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Abstract

The continuously increasing complexity of embedded systems is a major issue
for their development, which, in addition, must also consider specific extra-
functional requirements and constraints, such as limited and shared resources,
distribution, timing, and dependability. Thus, embedded systems call for de-
velopment solutions that can efficiently and predictably cope with these issues.
Component-based software engineering is a proven paradigmto handle com-
plexity. Yet, for efficiently managing extra-functional properties, a component
model needs to have dedicated mechanisms that provide a suitable support for
their management. The objective of this thesis is to build this support.

We have performed a systematic analysis of existing component models
and identified challenges of applying a component-based approach to embed-
ded system development. Based on these challenges we have advanced the
current state-of-the-art by developing a new component model, called Pro-
Com, that accommodates the specifics of embedded systems through its well-
defined execution semantics and layered structure. Centered around ProCom,
we have also developed PRIDE, the ProCom Integrated Development Environ-
ment. PRIDE supports the development from early specification to synthesis
and deployment, providing the means to aggregate various analysis and verifi-
cation tools.

The main contribution of the thesis is in the design and implementation of
an extra-functional property management framework that enables to seamlessly
specify, manage and integrate multi-valued context-awareextra-functional
properties of component-based embedded systems. Properties can be attached
to architectural elements of component models and their values can be com-
pared and refined during the development process. In particular, having multi-
ple context-aware values allows values from different sources to be compared.
The proposed concepts have been demonstrated on several representative ex-
ample systems.
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Résuḿe
— Abstract in French

L’accroissement continu de la complexité des systèmes embarqués pose un
problème majeur pour leur développement lequel doit aussi prendre en compte
les exigences extra-fonctionnelles et les contraintes du domaine telles que la
limitation et le partage des ressources, la distribution, et les contraintes tem-
porelles et de fiabilité. De ce fait, les systèmes embarqu´es requièrent de nou-
velles solutions pouvant efficacement et de manière prévisible répondre à
l’ensemble de ces besoins. L’ingénierie logicielle basée composants est un
paradigme qui a déjà démontré des aptitudes pour appréhender la complexité
logicielle. Cependant, pour supporter de manière efficaceles propriétés extra-
fonctionnelles, un modèle de composants doit posséder des mécanismes
spécifiques. L’objectif de cette thèse est de construire un tel support.

Pour ce faire, nous avons analysé de manière systématique des modèles de
composants existants à ce jour et identifié des challengesrelatifs à la réalisation
d’une approche basée composants dédiée au développement des systèmes em-
barqués. S’appuyant sur ces challenges, nous avons avanc´e l’état de l’art en
développant ProCom, un nouveau modèle de composants qui répond aux at-
tentes des systèmes embarqués au travers de sa sémantique d’exécution et
de sa structuration en niveaux. Centré autour de ProCom, nous avons aussi
développé PRIDE, son environnement de développement intégré. PRIDE cou-
vre le procédé de développent des premières phases de spécification jusqu’à
la synthèse et le déploiement et fournit des moyens d’int´egrer différents outils
d’analyse et de vérification.

La contribution principale de cette thèse réside dans la modélisation et
la réalisation d’un support pour la gestion des propriét´es extra-fonctionnelles
pour les systèmes embarqués construits à base de composants logiciels. Ce
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support facilite la spécification, le management et l’int´egration de propriétés
multivaluées tenant compte du contexte dans lequel elles ont été établies. Les
propriétés peuvent être attachées aux éléments architecturaux des modèles de
composants et leurs valeurs peuvent être comparées et raffinées durant le
développement. En particulier, le fait d’avoir des valeurs multiples avec leur
contexte d’évaluation permet de comparer des valeurs provenant de différentes
sources. Les concepts proposés ont été illustrés au travers d’exemples re-
présentatifs de systèmes.
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Västerås, June 2012

This work has been supported by the Swedish Foundation for Strategic Re-
search (SSF), via the research centrePROGRESS.



List of Publications

Key Publications Related to the Thesis

Paper A: A Classification Framework for Software Component Models. Ivica
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Systems. Séverine Sentilles, Aneta Vulgarakis, Tomáš Bureš, Jan Carl-
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Chapter 1

Introduction

Development of embedded systems is a complex process subject to several
challenges:i) complex functionality,ii ) efficiency of development,iii ) quality
and dependability, andiv) specific requirements such as constrained resources
or real-time issues. This is the main focus of this thesis, which investigates
and proposes methods and techniques to improve software development by
helping guaranteeing that the delivered products will meetstringent quality
requirements.

1.1 Motivation

A suitable and efficient development process is essential when developing
safety-critical systems for a variety of domains such as vehicular, automation,
telecommunication and healthcare. A malfunction of these systems may have
severe consequences ranging from financial losses (e.g. costs for recall of non-
conformity products) to more harmful effects (e.g. injuries to users or in the
most extreme cases human’s casualties). Along with their traditional mechani-
cal functionality, e.g. a combustion engine or mechanical brakes in a car, these
products also contain increasingly more software functionality, such as an anti-
lock braking system or an electronic stability control unitin a car.

Functionality in those types of product are provided through special-
purpose built-in computers, calledembedded systems, which are tailored to
perform a specific task by a combination of software and hardware. Embed-
ded systems have spread rapidly over the past few decades to be virtually in
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2 Chapter 1. Introduction

any kind of modern appliances such as digital watches, set-top boxes, mp3-
players, washing-machines, mobile telephones, cars, aircrafts, forest machines
and many others. It is worth noting that the great diversity of devices con-
taining embedded systems makes the boundaries between, what is considered
to be embedded systems and what is not, particularly unclear. Many devices
share characteristics with embedded systems without necessarily been consid-
ered as such. Notebooks, laptops or personal digital assistants are few exam-
ples of devices in the grey zone of the definition of embedded systems: they
are resources-constrained and possibly integrated into the real world through
various equipment such as GPS but they are still regarded as “bigger” than
archetypical embedded systems. Conversely although containing desktop-like
software and means to interact with users, others devices such as control-
system for robots are still considered as embedded systems.Because of this,
a uniform definition covering this diversity is difficult to pinpoint and there is
currently no unique definition of what they are.

The close interconnection of embedded systems with their surrounding en-
vironment and their ability to directly impact on this environment lead to a
characteristic shared by many of them: their dependabilitynature. As defined
by Laprie in [1], dependability of a system is the quality of the delivered ser-
vice such that a user can justifiably rely on this service. In particular, depend-
ability is expressed in terms of safety (i.e. the failure of the system must be
harmless), maintainability (probability that a failure can be fixed within a pre-
defined amount of time), reliability (probability that the system will not failed)
and availability (probability that the system is working and accessible) among
others. This means that to prevent any malfunction, such systems have to react
in precisely defined ways, i.e. be predictable.

In addition, many of these systems also have real-time constraints, which
means that they must react correctly to events in a given interval of time. When
all the timing requirements must strictly be ensured, embedded systems are
calledhard real-time systemswhereassoft real-time systemsare more flexible
towards the timing bounds and can tolerate to occasionally violate them. One
popular example to illustrate this strong interdependencebetween real-time
and dependability issue is the one of a car airbag. In case of an accident, the
airbag has to inflate suitably at a particular point in time, otherwise it is useless
for saving the driver’s life.
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To summarize, in contrast to general purpose computers, embedded sys-
tems are typically:

• reactive systems closely integrated into the environment with which they
interact through sensors and actuators, and

• strongly resource-constrained in terms of memory, bandwidth and en-
ergy,

• facing dependability and real-time constraints.

Thanks to embedded systems, tremendous opportunities are triggered by
the introduction of software functionality, sometimes even completely replac-
ing hardware ones. For example, in the automotive domain, the added-value in
high-end models of vehicles is generated mainly by the integration of new elec-
tronic features that are intended to optimize the costs of utilization (e.g. lower
fuel consumption), or to improve the user’s comfort or safety. According to [2]
in 2006, 20% of the value of each car was due to embedded electronics. This
involves features such as airbag control system, anti-braking system, engine
control system, electronic stability control system, global positioning system,
door locking system, air-conditioning system and many more. More generally
speaking, these features concern control, infotainment (i.e. information and
entertainment) and diagnosis systems.

However, introducing many software functionalities also considerably in-
creases complexity. For example, as highlighted by Broy [3], a high-end model
of vehicle contains today around thousands of software functions correspond-
ing to around 100 millions lines of software code that are executed through a
network of 70 to 100 micro-controllers communicating over several dedicated
channels. Such a high complexity leads to the fact that the federated archi-
tecture solution of decomposing the required functionalities into subsystems
that are realised by dedicated computing units using their own microcontroller
does not scale anymore. Instead, there is a need to put several subsystems on
one physical unit, which implies that resources must be shared between sub-
systems. Another aspect of this increasing complexity is distribution, where
systems are designed as distributed systems communicatingover a dedicated
network such as a CAN-bus [4] or a LIN-bus [5] in a vehicle. Theinterde-
pendence of these concerns together with the need for thorough verification
of the system make the development of embedded systems rather difficult and
time-demanding. For example, in the automotive domain, whereas car manu-
facturers strive for low production costs since each car model is manufactured



4 Chapter 1. Introduction

in large quantities, the biggest costs — up to 40% of the development costs [6]
— resides in software and electronics costs.

Accordingly, one major issue in dealing with safety-critical real-time em-
bedded systems is to have efficient solutions to deal with thecomplexity while
ensuring that the system always behaves as expected. Their development must
hence support thorough analysis and tests, and push these activities even fur-
ther compared to what can be found in general in software engineering.

A promising solution for the development of distributed embedded systems
lies in the adoption of a Component-Based Development (CBD)approach fa-
cilitating the different types of analysis. The CBD approach has the goal to
increase efficiency in software development by:

• reusing already existing solution encapsulated in well-defined entities
(components);

• building systems by composing entities (both from a functional and
extra-functional1 point of view); and

• clearly separating component development from system development.

Stressing reusability, several features of CBD are of high interest in the
development of embedded systems such as complexity management, increased
productivity, higher quality, shorter time-to-market andlower maintenance
costs. Despite those appealing aspects and its establishment as an acknowl-
edged approach for software development, notably for desktop or business ap-
plications [7], CBD still struggles to meet all the challenges faced by embedded
system development, and this, even though several approaches currently aim at
addressing them. These approaches include AUTOSAR [8], BlueArX [9, 10],
Rubus [11], Koala [12] in industry and Pecos [13], SaveCCM [14], ROBO-
COP [15] and PECT [16] in research.

For a better acceptance in this domain, the main challenge ofCBD is to
deal with both complexity and functional requirements on one hand, and on the
other hand to deal with the specifics related to embedded systems and their de-
velopment needs, and in particular managing extra-functional properties. More
specifically, this requires to have a systematic approach that homogeneously in-
tegrates the various activities and related artefacts involved in the development
process.

1Extra-functional properties are attributes that define “how” a system performs rather than
“what” it does. They are expressed through numerous characteristics and can be found under sev-
eral equivalent denominations: non-functional properties, quality attributes, attributes, etc. Exam-
ples of extra-functional properties important for embedded systems include dependability, timing
characteristics, and resources consumption.
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1.2 Objectives

The main purpose of this thesis is to determine solutions towards establishing
an efficient software development of distributed embedded systems abiding by
the principles of component-based development that can ensure the quality of
the delivered products. Assuming that the principles advocated in CBD are also
applicable for developing distributed embedded systems, this thesis discusses
how to suitably accommodate the specifics of “traditional” embedded system
development with component-based development and, then how to integrate
and manage extra-functional properties in the developmentto ensure the pre-
dictability of the final product. This thesis also focuses ondetermining the
required engineering practices and tools to efficiently support the composition
theories which have been proposed.

Formulated as a question, the main challenge that this thesis aims at ad-
dressing is the following:

How can distributed embedded systems be developed in a pre-
dictable and efficient way while using the CBD principles?

This thesis does not provide a direct answer to this questionbut focuses on
solving parts of this challenge:

1. investigating how to apply component-based developmentprinciples to
embedded system development,

2. establishing the specific requirements for a dedicated component model,
and

3. providing a support to manage extra-functional properties throughout the
development.

Concretely, in this thesis, we propose a component-based approach for
distributed embedded systems supported by the specification of a dedicated
component model. This component model is endowed with suitable charac-
teristics, properties, and features to efficiently supportthe management of the
specific concerns of embedded system domain. Further, a special focus is put
on extra-functional properties regarding their integration and management to
bridge analysis in the development process. The approach isillustrated through
the realisation of an integrated development environment (IDE).
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1.3 Research Questions

In this section, we break down the main research challenge into a set of more
concrete research questions, which have served as basis to frame and guide the
different phases of the work described in this thesis.

Research question 1

What characteristics of a component model facilitate software
design of distributed embedded systems?

Through this research question, the purpose is (i) to explore and identify
important needs in the development of distributed embeddedsystems (focus-
ing more specifically on the design phase using a CBD approach), and (ii) to
propose a new component model endowed with suitable characteristics, prop-
erties and features to provide a solution to these needs.

Research question 2

What mechanisms are suitable to support the management of
extra-functional properties within a component model?

In embedded system development, extra-functional properties are as im-
portant for system correctness as the functionality itselfbut more challeng-
ing. From the results obtained in answering the previous research questions,
it has been observed that, although essential, extra-functional properties are
seldom considered in component-based development. In mostcases, they are
evaluated in late development phases through simulation and/or measurement,
which might be costly if the extra-functional requirementsare not satisfied. In
some cases, extra-functional properties are considered inearly development
phases only to serve as predictions. Furthermore, few component models pro-
vide support for dealing with extra-functional properties, and often, this sup-
port addresses a predefined subset of extra-functional properties only.

Following these observations, we formulated the aforementioned research
question, which addresses mainly the predictability aspect needed in the devel-
opment of distributed embedded systems. In that respect, this research ques-
tion focuses on determining a way to enhance component models to provide
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the necessary grounds to efficiently support, in a systematic way, the man-
agement of extra-functional properties in a component-based development for
embedded systems. Furthermore, through this research question the aim is
also investigate solutions to develop a corresponding extra-functional property
management framework.

Research question 3

How can the different aspects of component-based development
for embedded systems be seamlessly integrated into a development
environment?

This research question addresses the needs required to support in practice
the development of embedded systems. Given that for embedded system devel-
opment, both functional and extra-functional correctnessmust be considered,
different techniques must be used all along the developmentstarting from mod-
elling low-level functionality, using a behaviour model toenable early predic-
tions, and/or using test-cases, simulation and measurements. Up till now, the
tools implementing these techniques are rather independent and often require
manual effort to use them together. Accordingly, one of the important chal-
lenge that exist in embedded system development is to find a way to provide
easy and tight integration of the various techniques and tools required for the
development of distributed embedded systems. Hence, the main goal with this
research question is to attempt to develop a prototype that can be used as a ba-
sis to both demonstrate the feasibility of the proposed ideas and evaluate their
advantages and drawbacks in using them in practice.

1.4 Thesis Contributions

The thesis provides the following four main contributions:

1. A classification framework for component models;

2. A general framework for the management of extra-functional properties
in component-based development;

3. A new component model for control-intensive embedded systems;

4. Two Integrated Development Environments for component-based em-
bedded systems.
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For each contribution a summary, the relation to the thesis and my personal
involvement in its realization are detailed below. These contributions are the
outcome of a set of results that address the main research challenge and ques-
tions presented in the previous sections. While studying the current state-of-
the-art of component based software engineering and providing a classification
of the characteristics of component models, the existence of a large variety of
component models has been identified — some of them targetingembedded
systems specifically. This has led to contribution 1, which in its turns exposed
the lack of appropriate management support for extra-functional properties in
component models. From this contribution, we also identified some common
features among existing component models for embedded systems. As a result,
contributions 2 and 3 were devised before being integrated together through
the corresponding implementation of the attribute framework for contribution
3 and integrated development environments (contribution 4) for contribution
2. Benefiting from these implementations, we realised several examples which
outcomes have had influenced the previous contributions. These relations are
illustrated in Figure 1.1 together with the correspondencebetween the thesis
contributions and the chapters of the thesis.

1. A classification framework for component models

This contribution introduces a systematic classification of characteristics of
component models. It relies on a thorough study of twenty-four component
models to discuss basic principles of component models and component-
based software engineering and identify common characteristics of compo-
nent. From this, a Component Model Classification Frameworkis proposed
and used to classify the twenty-four component models. In analyzing the
classified component models, it is possible to pinpoint differences and iden-
tifies characteristics shared by component models developed for a similar
domain, such as embedded systems. Paper A [17] has been published as
the main outcome of this contribution and is used as a basis for Chapters 2
and 9.

Personal contributions:
I personally contributed to this work with the initial idea of the component
model classification, a first simple prototype with few component models
and aspects only, and together with Aneta Vulgarakis in collecting, ana-
lyzing and classifying additional component models. I had the main re-
sponsibility over the construction dimension and the related work section.
Everyone worked equally in the iterative process to refine the framework
and contributed with discussions, reviews and suggestions.
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Legend:
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Figure 1.1: Relation between the thesis contributions and the chapters of the
thesis.
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2. A general framework for the management of extra-functional proper-
ties in component-based development

This framework enables the specification of multi-valued and context-aware
extra-functional properties and propose a support for their uniform and
seamless management in component-based development. Properties can
be attached to selected architectural entities of component models. Their
values can be compared and refined during the development process. In
particular, thanks to having multiple context-aware values, values from dif-
ferent sources can be compared and reused in appropriate context. This is
done with the main objective of providing an efficient support, possibly au-
tomated, for analysing selected properties. This contribution includesi) a
study of the possible usage of extra-functional propertiesin component-
based development,ii ) a specification of multi-valued context-aware extra-
functional properties,iii ) an investigation of the necessary supporting mech-
anisms for specifying, managing, refining extra-functional properties, and
iv) the implementation of an extensible prototype for the proposed solu-
tions. This is the core contribution of the thesis and the corresponding
results have been published in Papers F [18], G [19] and H [20]and are
discussed in Chapters 3, 4 and 5 and 9.

Personal contributions:
I was the main driver of this work and contributed in identifying the prob-
lem of the lack of systematic support of extra-functional properties during
component-based development, in developing the concept ofmulti-valued
context-aware extra-functional properties, and investigating needed sup-
porting mechanisms. I also supervised the realisation of the first prototype
implementing the concepts of multi-valued extra-functional properties, pro-
totype that I have refined and enriched later on. Ivica Crnkovic, Jan Carlson
and Thomas Lévêque contributed with valuable discussions, feedbacks and
ideas.

3. A new component model for control-intensive embedded systems

In this contribution, a component model for the design and development of
control-intensive distributed embedded systems called ProCom has been de-
veloped. The particularity of ProCom lies in the existence of two layers de-
signed to cope with the different design paradigms which exist on different
abstraction levels in distributed embedded systems. Each layer is hierarchi-
cal and has its own architectural style and communication paradigm. More-
over, through its restricted semantic ProCom provide a ground for analyzing
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the components and predict their properties, such as resource consumption
and timing behaviour, already in early development phases.The results
from this contribution have been published in Paper B [21] and C [22] and
are described in Chapter 6.

Personal contributions:
ProCom is the result of a team work involving many members of the
PROGRESSproject2 which I participated in. I personally contributed to this
topic by actively participating in the discussions concerning the develop-
ment process, the discussions with the domain experts to collect information
on their needs and by influencing some of the decisions through my parallel
work on the realization of an integrated development environment, called
Save-IDE, for the SaveCCM component model, which are predecessors of
PRIDE and ProCom respectively.

4. Two Integrated Development Environments for component-based em-
bedded systems

This contribution provides an extensible development framework to eval-
uate in practice research contributions centered around the proposed com-
ponent model and a support to integrate the attribute framework. Two pro-
totypes of integrated development environments to supportthe proposed
component-based development approach for distributed embedded systems
have been specified and developed. These prototypes enable having compo-
nents throughout the development process, from early design to deployment
and synthesis, and facilitates the integrations of research ideas. Benefiting
from the experience gained from developing the Save-IDE, wehave built
PRIDE, the ProCom Integrated Development Environment. PRIDE is based
on an architecture relying on components with well-defined semantics that
serve as the central development entity, and as means to support and ag-
gregate various analysis and verification techniques throughout the devel-
opment from early specification to synthesis and deployment. PRIDE also
provides generic support for integrating extra-functional properties into ar-
chitectural definitions through the integration of nLight,the framework for
the systematic management of extra-functional properties. Results from this
contribution have been published in [23], in Paper D[24] andPaper E [25]
and are used as basis for Chapter 7.

2http://www.mrtc.mdh.se/progress/
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Personal contributions:
Concerning the realization of the Save-IDE, I was a member ofthe de-
veloping team with the main responsibility for the design part, including
the design of the underlying metamodel and the development of the de-
sign tools. This included implementation, testing, bug fixing, working on
the final integration, and supervision of master students, etc. For PRIDE,
my contributions are derived from my role as the main software architect
and include the elicitation of the desired underlying concepts that should
guide the development of PRIDE and its design specification together with
additional managerial activities for the releases. Concerning the implemen-
tation, I was mainly responsible for integrating nLight.

1.5 Research Method

In this thesis, we followed a methodology adapted from the guidelines pro-
posed by Shaw in [26] to perform software engineering research.

This approach starts with the identification of a problem from the real world
(Problem Identification), in our case the limitations of the current development
methods for distributed embedded systems due to the increasing complexity
of new embedded system functionalities. The problem is thentransferred into
a research setting to be investigated with the prospects of findings solutions
to it. However, since real world problems are generally quite complex, the
scope of the problem needs first to be restricted to be manageable within a re-
search context (Problem Setting). This limitation made us focus on a particular
aspect of the real problem by formulating the research problem that will be ad-
dressed within the work (Problem Formulation), and then by statingWorking
AssumptionsandResearch Questions, which together set a frame for the work.
Similarly to passing from a real world problem to a research problem, breaking
down the research problem into a set of research questions narrows down even
further the problem to investigate and helps on focusing on particular aspects
of the research problem. In that sense, the working assumptions provide a start-
ing point to the work whereas the research questions correspond more to the
specification of the angle of attack chosen to investigate the research problem.

Once the problem is clearly defined, the research work startswith the study
of related theories, methods, approaches, techniques or solutions that have al-
ready been performed on the topic (Background Theories). With the knowledge
of the existing state-of-the-art and the questions to answer, some solutions can
be devised (Solutions). Formulating solutions is not a straightforward process
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but an iterative one, in which preliminary ideas are formulated, worked out,
refined or even sometimes left aside. When the ideas are mature enough, they
must be evaluated and validated to check whether they reallyanswer the re-
search question in a suitable way (Validation). If this step fails, the proposed
solutions need again to be revisited, refined, improved or thrown away. In that
sense, this is an iterative trial and error process, in whichanalysing the causes
of the erroneous solutions might provide useful inputs to find new, better or
simply working solutions.

