background spectrum of the CaF2 window was 

acquired which was automatically subtracted from each pixel spectrum. The same 

methodology and similar acquisition parameters of IR imaging were kept for other tissue 

types in this study (frozen colon tissue samples and paraffinized breast tissue samples). 
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Figure 4: A schematic showing the adapted methodology for infrared spectral imaging 

of a tissue array spot.  

 

 

II.3: Data pre-processing: 

II.3.1: Pre-processing of IR spectra from paraffinized tissues arrays 

It is known that the interaction of light with matter gives rise to physical effects that can 

contribute to the tissue spectra. The physical information needs to be identified and be 

separated in order to exploit the biochemical information. Therefore, a pre-processing step 

was essential after image acquisition, to eliminate or correct, different kinds of inherent and 

extrinsic spectral interferences originating during image acquisition. The raw tissue spectra 

from the IR images of the paraffinized tissue arrays are quite complex since they contain 

contributions from the physical effects (e.g. scattering), atmospheric absorptions of water 
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vapor and CO2, chemical absorptions of paraffin and agarose, and biochemical absorptions 

from the tissue itself. With the purpose of preserving only the biochemical information, 

stringent pre-processing steps were employed, to neutralize the interfering, non-informative 

contributions. In order to achieve this, atmospheric correction of water vapour and CO2 was 

performed on each pixel by the built-in software of Spectrum IMAGE (Perkin Elmer, Version 

R 1.6.4.0394). Further analyses were performed using in-house algorithms written in Matlab 

7.2 (The Mathworks, Natick, MA). A modified EMSC model (Extended Multiplicative 

Signal Correction) (Ly, 2008) was used for correcting paraffin, agarose, and baseline 

interferences, followed by normalization. Pre-processing, processing and analysis of the IR 

spectra were carried out on spectral images in the IR absorption range of 900-1800 cm-1, 

considered as the most informative IR spectral region (Khanmohammadi, 2009; 

Khanmohammadi, 2010) as far as the tissue features are concerned.     

 

II.3.2: Construction of EMSC model  

EMSC was developed to correct the spectra from the physical light scattering effects that are 

different from the chemical light absorbance effects (Martens, 2003; Kohler, 2005). Along 

with the biochemical information, FTIR spectra of paraffinized colon tissue array sections 

exhibited absorption bands of paraffin (1378 cm-1 and around 1467 cm-1) and agarose (at 

1072 cm-1 and minor peaks at 932 cm-1, 1155 cm-1 and 1185 cm-1) in the 900-1800 cm-1 

spectral region (Figure 5).  
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Figure 5: Infrared spectral features of paraffin, agarose and colonic tissue.  

Average IR spectra of paraffin (A), paraffin and agarose mixed together (B), and a 

paraffinized colon TMA section (C) which includes spectral information from tissue, 

paraffin and agarose in the spectral range of 900 - 1800 cm-1. 

 

For efficient classification and understanding of the biochemical nature of the tissue, the 

variability of these contributions had to be neutralized and their influence circumvented, for 

which a modified EMSC algorithm was employed. The workflow of EMSC algorithm is 

depicted in figure 6.  
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Figure 6: The depiction of the EMSC algorithm for mathematical neutralization of 

paraffin and agarose contributions (A), and the outlier spectra detection and removal 

(B).  
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EMSC models linearly each spectrum of the data set as:  

iiii ePcIbss  ˆ
ia  (4)  

where,  

 is ℝ n1  is the ith acquired spectrum of the data set, i.e., a vector composed of n points 

 ŝ ℝ n1  is the target spectrum that is chosen as the mean spectrum of the studied dataset 

 I ℝ nk   is the interference matrix composed of k components 
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P ℝ   np 1  is the transpose of the Vandermonde matrix of the n 

wavenumbers jn ; this matrix is used to compute Pc i , a p-order polynomial function 

modeling for light scattering effect, i.e., for baseline correction.   

 ie  ℝ n1
 is the model error vector 

ia  is the scalar fitting coefficient of ŝ  to  is  

ib  ℝ k1  is the vector of the fitting coefficients of  I  to  is  

ic  ℝ  11  p  is the vector of the fitting coefficients of P  to  is  and represents the coefficient 

of the p-order polynomial function.  

The coefficients ia , ib  and ic  are estimated by the traditional least squares method in order to 

minimize the model error ie . The corrected spectra could be then represented by the equation 

i

corr
a

i
i

ess  ˆ   (5)  

Figure 7 depicts the flowchart of the EMSC protocol that has been used to realize several 

corrections. Firstly, it corrects spectra from paraffin and agarose contributions. Secondly, it 
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corrects spectra for light scattering effects, and thirdly, it normalizes spectra on the mean 

spectrum ŝ .  

 

Figure 7: The depiction of a flowchart for the EMSC model for spectral pre-processing. 

 

Briefly, in order to achieve these corrections, an IR image consisting of 13516 spectra was 

acquired from 10 µm thick paraffin (used for tissue embedding in the pathology laboratory) 

section using the same spectral parameters as that of the tissue array images. PCA was 

performed on these spectra to model them with few orthogonal components best explaining 

the variance of paraffin. The interference matrix I of model was constructed by retaining the 

first 10 principal components (PCs) and the mean spectrum of paraffin. Another IR image 

consisting of 15872 spectra was acquired from a 10 µm section of a mixture of paraffin and 

agarose, as agarose is a semisolid matrix (at 2% used for tissue array construction) and could 

not be sectioned alone. The spectra of this image were then modeled using equation (4) in 

which a fourth order polynomial function is assumed to construct P  to model the baseline. 

Paraffin contributions were then neutralized from agarose, by applying the correction in 
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equation (5). Next, PCA was performed on these paraffin corrected agarose spectra in order 

to model the IR signal of agarose. The first 10 significant PCs and the mean spectrum of 

agarose were then added to the interference matrix  I .  I  is thus composed of 11 components 

modeling paraffin and 11 components modeling agarose.  I being constructed and a fourth 

order polynomial function being still assumed for P , the model (1) was applied to the colon 

IR spectral images acquired from the paraffinized biopsies. The entire data set was then 

corrected for the contributions of paraffin and agarose, baseline corrected, and normalized on 

the entire spectral range using equation (5). Furthermore, a thresholding of ia  and 
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
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j ia
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E ie permitted to detect the outlier spectra of paraffin and agarose, and to 

eliminate them from further analysis. In the k-means classified images (see below), the pixels 

corresponding to these outliers are colored white.  

 

II.3.3: Pre-processing of IR spectra from other tissue types  

Similar treatments of atmospheric correction, EMSC based neutralization of paraffin 

correction (without agarose model) along with baseline and normalization were performed on 

the IR spectral images of the breast tissues. However, for the frozen tissue samples since 

there were no paraffin interferences, EMSC was employed for baseline correction and 

normalization without the model for mathematical deparaffinization.   

 

II.4: Multivariate data analysis and processing: 

After pre-processing, the spectra were subjected to various multivariate statistical tests. 

Initially, k-means clustering algorithm was applied to partition the IR spectral images into 

clusters in order to recover the histological organization. This method iteratively partitions 

the spectra into different classes based on the spectral distances (Figure 8). In the 

initialization phase, K spectra (K is the number of searched clusters) are randomly chosen to 

represent initial centroids which model the mean spectrum of each cluster. Second, each 

spectrum is affected to the cluster with the nearest centroid according to the Euclidean 

distance. Third, each centroid is updated as the mean of the spectra belonging to its cluster. 
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Steps 2 and 3 are repeated until the convergence of the algorithm. Therefore, spectra with 

similar biological characteristics fall into the same cluster and spectra with different 

biological characteristics fall into different clusters.  

 

 

Figure 8: The demonstration of the k-means algorithm 

To overcome the dependency of k-means on the initialization step for partitioning the data, 

six consecutive and independent runs were performed per image to classify the spectra. Out 

of these classifications, the cluster image showing the highest association to the reference 

histopathological image was selected for further analysis. In k-means, each spectrum belongs 

to a unique cluster and can thus be represented by a unique color distinct from those of the 

remaining clusters and a color coded image can be reconstructed for rapid and simple visual 

analysis of the clustering results. These were then compared to adjacent conventionally 

stained sections to annotate each spectral cluster to the tissue structural feature that it belongs 

to by an expert pathologist. K-means clustering provided label-free histological maps of the 

tissue samples. Further, it permitted to retrieve the tissue specific spectral signatures for 

biochemical interpretation via statistical analyses. 

Statistical analysis  

Different types of statistical tests were used in the study. From the k-means clustered images, 

the spectra representing various histological features were subjected to Mann-Whitney U test 

and principal component analysis (PCA) in order to find the most discriminant spectral 

regions. Further, the spectral differences between the compared groups were evaluated using 
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PC scores and PC loadings. PCA is one of the commonly employed spectral data processing 

method which reduces the size of the data still retaining the variance. This variance is 

represented by PCs and the first PC represents the maximum variance in a mean centered 

data.  

The k-means clustered images were also used to develop a prediction model based on linear 

discriminant analysis (LDA) for automated recognition of tissue features, to enable 

identification and localization of the tumor in unknown samples. LDA is a supervised 

technique which aims at maximizing the between-class variance and minimizing the within-

class variance. For the development and execution of the prediction model, spectral 

signatures representing tumor and other histological classes were identified from the initially 

classified k-means images. A representation of the LDA prediction procedure is shown in 

figure 9, and explained in detail in section III.4 of Chapter 3.   

 

Figure 9: A schematic representation of construction and application of the prediction 

model based on linear discriminant analysis. 

Similar spectra showing such signatures were grouped into a unique class with a unique label 

specific to the original histological structure that it belongs to, and added to the model. After 

several trials, the model presenting the best sensitivity was then applied in an external 
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validation on unknown samples that were secluded to the model. For the prediction, a 

posterior probability of 0.5 was used.  

 

II.5: Immunohistochemistry (IHC): 

IHC was used as a complementary tool (on adjacent sections) to enhance visibility of tumor 

budding (Anti-Human Cytokeratins-large spectrum Monoclonal Antibody, Clone KL 1, 

dilution 1/50, Immunotech, France) and precise the nature of the inflammatory cells: T-

lymphocytes (CD3 Rabbit anti-Human Polyclonal Antibody, dilution 1/200, Dako, France), 

and B-lymphocytes (CD20 Mouse antibody, clone L6 mouse, dilution 1/400, Dako, France), 

in order to validate some of the important observations detected by IR spectral imaging. This 

was performed using the fully automated IHC staining protocol (XT ultraView DAB v3).   
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CHAPTER III 

Results and discussion 
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III. Infrared spectral histopathology: Concept and application to colon 

cancers: 

 

III.1: Résumé : 

Le cancer est l'une des principales causes de mortalité dans le monde. De nouvelles 

technologies, capables de fournir un aperçu des signes qui se produisent au cours de la 

cancérogénèse, sont régulièrement testées afin de complémenter les méthodologies existantes 

de diagnostic. Parmi ces techniques, l’approche biophotonique par imagerie spectrale IR 

paraît être une méthode d’intérêt car elle mesure les vibrations des liaisons chimiques 

présentes au sein des cellules et des tissus, et est capable de fournir un aperçu des 

changements biochimiques qui ont lieu au cours des stades précoces de la cancérogénèse. 

Dans ce contexte, l'objectif principal de ce travail était de développer une méthodologie de 

diagnostic automatique basée sur l'imagerie spectrale IR pouvant être utilisée comme un outil 

complémentaire à l'histopathologie conventionnelle.  

Le premier article de ce chapitre présente tout d'abord le test de faisabilité qui a été menée 

afin d'établir une méthodologie d'imagerie spectrale IR sur des coupes de tissus coliques 

congelées. Les images spectrales IR obtenues ont été traitées par une méthode de clustering 

non supervisée afin de classer les spectres en fonction des différentes structures histologiques 

des tissus coliques selon leurs caractéristiques intrinsèques biochimiques. Un test statistique a 

ensuite été utilisé afin d’introduire, pour la première fois dans cette étude, un nouveau 

concept de code-barres spectral IR, construit à partir des signatures spectrales de différentes 

classes histologiques. Le code-barres constitue un outil de représentation et d’interprétation 

des marqueurs spectraux discriminants entre les tissus normaux et tumoraux de manière facile 

et simplifiée. Cette approche, en combinaison avec une analyse multivariée, a été réalisée sur 

un petit nombre d’échantillon (N = 10).  

Afin de poursuivre cette approche d’imagerie spectrale IR sur un nombre plus important 

d’échantillon provenant de la banque de tumeurs, la méthodologie, en combinaison avec 

l'analyse statistique multivariée, a été appliquée sur des tissus arrays de côlon paraffinés, 

représentant une riche source d'information pour une étude à haut débit.  
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Le deuxième article de ce présent chapitre porte sur la première partie du travail qui a été 

l'adaptation de la méthodologie d'imagerie spectrale IR sur un petit nombre de tissu arrays 

sélectionnés (N = 6). Étant donné que les échantillons ont été obtenus sous la forme de tissus 

stabilisés au sein d’une matrice d'agarose et paraffinés, un prétraitement des données est 

nécessaire afin de corriger les interférences spectrales de ces deux constituants. Pour cela, 

une méthode de correction appelée Extended Multiplicative Signal Correction (EMSC) a été 

appliquée de manière sélective dans le but de neutraliser les contributions parasites de 

l’agarose et de la paraffine, et ainsi conserver uniquement les informations biochimiques 

spécifique du tissu. 

En raison de la nature complexe des spectres IR obtenus à partir des tissus, des analyses 

statistiques multivariées ont ensuite été utilisées pour extraire les informations les plus 

discriminantes. Initialement, des algorithmes de clustering ont été utilisés dans le but de 

construire des images selon un code couleur en fonction de la distribution spatiale et 

biochimique des principales caractéristiques histologiques des tissus du côlon. Ceci nous a  

permis d’attribuer des signatures spectrales spécifiques aux différentes structures 

histologiques. Sur la base de ces signatures, il a été possible de mettre en évidence les 

différences biochimiques qui se produisent au cours de la cancérogénèse. 

Les spectres extraits des tissus normaux et tumoraux ont été comparées en utilisant le test de 

Mann-Whitney U et l'ACP, afin d'identifier les altérations biochimiques associées à la 

cancérogenèse. En effet, les variables spectrales discriminantes identifiées ont été corrélées à 

diverses biomolécules impliquées dans le cancer du côlon comme les phosphates, les 

glucides, les protéines etc. Cette approche représente la preuve d’un nouveau concept 

d’histopathologie spectrale IR appliqué aux tissu arrays de côlon. 

Ce concept a ensuite été validé sur les tissu arrays restant (N = 80), tel que présentés dans le 

troisième article de ce chapitre. L'imagerie spectrale IR combinée à une analyse multivariée a 

été mise en œuvre pour construire un modèle de prédiction pouvant automatiquement prédire 

la présence d'un cancer dans des échantillons inconnus. Les mêmes prétraitements ainsi que 

les mêmes traitements par EMSC et par clustering non supervisé ont été utilisées 

respectivement pour éliminer les interférences parasites et pour extraire les signatures 

spectrales des différentes caractéristiques histologiques du côlon. Le modèle de prédiction 

ayant été développé à partir de ces signatures, a ensuite été testé pour effectuer un diagnostic 

des échantillons coliques inconnus. Cette approche d’histopathologie spectrale IR a permis 
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non seulement d'identifier l'histopathologie des tissus d'une manière automatisée, mais 

également de mettre en évidence certaines caractéristiques particulières importantes associées 

à la tumeur comme le phénomène de tumeur budding, l’interaction de la tumeur et du stroma, 

etc. 

Enfin, pour affirmer la capacité du modèle de prédiction, l'analyse a été étendue à des 

échantillons adénomateux à bas et haut grade dysplasie. Les résultats sont prometteurs pour 

l'identification des changements moléculaires précoces associés à ces échantillons pré-

cancéreuses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  Results and discussion 

 

62 
 

III.2: Summary: 

Cancer is one of the leading causes of mortality around the world. Modern technologies 

capable of providing insights into signs occurring during carcinogenesis are continuously 

under scrutiny in order to complement the existing diagnostic methods. Of these techniques, 

the biophotonic approach of IR spectral imaging is an interesting candidate as it measures the 

chemical bond vibrations in cells and tissues and thus provides insights into the biochemical 

changes occurring on the advent of carcinogenesis. In this perspective, the main aim of this 

work was to develop an automatic diagnostic methodology based on IR spectral imaging that 

could be used as a complementary aiding tool to conventional histopathology.  

The first article in this chapter presents the initially feasibility test that was carried out in 

order to establish the IR spectral imaging methodology on frozen colonic tissue sections. The 

IR spectral images obtained were treated with an unsupervised clustering method in order to 

spectrally classify the various histological features of the colonic tissue based on their 

intrinsic biochemical features. A statistical test was then employed on the spectral signatures 

of the histological classes, based on which a new concept of IR spectral barcode was 

introduced for the first time in this study. The barcode constituted an easy-to-interpret 

representation of the discriminant spectral markers between the normal and the tumoral 

tissues. This approach in combination with multivariate analysis was carried out on a small 

sample size (N=10).  

In order to pursue with the approach of IR spectral imaging on a larger sample size that was 

accessible from the tumor bank, the IR spectral imaging methodology in combination with 

multivariate statistical analysis was implemented on paraffinized colonic tissue arrays which 

represent a rich source of information for high-throughput studies.  

The article 2 of this chapter presents the initial part of the work that deals with the IR spectral 

imaging methodological adaptation on a small number of selected tissue array cores (N=6). 

Since the samples were obtained in the form of paraffinized tissue arrays that were stabilized 

in an agarose matrix, a data pre-processing step was necessary for correction of spectral 

interferences. For this, a modified extended multiplicative signal correction (EMSC) was 

applied to selectively neutralize parasitic contributions of paraffin and agarose and to retain 

only the biochemical information originating from the tissue.  
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Due to the complex nature of the IR spectra obtained from tissues, multivariate statistical 

analyses were implemented to extract discriminant information. Initially, clustering 

algorithms were used for constructing color-coded spectral maps that provided the spatial and 

biochemical distribution of the main histological features of the colonic tissues. This then 

enabled to retrieve spectral signatures specific to different histological structures. On the 

basis of these signatures, it was possible to investigate the biochemical differences occurring 

with the development of cancers.  

The retrieved spectra from the normal and the tumoral tissues were compared using the 

Mann-Whitney U test and PCA to identify these biochemical alterations. Indeed the 

identified discriminant variables were correlated to various biomolecules implicated in colon 

cancers such as phosphates, carbohydrates, proteins etc. This approach represented the proof-

of-concept IR spectral histopathology of colon tissue arrays. 

This concept was then validated on the remaining tissue arrays (N=80) as presented in the 

third article of this chapter. The IR spectral imaging combined with multivariate analysis was 

implemented to construct a prediction model that can automatically predict the presence of 

cancer in unknown samples. Similar pre-processing and processing by EMSC and 

unsupervised clustering were employed to eliminate parasitic interferences and to extract 

spectral signatures of the colonic histological features respectively. The prediction model was 

developed from these signatures, which was then tested to diagnose unknown colonic 

samples. This approach of IR spectral histopathology permitted not only to identify the 

histopathology of the tissues in an automated manner, but also to highlight certain important 

tumor-associated features like tumor budding, tumor-stroma association etc.  

Finally, to affirm the applicability of prediction model, the analysis was extended to few 

adenomatous samples with low to high grade dysplasia. The results are promising in 

identifying the early molecular changes associated with these pre-cancerous samples.  
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III.3: Article 1 

Infrared imaging as a cancer diagnostic 

tool: introducing a new concept of 

spectral barcodes for identifying 

molecular changes in colon cancers 

 

(Submitted to the Journal of Cytometry Part A, July 2012) 
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Préambule à l’article 1 

 

Contexte 

A l’heure actuelle, l’histopathologie  constitue la méthode de référence pour le diagnostic du 

cancer basé sur l’identification des modifications morphologiques dans les tissus 

symptomatiques. De nouvelles approches capables de fournir des informations 

biomoléculaires complémentaires à l’histopathologie conventionnelle sont en cours de 

développement. Dans cette démarche, une approche biophotonique basée sur la micro-

imagerie spectrale infrarouge, combinée à une analyse statistique multivariée a été mise en 

œuvre sur les tissus du côlon.  

Objectif 

L’objectif de ce travail a été de développer un nouveau concept de code-barres spectral basé 

sur les caractéristiques intrinsèques biochimiques des cellules et des tissus grâce au couplage 

de l'imagerie infrarouge qui permet d’exploiter un grand volume de données spectrales avec 

l’analyse multivariée des images.  

 

Matériels et Méthodes 

Afin de mettre en œuvre ce concept, dix échantillons congelés de tissus de côlon provenant 

de 5 patients (un normal et un tumoral par patient) ont été analysés par micro-imagerie 

spectrale infrarouge de manière non-destructive. Les images spectrales ont ensuite été traitées 

par une méthode de classification multivariée (le clustering par k-means) afin de déterminer 

l'organisation histologique. Pour chaque patient, l’information spectrale correspondant à 

l’épithélium normal et tumoral est automatiquement récupérée et comparée à l'aide d'une 

méthode statistique (test de Mann-Whitney U). Ceci permet de faire ressortir des éléments 

discriminants qui sont ensuite utilisés pour construire des code-barres spectraux spécifiques 

de chaque tissu. 
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Résultats 

Les code-barres spectraux représentant les nombres d’onde discriminants ont permis la 

caractérisation des altérations biochimiques d’une part, de la mucine associées à la malignité, 

et d’autres parts, des nucléotides, des glucides et des protéines. Cette approche a non 

seulement permis d'identifier des altérations biochimiques communes entre tous les patients 

atteints de cancer du côlon, mais a également révélé un gradient de différences au sein de 

chaque patient. 

 

Conclusion 

Ce nouveau concept de code-barres spectral issu de l’analyse d’images IR, apparaît comme 

une approche intéressante qui pourraît être automatisée pour le diagnostic rapide des tumeurs.  
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Abstract:  

At present, histopathology is the gold standard method for diagnosis of cancers which is 

based on the identification of morphological alterations in symptomatic tissues. Novel 

approaches capable of providing biomolecular information in complement to conventional 

histopathology are under scrutiny. In this perspective, a biophotonic approach based on 

infrared spectral micro-imaging combined with multivariate statistical analysis has been 

implemented on colon tissues. The ability of infrared imaging to investigate the intrinsic 

biochemical features of cells and tissues has been exploited to develop a new concept of 

spectral bar-coding. In order to implement this concept, ten frozen colon tissue samples (five 

normal and tumoral pairs from five patients) were imaged using IR spectral micro-imaging in 

a non-destructive manner. The spectral images were processed by a multivariate clustering 

method to identify the histolopathological organization in a label-free manner. Spectral 

information from the epithelial components was then automatically recovered on the basis of 

their intrinsic biochemical composition, and compared using a statistical method (Mann-

Whitney U test) to construct spectral barcodes specific to each patient. The spectral barcodes 

representing the discriminant infrared spectral wavenumbers (900-1800 cm-1) enabled 

characterization of malignancy associated biochemical alterations in mucin, nucleotides, 

carbohydrates and protein regions. This approach not only allowed identification of common 

biochemical alterations among all the colon cancer patients, but also revealed a difference 

gradient within individual patients. This new concept of spectral barcoding gives insight into 

the potential of infrared spectral micro-imaging as a complementary diagnostic tool to 

conventional histopathology, for biochemical level understanding of malignancy in colon 

cancers in an objective and label-free manner.   

 

Key words: Infrared spectral imaging, colon cancer, spectral barcodes  
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Introduction:  

Histopathological identification of tissue alterations is the current evaluation method for 

diagnosis of cancers (1). Several indicators are taken into account for diagnosing cancers 

which include architectural disorganization and cytological atypia, deeply stained nuclei, 

increased nucleus to cytoplasmic ratio, loss of differentiation etc,. This present gold standard 

histopathological analysis is based upon pre-requisite tissue staining for microscopic 

visualization (2).  

Innovative diagnostic methods that provide indications, complementary to the conventional 

histopathology, in particular the early biomolecular alterations under malignant conditions 

are under scrutiny (3). One such candidate method is the infrared (IR) spectral imaging which 

has the potential to provide, in a non-destructive and label-free manner, a biochemical 

fingerprint of cells and tissues (4). As such its potentials have been exploited in various IR 

spectroscopic studies applied to cells and tissues from different organs (5-12). IR imaging 

provides spectral maps which when processed with appropriate multivariate statistical 

approaches enables to identify and recover the biomolecular information from the 

histological structures of tissues in normal and tumoral conditions (13).  

In this perspective, IR spectral imaging in combination with multivariate statistical analysis 

has been applied to colon cancer tissues which are one of the highly incident cancers in terms 

of both incidence and mortality (14). The acquired IR spectral images were subjected to 

clustering algorithm that permitted classification of the colon histological organization based 

on the intrinsic biochemical composition, and to construct color-coded spectral images. In 

comparison to the conventional hematoxylin and eosin (HE) stained reference histological 

images, the cluster images permitted to retrieve specific IR spectral signatures representative 

of the normal and the tumoral epithelial components. Further, statistical tests were performed 

on these spectral signatures to identify discriminant spectral markers, which constituted the 

basis for a new concept of spectral barcodes.   

The aim of the study was therefore to demonstrate the methodology employed to develop 

spectral barcodes based on IR spectral markers, which can provide rapid and easy to use 

information originating from the biochemical alterations of a malignant tissue. Although, 

several screening methods are available for colon cancers (15-17), the diagnosis is always 

confirmed by microscopic examination of excised tissues. Therefore, we hypothesize that the 

spectral barcodes can provide complementary biomolecular level information in a rapid, 
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objective and label free manner. Characterization of some of the important biomolecular 

constituents implicated in colon cancers has been achieved. The potential applications of this 

novel concept of spectral barcodes in histopathological diagnosis are discussed.   

 

Materials and Methods:  

Infrared spectral image acquisition: Ten frozen colon tissue samples (5 tumoral and 5 

adjacent normal) from 5 patients were obtained from Reims University Hospital with the 

approval of the Institutional Review Board. The sample details are presented as 

supplementary information 1.  

 

Supplementary information 1: Sample details 

 

 

The methodology employed for IR imaging of colonic tissues is shown in Figure 1. Two 10 

micron thick consecutive sections were obtained from these samples. While the first section 

was HE stained and served as a morphological reference, the adjacent section was directly 

transferred onto a calcium fluoride (CaF2) window for IR spectral imaging. Tissue zones of 

interest were selected by an expert pathologist after analyzing the third, 3 micron thick 

consecutive tissue section by conventional histopathological analysis. Imaging was 

performed on the Perkin Elmer Spectrum Spotlight 300 imaging system (Courtaboeuf, 
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France) equipped with nitrogen-cooled 16-element MCT detector at a pixel size of 6.25 x 

6.25 µm2 and a spectral resolution of 4 cm-1, averaged over 16 scans, in the mid-IR range of 

750 to 4000 cm-1. Each pixel element (6.25 x 6.25 µm2) contained a full spectrum. 

Throughout the measurements, the imaging system and the sample compartment were 

continuously purged with dry air. The background spectra acquired prior to image acquisition 

from the CaF2 window was subtracted from the dataset automatically. On an average, each IR 

spectral image consisted of about 39100 spectra out of which 27700 spectra were guarded for 

analysis while the remaining corresponding to low signal to noise ratio were eliminated from 

the analysis. 

 

 

Figure 1: Infrared spectral imaging methodology of colonic tissues. 

An unstained tissue section (a) is imaged by an IR imaging system (b) which provides 

the unprocessed infrared spectral image (c), in which each pixel (6.25µm) corresponds 

to a full spectrum (d). A conventionally stained (HE) image (e) is used as a 

morphological reference. 
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Data pre-processing: The raw IR spectra were initially corrected for atmospheric 

interferences of water vapour and CO2 by the built in Perkin Elmer software of the Spectrum 

Spotlight 300 imaging system. Further pre-processing and processing of the IR spectra were 

accomplished using the in-house programmes written in Matlab 7.2 (The Mathworks, Natick, 

MA). A modified Extended Multiplicative Signal Correction (EMSC) method was used for 

eliminating the IR spectra with low signal to noise ratio (18). All the eliminated spectra were 

colored as white pixels in the k-means clustered images. Using the same EMSC algorithm, 

the spectra were also corrected for baseline and finally normalized. 

Clustering analysis: With the objective to identify spectrally, different histological classes of 

the normal and the tumoral colonic tissues, each IR spectral image was partitioned using k-

means clustering. This algorithm is an unsupervised clustering method which enables to 

partition the IR image into predefined number of clusters. Hence, spectra with similar 

biochemical characteristics group into the same cluster in an iterative manner where each 

cluster corresponds to a histopathological feature (19). The k-means generated clusters were 

then annotated into their corresponding histological classes by an expert pathologist using the 

HE stained images as a reference. The spectral distance between different clusters 

corresponding to the endogenous biochemical tissue signature of the histological classes was 

visualized in the form of a dendrogram obtained by hierarchical clustering analysis based on 

Ward’s linkage algorithm. IR spectra from the normal and the tumoral epithelial clusters of 

the colonic tissue were then extracted for further statistical analysis. 

Construction of spectral barcodes using statistical analysis: The Mann-Whitney U test 

was performed to identify the most discriminant IR spectral wavenumbers between the 

normal and the tumoral conditions. Figure 2 is a schematic representation for the construction 

of the spectral barcodes. The samples were selected in such a way that each time the 

statistical comparison was performed to compare IR spectra from the epithelial components 

the tissue pairs from the same patient to avoid the influence of inter-patient variability. In this 

way, independent comparisons on five sample pairs from five patients were performed. Three 

different P- values of significance were then used to consider a gradient of discriminant 

wavenumbers. The latter permits to constitute the spectral barcodes which reflected the 

biomolecular changes associated with the compared classes.    
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Figure 2: Construction of spectral barcode. 

Infrared spectra corresponding to the normal  and tumor epithelia (from a and b) are 

retrieved from the k-means cluster images and compared using a statistical test using 

different p-values of significance, to find out the significant discriminant wavenumbers 

(c). These wavenumbers sorted out in a gradient constitutes the spectral barcode (d) 

representing different biomolecular features.  

 

Results: 

Cluster analysis: Cluster analysis by k-means permitted to construct color-coded spectral 

images. Figure 3 shows representative IR spectral images after the unsupervised classification 

of a normal and a tumoral colonic tissue using 8 clusters and 12 clusters respectively. These 

cluster numbers permitted to recover the main histological features of the colonic tissue. 

Figure 3A displays the cluster analysis in comparison with the HE stained images 

highlighting a clear identification of the normal colonic features such as the normal 

epithelium (clusters 1 and 8) comprising respectively the outer and the inner parts of the 
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crypts, the connective tissue: the lamina propria (cluster 6) and the submucosa (clusters 4 and 

7), the muscularis mucosa (cluster 2) and the secreted mucus (cluster 3). Cluster 5 appeared 

to be associated with the outer parts of the crypts. In contrast, for the malignant tissue the 

normal histological aspects were no longer discernible. As shown in figure 3B, the only 

aspects identifiable were the malignant epithelial component itself (clusters 2 and 5) and the 

associated stromal tissue (cluster 10).  

 

 

Figure 3: K-means clustering of normal and tumoral colonic FTIR spectral images 

(middle panel) with the respective dendrograms (right panel) compared to the HE 

stained sections (left panel), (Sample 2 of SI 1). 

Normal colonic tissue section (a) clustered using 8 clusters representing the major 

normal colonic tissue features by random pseudo-colors. The representation is as 

follows: Clusters 1 and 8 - normal epithelium (central and peripheral parts of the 

crypts), cluster 2 - muscularis mucosa, cluster 3 - secreted mucus, clusters 4 and 7 - 

submucosa, cluster 6 - lamina propria, and cluster 5 - associated with the peripheral 

parts of the crypts. A moderately differentiated adenocarcinoma of a colon tissue 

section (b) classified using 12 clusters representing the major tumoral tissue features by 

random pseudo-colors. The representation is as follows: Clusters 2 and 5 - tumor 

epithelial component, and cluster 10 - stromal tissue. Remaining clusters are not 

attributed to any histological class. The HE images are at 5X magnification.  
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The remaining clusters seemed to be associated with the surrounding stromal tissue. The 

corresponding dendrograms show the spectral distance between different histological classes. 

For the tumoral sample, the spectral proximity between the tumor and the stroma (clusters 2 

and 5, and 10) appeared clearly.  

The k-means clustering enabled identification of the important histological classes of the 

colonic tissue, and permitted easy retrieval of spectral signatures corresponding to different 

histological classes for further analysis. The clustering results of the other samples used in the 

study are shown in the supplementary information 2.  

(1) 

 

(3) 
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(4) 

 

(5) 

 

Supplementary information 2: K-means clustering results of all the tissue section 

included in the study (Sample number 1, 3, 4, and 5 of SI 1 respectively).  

K-means clustering of the sample pairs of normal and tumoral colonic FTIR spectral 

images (middle panel) with the respective dendrograms (right panel) compared to the 

HE stained sections (left panel). The normal and the tumoral epithelium from each of 

the sample pair was used for constructing the spectral barcodes. The HE images are at 

5X magnification.  
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Spectral barcodes for biochemical information: Spectra from the normal and the tumoral 

tissues were compared to identify the most discriminant wavenumbers in the IR spectral 

range of 900-1800 cm-1, using the Mann-Whitney U test. These were arranged in the form of 

spectral barcodes for the colonic normal and the tumoral epithelia as presented in figure 4. 

The discriminant wavenumbers were sorted in a gradient of specific color code, using three 

different levels of statistical significance tests. The color code, black indicated the most 

discriminant wavenumbers (p=0.00016); orange indicated the less discriminant (p=0.01); and 

brown the intermediate (p=0.001). The analyzed IR spectral region of 900-1800 cm-1, was 

divided into three zones as follows: 900-1300 cm-1 (zone 1), 1300-1500 cm-1 (zone 2), and 

1500-1800 cm-1 (zone 3).  

 

Figure 4: Infrared spectral barcodes constructed for five sample pairs (1-5 of SI 1).  

Spectral barcodes are constructed by independently comparing the normal and the 

tumoral epithelia of five different patients in the spectral region of 900-1800 cm-1 which 

was further divided into three zones. The discriminant wavenumbers are color-coded 

based on the significance level (p<0.00016-black, p<0.001-brown, p<0.01-orange).  
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As an example, for patient 1 in figure 4, the most discriminant wavenumbers (black) were 

observed in zone 1. The intermediate discriminant wavenumbers were mostly present in zone 

1 and 2, and the less discriminant wavenumbers were present throughout all the three zones. 

From these observations, a correlation between the occurrence of the discriminant 

wavenumbers and the biomolecular alterations in cancerous condition in the respective 

spectral zones was sought. The IR spectral zone 1 (900-1300 cm-1) representing the highest 

discrimination wavenumbers (black) was correlated to the alterations involving some of the 

important biomolecules such as nucleotides, mucin, and carbohydrates as represented in table 

1. In parallel, for patient 2, the black zones were predominantly observed in zone 1 (900-1300 

cm-1) and zone 3 (1500-1800 cm-1). While the zone 1 was correlated to the biomolecules such 

as nucleotides, mucin, and carbohydrates, zone 3 was correlated to the protein alterations 

involving the amide I and the amide II vibrational bands (table 1). For ensemble of the 

samples the most discriminant wavenumbers (black) together with the intermediate 

discriminant wavenumbers (brown) were mostly present in zone 1 (4 out of 5 samples) 

followed by in zone 3 (1 out of 5 samples). Zone 2 included some of the intermediate to less 

discriminant wavenumbers, and the less discriminant wavenumbers were present throughout 

all the three zones. 

Table 1: Infrared spectral peak attribution 

Peak position 
(cm-1) Biomolecular attribution 

    

1080 PO2
- symmetric stretch of nucleic acids 

    

1240 PO2
- asymmetric stretch of nucleic acids 

    
1036 

           Mucin 1072 
1122 
1314 

    
1155 C-O stretch of Carbohydrates 

    
1162 H-bonded C-O stretch of Proteins 
1176 non-H-bonded C-O stretch of Proteins 

    
1212 Collagen33 
1280 

    
1654 Amide I of Proteins 

    
1526 and 1534 Amide II of Proteins 

1554 - 1568 
    

1724 - 1756 C=O stretch of Phospholipids 
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Discussion:  

IR micro-spectroscopy and imaging has demonstrated its potentials in several studies for 

characterizing cells and tissues for diagnostic purposes. In this study, IR spectral imaging 

combined with multivariate statistical analysis was applied to colonic tissue in order to 

identify the spectral markers representing the biochemical changes associated with 

malignancy, and this forms the basis of a novel concept of spectral barcodes. 

To implement this concept, IR spectral imaging of non-tumoral and tumoral sample pairs 

from different patients was performed independently. Cluster analysis using k-means in 

comparison to the HE stained images permitted to identify the normal and the tumoral 

epithelial components of the colonic tissue. K-means clustering has been implemented in 

several studies for its rapidity and large data classification (19). Using this, the organizational 

levels of the colonic tissue such as the crypts, the lamina propria, and the submucosa were 

identified. The normal colonic tissues were characterized by well-differentiated glands in the 

form of crypts that constituted the mucin filled inner region, and the nuclei rich outer region. 

In contrast, the tumoral samples were devoid of this organization due to loss of differentiation 

of the glands. Here the dual parts of the crypts were no longer recognizable and the tumoral 

tissue was characterized by only two spectral zones corresponding to the epithelial 

component and the adjacent stroma.  

In order to identify statistically the spectral and hence the biochemical differences, 

comparison of IR spectra corresponding to the normal epithelium and the epithelial malignant 

component (adenocarcinoma) was undertaken. Results were visualized in the form of spectral 

barcodes.  

The biochemical differences appeared to show a strong association with zone 1 followed by 

zone 3. Some earlier IR studies on colorectal cancers have associated biochemical alterations 

with the spectral regions of 900-1300 cm-1 (20, 21). In accordance, the color code indicated 

similar strong association of the most discriminant wavenumbers (p=0.00016) in this IR 

spectral zone that reveal some of the important biomolecules implicated in colon cancers 

such as nucleotides, mucin, and carbohydrates. Other regions such as the amide regions of 

proteins are also known to undergo alterations during carcinogenesis (22) thereby changing 

the overall over all spectral profiles (23). In our study, these biochemical differences 

originating from the amide regions also appeared discriminant in these cancers (p=0.001).  
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Besides the easy-to-interpret representation of the spectral barcodes, the employment of a 

specific color coding further enabled to look at the gradient of differences among the 

biochemical alterations across all the patients included in this study. Furthermore, 

biochemical alterations occurring in a single patient were also represented that allow 

extracting patient specific information. 

This study is a proof-of-concept for the introduction of IR spectral barcodes carried out on a 

small sample population, and at this point, we foresee potential applications of this concept. 

In this study we compared only the normal and the tumoral epithelial components that are the 

important regions where the cancerous signatures develop. However, barcodes for several 

other tumor associated features such as tumor and stroma, tumor and inflammation, adenoma 

and adenocarcinoma, etc., can be developed and deciphered, which can throw light into the 

biochemical changes associated with each of these tissue states. Also, since tumors are organ 

specifically heterogeneous, spectral barcodes can be constructed to a particular cancer type 

constituting a fingerprint of the tumor.  

Based on the fact that the spectral barcodes allows visualizing intra-patient biochemical 

variability, constructing spectral barcodes for the primary tumors with the normal 

counterpart, and the secondary tumors with the same normal reference, can explore the 

connectivity of IR spectra between the primary and the metastatic tumor thereby potentially 

provide information on the metastatic properties of the tumor. Finally, one of the important 

features of this concept is the possibility to digitalize the spectral barcodes, which can be used 

to archive data from various tissues sources and also can be used as an identity-card for their 

identification and retrieval.  

However, there remain certain important challenges which need to be addressed, before this 

concept can be used to its full potential. Although the inter-patient variability is overcome by 

comparing each time the normal and the tumoral tissues from the same patient, the inherent 

heterogeneity of different patients and different tumors according to their genotypes, 

localization, etc can introduce differences in the spectral profiles. This might be the reason as 

to why in this study, no common spectral profile could be found to be the most discriminant 

among the studied samples with the same p value of significance. Hence, large scale studies 

need to be undertaken in order to archive spectral signatures characterizing tissues, and 

validated in order to construct a larger database using a selected patient population based on 

the different properties of malignancy in terms of evolution stage, histological and clinical 
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aggressiveness, and genotypes. We envisage that the IR imaging based spectral barcodes 

could provide valuable molecular information complementary to histopathology for 

diagnostic purposes. 
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III.4: Article 2 

Infrared spectral imaging as a novel 

approach for histopathological 

recognition in colon cancer diagnosis 

 

(Submitted to the Journal of Biomedical Optics,  

Major revisions were done and the final decision is awaited) 
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Préambule à l’article 2 

 

Contexte 

A l’heure actuelle, le développement de méthodes innovantes de diagnostic semble  

nécessaire  afin de complémenter les méthodes existantes d’histopathologie conventionnelle 

pour le diagnostic du cancer.  

Objectif 

Dans cette perspective, nous proposons un nouveau concept basé sur l'histopathologie 

spectrale, par micro-imagerie infrarouge, directement appliqué sur des tissu arrays paraffinés 

de côlon stabilisé dans une matrice d'agarose sans déparaffinage chimique.  