After the validation step is satisfied, the applicability ofthe proposed so-
lutions to solve the real-world problem can be evaluated (Evaluation). An
overview of this approach is given in Figure 1.2.

Real-World Context

Problem 
Identification

Research Context

Problem Setting

Work 
Assumptions

Research 
Questions

Problem 
Formulation

Research Work
Background 

Theories Solutions

ValidationApplicability
Evaluation

Figure 1.2: Overview of the applied research process.

Each research questions can be answered in different ways and in applying
different approaches, thus we describe below the methodology that has been
used in the research work described in the previous sections.

To answer research question 1, we proceeded by systematic analysis of ex-
isting component models and construction. The process started by studying
both the needs in the development process of distributed embedded systems
and the current state-of-the-art of component-based software engineering fo-
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cusing on existing component models, in particular SaveCCM[14]. This study
was based on literature surveys and discussions with domainexperts of vehic-
ular and automation domains. Based on these findings, requirements for the
component model were extracted and served as foundations inthe elaboration
of ProCom, which addresses some of the limitations of SaveCCM.

As for the work concerned with research question 2, we used anapproach
by construction. The work also started with a literature surveys on extra-
functional properties and their management and the identification of a few
properties of interest in the development process. Then we related their man-
agement to their utilisation within the development process. The methodology
followed here was iterative and started with the development of a prototype
implementing some preliminary ideas to get a better understanding of their in-
tegrations and contributions in the development process. From the utilisation
of the prototype on development examples, the proposed solutions were refined
and additional supporting mechanisms were identified as required.

As for the work concerned with research question 3, we investigated the
feasibility of integrating various aspects of component-based approach tightly
into a common development environment. Here, we also proceeded by con-
struction. We started by building a prototype of an integrated development
environment based on the SaveCCT approach, using the SaveCCM component
model and enabling early formal analysis of timing properties. Based on the
lessons we learned from building this prototype, we developed a second inte-
grated development environment for ProCom.

1.6 Thesis Outline

The thesis includes the following chapters:

Chapter 1: Introduction This chapter introduces the research setting for the
work in detailing the motivation for the work, the research setting and the
research questions. Additionally, an overview of the thesis contributions is
presented together with the followed research process and research meth-
ods.

Chapter 2: Classifying Software Component Modelspresents a thorough
investigation of the concepts related to the notion of component models
based on which a classification framework that highlights similitude and
differences between twenty-four component models is built.
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Chapter 3: Defining Multi-Valued Context-Aware Extra-Func tional Prop-
erties identifies challenges related to extra-functional properties in
component-based development and formally establishes thecore defini-
tions supporting the concept of multi-valued context-aware extra-functional
properties. These definitions set the basis for the management of extra-
functional properties in component-based development.

Chapter 4: Managing Multi-Valued Context-Aware Extra-Fun ctional
Properties identifies required supporting mechanisms to handle multi-
valued context-aware extra-functional properties withina component-based
development. Examples of such mechanisms include filtering, value selec-
tion, value comparison and value merging.

Chapter 5: nLight — The Attribute Framework describes a prototype im-
plementation of a framework enabling the systematic management of multi-
valued context-aware extra-functional properties. This framework is exten-
sible: new extra-functional properties can be easily addedto component
models. To do so, it is developed as a set of Eclipse plugins using the
Eclipse Modeling Framework.

Chapter 6: The ProCom Component Model identifies first the requirements
to adapt the principles of component-based software engineering to fit the
specific needs of embedded system development. Based on that, a new com-
ponent model, called ProCom, dedicated to embedded system development
is specified in this chapter.

Chapter 7: PRIDE : The ProCom Integrated Development Environment
describes the Integrated Development Environment supporting the concepts
presented in Chapter 6.

Chapter 8: Extended Examplesexemplifies the contributions on several ex-
amples, including a turntable system, a personal navigation assistant sys-
tem, and an automatic driving system.

Chapter 9: Related Work compares the results of the thesis contributions
with similar work related to component model classification, extra-
functional properties and component models.

Chapter 10: Conclusion and Future Work discusses the contributions pro-
vided in thesis and suggests possible extension of this work.





Chapter 2

Classifying Software
Component Models

Due to promising features such as alleviating complexity and shortening of
development time, component-based software engineering has become a pop-
ular development paradigm. However, there is no consensus on the principles
behind component-based software engineering and, as a consequence, many
component models have been developed in recent years. Most of these com-
ponent models focus on some specific points of the paradigm and it is now
difficult to have a clear picture of their differences or similarities. The main
purpose of this chapter is to:

• Ascertain the main concepts related to the notion of component models
to make them clearly understandable.

• Derive a classification framework for component models fromthese main
concepts.

• Analyse existing component models to identify their differences and
similitudes and provide an overview of the current state of today compo-
nent models.

17
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2.1 Main Concepts of Component Models

In order to classify component models, a clear understanding of the main con-
cepts and unique terminology used in component-based software engineering
(CBSE) is required. Therefore, we define in this section the concepts related to
the notion of component models that arecomponent model, component-based
system, componentandbinding.

We use the definition proposed in [27] that defines a componentitself rela-
tively to a specific component model. This definition points out that a compo-
nent model covers multiple facets of the development process, dealing with:

1) rules for the construction of individual components, and
2) rules for the assembly of these components into a system.

Definition:

A Component model defines standards for (i) properties that in-
dividual components must satisfy, and (ii) methods for composing
components.

In this definition, the term “component properties”, is meant to include
functional and extra-functional specifications of individual components. The
term “composing components” is meant to include mechanismsfor compo-
nent interaction. To explain these terms further, we start from an architectural
specification of a component-based system.

A component-based system identifies (i) components, (ii) anunderlying
platform and (iii) the binding mechanisms, as shown in Fig. 2.1 and presented
formally as:

CBS =< P,C,B >

Where
CBS = Component-based system;P = System platform;C = A set of com-

ponentsCi; B = Set of bindingsBi.

A component is executable1. In contrast to arbitrary executable code, a
component is formed to interact with other components according to prede-
fined rules. In other words, a component is a software module that includes
both execution code and machine-readable metadata (typically including the

1Note that executable-property does not necessarily mean binary code. For example. the exe-
cution can be achieved through an interpreter or by a virtualmachine, or even through compilation
before the execution.
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2

1

<<PLATFORM>>

<<COMPONENT>> <<COMPONENT>>

Figure 2.1: Component-based system

interface-signature) which explicitly describes the services that the software
provides and the services that it requires from other components and its execu-
tion environment. The metadata supports the component framework in com-
posing a component with other components, and in deploying it into an exe-
cution environment. In addition, the metadata can include information about
extra-functional properties of components.

More formally, we specify a componentC by a set of properties. Prop-
erties are used in the most general sense as defined by standard dictionaries,
e.g.: “a construct whereby objects and individuals can be distinguished” [28].
There is no unique taxonomy of properties, and there exist different property
classifications. One commonly used classification is to distinguish functional
from extra-functional properties (also designated as non-functional, or Quality
of Services, or “ilities”). While functional properties describe functions or ser-
vices a component provides or requires, extra-functional properties (EFPs) de-
scribe its non-functional characteristics. Typical examples of extra-functional
properties are quality attributes such as reliability and response-time. A com-
ponentC can expose its functional properties by the means of an interfaceI .
Hence, we can characterize a componentC by its functional interfaceI and by
a set of extra-functional propertiesP :

C = 〈I ,P〉 , with I = {i1, i2, ..in};

P = {p1, p2, ..pk}.

I defines a set of functional properties (services)ik that a component pro-
vides or requires.

P defines a set of extra-functional propertiespi of the component.
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If a componentC = 〈I ,P〉 complies with a component modelCM , then
this implies that its interface and its properties must comply with the rules of
the component model. This is formally denoted as follows:

C |= CM ⇒ I ,P |= CM

Bindings define connections between interfaces. We distinguish bindings
between (i) the components and the platform (which enables component inte-
gration into a system) from (ii) bindings between components (which enables
component interaction). In the first case, we talk aboutcomponent deployment
(denoted as① in Fig. 2.1) and in the second aboutcomponent binding(denoted
as②).

The componentsC1 andC2 bounded by their interfacesI1 andI2 con-
struct anassemblyA = {C1 ,C2}. If a component model includes assembly
as an architectural element, then the assembly is specified by its interfaceIA:

A = {C1 ,C2},A = 〈IA〉 |IA = 〈I1 ⊕ I2 〉

Note that an assembly is not necessary a component itself; itis not neces-
sary that it conforms to the component model. If an assemblyC = {C1 ,C2}
conforms to the component model, i.e.

C = 〈I ,P〉 ; I = 〈I1 ⊕ I2 〉 ,C |= CM

the assembly is a component, also called a composite component.
A composite component also exhibits a set of extra-functional properties.

In the above example, the composite component is specified byC = 〈I, P 〉
but we did not definedP as a composition of component propertiesP1 andP2 .
We can state a question: CanP be defined as a composition ofP1 andP2? As
we will see later, the extra-functional properties of a composite component are
in most cases not only the result of component property composition, but also
of the external environment (e.g. underlying platform and other components).
Formally, we express this as

C = 〈C1 ⊕ C2 〉 ⇒ I = 〈I1 ⊕ I2 〉 ∧ Pex ⊢ P = 〈P1 ⊕ P2 〉

wherePex denotes a specification of the external (system) context that has
an impact on the composition of component extra-functionalproperties. A
more detailed discussion about binding and composition is presented in Sec-
tion 2.2.2.
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2.2 The Classification Framework

The rules a component model defines for the design and composition of compo-
nents cover different principles and hide many complex implementation mech-
anisms. Furthermore, different component models cover different phases in the
component lifecycle; while some support only the modellingand design stage,
others support mainly the implementation and run-time stages. For this reason,
we cannot simply list all possible component models characteristics, but we
group the characteristics according to their similar concerns and aspects.

Starting from these premises, we divide the basic characteristics and prin-
ciples of component models into the following three dimensions:
D.1 Lifecycle. The lifecycle dimension identifies the support provided by a

component model and the component forms throughout the lifecycle of
components. CBSE is characterized by a separation of the development
processes of individual components from the development process of
the overall system. A component lifecycle covers stages from the com-
ponent specification until its integration into the systemsand possibly its
execution and replacement.

D.2 Construction. The construction dimension identifies principles and
mechanisms for building systems from components including(i) the
component functional specification (of which theinterfaceis a promi-
nent part), (ii) the means of establishing connections between the com-
ponents, i.e.binding, and the means of intercommunications, i.e.inter-
actionsbetween the components.

D.3 Extra-Functional Properties. The extra-functional properties dimen-
sion identifies the facilities a component model offers for the specifica-
tions, management and composition of extra-functional properties.

Below, we discuss these dimensions and introduce their features, i.e. the
characteristics of component models.

2.2.1 Lifecycle

An important characteristic of CBSE is the separation of thedevelopment pro-
cess of the overall system from the development processes ofindividual com-
ponents [29]. These processes can be completely independent as for exam-
ple in the development of COTS (Commercial Off-The-Shelf) components and
COTS-based systems, up to the point where a component is integrated into a
system.
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The development of an individual component follows the following stages
(see Fig. 2.2): requirements, design, implementation, deployment and execu-
tion. During its lifecycle, a component has different forms[30]: initially, a
component is represented by a set of requirements, yet during design the same
component is represented by aset of models. Subsequently, the same com-
ponent is represented by means ofsource code, complemented bymetadata.
After deployment, the component is integrated in an execution environment.
And at run-time, the same component2 is now represented byobject-codeof
the target platform. Optionally, at intermediate stages, acomponent may be
packaged and represented by means of a set of files in a directory or zip-file.
Fig. 2.2 shows these successive stages of a component’s lifecycle. The lower
half of the figure lists the ways in which components may be represented in
that particular stage of the lifecycle. In the figure, the requirements and ex-
ecution stages are depicted with dashed lines to indicate that in these stages
components do not necessarily exist as independent units.

Most component models provide support for several stages ofthe compo-
nent’s lifecycle. Support in the design stage may consist ofa dedicated design
notation or predefined approach for modelling different aspects of components.
For example, the Koala component model [12] has an explicit design notation
which includes representations for, amongst others, components, interfaces,
and bindings. Other component models dictate the use of state-machines for
modelling the behaviour of components. In the implementation stage, a com-
ponent model typically defines which construction elementsshould be used for
encoding a component in a programming language. Implementation level rules
typically include conventions for the naming and structuring of interfaces. The
component models that cover several stages often provide a support for trans-
formation between the different component forms; typical examples are trans-
formations from models to code, such as interface specifications to stubs in
programming languages. In some cases, the transformation rules can be quite
complex, as for example in the domain of real-time systems inwhich the de-
sign units, the components, are transformed into executable units, the real-time
tasks.

2Actually, aninstanceof this component.
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Figure 2.2: Component lifecycle and component forms

Component Lifecycle Stages

We identify the following stages of the component lifecycle:

L.1 Modelling stage.Component models provide support for the modelling
and the design of components and component-based systems. Models
are used either for the architectural description of the systems, the com-
ponents and the interaction between them (for example usinga standard
or a dedicated ADL), or for the modelling and verification of particular
system and component properties (using different modelling techniques
such as statecharts or different variants of finite automata). For example,
the KobrA [31] component model uses UML profiles with new or mod-
ified UML architectural elements and annotations, while ProCom [22]
and Pin [32] have their own modelling languages.

L.2 Implementation stage.Component models provide support for the pro-
duction of code. The support for implementation stage may stop with the
provision of the source code, or may continue up to the generation of a
binary (executable) code3. Most of the component models use standard
programming languages. Some component models assume the use of a
particular language for the implementation. In such cases,the compo-
nent model may require that (elements of the) language are used accord-
ing to some specific rules. For example, the EJB component model [33]
uses Java, with some extensions and additional requirements. Others

3Considering the component model definition and Szyperski’sdefinition of a component, it
can appear strange that component models do not address the implementation stage. However, the
component models specify characteristics of components that are executable units, although not
necessarily the implementation rules themselves.



24 Chapter 2. Classifying Software Component Models

component models explicitly aim to be language-independent for the im-
plementation. Such component models may have translators from their
modelling and specification languages to a particular, or sometimes mul-
tiple, programming language(s) as for CCM [34].

L.3 Packaging stage.Because of the separation of the development pro-
cesses in the component-based lifecycle, there is a need forthe storage
and packaging of components, either in a repository or for distribution.
A component package is a set of metadata and code (source or exe-
cutable). The metadata contains information about the contents of the
files in the package. Accordingly, the result of this stage can be a file, an
archive, or a repository in which the packaged components reside prior
to their use. For example, in Koala [12], components are packed into a
file system-based repository, with one folder per component. The folder
includes a number of files: a Component Description Language(CDL)
file and, a set of C and header files, test file and different documents. An-
other example of packaging is used in the EJB [33] component model.
There, packaging is done through JAR archives, called EJB-JAR. Each
archive contains an XML deployment descriptor, a componentdescrip-
tion, a component implementation and interfaces.

L.4 Deployment stage.At a certain point in time, a component is integrated
into an executable system or some target environment, and becomes
ready for execution. This may happen at different stages in the system’s
lifecycle. In general, a component can be deployed at:

(a) compilation time: Components are integrated before the system
starts executing. Compilation (and linking) achieves integration
of components through the resolution of references to interface
names. Binding at compilation-time is typical for embeddedsys-
tems in which the components and the execution platform are com-
piled and linked together into an executable image. This happens
for instance in the Koala component model.

(b) run-time: Components may be added or replaced in a system which
is executing. Run-time deployment may be realized by using a
registry (COM [35]), or by containers which handle installation
and communication of the component using information of thede-
ployment descriptor packed with the component implementation
(CCM [34], EJB [33]).
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2.2.2 Construction

As defined in Oxford advanced learners dictionary [36],constructionmeans
“the process or method of building”. The construction dimension of our clas-
sification includes three parts: (i) connection points i.e.interfaces, (ii) mecha-
nisms for establishing connections, i.e.bindingmechanisms, and (iii) commu-
nication itself, i.e.interaction. The next section discusses each of these aspects
in more detail, and provides a list of elements that characterize this dimension.

Interface

A component interface defines a set of actions which is understood by both the
provider (the component) and user of that interface (other components, or other
software). The actions of an interface can be characterizedby a name and a list
of parameters that are input to or output from the action. A very common way
of specifying an interface is by means of a set of operations (functions) with
parameters, as for example used in Java Beans [37] and OSGi [38]. However,
there exist other types of interfaces; so called “port-based”4, where ports are
entries for receiving/sending different data types and events, as for instance
implemented in IEC61131 [40] and SaveCCM [14]. Fig. 2.3 illustrates the
”operation-based” and ”port-based” interfaces and interaction styles. In the
first case, a component invokes an operation from another component (which
may return a result), while in the second case, a component pushes data to
another component and possibly starts the execution of thisother component
by sending a trigger. Alternatively, triggers can be sent bya clock invoking the
periodical execution of the component.

Most component models distinguish the actions that components provide
to their environment, calledprovided interface, from the actions they require
from this environment, calledrequired interface. This is an important feature
that makes explicit the dependencies of a component. This inturn facilitates
independent development and deployment of components.

An interface is not a constituent part of a component, but canexist indepen-
dently of components as a standard for representing some piece of functionality
in a system. The independent existence of interfaces makes it possible to spec-
ify interfaces independently of their implementation.

In different stages of development, an interface may be defined through dif-
ferent languages. In the modelling stage, component modelsmay either pro-

4Note that the “port-based” concept is different from the concept in UML 2.1 [39] in which a
port is defined as a set of interface specifications.
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Figure 2.3: Operation-based and port-based interfaces

vide their own languages (often similar to some ADL), or use UML (possibly
with some extensions or profiles) for defining interfaces. Inthe implementation
stage, there are two common ways of defining interfaces.

One way is to describe interfaces by means of an interface description
language (IDL) that is independent from a particular programming language.
Through mappings between specific programming languages and the IDL, in-
teroperability between multiple programming languages isachieved: compo-
nents implemented in different programming languages can be combined into
one system. IDLs focus only on syntactic interoperability,but they (implicitly,
and sometimes unintentionally) also determine the styles of interaction through
which components can communicate. The syntactic interoperability achieved
by IDLs yields the benefit of using different programming languages for the
component implementations.

Another way of specifying an interface is to directly use a programming
language, as for example using an object-oriented language. Typically, in
object-oriented programming languages, a component is expressed as a class in
which the interface is defined as a set of methods and attributes, possibly with
some extensions or syntactic convention to distinguish component architectural
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elements (for instance required and provided interface). In other languages, the
structured (stereotyped) use of header files or abstract classes serves as a means
of defining interfaces.

Driven by the requirements of independent deployment and dynamic re-
configuration, some component models define a standard for the binary repre-
sentation of interfaces. This binary representation is used at the deployment
stage and during run-time. MS COM is an example of a componentmodel that
has such a binary standard for interfaces.

To make it possible to perform advanced checks on the compatibility be-
tween interfaces, the notion of contract has been adjoined to interfaces. Ac-
cording to [41], contracts can be classified hierarchicallyin four levels which,
if taken together, may form a global contract. In our classification, we adopt the
first three levels, since the last level is concerned with extra-functional proper-
ties which are covered in more detail in Section 2.4.

• Syntactic level: describes the syntactic aspect, also called signature of an
interface. This level ensures that the interacting components refer to the
same data types. This is the most common and most easy agreement to
certify as it relies mainly on a (either static or dynamic) type-checking
technique.

• Functional Semantic level: reinforces the previous level of contracts in
certifying that the values of the parameters are within the proper range.
This can be asserted using pre-conditions, post-conditions and invariants.

• Behaviour level: expresses either constraints on the temporal ordering of
interactions between components or constraints on the component’s in-
ternal behaviour (e.g. allowed internal states) in response to interactions.
Behaviour contracts are typically expressed by statecharts or different
variants of finite state machines.

We conclude our discussion on aspects of interfaces by pointing out that
several component models have distinctive features related to evolvability and
variability. For instance, for evolvability (e.g. to support creating new function-
ality but maintaining backward compatibility), a component may offer multiple
interfaces for the same functionality. This makes it possible to embody several
versions or variants of functions in the component.



28 Chapter 2. Classifying Software Component Models

Binding mechanisms

Binding is the process that establishes connections between components
(through use of their interfaces and interaction channels). In CBSE, binding
is also often calledcomponent compositionby reference to the composition
of the functionality of the components. Similarly by association to wires in
electrical engineering, binding is also referred to aswiring in the literature e.g.
[42] and [7].

An important question coming from the possibilities offered by binding
mechanisms relates to the composability of components [28]: “Can an assem-
bly, i.e. a set of components mutually connected, be treatedas a component
itself?”. That is, does an assembly composed from a set of components fully
comply to the rules imposed by the component model, both in terms of func-
tional and extra-functional properties? The answer is not simple. To discuss
component composition, we must first distinguish differenttypes of binding:
horizontal bindingandvertical bindingas defined below.

Let us assume that the following componentsCi = 〈Ii ,Pi〉 and
Cj = 〈Ij ,Pj 〉 satisfy the rules imposed by a component modelCM , i.e.

Ci ,Cj |= CM ⇒ Ii , Ij ,Pi ,Pj |= CM

If we composeCi andCj together through anhorizontal bindingmeaning
that their respective interfaces are connected together (i.e. 〈Ii ⊕ Ij 〉), then the
assemblyA resulting of this composition is merely a set of components coop-
erating together to realize a functionality, i.e.A = {Ci ,Cj }. Here,A does not
necessary comply with the component modelCM . In spite of this, this type
of binding is often improperly referred to as horizontal composition. At the
modelling stage, horizontal binding is often realized by connecting a provided
interface of a component with a required interface of another component. At
the implementation stage, this horizontal binding is typically realized through
glue-code or wrappers.

On the other hand, if we identify the assemblyA as a component with an
interfaceIA which is a composition of interfaces of the involved components,
i.e. if we have

A = {Ci ,Cj };A = 〈IA〉 ⇒ IA = 〈Ii ⊕ Ij 〉

whereIA |= CM

thenA results from avertical bindingand has an interfaceIA that satisfies the
rules of the component modelCM . At the modelling stage, vertical binding is
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often attained through connecting two interfaces of the same kind: a provided
interface of the assembly (resp. required interface) to a provided interface of an
inner component (resp. required interface). This type of connection is called
delegation. Whereas when all the interfaces of the inner components aremade
available to the outside environment through the interfaces of the assembly, we
speak ofaggregation.

If the assemblyA satisfies the component model’s rules with respect to
both its interfaceIA and its propertiesPA, i.e.

A = 〈IA,PA〉 ⇒ A = 〈Ii ⊕ Ij , Pex ⊢ Pi ⊕ Pj 〉

where IA,PA |= CM

then the component model supportsvertical composition. This is a very pow-
erful property, but unfortunately very difficult to achievein practice. Neverthe-
less, many component models supportpartial vertical composition, in which
functional interfaces can be composed recursively.

In SaveCCM [14], vertical binding is supported and the component model
defines an assembly as a set of components which export by delegation a set
of selected ports, the interface elements. If the assembly also preserves the
“read-execute-write” semantics defined by SaveCCM for components, then in
that particular case, the assembly is a component because itcomplies with the
definition of a SaveCCM component.

Binding does not necessarily correspond only to a one-to-one direct con-
nection between two components; some component models alsosupport in-
direct connections through the utilisation of connectors.When introduced as
first class citizens of a component model, connectors act as mediators between
components and enable (i) making the interaction between components ex-
plicit, and (ii) the addition (and removal) of advanced mediation mechanisms
that are transparent to components. In several component models, connectors
are implemented as special types of components (e.g. adaptors, brokers or
proxies). Implementing connectors in terms of implementation-level compo-
nents opens up the possibility of building more complex interactions patterns
in comparison to using basic connectors.

The use of connectors corresponds to the concept ofexogenous composi-
tion because the (logic for handling the) interaction between components is
handled outside of the components themselves. In contrast to exogenous com-
position,endogenous compositionrefers to a binding without any intermediary
connector. In this case, the handling of binding and interaction protocols is part
of the components themselves.
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At the modelling and implementation stages, binding is doneby a system
developer who explicitly states which components are assembled together by
connecting the interfaces of the involved components. Thisis one of the forms
of third-party bindingin which the establishment of the binding is initiated by
an entity outside the components involved in the binding. Onthe other hand,
in a first-party binding, a component decides itself which other component it
is to be bound to. Most of the component models enables the third-party bind-
ing. Typical solutions for first-party binding use an introspection (or reflexion)
interface, which enables the discovery of the interfaces ofthe components to
connect to, and a registry, which can look up the identity of the components
that support a specific functionality (or interface).

When the binding occurs at deployment stage, a docking interface is com-
monly used. This docking interface does not offer any application function-
ality, but serves instead for managing the binding and subsequent interaction
between a component and the underlying run-time infrastructure. In many
component models (e.g. CCM, EJB), the binding specificationis location-
transparent: the run-time location of components (placed either on a local or a
remote node) is specified separately from the binding information.

Interactions

Component models use one or more architectural styles following a specificin-
teraction stylesto define the patterns of interactions between components, i.e.
how components communicate with each other. For instance, the client-server
architectural style, widely used for distributed computing, uses a
request-responseinteraction model. This means that for any interaction be-
tween two components, one component sends a request to a specific other
component, which then returns a reply. Hence traffic across the binding is
bidirectional.

Two variants of request-response are distinguished. Inasynchronous
request-response, the client initiates the communication, and continues its ac-
tivity until, at some point, it receives the results of its request from the server
component. The interaction can also besynchronous, which means that the
client waits until its request has been processed.
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Another typical interaction style ispipe & filter, which is mostly used for
the streaming of events. This style uses unidirectional communication between
components. In this style, components are filters that process the data, and the
bindings are the pipes that transfer the data to the next filters. A characteristic
of this style is that it allows the separate control of the data-flow and control-
flow between components. The control flow is activated by a triggering interac-
tion model, which enables the activation of a particular component in response
to a particular signal such as an event, a clock tick, or a stimulus from another
component, as illustrated in Fig. 2.3.b. This interaction model includes event-
triggering, or event-driven, and time-triggering. The pipe & filter architectural
style is widely used in embedded and real-time systems because control theory
can be easily mapped to this interaction model. Some component models such
as Rubus [11] decouple the specification of data flow from control flow.

There are other interaction styles utilized in component models, and some
prominent examples are broadcast, blackboard and publish-subscribe. In most
cases, component models provide a single basic interactionstyle. Support for
this style is often hardwired in the execution platform. However, some compo-
nent models, such as Fractal [43], Pin [32] and BIP [44] allowthe construction
of different interaction styles.

An interaction style determines which types of dependencies must or may
exist between components. As a result, the architectural styles supported by
a component model have a large impact on the flexibility during both the de-
velopment and the execution of components. In general, a style which induces
more or stronger dependencies will need more complex protocols for binding
and hence for the replacement of components.

Components may differ with respect to the way their internalactivity and
interactions are initiated.Passive componentsare activated only by external
events (for example being called by another component), whereasactive com-
ponentsmanage their activation themselves, and can be executed in aseparate
thread. Some component models provide support only for passive components
(e.g. AUTOSAR, SaveCCM) while others have developed different ways for
component startup and execution (e.g. CCM, MS COM). Often, the mecha-
nisms for the activation of components are governed by the underlying middle-
ware [45] or operating system, or are taken from the supporting implementation
language.
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Construction classification

In accordance with the observations and reasoning from above, we identify
the following classification characteristics for interfaces and connections in the
construction dimension.

C.1 Interface specification, in which different characteristics allowing the
specification of interfaces are identified:

(a) The distinction of interface type: operation-based (e.g. methods
invocations) and port-based interface (e.g. data passing).

(b) The distinction between the provides-part and the requires-part of
an interface.

(c) The existence of some distinctive features.
(d) The language used to specify the interface.
(e) Interface levels which describe the levels of contractualisation of

the interfaces, namely syntactic, functional semantic and/or be-
haviour level.

C.2 Binding, which describes the characteristics of the patterns and mecha-
nisms used for binding components. It consists of two subtypes:

(a) The exogenous sub-category describes whether the component
model includes connectors as architectural elements or not.

(b) The hierarchical sub-category expresses the possibility of having
a hierarchical composition of components (horizontal composition
is an intrinsic part of all component models, thus it is implicitly
assumed to be supported).

C.3 Interactions, which comprise the following characteristics:

(a) Interaction style, which describes the main underlyingarchitectural
style used.

(b) Communication type, which details if the communicationused is
synchronous and/or asynchronous.
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2.2.3 Extra-Functional Properties

Components and component-based systems are carriers of a number of extra-
functional properties. The most basic support that a component model can
provide for extra-functional properties is to facilitate specifying such extra-
functional properties. For example in Robocop [15], components may spec-
ify the maximum execution time per method of an interface. A specification
of such properties makes it possible to check at the component’s deployment
whether a component breaks the system integrity or requiresmore resources
than the system can ensure.

Another type of support that a component model can provide isrelated
to the management of particular extra-functional properties. For example,
CCM [34] explicitly provides redundancy mechanisms for managing reliabil-
ity.

Yet another type of support provided by component models is related to
property compositions; it enables the prediction of systems properties derived
from the properties of the integrated components and the underlying compo-
nent framework.

In this section we discuss the EFP specification, managementmechanisms
and EFP composition issues, and then we identify the elements in the clas-
sification framework that make it possible to distinguish different component
models.

Specification of extra-functional properties

Component models rarely address the specification of extra-functional proper-
ties (which by definition belongs to metadata). In many cases, extra-functional
properties are specified implicitly, not as a part of a component model, but
as a part of the component technology. A basic form of EFP specification is
the one proposed by Mary Shaw [46], where an EFP is specified asa triple
〈Attribute, Value, Credibility 〉 whereAttributedescribes the property itself,
Value the corresponding data, andCredibility specifies the confidence in the
value. The attributeValue is often a simple data type, but some component
models provide a more complex value type (such as a reliability distribution).
The Pin component model has an associated “Predictability-Enabled Compo-
nent Technology (PECT)” [32] [47], which enables the specification and han-
dling of the extra-functional properties through “analytical interfaces”. Pin
requires that a reasoning framework is specified which defines how to anal-
yse a particular type of property. In Robocop [15], a resource model describes
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the resource consumption of components in terms of mathematical cost func-
tions, and a behavioural model specifies the sequence in which their operations
must be invoked. Based on this information, associated analysis techniques
can then analyse the total resource usage and response times. Similarly, Pal-
ladio [48] extends behaviour specifications with annotations (or extensions) of
their resource usage, and their failure probabilities. Together with a model
of the physical resources, performance and reliability metrics can be derived.
Most of the component models define extra-functional properties as attributes
of components or, more seldomly, as attributes of assemblies or of a systems.

Management of extra-functional properties

Component models provide different types of support for managing EFP. This
management is related to run-time extra-functional properties and realised in
combination of components and underlying component execution platform that
can often be integrated as a part of a middleware. Different mechanisms for
management of extra-functional properties (as well as for component deploy-
ments and communication mechanisms) can be found in [45]. Wedistinguish
four types of support (see Fig. 2.4):

1. Exogenous Management. The EFP management is provided outside the
components.

2. Endogenous Management. The EFP management is implemented in the
components, i.e. the component developers are responsibleto implement
it.

3. Management per Collaboration. The EFP management is realized in
direct interactions between components.

4. Systemwide Management. The EFP management is provided by the
component framework, or underlying middleware.
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Figure 2.4: Management of extra-functional properties

By a combination of these types we get four possible types of the EFP
support:

• Approach A(endogenous per collaboration). A component model does
not provide any support for EFP management, but it is expected that a
component developer implements it. This approach makes it possible to
include EFP management policies that are optimized towardsa specific
system, and also can cater for adopting multiple policies inone system.
This heterogeneity may be particularly useful when COTS components
need to be integrated. On the other hand, the fact that such policies
are not standardized may be a source of architectural mismatch between
components. A risk of using this approach is a hetereogeneity of poli-
cies for handling a single EFP in a system. As a result, managing and
predicting emerging properties at the system level can be very difficult.

• Approach B(endogenous systemwide). In this approach, there is a mech-
anism in the component execution platform that contains policies for
managing extra-functional properties for individual components as well
as for extra-functional properties involving multiple components. The
ability to negotiate the manner in which extra-functional properties are
handled requires that the components themselves have some know-ledge
about how the extra-functional properties affect their functioning. This
is a form of reflection applied to EFP management.
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• Approach C(exogenous per collaboration). In this approach, compo-
nents are designed such that they address only functional aspects and
are oblivious to EFP. Consequently, in the execution environment, these
components are surrounded by a container. This container contains the
knowledge on how to manage extra-functional properties. Inthis ap-
proach, containers are connected to other containers. Connected con-
tainers then manage the extra-functional properties for the components
that they encapsulate.

The container approach is a way of realizing the separation of concerns
in which components concentrate on functional aspects and contain-
ers concentrate on extra-functional aspects. In this way, components
become more generic because no modification is required to integrate
them into systems that may employ different policies for extra-functional
properties. Because these components do not address extra-functional
properties, they are simpler to implement. A disadvantage of the con-
tainer approaches might be a degradation of the system performance.

• Approach D(exogenous system-wide). This approach is similar to ap-
proach C, except that the system can coordinate the management of an
EFP from a global system-wide perspective (e.g. global loadbalancing).
Consequently, a more complex support need to be built into the compo-
nent execution platform.

Composition of extra-functional properties

The most difficult challenge in CBSE is related to composing extra-functional
properties. Compositions of extra-functional propertiesare based on different
composition theories, and, in addition, they are often not only the result of
compositions of component properties, but also depend on other elements of a
particular system architecture or even its environment. For example, determin-
ing the composition of component performance may depend on the scheduling
policies and the system architecture. According to [28], extra-functional prop-
erties can be classified in categories depending on the composition domains
(i.e. type of parameters that determine the composition). The following cate-
gories are proposed:
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• Directly composable properties: A propertypk of an assemblyA =
〈C1 ⊕ C2 〉 is a function of, and only of, the same property of the com-
ponents involved.

pk (A) = f (pk (C1) , pk (C2))

An example of such property is static memory consumption. Inthe sim-
plest case, the system static memory is the sum of component static
memories plus a constant.

• Architecture-related properties: A property pk of an assemblyA =
〈C1 ⊕ C2 〉 is a function of the same property of the components and
of the software architectureSA.

pk (A) = f (SA, pk (C1) , pk (C2))

An example of such property is performance: increasing the amount
of parallel processing impacts the performance of the system without
changing the properties of individual components (for details see [28]).

• Emerging properties: A propertypk of an assemblyA = 〈C1 ⊕ C2 〉
depends on several different propertiespi , pj of the components and of
the software architecture.

pk (A) = f (SA, pi (C1) , pi (C2) , pj (C1) , pj (C2) . . . )

An example of an emerging property is response time of an assembly
which depends on the execution time and resource consumption of the
involved components.

• Usage-depended properties: A property of an assembly is determined by
its usage profileU .

pk (A,U) = f (SA, . . . pi (Cj , Uj) . . .)

Reliability is an example of such property type. The reliability of a same
system can be different for the different usage profiles of that system.

• System environment context properties: A property of a systemS is de-
termined by other properties and by the state of the system contextX
defined by external parameters outside the system.

pk (S,U,X) = f (SA,X, . . . pi (Cj , Uj) . . .)

Examples of this type are security and safety. These properties depend
also on external conditions (such as different measures andprocedures).
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• Non-composable properties: Properties that are not composable. Exam-
ples of such properties are maintainability, robustness, portability, etc.

This classification indicates the limitations of the compositions of extra-
functional properties. In general, determining the compositions of component
properties becomes feasible only when restrictions are imposed on the design
of individual components. In practice, such restrictions are imposed by the
rules/constraints of the component model and system architecture. For exam-
ple, static memory usage of an assembly can be defined as the sum of static
memory usage of involved components, but only using particular composition
policies (e.g. no concurrency). Other properties are related to usage profile,
and if we cannot predict/specify the usage profile, we cannotpredict the sys-
tem properties.

Extra-functional properties classification

For the extra-functional properties, we provide a classification with respect to
the following questions:

E.1 Management of EFPs: Which type of management (if any) is provided
by the component model?

E.2 EFP specification: Does the component model contain means for the
specification of specific EFPs? If yes, which properties and in which
form?

E.3 Composability of EFPs: Does the component model provide means,
methods and/or techniques for the composition of certain extra-
functional properties and/or what type of composition?
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2.2.4 The Classification Overview

Fig. 2.5 summarizes the classification framework in a graph form. The num-
bered items that describe the classification elements of thethree dimensions
are listed in the figure.
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Figure 2.5: The hierarchical structure of the classification framework
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2.3 Surveying Existing Component Models

Using the classification framework, we can analyze component models de-
veloped in different research groups or in industry. In our classification of
component models, the first question is whether a particularapproach (model,
technology or method) is a component model or not. This appeared to be a dif-
ficult task due to the diversity of component models. Similarto biology, where
viruses straddle the border between life and non-life, there is a wide range of
models, from those having many elements of component models, yet not being
considered component models, via those that lack many elements, but still are
designated as component models, to those that are widely accepted as compo-
nent models. Therefore, we identify the minimum criteria required to classify
an approach as a component model.

The minimum criteria correspond to the definition of component models
given in the introduction and in Section 2.1:

1) A component model includes a component definition;

2) A component model provides rules for component interoperability;

3) Component functional properties are unambiguously specified by com-
ponent interface;

4) A component interface is used in the interoperability mechanisms;

5) A component is an executable piece of software and the component
model either directly specifies its form or unambiguously relates to it
via interface and interoperability specification.

Note that the items from the “lifecycle” and “construction”dimensions
from the classification framework belong in the minimum criteria, while extra-
functional properties are not included in the minimum, and many component
models do not provide that support.

There is a wide range of approaches that comply with some of the ele-
ments in the minimum criteria. For example, many modelling languages have
“components” and even (semi-)formally specify componentsand component
compositions. For instance in ADLs, the basic elements are components [49].
UML 2.0 provides a metamodel for components, interfaces andports. Still, we
have deliberately chosen not to select them as component models, in contrast
to other classifications such as [50]. One reason is that their purpose is not
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component-based development, but rather the specificationof system architec-
tures, and they do not provide any support for components as executable units.
Certain languages derived from UML, such as xUML [51], in which the com-
ponent specification is translated into an executable entity, are even stronger
candidates for consideration as component models. However, xUML and simi-
lar languages do not operate with components as first class entities (for example
components are not treated as separate development or executable entities), but
again the components are treated only as architectural elements.

On the other side of the lifecycle line are services. It can beargued that
services are special types of components. Services are focused on run-time re-
trieval and run-time deployment. Similar to components, services are specified
by an interface, and provide support for construction [52].Still, we have not
included services in the classification for similar reasonsas those that applied
to ADLs — they are not defined as executable units. In analogy to ADLs,
services are not component models but rather use component models.

2.3.1 Component Model Selection

In our classification framework, we have selected 24 component models that
we encountered in the research literature and in practice, namely:

• AUTOSAR (AUTomotive Open System ARchitecture) [8], a new stan-
dard architecture created by a partnership between severalmanufacturers
and suppliers from the automotive field.

• BIP (Behaviour, Interaction, Priority) [44], a framework developed at
Verimag for modelling heterogeneous real-time components.

• BlueArX [10], a component model developed and used by Bosch for the
automotive control domain.

• CCM (CORBA Component Model)] [34], a part of the CORBA 3 stan-
dard defined by Object Management Group (OMG).

• COMDES II (COMponent-based design of software for Distributed Em-
bedded Systems, version II) [53], a component-based software frame-
work aimed for efficient development of reliable distributed embedded
control systems with hard real-rime requirements.

• CompoNETS [54], a general-purpose component model developed at
the Université de Toulouse 1 that uses high-level Petri-Nets for behaviour
modelling.
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• EJB (Entreprise JavaBeans) [33], a component model developed by Sun
MicroSystems.

• Fractal [43], a component model developed by France Telecom R&D
and INRIA.

• Koala [12], a component model developed by Philips for building soft-
ware for consumer electronics.

• KobrA (KOmponentenBasieRte Anwendungsentwicklung)] [31], a
general-purpose software engineering method for the development of
component-based application frameworks.

• IEC 61131[40], a standard for the design of Programmable Logic Con-
trollers approved by the International Electrotechnical Commission.

• IEC 61499[55], a standard developed by the International Electrotech-
nical Commission to support the development of automation and control
systems.

• JB (Java Beans) [37], a portable, platform-independent software compo-
nent model for the Java Standard Edition platform.

• MS COM (Microsoft Component Object Model) [35], one of the most
commonly used general-purpose component model for desktopand
server side applications.

• OpenCOM [56], a lightweight component model developed at Lan-
caster University.

• OSGi (Open Services Gateway Initiative) [38], a consortium of indus-
trial partners working together to define a service-oriented framework
with open specifications.

• Palladio [48], a component model developed at Karlsruhe Institute of
Technology and FZI Karlsruhe for early performance predictions of
component-based software architectures of business information systems.

• Pecos(PErvasive COmponent Systems) [57], a joined project between
ABB Corporate Research and Bern University that provides a compo-
nent model for the development of software for field devices.
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• Pin [32], a component model, developed at Carnegie Mellon Software
Engineering Institute (SEI),to serve as basis in prediction-enabled com-
ponent technologies (PECTs).

• ProCom (PROGRESSComponent Model) [22], a component model for
control-intensive distributed embedded systems developed at Mälardalen
University.

• Robocop (Robust Open Component Based Software Architecture for
Configurable Devices Project ) [15] [58], a component model devel-
oped by the consortium of the Robocop ITEA project, inspiredby COM,
CORBA and Koala component models.

• Rubus [11], a component model developed as a joint project between
Arcticus Systems AB and Mälardalen University for development of dis-
tributed, resource-constrained, embedded control systems, with a mix of
hard-, soft- and non real-time requirements.

• SaveCCM (SAVE Components Component Model) [14], a component
model for predictable embedded control applications in theautomotive
domain, developed as a collaboration between several Swedish universi-
ties.

• SOFA (Software Appliances) [59], a component model developed at
Charles University in Prague.

While some of these component models are in widespread industrial use,
others are used as demonstrators or vehicles for illustrating research ideas. The
classification framework does not show the success of particular component
models, or any business model, but is based only on their technical charac-
teristics. The component models that we have included in thelist are briefly
characterized [17]. A more detailed description of each component model with
the characteristics defined in the classification frameworkcan be found in a
technical report in [60].

For some of the component models that we found, our selectioncriteria
were satisfied; however, because of the scarcity of available documentation
about some component models, it was impossible to get the necessary detailed
information (which usually is a sign that no activity aroundthe model is going
on). In these cases, we have decided to omit them from our list.
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2.3.2 Methodology

Our research methodology followed an empirical approach consisting of the
successive iterations of the steps of: (i) observations andanalysis, (ii) clas-
sification, and (iii) validation. The observations and analysis included study-
ing of a number of component models and the literature related to the gen-
eral principles of CBSE [61, 42, 62, 27, 29, 7, 41], and related classifica-
tions [49, 28, 63, 50]. In addition, we utilized our own experience gained from
the development of the SaveCCM [14], ProCom [22], and Robocop [15] com-
ponent models, and our tight cooperation with industry thatused some compo-
nent technologies in their development (ABB (COM, Pin), Ericsson (Service-
oriented architecture), Philips (Koala, Robocop), Volvo (AUTOSAR, Rubus),
Arcticus (Rubus)). Based on this, our classification framework was built, incre-
mentally populated and refined with a set of component models. The validation
consisted of trying to fit at each iteration a larger set of component models into
the framework. Further validation was performed by discussing the framework
with several CBSE-experts from industry and academia and with researchers
in the broader field of software engineering. For several component models,
we contacted their developers and obtained feedbacks on theclassification we
proposed for “their” component models. The resulting analysis and discussions
have also led to a refinement of the framework.

2.4 The Comparison Framework

The characteristics of the component models are collected in the tables below,
following the dimensions in the classification framework, namely lifecycle (Ta-
ble 2.1), construction (Tables 2.2 and 2.3), and extra-functional properties (Ta-
ble 2.4). Following each table, a short discussion summing up our observations
is presented.