Matériels et Méthodes 

Afin de corriger les interférences spectrales de la paraffine et de l’agarose, un prétraitement 

mathématique a été mis en œuvre. Les images spectrales corrigées (N=6) ont ensuite été 

traitées par une méthode de classification par analyse multivariée afin de récupérer 

automatiquement, sur la base de la composition moléculaire intrinsèque des tissus, les 

principales classes histologiques composant les tissus normaux et tumoraux du côlon. Les 

signatures spectrales des différentes classes histologiques des tissus du côlon ont été analysés 

en utilisant des méthodes statistiques (test du Mann-Whitney U et Analyse en Composantes 

Principales) afin identifier les caractéristiques discriminantes.  

Résultats 

Ces informations discriminantes ont permis de mettre en évidences certaines modifications 

biomoléculaires associées à la malignité. Ainsi, par l'intermédiaire d'une seule analyse, sans 

marquage et de manière non-destructive, les principaux changements liés aux nucléotides et 

aux glucides, ainsi que les caractéristiques du collagène, ont pu être identifiés simultanément 

en comparant les tissus normaux avec les tissus cancéreux. 
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Conclusion 

Cette étude démontre clairement le prévue de concept de l'imagerie spectrale IR comme outil 

moderne et complémentaire à l’histopathologie conventionnelle, pour un diagnostic de cancer 

objectif directement à partir de tissu arrays paraffinés. Elle établit ainsi les bases du concept 

d’histopathologie spectrale.  
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Abstract: 

Innovative diagnostic methods are the need of the hour that could complement conventional 

histopathology for cancer diagnosis. In this perspective, we propose a new concept based on 

spectral histopathology, using IR spectral micro-imaging, directly applied to paraffinized 

colon tissue array stabilized in an agarose matrix without any chemical pre-treatment. In 

order to correct spectral interferences from paraffin and agarose, a mathematical procedure 

was implemented. The corrected spectral images were then processed by a multivariate 

clustering method to automatically recover, on the basis of their intrinsic molecular 

composition, the main histological classes of the normal and the tumoral colon tissue. The 

spectral signatures from different histological classes of the colonic tissues were analyzed 

using statistical methods (Mann-Whitney U test and Principal Component Analysis) to 

identify the most discriminant IR features. These features allowed characterizing some of the 

biomolecular alterations associated with malignancy. Thus, via a single analysis, in a label-

free and non-destructive manner, main changes associated with nucleotide, carbohydrates and 

collagen features could be identified simultaneously between the compared normal and the 

cancerous tissues. The present study demonstrates the potential of IR spectral imaging as a 

complementary modern tool, to conventional histopathology, for an objective cancer 

diagnosis directly from paraffin-embedded tissue arrays.    

Key words: Infrared spectral imaging, colon cancer, paraffinized tissue arrays, spectral 

histopathology 
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Introduction: 

Over the last decade, several biophotonic approaches have been undertaken in view of 

developing innovative diagnostic methods to complement conventional histopathology. 

These techniques are foreseen as non-destructive helping tools for pathologists in their 

routine clinical practice. Among these, infrared (IR) spectroscopy is regarded as one of the 

candidate methods that could be of valuable interest for cancer diagnosis. This technique 

allows acquiring spectra from IR active biomolecules present in cells and tissues, whose 

chemical bonds undergo changes in their electric dipole moment during vibrations thus 

providing a highly specific “vibrational fingerprint” (1). The spectral information obtained in 

label-free and non-destructive manner offers insights into the presence of these biomolecules, 

as well as into their structural and metabolic changes, occurring on the onset and during the 

course of the disease.(2) Combined with a micro-imaging device, IR spectroscopy can rapidly 

give spatially-resolved biochemical information of different tissue structures, where each 

pixel of an IR image provides a complete spectrum.(3) Via this modality, several studies have 

exploited IR spectroscopy as a helpful tool with a potential diagnostic value in various 

cancers like, but not limited to, skin,(4) breast,(5) cervix,(6) colon,(7) prostate,(8, 9) lung,(10) 

esophagus,(11) thyroid,(12) brain.(13) These IR studies were performed on tissues that were 

either fresh;(11, 12) frozen,(5, 10, 13) or formalin-fixed paraffin-embedded (FFPE).(6, 8) Until 

recently, IR studies of FFPE tissues necessitated chemical dewaxing prior to image 

acquisition because of the strong contribution of IR absorption peaks of paraffin, which 

interfere with the biochemical information originating from the tissue. However, this 

procedure is time- and reagent- consuming, and has been shown to result in an incomplete 

deparaffinization.(14) An alternative way to circumvent chemical dewaxing is to perform a 

numerical deparaffinization directly on the IR spectral image. Thus, for the first time, the 

feasibility of IR imaging combined with numerical deparaffinization to paraffinized colon 

tissue arrays that are stabilized in an agarose matrix, without any chemical deparaffinization, 

was undertaken. In addition to paraffin, the agarose matrix also contributes to the 

confounding spectral interferences. Therefore, an algorithm based on Extended Multiplicative 

Signal Correction (EMSC) was implemented to neutralize these spectral interferences from 

paraffin and agarose. The processed IR images were then analyzed with a clustering method 

to identify and classify the constituent tissue structures based on their intrinsic molecular 

composition. This statistical approach permitted to construct color-coded images that were 

then compared with conventional histology for morphological recognition. From this 
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procedure, identification of characteristic spectral signatures representing the biomolecular 

changes, useful for differentiating between normal and tumoral conditions, and tumor and 

tumor-associated stroma, was also undertaken. To demonstrate the proof-of-concept of 

spectral histopathology, we selected one of the highly incident cancers namely the colorectal 

cancer, that has an incidence of 1.2 million cases and 608,000 deaths worldwide in 2008.(15) 

Although fecal occult blood test (FOBT),(16) colonoscopy,(17) and sigmoidoscopy(18) are used 

for colorectal cancer screening and detection, presently the diagnosis is settled upon 

microscopic examination which remains the gold standard for cancer diagnosis. Nevertheless, 

the staining and morphological analyses do not allow interpretation of the molecular changes 

occurring within the cancerous tissue at that particular time. In such scenario, IR imaging 

could be a valuable complementary tool for conventional histopathological cancer tissue 

examination.  

 

Materials and Methods 

Tissue array preparation: Tissue arrays are paraffinized tissue blocks in which chosen 

tissue cores have been assembled. The tissue array blocks were paraffinized, and stabilized in 

an agarose matrix to reduce the common problem of tissue loss during sectioning, and were 

manually prepared in the University pathology laboratory. Each tissue array block consisted 

of 13 tissue cores of approximately 3 mm in diameter from normal and tumoral colonic 

tissue. Samples were selected by an expert pathologist using the hematoxylin, phloxine and 

saffron (HPS) stained image as the reference. In this study, IR imaging analysis has been 

implemented on six samples (three normal and three tumoral) of the colon tissue array 

obtained from three different patients. From each patient, a sample pair of normal and 

tumoral tissues was obtained to avoid inter-patient variability, in order to optimize this novel 

methodology. All the tumoral samples corresponded to moderately differentiated 

adenocarcinoma and the normal samples from the adjacent normal mucosa. This study was 

approved by the Institutional Review Board of CHU Reims. 

Fourier transform infrared (FTIR) image acquisition: The methodology for IR imaging 

of a tissue array is shown in Figure 1. Three and 10 µm thick adjacent microtome sections 

were cut from the tissue array block. While the 3 µm section was used by the pathologist for 

conventional histopathological analysis via HPS staining, the first 10 µm section was used for 
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IR imaging analysis and the second for additional histopathological comparison. The HPS 

stained sections were chemically deparaffinized while the adjacent 10 µm paraffinized 

unstained tissue section was mounted on an IR compatible calcium fluoride (CaF2) window. 

This was directly imaged without deparaffinization, by an IR imaging system (Spotlight 300, 

Perkin Elmer, Courtaboeuf, France) equipped with nitrogen-cooled 16-element MCT detector 

at a pixel size of 6.25 µm and spectral resolution of 4 cm-1, averaged to 16 scans, in the mid-

IR range of 750 to 4000 cm-1. These acquisition parameters provided good quality data with 

good enough spatial and spectral resolutions for tissue investigation. The instrument and the 

sample compartment were continuously purged with dry air and parameters like relative 

humidity and water vapor were kept constant throughout the image acquisition time.  

 

Figure 1: Infrared spectral imaging methodology of colon tissue arrays.  

A paraffinized tissue array core is imaged directly by infrared imaging system that  

constitutes the unprocessed infrared spectral image, which harbors a full spectrum at  

each pixel size of 6.25 µm, using a conventionally stained image as a morphological  

reference.   
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The background spectrum from the CaF2 window, acquired prior to image acquisition, was 

subtracted from the dataset automatically. Each tissue array-IR image of one circular spot (3 

mm in diameter) consisted of around 130 000 spectra, and each pixel element of 6.25 µm 

contained a full spectrum.          

Pre-processing of IR spectra: The spectra from the IR images included: atmospheric 

absorptions of water vapor and CO2, chemical absorptions of paraffin and agarose, and 

biochemical absorptions from the tissue itself. In order to preserve only the biochemical 

information, stringent pre-processing steps were employed to neutralize the contributions of 

non-informative spectra. For this, atmospheric correction was performed to remove 

contribution from water vapour and CO2 by the built-in software of Spectrum Image (Perkin 

Elmer). Further analyses were performed using in-house algorithms written in Matlab 7.2 

(The Mathworks, Natick, MA). EMSC was used for correcting paraffin, agarose, and 

baseline, followed by normalization. Pre-processing, processing and analysis of the IR 

spectra were carried out on spectral images in the IR absorption range of 900-1800 cm-1 

considered as the most informative region(19, 20) as far as the tissue features are concerned.  

Construction of EMSC model: EMSC was developed initially to correct the spectra from 

the physical light scattering effects that are different from the chemical light absorbance 

effects.(21, 22) IR spectra of paraffinized colon tissue array sections, along with the 

biochemical information originating from the tissue, showed absorption bands of paraffin 

(1378 cm-1 and around 1467 cm-1) and agarose (1072 cm-1 and minor peaks at 932 cm-1, 1155 

cm-1 and 1185 cm-1) in the 900-1800 cm-1 spectral region (Figure 2; box 1). For efficient 

classification and understanding of the biochemical nature of the tissue, the variability of 

these contributions (paraffin and agarose) had to be reduced and their influence 

circumvented, for which EMSC algorithm was employed in this novel approach as shown in 

the form of a flowchart in the Figure 2, box 2. According to our previous study(23) EMSC 

models linearly each spectrum of the data set as:   

iiii ePcIbss  ˆ
ia  (1), where,  

 is ℝ n1  is the ith acquired spectrum of the data set, i.e., a vector composed of n points, 

 ŝ ℝ n1  is the target spectrum that is chosen as the mean spectrum of the studied dataset, 
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 I ℝ nk   is the interference matrix composed of k components, 
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P ℝ   np 1  is the transpose of the Vandermonde matrix of the n 

wavenumbers jn ; this matrix is used to compute Pc i , a p-order polynomial function 

modeling for the baseline, 

 ie  ℝ n1
 is the model error vector, 

ia  is the scalar fitting coefficient of ŝ  to  is ,  

ib  ℝ k1  is the vector of the fitting coefficients of  I  to  is , 

ic  ℝ  11  p  is the vector of the fitting coefficients of P  to  is  and represents the coefficients 

of the p-order polynomial function.   

The coefficients ia , ib  and ic  are estimated by the traditional least squares method in order to 

minimize the model error ie . The corrected spectra could be then represented by the equation 

i

corr
a

i
i

ess  ˆ   (2) 

The aim of EMSC is to estimate the model coefficients ia , ib  and ic  in order to minimize 

the error ie , knowing ŝ ,  I  and P . EMSC can also be viewed as a fitting of the recorded 

spectra on the mean spectrum. Thus, the biochemical differences of different pixel spectra are 

modeled in the error ie . The interference matrix and the Vandermonde matrix are uniquely 

used in the EMSC model to adjust the paraffin and agarose signals and baseline of the 

recorded spectra to the mean spectrum. The EMSC protocol has been used to realize several 

corrections; firstly, it corrects spectra from paraffin and agarose contributions. Secondly, it 

corrects spectra for light scattering effects, and thirdly, it normalizes spectra on the mean 

spectrum ŝ . Briefly, in order to achieve these corrections, an IR image consisting of 13516 

spectra was acquired from 10 µm thick paraffin (used for tissue embedding in our laboratory) 

section using the same spectral parameters as that of the TMA images. Principal component 
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analysis (PCA) was performed on these spectra to model them with orthogonal components 

best explaining the variability of paraffin. The interference matrix  I of model (1) was 

constructed by retaining the first 10 principal components (PCs) and the mean spectrum of 

paraffin. Another IR image consisting of 15872 spectra was acquired from a 10 µm thick 

section of a mixture of paraffin and agarose, as agarose is a semisolid matrix (at 2% used for 

TMA construction) and could not be sectioned alone. The spectra of this image were then 

modeled using equation (1) in which a fourth order polynomial function is assumed to 

construct P  to model baseline. Paraffin contributions were then neutralized from agarose, by 

application of correction (2). Next, PCA was performed on these paraffin corrected agarose 

spectra in order to model the IR signal of agarose. The first 10 significant PCs and the mean 

spectrum of agarose were then added to the interference matrix  I .  I  is thus composed of 11 

components modeling paraffin and 11 components modeling agarose.  I being constructed 

and a fourth order polynomial function being still assumed for P , the model (1) was applied 

to the colon IR spectral images acquired from the biopsies. The entire data set was then 

corrected from the contributions of paraffin and agarose, baseline corrected and normalized 

on the entire spectral range using equation (2). Furthermore, a thresholding of ia  and 

2

1

)(















n

j ia

j
E ie permitted to detect the outlier spectra (spectra with high paraffin and agarose 

contributions or spectra with a poor tissue contribution) of paraffin and agarose, and to 

eliminate them from further analysis. In the k-means classified images, the pixels 

corresponding to these outliers are colored white.   
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Figure 2: EMSC preprocessing 

Box 1: Average IR spectra of paraffin (A), paraffin and agarose together (B) and a 

paraffinized colon tissue array section (C) which includes spectral information from 

tissue, paraffin, and agarose, in the spectral range of 900 - 1800 cm-1.    

Box 2: Flowchart of the EMSC protocol. Interference matrix 1 constructed from pure 

paraffin spectra (PCA + mean spectrum) and modeled into EMSC, is employed on 

paraffin-agarose spectra to neutralize the paraffin influence and retain only the agarose 

spectra. Interference matrix 2 is constructed from the paraffin corrected agarose 

spectra (PCA + mean spectrum) and modeled into EMSC. Interference matrices 1 and 2 

are then employed on the tissue spectra to neutralize both paraffin and agarose 

influences and retain only the biochemical information.  

Box 3: Comparison of the application of EMSC, with and without paraffin and agarose 

corrections, by k-means clustering of a FTIR spectral image (left panel). EMSC 

corrected pixels are colored in white. Corresponding cluster centroids (middle panel) 

and the dendrogram (right panel) show the differences due to the influence of spectral 

interferences (paraffin, agarose and other interferences represented by clusters 2, 5, 8 

and 9).   
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Image clustering: The large numbers of IR spectra from each image were classified using an 

unsupervised k-means clustering method owing to its capability of rapid and huge data 

classification.(24) This method iteratively partitions the spectra into different classes based on 

the spectral signatures. First, K spectra (K is the number of searched clusters) are randomly 

chosen to represent initial centroids which model the mean spectrum of each cluster. Second, 

each spectrum is affected to the cluster with the nearest centroid according to the Euclidean 

distance. Third, each centroid is updated as the mean of the spectra belonging to its cluster. 

Steps 2 and 3 are repeated until the convergence of the algorithm. Therefore, spectra with 

similar biological characteristics fall into the same cluster and spectra with dissimilar 

biological characteristics fall into different clusters. In k-means, each spectrum belongs to a 

unique cluster and can thus be represented by a unique color distinct from those of the 

remaining clusters and a color coded image can be reconstructed for rapid and simple visual 

analysis of clustering results. These were then compared to adjacent HPS stained sections to 

annotate each spectral cluster to the tissue structural feature that it belongs to by an expert 

pathologist.  

Statistical tests: Mann-Whitney U test was performed on individual spectra from two 

clusters and the wavenumbers that were significantly discriminant (p<0.001) were retained. 

These are shown as grey bars in the Figure 4a. In parallel, Principal component analysis 

(PCA), one of the commonly used spectral data processing method, was applied on the same 

two clusters (mean-centered data) for validation of the KW observations and better 

visualization of the spectral separation.  

 

Results 

Neutralization of paraffin and agarose contributions using EMSC: Spectral interferences 

from paraffin and agarose were estimated and corrected on the colonic tissues. Figure 2; box 

3 shows a representative k-means cluster image before and after the application of the 

correction model for paraffin and agarose. In the unprocessed image constructed using 10 

clusters, spectra corresponding to these outlier spectra were seen around the tissue array 

sample spot. Clustering analysis of this unprocessed image showed less accurate correlation 

with the adjacent HPS stained reference image (Figure 3a) and features such as the colonic 

epithelium could not be deciphered accurately even when increasing the number of clusters 
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(data not shown). The cluster centroids showed the contribution of outliers to the image 

(specifically clusters 2, 5, 8 and 9) which is also reflected in the dendrogram which separates 

the tissue features from the outliers. In the EMSC corrected image, all the outlier spectra 

mostly corresponding to the paraffin and agarose contributions are retrieved from the data 

analysis and are shown as white pixels, which can be found around, and within the clefts of 

the tissue array sample spot. The resulting high degree of correlation of the FTIR image using 

8 clusters to the HPS stained reference image is shown in Figure 3a that demonstrates the 

importance of neutralizing the spectral interferences.  

It has to be noted that although the IR tissue spectra still exhibited the characteristic paraffin 

and agarose bands (1378 cm-1 and around 1467 cm-1 for paraffin and, 1072 cm-1 and minor 

peaks at 1155 cm-1 and 1185 cm-1 for agarose), the influence of their spectral variability is 

neutralized in the clustering scheme by EMSC. Therefore, the EMSC model does not 

completely remove the spectral features of paraffin and agarose, but neutralizes them. Thus, 

in the image analysis by chemometric methods, only the biochemical information is taken 

into account. The signals from paraffin and agarose are disregarded. Along with the 

neutralization of intra-sample variability arising from paraffin and agarose contributions, the 

inter-sample variability is avoided by using a single common target spectrum (the average 

spectrum on which the spectra are fitted) for all the samples.  

IR image clustering: After EMSC correction, k-means clustering was employed to partition 

the spectra of paraffinized normal and tumoral colonic tissue sections. Figure 3a and b show 

the corresponding k-means images of these samples classified into eight and fourteen clusters 

respectively. These cluster numbers permitted to retrieve the principal histological structures, 

when compared to the HPS stained images. For example, as shown in Figure 3a, it was 

possible to identify mucosa of the normal colon that comprises of; the lamina propria (cluster 

1), the loose connective tissue in which the crypts are organised; crypts (cluster 6 and 7) 

comprising the central part and the peripheral parts, the functional glands of a colon 

composed of various epithelial cell populations like goblet cells, absorptive cells, endocrine 

cells, or stem cells. Mucus (cluster 2) as seen in the crypt lumen and also secreted out of the 

crypts, submucosa (cluster 4) the fibrous connective tissue usually rich in collagen, and the 

blood vessels (cluster 8) in the submucosa, were also identified. Finally, clusters 3 and 5 

present in minute percentage were not assigned to any specific histological structure and 
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seem to represent extra mucos structures (appear on the periphery of the mucosa, or tired out 

mucosa).  

 

Figure 3: K-means clustering of FTIR spectral images (middle panel) with the 

respective dendrograms (right panel) compared to the HPS stained colon tissue sections 

(left panel). Normal colonic tissue section (a) classified using 8 clusters representing the 

major normal colonic tissue features by random pseudo-colors. The representation is as 

follows: Cluster 1 - lamina propria, cluster 2 - mucus, cluster 4 - submucosa, clusters 6 

and 7- crypts (central and the peripheral parts), cluster 8 - blood vessel and other 

undefined tissue. Clusters 3 and 5 - extra mucous structures. A moderately 

differentiated adenocarcinoma of a colon tissue section (b) classified using 14 clusters 

representing the major tumoral tissue features by random pseudo-colors. The 

representation is as follows: Cluster 8 represents tumor-associated stroma, and cluster 

12 represents tumor epithelial component. Remaining clusters are not attributed to any 

histological class. Scale bar indicates 500 µm.   