2.4.1 Lifecycle Classification

Table 2.1 shows the lifecycle dimension, indicating the characteristics of the
selected component models in different lifecycle stages (modelling, implemen-
tation, packaging and deployment).
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Table 2.1: Classification for the Lifecycle Dimension

Component
Models

Modelling Implementation Packaging Deployment

AUTOSAR N/A C
Non-formal

specification of
container

At compilation

BIP
A 3-layered representation:
behaviour, interaction, and

priority
BIP Language N/A At compilation

BlueArX ASCET-MD models C Packages At compilation

CCM N/A Language independent JARs, DLLs At run-time

COMDES II ADL-like language C N/A At compilation

CompoNETS Petri Nets Language independent JARs, DLLs At run-time

EJB N/A Java JARs At run-time

Fractal
ADL-like language

(Fractal ADL, Fractal IDL),
Annotations (Fractlet)

Java (Julia, Aokell)
C/C++ (Think)

.Net lang. (FracNet)

File system
based repository

At run-time

Koala
ADL-like languages
(IDL,CDL and DDL)

C
File system

based repository
At compilation

KobrA UML Profile Language independent N/A N/A

IEC 61131

Function Block Diagram (FBD)
Ladder Diagram (LD)

Sequential Function Chart
(SFC)

Structured Text (ST)
Instruction List (IL)

N/A At compilation

IEC 61499 Function Block Diagram (FBD) Language independent N/A At compilation

JavaBeans N/A Java JARs At compilation

MS COM N/A OO languages DLLs
At compilation
and at run-time

OpenCOM N/A OO languages DLLs At run-time

OSGi N/A Java JARs
At compilation
and at run-time

Palladio
Meta-model based specification

language

Language independent
(specific support for

Java)
N/A N/A



46 Chapter 2. Classifying Software Component Models

Table 2.1: Classification for the Lifecycle Dimension

Component
Models

Modelling Implementation Packaging Deployment

PECOS ADL-like language (CoCo) OO languages JARs, DLLs At compilation

Pin ADL-like language (CCL) C DLLs At compilation

ProCom
Meta-model based specification

language
REMES

C
File system

based repository
At compilation

ROBOCOP
Meta-model based specification

language
Resource management model

C and C++ ZIP file
At compilation
and at run-time

RUBUS Rubus Design Language C
File system

based repository
At compilation

SaveCCM
ADL-like (SaveComp)

Timed automata
C, Java

File system
based repository

At compilation

SOFA 2.0
Meta-model based specification

language
Java

File system
based repository

At run-time

From this table, we can observe that the most common focus of compo-
nent models is on the implementation stage. Some component models even
exclusively support the implementation stage. Additionally, some component
models support the run-time stage by providing a run-time platform that fa-
cilitates run-time reconfiguration or a management of extra-functional system
properties.

The modelling stage is characterized by an extensive use of domain-specific
modelling languages, whereas standard modelling language, such as UML or
ADLs are less common. We can also note that 32% of the component mod-
els gathered in the framework do not provide any support for the modelling
of components or component-based applications, but cover only the imple-
mentation part (specification and deployment). All these component models
that omit the modelling stage are from the state of the practice, and many of
them widely used. One can ask why component models in practice seldom
cover component and system modelling. The reason for this can be found in
the common state-of-the-practice. In many industrial projects, designs are ex-
pressed in a non-formal way, mainly for documentation purpose only, or in a
semiformal way, possibly using UML. In both cases, neither the precise defi-
nitions of components nor their interactions are assumed tobe of high priority,
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and no high needs for modelling components and component-based systems
are expressed. This is also an indicator of the differences between state-of-
the-art and state-of-the-practice: many solutions from the state-of-the-art that
include the modelling have still not been realized or scaledup in practice.

Further, we can observe from Table 2.1 that with regards to implementa-
tion, component models can be divided into four groups:i) language-
independent (18%),ii ) OO language-based (36%), with a clear dominance of
Java,iii ) C language (36%), andiv) domain-specific language-based (10%),
either compiled to C or directly interpreted. The dominanceof OO languages
is not surprising since technologies based on the OO paradigm are dominant
today, and because many principles from OO are directly usedor further de-
veloped in CBSE. The “C language” component models are prevailing for
domain-specific component models that target more the development of em-
bedded and real-time systems. The C-language provides moreand easier ac-
cess to details of operating system and underlying hardwareplatforms facilitat-
ing optimisations. Domain-specific programming languagesare tightly related
to the modelling of component-based systems and components, and obviously
used for a more efficient design and implementation.

Packaging and component repositories are not the main focusof component
models. In most cases, certain standard archives are used (such as DLL or JAR
packages), also as deployment units. The lack of repositories indicates a low
focus on reuse, in particular of COTS components.

Deployment at compile time and run-time almost occurs to an equal extent
among the component models being studied. Deployment at compile time lim-
its the flexibility at run-time, but on the other hand enableseasier predictability,
richer composition features (such as hierarchical composition), and more effi-
cient reuse (such as deployment of implementation parts that will be used in
the application). This might be a reason why this is the primary deployment
style chosen by specialized component models (see Table 2.5). From this ta-
ble, we can observe that the most common focus of component models is on
the implementation stage. Some component models even exclusively support
the implementation stage. Additionally, some component models support the
run-time stage by providing a run-time platform that facilitates run-time recon-
figuration or a management of extra-functional system properties.
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2.4.2 Construction Classification

Table 2.2 presents the interface characteristics of the selected component mod-
els, and Table 2.3 the binding and interaction specifications. Table 2.2 shows
that most of the interfaces are of the operation-based type,which means that
the component models use methods and parameters for defininginterface sig-
natures. Still, many component models use ports as the interface elements to
exchange data. In port-based interfaces, input and output interfaces consist
of ports that receive and send data, respectively (often designated as sink and
source), hence corresponding to the concepts of provided and required inter-
face. Such component models are typically used in embedded systems and
have their basis in hardware components. Several of the component models
examined do not distinguish required from provided interfaces, but their inter-
face is referred only to the “provided” interface, which is similar to what exists
in the object-oriented approach. These component models are essentially used
in practice, and are developed earlier, even on the way to becoming obsolete
(like MS COM, for example). They illustrate the evolution ofCBSE.

Because interfaces are a mandatory part of the component specification, all
component models provide at least the first level, i.e. syntactic specification.
A considerable number of component models also have behaviour specifica-
tions, in most cases represented by a particular form of finite state machines
(statecharts or timed automata). Here we distinguish behaviour specification
of components (used for the modelling and predictability ofthe behaviour of
the system), from specifications used for synchronization (for the communi-
cation between the components). In a few cases, component models allow
behaviour specification with resource consumption to be combined, or some
other attribute specifications, which makes it possible to model resource usage
or performance or some other properties. Examples of such component models
are Palladio, SaveCCM, ProCom, and Pin. Only few component models offer
support for defining the functional semantic level of interfaces. If there is sup-
port, then this is mostly addressed through the use of pre- and post-conditions.
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Table 2.2: Classification for the Construction Dimension
Interface Specification

Component
Models

Interface
type

Distinction
of Provides/

Requires
Distinctive features Interface Language

Interface
Levels

(Syntactic,
Semantic,
Behaviour)

AUTOSAR
Operation-

based
Port-based

Yes AUTOSAR interface C header files Syntactic

BIP
Operation-

based
Port-based

No
Complete interface

Incomplete interface
BIP Language

Syntactic
Semantic
Behaviour

BlueArX Port-based Yes
Configuration interface

Analytic interface
XML adhering to the

MSRSW DTD
Syntactic

CCM
Operation-

based
Port-based

Yes
Facet and receptacle
Event sink and event

source
CORBA IDL (CIDL) Syntactic

COMDES II Port-based Yes N/A
C header files

State charts diagrams
Syntactic
Behaviour

CompoNETS
Operation-

based
Port-based

Yes
Facet and receptacle
Event sink and event

source

CORBA IDL (CIDL)
Petri nets

Syntactic
Behaviour

EJB
Operation-

based
No N/A

Java Programming
Language +
Annotations

Syntactic

Fractal
Operation-

based
Yes

Component interface
Control interface

IDL, Fractal ADL,
Java or C

Behavioural Protocol

Syntactic
Behaviour

Koala
Operation-

based
Yes

Diversity interface
Optional interface

IDL, CDL Syntactic

KobrA
Operation-

based
N/A N/A UML Syntactic

IEC 61131 Port-based Yes N/A N/A Syntactic

IEC 61499 Port-based Yes
Data
Event

N/A Syntactic

JavaBeans
Operation-

based
Yes N/A Java Syntactic

MS COM
Operation-

based
No Ability to extend interface Microsoft IDL Syntactic
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Table 2.2: Classification for the Construction Dimension
Interface Specification

Component
Models

Interface
type

Distinction
of Provides/

Requires
Distinctive features Interface Language

Interface
Levels

(Syntactic,
Semantic,
Behaviour)

OpenCom
Operation-

based
No

Interfaces additional to
COM-interface managing
lifecycle, introspections,

etc.

Microsoft IDL Syntactic

OSGI
Operation-

based
Yes Dynamic interface Java Syntactic

Palladio
Operation-

based
Yes Parametrization

Palladio language
(similar to CORBA

IDL)

Syntactic
Behaviour

PECOS Port-based Yes Ability to extend interface
Coco language
Prolog query

Petri nets

Syntactic
Semantic
Behaviour

Pin Port-based Yes N/A

Component
Composition

Language (CCL),
UML statechart

Syntactic
Behaviour

ProCom Port-based Yes
Data and trigger port

Message port
XML based,

REMES
Syntactic
Behaviour

Robocop Port-based Yes
Ability to extend and

annotate interface

Robocop IDL
(RIDL),

Protocol specification

Syntactic
Behaviour

RUBUS Port-based Yes Data and trigger port C header files Syntactic

SaveCCM Port-based Yes
Data, trigger, and
data-trigger port

SaveComp
(XMLbased)

Timed Automata

Syntactic
Behaviour

Sofa 2.0
Operation-

based
Yes

Utility interface
Possibility to annotate
interface and control

evolution

Java
SPC algebra

Syntactic
Behaviour
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Table 2.3 (binding and interactions) shows that binding mechanisms in
component models are in most of the cases of the endogenous type — i.e. con-
nectors are not defined as particular architectural elements. However, many
component models use components as connectors or the connectors are auto-
matically generated in the integration/deployment stage and are not being used
as entities for modelling.

We can also observe that many component models do not supportvertical
binding. Vertical binding is implemented either through delegated interfaces
(i.e. selected interfaces from sub-components build up theinterface of the
composite components) or as aggregation in which the composite component
includes all the interfaces of the aggregated components. Very few component
models provide means of hierarchical composition, and if so, then it is only
with regards to few particular extra-functional properties (for example BIP and
SaveCCM for timing properties).

From the information in Table 2.3, one can conclude that the dominating in-
teraction styles in component models are “request-response” (typically used in
client/server architectures), and “pipe & filter”. Some component models even
have additional interaction styles such as event-driven, broadcast or rendez-
vous. The choice of the interface style is strongly correlated to the interface
type (operation vs. port-based) provided by the component model.

The dominant communication type in component models is synchronous.
Component models that provide support for asynchronous communication also
support synchronous communication. This indicates that component models
are not concerned with architecture (architectural design), but rather with tar-
geting detailed design.

Table 2.3: Classification for the Construction Dimension
Binding and Interactions

Binding Interactions
Component
Models

Exogenous Vertical Interaction Styles Communication
Type

AUTOSAR No Delegation
Request-Response,
Sender-Receiver

Synchronous,
Asynchronous

BIP No Delegation
Triggering,

Rendez-vous,
Broadcast

Synchronous,
Asynchronous
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Table 2.3: Classification for the Construction Dimension
Binding and Interactions

Binding Interactions
Component
Models

Exogenous Vertical Interaction Styles Communication
Type

BlueArX No Delegation
Sender-Receiver,

Request-Response
Synchronous,
Asynchronous

CCM No No
Request-Response,

Triggering
Synchronous,
Asynchronous

COMDES II No No Pipe&filter Synchronous

CompoNETS No No Request-Response
Synchronous,
Asynchronous

EJB No No Request-Response
Synchronous,
Asynchronous

Fractal Yes
Delegation,
Aggregation

Multiple interaction
styles

Synchronous,
Asynchronous

Koala No
Delegation,
Aggregation

Request-Response Synchronous

KobrA No
Delegation,
Aggregation

Request-Response Synchronous

IEC 61131 No Delegation Pipe&filter Synchronous

IEC 61499 No Delegation
Triggering,
Pipe&filter

Synchronous

JavaBeans No No
Request-Response,

Triggering
Synchronous

MS COM No
Delegation,
Aggregation

Request-Response Synchronous

OpenCOM No
Delegation,
Aggregation

Request-Response Synchronous

OSGi No No
Request-Response,

Triggering
Synchronous

Palladio Yes Delegation Request-Response
Synchronous,
Asynchronous

PECOS No Delegation Pipe&filter Synchronous
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Table 2.3: Classification for the Construction Dimension
Binding and Interactions

Binding Interactions
Component
Models

Exogenous Vertical Interaction Styles Communication
Type

Pin No No
Request-Response,
Message passing,

Triggering

Synchronous,
Asynchronous

ProCom Yes Delegation
Pipe&filter, Message

passing
Synchronous,
Asynchronous

Robocop No No Request-Response
Synchronous,
Asynchronous

Rubus No No Pipe&filter Synchronous

SaveCCM No
Delegation,
Aggregation

Pipe&filter Synchronous

SOFA 2.0 Yes Delegation
Multiple interaction

styles
Synchronous,
Asynchronous

2.4.3 Extra-Functional Properties Classification

Table 2.4 summarizes the characteristics of the selected component models
with respect to extra-functional properties. We observe that many component
models provide certain support for the management of extra-functional prop-
erties, either system-wide or per container (characteristic examples are redun-
dancy, or authentication support). In several cases, a particular EFP support
is implemented as an extension to a standard technology (forexample COM+
used in MS COM and .NET technologies). However, a smaller number of
component models have formalisms for EFP specifications. A significantly
smaller number of component models provides means for the composition of
extra-functional properties. This is particularly true for commercial component
models. Clearly, the composition of extra-functional properties still belongs to
the research challenges. A majority of extra-functional properties that are man-
aged by component models belong to resource usage and timingproperties.
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Table 2.4: Classification for the Extra-Functional Properties Dimension

Component
Models

Management of EFP EFP specification Composability of EFP

AUTOSAR Endogenous per collaboration (A) N/A N/A

BIP Endogenous system wide (B) Timing properties Behaviour compositions

BlueArX Endogenous system wide (B)
Resource usage and timing

properties
Reasoning frameworks

CCM Exogenous system wide (D) N/A N/A

COMDES II Endogenous system wide (B) Timing properties N/A

CompoNETSEndogenous per collaboration (A) N/A N/A

EJB Exogenous system wide (D) N/A N/A

Fractal Exogenous per collaboration (C)
Ability to add property

(by adding property
controller)

N/A

Koala Endogenous system wide (B) Resource usage
Compile time checks of

resources

KobrA Endogenous per collaboration (A) N/A N/A

IEC 61131 Endogenous per collaboration (A) N/A N/A

IEC 61499 Endogenous per collaboration (A) N/A N/A

JavaBeans Endogenous per collaboration (A) N/A N/A

MS COM Endogenous per collaboration (A) N/A N/A

OpenCOM Endogenous per collaboration (A) N/A N/A

OSGi Endogenous per collaboration (A) N/A N/A

Palladio Endogenous system wide (B)

Performance, reliability,
resource usage,

system-level usage
properties

Performance and reliability

PECOS Endogenous system wide (B)
Generic specification of

properties including timing
properties

N/A

Pin Exogenous system wide (D)
Timing properties (by

adding analytic interface)

Different EFP composition
theories

(ex: latency)
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Table 2.4: Classification for the Extra-Functional Properties Dimension

Component
Models

Management of EFP EFP specification Composability of EFP

ProCom Endogenous system wide (B)
Generic specification of

properties including timing
and resource usage

Timing and resource usage
properties

at design and compile time

ROBOCOP Endogenous system wide (B)

Memory consumption,
timing properties, reliability

Ability to add other
properties

Memory consumption and
timing properties at

deployment

RUBUS Endogenous system wide (B) Timing properties
Timing properties at design

time

SaveCCM Endogenous system wide (B)
Generic specification of

properties including timing
properties

Timing properties at design
time

SOFA 2.0 Endogenous system wide (B) Behavioural (protocols) Composition at design

2.4.4 Component Models and Domains

The characteristics listed in the classification frameworkshow some patterns:
similar solutions belong to component models from similar application do-
mains, as for instance embedded systems or information systems. That is to
say that the requirements from the application domain penetrate into the com-
ponent model. Such component models are, as a consequence, specialised and
not so usable in domains that are subject to different requirements.

The other type of component models that have similar solution patterns
are general-purpose component models. They provide basic mechanisms for
the specification and composition of components, but do not assume any spe-
cific architecture beyond general assumptions (like interaction style, support
for distributed systems, compilation or run-time deployment). A general so-
lution that enables component models to be both generally applicable and to
cater for specific domains is the use of optional frameworks.

According to this, we distinguish the component models as:

• general-purpose component models;
• specialized component models.
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Table 2.5: General-purpose and domain-specific component models
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Table 2.5 lists the selected component models according to their dominant
use in particular domains.

We see that the distribution between general-purpose component models
and specialized component models is equal. It is likely thatthere are more spe-
cialized, proprietary component models that are not published. We have also
observed a migration of certain component models. For example, OSGi was
originally designed for embedded systems, but later has been used as general-
purpose component model in different domains. Conversely,general-purpose
component models have been adapted for particular domains by the addition
of new features or by applying some restriction to certain functions.

Specialized component models from our selection belong to two domains:
a) embedded systems, and b) distributed information systems. Component
models from the embedded systems domain have some common character-
istics: the “pipe & filter” interaction style is used, components are usually de-
ployable at compilation time, resource-aware, and often there is support for the
management of timing properties. These component models are significantly
different from general-purpose component models. The component models
from the information systems domains are more similar to general-purpose
component models. Typically, they have similar characteristics as general-
purpose component models, such as the use of “request-response” interaction
style, support for run-time deployment, expandable interface, and implemen-
tation in object-oriented languages. Component models that target informa-
tion systems differ from general-purpose component modelsthrough specific
support for distributed components, data transaction support, interoperability
with databases, and some architectural solutions such as redundancy or loca-
tion transparency. In some cases, an extension of a component model is used
for its specialization (for example, COM+ is an addition to COM used for dis-
tributed component-based systems).
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Some general-purpose component models have a special feature; they have
mechanisms for generating new component models. They provide a set of
common principles and mechanisms to add new features, or change the exist-
ing ones (for example different implementation mechanismsfor bindings or
interactions). An example of these “generative” componentmodels is Fractal.
Fractal supports several variants of particular componentmodel elements —
for example, different type of binding and interaction, andthe use of differ-
ent programming languages (Fractal has Java-based and C-based implementa-
tions). Another example of such component model is Robocop.It provides
a mechanism for adding different elements of the model (suchas modelling
languages, implementations, metadata in a form of documentation, and man-
agement for extra-functional properties). A particular instance of a Robocop is
a component model that includes selected elements.

From the characteristics defined in the tables, we can observe that although
there are many component models, they show similar patternswithin the same
or related domains. We can conclude that this gives us a good basis to converge
different component models into a smaller number of component models ded-
icated to domain-specific requirements.

2.5 Conclusions

In this chapter, we have first presented a thorough study of the main concepts
related to the notion of component models. Using this as a basis, we have
derived a framework that allows classifying and comparing component models
according to these concepts. The intention of this work is toincrease the under-
standing of the component-based approach by identifying the main concerns,
common characteristics and differences of component models. The proposed
framework does not include all the elements of all componentmodels since
many of them have unique solutions. However, the framework identifies min-
imal criteria for considering a model to be a component model, groups the
characteristics into dimensions and enables a more systematic approach for
their analysis and comparison.
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From the use of the classification framework with a set of twenty-four se-
lected component models, the following conclusions that are of interest for the
thesis can be drawn:

1) All the principles promoted by CBD are not always included in all
component models. This means that, there is, currently, no complete set
of principles that applies to all component models. Many of the princi-
ples used in component models are directly taken from other approaches,
such as object-oriented development, and ADLs, and furtherdeveloped.
As a result, this provides diverse solutions for similar approaches.

2) Common patterns exist between component models from the same
domain. For example, general-purpose component models utilize the
“request response” style, while in the specialized domains(mostly em-
bedded systems) “pipe & filter” is the predominant style. Similarly, the
“C language” is prevailing for component models that specifically target
the development of embedded and real-time system.

3) A generic support for specifying and composing extra-functional
properties is currently lacking. Few component models have
formalisms for EFP specifications, and significantly fewer for their com-
positions. There are several reasons for that: in practice,explicit mod-
elling and reasoning about of extra-functional propertiesis still not
widespread; furthermore, many different extra-functional properties ex-
ist and many of them are not composable, or not directly composable
but instead depend on external factors such as underlying platform, us-
age scenario, or the context in which the system is running.



Chapter 3

Defining
Multi-Valued Context-Aware
Extra-Functional Properties

As identified in Chapter 2, a few component models provide support for spec-
ification and management of extra-functional properties throughout the devel-
opment process. In most cases, this support is limited to a single phase and
unlike the well-established solution of embodying functionalities into inter-
faces, no consensus has emerged on how to handle extra-functionality in com-
ponent models. When this support exists, it takes differentforms: additional
interfaces, annotations, or a language separated from the component models.
These challenges on extra-functional properties management can be explained
by the many aspects of extra-functional properties and the specific require-
ments of their usage within component-based development which increases
the complexity of their management even more. Accordingly,the purpose of
this chapter is to:

• Identify the various aspects and the corresponding challenges that must
be taken into consideration for expressing, assessing and using extra-
functional properties in component-based development.

• Define the key concept of multi-valued context-aware extra-functional
properties to enable their management in component models,and by ex-
tension, in component-based development.

59
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3.1 Extra-Functional Properties in Component-
Based Development

In this section, we examine various aspects of extra-functional properties rele-
vant for component-based development, namely their heterogeneity, their multi-
valued nature and their context-sensitivity. Reciprocally, we also correlate as-
pects of component-based development, that are reusability and the separation
between component type and instances, with extra-functional properties. For
each of these aspects, we identify several challenges that must be addressed
to provide a suitable management support for extra-functional properties in
component-based development.

3.1.1 An Heterogeneous Data Set

Extra-functional properties provide additional information about the compo-
nents, complementing the structural information that is provided by the com-
ponent model. This additional information is intended to give a better insight
in the behaviour and capability of the component in terms of reliability, safety,
security, maintainability, accuracy, compliance to a standard, resource con-
sumption, and timing capabilities, among many others. As stated in [28], the
exhaustive list of possible extra-functional properties to consider is endless and
there is no a priori, logical or conceptual method to determine which properties
exist in a system or in components. Due to this, there is currently no unique
list of extra-functional properties.

This problem inheres in one of the fundamental characteristics of extra-
functional properties and properties in general: they are issued by humans.
Therefore, different users will consider different types of information impor-
tant for the development of the software system, and for the same property
they might associate a different meaning and representation. For example, the
worst-case execution time (WCET) is commonly defined as“the longest exe-
cution time of a program that could ever be observed when the program is run
on its target hardware”[64]. However, since it is not possible to obtain the ac-
tual WCET, estimations such as over-, under- and probabilistic approximations
are often implicitly used as a substitute. Yet, these valuesare fundamentally
different. This difference is important to know in hard real-time systems, for
instance, since for this type of systems the timing properties must be ensured.
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The same is true about the representation of their value (data representa-
tion). A WCET can be expressed in standard time units such as milliseconds,
or clock cycle. On the other hand, a parametric WCET is expressed in terms of
formula which parameters are criteria that influence the value.