 

The spectral distances between the 8 cluster centroids are computed and shown in the form of 

a dendrogram (figure 3, right panel). In the case of tumoral tissue, characterization by 

spectral imaging was illustrated in a sample of moderately differentiated colon 

adenocarcinoma as shown in figure 3b. K-means clustering using 14 clusters permitted to 
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highlight two informative clusters: one attributed to the epithelial component (cluster 12) and 

the other to tumor-associated stroma (cluster 8). The latter, clearly demarcated from tumor, 

necessitated a minimum of 14 clusters to be segregated out of the tumor. The close spectral 

signature of the epithelial component to its associated stroma is clearly demonstrated by the 

corresponding dendrogram. Increasing the number of clusters did not provide any further 

exploitable information for spectral histology. The k-means clustering results of the other 

samples used in the study are shown in supplementary figure 1. 

From spectral data to biomolecular level information: From the k-means images, it was 

possible to assign specific spectral signatures to histological structures that were then 

exploited to gain insight into the biomolecular characteristics of the normal and the tumoral 

colonic tissues. For this, statistical data processing using the KW test was performed on 

individual spectra from two clusters of interest each time, to find the spectral differences. 

Complementarily, PCA was also performed to confirm these differences by considering the 

two first principal components (PC1 and PC2) that carried the highest explained variance. 

Figure 4a shows the most discriminating spectral regions identified by the KW test (grey 

bars) superimposed over the PCA loadings (PC1 and PC2) for the following pair-wise 

comparisons: normal crypts with adenocarcinoma corresponding to the epithelial components 

(left panel); adenocarcinoma with the associated stroma, which is the seat of the changes 

associated with the tumor environment during carcinogenesis and progression (middle panel); 

and in the normal tissue, lamina propria with submucosa (right panel).  
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Supplementary figure 1: K-means clustering of FTIR spectral images (middle panel) 

with the respective dendrograms (right panel) compared to the HPS stained colon tissue 

sections (left panel). Normal colonic tissue sections (a and c) are clustered using11 and 9 

clusters respectively representing the major normal colonic tissue features by random 

pseudo-colors. The moderately differentiated colon adenocarcinoma tissue sections (b 

and d) clustered using 11 and 14 clusters respectively representing the major tumoral 

tissue features by random pseudo-colors. The tumoral tissue (c) is a mucinous tumor. 

Scale bar indicates 500 µm. 
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The discriminant wavenumbers identified by KW test corresponded principally to the first PC 

that was found to be visually the most discriminant in the pair-wise comparisons of right and 

left panels, and the second PC that was most discriminant in pair-wise comparison of the 

middle panel, as also represented in the PCA score plots in Figure 4b.  

 

Figure 4: Discrimination of tissue features obtained by the Mann-Whitney U test and 

validated by PCA between the following pair-wise comparisons: normal crypts with 

adenocarcinoma (left panel); adenocarcinoma with the associated stroma (middle 

panel); lamina propria with submucosa (right panel). The most discriminant spectral 

wavenumbers between the compared clusters identified by the Mann-Whitney U test 

(p<0.001) are represented as gray bars. They are superimposed by PCA loadings 

showing the two first PCs with the highest explained variance (a). The PCA score plot 

showing the separation between the compared clusters (b). 

The most clear-cut discrimination as shown in the score plot of Figure 4b, left panel (in the 

form of separation between the two clouds) was observed between the normal crypts and 

adenocarcinoma that reflect the overall biochemical alterations in this malignancy. When 

comparing the adenocarcinoma cluster with its associated stroma (middle panel), or the 

lamina propria and the submucosa (right panel), the separation is possible but with some 

spectral overlapping between the clouds. From the wavenumbers identified as discriminant 
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by the KW test for all comparisons, we have tentatively attempted to correlate some of the IR 

vibrations to the biomolecular information contained in the colonic tissues as shown in  

Table 1: Infrared spectral peak attribution 

 

Normal crypts - Adenocarcinoma 

Adenocarcinoma - Tumor 

associated stroma Lamina propria - Submucosa 

            

Peak 

position 

(cm-1) Biomolecular attribution 

Peak 

position 

(cm-1) 

Biomolecular 

attribution 

Peak 

position 

(cm-1) 

Biomolecular 

attribution 

            

1080 

PO2
- symmetric stretch of 

nucleic acids9 1212 
Collagen33 

1526 - 

1536 Amide II of 

Proteins 

    1280 

1552 - 

1566 

1240 

PO2
- asymmetric stretch 

of nucleic acids33       
  

    

1526 and 

1534 Amide II of 

Proteins 

1642 - 

1650 Amide I of 

Proteins 

1155 

C-O stretch of 

Carbohydrates34 

1554 - 

1568 

1672 - 

1674 

            

1162 

H-bonded C-O stretch of 

Proteins34       
  

1176 

non-H-bonded C-O 

stretch of Proteins34         

            

1654 Amide I of Proteins         

            

1724 - 

1756 

C=O stretch of 

Phospholipids9         

      Other spectral attributions 

        

    1036 

           Mucin 2, 7, 24, 33 
    1072 

    1122 

    1314 

        

  

  

 1378 
Paraffin 

    1467 

        

    932 

Agarose 
    1072 

    1155 

    1185 

    



  Results and discussion 

 

103 
 

At the same time, the PC scores and loadings were also exploited to interpret the differences 

of spectral intensities between the compared classes. As an example, in the case where the 

first PC is the most discriminant (figure 4b, left panel), the spectra are mathematically 

approximated by the first PC loading weighted by the first PC score. Thus, the representative 

peak at 1658 cm-1 (amide I region) of the first PC loading and the first PC scores of 

adenocarcinoma being positive, their product is positive and hence correspond to higher 

spectral intensity. On the contrary, the PC scores of the normal crypts being negative their 

product with the positive peak at 1658 cm-1 of the first PC loading, is negative, and hence 

represents a decrease of spectral intensity. This spectral difference attribution becomes more 

complex when there is more than one discriminant PC (figure 4b, right panel) as several PCs 

can have an opposing contribution to the peak intensity.   

For the normal crypts and the adenocarcinoma, the discriminant spectral features were 

particularly attributed to PO2
- symmetric and asymmetric stretching vibrations of nucleic 

acids which exhibited relatively higher intensities in the normal crypts. Other differences 

included those originating from the phospholipids (C=O stretching vibrations); and those 

from the carbohydrates (C-O stretching vibrations). These signals were relatively more 

intense in normal crypts than in adenocarcinoma while the opposite tendency was observed 

for the amide I band of proteins. The hydrogen bonded C-O groups of proteins in the normal 

tissue was seen to decrease in the tumoral tissue.  

It was examined if the discrimination potential of the methodology between the normal and 

the tumoral tissues is influenced by the tumor type with respect to certain biomolecules. For 

this, the spectra originating from the tumor and the secreted mucin clusters, of one of the 

tumoral samples that was mucinous adenocarcinoma were compared with the spectra from 

the non-mucinous regions of the normal crypts (crypt periphery) of the same patient. The 

statistical analysis revealed appearance of mucin peaks (1036 cm-1, 1072 cm-1) as 

discriminant vibrations that were of high intensity in the tumoral tissue as shown in the 

Supplementary figure 2.  
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Supplementary figure 2: Discrimination of tissue features obtained by the Mann-

Whitney U test and validated by PCA between the pair-wise comparisons of normal 

crypt periphery with mucinous tumor. The most discriminant spectral wavenumbers 

between the compared clusters identified by the Mann-Whitney U test (p<0.001) are 

represented as gray bars. They are superimposed by PCA loadings showing the two 

first PCs with the highest explained variance (left panel). The PCA score plot showing 

the separation between the compared clusters (right panel).  

 

 

When comparing adenocarcinoma and tumor-associated stroma, the discriminating spectral 

features corresponded to collagen features, and amide II of proteins. For lamina propria and 

submucosa clusters, the amide regions of proteins appeared to contribute to the discriminant 

wavenumbers.  

 

Discussion 

Very few studies have combined IR imaging with tissue microarray (TMA) technology(25, 26) 

and none have involved direct analysis of the paraffinized tissue arrays or, tissue arrays 

stabilized in an agarose matrix.(27) This study is a first attempt to apply IR spectral imaging to 

a paraffinized tissue array stabilized in an agarose matrix, without any chemical 

deparaffinization, for comparing normal and tumoral colonic tissue samples. EMSC initially 

developed to correct light scattering effects,(21, 22) and water vapor and carbon dioxide,(28) has 

also been previously implemented by our group to neutralize paraffin contributions in 
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paraffinized tissues.(23, 29, 30) In this study, it was employed for the first time, a step ahead to 

neutralize spectral interferences from both paraffin and agarose, projecting EMSC as a 

‘custom made correction method’ which could be adapted to correct a variety of spectral 

interferences and permit to test tissues in different embedding materials.  

K-means classification of the EMSC corrected IR spectral images allowed identification of 

various histological structures of the normal and the tumoral colonic tissues. The colonic 

tissue structures like the lamina propria, the submucosa, the crypts and the blood vessels were 

easily identified in the normal histological and the spectral images. The spectral signatures 

associated with the biomolecular differences between these histological groups were 

highlighted by the KW test and confirmed by PCA analysis. In the normal tissue, k-means 

clustering differentiated well between the lamina propria and the submucosa, which are both 

connective tissues. Based on the multivariate statistical analyses, the biomolecular 

discrimination can be associated to the changes in the spectral profiles of the amide regions 

of proteins. 

Normal crypts are the functional glands of the colonic mucosa, where the molecular 

transformations in the event of carcinogenesis take place. The k-means cluster image allowed 

to clearly distinguish both the central and the surrounding nuclear part of the epithelial glands 

and the lamina propria in which the glands were organized. In the case of malignant tissue, 

the crypts were no longer well-differentiated, and no particular cluster could be attributed to 

either the central or the nuclear part. The mucosal structures were no longer individualized, 

and only two components could be distinguished: the epithelial one and the associated 

stroma.  

By comparing the normal crypts and the adenocarcinoma, surprisingly the IR spectra of 

normal crypts were associated with relatively higher intensities of nucleic acids than in the 

adenocarcinomatous epithelial component. This is in contrast to other studies that have 

showed increased nucleic acid intensities in tumoral samples when compared to the normal 

samples.(9) Another study has shown decreased intensity of PO2
- asymmetric stretch of 

nucleic acids in tumoral tissue while increased intensity of PO2
- symmetric stretch of nucleic 

acids.(31) 

One of the possibilities for this observation is likely that the spectral alterations involving 

nucleic acids are less marked since the normal colon cells themselves are highly proliferative 

and have high mitotic rate and, in tumors that are moderately differentiated, the cellular 

proliferation is only slightly increased.(24) Interestingly, there are also studies which have 

shown that the spectral differences observed between a normal and a tumoral tissue actually 



  Results and discussion 

 

106 
 

may correspond to the differences originating from the different phases of cell cycles, since 

the opacity of DNA to IR radiation is based on the cell cycle phase which is related to the 

DNA packing and condensing. (32) 

Usually, the normal colon crypts are rich in mucin. However, its corresponding peaks were 

not discriminatory when the all the normal and the tumoral samples were compared. This 

could be explained from the fact that the presence of a mucinous tumor diminishes the 

spectral differences between the mucin rich normal crypts and the tumoral tissues. 

Interestingly, in comparison of the mucinous adenocarcinoma tissue with the non-mucinous 

regions of the normal crypts, mucin corresponding peaks reappeared as discriminant features. 

These results which corroborated with the histopathology show the ability of IR spectroscopy 

in identifying biomolecular changes in respect to the analyzed tissue types based on the 

spectral characteristics. The identification of subtle changes involving mucin could be used to 

characterize tumor types in colon cancers.  

The same tendency of higher intensities was observed for carbohydrate and phospholipids 

between the normal and the tumoral tissues. On the other hand, higher amide I intensities 

were associated with adenocarcinoma probably indicating greater accumulation of proteins 

during carcinogenesis and progression.  

Another interesting observation arises from changes in the relative intensities of the 

vibrations involving the H-bonded C-O and non-H-bonded C-O bond vibrations of proteins. 

While the former is more pronounced in the normal tissues, the latter is more in the tumoral 

tissues. Similar changes have been observed in earlier studies on colon cancers that probably 

indicate the molecular changes associated with the amino acid side chains involving tyrosine, 

serine and threonine.(31, 33, 34) Finally, the observed difference in the spectral profiles of 

nucleotides, proteins, phospholipids and carbohydrates, between the benign and the 

malignant tissues appears as an interesting discriminating feature in moderately differentiated 

colon cancers.  

For characterizing the tumoral tissue (figure 3B), 14 clusters were necessary to identify the 

tumor together with its associated stroma. These two clusters showed very close spectral 

profiles, an observation that supports the view that stroma is intimately associated to its 

tumor. In spite of this, the highly sensitive statistical methods enabled to depict subtle 

differences that could be probably associated with the spectral profiles of collagen features 

together with the amide II regions of the proteins, and other stroma-associated proteins in 

malignancy.  
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Conclusion 

This study demonstrates the potential of IR spectral imaging for identifying and 

differentiating various histological features of normal and tumoral paraffin-embedded colon 

tissue arrays. An important aspect is that large spots (3 mm-diameter) of the paraffinized 

tissue array stabilized in an agarose matrix could be directly analyzed without chemical 

dewaxing thus simplifying the experimental protocol. This procedure was enabled by the 

implementation of an optimized version of the EMSC algorithm permitting to numerically 

neutralize both paraffin and agarose spectral contributions. Additionally, using multivariate 

analysis, complementary information on the changes associated with the biochemical 

properties between normal and malignant tissues could be also recovered, in a single 

measurement and in a label-free manner. The translation of this methodology of IR imaging 

is envisaged to paraffinized tissue microarrays that can enable high-throughput, molecular 

level analysis of large tissue archives. These optimistic results open a new way for 

developing spectral biomarkers and libraries which could be used, in complement to 

conventional histopathology, for early diagnosis, and also potentially for prognosis and 

theranostics of cancers.  
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Préambule à l’article 3 

Contexte 

L’histopathologie reste la méthode de référence pour le diagnostic du cancer du côlon. De 

nouvelles approches complémentaires sont régulièrement testées et évaluées en 

complémentarité de cette méthode de référence.  

L'imagerie infrarouge apparaît comme une méthode très intéressante parce qu'elle permet la 

mise en évidence des liaisons chimiques intrinsèques présentes dans un tissu, fournissant une 

«signature spectrale» spécifique de la composition biochimique et une cartographie 

moléculaire des différentes structures.  

Objectif 

L’histopathologie spectrale IR, qui associe l'imagerie IR et les méthodes multivariées de 

traitement de données, a été mise en œuvre. Les caractéristiques biochimiques et structurales 

des tissus ont été identifiées en vue de réaliser un modèle de prédiction qui pourrait être 

utilisé à des fins diagnostics. 

Matériels et Méthodes 

Quatre-vingts coupes de tissus de côlon paraffinées sous la forme de tissu microarrays ont été 

analysées par imagerie IR. Pour éviter l’étape de déparaffinage chimique des coupes, une 

méthode de correction mathématique appellée « Extended Multiplicative Signal Correction » 

(EMSC) a été utilisée pour neutraliser les interférences spectrales de la paraffine et de 

l’agarose. La méthode de clustering par k-means a ensuite été utilisée pour classer les 

spectres et ainsi établir une image en fausses couleurs en fonction des différentes structures 

tissulaires (cryptes, lamina propria, tumeur, etc). Des coupes adjacentes colorées par HPS 

sont utilisées comme référence. L’analyse discriminante linéaire (LDA) a ensuite été 

employée pour construire un modèle de prédiction basé sur les résultats du k-means, en 

utilisant 9 échantillons pour la validation interne. Ce modèle a ensuite été appliqué à 71 

échantillons en validation externe. 
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Résultats 

Comparé aux images colorées par HPS, les images spectrales, après l’attribution d’un code 

couleur, révèlent non seulement des caractéristiques communes représentatives de la 

composition biochimique des tissus, mais permettent également de mettre en évidence des 

caractéristiques supplémentaires comme le phénomène de tumeur budding, le stroma associé 

à la tumeur, etc sans étape de marquage au préalable.  

 

Conclusion 

Cette nouvelle approche d'imagerie spectrale infrarouge sur des biopsies de tissus paraffinées 

a permis la détection et la différenciation des tissus normaux et tumoraux du côlon en se 

basant uniquement sur leurs caractéristiques biochimiques intrinsèques avec une sensibilité 

de 100 %. Cette méthodologie, ne nécessitant aucun marquage des coupes, combinée à une 

analyse statistique multivariée des images, apparaît comme un outil prometteur pour le 

diagnostic du cancer du côlon et confirme le potentiel du concept d’histopathologie spectrale. 
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Abstract: 

Histopathology remains the gold standard method for colon cancer diagnosis. Novel 

complementary approaches are being tested and evaluated for molecular level diagnosis of 

the disease. Infrared (IR) imaging could be a good candidate method as it probes the intrinsic 

chemical bonds present in a tissue, and provides a “spectral fingerprint” of the biochemical 

composition and the structures. To this end, IR spectral histopathology, which combines IR 

imaging and data processing techniques, in order to identify tissue biochemical and structural 

characteristics in view of implementing a prediction model which could be used for 

diagnostic purposes, has been implemented. Eighty paraffinized colon tissue sections in the 

form of tissue microarrays were analyzed directly by IR imaging. To avoid chemical 

deparaffinization, a modified Extended Multiplicative Signal Correction (EMSC) method was 

used to digitally neutralize the spectral interferences of paraffin. K-means clustering was then 

used to partition the spectra and construct color-coded images, for assigning spectral clusters 

to various tissue structures (crypts, lamina propria, tumor, etc) using the adjacent HPS stained 

sections as reference. Based on the k-means results, Linear Discriminant Analysis (LDA) was 

then used to construct a stringent prediction model using an internal validation set (9 

samples). This model was then applied to an external validation set (remaining 71 samples). 

When compared to HPS stained images, color-coded spectral images not only reveal common 

features representative of the biochemical make up of the tissues, but also highlight additional 

features like tumor budding, tumor associated stroma,. etc in a label-free manner. This novel 

approach of IR imaging on paraffinized tissue biopsies allowed detection and differentiation 

of normal and tumoral colon tissues based only on their intrinsic biochemical features. This 

label-free methodology combined with multivariate statistical image analysis appears as a 

promising tool for colon cancer diagnosis and opens the way to the new concept of numerical 

spectral histopathology. 
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Introduction:  

Colorectal cancer has one of the highest incidence and mortality among all the cancers 

affecting both sexes, of which the type adenocarcinoma is the most common (1). Radiation 

therapy, chemotherapy and surgical intervention have improved the life expectancy of cancer 

patients, but the outcome of these methods is dependent upon the stage and the accuracy in 

diagnosis (2). Currently different detection and screening methods are employed for 

colorectal cancers, including fecal occult blood test (FOBT) (3), sigmoidoscopy (4), 

colonoscopy (5), etc. However, the final diagnosis is settled upon the microscopic 

examination of the symptomatic tissue with the ‘gold standard’ histopathology in which 

preferential stains are used to enhance visualization of the tissue morphological aberrations. 

Such aberrations (pre-cancerous or cancerous) are the manifestations of the biomolecular 

changes that have already undergone the provocative changes for malignancy. However, the 

ongoing state of the tissue molecular changes during the onset or progression of malignancy, 

without any morphological signatures, poses challenge for identification. In certain cases, 

immunohistochemistry (IHC) is used to identify specific proteins of interest which can give a 

molecular level understanding of the malignant condition. Histopathology requires precise 

human expertise which limits high-throughput diagnosis. Although, the histopathological 

diagnosis is based on morphological examination, it has successfully served in cancer 

diagnosis over several years. Additionally, if it is combined with approaches that could 

provide complementary biochemical information in a rapid, cost effective manner and 

reducing human involvement, the efficacy of the histopathological diagnosis can be 

completed.    

In this regard, optical spectroscopic approach of infrared (IR) imaging appears as a potential 

candidate for routine tissue characterization, and has been exploited as a diagnostic tool on 

various tissues (6-16). IR spectroscopy probes intrinsic chemical bond vibrations of 

biomolecules and thus provides a biochemical fingerprint of the tissues. Combined with an 

imaging set-up, spectral images can be obtained rapidly in a label-free manner, in which each 

pixel element harbors an IR spectrum containing biochemical information at each 

wavenumber. Such IR images can be exploited using computer based multivariate cluster 

analysis to generate digitally stained morphological maps of the tissue histology. Since the 

constituent IR spectra of each digitally stained histological class represent its biochemical 

signature, such as collagen features in the connective tissue, specific spectral signatures can 

be identified from different histological classes. Such signatures can be used to train 
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predictive algorithms for identification of unknown tissues in a rapid and user-friendly 

manner. One of the important possibilities of using this methodology is automation of this 

protocol which can reduce human involvement and provide an objective biochemical based 

diagnostic approach.   