Further, different techniques can be used to assess extra-functional prop-
erty value and different techniques often produce different results. Continuing
with the WCET example, the WCET value can be assessed throughdifferent
techniques as surveyed in [65]: static analysis methods, measurements-based
methods, and can be either safe or unsafe. A safe method will ensure that the
computed value is always greater than the actual WCET value in adding some
safety margin to all predictions, whereas other estimationtechniques such as
probabilistic methods do not provide such guaranty. In one hand, they might be
closer to the actual WCET but on the other hand, they cannot guaranty that in
practice, the execution time will never be superior to the estimated value. This
is problematic for safety-critical real-time systems. Therefore, it is important
to know the techniques that have been used in the assessment of a given extra-
functional property, as well as the various parameters thatthese techniques
relies upon.

Identified Challenges

From the text above, the challenges that need to be solved to propose a system-
atic support for the management of extra-functional properties are:

Challenge 1.1How to support the high heterogeneity of extra-functional prop-
erties (hetereogeneity of definition, representation, usage and
assessment methods)?

Challenge 1.2How to ensure that an extra-functional property is used in the
intended way?

3.1.2 Extra-Functional Property and Multi-Valuation

During the software development process, extra-functional properties emerge
as additional information that needs to be available eitherto guide the devel-
opment, to make decisions on the next step to follow, to provide appropriate
(early) analysis and tests of the components, or to give feedbacks on the current
status. This need for information starts already in early phases of the develop-
ment, in which extra-functional properties are consideredas constraints to be
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met and expected to be satisfied later on, thus becoming an intrinsic part of the
component or system description.

This implies that through the development process:

1) the meaning of an extra-functional property typically changes from a
required property to a provided/exhibited property (see Figure 3.1), and

2) its value changes too as the knowledge and the amount of information
about the system increases and as a result of design decisions being set-
tled.

As illustrated in Figure 3.1, extra-functional values are often successively re-
placed by the latest and most accurate ones. For example, thevalue of an
extra-functional property, estimated in a design phase, isreplaced with a new
value coming from a measurement after the implementation phase is com-
pleted. With more information available, analysis becomesmore precise and
reliable, and thus is able predict values closer to the actual one.

However, the gradual refinement of an extra-functional property towards
more accurate values is not always the expected way to deal with such proper-
ties. Often, values which are equally valid in the current development phase,
need to exist simultaneously. In other words, this means that the latest value
must not replace the previous one.

Requirements Specification Implementation V &V Release

Property value Set

20ms
requirement

15ms
early analysis

17ms
simulation

19ms
measures

22ms
Safe staticanalysis

Co-existing values
Legend:

required properties provided properties

Refinement

Figure 3.1: Co-existing values for a property
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This requires an ability for an extra-functional property to have multiple
values to handle different values produced by different sources, to keep the
required value and a provided value for verifying the conformity to the initial
requirement, or to compare a range of possible values to makea decision. In
difference to defining an extra-functional property per assessment techniques
such as “measured WCET” or “estimated WCET”, defining an extra-functional
property with multiple values allows instead to manipulatethe property as a
single concept centered around its semantics. This allows to sometimes ignore
details related to the assessment methods for example to focus on the value
itself. Like this, any of the values of the property could be used as a substitute
to perform additional analysis on the system.

Identified Challenges

Following this reasoning, we identify the two following challenges:

Challenge 2.1How to support the refinement of extra-functional property
value during the development process?

Challenge 2.2How to enable values that are equally valid to co-exist?

3.1.3 Extra-Functional Properties and Reusability

Dealing with extra-functional properties in the context ofcomponent-based
software engineering also raises the issue of reusability since it is one of the
cornerstone concepts around which the component-based approach is built.
While efficiency of reuse for the functional part of components has been proven,
reuse of extra functional properties is still a challenge.

When a component is reused in different applications or contexts, the extra-
functional properties associated to this component must also be reusable, in
the sense that their values are still accurate in the currentsetting. However,
many property values depend upon information outside the component model
itself. They are for example dependent upon factors such as the overall system
architecture, the usage profile, the specific hardware of thetargeted platform
and even upon the value of other properties.
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Therefore in order to reuse the extra-functional properties, means to express
the conditions under which the value is correct are required. A typical example
is again the WCET, which requires, for a tight result, information about the
compiler used to generate the executable code but also aboutthe target platform
specification such as the type of memory, processor or the presence of caches,
among many other factors.

Hence when a software component is reused in a new context, its corre-
sponding extra-functional properties, assessed in another context, might not be
accurate in this one. This means that to keep consistent all the information
concerning the component, both its expected behaviour and capabilities and
the actual ones, it is necessary to specify the conditions that must be fulfilled
so that the value of an extra-functional property remains valid.

However, strictly ensuring the respect of all these validity conditions is a
too restrictive approach since in this case, only the valuesfor which the validity
conditions are fully satisfied would be reusable. This wouldlimit the reusabil-
ity of some components only due to their extra-functional property values (val-
ues that might be false in the intended context). More practically, a component
should be reused even though the values of some of its extra-functional prop-
erties are not valid in the new context. In this case, either the extra-functional
property should not be reused or it can be still be reused but as a conscious
decision of the developer. For example, the value might be reused with a lower
accuracy or confidence, or with the data modified to add some safety margins.

Identified Challenges

The questions that emerge here are:

Challenge 3.1How to represent the context-sensitivity of extra-functional
properties?

Challenge 3.2How to ensure that values are still valid in a new context upon
reuse?
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3.1.4 Extra-Functional Properties in Hierarchical Compo-
nent Models

The existence of hierarchical component models that also include composite
components — components built out of other components — influences the
ways in which the extra-functional properties can be established. Alike the
composability challenges for components, we would also like to be able to
reason about their composition, in that sense that the values of a propertyP
of a compound elementA is the result of a composition of the values of the
sub-componentsC1 andC2 :

A = C1 ◦ C2 ⇒ P(A) = P(C1 ) • P(C2 )

with ◦ a composition operator for the components
• a composition operator for the properties

Ideally, all extra-functional properties of a composite component should
be directly derivable from the values of its sub-components. However, as de-
scribed in [28], finding a suitable composition operator forthe properties is
generally difficult since the value of many extra-functional properties is influ-
enced by other factors such as the software architecture, other properties, the
usage profiles and/or the current state of the environment.

Even for composable extra-functional properties, we arguethat it is bene-
ficial to allow them to also be stated explicitly for the composite component
as such. In particular, this allows analysis of the system also at an early stage
of the development when the internals of a composite component under con-
struction are not fully known, or not fully analyzed with respect to the extra-
functional properties required to derive a value on the composite component.

The specification of extra-functional properties of a composite component
is illustrated by the example in Figure 3.2. The composite component has been
explicitly given an estimated value of a static memory usage, and another value
is provided by composition, which in this example simply means a summation
over the sub-components.

Identified Challenges

The question that derives from above is:

Challenge 4.1How to support composition of extra-functional property val-
ues?
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Figure 3.2: A composite component with explicit and derivedvalues.

3.1.5 Extra-Functional Properties and
Component Types and Component Instances

Similarly to the object-oriented paradigm, component-based software engi-
neering distinguishes between component types and component instances. A
component typedefines the common characteristics that are shared by all its
instances such as the component name, its functionality, the names of its inter-
faces, its implementation. Conversely, acomponent instanceis a representa-
tion, either at design-time or run-time, of the corresponding type. Many com-
ponent instances corresponding to a given component type can be created. Be-
sides, inheriting characteristics from its type, a component instance can also
possess instance specific information.

Component instances are used in hierarchical component models to built
compound component types, a.k.a. the composites. This is a recursive process,
in which a component instance can be in its turn an instance ofa composite
component type. A representative example of such a case is visible in Fig-
ure 3.3 with the instanceB1 of the component typeB. Indeed, the component
typeB is composite component built out of the instanceE2 of the component
type E. As a result, a hierarchical component model leads to have multiple in-
stantiation levels, i.e. a hierarchy of component instances. In spite of this, most
component model considers mainly one level of instantiation.
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Figure 3.3: Relations between component types and hierarchy of component
instances.

When looking at extra-functional properties in this context, the following
questions emerge:

1) What are the influences of the dichotomy between componenttype and
component instance on the values of the extra-functional properties?

2) What is the impact of the multiple instantiation levels onthese values?

Similarly to the concept of subtyping in object-oriented paradigm, the value
of an extra-functional property specified for a component type must also hold
for all its instances (see the inheritance link for the extra-functional property
P1 between the component type E and its instances in Figure 3.3). However,
for some properties, as for example the worst-case execution time, the value
of such a property can be smaller in a more constrained environment. Hence
in considering the design of the composite component in which an instance
is used, extra-functional property values defined on this instance can be make
tighter in regards to the values defined on the component type. For example, a
smaller value range on an input parameter could remove an execution path that
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would otherwise lead to greater WCET. Hence, this means thatit should be
possible to refine an extra-functional property value, defined for a component
type, on one or several of the component instances as illustrated in Figure 3.3
with the refinement link.

However, assessing an extra-functional property value directly on a com-
ponent type might not be straightforward since this value should hold for all
the component instances. Instead, defining an extra-functional property value
for a component instance in a given context is simpler. In this case, this means
that it should be possible to make a value defined on a component instances
available for a component types.

Identified Challenges:From Component Type to Component Instances

Challenge 5.1What are the extra-functionalproperty values defined on a com-
ponent type that can be refined on the component instances?

Challenge 5.2How can this refinement be supported?

Challenge 5.3Are there any constraints associated with the refinement of a
particular property?

Identified Challenges:From Component Instances to Component Type

Challenge 5.4How does extra-functional property values specified on com-
ponent instances influence values on the component type?

Challenge 5.5How can extra-functional property values defined on compo-
nent instances be generalized to component type?

Challenge 5.6Are there any constraints associated with the generalization of
a particular property?
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3.2 Definitions

A straightforward way to specify extra-functional properties is to use
〈name, value〉-pairs of annotations. However, this gives too much freedom
concerning the definition and it brings problems to manage extra-functional
properties at a large scale or in automated processes such ascomposition or
analysis.

In order to move towards a precise formalisation of extra-functional prop-
erties, which allows an unambiguous understanding and a precise semantics
both with respect to meaning and valid specification format of the value, we
consider extra-functional properties as multi-valued andcontext-aware arte-
facts that must be integrated into component models and managed in a sys-
tematic manner. Accordingly, in this section, we define the concept of multi-
valued context-aware extra-functional property through aset of formal defi-
nitions. These definitions are the foundations for the development of a frame-
work for integrating extra-functional properties in component models and man-
aging them in a systematic manner.

This framework is based upon two formal definitions: the definition of
attribute typethat specifies a class of extra-functional properties and the one
of attribute instance(also called attribute value) that refers to a given extra-
functional property value associated with a specific element of a component-
based design. This is similar to the dichotomy between the concepts of “class”
and “class instance” in object oriented programming. Likewise, an attribute
instance must comply with the specific structure imposed by its corresponding
attribute type.

Notations

We denote byF (e) (resp. G(e)), the function that retrieves the elementF

(resp.G) from a tuplee = 〈F,G〉.

3.2.1 Attribute Type

The attribute type provides a consistent definition for the representation and
usage of extra-functional properties. It specifies how a given extra-functional
property is represented, i.e. what data type is required forits values and how
they should be manipulated. Having such a definition serve asbasis to au-
tomate the assessment of extra-functional properties during the development
process.
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Definition 1. An attribute type is defined by a tupleAtttype so that:

Atttype = 〈TypeID ,Attributable+,Data format ,

SupportMechanism ,Documentation〉

where,

• TypeID is a unique identifier for the type.

• Attributable is a set the elements of a component model to which
extra-functional properties of type TypeID can be attachedto.

• Data format specifies the data type used to represent the values.

• SupportMechanism is a tuple specifying mechanisms to manipu-
late the extra-functional properties in a consistent way.

• Documentation describes the extra-functional properties in natu-
ral language. That documentation must supply enough information
to primarily clarify the meaning of the attribute type as well as its
intended usage.

Type Identifier

The type identifier element (i.e.TypeID ) is the key that allows retrieving the
corresponding attribute type. For simplicity purpose, thename of the property
is used as the unique identifier in the remaining of the thesisas illustrated in
Table 3.1. Table 3.1 gives an illustrative representation of some attribute type
specifications.

Attributable

As mentioned in [7], the additional information provided byattributes does
not necessarily concern the component as a whole, but in factoften points
more precisely to some parts of a component such as an interface or an oper-
ation of an interface. In our view, this relation should not be limited to com-
ponents, interfaces and operations, but be extended so thatattributes can be
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associated with other elements of a component model, including for example
ports, connectors or more notably component instances. Forinstance, having
an extra-functional property on connectors to capture communication latency
makes it possible to reason about the response time of complex operations that
involve communication between components. Similarly enabling specifying
extra-functional property on component type and componentinstance is the
first step towards enabling their refinement as envisaged in Section 3.1.5.

Following this standpoint, we define asattributablean element of a com-
ponent model (component, interface, component instance, connector, etc.) to
which extra-functional properties (attributes) can be attached. By this means,
all attributable entities are treated in similar way with regards to the definition
and usage of attributes.Attributable hence represents the set of the elements
of a component model to which extra-functional properties of a given type
TypeID can be attached to.

Data Format

The set of possible data format varies a lot from one propertyto another as
explained in section 3.1.1. This means that the part of attributes concerned
with expressing data must be represented in an unambiguous and well-tailored
format implying that in addition to supporting primitive types such as integers,
floats, etc., and structured types such as arrays, complex types must also be
covered. These complex types include representation of value distributions,
various external models, images, formulas, etc. The data format is defined
through a data type that describes the precise storage format that an extra-
functional property value must conform to. The data type must be issued from
a type system.

Support Mechanisms

Support mechanism corresponds to the collection of all the mechanisms re-
quired to handle extra-functional properties in a consistent way. Such mecha-
nisms include, but are not limited to, suitable compositional operators, viewers,
editors, refinement policies, allowed cardinality, etc. Inthat sense, the set of
supporting mechanisms is defined as follows:
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SupportMechanism = 〈Cardinality ,Operator ,Policy∗,

Viewer ,Editor , . . .〉

where,

• Cardinality represents the cardinality of the extra-functional
properties, i.e. how many values an instance of this attribute type
can have for a given attributable.

• Operator specifies the compositional operator if any, i.e. how to
derive the value of an extra-functional properties specified for a
composite component from the sub-components and from the en-
vironment.

• Policy is one of the refinement policies described in Chapter 4.

• Viewer specifies how the extra-functional properties should be vi-
sualised.

• Editor specifies how the properties should be modified.

• . . . informally denotes that additional supporting mechanisms
could exist in the tuple.

3.2.2 Attribute Registry

Each attribute type is stored in a repository of attribute types, which contains
the pool of extra-functional properties that can be assigned to the entities of
component models, i.e.:

Definition 2. An attribute registry,R, is a set of all attribute types avail-
able in a given design context or in the supporting developing environ-
ment.
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Table 3.1: Attribute type specification (without documentation).

TypeID Attributables Data Format Examples of Support Mechanisms

Value
Range

Port [Float, Float]
Viewer: Values are visualized directly.
Editor: Values are modified with a dedicated
editor.

WCET
Component,

Instance,
Service

Int

Viewer: Values are visualized directly.
Editor: Values are modified directly.
Policy: Values can be refined in the compo-
nent instances.

Static
Memory
Usage

Component,
Instance

Model

Viewer: Values are visualized with a dedicated
viewer.
Editor: Values are dedicated editor.
Operator: Values for composite components
can be derived by adding the values of the
component instances.

In this context, the uniqueness of each attribute type must be ensured as
implied by Property 1 below.

Property 1: Each attribute type in the registryR is unique, i.e.:
∀a1, a2 ∈ R, if TypeID(a1) = TypeID(a2) then a1 = a2.

Although this way of specifying attribute types provides the great advan-
tages of being open and extensible so that it can fit the multitude of extra-
functional properties which need to be defined, it still requires users to have an
intuitive and common understanding of what the meaning and intended usage
of the attributes were when they were created. Therefore, itis important to
provide proper attribute typedocumentation.

If the repository of attribute types is global, that is, it contains all possible
extra-functional properties independent of an application, it is then reasonable
to assume that hundreds of attribute types or more will be stored in it. Several
classification schemes (e.g. [66] and [67]) have been proposed which can be
used as basis to identify groups of attribute types such as “resource usage”,
“reliability”, “timing”, etc. These categories could allow navigation across
attributes more easily and possibly hide the whole subset ofattribute types that
are uninteresting for a particular project. A remaining challenge is in this case
to determine appropriate categories, as the proposed classifications are distinct
and often non-orthogonal as mentioned in [28]. However, this is not within the
scope of the definition.
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3.2.3 Metadata Type

It is important to document the way the value of an extra-functional property
has been obtained to ensure that information about a component (or another el-
ement of a component model) is correct and up-to-date, also when the compo-
nent is reused. This is done through the concept of attributevalue metadata, or
simply metadata, which role is to capture the context in which the correspond-
ing attribute value has been obtained: when, how and, possibly, by whom and
in which context.

Similarly to attributes, the concept of metadata also distinguishes between
metadata typeandmetadata instance, where metadata type specifies the com-
monalities shared by all the instances of a given type, and a metadata instance
is simply a value of the metadata, which characteristics conforms to what the
type imposes. More formally, a metadata type is specified as follows.

Definition 3. A metadata type is defined by a tupleMtype so that:

Mtype = 〈MetID ,Metadatable+ ,Value format ,Cardinality , . . .〉

where,

• MetID is a unique identifier for the type.

• Metadatable is a set of attribute TypeIDs to which the metadata of
type MetID can be attached to.

• Value format specifies the type used to represent the values.

• Cardinality represents the cardinality of the metadata, i.e. how
many values of this metadata type a given metadatable can have.

• . . . informally denotes that additional supporting mechanisms
could exist in the tuple. For example, it can be specified whether a
metadata must be present for a given metadatable.

Table 3.2 lists some examples of metadata type specification. However, the
question of determining a complete and non-orthogonal listof metadata types
that must be specified remains.



3.2 Definitions 75

Alike attribute types, metadata types must be stored in a repository. This
repository of metadata types must have access to the repository of attribute
types to be able to link the metadatable to existing attribute types.

Table 3.2: List of possible metadata type specifications in which “*” means
“any number of”

MetadataID Desc. Of Value Format Card.
Example of an Addi-
tional Mechanism

Creation Time * Timestamp 1
Mandatory: All at-
tributes must have this
metadata

Modification
Time

* Timestamp 1
Mandatory: All at-
tributes must have this
metadata

Version * Int 1
Mandatory: All at-
tributes must have this
metadata

Accuracy * Float 1
Optional: Can be
added on demand

Type
WCET
BCET
ACET

{“Estimation”,
“Guarantee”}

1

Mandatory: All the
attributes which type
is in “DescriptorOf”
must have this meta-
data

Source *

{“Estimation”,
“Measurement”,
“Simulation”,

”Derived”, . . .}

*
Optional: Can be
added on demand

Comment * Text *
Optional: Can be
added on demand
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3.2.4 Attribute Instance

Values of extra-functional properties are defined as attribute instances that con-
form to an attribute typeAtttype represented by its uniqueTypeID . Providing
that it is authorized by its type specification, an attributeinstance can be associ-
ated with any entity of a component-based design such as component, service,
port, connection or even component instance.

Definition 4. An attribute instance Attinst is defined by:

Attinst = 〈TypeID ,Data,Metadata+,ValidityConditions∗〉

where

• TypeID is the identifier of the corresponding attribute type.

• Data contains the concrete value for the property. The type of the
data must conform to the data format specified in the correspond-
ing attribute type.

• Metadata is a set of metadata instances represented as
〈name, value〉 pairs.

• ValidityConditions describes the conditions under which the
value is valid.

Notations

We denote byAttinst (e), the set of the attribute instances attached to an ele-
mente of a component-based designCM, and byattinst t (e) a set of the in-
stances so thatTypeID(attinst t ) = t. Additionally, for an instanceattinst t (e)
of an elemente ∈ CM, we use|attinstt(e)| as the notation for the number of
instances of typet attached toe.

Data

Data contains the concrete value for the attribute instance. Its type must con-
form to the data format specified for the corresponding attribute type. For
example, for the attribute type “Value Range” defined in the repository shown
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in Table 3.1, the data format is specified as an interval of tworational numbers.
Accordingly, a correct value for the data of a correspondinginstance could be
[10.5, 20.3]. Formally, this is specified by the following property:

Property 2: For an attribute instanceattinst (e) of an elemente of a compo-
nent-based designCM, the type of its datad is conformed to the data format
specified in the corresponding attribute type:

∀attinst t (e) ∈ Attinst , type(d) = Data format(atttype t
)

• where,type is a function allowing to retrieve the type of a data.

Metadata

Metadata are instances of a given metadata type as specified in Section 3.2.3.
A metadata instanceMinst is simply defined as a identifier-value pair:Minst =
〈MetID ,Value〉. Similarly to what is specified in Property 2 for the data of at-
tribute instance, the type of the value of a metadata instance must also conform
to the value format specified in the corresponding metadata type.

Validity Conditions

In studying the characteristics of extra-functional properties in component-
based development (described in Section 3.1.3), the following additional con-
cern emerges:

Data of a given attribute instance are not necessarily validin all
context.

Accordingly to fully benefit of extra-functional properties during compo-
nent-based development, it is important to know in what context an attribute
instance, or more exactly its data, can be used or not. This isthe role of the va-
lidity conditions which explicitly describe the conditions in which an attribute
value can be trusted. Validity conditions can be seen as a setof restrictions of
the applicability context of the attribute instances. Constraints on the under-
lying platform, specification of usage profile, and dependencies towards other
attributes are examples of such conditions. However, many different conditions
can be defined and, as with attribute types, an attempt to identify them all is
bound to fail. Yet, validity conditions must be defined in a strict manner and it
is important that they are publicly exposed.
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We identify three main “types” of validity conditions that must be ex-
pressed:

• Always: the value of the attribute instance is applicable in all context, i.e.
the value of the property is context-independent. A typicalexample of
such property is “Line of code”.

• A set of conditions: the value of the attribute instance is guaranteed to
be valid when the current context of use matches all the conditions. For
example, extra-functional properties such as “response time”, “memory
usage” which values are tightly dependent upon the target platforms and
the manner in which they have been assessed would need to havecondi-
tions such as “Platform=“Lego Mindstorms RCX”AND Source=“Static
Analysis with BoundT” ” defined (in this particular example,platform
and source refer to the two corresponding metadata types).

• Unknown (or undefined): there is no context associated with the attribute
instance. No guarantee can be made on its accuracy.

The complete definition on how validity conditions must be expressed re-
mains to be done.

3.3 Summary and Discussions

In this chapter, we have started by identifying a number of challenges resulting
from the use of extra-functional properties in component-based development.
These challenges relate to the heterogeneous nature of extra-functional proper-
ties (Challenges 1.1 and 1.2), their purpose within the development (Challenges
2.1 and 2.2), and other specific aspects directly related to the key principles of
component-based software development that are reusability (Challenges 3.1
and 3.2), composability (Challenge 4.1) and the relations between component
type and component instances (Challenges 5.1 to 5.6).

To address these challenges, we have then introduced the concept of multi-
valued context-aware extra-functional properties that highlights two important
aspects of the use of extra-functional properties in component-based develop-
ment:

1) their multi-valued nature, that is several extra-functional property values
can be equally valid in a given development context and therefore must
co-exist, and
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2) their context-awareness, i.e. extra-functional property values are typ-
ically dependent upon their usage context and this dependence must
be captured and made explicit in order to facilitate reusingthe extra-
functional properties together with the component they describe for ex-
ample.

Accordingly, the concept of multi-valued context-aware extra-functional prop-
erties is formally defined through the provision of four key definitions, namely
attribute type, attribute instance, attribute registry and metadata type. Alto-
gether, this builds the foundations towards the systematicspecification, man-
agement and integration of extra-functional properties incomponent-based de-
velopment.





Chapter 4

Managing Multi-Valued
Context-Aware
Extra-Functional Properties

In introducing, in Chapter 3, the concept of multi-valued context-aware at-
tributes to specify extra-functional properties, severalchallenges arise. These
challenges are mainly inherited from the ability for each attribute to have mul-
tiple values that are possibly equally valid in the current development context.
These values have been assessed in different ways, using different assessment
methods for example, or they have been assessed in differentcontexts. This
leads to the possibility to have a large number of values fromwhich it is nec-
essary to find the most suitable values to use in a given development context.
When the number of values goes above a certain threshold, this amount of data
actually becomes an hindrance. This can lead to an increase of the time needed
to identify relevant values or, in the worst case, to completely fail to spot them.
In that context, it becomes necessary to determine proper supporting mecha-
nisms to alleviate this issue and facilitate the managementof extra-functional
properties. Accordingly, the purpose of this chapter is twofold:

• Precisely identify the challenges brought by the introduction of multi-
valued context-aware extra-functional properties.

• Investigate and develop possible solutions to facilitate the management
of multi-valued context-aware extra-functional properties.

81
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4.1 The Inherent Challenges

Due to the introduction of multi-valued context-aware extra-functional proper-
ties, challenges emerge to enable their management during software manage-
ment. These challenges are the following:

Redundancy

Extra-functional property values being estimated by different assessment tech-
niques are generally different. Yet, nothing prevents a value to be produced
multiple times. For example, such redundant values appear when the same
analysis is applied several times but also when applied on different platforms
although the value of the extra-functional property is actually platform inde-
pendent.

Redundancy is a problem often encountered in database management that
leads to engineering and information overhead. In that particular domain, nor-
malisation techniques are used to remove redundant values while preserving
data integrity. Similar solutions are needed in the management of the redun-
dancy of multi-valued context-aware extra-functional properties. However, the
definition of such mechanisms requires first to be able to identify the redundant
values before deciding how to handle them.

Applicability

As explained in Chapter 3, extra-functional property valuecan be assessed in
different context with possibly different validity conditions. In that context,
the question of the pertinence of the value in the current development context
arises. For example, a worst-case execution-time analysishas been performed
for a component on a given platform. Later on, this componentis intended to
be reused on another platform. In that scenario, the component integrator faces
three choices:

1) This value is useful in the current development context.
2) This value is not at all applicable in the current development context.
3) This value is not directly applicable in the current development context

but it would be interesting to use it anyway, as an early estimation to
perform some analysis for example.

As a consequence of this possibilities, mechanisms to handle the diversity of
extra-functional property values must be provided.
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Confidentiality

In enabling extra-functional properties to be described through the provision of
suitable metadata and/or the context under which the value has been obtained,
this also allows to integrate the specification of functional properties without
hampering the utilisation of interfaces. In this context, functional properties
do not refer to interface specification of the operations handled by the com-
ponents, but to the modelling of the behaviour of the components in a format
suitable for analysis techniques such as timed automata model. By this means,
our intention is to increase the analysability and predictability of component-
based embedded systems, and enabling a seamless and uniformintegration of
existing analysis and predictions theories into componentmodels. However,
this reveals information concerning the details of the implementation of the
system or the components. This is not a major issue for in-house development,
but it naturally becomes more problematic for its utilisation in the development
of systems or components for which the implementation details must remain
hidden such as COTS components. In that context, all the models that have
served for analysis are packaged together with the components. The question
that arises in that case is how to ensure that the use of multi-valued context-
aware extra-functional properties does not reveal confidential information.

4.2 Identified Supporting Mechanisms per Man-
agement Concerns

In order to address the redundancy, applicability and confidentiality challenges
described in the previous section, the following management concerns must
be considered: conciseness, relevance, accuracy, transparency, consistency. In
this section, for each of this management concern, we identify a set of support-
ing mechanisms that are necessary to efficiently manage multi-valued context-
aware extra-functional properties in component-based development for embed-
ded systems.
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Conciseness

Except for specific cases, having the same value of an extra-functional property
multiple times is not more informative than having this value only once. On
the contrary, this is counter-productive because it adds information overhead
for the users. The conciseness principle consists in displaying only strictly
different values whenever possible. Conciseness can be attained by :

• Value Hiding. Value hiding is concerned with hiding multiple versions
of a value: only one version for each variant of attribute value should be
displayed. Other versions should be retrieved on demand.

• Value Aggregation. When several occurrences of a value can be found,
these values can be merged together including their metadata and validity
conditions into a single value.

• Duplicate Removal. Strictly redundant values should be removed.

Relevance

In a given development context, not all the extra-functional properties attached
to an element of the design are relevant. Only a subset of the values accurately
describes that element. In order to limit the engineering overhead and facili-
tate decision making, only the values relevant in the current context should be
visible and additional values should be accessible upon request when needed.
Relevance can be attained by:

• Value Filtering. Value filtering is closely related to value hiding but with
the difference that value filtering aims at masking irrelevant values in
the current context. That is to say values that are not directly related to
the current development context should be filtered out. To doso, it is
necessary to establish first the criteria that are required to identify the
values to filter out and then to determine what to do with the values
that are not directly relevant in the current context but that the developer
explicitly want to have.
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Accuracy

Having relevant extra-functional property values is not enough. They also must
be accurate. That is, they must describe as closely as possible the element they
are attached to. For example, values of extra-functional properties contribut-
ing to a component type are often over estimated to ensure that they are still
valid when the component is instantiated in several different contexts. Yet, in
benefiting for the knowledge of the usage context, values canbe made tighter.
Accordingly, accuracy can be attained by:

• Value Refinement. Value refinement is the process of gradually revis-
ing an extra-functional property value during the development process
towards its most accurate quantity. We differentiate between two types
of value refinement:refinement over timewhen the refinement is done
during the development as the knowledge of the system increases, and
refinement between component types and component instances.

Transparency

In general, available tools to compute extra-functional properties do not know
how to handle multiple values as they generally assume a single value such as
the WCET analysis presented in [65] which considers only oneWCET value
for each component. Accordingly, since most analysis methods can only pro-
cess one value, the questions that arise are: 1) which valuesare of interest for
a particular analysis, 2) how to select and use these values only and 3) how
to ensure that only one value is available per element. Transparency can be
attained through:

• Value Selection. This enables providing a suitable value to use in se-
lecting the most representative one in the current context according to
a given set of criteria. Such mechanism would facilitate integration of
existing assessment methods for extra-functional properties and their au-
tomation in the development process. Value selection is dependent upon
the task accomplished by an user.
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Consistency

Maintaining data consistency is a well-known problem in data management.
During the development process, artefacts used in the assessment of extra-
functional property values are often created, modified, moved or sometimes
even removed. This might lead a situation in which information provided by
an extra-functional property is not consistent with the supporting artefacts. In
practice, a lack of consistency management leads to lower the confidence in
the available extra-functional property values and force designers to recom-
pute and reassess the values after each modification or when acomponent is
reused.

In addition, many extra-functional properties are co-dependent, i.e. the
value of an extra-functional property directly influences one or several other
extra-functional property values. This means that a changein one of the value
should be reflected in the dependent values to keep them consistent.

As a consequence, it important to ensure that the extra-functional properties
and the related artefacts are kept consistent. Consistencycan be attained by:

• Consistency Constraints. This mechanism ensures that rules specifying
relationships between extra-functional property values are specified are
enforced.

• Value Evolution Tracking. The purpose of evolution tracking is to iden-
tify changes that have occurred during the development process that in-
fluence an extra-functional properties value. Two different types of evo-
lution tracking can be distinguished:i) tracking evolution of refined val-
ues, that enables identifying changes that have been performedof on a
value and checking whether the new values conforms to particular crite-
ria. ii ) tracking evolution of dependencies, that allows to detect changes
in elements upon which an extra-functional property value depend (im-
plementation, analysis model or another property for instance). In or-
der to enable value evolution tracking, mechanisms to enable managing
traceability between the source artefacts of the analysis and the assessed
values must be present. More details on a solution to addressthis issue
can be found in [68].
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4.3 Two Supporting Mechanisms

In this section, we describe two of the identified supportingmechanisms,
namely value selection in Section 4.3.1, and value refinement between com-
ponent type and instances in Section 4.3.2.

4.3.1 Value Selection

In introducing the possibility to have a different value foreach specific usage
context, the number of possible configurations of attributevalues to consider
can become too big to be manageable by hand. In addition, manytools as-
sume a single extra-functional property value for each element. This is why an
automatic or semi-automatic selection mechanism should beavailable for the
users.

To be able to select relevant values, it is necessary to be able to tell them
apart. To do so, we adopt similar principles to Software Configuration Manage-
ment (SCM) for the management of multi-valued context-aware extra-
functional properties. As explained in [69], SCM distinguishes two types of
versioning elements:

• Versions (also called revisions) that identify evolution of an item over
time. Usually the latest version of an item is the one available by default,
but an older version can also be used instead, for example through a
timestamp to select the latest version created before a specific time.

• Variants which allow the existence of different versions of the same item
at the same time.

These two concepts can directly be applied to the managementof multi-valued
context-aware extra-functional properties, thanks to thepossibility to have mul-
tiple values for attribute instances and the presence of metadata that allows
distinguishing them.

Accordingly, a subset of attribute instance (versions or variants) can be
obtained by the use of appropriatematching conditions. A matching condition
is a statement that is either derived from the set of available metadata types or
taken from a list of predefined keywords as specified in Definition 5.
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Definition 5.
Formally, we define a matching condition as:

〈Condition〉 ::= 〈MetCond〉 | 〈KeyCond〉

〈MetCond〉 ::= 〈MetID〉 〈Op〉 〈Value〉

〈Op〉 ::= “=” | “ 6=” | “<” | “≤” | “>” | “≥”

〈KeyCond〉 ::= a set of predefined keywords

〈MetID〉 ::= existing metadata type identifiers

〈Value〉 ::= values

For example, any metadata type specified in Table 3.2 in Chapter 3 can
serve as a basis to create matching conditions such asPlatform = “ARM7”,
Source= “Estimation”. Keywords, such aslatestto get the most recent version
or beforeto obtain value created before a certain timestamp, can be added as
additional selection conditions and shorthand notation for the most commonly
used matching condition and their combinations (see “and”-conditions in se-
lection filter below).

From the selection point of view, metadata and validity conditions are
equivalent. In the selection process, the configuration filter defines constraints
over metadata or validity conditions in the same way. The difference is how-
ever in understanding the purpose behind the use of the configuration filter and
in helping the developer in detecting possible problems in its definition.

A configuration filterenables to have more control over the values to re-
trieve by using one or several matching conditions. It is formally specified in
Definition 6. As illustrated in Figure 4.1, a configuration filter can be seen as a
sequence of matching conditions, combined throughANDor ELSEconnectors.
The “else”-conditions are tested in order until a subset of attribute instances is
selected. The “else”-condition(1) is evaluated first. If there is no attribute value
corresponding to the matching condition, then the second “else”-conditions(2)
is examined, and so on until either values are found or there is no value that
corresponds to the configuration filter.
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Definition 6.
Formally, we define a configuration filter as:

〈Filter〉 ::= 〈ConditionOr〉 | NULL

〈ConditionOr〉 ::= 〈ConditionAnd〉

| 〈ConditionAnd〉 ELSE 〈ConditionOr〉

〈ConditionAnd〉 ::= 〈Condition〉

| 〈Condition〉 AND 〈ConditionAnd〉

Condition1 AND Condition2 ELSE (1)

Condition3 AND Condition4 ELSE (2)

...

Figure 4.1: Abstract Representation of a Configuration Filter

A configuration filter can be applied to the entire system, or to a set of
components, and then all architectural elements expose particular versions of
the attributes that match the filter. This is important when some system prop-
erties are analyzed using consistent versions of several attributes (for example
in an analysis of a response time of a scenario performed on a particular plat-
form). For example, it is possible to define a configuration filter to apply on
the components in Figure 4.2. This configuration filter should “select attribute
values that have been assessed by measurement for platform ‘X’, or, alterna-
tively, values which have been defined for the release 2.0. Incase no value
corresponding to these criteria can be found, it is possibleto select the latest
values”.
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In this example, the configuration filter is expressed as follows:

(Platform = “X” ) AND (Source = “Measurement”) ELSE

(Label= “Release 2.0”) ELSE

Latest

First, it will attempt to select first all the values which metadata matches
“Platform= ’X’ ” and “Source= ’Measurement’ ”. If no value corresponds to
these two conditions, the filter will try to find values with a Label metadata
with a “Release 2.0” value. Again, if no value can be found, the latest version
of each attribute instance value is retrieved. The selectedvalues are marked
with a tick in Figure 4.2.
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Figure 4.2: Attribute value selection.
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In practice, two possibilities of dealing with attribute values exist:

• Attribute navigation. The possibility to navigate explicitly through dif-
ferent versions of an attribute (i.e. through different values), and update
the selected value (changing data, or metadata information, or modifying
the validity conditions).

• Configuration. Values are selected, for one or several attributes, accord-
ing to a given selection principle (e.g. based on version name or time-
stamp).

The first method is intended to be interactive and requires manual intervention
from the users. The underlying purpose is that the environment should provide
users with minimal set of values to view (see the concisenessprinciple in Sec-
tion 4.2). By default, this minimal set of values can be obtained by having only
the latest values available. However, it is important to enable users to easily
browse and access the “hidden” values when needed. On the other hand, the
goal with the second method, i.e. the configuration method, is to have auto-
mated activities. This can be useful for example to automateanalysis that must
be based on specific extra-functional property values.

The selection mechanism described here does not ensure the uniqueness
of the selection per element: i.e. that only one value is selected. If the con-
figuration filter leads to the selection of multiple values, several options exist
according to the purpose of the configuration filter. For attribute navigation, the
latest version is selected by default. For automated activities, several options
must be made available:

• manual selection: let the user decide the value to use wherever multiple
values have been retrieved;

• automatic selection: a warning is logged and a non deterministic selec-
tion is performed on this value set. However, the user must have the
possibility to review the selected values and change the selections man-
ually.

Moreover, for automated activities, the selection mechanism does not guar-
antee the existence of a value for all existing attribute instances. However, in
suitably configuring the selection filter, equivalent attribute values can be used
as substitutes of a value which otherwise would be missing. If no equivalent
value can be found, an error must be raised.
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4.3.2 Value Refinement between Component Type and In-
stances

In this section, we introduce the concepts and mechanisms toenable refining
multi-valued context-aware extra-functional propertiesin hierarchical compo-
nent models between a component type and its instances. Thisis usually not
supported in component models. The first step to enable such arefinement is to
explicitly specify the relationships that are allowed between a type and its in-
stances with respect to the attribute values. This is done through the definition
of a metamodel that precisely specifies these relations (seeFigure 4.3). Addi-
tionally, explicit definitions of property inheritance andrefinement policies are
also needed. These policies formally specify consistency constraints between
the refined values and the original ones. Without such policies, the consistency
between refined values and the original ones cannot be ensured.

Inheritance Refinement Metamodel

AttributeValue Instance Type
values

instanceOf

FGGH
superType

FGGHI
refines

FGGH
Figure 4.3: Metamodel for Multi-Level Instantiation and Refinement Support

of Extra-Functional Property Values

The metamodel shown in Figure 4.3 describes the key conceptswe propose
to enables a multi-level instantiation of extra-functional property values with
a support for their refinement. In it, the metaclassAttributeValuerepresents
the attribute instances as defined in Chapter 3. The possibility for an element
to have multiple attribute values is enabled through the composition linksval-
uesbetween the two metaclassesAttributeValueandInstance. The metaclass
Instancerefers to any element which is an instance of another elementsuch
as a component instance. The metaclassTyperepresents object type such as
a component type. Furthermore, object type can also have multiple attribute
instances thanks to the inheritance link between theInstanceandTypemeta-
classes. To allow consistency checking, refinement betweenvalues must be
tracked. This is done through therefinesrelationship.
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Refinement Mechanisms

To make the approach as generic as possible, we use the type instantiation and
specialization paradigm to support the refinement of extra-functional property
values. An object (component or any model element) can be refined by cre-
ating a new object which is an instance of the original one (e.g. a component
instance). We choose the following definition for a refined object: “an object
is a refinement of another object if all information defined bythe original ob-
ject is still valid for the refined object”, i.e. an original object is an abstraction
of a refined object. Furthermore, several objects can refine the same original
object, hence creating multiple variants of this object. These refined objects
can in their turn also be refined.

As illustrated in Figure 4.3 and described below, two mechanisms of re-
finement are provided:refinement by instantiationandrefinement by special-
ization. These mechanisms are based on the following assumptions:

– Assumption 1
Extra-functional properties are defined as annotations on the model ele-
ments;

– Assumption 2
Multiple values of extra-functional properties can be defined and there
are means to distinguish between them (using metadata for example);

– Assumption 3
An extra-functional property value is associated to exactly one model
element;

– Assumption 4
A refined object must be attributable, i.e. it should be able to have its
own extra-functional property values;

We distinguish between two types of refinement:

1) Refinement By Instantiation

The type-instance design pattern is often used in modellinglanguages
to allow specifying information in the type that will be shared by a set
of objects, i.e. the instances. There is an implicit conformity between
the instances and their type. For example, object-orientedprogramming
languages rely heavily on this pattern in which a class defines the set of
attributes and methods that all object that are instances ofthis class will
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inherit. In such languages, conformity is checked at compilation time
and at runtime. In general, an instance cannot be a type, which limits the
number of instantiation levels to one.

In our case as explained in Section 3.1.5, we want to allow refining an
object as many times as necessary. In this case, the number ofinstanti-
ation level is not limited. That is why aTypeinherits fromInstance. It
becomes possible to have instances which are also types enabling refin-
ing them with their instances.

To have explicit refinement traces, an instance is linked to its type thanks
to an instanceOflink. In order to facilitate evolution management, we
choose to forbid an instance to change its parent after creation time. In
other words, theinstanceOflink destination is defined at the creation
time of the source element.

2) Refinement By Specialization

In object oriented languages, a class can be the specialization of zero,
one or many other classes. A child class inherits all information from
the parent ones except some of them (for example their names). The
child class refines its parent class by adding new information such as
new attribute and new methods. We choose to manage only simple in-
heritance where a class can at most inherits from another class. To have
explicit refinement traces, a type is linked to his parent type thanks to a
superTypelink. As with instantiation, we choose to forbid a subtype to
change its super type, i.e. to point to another type, after creation time.

Inheritance Policies

The computation of refined attribute values is guided by inheritance policies to
ensure the consistency between refined values and the original ones. We have
defined three inheritance policies, that areFinal, OverrideandNotInherited.
An attribute type set with a final inheritance policy impliesthat that attribute
instances corresponding to this type and defined on a component type will al-
ways be inherited on the component instances. However, the values cannot
be modified on the instances; they can only be modified on the original object
on which it has been defined. An override attribute type is similar to a final
attribute type with the difference that inherited values can be modified on the
instances. In that sense, the value can be refined. In that case, OCL constraints
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can be specified to check the consistency of the refined value with the parent
one. Finally, a notInherited attribute value is never inherited.

Table 4.1 gives some examples of possible attribute inheritance policies for
various extra-functional properties. The attribute type “Vendor Name” cannot
be inherited at all. As a consequence, there is no need to haverefinement con-
straint defined for this attribute type. Conversely, the other attribute types can
be refined. As an example, if the WCET attribute type is specified as override
with the constraint that the refined value cannot be greater than the original
value, this definition will guarantee that all refined WCET values should be
smaller than the original value.

Table 4.1: Examples of attribute inheritance policies.

Identifier Inheritance Policy Constraint

Vendor Name NotInherited None

WCET Override OriginalValue≥ RefinedValue

Static memory Final None

Illustrative Example

Figure 4.4 illustrates an example of the creation of an instance of the model
elementO1. All contained elements, i.e. the transitive closure of containment,
which includesO2 andO3 model elements, are instantiated together withO1.
O5 which is not contained but referred to is not instantiated. All the links point-
ing to O5 are instead cloned on the newly created instances: in this example,
O3′ is linked toO5.

Taking the inheritance policies for the attribute type defined in Table 4.1 as
example, the VendorName value is not available on the instanceO1 whereas
WCET and static memory are available. This example also shows that the
WCET value has been refined to a smaller value inO1 and the static memory
usage cannot be changed since it is defined as final.

A illustrative example based on the proposed refinement mechanisms done
on a concrete component model is proposed in Chapter 8.
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Figure 4.4: Illustration of Instantiation with Extra-Functional Property Values

4.4 Summary

In this chapter, we have started by identifying three main challenges that de-
rive from the use of multi-valued context-aware extra-functional properties.
In order to provide a seamless and efficient management for these properties,
suitable supporting mechanisms must be defined. Accordingly, we have first
specified a set of basic supporting mechanisms to address theaforementioned
challenges, before proposing approaches for two of them; one for the selection
of attribute values corresponding to particular criteria and another one for han-
dling the refinement of attribute values between component type and instances.

According to how configuration filters are expressed and on what element
they are applied, the selection mechanism can be used for both hiding values
and selecting specific values. The values can be hidden or selected based on
their metadata, validity conditions, and other commonly used filtering criteria
such as latest.

In addition, the selection mechanism facilitates automated analysis in al-
lowing the use of semantically equivalent extra-functional properties when a
value is a missing value. For example, an analysis techniquesuch as “response
time analysis” that uses the worst-case execution time property values defined
on services can used indifferently a worst-case execution time that is obtained
by measurements or by static safe analysis.

The approach to refinement of property values between component types
and instances also facilitates the uses of equivalent values. In particular, it
avoids having to reassess values to make early estimations.