In this regard, we carried out spectral histopathology based on IR imaging in conjunction 

with multivariate analysis. The main objectives were to digitally detect and identify 

malignancy and its associated features on unknown tissues without any chemical staining, 

constituting an automated diagnosis for colon adenocarcinoma. For this, 80 human colon 

tissues from normal and moderately differentiated adenocarcinoma were analyzed, in the 

form of paraffinized tissue arrays that were stabilized in an agarose matrix. The tissue arrays 

are increasingly used in pathological studies since they constitute a humongous source of 

information and permit high-throughput analysis for modern histological practices (17). An 

innovative processing of digital deparaffinization was specially implemented to avoid 

chemical dewaxing, and also to reduce toxic chemical treatments and time consumption (18). 

Then, a prediction model representing the main colonic histological classes was constructed 

and its robustness was evaluated on subsequent number of tissue array cores. Digital 

annotation using this model facilitated characterization of malignancy, and malignancy 

associated features such as tumor budding, and tumor-stroma association.  

 

Materials and Methods:  

Sample preparation: Eighty formalin fixed paraffin embedded (FFPE) colon tissue samples 

(47 tumoral and 33 non-tumoral) from 35 cancer patients were obtained from the Reims 

University Hospital, with the approval of the Institutional Review Board. All the tumoral 

samples were moderately differentiated colon adenocarcinoma with the TNM grade ranging 

from T3N0M0 to T4N2M0. The sample details are presented in supplementary information 1. 

Several paraffinized tissue arrays that were stabilized in an agarose matrix were manually 

prepared from these samples using the pathology laboratory protocols as described in (Article 

1 of Chapter III).  
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Supplementary information 1: Sample details. 
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A single sample spot in the tissue array block was approximately 3 mm in diameter. For each 

tissue array consisting around 12-16 spots, 3 and 10 µm thick sections (adjacent in most 

cases) were obtained. While the 3 µm section was used by the pathologist for conventional 

histopathological analysis via hematoxylin, phloxine, and saffron (HPS) staining, the first 10 

µm unstained section was used for IR imaging analysis and the second stained section for 

additional histopathological comparison. The HPS stained sections were chemically 

deparaffinized while the unstained tissue section for IR imaging was mounted on an IR 

compatible calcium fluoride (CaF2) support without any chemical deparaffinization. A 

schematic representation of the IR imaging methodology of the tissue arrays is presented in 

figure 1. 

 

Figure 1: Schematic representation of infrared spectral imaging applied to paraffinized 

tissue arrays. 
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Instrumentation and FTIR data collection: IR images were acquired, by an IR imaging 

system (Spotlight 300, Perkin Elmer, Courtaboeuf, France) equipped with liquid nitrogen-

cooled 16-element MCT detector, at 6.25 x 6.25 µm2 pixel size, and 4 cm-1 spectral resolution 

averaged to 16 scans, in the mid-IR range of 750 to 4000 cm-1. The system was continuously 

purged with dry air. The background spectrum from the CaF2 support was recorded each time 

prior to image acquisition, using same parameters as that of the IR image. A total of 8540899 

IR spectra were recorded from 80 images at an average of 106761 per image owing to the 

large size of the tissue array spots, and the high spatial resolution selected for imaging.  

Data pre-processing: Raw IR data was corrected from various spectral interferences. An 

atmospheric correction was performed to remove contribution from water vapour and CO2 by 

the built-in Perkin Elmer Spotlight software and further processing was carried out using 

programmes written in Matlab 7.2 (The Mathworks, Natick, MA). The spectra were reduced 

to the IR absorption range of 900-1800 cm-1 that contains several informative biochemical 

vibrations (19, 20) as far as the tissue features are considered. Neutralization of paraffin and 

agarose contributions was carried out using a modified Extended Multiplicative Signal 

Correction (EMSC) algorithm as detailed in (Article 1 of Chapter III). The IR spectra were 

also corrected for baseline and then normalized using the same algorithm. Outliers 

(N=3468314 spectra) in the form of paraffin and agarose spectra, and spectra with poor 

signal-noise ratio were eliminated from the analysis and were depicted as white pixels in all 

the IR images. 

Data processing: The pre-processed data (N=5072585 spectra) was subjected to multivariate 

statistical prediction analysis. For this, spectral data from the non-tumoral and the tumoral 

samples was separated into a training group (SI 1 sample # TG), and a validation group. 

While the training group, representing the IR spectral signatures indicative of malignancy and 

other histological structures, was used for construction of a prediction model based on linear 

discriminant analysis (LDA), the validation group (external validation) was used for 

validating the model on unknown samples for automatic recognition of tissue features, to 

enable identification of malignancy. LDA is a multivariate supervised statistical technique 

that aims at maximizing the between-class variance and minimizing the within-class variance 

(21) and has been exploited in various studies (20, 22).   

Cluster analysis for LDA training: The huge number of IR spectra from each image 

corresponding to the training group was subjected to unsupervised k-means clustering 
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method owing to its capability of rapid and huge data clustering (23). This method iteratively 

partitions the spectra into different clusters based on the spectral signatures from the intrinsic 

biochemical composition of the tissue. Therefore, spectra with similar biochemical 

characteristics group into the same cluster. In k-means, each spectrum belongs to a unique 

cluster and can thus be represented by one color. K-means clustering performed using defined 

cluster numbers resulted in the construction of digital color-coded images. These were then 

compared to adjacent HPS stained sections to annotate by an expert pathologist, each spectral 

cluster to the tissue structural feature that it corresponds to. The spectral distance between 

different k-means clusters was visualized in a dendrogram obtained by hierarchical clustering 

analysis using Ward’s linkage algorithm.  

 

Prediction model: The initially k-means clustered and annotated spectra were used as inputs 

for the LDA model. Training group spectra (SI 1 sample # TG) from 9 samples across 6 

different patients were considered for the model, to take into account the inter-patient 

variability. The prediction model consisted of 8 classes with different number of spectra, 

representing various histological features of non-tumoral and tumoral tissues: the normal 

epithelium defined by the crypt inner-part (crypt-IP) (N = 8377) and the crypt outer-part 

(crypt-OP) (N = 3567), the lamina propria (N = 14106), the submucosa (N = 3964), the tumor 

epithelium (N = 35083), the tumor-associated stroma (N = 16409), the blood vessel (N = 782) 

and the muscularis propria (N = 4514). These spectra (N=86802) constituting one-third of the 

spectra from each class were used to train the model and the other two-third were used for an 

internal validation to optimize the model. The prediction model was then applied in an 

external validation on different unknown samples, the spectra from which were secluded to 

the model, to evaluate its robustness. The external validation consisted of 71 samples 

encompassing a large scale spectral data base of 3620287 spectra that were to be identified. 

All the predictions were carried out at a posterior probability of 0.5 and in the IR spectral 

range of 1080 cm-1 - 1300 cm-1 as discussed later.   

Spectral information to biochemical information (spectral analysis): Since the spectral 

signatures are based on the biochemical properties of the tissue features, it was attempted to 

characterize, the biochemical alterations characteristic of malignancy, and the relationship of 

malignant tissue with the surrounding stroma. For this, the Mann-Whitney U test was applied 
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to compare spectra from selected cluster groups used in the prediction model training in order 

to identify the most discriminant wavenumbers. 

Immunohistochemistry (IHC): IHC was used as a complementary tool (on adjacent 

sections) to enhance visibility of tumor budding (Anti-Human Cytokeratins-large spectrum 

Monoclonal Antibody, Clone KL 1, dilution 1/50, Immunotech, France) and precise the 

nature of the inflammatory cells: T-lymphocytes (CD3 Rabbit anti-Human Polyclonal 

Antibody, dilution 1/200, Dako, France), and B-lymphocytes (CD20 Mouse antibody, clone 

L6 mouse, dilution 1/400, Dako, France), in order to validate some of the important 

observations detected by IR spectral imaging. This was performed using the fully automated 

IHC staining protocol (XT ultraView DAB v3).   

 

RESULTS: 

Cluster analysis:   

K-means clustering was used to identify the spectral signatures characteristic of the main 

histological features of the non-tumoral and the tumoral colonic tissues, which permitted to 

construct digitally stained images. For the non-tumoral as well as the tumoral tissues, this 

approach permitted to identify, and to recover automatically the important histological 

components in comparison to the adjacent HPS stained images as shown in the figure 2 (SI 1 

sample # 1D and 12C). As an example, for the non-tumoral colonic tissue (figure 2A) 8 

clusters permitted to view the important histological structures representing the colonic tissue 

organization. They included the colonic mucosa constituted by well-differentiated crypts 

(cluster 8 - inner part-IP and cluster 6 - outer part-OP); and the lamina propria (cluster 1), the 

supportive loose connective tissue in which the crypts are organized.  
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Figure 2: K-means classification and digital staining of FTIR spectral images with 

random pseudo-colors. 

Left panel: HPS stained colon tissues (SI 1 sample # 1D and 12C). Middle panel: K-

means classification and digital staining of FTIR spectral images with random pseudo-

colors. Right panel: Dendrograms corresponding to the respective cluster images.  

A is a non-tumoral colonic tissue classified using 8 clusters representing the major 

normal colonic tissue features. The cluster representation is as follows:  Cluster 1 - 

lamina propria, cluster 2 - mucus, clusters 4, 5 and 7 - submucosa, cluster 6 - crypt 

(outer part-OP), cluster 8 - crypt (inner part IP) and cluster 3 - undefined tissue.   

B is a moderately differentiated colonic adenocarcinoma classified using 11 clusters. 

The important histological classes are cluster 1 - tumor, clusters 6, 7, and 11 - tumor-

associated stroma. Remaining clusters were attributed to the fibrous stroma. The HPS 

images are at 5X magnification. 
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The residual mucin (cluster 2) was observed to be localized within the crypt lumen while a 

small amount was seen secreted outside. The submucosa, attributed to clusters 4, 5 and 7 was 

distinguished effectively from the lamina propria by the clustering method. Finally cluster 3 

appeared to represent the blood vessels. On the contrary, in the typical adenocarcinomatous 

tissue (figure 2B), the only important histological classes retrieved were the tumor epithelium 

(cluster 1) and its associated stroma in the tumor vicinity (cluster 6). Most of the other 

clusters represented the fibrous stromal tissue. The corresponding dendrogram showed the 

close spectral nature of the tumor associated stroma to its tumor where they are very closely 

grouped (clusters 1 and 6) while the stroma that is not in direct contact with the tumor 

epithelium appear more distant. A total of 11 clusters were required to identify these features. 

In both cases, considering the overall colonic tissue organization, increasing the number of 

clusters did not add any further retrievable histological information. The k-means clustering 

is an efficient method to identify IR spectral markers specific to different histological 

components of non-tumoral and tumoral colonic tissues. On the basis of these spectral 

signatures, the diagnostic potential of IR spectral imaging has been evaluated using a LDA 

based prediction model as schematically represented in figure 3.   

 

Figure 3: Schematic representation of construction and application of the prediction 

model based on linear discriminant analysis. 
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Optimization of the prediction model - internal validation group: The LDA based 

prediction model developed from 9 samples (6 patients) with 8 different classes comprising a 

total of 86802 spectra was trained, and tested in an internal validation. The sensitivity of the 

prediction model in the internal validation can be evaluated from the confusion matrix which 

shows the confrontation between the histopathological class annotation (real class) and the IR 

spectral prediction (predicted class) (Table 1). Different spectral regions were tested and the 

highest sensitivity (average 89.38%) was obtained for the region between 1080 cm-1 to 1300 

cm-1. It has to be noted that for the class tumor epithelium a specificity of 96.4 % was 

reached, and showed no confusion with the class normal epithelium (comprising crypt inner 

part and crypt outer part).  

Table 1: The confusion matrix representing the sensitivity of the infrared spectral 

imaging based prediction model developed using 8 classes, to the gold standard 

histopathological attribution, in the spectral range of 1080 cm-1 to 1300 cm-1. The table 

shows an average sensitivity of 89. 49 %.  

 

Tumor detection and tissue characterization in unknown samples - external validation 

group: The external validation was performed on the remaining 71 blind samples involving a 

large scale spectral bank of 3620287 spectra and showed 100 % sensitivity for the tumor 

class. Along with tumor class, other histological classes were also identified with high 

correlation to the conventional histology. A representative demonstration of prediction on 

unknown non-tumoral and tumoral samples (SI 1 sample # 14D and 7C) is shown in figure 4. 

The figure 4A histologically corresponded to a non-tumoral colonic tissue in which the 

prediction model correctly identified its characteristic features with utmost homology to the 
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histological image. Counterpart to the normal tissue, histologically the figure 4B 

corresponded to a typical moderately differentiated colon adenocarcinoma.  In this, the 

spectral characteristics of the normal mucosa were absent and the only distinguished ones 

were malignant epithelial component with its associated stroma. Additionally, identification 

of features difficult to discern using conventional techniques, such as tumor budding was 

facilitated. 

 

Figure 4: Performance of the prediction model: Identification of unknown colonic 

tissues by spectral histopathology. Left panel: HPS stained colon tissues (SI 1 sample # 

14D and 7C). Right panel: LDA predicted image. A is a non-tumoral colonic tissue 

section in which all the important normal colonic histological features are well-

identified by the model. There is presence of well-differentiated normal epithelium 

(crypt-IP and crypt-OP). Normal connective tissue is identified, also in which blood 

vessels are dispersed throughout.  

B is a moderately differentiated colon adenocarcinoma in which the tumor epithelium is 

well-identified together with its associated stroma. There is a complete absence of 

normal epithelium. The HPS images are at 5X magnification.   
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Detection and characterization of malignancy associated features: 

Tumor budding: Budding is characterized by small clusters of isolated tumor cells which 

become detached from the neoplastic epithelium and migrate into the stroma, and is an 

indication of high tumor invasiveness in colorectal cancers. Although this morphological 

phenomenon is detectable in conventional histopathology at high power magnification, IHC 

may be employed for better visualization. The IR prediction model was able to clearly 

identify this tumor particularity even in the presence of abundant stroma as shown in the 

figure 5, (SI 1 sample # 9B). In the same tumoral sample, along with the malignant 

epithelium, there was presence of some normal epithelial component together with normal 

connective tissue, and all these features were identified by the prediction model. Importantly, 

both the malignant and the non-malignant epithelial cells were selectively stained and 

discriminated using a specific color-code. The positive staining of the epithelial cells can be 

seen in the IHC image (see figure 5C).  

 

 

Figure 5: Identification of tumor budding in an unknown colonic tissue. 

Left: HPS stained colonic tissue (SI 1 sample # 9B). Middle: LDA predicted image. 

Right: KL 1 immuno-stained image. The sample is a moderately differentiated colon 

adenocarcinoma in which the cancerous glands are identified along with the tumor-

associated stroma. Small isolated tumor clusters representing tumor-budding are 

identified branching out into the stroma. The tumor-stromal boundary is also well-

identified and clearly demarcated from the normal connective tissue (muscularis 

propria). In the same sample, few normal colonic glands are seen in the top-right 

position identified by presence of normal epithelium. The HPS and the IHC images are 

at 5X magnification. 
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Another tissue section obtained from different position (SI 1 sample # 9A) of the same tumor 

also showed tumor budding in a stroma dominant environment, and each time it was 

identified by the prediction model, which was later confirmed by IHC studies (SI 2).  

 

 

 

Supplementary information 2: Identification of tumor budding in an unknown colonic 

tissue.  

Left to right: HPS stained colon tissue (SI 1 sample # 9A), LDA predicted image, KL 1 

immuno-stained image, and zoomed area of the same image. 

The sample is a moderately differentiated colon adenocarcinoma with tumor-budding 

branching out into the stroma. The presence of even very few tumor cells sparsely 

visible in the HPS image seems to be predicted correctly, as can be verified from the 

immuno-stained image. The HPS and the IHC images are at 5X magnification.  

 

 

 

 

 

 

 

 



  Results and discussion 
 

130 
 

Tumor stroma association:  

The tumor-stroma association was also reported using IR spectral imaging. The confusion 

matrix (table 1) highlighted the spectral proximity of tumor and its associated stroma in 

which, indeed 16.3 % of tumor associated stroma pixels were classified in the tumor class. 

Complementarily, in the predicted images (SI 1 sample # 11B) these two classes appeared in 

geographic proximity (figure 6).  

 

          

Figure 6: Tumor stroma geographical proximity 

The sample is a moderately differentiated colonic adenocarcinoma with its associated 

stroma (SI 1 sample # 11B). The image is predicted correctly by the model. The nature 

of the connective tissue into which the tumor has infiltrated is also identified. The HPS 

image is at 5X magnification.   

 

In the same image, distinction between the tumor associated stroma and the normal 

connective tissue corresponding to the submucosa was attained, while in the histological 

stained section, this was indistinguishable. The above mentioned tumor-stroma features were 

also observed in the other tumoral samples (SI 1 sample # 11A, 11C, 12A, 13A, and 15A) as 

shown in SI 3 including the cases of budding (fig 5).  
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Supplementary information 3: Tumor stroma geographical proximity. The samples are 

moderately differentiated colonic adenocarcinoma with its associated stroma with 

infiltration into the adjacent connective tissue (SI 1 sample # 11A, 11C, 12A, 13A, and 

15A). Along with tumor identification, the nature of the connective tissue into which the 

tumor has infiltrated is also identified. The HPS images are at 5X magnification.  
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Vibrational analysis of spectroscopic markers: In this study, the k-means clustering was 

performed using the IR spectral range of 900 cm-1 - 1800 cm-1 that enabled identification and 

attribution of the important colonic histological classes. For unknown sample prediction, this 

zone was narrowed down to 1080 cm-1 to 1300 cm-1 harboring some of the important 

biomolecular vibrational modes implicated in colon cancers, and which showed the best 

prediction outcome for all the classes together. As shown in figure 7, the most discriminant 

wavenumbers within this zone were identified by the Mann-Whitney U test performed on the 

individual spectra and represented on the average spectra for the following pair-wise 

comparisons: normal epithelium with malignant epithelium (adenocarcinoma) for 

understanding the molecular alterations characteristic of malignancy, and adenocarcinoma 

with its associated stroma to understand the tumor induced alterations in the stromal tissue. 

 

 

 

Figure 7: Most discriminant IR spectral vibrations identified by Mann-Whitney U test.  

The test was performed for 1: Normal epithelium versus tumoral epithelium (p<0.005), 

and 2: Tumor epithelium versus tumor associated stroma (p<0.01).  

 

From the discriminant wavenumbers identified for all comparisons, a tentative correlation of 

IR vibrations to the biomolecular information was attempted as shown in Table 2. 

Importantly, comparing the normal epithelium with the tumoral epithelium, the main 
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differences in the IR peaks were attributed to symmetric and asymmetric PO2
- vibrations of 

the nucleic acids that demonstrated relatively higher intensities in normal than the tumoral 

tissues. Similarly, the C-O stretching vibration corresponding to carbohydrates was relatively 

more intense in normal than the tumoral tissues. 

 

Table 2: Correlation of some of the most discriminant IR spectral vibrations 

 

 

Normal epithelium - malignant epithelium 

Malignant epithelium - Tumor associated 

stroma 

    Peak 

position Biomolecular attribution 

Peak 

position Biomolecular attribution 

1082 

PO2
- symmetric stretch of nucleic 

acids12 

  

1240 

PO2
- asymmetric stretch of nucleic 

acids2 

  

  

1214 Collagen2 

1155 C-O stretch of Carbohydrates39 1280 

 

    1160 H-bonded C-O stretch of Proteins39 

  1176 non-H-bonded C-O stretch of Proteins39 

   

 

At the same time the hydrogen bonded C-O groups of proteins in the normal epithelium was 

observed to be decreased in the tumoral epithelium, while the opposite tendency was 

observed for the non-hydrogen bonded C-O groups of proteins. Secondly, when comparing 

adenocarcinoma with tumor associated stroma, the discriminating spectral features appeared 

to be contributed principally from collagen features.  
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DISCUSSION: 

Spectral histopathology based on IR imaging has been carried out to develop an innovative 

label-free diagnostic methodology directly on FFPE tissue arrays embedded in an agarose 

matrix without any chemical pre-treatments. EMSC that has been initially developed to 

separate light scattering effects from light absorbance effects, has also been used for 

accomplishing neutralization of paraffin contributions in IR spectral analysis (24-27). In this 

study, both paraffin and agarose interferences on the IR spectral images have been 

neutralized digitally without the use of any chemicals, using an improved EMSC algorithm 

(Article 1 of Chapter III).   

Clustering: K-means clustering provided a rapid way to classify the IR spectral images into 

their constituent histological classes in comparison to the chemically stained conventional 

images. While the non-tumoral colonic tissues were characterized by well-differentiated 

architecture with both inner and the outer cryptal parts clearly distinguishable together with 

the connective tissue, the malignant tissues which were all of the advanced colonic cancer 

types, were characterized by the loss of differentiation of the normal colonic glands with no 

visible lumen; and presence of stromal tissue. The digital staining of each k-means cluster 

formed the basis for spectral marker assignment comprising the malignant colonic 

characteristics, along with the normal tissue features, at different organizational levels of the 

colonic wall. Based on this spectral database from as little as 11 % of the samples, a 

prediction model was trained for automatic detection of malignancy in unknown specimens 

independently of conventional histopathology.  