Chapter 5

nLight —
The Attribute Framework

Based on the concepts presented in Chapters 3 and 4, we have implemented
nLight, a framework that supports the management of multi-valued context-
aware extra-functional properties. The main purpose of this framework is to
provide a uniform and user-friendly structure to seamlessly and systematically
specify, integrate and manage extra-functional properties in component-based
development. In its current implementation, it is built as aset of Eclipse plu-
gins using the Eclipse Modeling Framework and it is intendedto be used con-
jointly with any development tool built on top of a componentmodel1 defined
through a metamodel. This allows extra-functional properties to be easily at-
tached to selected types of architectural element of the component model. In
nLight, extra-functional properties are specified throughan attribute type and
their values by multiple attribute instances. For each value, metadata and the
specification of the conditions under which the value is valid are enumerated.
The purpose of this chapter is to highlight the key aspects ofthe implementa-
tion of the framework, namely:

• Introducing the mapping of the concepts of multi-valued context-aware
extra-functional properties into a corresponding metamodel;

• Describing how a component model defined through a metamodelcan
be enriched with such properties;

• Characterising the extensible mechanisms for their specification.

1In this context, component model is not used in the strict CBSE sense. For example, UML or
AADL could use nLight as they provide modelling elements that can be considered as components.
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Figure 5.1: Overview of nLight’s main constituents

5.1 Overview

The attribute framework, nLight, features two main parts complemented by a
graphical user interface described in Section 5.5:

1) The core part
This part provides the core functionalities offered by the framework. It
is constructed around the “Attribute Framework Metamodel”based on
which an API has been generated using the Eclipse Modelling Frame-
work (EMF). This API provides basic methods to create, modify and
delete the entities described in the metamodel. Depending upon this, a
registry has been implemented to provides the necessary functionalities
to register and handle attribute categories and types (attribute type or
metadata type), and an API to support functionalities such as creation,
modification of attribute instances.

2) The extensible part
In order to support the high heterogeneity of extra-functional proper-
ties as described in Chapter 3, nLight must provide facilityto be easily
extended. This is done through the realization of extensionpoints us-
ing the extension point mechanisms provided by Eclipse. These exten-
sion points provide, among others, the possibility to add new attribute
types, metadata types, categories of extra-functional properties, and can
be used as support for filtering mechanism and integrating new assess-
ment techniques.
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Figure 5.1 illustrates the relations between these parts with the core part
corresponding to the Attribute Framework Metamodel, the API and GUI and
the attribute registry, and the extensible part to the provided extension points
and newly contributed attribute types, metadata types, categories and viewers
for instance. In addition, Figure 5.1 also highlights the intended use of nLight.
Analysis experts, who, for example, develop new analysis techniques, are in
charge of contributing to the framework through the provision of suitable defi-
nitions of extra-functional properties. These definitionsare then directly avail-
able to system developers and analysts.

5.2 Introducing Attributes

Following the definitions proposed in Chapter 3, multi-valued context-aware
extra-functional properties are conceptually modelled through theAttribute
Framework metamodel, which simplified representation is depicted in Fig-
ure 5.2. The dichotomy between attribute type and attributeinstance is pre-
served through the relation between theAttributeand theAttributeValuemeta-
classes respectively. Also, corresponding to the attribute instance definition, an
attribute value consists of data (Data), a set of metadata (Metadata), and pos-
sibly some validity conditions (ValidityConditions). The Attribute Framework
metamodel is the cornerstone around which nLight is built.

Attribute AttributeValue

hasType

���� Data

Metadata

ValidityContext

hasData

Has
Metadata

Is valid in ��������
����

ValidityConditions

hasConditions����
Attributable

hasValuescontributesTo

��������
Figure 5.2: Simplified representation of the part of the Attribute Framework

metamodel concerned with the multiple attribute instances.
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5.3 Extending Component Models with Attributes

To have extra-functional properties attached to an elementof a component-
based design, its corresponding type must beAttributable, meaning that the At-
tributable metaclass is the entry point to nLight. In other words, the metaclass
of the component model metamodel representing that elementmust extend the
Attributable metaclass of the Attribute Framework metamodel as illustrated
in Figure 5.3. For this simplified representation of a component model meta-
model, components and interfaces are attributables. On thecontrary, individual
methods in interfaces cannot have extra-functional properties.

Attributable

Component Interface�  ¡ �  ¡
Method

¢£¤¥£¦§¦¨ ¤£©§ª¤§̈ «¤£©§¬
­¨¨®¯°±¨§ ²®«¤§³£®´¤§̈ «¤£©§ªµ¶·¸¹ º»»¼½¾¿»À¾¸Á ÂÁ»ÀÃ¸ÀÄÄ Å

Figure 5.3: Defining Attributables for a Component Model

In order to enable the inheritance and refinement of extra-functional prop-
erty values between component types and instances, we applythe inheritance
refinement metamodel proposed in Chapter 4 to the Attribute Framework meta-
model. As a consequence, two metaclasses have been added to the Attribute
Framework metamodel as depicted in Figure 5.4:ObjectTypeandObjectIn-
stance. Both classes extend the Attributable metaclass and all model elements
must inherit from one of them. Either the metaclass represents a type and, in
this case, must inherit from ObjectType or it is an instance and in this case it
must inherit from the ObjectInstance metaclass.
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Attributable Object Instance Object Type

instanceOf

ÆÇÇÈ
superType
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Figure 5.4: Attributable Related Metamodel (see Chapter 4.3.2 for details)

5.4 The Registry

The registry manages the specification of attribute types, metadata types and
attribute categories. As shown in Table 5.1, the registry supports three types of
functionality:

• Registration functionalities to store the specification ofattribute types,
metadata types, and attribute categories.

• Retrieval functionalities which main purpose is to enable getting lists of
specifications contained in the registry. Specifications can be retrieved
for a given type identifier, a category, or the registry can provide the
complete list of all the specifications.

• Modification functionalities that help extending a specification with new
items. Examples of this include adding a new predefined set ofvalues
for a given metadata, new contributions of attribute types to attributable,
etc.

On the other hand, the registry prevents the suppression of types previously
registered. This is done to ensure that previously used typespecifications will
always remain available.

The implementation of the registry is built around an API forthe core func-
tionalities mentioned above and uses the extension point mechanism provided
by Eclipse to enable attribute type contributors to enhancethe pool of exist-
ing attribute types with their own. To do so, two extension points have been
defined: one to register new attribute and metadata types andone for new cate-
gories. Details on how to use these extension points to specify attribute types,
metadata types and categories are explained in the following sub-sections.
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Table 5.1: Overview of Functionalities Provided by the Registry

Type Spec-
ification

Registration Retrieval Modification
Un-

registration

Attribute Yes All, Subsets
Addition of new items
only (e.g. definition of

new attributables)
No

Metadata Yes All, Subsets
Addition of new items
only (e.g. definition of
new predefined values)

No

Category Yes All, Subsets No No

5.4.1 Specifying Attribute Categories

Extra-functional properties can be classified in differentcategories as defined
in various literatures such as [66] or [28]. However, not allclassification sort
the properties into the same categories and, what is more, categories are often
named rather differently. In order to provide flexibility inthe definition of
the attribute categories, we have implemented a dedicated extension point. In
contributing to this extension point as shown in the code 1, new categories such
as the“Timing category” can be made available to sort attribute types. Only
two parameters are required:id, a unique identifier for the category, andname,
which is the corresponding user-readable name for the category.

Code 1:Specification of the timing category

< category id = “timingCategory”
name = “Timing”

< /category >

In the attribute type specification, attribute can declare belonging to one of
the contributed category. If no category is defined, a default category“Misc”
is used.
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5.4.2 Specifying Attribute Types

Following the attribute type specification introduced in Chapter 3, an attribute
type is defined by a unique identifier, the list of attributables to which the prop-
erty can be attached to, a suitable data format for the values, a list of supporting
mechanism to manipulate the values of the instances and a documentation de-
scribing the extra-functional property and its usage. Accordingly, nLight is
built around similar notions as detailed below.

Contributing Attributes to Selected Entities of a Component Model

In order to precisely define the entities of a component modelto which a given
extra-functional properties can be attached to, two piecesof information are
required:

1) the metamodel of the component model that has been extended as ex-
plained in Section 5.3. This information is retrieved through the Uniform
Resource Identifier (URI) associated with each metamodel.

2) the lists of metaclasses that are attributable for the property. This list is
formed from the names of the corresponding metaclasses fromthe com-
ponent model metamodel. If the list is empty, all the elements from the
component model can be assigned with the given extra-functional prop-
erty. On the other hand, if this list is not empty, then only the elements
from this list can be assigned the given extra-functional property.

For example, as shown in the extract of code 2, the extra-functional prop-
erty “worst-case execution time”is attached to the component model
specified with the metamodel “http://www.mdh.se/metamodel.ecore”
and only ports, operations and components of this componentmodel will
be able to have extra-functional properties of this type attached to them.

The relation between attribute type (attribute), attribute instance (attribute-
Value) and attributable is depicted in Figure 5.5 which shows the part of the
Attribute Framework metamodel concerns with these concepts.
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Code 2:Contributing attribute to entities of a component model, anex-
ample

< attribute
id = “se.mdh.progesside.attribute.wcet”
name = “Worst Case Execution Time”
dataPackageURI = ‘‘http://DataTypeMM.ecore’’
dataType = “IntegerData”
[. . .] >
< targetPackage

uri = ‘‘http://www.mdh.se/metamodel.ecore’’ >
< ModelElementname = “Port” / >
< ModelElementname = “Operation”/ >
< ModelElementname = “Component”/ >

< /targetPackage >
< /attribute >

Attribute AttributeValue

hasType

ÉÊÊÉ
Attributable

hasValuescontributesTo

ËÊÊÌËÊÊÌ
Figure 5.5: Attribute Type - Attribute instance metamodel

Identifier

As shown in Code 2 with the“id” attribute tag, each attribute type is speci-
fied through a unique identifier. To ensure the uniqueness of the identifier, we
exploit Eclipse EMF and its capacity to generate universally unique identifier
(UUID) conforming to the standard developed by the Open Software Founda-
tion.
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Defining the Attribute Data

As mentioned in Chapter 3, the data format must correspond toa data type
used within a type system. For this, we have defined a generic and extendable
data structure, represented by the abstract metaclassData in the metamodel of
the attribute framework as illustrated in Fig. 5.6. Data represents the value of
an attribute instance. This metaclass can be specialized tocreate simple data
types that can in turn be used to create more complex data types. Attribute
type contributors can extend this structure with their own data type definition.
Additionally, the data type definition must include operations on the type, such
as a method to compare two data of a given type.

AttributeValue Data

1

-data

1

-value: Integer

IntegerData

-value: String

StringData

-value: Object

RefData

Figure 5.6: Attribute data.

Similarly to the specification of attribute types to the suitable entities of
the component models, specifying the data type also requires two parameters:
the metamodel of the data type to use and the name of the metaclass that rep-
resents the data format. Continuing with the ‘‘Worst-Case Execution Time”
example introduced before in Code 2, this attribute uses IntegerData as for-
mat for the value with the dataType parameter. This format isdefined in the
‘‘http://DataTypeMM.ecore’’ metamodel (dataPackageURI).

Configuring the usage

In addition to specify the data type for the attribute type, additional parameters
must also be provided to configure its usage. These parameters relate to the
supporting mechanisms described in Chapter 3 and are necessary to ensure that
all the corresponding attribute instances will be manipulated in a uniform and
consistent way. The following parameters are currently available in nLight:
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Data Serialization The Data Serialization parameter specify how the data
should be stored and retrieved.

Data Viewer This allows to specify how the value of the corresponding
attribute instances should be visualised by using a dedicated viewer.

Data Editor Similarly, the data editor parameter indicates how the values
should be modified.

Data Validator Data validators define constraints on the value. Such con-
straints include checking that the value is always positive, for instance.
When the data validation fails, several actions can be taken:

- GUI WARNING: Raises an alert only. It is the responsibility of the
users to fix it.

- OPERATIONABORT: Prevent the creation of the value.

Inheritance Policies This parameter allows to define the inheritance pol-
icy, i.e, how the property value should be derived from a component type
and to its instances in a controlled manner. The available inheritance poli-
cies have been defined in Chapter 4.3.2.

This set of parameters is not fixed. New parameters can be added to cover
additional supporting mechanisms such as a parameter to support comparing
and ordering attribute instances.

Documenting the property

Although not indispensable to the specification, it is important to properly doc-
ument the extra-functional property being defined. This is necessary to explain
to the intended users (system developers, analysts, etc.) how the property is
expected to be used, since the users are not necessarily the contributor of the
property. For that purpose, information regarding how its value must be rep-
resented, to which elements the property can be applied as well as supplying
a precise definition must be provided. The first part of the documentation is
automatically generated from the specification whereas theprecise description
of property (including its definition) must be provided as anHTML page. Fig-
ure 5.7 shows the final documentation rendered for the worst-case execution
type property.
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Figure 5.7: Screenshot of the generated documentation for the WCET
attribute type.
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Figure 5.8: Simplified representation of the part of the Attribute Framework

metamodel concerned with the metadata.

5.4.3 Specifying Metadata Types

Similarly to the attribute type, it is difficult to know beforehand the exact list of
needed metadata. The use of metadata in the Attribute Framework is two-fold:
i) it enables to distinguish between values and adds meaningful information to
the way the value has been assessed andii ) it provides a support for automat-
ing the management of attributes in the framework. As a consequence, the
proposed solutions to support metadata in nLight must be extensible. This is
achieved through a similar solution as the one proposed for the definition of
Attribute Type:

1) A dichotomy between Metadata Type and Metadata Instance (represented
in Figure 5.8 by the metaclassesMetadataTypeand Metadatarespec-
tively), and

2) by the reuse of the extensible concept of data by which it ispossible to
specify the precise data format for a given metadata type.

In doing so, all the mechanisms defined for the data as described previously,
can be made available for the metadata if needed.
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Furthermore, as all metadata types are not necessarily meaningful for all
attribute types, it is necessary to precise which metadata can be assigned to
the values of a given attribute type. This is done through therelation con-
tributesTo between metadataType and Attribute. For example, as explained
in [65], worst-case execution time calculation methods fall into two categories
(estimate or guarantee) and it is important to distinguish between them. A
metadata“TimingAnalysisType”as specified in Code 3 can be used to express
the nature of a worst-case execution time attribute for instance. Note, that the
list of attribute types to which a metadata type can be attached to and the list
of default values are not fixed at creation.

Code 3:Contributing a metadata type with predefined values to a subset
of attribute types

< metadataTypename = “TimingAnalysisType”
. . .
< ContributesTo ContributesTo =
“se.mdh.progesside.attribute.portsMaxExecTime”/ >
< ContributesTo ContributesTo =
“se.mdh.progesside.attribute.portsMinExecTime”/ >
< DefaultValue DefaultValue = “estimate”/ >
< DefaultValue DefaultValue = “guarantee”/ >
. . .

< /metadataType>

Cardinality

For some metadata, it makes no sense to have several metadatavalues of the
same type to describe a value of an attribute instance. Such metadata types
include for example version, modification time and accuracy. On the other
hand, for others, several values might be used such as comment for instance.

The cardinality parameter of the metadata type definition enables to specify
how many values of a given metadata type an attribute value can have. Three
cases are proposed:
N attribute values can have at most N instances of this metadata type.
* attribute values can have any number of instances of this metadata type.
+ each attribute value must have at least one instance of this metadata type.
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In addition, for each of the cardinality, the optionality ofthe metadata type
must also be specified: whether the metadata type isoptionalor mandatory. A
mandatory metadata type implies that it must always be provided whereas an
optional one can be omitted.

Framework Metadata vs. Descriptive Metadata

Metadata are classified in two groups: theframework metadataand thede-
scriptive metadata. The framework metadata are elements used to facilitate
the implementation of the main functionality in nLight, andthe implementa-
tion of more advanced mechanisms. Version, Creation Time and Modification
Time are some examples from this group. These metadata are mandatory and
must not be modified by the users of nLight, i.e. they are not beeditable.

On the contrary, descriptive metadata are elements used to provide addi-
tional information concerning the attribute value such as the way the value has
been obtained (Source metadata), or the platform on which that value is valid
(Platform metadata). These metadata are optional and can generally be modi-
fied by the user of the framework.

Table 5.2: Characteristics of Framework and Descriptive Metadata

Metadata
Type

Cardinality Mandatory Editable

Framework
1

(typically)
Yes No

Descriptive * No Yes

Having mandatory and non-editable metadata implies that those metadata
are always defined by the framework. This requires the existence of default
value setter that allows to set the value of the metadata uponcreation. Any
default value setter must implement the interface shown in the Interface Defi-
nition 4.
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Interface 4: Standard interface for value setters

public interface DefaultDataValueSetter{

/ * This method sets the default value for the
Data. * /

/ * Ret: the newly created data * /
/ * Arg1: the data to modify * /
public DatasetDefaultValue (Data data){
. . .
}

}

5.5 The Graphical User Interface

The main entry point for a system developer or an analyst to use the nLight
framework is the graphical user interface (GUI). As shown inFigure 5.9, the
nLight GUI consists of two main parts:

1) theAttribute Listwhich displays the list of attribute types available for
a currently selected element of a component-based design. This list is
sorted by attribute categories.

2) theProperties Pagewhich displays the attribute instances currently at-
tached to the selected element of a component-based design.This list is
also sorted by attribute categories. For each attribute instance, its values
with the corresponding metadata and validity conditions are displayed.

Figure 5.9: nLight’s Graphical User Interface
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5.6 Summary

In this chapter, we have described nLight, the framework specifically devel-
oped to support the seamless management of multi-valued context-aware extra-
functional properties in component-based development. nLight aims at elevat-
ing extra-functional properties as first class entities in component models that
do not per se provide support for them. As a result, nLight is not tight to a
particular component model.

Through the repository and dedicated extension points, users can contribute
to the framework in providing specifications of multi-valued context-aware
extra-functional property as attribute types. The specification provides suffi-
cient parameters to precisely define how the corresponding instances, i.e. the
values, must be handled. Based on these specifications, the framework pro-
poses a common graphical user interface in which users cani) see the complete
list of properties available for an element of a component-based design,ii ) vi-
sualise the documentation related to a given property, andiii ) add, modify or
remove in a uniform way extra-functional property values ofan element of a
component-based design.

Conforming to the definition of multi-valued context-awareextra-
functional properties from Chapter 3, one of the key features of the frame-
work is to allow several instances of a given attribute type to co-exist for an
element of the component-based design. As a result, new values do not replace
previously created ones. This, for example, allows to defineearly estimates
even before the architectural element is implemented, hence enabling early
reasoning on the design. Later, when the element is more mature, the early
estimates values can be refined with the values obtained fromanalyses or, al-
ternatively the early estimates can be kept as they are and new values can be
created instead, thus allowing comparing between the different values. This
is valuable when values have been assessed, for example, in using different
analysis techniques. Furthermore, if nLight is closely integrated with different
analysis techniques in a common development environment, values obtained
from one analysis can served as inputs to other analyses.



Chapter 6

The ProCom Component
Model

As pointed out in the introduction of the thesis, a key characteristic of em-
bedded system development is the importance of producing reliable embedded
systems in an efficient way. This is especially true for safety-critical and real-
time systems. One of the foremost concerns to enable such a development is to
satisfy the extra-functional properties. Others include the management of the
functional complexity and the strong coupling with the hardware platforms. In
that respect, the purpose of this chapter is to:

• Identify concepts and requirements suitable for a component-based ap-
proach for embedded systems development and its underlyingcompo-
nent model.

• Define ProCom, the component model supporting the approach.

• Describe how the conjoint use of ProCom and nLight facilitates the as-
sessment of extra-functional properties.

113
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6.1 Domain Requirements for Component-Based
Development of Embedded Systems

Embedded systems have specific requirements such as the timing demands and
resource limitations, with corresponding development needs. In order to bene-
fit from the known advantages of component-based development, one objective
is to use components throughout the development process starting from a rough
design of the system up to its final specification and deployable implementa-
tion. Another goal is to apply the component-based approachto the entire
distributed system, not only within each physical node in isolation.

In our view, this requires the provision of a fully integrated approach man-
aging traceability and dependencies between the artefactsgenerated during the
development process such as source code files, models of entities, analysis re-
sults, design variants, etc. as well as providing means for various analysis tech-
niques throughout the whole development process. Following this standpoint,
a suitable component-based approach for distributed embedded systems should
cover the whole development process starting from a vague specification of the
system based on early requirements up to its final and precisespecification
and implementation ready to be synthesized and deployed. Itshould also be
centered around a unified notion of components as a first-class entity gather-
ing requirements, documentation, source code, various models, predicted and
experimentally measured values, etc. and, improve the predictability of the
developed systems by easily enabling various types of analysis, storing and
managing the artefacts needed and/or produced by these analysis throughout
the development process.

Combining these specific aspects together results in additional concerns for
component-based development that are described in the following subsections.

6.1.1 Levels of Abstraction

The use of components throughout the whole development process means that
the concept of a component spans a wide range between vague and incomplete
specification to a very concrete one. During early design, components are used
as very abstract entities. At this stage, the component justsignifies a functional
unit with no or very little detailed specification (see(1) in Figure 6.1), and
the main objective is to decompose the system into smaller and more easily
manageable units(2). As the development process continues, the specifica-
tion of components is refined and more details are added. Components also
start having very concrete semantics such as specifying what happens when a
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component sends a message(3). Such a concrete specification is necessary to
perform detailed analysis and to eventually map the system to a set of tasks and
decide upon a deployment scheme. This process ends when the component or
system satisfies the requirements(4). At this point, components or the system
can be synthesized with possibly the use of optimisation techniques.

However, in reality, this process from abstract to concreteis not necessary
sequential:

• The exploration of different design possibilities impliesthe need to go
back and forth between the abstraction levels.

• The level of abstraction of different parts of a system can differ signif-
icantly, due to the fact that critical parts are typically specified in more
detail first in order to test the feasibility of the design. Moreover, reusing
existing components, such as D from(5), brings very well specified com-
ponents into a system whose other parts may still be relatively abstract.
This is visible in comparing component B and D in(3) in Figure 6.1.

• For some analysis techniques, it is necessary to keep a certain level of
abstraction (or being able to abstract away from a detailed specification)
as a more detailed specification would make the analysis method costly.
At contrary, higher abstraction levels might not contain information nec-
essary for a particular analysis and need to be concretized.

In summary, this means that components at different level ofabstraction
must be able to co-exist within the same model, and there has to be traceability
between a component at a high level of abstraction and its concrete form.

6.1.2 Component Granularity

In distributed embedded systems, it is necessary to model the overall system
structure, but also the detailed structure of individual parts, all the way down
to the low-level control functionality. The granularity aspect naturally follows
a decomposition pattern, in that it is possible to implementone component as
a composition of smaller components.