 

Prediction: Some of the earlier IR imaging studies have tested prediction algorithms on 

different tissue types (19, 20). However, the number of spectra used for constructing the 

model was limited compromising the robustness of the model. In our study, the high image 

acquisition parameters applied to tissue arrays (3 mm diameter) constituted a huge bank of 

86802 spectra in the model, representative of the real biochemical signatures of distinct 

colonic structures, making the model highly robust. Only one such IR imaging study on 

prostate tissues has used such a robust model for prediction on unknown tissues (28). In this 

study, 8 classes were included that described the colonic tissue organization in non-tumoral 

and tumoral samples. Some of these histological structures may share certain similar 

molecular constituents with other histological classes present in the model (tumor and tumor 
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associated stroma), or not present in the model (muscularis mucosa and tumor associated 

stroma). The spectral proximity arising from this leads to misclassification between such 

classes as shown in the figure SI 4 concerning the muscularis mucosa (visible in the HPS 

image) which is identified as tumor associated stroma (SI 1 sample # 27). It has to be noted 

that there was no class for the muscularis mucosa in the model. This attribution can be 

presumed to have arisen from the residual normal muscularis mucosa signatures present in 

the tumor associated stroma from which the corresponding class was constructed in the 

prediction model. This prediction error appeared predominantly in non-tumoral samples 

where there is an intact muscularis mucosa. Despite these misclassifications, an overall high 

correlation between the predicted spectral classes and the corresponding histological 

structures is observed in the confusion matrix.   

 

 

Supplementary information 4: Confusion between muscularis mucosa and stroma. 

The sample is a non-tumoral colonic tissue in which the thin layer of muscularis mucosa 

is identified as tumor  associated stroma by the prediction model seen as yellow pixels 

(SI 1 sample # 27). The HPS image is at 5X magnification. 

 

External validation: The remaining 89 % of IR spectral images were identified by the 

prediction model without any a priori knowledge on their histopathology (external 

validation). These blind samples constituted a huge number of 3620287 spectra that were 

scanned and annotated by the automated computer trained prediction algorithm. The 

diagnosis was confirmed by an expert pathologist by using the conventional histological 

images based on which a 100 % accuracy of the prediction model was obtained for tumor 

diagnosis. This high sensitivity after scanning such a huge number of unknown spectra 
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signifies the potential of the current methodology as a diagnostic tool. The prediction analysis 

also facilitated simultaneously some important malignancy associated features. 

  

Tumor budding:  

The phenomenon of tumor budding is of crucial clinical importance in colorectal cancers 

since it has been shown to be a strong adverse prognostic marker (29). As such, studies have 

correlated its occurrence with aggressiveness and lymph node metastasis (30). In this study, 

the prediction model facilitated the identification of tumor budding in a stroma-dominant 

environment in an automated manner. This rapid and selective detection of small clusters of 

isolated tumor cells in an abundant stroma environment demonstrates the sensitivity and the 

applicability of the methodology avoiding the need of any histological or immunological 

markers. This envisages an important prospect since the tumor de-differentiation in the form 

of budding is being acknowledged as a key component in the metastatic process even in well- 

and moderately differentiated tumors (31, 32). At the same time, the color code based 

selective staining of the epithelial counter parts in the same tissue shows the discriminatory 

ability and the biomolecular specificity of this methodology.  

 

Spectral Analysis:   

The IR spectral region from 1000 cm-1 to 1300 cm-1 has been reported to carry important 

biochemical vibrations implicated in colon cancers and have been used for differentiating the 

malignant tissues from their normal counterparts (33, 34). In this study, the most discriminant 

spectral wavenumbers were associated with relatively decreased intensities of symmetric and 

asymmetric PO2
- vibrations of the nucleic acids in the tumoral epithelium when compared to 

the non-tumoral tissues. On contrary to the expected increased nucleic acid intensities as 

shown in several studies, these spectral changes corresponding to the biochemical alterations 

corroborate with some of the previous studies on colon cancers where the nucleic acid 

intensities were shown to be reduced in malignant conditions (23, 35). It may be likely that 

the spectral changes involving nucleic acids are small in moderately differentiated tumors 

when compared to normal colonic epithelial cells which themselves are highly proliferative in 

nature. One study has stated that decreased phosphate content in malignant colon tissues may 

be due to decrease in carbohydrate content (36), which in our study was also indicated by the 
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relatively less intense C-O stretching vibration corresponding to carbohydrates in the tumoral 

tissue than the normal. At the same time, the relative intensities of H-bonded C-O vibrations 

of proteins were observed to be more pronounced in the normal epithelium than the tumoral, 

while the non-H-bonded C-O bond vibrations were more pronounced in the tumor. These 

changes may be indicative of the molecular alterations associated with the amino acid side 

chains concerning tyrosine, serine and threonine (2, 23, 36, and 39). The molecular changes 

involving adenocarcinoma and tumor-associated stroma appear principally due to collagen 

features. 

 

Tissue inflammation influences the model specificity:  

In 12 out of 26 samples histologically described as non-tumoral (SI 1 sample # LF); tumoral 

characteristics (over 4 % of pixels) were observed either regionally clustered or dispersed in 

the lamina propria. The HPS images gave insight into the regionally clustered tumor pixels as 

corresponding to lymphoid follicles in the colonic tissue. These structures showed spectral 

signatures close to the tumor group relative to the other classes. However, the tumor pixels 

dispersed in the lamina propria could not be accounted for as no visible correspondence 

between them and any histological feature could be found in the HPS images. Since these 

tissues showed high inflammatory infiltration, immuno-staining for T-lymphocytes (CD 3), 

B-lymphocytes (CD 20) and macrophages (KP 1) was performed to verify if the dispersed 

pixels corresponded to the inflammatory cells. The positive staining indicated that these 

pixels indeed corresponded mainly to interstitial T-lymphocytes as representatively shown in 

the figure 8A (SI 1 sample # 32 and 31). In parallel, the B-lymphocytes were seen assembled 

in lymph follicles. Non-tumoral tissues without any marked inflammation as confirmed by 

the IHC showed no tumor pixels in the IR spectral images (figure 8B). Since the model did 

not take into account inflammatory conditions (because of the tissue complexity arising from 

polymorphisms of the inflammatory infiltrates in colon cancers: polymorph predominant, 

mononuclear predominant, mixed or rich in lymphoid follicles, and the difficulty to have a 

representative spectral signature), these features were attributed to the spectrally nearest class 

which turned out to be the tumor class.  
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Figure 8: Influence of tissue inflammation on the prediction model.  

Left to right: 1. HPS stained colon tissues (SI 1 sample # 32 and 31), 2. LDA predicted 

images, 3. Immuno-stained images for CD3 marker and 4. 3. Immuno-stained images 

for CD20 marker.   

A is a non-tumoral colonic tissue with typical normal glands. The mucosa is partially 

populated by lymphoid follicle as seen in the HPS image. The prediction model 

identified the regions in the mucosa as tumor. Immuno-staining for CD3 and CD 20 

markers revealed that the tumor class in the predicted images actually corresponded to 

inflammatory signatures. B is another non-tumoral tissue which is negative for CD 3 

and CD 20 indicating absence of inflammatory signature, and is predicted as as verified 

by the immuno-staining which shows no positive staining for CD 3 and CD 20. The HPS 

and the IHC images are at 5X magnification.   

 

A recent IR imaging study on cervical cancer tissues also quoted the influence of 

inflammatory signatures on the prediction model sensitivity and specificity (37). To have a 

broader insight into this aspect, we further looked at the spectral class attribution threshold 

for the tumor class. It turned out that the majority of the spectra corresponding to the 

inflammatory signatures have lesser threshold values compared to the tumor (SI 5). 



  Results and discussion 

 

139 
 

Altogether, the IR signatures from the inflammatory regions appeared to class spectrally 

closer to tumor than other classes of the prediction model indicating an intermediate stage 

between normal and malignant condition, as was shown in an earlier study (38). 
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Supplementary information 5: Histogram for tumor pixel attribution in tumoral and 

non-tumoral sample. 

   

The current work of IR spectral imaging on colon tissues provides automated diagnosis of 

malignancy on unknown samples. Various diagnostic features associated with malignancy 

which provides complementary information are also characterized. Important features such as 

tumor budding, tumor-stroma association are dealt with in a non-destructive and label-free 

manner. The analysis of such a large spectral database makes the study all the more 

representative. All these features have never been dealt together in colon cancer diagnosis 

using IR spectral imaging of paraffinized tissues in any of the previous studies. IR spectral 

imaging presents an optimistic overture for cancer knowledge in modern histopathology.  

The current prediction model representing the important histological features of a colonic 

tissue certainly holds aspects for amelioration. The spectral attribution identified the 
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inflammatory signatures classed close to the tumor. Since these specific biochemical 

signatures were picked up by the model, the inflammatory infiltration, which pose risk of 

developing into cancers, could be incorporated into the model for an automated evaluation 

and direct diagnostic approach for inflammatory diseases. Aspects like genotype specific 

tumoral signatures and their treatment response sensibility unknown till now could open a 

new additional classification. Further, an automated quantification can be achieved for 

features like amount of tumor presence, or the amount of tumor budding, only limit being the 

use of adjacent tissue sections which may present slight variations from the reference tissue.  

 

Conclusion: 

The IR spectral imaging combined with multivariate statistical analyses appears as an 

optimistic diagnostic approach for colon cancers in complement to conventional 

histopathology. This innovative imaging approach enabled direct analysis of paraffinized 

tissue arrays and, via the employment of mathematical deparaffinization the need for 

chemical pretreatments was reduced. The prediction model permitted identification of 

unknown samples with a very high sensitivity, while the false positive prediction in the non-

tumoral samples has put forth the influence of the inflammatory component. This very large 

scale spectral data base analyzed both in terms of training and validation shows the potentials 

of the IR spectral imaging methodology for automated diagnostic purposes. Moreover, it 

eliminated the need for sample staining and a priori knowledge of the sample to be analyzed. 

These optimistic results open a new way for developing spectral biomarkers and libraries 

which could be used, in complement to conventional histopathology, for early diagnosis, and 

also potentially for prognosis and theranostics of cancers.   
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III.6: Supplementary work to spectral 

histopathology of tissue arrays 
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III.6. 1: Identification of early biochemical changes in adenomatous tissues; 

towards tumor grading:  

This part constitutes a preliminary study on the prediction outcome of few unknown 

adenomatous tissue samples. In the previous part of the work, the prediction model based on 

LDA was able to accurately identify unknown samples as tumoral or non-tumoral accurately. 

Along with tumor identification, some of the features associated with tumor such as tumor 

budding, tumor-stroma association were also revealed. The prediction was performed on the 

tumoral samples which were all moderately differentiated adenocarcinomas.  

 

In order to assess the efficiency of this model for other tumor grades, adenomatous tissue 

samples showing low-grade and high-grade dysplasia were tested. Interestingly, these 

samples were identified as tumoral samples as shown in a figure 1.  

 

In general, an adenoma is characterized by different degrees of cell dysplasia, presence of 

irregular cells with hyperchromatic nuclei, decreased mucosecretion, while the basement 

membrane and the muscularis mucosa are intact. Thus the IR spectral histopathology 

indicated that the early molecular changes in the adenomatous samples were picked up by the 

prediction model that classified them into the tumoral group. This high-sensitive 

discriminating potential of the prediction model shows good prospects in studying various 

other tumor grades.  

 

It has to be noted that the prediction model did not contain a separate class for adenomas. 

However, based on the spectral proximity, the adenomatous signatures which are considered 

as early molecular changes in progression towards cancer were identified as belonging to the 

tumor group. In extension to this preliminary work, an LDA model with inclusion of a 

separate class for adenomas needs to be carried out in order to discriminate between normal, 

adenoma, and carcinoma tissues automatically.  

 

The identification of the small abnormal characteristics by the model could be a good 

predictive marker for early diagnosis of colorectal cancers. Large sample population needs to 

be tested to validate this capability of IR spectral histopathology for early diagnosis, with 

higher certitude.  
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A.                 B. 

 
 

Figure 1: Early detection of tumoral signatures. 

A. HPS stained image of an adenomatous colon tissues which shows high grade 

dysplasia, along with some normal glands, and mucus. B. A LDA predicted image in 

which these early changes associated in the form of an adenoma are identified. The 

high-grade dysplastic regions are completely identified as tumoral, while in the 

seemingly normal glands, few pixels are indicated as tumor. The HPS image is at 5X 

magnification. 
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III.6.2: A special note on peri-cryptal fibroblastic sheath (PCFS): 
 

The k-means clustered IR images were highly correlated with the reference HPS stained 

images (refer to figure 2 of article 3 as an example). The gross histological features were 

clearly demarcated based on the intrinsic biochemical signatures. With regard to the crypts, 

each time they were assigned to two clusters: one constituting the crypt central part and the 

other to the crypt outer part. The central lumen which is filled with mucus was often detected 

as a third cluster. In the reference histological images the crypt outer part was deeply stained 

corresponding to the localization of peripheral nuclei in the colonic crypts. In comparison to 

the reference images, the crypt outer part was clearly demarcated the in the k-means cluster 

images as well as in the LDA predicted images. 

 

The layer of PCFS corresponding to the basement membrane of the normal colonic 

epithelium is usually seen surrounding the crypts, specifically in conjunction with the outer 

nuclear part. The PCFS of the colonic glands is in the scale of 2-5 microns thickness. Hence 

with a pixel size of 6.25 microns utilized in this study, this region may not be isolated as a 

separate cluster. However, it could be presumed that some of its signatures could contribute 

to the class crypt outer part.  

 

The degradation of the PCFS is one of the important signs of tumor invasiveness. Although, 

the degradation of PCFS was neither detected in the k-means cluster images nor in the LDA 

predicted images owing limitation of the spatial resolution, the loss of differentiation of the 

crypt outer part was observed in both the k-means and the predicted images. Since the PCFS 

is geographically closely associated with the crypt-OP as shown in the IHC image stained for 

smooth muscle actin (figure 2), the loss of differentiation of the crypt OP can be presumed to 

be a sign of invasive tumors.   
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Figure 2: Stable peri-cryptal fibroblastic sheath around the normal colonic glands. 

The smooth muscle actin positive staining of PCFS corresponding to the basement 

membrane around the crypts supporting the epithelial cells. The muscularis mucosa on 

the top left is also positively stained (positive control). The IHC image is at 20 X 

magnification).  

 

However, increasing the spatial resolution in the order of few microns would permit to detect 

individually the PCFS, which could permit access to an important diagnostic marker. Other 

vibrational spectroscopic approaches such as IR-ATR and Raman imaging which give higher 

spatially resolved biochemical information could shed more light on this point.  
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III.7: Conclusions 

The biophotonic approach of IR spectral imaging has been applied to colon tissues that 

permitted characterization of histopathological features, and for automated cancer diagnosis 

paving the way for the development of spectral histopathology.  

In the initial part of the work, a novel concept of spectral barcodes was implemented using IR 

spectral imaging approach. The barcodes constituted a way to visualize the spectral 

biomarkers, based on the most discriminant wavenumbers between normal and malignant 

colonic mucosa. Several discriminant spectral zones were identified which were correlated to 

different biochemical features of the analyzed tissues in an easy-to-interpret manner. 

In the following work, demonstration of the IR spectral imaging methodology applicable to 

paraffinized tissue arrays has been performed. An important aspect in this work is that 

paraffinized tissue array stabilized in an agarose matrix could be directly analyzed without 

any chemical dewaxing thus simplifying the experimental protocol. Since the spectral images 

from the tissue arrays consisted of interferences originating from paraffin and agarose, a 

modified EMSC algorithm was developed. This is the first time that EMSC has been 

implemented to correct the spectral interferences from both paraffin and agarose together. 

Additionally, using multivariate analysis, complementary information on the changes 

associated with the biochemical properties between normal and malignant tissues were 

recovered, in a single measurement and in a label-free manner. Spectral analysis revealed 

specific profile for mucinous adenocarcinoma that differentiated it from its normal 

counterpart and other non-mucinous cancer types. Spectral features associated with 

nucleotides, carbohydrates and proteins were also identified as discriminant. The PCA 

analysis showed a clear separation between the normal and the tumoral groups while a close 

association was observed for the tumor and its associated stroma.   

Finally, large scale application of potentials of IR spectral imaging was carried out in the 

following study in order to validate the concept of spectral histopathology. This methodology 

based on the conjunction of IR imaging and multivariate statistical analysis enabled label-free 

classification of the colonic tissues into their histological features, and the construction of 

digitally color-coded spectral images. A prediction model developed from these images 

revealed the inter-class spectral heterogeneity and proximity of several histological features. 

The model when applied on unknown tissue samples not only identified the normal and the 



  Results and discussion 

 

151 
 

tumoral features of colonic tissues, but also revealed other tumor associated features without 

a priori knowledge of the sample. Malignancy associated features such as tumor budding 

which are difficult to discern by conventional histopathology were identified. In addition, the 

tumor-stroma association was also delineated which appeared in spectrally close proximity. 

In this study, the IR spectral range of 1080-1300 cm-1 showed the best prediction outcome. 

This region was associated with some of the important biomolecules implicated in colon 

cancers such as nucleotides, mucin, and carbohydrates.  

This original approach has permitted to differentiate and detect normal and tumoral tissues of 

colon based on their intrinsic biochemical characteristics in a non-destructive manner. This 

novel imaging approach which necessitates no staining or chemical treatment opens a new 

way for spectral histopathology for automated and objective diagnosis of colon cancers 

independent of the operator-inherent variability.     

At the same time, several applications of this methodology are envisaged in the future.This 

methodology of IR spectral imaging applied to paraffinized tissue microarrays enables high-

throughput, molecular level analysis of large tissue archives. This could permit to construct 

libraries of spectral biomarkers which could be used in complement to conventional 

histopathology and also for prognostic and predictive purposes in cancer therapy. 
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IV.1: Résumé: 

L’imagerie spectrale IR constitue une méthode diagnostique prometteuse capable de fournir 

des informations complémentaires à l'histopathologie conventionnelle. Dans ce chapitre nous 

abordons des analyses complémentaires pour (1) évaluer l’influence de la résolution spatiale 

sur les données spectrales tissulaires et (2) évaluer la potentiel de l’imagerie IR 

conventionnelle au niveau d’un autre pathologie. Les différentes potentialités de cette 

méthode ont été exploitées dans diverses études. En raison de l'hétérogénéité des tissus 

biologiques, la taille du pixel représente un facteur important puisqu’elle définit la précision 

de l'information spectrale acquise.  

Dans l’étude des tissu arrays, nous avons utilisé un imageur équipés d’une barrette de 16 

détecteurs MCT, chacun donnant une taille de pixel de 6, 25x6, 25 µm2. Avec ce paramètre, 

les caractéristiques majeures des tissus sont clairement définies, mais des détails plus fins ne 

sont pas assez résolus. Nous avons vu dans l’étude précédente que c’était un facteur dans la 

détection des PCFS.  

C’est cette raison que d’autres modalités de spectroscopie vibrationnelles pouvant fournir une 

meilleure résolution spatiale ont été évaluées. Les imageurs type matrice à plan focal (FPA à 

64x64 pixels) permettent d’acquérir des images à une résolution de 4,2 µm/pixel et 

d’améliorer sensiblement la résolution. L’imagerie infrarouge peut aussi être améliorée en 

utilisant le mode ATR (Attenuated Total Reflection ou Réflexion Totale Atténuée) qui utilise 

un cristal ayant un indice de réfraction élevé tel que le germanium. De cette façon, la 

résolution spatiale peut être améliorée d’un facteur 4 au niveau de chaque pixel. D’autre part, 

nous avons aussi appliqué l'imagerie Raman qui permet d’accéder à une résolution spatiale de 

l’ordre du micron et de fournir des images spectrales hautement résolues.  

Bien que l'imagerie tissulaire soit possible en utilisant des approches par imageries ATR et 

Raman, relativement très peu d'études ont été réalisées sur des tissus en comparaison avec 

l’imagerie IR. Il est à noter que ces deux approches ne se prêtent pas aux tissu arrays de 

grande taille (3 mm de diamètre) comme nous l’avons utilisé dans l’étude précédente. Nous 

avons donc effectué une étude comparative entre l'imagerie IR classique, l’imagerie IR-ATR 

et l’imagerie Raman, sur des zones réduites de coupes de tissus coliques congelés, afin de 

mettre en évidence les avantages et les limites de ces différentes méthodes. Des facteurs tels 
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que la résolution de l’image, la finesse des détails tissulaires qui peuvent être résolus et les 

temps d’acquisition ont été comparés.  

Dans un deuxième temps, la méthodologie d'imagerie IR spectrale appliquée aux tissu arrays 

paraffinés de côlon a été testée sur des tissus mammaires, afin de mettre en évidence des 

marqueurs spectraux pour l'identification des cancers du sein. Ce travail préliminaire a été 

effectué directement sur des tissus mammaires paraffinés. Enfin, l'application potentielle de 

ces approches au sein de laboratoires cliniques et les aspects à améliorer sont discutés. 
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IV.2: Summary: 

The following chapter constitutes a complementary work to histopathology undertaken using 

different imaging modalities with the aim (1) to evaluate the influence of spatial resolution on 

the spectral data obtained from the tissues and, (2) to evaluate the potential of conventional 

IR imaging applied to another pathology.  

Due to the inherent heterogeneity of the biological tissues, the measured pixel size is an 

important factor that defines the precision of the acquired information. In the IR imaging 

approach of the tissue arrays, a 16 element MCT detector with the possible pixel size of 

6.25x6.25 µm2 was used. At this size, although the major tissue features are demarcated, finer 

details are not clearly resolved. In the preceding work, this was one of the factors that limited 

the detection of PCFS.  

In this regard, other modalities of vibrational spectroscopy that can provide improved spatial 

resolution have been tested. The imagers with Focal Plane Array (FPA with 64x64 pixels) 

detectors can provide a resolution of 4.2 µm/pixel. The IR imaging can also be improved 

using an ATR (Attenuated Total Reflection) mode which uses a high refractive index crystal 

such as germanium which can provide a four-fold higher resolution at each pixel. 

Complementarily, Raman imaging was also applied which can also provide highly resolved 

spectral images in the order of microns.  

Although imaging is possible using ATR and Raman approaches, there have been relatively 

very few studies that employed them for tissue imaging in comparison to IR imaging. It has 

to be noted that the applicability of these two approaches is limited by the large size of the 

tissue arrays (3mm diameter) as was used in the preceding work. Therefore in order to look at 

the feasibility of other imaging methods, we performed a comparative study using 

conventional IR imaging, ATR-IR imaging and Raman imaging on limited zones of frozen 

colonic tissue sections, in order to evaluate the various parameters involved, their advantages 

and limitations. Factors such as image resolution, the finer tissue details that can be resolved, 

the time constraints have been compared to have a clear view of the different imaging 

modalities available in the common laboratory equipments. In an independent study, the IR 

spectral imaging methodology that has been tested on paraffinized tissue arrays has been 

tested on breast tissues in order to develop spectral markers for the identification of breast 

cancers.  
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This preliminary work was performed directly on paraffinized breast tissues. Finally, the 

potential applicability of these approaches in a clinical scenario and the aspects to be 

improved are discussed.   
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IV.3: Introduction:   

Vibrational spectroscopic approaches comprising IR absorption and Raman scattering have 

been regarded as one of the important potential candidates for diagnosis of various cancers 

since they provide biochemical information within cells and tissues (Bhargava, 2007). The IR 

spectroscopy works on the principal of absorption of light by IR active biomolecules. The 

absorptions are measured in the form of a spectrum which provides the biochemical 

fingerprint of cells and tissues in a label-free manner, and provide insight into the structural 

organization of biological systems (Ellis, 2006). Complementary to this and in another 

physical phenomenon, when a beam of monochromatic light is incident on a molecule, most 

photons are elastically scattered. These elastically scattered photons have the same energy 

and therefore same wavelength as that of the initial photons in a phenomenon known as 

Rayleigh scatter. A small fraction of photons from these are scattered at different energies 

from that of the incident, resulting in inelastic scattering known as the Raman effect. This 

shift in the energy of the inelastically scattered photons due to Raman active molecules 

plotted against the intensity of scattered light gives the Raman spectrum that is routinely used 

to gain insight into the sample molecular composition. 

Histopathology is the current gold standard method of cancer diagnosis which is based on 

microscopic examination of tissue morphological features (Fernandez, 2005). If combined 

with vibrational spectroscopic approaches, important information based on the tissue 

biochemistry under different conditions can be obtained. As such the capabilities of these 

vibrational spectroscopic techniques have been exploited to study normal and cancerous 

tissue states with diagnostic significance (Wang, 2007; The, 2008).  

IR and Raman spectroscopic imaging methods enable label-free visualization of the tissue 

structural features with a spatial distribution of the molecular contents where each pixel 

harbors the full spectral information (Lasch, 2002). IR imaging can be performed in the 

conventional transmission mode (IR-T) in which the IR light is absorbed by a thin tissue 

section in its path, transflection mode (IR-TF) in which the IR light is transflected by a 

reflecting surface on which the tissue is placed or the less conventional ATR-IR mode. Each 

of these techniques poses advantages in certain aspects and limitations in the other. Table I 

gives a comparative overview of various parameters involved in IR and Raman 

spectroscopies. In ATR-IR, an IR beam is internally reflected, producing an evanescent wave, 

onto a high refractive index internal reflection element (like Germanium or Diamond 
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crystals) that is in contact with the sample. Compared to conventional IR imaging, this 

feature gives fourfold higher spatial resolution by reducing the diameter of the light focused 

onto the sample.  

 

Table I: A comparative overview of some important parameters involved in IR and 

Raman spectroscopies. 

 

 

The choice to exploit any of these approaches to obtain the requisite information from a 

sample is based on the compromise between spatial resolution and the spectral quality, 

together with the time constraints. A comparative analysis of the spectral images acquired 

using these approaches, can provide an overview of the applicability of these modalities for 

prospective studies related to tissue imaging. In this perspective, imaging based on IR-T, 

ATR-IR and Raman has been performed on colon tissue sections. The spectral images 

acquired were partitioned using k-means clustering method into their constituent structural 

features and compared to the adjacent HE stained images that served as the morphological 

reference. Various parameters involved in these imaging methods, their advantages, and their 

limitations are discussed.  
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IV.4: Materials and methods:    

Sample preparation:   

Two 10-micron thick, unstained non-tumoral frozen colon tissue sections were mounted onto 

a calcium fluoride (CaF2) window for imaging measurements using the different imaging 

approaches. The window quality was chosen so that it is compatible for all the three imaging 

approaches. An adjacent 10-micron thick tissue section placed on glass was HE stained and 

used for histopathological recognition and comparison. While the same region of the same 

tissue section was used for IR-T and ATR-IR measurements, the Raman imaging was 

performed on the second sample. Each time, a normal colonic crypt was analyzed for 

comparing the three imaging approaches.  

IR-transmission imaging: The IR imaging system (Spotlight 300, Perkin Elmer, France) 

was equipped with nitrogen-cooled 16-element MCT detector calibrated for imaging in 

transmission mode. The image acquisition was carried in the mid-IR range from 750 cm-1 to 

4000 cm-1 at 4 cm-1 spectral resolution averaged to 16 accumulations using a 6.25x6.25 µm2 

pixel size. Each time, prior to image acquisition, energy was optimized and a reference 

spectrum from the bare CaF2 window was recorded keeping the same parameters constant as 

those of the tissue image. This served as a background spectrum which was subsequently 

subtracted from the dataset. 

IR-ATR imaging: The same imaging set up was calibrated into ATR mode into which the 

sample mounted on the CaF2 window was placed on the ATR sample holder. The ATR set up 

consisted of a Germanium crystal (600 µm diameter) for the internal reflection of the IR 

beam. The crystal is put into contact with the sample and a maximum area of 500x500 µm2 

can be scanned with the movement of the XY stage. Due to the high refractive index of the 

Germanium crystal (n=4.0), ATR further made it possible to use 4 times higher spatial 

resolution at 1.56x1.56 µm2 pixel size. Prior to image acquisition, the crystal background was 

acquired each time on the bare window. The same acquisition conditions and the same multi-

element detector as with the IR-T technique were used. The imaging system was 

continuously purged with dry air during the image acquisition. A lay out of the ATR-IR 

imaging principal and its set up in an bench top instrument is shown in figure 1. 
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Figure 1: ATR-IR imaging.  

(A) Layout of the ATR crystal under an FTIR imaging system’s reflective Cassegrain 

objective, and (B) The ATR-IR setup on a bench-top spectrometer. 

 

Raman imaging: Raman spectral images were recorded with Raman micro-spectrometer 

(Aramis, Horiba Jobin Yvon, France) coupled to a microscope (Olympus, BX 41, France) 

shown in figure 2. An excitation source of 532 nm laser (Type Solid, Quantum Ventus, 

France) was used and the laser was focussed onto the sample using a 100X long focal 

objective (Olympus, France) with a numerical aperture of 0.9 and the power on the sample 

was kept around 30 mW. The sample was localized using a white light image captured by the 

screen image recorder camera attached to the microscope. A step size of 4 µm and a double 

acquisition time of 10 seconds/spectrum were used for imaging. Prior to image acquisition, 

Raman shift calibration was performed using silicon standards. Scattered light was collected 

by the same objective which was then analyzed by the spectrometer equipped with Pelletier-
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cooled charge-coupled device (CCD) detector at -70 C. The spectral window ranged from 

400 cm-1 to 1750 cm-1 and was collected in a single step.   

 

 
.  

 

Figure 2: Horiba Jobin Yvon LabRAM Aramis Raman Spectrometer 

 

 

Pre-processing: 

The IR spectral images (transmission and ATR mode) were corrected for atmospheric 

absorptions of water vapor and carbon-dioxide by the built-in software of Perkin Elmer 

Spotlight. Further pre-processing and analysis of all the spectral images were performed 

using in-hose algorithms written in Matlab 7.2 (The Mathworks, Natick, MA). Extended 

multiplicative signal correction (EMSC) was used to eliminate the spectra with low signal to 

noise ratio from the data set. EMSC was employed by performing a fitting on the average 

spectrum of the data set. To preserve the most eligible spectra for the analysis as many 

outliers as possible were removed that did not fit well to the average spectrum. EMSC also 

corrected the spectra for baseline followed by normalization. Pre-processing, processing and 

analysis of the IR spectra were carried out on spectral images in the absorption range of 900-

1800 cm-1. The Raman spectral image was initially corrected for baseline. Further, EMSC 
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was employed to eliminate the spectra with low signal to noise ratio, followed by 

normalization in the spectral range of 400 cm-1 - 1750 cm-1.  

 

Processing of the spectral data:  

Each spectral image of the colonic tissue acquired via IR-T, IR-ATR and Raman imaging 

was subjected to k-means clustering for classification into their respective histological 

classes. K-means clustering is an unsupervised non-hierarchical clustering method (Lasch, 

2004) that partitions the spectra into pre-assigned number of clusters using randomly selected 

cluster centres as detailed in the chapter 3. This method enabled to spectrally identify the 

histological features of the analyzed tissues in comparison to adjacent HE stained section that 

served as the morphological reference. 

 

IV.5: Results:   

The application of EMSC to the spectral data eliminated the outliers with low fitting to the 

average spectrum. K-means clustering of the pre-processed spectral images of the colonic 

tissues segregated the spectra into clusters representative of the biochemical and hence their 

structural components. The k-means images showed different degree of correlation with the 

HE stained images for each of the imaging method considered and represented the colonic 

histology that could be correlated to the tissue biochemical composition. Figure 3 show the k-

means cluster images of the normal colonic tissues imaged using the three different imaging 

modalities and compared to adjacent HE stained image (figure 3A).   
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Figure 3: K-means clustering results. 

K-means cluster images (with respective dendrogram calculated from their cluster 

centroids) of the normal colonic crypt imaged using IR-transmission (B), ATR-IR (C) 

and Raman (D) compared to the HE stained image (A). The HE image is at 20X 

magnification. 

Image B is classified using 8 clusters. The informative clusters are represented as 

follows: Cluster 2 and 6 - cellular region, cluster 7 - mucus filled lumen of crypt, cluster 

5 – probably the peri-cryptal fibroblastic sheath in conjunction with the outer region of 

the crypt. Clusters 3, 4 and 8 are the surrounding connective tissue 

Image C is classified using 8 clusters and are represented as follows: Cluster 1 and 4 - 

cellular region, cluster 8 - mucus filled lumen of crypt, cluster 7 – probably the peri-

cryptal fibroblastic sheath in conjunction with the outer region of the crypt. Clusters 2, 

3, 5 and 6 are surrounding connective tissue plus adjacent crypts  

Image D is classified using 6 clusters and are represented as follows: Cluster 1, 2, 3 and 

4 - cryptal region, cluster 5 - probably the peri-cryptal fibroblastic sheath in 

conjunction with the outer region of the crypt. 
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The IR-transmission spectral image of normal tissue (figure 3B) clustered using 8 clusters 

partitioned into 4 clusters representing cryptal regions and 4 clusters representing the regions 

external to crypts. The informative clusters within the crypts were clusters 2 and 6 that could 

be attributed to the outer and the inner regions of the crypts respectively, containing different 

kinds of epithelial cells (mucus producing goblet cells, paneth cells, endocrinal cells, stem 

cells., etc), and cluster 7 represented the mucus filled central lumen of the crypts. In extra-

cryptal regions, cluster 5 could be probably attributed to the peri-cryptal fibroblastic sheath 

(PCFS) corresponding to the basement membrane, in conjunction with the outer region of the 

crypt, while clusters 3, 4 and 8 are attributed to the surrounding connective tissue (lamina 

propria) in which the crypts are embedded.   

Similarly classification of the ATR-IR spectral image of normal tissue (figure 3C) attributed 

clusters 1, 4 and 8 to the inner and the outer regions of the crypt out of which 1 and 4 could 

be attributed to the epithelial cells and 8 to the mucus filled central lumen of the crypts. 

Attribution of certain cryptal regions, exterior to the lumen, to cluster 8 could be from the 

mucus filled goblet cells which could be detected owing to the higher spatial resolution 

achieved by ATR-IR imaging. Extra cryptal regions were represented by clusters 2, 3, 5, 6, 7 

out of which cluster 7 could be attributed to PCFS in conjunction with the outer region of the 

crypt which appears to be more resolved, and the rest to the surrounding connective tissue 

together with small proportions of the adjacent crypts. For the Raman spectral image of the 

normal tissue (figure 3D) that was classified using 6 clusters (increasing the number of 

clusters to 8, did not provide any further histological information), clusters 1, 2, 3 and 4 could 

be attributed to the cryptal regions while the cluster 5 probably to the to the PCFS in 

conjunction with the outer region of the crypt. It must be noted that images B and C were 

acquired on the same crypt while image D was from another tissue sample. Imaging using 

different modalities and multivariate analysis provided digitally stained maps of normal 

colonic crypts which were classified into their different intrinsic constituents. A comparative 

evaluation of the time constraints in this imaging study is presented in table II.  
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Table II: An interpolated comparison of time constraints involved in IR and Raman 

spectroscopies. 

 

IR-

transmission 
ATR-IR Raman 

Pixel size (µm) 6.25 1.56 4 

Image size measured (X*Y) 275 x 444 µm 214 x 398 µm 135 x 458 µm 

No. of points (X*Y) 45 x 72 138 x 256 34  x 115 

Acquisition time / image 40 minutes 6 hours 22 hrs 

Interpolated time for 100 x 100 µm 

image 
3.16 minutes 42 minutes 213 minutes 

 

 

IV.6: Discussion:      

The choice to implement an imaging approach for obtaining the requisite information from a 

tissue sample is importantly based on the compromise between spatial resolution and the 

spectral resolution, together with the time constraints. Imaging of tissues based on 

conventional IR is well-documented (Ly, 2008; Fabian, 2006; Steller, 2006; Travo, 2010; 

Nasse, 2011; Yano, 2000; Krafft, 2007), and although imaging is possible with Raman 

(Larraona-Puy, 2009; Krafft, 2007, Beljebbar, 2009) and ATR-IR (Colley, 2004, Heather, 

2010) modes, very few attempts have been made to exploit this possibility especially ATR-

IR, in comparison to conventional IR imaging. Most studies on tissues using Raman (Kanter, 

2009, Ly, 2010) and ATR-IR (Khanmohammadi, 2009; Zhang, 2010; Khanmohammadi, 

2010) have been employed in point by point mapping mode on various tissues like cervix, 

skin, colon, thyroid, etc. A comparative imaging study was carried out on colonic tissues in 

order to look into various parameters involved, their conveniences and limitations. The 

acquired spectral images were clustered into their respective classes representing the 

histological organization of the colonic tissue. The normal colonic tissue consisted of crypts 

which constitute different types of epithelial cell populations. They include the 
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undifferentiated stem cells that continuously replace other intestinal epithelial cells; the 

goblet cells specialized for mucus secretion; paneth cells which secrete anti-bacterial proteins 

like lysozymal enzymes. Absorptive cells or enterocytes are the other predominant epithelial 

cell types. Surrounding the crypt is the peri-cryptal fibroblastic sheath (PCFS) that acts as an 

interface epithelia from the underlying connective tissue.  

Out of the spectral images acquired using the three imaging methods, the ATR-IR appeared 

to have the advantage of achieving higher spatial resolution (due to the high refractive index 

of the crystal) at feasible measurement times. IR-T images showed complementary 

information in lesser time than ATR-IR, but are less resolved. Although, there was similar 

histological information from certain classes of crypts in both IR-transmission and ATR-IR 

imaging modes, ATR-IR provided much more specific information in regard to certain 

classes. As an example, cluster 8 of figure 3C is attributed to mucus filled central lumen 

together with certain pixels in the cellular regions of the crypt in the ATR image. The 

common signature for this class probably indicates the localization of mucinous goblet cells 

that are known to have basal nucleus and remaining majority of the cytoplasm filled with 

mucinogen granules. This feature was not observed in IR-T and Raman imaging. It must be 

emphasized that the Raman image was constructed with a step size of 4 microns and 

increasing to 1 µm would largely improve the image quality but with longer acquisition 

times. In another scenario, the outer region of the crypt probably in conjunction with the 

PCFS (cluster 5 of fig 1B and cluster 7 of figure 3C) although was visible in all the imaging 

modes, however showed spatially sharp transition from one structure to another in the ATR 

images.   

For Raman imaging, a step size of 4 µm was used in this study. Although Raman 

spectroscopy enables higher spatial resolution than IR, it takes longer time in achieving this. 

As can be seen in the table 2, even at 4 µm step size, the time taken for the acquisition of a 

similar area of the tissue, took considerably longer time. With ATR-IR, similar resolution 

closer to that of conventional Raman imaging can be achieved in less time due to the multi-

element imaging detector. This was evident from the difference in the classification and 

localization ability of goblet cells in ATR-IR imaging.  

The ATR-IR also provides advantages in terms of the refractive index and the optical path 

length. The change in optics when light path crosses different media with a difference in the 

refractive index, may give rise to scattering, diffraction, reflection, and dispersion. Such 
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spectral aberrations that are encountered using IR-T or IR-transflection methods due to long 

optical path lengths could be eliminated using ATR imaging. In ATR-IR, the penetration 

depth is reduced to few microns achieved using the germanium internal reflection element, 

which decreases the optical path lengths, hence only the information from the superficial 

layers of the tissue can be obtained. Although, ATR provided high-resolution images, the 

total sample area that can be measured is limited to 500x500 µm2 per each image acquisition, 

and takes longer time than conventional IR-T measurements and may leave inevitable tissue 

damage due to the pressure applied rendering it unexploitable for further analysis. Since 

ATR-IR imaging involves contact between the crystal and the tissue, its handling and 

maintaining the sensitive tip of the crystal requires higher technical expertise than 

conventional IR-T imaging or Raman micro-imaging.  

Complementarily, this comparative study of different imaging techniques also puts forward a 

notion of multimodal approach wherein the capacity of each of the technique can be exploited 

in combination with the other techniques. As an example, biological tissue sections can be 

imaged using IR-T which globally provides a rapid scan of the whole tissue region. With the 

information obtained from this approach, finer details can be investigated using ATR-IR 

(such as specific regions of the crypts in a colonic tissue). Further, Raman imaging can also 

be employed on specific regions of the tissue to have complementary information that cannot 

be accessed using IR imaging methodologies. 

 

Conclusion: Vibrational spectroscopic imaging approaches constitute label free method for 

spectral histopathology of colon tissue sections. The biochemical information obtained is 

well-correlated to the histology of the colonic crypts. This study provides a comparative 

overview of the imaging methodologies that could be adapted for tissue imaging. In 

comparison, ATR-IR imaging appeared to provide the optimal compromise between the 

spatial resolution and the time constraints for the images analyzed and would be well adapted 

for imaging tissue microarrays that are 500 µm in diameter.  
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IV.7: Characterization of breast tissues using infrared spectral imaging: a 

preliminary study: 

The potentials of IR spectral imaging as a diagnostic tool have been examined with optimistic 

results on various tissue types (Ly, 2008, Travo 2010, Stellar 2006). Different types of 

cancers have been studied by this non-destructive method that allowed characterizing various 

pathological conditions of tissues. The initial part of the present study involved development 

of a working methodology that could be used to study different characteristic features of 

colon cancers, and the changes in their spectral profile to provide diagnostically relevant 

information in cancerous conditions. The methodology was implemented and tested on 

several paraffinized and frozen colonic tissue samples for automated diagnosis of unknown 

colonic tissues as presented in the preceding chapters.  

In a similar approach, a preliminary study has been undertaken to test the feasibility of IR 

spectral imaging to other pathology namely the breast. For this paraffinized breast tissues 

were procured from the Pathology department of the Institute Jean Godinot, Reims. Similar 

to colon tissues, both normal and cancerous breast tissues were procured, and it was 

attempted to see if the same methodology could be adapted to other tissue types as well.  

The main objectives of the study were therefore to establish a methodology adapted to breast 

tissues and to characterize the spectral markers associated with breast cancers for rapid and 

molecular based identification. For this, 32 paraffinized breast tissue samples (16 normal and 

16 tumoral) from 16 patients that were examined using conventional histopathology (HE 

staining) were imaged using IR spectral imaging directly on 10 µm thick sections. The IR 

imaging system (Spotlight 300, Perkin Elmer, Les Ulys, France) equipped with nitrogen-

cooled 16-element MCT detector was used for imaging at 4 cm-1 spectral resolutions 

averaged to 16 accumulations and a spatial resolution of 6.25 µm per pixel. 

Initially, the imaging was performed on the paraffinized tissue sections deposited on CaF2 

support. Although the quality of spectra collected was good enough, the need for certain 

technical adaptations was observed at this stage. Unlike the colon tissue arrays for which the 

tissue core dimensions were already put in place using standardized protocols, the 

paraffinized breast tissues obtained were large compared to the tissue array samples. It was 

more complicated to place such large tissue sections on the CaF2 support. Alternatively, the 

tissue sections were placed on much larger IR compatible Kevely supports. The Kevely slides 
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are similar to standard laboratory glass slides, which are one side coated with a reflecting 

surface that permits IR imaging in the reflection mode. In principle, the Perkin Elmer 

Spotlight 300 imaging system can be adapted to transmission (on IR transparent windows 

such as CaF2) or transflection measurements (on low e-slides such as Kevley slides, Kevley 

Technologies, USA). In reflection mode, the IR radiation entering the thin tissue section 

placed on the reflecting slide is reflected back after striking it. Hence, the light travels twice 

through the tissue, once while entering and then after reflecting as such this mode is also 

called as double transmission or simply transflection. Advantages of the Kevley slides are 

that they are transparent to visible light, they are cheaper than transmission substrates, and 

they can be stained for histological examination after the IR measurement. 

Here after, the IR imaging acquisitions were performed on breast tissue sections placed on 

Kevley slides in transflection mode. Each time prior to image acquisition, energy was 

verified and a reference spectrum from the bare substrate was recorded keeping the 

parameters constant as that of the tissue images. This served as a background which was 

subsequently subtracted from the dataset. The spectra were initially corrected for atmospheric 

corrections of water vapor and CO2. Since no prior chemical deparaffinization was employed, 

an alternative method of mathematical deparaffinization was employed using a modified 

EMSC algorithm. In order to identify the biochemical distribution of various histological 

features of the breast tissue, the preprocessed spectral images were subjected to clustering 

algorithm using k-means (performed on 8 sample pairs) consisting of normal and tumoral 

breast tissues. The tumoral breast tissues consisted of both carcinoma in situ and invasive 

carcinoma. A representative k-means clustered image of an invasive carcinoma is presented 

in figure 4.  
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Figure 4: K-means clustering results.  

K-means clustered images along with the respective dendrogram of a breast tissue with 

an invasive and in situ carcinoma in comparison to the adjacent HE stained images. The 

cluster representation is: Cluster 1 - invasive carcinoma, Cluster 6 - in situ carcinoma, 

Cluster 4 -connective tissue, clusters 2, 3, 5 - unattributed. The HE image is at 5X 

magnification.   

 

In this preliminary work, it was attempted to initially classify the biochemical information of 

the breast tissues using clustering algorithms. Although it appears that the IR imaging with 

clustering algorithm was able to differentiate invasive and in situ carcinoma, at this point 

histopathological and spectral attribution was not clearly achieved due to various factors such 

as lesser morphological correlation between the reference image and the clustered images. It 

also appears that the dominating adipose tissue in the breast tissue leaves empty regions 

(white pixels) due to numeric deparaffinization by EMSC. However this needs to be verified. 

The perspective of this work would be to achieve a better correlation between the HE 

reference images and the spectral images and then use the spectral information to develop 

spectral markers which could differentiate different types of breast cancers. Also, since, the 

IR spectra were collected in transflection mode the spectral signatures are liable to certain 

light scattering effects. Hence, it is envisaged to characterize these spectral effects using 

various spectral treatments such as EMSC.  
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CHAPTER V 

Conclusions and perspectives 
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V.1: Résumé : 
L’imagerie spectrale IR constitue une méthode de diagnostic prometteuse capable de fournir 

des informations complémentaires à l'histopathologie conventionnelle. 

L’un des objectifs de ce travail nous a permis de développer une nouvelle approche 

d’imagerie spectrale IR, ne nécessitant aucune étape de déparaffinage chimique, et ainsi de 

mettre au point une méthode directe d’analyse de tissu arrays paraffinés. Cette approche, 

combinant l’imagerie IR sur des coupes des tissus côloniques et l’analyse statistique 

multivariée a permis de donner lieu à un nouveau concept d’histopathologie spectrale 

permettant d’une part d’identifier les caractéristiques biochimiques et structurales 

intrinsèques des tissus, et d’autre part de différencier les tissus normaux et tumoraux du 

côlon.    

Nous avons exploité les informations spectrales obtenues pour construire un modèle de 

prédiction automatisé, à partir de la gamme spectrale IR 1100-1300 cm-1, qui est la plus 

discriminante. Cette région spectrale correspond à des vibrations moléculaires spécifiques 

telles que les vibrations des liaisons phosphate au sein des nucléotides et les vibrations des 

liaisons des polysaccharides ; ces biomolécules sont impliquées dans la cancérogenèse du 

côlon. 

La validation sur des échantillons tissulaires totalement inconnus a permis de les identifier 

avec une sensibilité de 100%. Les images spectrales reconstruites selon un code couleur par 

le modèle de prédiction, ont révélé non seulement les caractéristiques biochimiques 

spécifiques des tissus coliques tumoraux, mais également des caractéristiques particulières 

comme le phénomène de tumor budding et l’interaction de la tumeur et du stroma.   

D’autres méthodes d’imagerie vibrationnelle (ATR-IR et Raman) permettant d’améliorer la 

résolution spatiale ont été évaluées et leurs performances, avantages et inconvénients 

comparés. Nous avons par ailleurs mis en évidence les différents marqueurs spectraux des 

tissus normaux et tumoraux de manière simplifiée sous la forme d’un code-barres. Ce 

nouveau  concept a pour but de faciliter l’interprétation de ces marqueurs et doit être testé sur 

un plus grand nombre d’échantillons.  
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V.2: Conclusions: 

IR imaging is a biophotonic, non-destructive approach based on the interaction of light with 

matter. When applied to cells and tissues, the interaction can reveal the vibrational modes of 

chemical bonds and can provide a biochemical fingerprint that can be correlated to a diseased 

tissue state. 

In this perspective, and with the aim to characterize colon cancers at the molecular level, IR 

spectral imaging in combination with multivariate statistical analysis has been implemented 

on colonic tissues. The colonic tissues included in the study consisted of both frozen tissues, 

and paraffinized tissue arrays. Several insights into the potentials of IR spectral imaging 

when applied on tissues for diagnostic purposes have been observed.   

The initial feasibility work performed on the frozen tissues enabled to establish IR spectral 

imaging methodology to colonic tissues. The multivariate statistical analyses applied on the 

IR spectral signatures of the normal and the tumoral epithelial components constituted a 

novel concept of IR spectral barcodes which present an easy-to-interpret representation of 

discriminant features associated with normal and malignant colonic tissues.  

In the following work which describes a novel approach of IR spectral histopathology on 

colon tissues for an automated colon cancer diagnosis, the paraffinized colonic tissue arrays 

were stabilized in an agarose matrix. To neutralize the spectral interferences arising from 

paraffin and agarose, a modified EMSC algorithm was implemented. The realization of the 

EMSC correction was observed as white pixels in the IR spectral images, and also in the 

retained spectra that were baseline corrected and normalized.  

The EMSC algorithm not only permitted to neutralize the spectral interferences arising from 

paraffin and agarose, but also permitted comparison between the IR spectral images (after 

data processing) and the conventional histopathological images. The neutralization of the 

agarose interference adds another dimension to the EMSC algorithm projecting it as a 

custom-made correction method that can be employed to treat a variety of spectral 

interferences in an automated manner.  

The EMSC corrected IR spectral images were subjected to an unsupervised k-means 

clustering which constituted a rapid and robust method well-adapted for huge spectral data 

sets. This method enabled to construct digitally stained spectral images representing the 
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overall colonic tissue organization. Comparison of the clustered images to the conventional 

histopathological images permitted to identify the normal and the tumoral colonic 

histological features based on their intrinsic biochemical composition. At the same time, the 

clustering method was also efficient in retrieving the IR spectral signatures specific to 

different histological components of normal and tumoral colonic tissues.  

On the basis of these spectral signatures, biomolecular attribution of discriminant IR 

vibrations was made between the normal and the tumoral tissues using statistical tests such as 

Mann-Whitney U test, and PCA. These tests showed significant differences between the 

normal and the tumoral epithelium associated mainly to mucin, features along with 

alterations in nucleotides, carbohydrates, and proteins. 

Further using these spectral signatures the diagnostic potential of IR spectral imaging was 

evaluated using a LDA based automated prediction model. Before implementation of the 

model for unknown sample identification in an external validation, the prediction model was 

tested in an internal validation set. The sensitivity of the prediction model observed in the 

form of a confusion matrix, from the confrontation between the histopathological class 

annotation (real class) and the IR spectral prediction (predicted class) showed several 

characteristics in correlation to the histological features. The confusion matrix showed no 

confusion between the normal and the tumoral epithelial components indicating a good 

separation between these two groups. Other features such as tumor associated stroma were 

observed to have some pixels grouped in the tumor, indicating the close biomolecular 

features associated with these groups.  

Application of the model on unknown normal and tumoral samples permitted to recover the 

histopathology of the tissues in an automated manner. The color code for each histological 

class showed the percentage of pixels attributed to each class thus giving a quantitative 

dimension to the prediction. Importantly all the tumoral tissues were identified with 100% 

sensitivity. While the normal tissues were dominated by features such as mucosa, and 

connective tissue, the predominant features in the tumoral tissue were the tumor epithelium 

and its associated stroma. In addition, this approach also provided insights into certain 

important tumor-associated features like tumor budding, tumor-stroma association, and tissue 

inflammation.  

The phenomenon of tumor budding, that is associated with tumor aggressiveness and lymph 

node metastasis, although can be identified by conventional histopathology at high 
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microscopic magnifications, was identified automatically without any chemical stains by the 

IR imaging approach. Furthermore, the intrinsic biochemistry based specific color code 

specifically differentiated the epithelial counter parts in the same tissue.   

Interestingly, some of the normal tissues that were spectrally classed as tumor, revealed the 

presence of inflammation up on further analysis using IHC studies. Since, there was no group 

for inflammation in the model the spectra corresponding to this group were classed into 

tumor group. At this point, there is a need for amelioration of the prediction model where in 

additional classes specifically corresponding to spectral signatures from inflammation can be 

incorporated into the model and tested on unknown samples. 

A complementary study that was carried out in order to compare the feasibilities of different 

imaging approaches put forth a general view of the advantages and the limitations of IR-

conventional, IR-T, IR-ATR and Raman imaging. Comparison of the spectral images from 

these techniques showed that the ATR was able to identify some finer details of the colonic 

tissues that were not discernible in the conventional imaging. However, the time taken to 

achieve this was longer and the analyzed tissues are rendered inutile for further analysis due 

to the contact with the ATR crystal. While Raman imaging can further provide finer details 

the time taken increased considerably. However, this could render useful in providing 

complementary biochemical information from small and specific regions of interest.  

Finally, the potential of IR spectral imaging methodology in combination with multivariate 

statistical analyses can be foreseen on the large scale validation of the prediction model. 

Moreover, it eliminated the need for sample staining and a priori knowledge of the unknown 

samples to be analyzed for biomolecular understanding. This study applied directly to 

paraffinized tissue arrays opens a new avenue for high-throughput retrospective studies for 

assimilating large spectral database. Based on the optimistic results, it appears as a 

complementary histological tool for diagnosis of colon cancers at this stage.  

 

V.3: Perspectives: 

The detection of the inflammatory signatures in the colonic tissues is an encouraging step for 

scrutinizing different inflammatory conditions associated with colon tissues, which may pose 

risk for development of cancer. A prediction model with a defined class for various 

inflammatory signatures considering the polymorphic nature of the inflammatory infiltrates, 
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could throw light into the direct diagnostic capabilities of this approach for inflammatory 

conditions. 

Furthermore, the identification of adenomatous tissues by the prediction model gives 

optimistic diagnostic indications for the applicability of this methodology for early detection 

of biochemical changes. This need to be validated on a large scale studies before they can be 

employed in routine.  

 

V. 3. 1: Clinical applications of infrared imaging:  

Cancer is a disease that has its roots in the perturbations of molecular homeostasis of a living 

system (Stratton, 2011). Hence, early molecular level diagnosis is a critical step as it 

influences the outcome and overall survival rate of cancer patients. 

In colorectal cancers, although several screening methods exist, a molecular level analysis of 

the symptomatic tissue cannot be accessed. IHC can be used to identify specific proteins of 

interest, which gives a molecular level understanding of the malignant condition (Fernandez, 

2005). Presently, the demands of cancer diagnosis are met by gold standard histopathology 

by examining the morphological aberrations in tissues in a diseased condition (Kendall, 

2009). The biophotonic technique of IR imaging which has been exploited in several studies 

appears as a good candidate complementary technique to access the more important 

molecular features of tissues, together with the morphological alterations.  

Compared to the current general pathological protocols where, obtained tissue biopsies are 

fixed, paraffin embedded, microtome sectioned, stained, and examined under microscope, the 

advancements in the IR imaging capabilities over recent years show optimistic potentials to 

complement and simplify some of these steps. Firstly, regions of interest of the microtome 

sections can be directly imaged by IR imaging, and using multivariate analysis, spectral 

color-coded maps can be generated in a label-free manner, based on the intrinsic biochemical 

signatures. Secondly, with the advent of numerical deparaffinization, it is now possible to 

analyze directly the paraffinized tissues. This reduces the use of toxic chemical 

deparaffinization agents such as xylene (Travo, 2010; Ly, 2008) and gives access to large set 

of archived tissues with known patient history.  
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Recent technological advancements have spurred a new generation of IR spectrometers that 

now provide high acquisition speed with better spectral sensitivity. With advancements in the 

detector capabilities such as focal plane arrays, the acquisition of IR images of tissues can be 

rapidly performed facilitating analysis of large tissues in lesser time constraints (Bellisola, 

2012). This when applied to tissue microarrays can provide huge spectral databanks in a 

high-throughput manner that can be used to develop and identify spectral markers for cancer 

diagnosis. Thus, a rapid diagnosis can be obtained thereby considerably reducing the amount 

of time taken. Technological advancements generate huge data sets, the exploitation of which 

have necessitated powerful chemometric algorithms and user-friendly software packages 

which have emerged in parallel. 

One of the important aspects of IR imaging for clinical applications is the possibility to 

automate the diagnosis procedure. It has been shown that IR imaging combined with 

multivariate statistical methods can be automated by using computer driven programmes 

(Fernandez, 2005). This not only facilitates the operator utility, but also reduces the manual 

involvement, and in a longer run, the cost associated with it. 

Most of the IR imaging studies have been restricted to analyzing ex vivo tissue samples. In 

regard to the use for in vivo applications, the main limitation of IR studies is its sensitivity to 

water considering the fact that it is the most abundant species confronted, which dominates 

the IR spectra (Bellisola, 2012). In this respect, the advent of IR probes (silver halide and 

ATR) has been tested directly on patients and has shown promising results in discriminating 

between normal and malignant tissues (Katukuri, 2010; Li, 2005). 

Such technological improvements will progressively increase the number of potential 

applications of IR imaging to cancer research and clinical diagnosis, and represent new 

reasons of hope to introduce IR imaging into clinics. Although the potentials of IR imaging in 

clinical context are enormous based on their capabilities to provide biochemical information 

in a non-destructive, objective and label-free manner, with minimal sample preparations, at 

present this powerful analytical technique remains as a complementary tool to the 

conventional histopathology. This leaves an important demand for several interdisciplinary 

scientific research works for identification and application of appropriate approaches in 

cancer research, as well as in the diagnosis and follow-up of cancer diseases. 
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MOLECULAR CHARACTERIZATION OF TUMORAL LESIOSN BY 
INFRARED SPECTRAL IMAGING: IMPLEMENTATION OF A NEW 
CONCEPT BASED ON SPECTRAL HISTOPATHOLOGY FOR COLON 
CACNER DIAGNOSIS 
Th. Pharm. Univ. : Reims: 2012 

Abstract:  
Innovative cancer diagnostic methods complementary to the gold standard histopathology 
are the need of the hour. In this perspective, the biophotonic approach of infrared spectral 
micro-imaging is one of the candidate methods capable of providing a biochemical 
fingerprint of cells and tissues in a label-free manner. Hence, a novel concept of infrared 
spectral histopathology of colonic tissues has been implemented in order to identify 
spectral signatures specific of colon histological structures, and to exploit these signatures 
to develop a prediction model comprising potential diagnostic markers for rapid and 
automated colon cancer diagnosis. For this, infrared images of colonic samples 
(moderately differentiated adenocarcinoma and non-tumoral) were acquired using an 
infrared imaging system. A mathematical deparaffinization was carried out on the spectral 
images using a modified Extended Multiplicative Signal Correction (EMSC) algorithm. 
The spectral data was subjected to clustering analysis in order to identify spectral 
signatures specific of colonic tissues. These signatures were used to develop a robust 
prediction model which was applied on unknown colonic tissue samples for 
histopathological identification. The prediction model not only identified the unknown 
tumoral tissues with 100 % sensitivity, but also some important tumor associated features 
such as tumor budding and tumor stroma association. Infrared spectral micro-imaging in 
conjunction with multivariate statistical analysis constituting a non-destructive and label-
free approach, demonstrates the potential as a novel complementary tool to conventional 
histopathology for an automated and objective cancer diagnosis.  

Key Words: Infrared spectral imaging, colon cancer, paraffinized tissue arrays, spectral 
histopathology 
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CARACTERISATION MOLECULAIRE DE LESIONS TUMORALES PAR 
IMAGERIE SPECTRALE INFRAROUGE : IMPLEMENTATION D’UN 
NOUVEAU CONCEPT BASE SUR L’HISTOPATHOLOGIE SPECTRALE POUR 
LE DIAGNOSTIC DU CANCER DU COLON 
Th. Pharm. Univ. : Reims: 2012 

Résumé:  

A l'heure actuelle, des méthodes innovatrices complémentaires à l'histopathologie pour le 
diagnostic de cancer sont en voie de développement. Dans cette perspective, une 
approche biophotonique telle la micro-imagerie spectrale infrarouge représente une 
méthode candidate capable de fournir une empreinte biochimique des cellules et des 
tissus sans étape de marquage. Par conséquent, un nouveau concept d’histopathologie 
spectrale infrarouge des tissus du côlon a été mis en œuvre afin d'identifier les signatures 
spectrales spécifiques des structures histologiques du côlon, et d'exploiter ces signatures 
afin de développer un modèle de prédiction comprenant des marqueurs potentiels pour le 
diagnostic du cancer du côlon de manière rapide et automatisée. Pour cela, les images 
infrarouges de différents échantillons coliques (adénocarcinome modérément différencié 
et non-tumorale) ont été acquises en utilisant un système d'imagerie infrarouge. Un 
déparaffinage mathématique a été réalisé sur les images spectrales en utilisant 
l’algorithme « extended multiplicative signal correction » (EMSC). Les données 
spectrales ont été soumises à une analyse de clustering, afin d'identifier les signatures 
spectrales spécifiques des tissus du côlon. Ces signatures ont été utilisées pour développer 
un modèle de prédiction robuste qui a été appliqué sur des échantillons des tissus du 
côlon inconnus pour l'identification histopathologique. Le modèle de prédiction, a non 
seulement identifié d’une part les tissus tumoraux inconnus avec une sensibilité de 100%, 
mais aussi d’autre part des caractéristiques importantes associées à la tumeur telles que le 
tumor budding et l’association de la tumeur et du stroma. La micro-imagerie spectrale 
infrarouge en conjonction avec l'analyse statistique multivariée, constituant une approche 
non destructive et ne nécessitant aucun marquage, démontre le potentiel de cette méthode 
comme outil complémentaire à l'histopathologie classique pour un diagnostic de cancer 
automatisé et objectif. 
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