However, the large span between the top and bottom of the granularity scale
leads to components of very different size, and potentiallyof different seman-
tics. Large components in such systems (e.g., the engine control in a car, or one
production unit in an automation system) tend to be active (i.e., with their own
threads of activity and possibly even including their own real-time scheduler),
and encompassing complex functionality. Since the communication between
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Figure 6.1: Co-existence of different abstraction levels.

these components often involves communication over a network (e.g., a CAN
bus), it is typically realized by asynchronous messaging.

On the other side of the scale, there are smaller components responsible for
a part of some control functionality, such as computing the deviation of a mea-
sured value from the desired value, or for communication with a single sensor
or actuator. Since they represent composable low-level functional blocks, they
typically do not posses their own threads. Also, the communication between
them is much more tightly synchronized since most of the communication at
this level is between components located on the same physical node.

6.1.3 Component vs. System Development

Component-based development distinguishes component development from
the development of a system. This allows viewing componentsas reusable
blocks which may be developed independently and at a certainpoint assem-
bled to form a system. Although beneficial, this separation brings issues in the
development of embedded systems, where the coupling between the hardware
platform and the software is particularly tight. As a consequence, components
can no longer be developed without some knowledge on the target platform
where they are to be deployed. This is also true for many analysis techniques
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(e.g., detailed execution time estimation, which is not possible unless the ex-
act specification of the processor, memories, and compiler and linker flags are
known). Therefore, it is important to find a suitable trade-off between platform-
awareness and platform-independence. On one hand, information on the target
platform on which the component is intended to be deployed oron which it has
been used before, must be available. Yet, on the other hand, making the com-
ponent platform dependent should be avoided as this restricts the possibilities
to reuse it in different contexts.

6.1.4 Underlying Component Model

For a component-based approach to suitably support domain requirements,
they must also be reflected by the underlying component model. This results in
specific requirements being place on the component model. Directly derived
from the domain requirements identified in the previous sections, the compo-
nent model should:

• Cover the development process from early design up to the synthesis
phase.

• Support the co-existence of different levels of abstractions and their in-
terdependent relations.

• Simultaneously address the different requirements at different granular-
ity levels.

• Make the component platform-aware while maintaining its development
as platform independent.

Combining these requirements together leads to identify two orthogonal
dimensions that must be supported by the component model. The first dimen-
sion is the abstraction level, which describes the successive refinement from
abstract-to-concrete, i.e. from a rough sketch of a component to its final re-
alisation consisting of source code, detailed timing and resource models for
instance. The second dimension expresses the granularity level, i.e. the com-
plexity and size of the components to realise. Figure 6.2 illustrates on an exam-
ple the relations between these two dimensions with the abstraction dimension
corresponding to the abstract-to-concrete scale, and the granularity level to the
big-to-small scale. For example, an anti-lock braking system (ABS) that con-
stantly adapts the brake pressure in accordance with the wheel speed to prevent
wheel skidding while braking belongs to the big part of the scale. On the other
hand, a brake force controller which task is only to monitor and adjust the
pressure in a brake belongs to the small part of the scale. As illustrated in
Figure 6.2, a component can be in different abstraction levels.
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Ideally, a concrete realization should span the full range of all requirements.
However, since the span of both granularity and abstractionlevels is relatively
large, it would result either in loosely defined concepts or in a very compli-
cated component model to concretely develop. To mitigate complexity, the
granularity and abstraction concerns can be divided into subsegments handled
differently as illustrated in Figure 6.3.

Figure 6.3: Partitioning example of thegranularityandabstractionlevels.
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On the abstraction scale, the most abstract and concrete part are set apart
from one another. In the most abstract part, the structure ofthe models has
little in common with the concrete structure of the final system. For exam-
ple, a system might be modelled there as a collection of use cases, by activity
diagrams describing the overall system behaviour, or by entities representing
different aspects of the system functionality and dependencies between them.
These concerns are to a large extent covered by existing formalisms such as
UML and UML profiles dedicated to embedded and real-time systems, such
as SysML [70] or MARTE [71]. For most of these abstract modelling aspects,
concepts related to “big” and “small” units as on the granularity scale can be
found.

Note that each of the three segments in Figure 6.3 cover more than a single
point on each of the two scales. The abstract part modelled inUML may range
from very abstract use case modelling to relatively concrete specification of
temporal requirements, etc. Similarly, the concrete side of the scale still covers
several levels of abstractness, since the corresponding components at an early
stage can be specified as black boxes1, then gradually associated with more de-
tailed models specifying its behaviour and internal structure, and finally given
concrete source code implementation.

6.2 A Two-Layer Component Model

ProCom is a component model for distributed embedded systemthat has been
developed as the concrete component model addressing the requirements de-
scribed in the Section 6.1. The main characteristic of ProCom lays in layered-
structure: ProCom consists of two layers, an upper-layer called ProSysand a
lower-layer calledProSave. Components from both layers (ProSys and
ProSave) are uniformly viewed as units of design and implementation that can
be developed independently, stored in a repository, reusedin multiple applica-
tions, etc.

1In this specific context, a black box component refer to a component for which the inner im-
plementation has not been decided yet. It could be a primitive component, a composite component
or a COTS or a legacy component.
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ProSys covers the upper part of the granularity scale (i.e.,the “big” units in
Figure 6.3), and thus ProSys components are active and relatively independent.
In ProSave, the lower layer, components correspond more to the constituents of
the control functionality (i.e., the “small” units in Figure 6.3), and accordingly
they are passive and more tightly coupled. As described later in this section,
these two component types have different semantics and are also modelled in
different ways. However, the two layers are not independentand cannot either
be arbitrarily mixed. Instead, they are closely related since ProSave compo-
nents can be used to constructs the internals of individual ProSys components
(as described in Section 6.2.3).

In the rest of this section, we describe the two layers of ProCom and how
they are related. The detailed description of the componentmodel is available
in [72] with its formal specification in [73].

6.2.1 ProSys — the Upper Layer

In ProSys, a system is constructed as a collection of communicatingsubsys-
tems. Subsystems execute concurrently, and communicate by asynchronous
messages sent and received through typed output and inputmessage ports. This
communication style is suitable at this level of granularity, since it allows trans-
parent communication between subsystems independently ofwhether they re-
side on the same or different physical nodes.

Input and output message ports are not connected directly, but viamessage
channels— explicit design entities representing data that are of interest to more
than one subsystem. Multiple message ports (output- as wellas input ports) can
be connected to the same message channel, allowing n-to-n communication.

A benefit of these explicit message channels is that information about a
message, such as precision, format and whether it should be available to diag-
nostic tools, can be associated with the message channel instead of with a port
where the message is produced or consumed. This way, this information can
remain in the design even if, for example, the producer is replaced by another
subsystem. Also, since message channels can be introduced before any pro-
ducer or receiver of the message has been defined, it permits early modelling
of the run-time data managed by the system. Message channelsalso increase
the awareness of the signal and information exchanged between subsystems.
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ProSys allows hierarchical nesting of subsystems, i.e. a subsystem can in-
ternally consist of a collection of interconnected subsystems, accessible only
through the ports of the enclosing subsystem. Contrasting suchcompositesub-
systems, aprimitivesubsystem is realized either directly by non-decomposable
units of implementation (such as COTS or legacy subsystems), or by further
decomposition in ProSave as described in Section 6.2.3.

Example

To illustrate ProSys, we use as an example the electronic stability control (ESC)
subsystem of a car. This subsystem combines the functionality of the anti-lock
braking (ABS) and traction control (TCS) systems, whose task is to prevent
wheels from locking or spinning when braking or accelerating respectively, to-
gether with a stability control system (SCS) which handles sliding caused by
under- or oversteering by reducing the acceleration and by braking individual
wheels. In our example, braking is handled by the ESC subsystem itself, but to
decrease acceleration it communicates with the engine (seeFigure 6.4). Fur-
ther, it reports its activity and dangerous conditions to the driver’s information
panel.

The internals of the ESC can also be modelled in ProSys, as shown in Fig-
ure 6.5. Inside, there are subsystems corresponding to specific parts of the ESC
functionality (SCS, TCS and ABS). In our scenario, the TCS and ABS subsys-
tems are reused from previous versions of the car, while SCS has been added to
cope with under- and oversteering. These three subsystems compute responses
based on their internal sensors and the speed of individual wheels, which is
provided by a dedicated subsystem. The responses of the three subsystems are
combined by the “Combiner” subsystem. The overall brakeageand throttle re-
sponses are forwarded to the “Brake valves” subsystem to regulate the braking
pressure, and delegated to subsystems outside of the ESC, respectively.

Figure 6.4: The connection of ESC to other subsystems. Message ports are
connected via message channels.
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Figure 6.5: The ESC is a composite subsystem, internally modelled in ProSys.

6.2.2 ProSave — the Lower Layer

The ProSave layer targets the detailed design of subsystemsallocated to a sin-
gle physical node and interacting with the environment through sensors and
actuators.

A subsystem can be constructed by a collection of hierarchically struc-
tured and interconnected ProSavecomponents. These components are encap-
sulated and reusable design-time units of functionality, with clearly defined in-
terfaces, but contrasting the subsystem “components” in ProSys, these compo-
nents are closer in style to thetaskconcept traditionally used when developing
and analysing embedded systems.

ProSave is based on a pipe-and-filter architectural style with an explicit
separation between data and control flow. The former is captured bydata ports
where data of a given type can be written or read, and the latter by trigger ports
that control the activation of components. ProSave followsthe push-model for
data transfers and an input data port always contain the latest value written to
it. Data ports always appear in a group together with a singletrigger port, and
ports in the same group are read and written together in a single atomic action.
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Figure 6.6: A simple ProSave component with one input group and one output
group. Triangles and boxes denote trigger- and data ports, respectively.

Component semantics

ProSave components arepassive, i.e. they do not contain their own threads of
execution and thus cannot initiate activities on their own.Instead, each com-
ponent remains in a passive state until one of its input trigger ports is activated.

In its simplest form, shown in Figure 6.6, a component has a single input
trigger port, a single output trigger port, and a number of input- and output
data ports grouped together with the two trigger ports. The semantics of such a
component is that it is passively accepting data being written to the input ports
until the input trigger port is activated. When this happens, the component
switches into an active state, performing internal computations with the current
value of the input data ports as input (and possibly based on the internal state
of the component). The results of the computation appear atomically on the
output data ports, together with an activation of the outputtrigger port. When
the computation has finished, the component returns to the passive state.

More complex components can have several input port groups,each corre-
sponding to a particular service provided by the component.Also, each service
(i.e., each input port group) can have more than one output group, which allows
parts of the result to be made available at different points in time, for example
if some of the output is more time critical than the rest. Figure 6.7 shows an
example.

The semantics of general ProSave components is not much different from
the simple component semantics described above. The services are triggered
individually, not the component as a whole. At a given point in time, each
service is either in the passive or active state. When activated, a service only
uses values from the input data ports of its own group. The internal state, how-
ever, can be shared between all services of a component. Similarly, a service
can only produce output on the ports of its own output groups,and before the
service returns to the inactive state again, each of its output groups must have
been written once.
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S1

S2

Figure 6.7: A ProSave component with two services; S1 has two output
groups and S2 has a single output group.

Activations of the input trigger port of an active service are ignored, but in-
put data ports can receive data while the component is active. This data, how-
ever, can not affect the current computation, but will be used as input the next
time the service is activated (unless overwritten by a new value before that).
This means that once a service has been activated it is functionally (although
not temporally) independent from other components executing concurrently,
which simplifies analysis.

Primitive and composite components

ProSave components come in two basic types:primitive componentsrealized
by code, andcomposite componentsrealized by a collection of subcomponents.
For a primitive component, each service is implemented by a non-suspending
C function. There is also one function called at system startup to initialise the
internal state of the component. Figure 6.8 shows an exampleof the header file
of a primitive component.

Composite components internally consist ofcomponent instances, connec-
tions and connectors. A connection is a directed edge which connects two
ports of compatible types. Connections go from an output port to an input
port, but in this respect, the ports of the enclosing composite component are
inverted (meaning that, for example, an input port of the composite component
can be connected to an input port of one of the components instances inside).
Connectors, on the other hand, are constructs that provide detailed control over
the data- and control-flow inside a composite component. Theconnectors in
ProSave are selected to support typical collaboration patterns, but the set of
connectors is expected to grow over time as additional data-and control-flow
constructs prove to be needed. The initial set includes connectors forforking



6.2 A Two-Layer Component Model 125

[ . . . ]
t ypede f s t r u c t s a v e S 1 c p t s a v e S 1 c p t ;
t ypede f s t r u c t save S1 S1 svc save S1 S1 svc ;

t ypede f enum{
SAVE S1 S1 STARTING ,
SAVE S1 S1 tr iggerOut ,
SAVE S1 S1 FINISHED

} SAVE S1 S1 COMPUTATION STATE;

s t r u c t save S1 S1 svc
{

s a v e S 1 c p t ∗ c p t ;
char a c t i v a t e d ;
i n t c u r r e n t s t a t e ;
SAVE S1 S1 COMPUTATION STATE c o m p u t a t i o n s t a t e s [ 2 ] ;
i n t t r i g g e r e d o u t p u t s ;

i n t ∗ i n s p e e d ;
f l o a t ∗ i n d i s t ;
i n t ∗ o u t c o n t r o l ;
char c o n t r o l u p d a t e d ;

} ;

[ . . . ]

s t r u c t S 1 s t a t e
{

/ / S t a r t o f use r code s t a t e v a r i a b l e s d e f i n i t i o n
[ . . . ]
/ / End o f user code

} ;

vo id en t r y S1 S1 ( save S1 S1 svc ∗ svc ) ;
vo id S 1 i n i t ( s a v e S 1 c p t ∗ c p t ) ;

Figure 6.8: Excerpt of the header file of the component in Figure 6.6
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Figure 6.9: A typical usage ofselectionandor connectors. When component
A is finished, either B or C is executed, depending on the valueat the

selection data port. In either case, component D is executedafterwards, with
the data produced by B or C as input.

andjoining data or trigger connections, and for dynamicallyselectinga control
flow path depending on a condition. Figure 6.9 shows a typicalusage of the
selectionconnector together withor connectors. For a complete description of
all connectors, see [72].

6.2.3 Integrating the Layers: Combining ProSave and ProSys

The integration of the two ProCom layers allows a primitive ProSys subsystem
to be further specified using ProSave. Concretely, this is done similarly to
how composite ProSave components are defined internally — asa collection
of interconnected components and connectors — but with the addition of clock
to specify periodic activation of ProSave components. A clock has a single
output trigger port which is repeatedly activated at a givenrate, its period.

To achieve the mapping from message passing to trigger and data, and vice
versa, the message ports of the enclosing primitive subsystem are treated as
connectors with one trigger port and one data port, when seenfrom inside the
subsystem. An input message port corresponds to a connectorwith output
ports, and whenever a message is received by the message port, the message
data is written to the data port and the trigger port is activated. Oppositely,
an output message port corresponds to a connector with an input trigger and
input data ports. When triggered, the current value of the data port is sent as a
message.

In addition to strictly periodic activation, ProCom also supports aperiodic
activation such as events initiated by external devices. Aperiodic activation are
handled locally by each component responsible of an external device and are
modelled through an event connector.
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Example

Modelling in ProSave and its connection to ProSys is illustrated on the SCS
subsystem from the previous example. The SCS acts as a primitive subsystem
on the ProSys level, meaning that it is not elaborated in ProSys any further.
It may be realized either directly by code or by elaborating it in ProSave (thus
changing the level of granularity). We have chosen the latter — see Figure 6.10.
The SCS consists of one periodic activity, which runs at a frequency of 50Hz
(specified by the clock). When activated, it first reads the data from sensors.
Based on their outputs and the speed of individual wheels (obtained from the
latest “Wheels speed” message) it computes the actual direction of the vehicle
and the desired direction indicated by the steering wheel. After both compu-
tation components have finished, the “Slide detection” component compares
their results (i.e., the actual and desired direction) and determines whether any
action is required to ensure the stability of the car. The last component in the
chain computes the actual response of the SCS, which consists of adjustments
of brakeage and acceleration.

Figure 6.10: The SCS subsystem, modelled in ProSave. The dots and circles
are shorthand notation forfork andjoin connectors, respectively.

6.3 Extra-Functional Properties in ProCom

ProCom has been developed to facilitate the expression and analysis of func-
tional and extra-functional properties throughi) its layered-structure and in
particular the restrictive execution semantics of the lower layer, andii ) its con-
cepts of rich design-time components. However, contrary toother component
models and approaches such as PECT [16], or Fractal [43] thatprovide dedi-
cated extra interfaces for managing properties, ProCom does not, per se, pro-
vide such capability.
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Instead, through its concept of rich design-time component, ProCom is at
a junction between component-based development and model-driven devel-
opment. From the component-based development side, ProCombuilds upon
structuring the system out of well-defined pieces of functionality that can be
independently developed, analysed and reused. From the model-driven devel-
opment side, ProCom acknowledges the need that different models are used
for different purpose throughout the development process.In order to meet
aspects of component-based development, the scope of thesemodels is limited
to individual components for which they provide dedicated views on additional
concerns. This allows to package any artefacts required or produced during the
development of a component together, hence providing suitable ground for dif-
ferent analysis at different phases of the development process. Note, that it is
important that the models are kept consistent during the development process.

For example, as illustrated on Figure 6.11, a ProSave component A can
be directly analysed using the architectural model only. This includes analysis
such as checking compatibility between ports, assessing timing properties, etc.
With new models available, additional types of analysis canalso be supported
as shown in Figure 6.12. An example of such analysis is provided by the in-
tegration of REMES [74], a formalism for the design and analysis of resource-
constraint component-based embedded systems that enablesmodel-checking
to verify functional, timing and resources-related properties (see Chapter 8).
Similarly to what has been done in [75] with UPPAAL PORT and SaveCCM,
analyses can be improved by the combined usage of both their specific model
and the architectural model.

A
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Composite component Analysis Report
Analysis
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Simulation

Tests
...

Creation of EFP Value(s)

Figure 6.11: Analysis directly derived from a ProCom design.
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Figure 6.12: Analysis based on dedicated models.

6.4 Summary

In this chapter, we have started by investigating which requirements must be
met by a component-based development approach to suitably support the de-
velopment of distributed embedded system. In particular, one of the charac-
teristics of this approach is to flexibly cover the whole development process
from early design up to synthesis while, at the same time, facilitating various
analysis to be performed at any step of the process. Based on the identified
domain requirements, we have then developed ProCom, a component model
for the development of component-based software embedded systems.

Through its hierarchy of interrelated layers, ProCom enables to address
the different concerns that exist at different levels of granularity within a sin-
gle formalism to build distributed embedded systems. Furthermore through its
concept of rich-design time components, ProCom allows to gather any devel-
opment artefacts as components, hence placing them as predominant entities of
the development and facilitating their reuse. Finally, ProCom facilitates anal-
ysis of certain properties in early phases of the development process thanks to
its formally specified semantics.





Chapter 7

PRIDE : The ProCom
Integrated Development
Environment

In the context of the thesis, the evaluation of the approach of merging
component-based principles and embedded system development needs requires
the implementation of a complete development toolchain that i) covers the nec-
essary activities from component-based design up to synthesis and deployment,
andii ) supports and integrates various analysis techniques throughout the de-
velopment process. In the previous chapters, we have described the contri-
butions of the thesis following two main lines of work in component-based
development, namely the management of extra-functional properties and the
specific requirements for embedded system development. In this chapter, we
will show how these contributions have served as a basis to build integrated
development environments supporting them. This chapter starts by describing
lessons learned from the development and use of an initial prototype built for
SaveCCT [14], a component-based development approach for embedded sys-
tems that enables early formal analysis of timing properties. Then, it presents
how these lessons having been taken into consideration in the creation of the
PRIDE tool suite.
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Figure 7.1: Overview of the SaveCCT development process

7.1 Feedbacks from an Initial Prototype

Our work on integrated development environment started with building an ini-
tial prototype based on the concepts, methods and techniques previously de-
veloped for SaveCCT [14]. The approach also aims at component-based de-
velopment for dependable embedded systems. It represents asimple use-case
scenario of the approach described in Chapter 6 in which the use of components
is restricted to the design only, the analysis is performed on system-scale and
the synthesis is a single-step activity performed at the endof the development
process.

Accordingly, theSave Integrated Development Environment(Save-IDE)
has been specified and developed to support the requirementsand constraints
of the SaveCCT approach together with SaveCCM, its underlying component
model [76]. In addition, all the tools have been integrated in strictly follow-
ing the exchange format specified in the SaveCCM reference manual [76]. The
remainder of this section starts by giving an overview of theSaveCCT develop-
ment process in Section 7.1.1 before describing the IDE itself in Section 7.1.2.
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7.1.1 Intended Software Development Process

In SaveCCT, the development process is designed as a top-down approach with
an emphasis on reusability. It includes three major phases:Design, Analysis
and Realization, as illustrated on Figure 7.1.

The process begins with thesystem designphase in which the system is
broken down into subsystems and components compliant with the SaveCCM
Component Model [77]. Following this decomposition, system requirements
are transformed into component requirements used as a basisto determine the
next step of the development process. If already existing components (par-
tially) matching the requirements exist, theselect and adaptactivity is taken.
Otherwise, new component(s) need to be developed (i.e. thecomponent devel-
opmentactivity is taken).

Correspondingly, the components are first analyzed and verified individu-
ally towards the requirements (formal component verification). In a following
phase, after having reconstructed the system (or parts of the system) out of in-
dividual components and their assemblies (system composition), the obtained
compositions also need to be analyzed and verified (formal system verifica-
tion). As long as the results produced in those analysis steps do not satisfy
the requirements, i.e. some problems in the design still exist, the design of the
system is supposed to be modified and checked again against the requirements.

When the results are acceptable from an analysis point of view, the real-
ization phase starts. It consists ofsynthesisactivity in which the system is
synthesized automatically based on the input from the system design, on the
implementations of the components and, on static algorithms for the resource
usage and timing constraints. All the necessary glue code for the run-time
system is produced. The resulted image can then be tested on asimulator or
downloaded into the target platform.

To reduce the risks of errors in manual activities, and to increase the de-
velopment efficiency, several parts of this process are automated. A first au-
tomated activity is the production of the skeleton of the implementation files
(C files and their corresponding header files) based on the specification of the
component. Another one is the generation of the interchangefile used as com-
munication medium between tools. This interchange file transforms the sys-
tem design into an XML-based representation as specified in [77]. The third
one occurs during the synthesis which includes transformation of components
into the executable real-time units, tasks, glue code generation, inclusion of
a particular scheduling algorithm, compilation and linking all elements in the
executable image.
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7.1.2 SaveIDE — the Save Integrated Development Environ-
ment

Save-IDE1 is designed as a platform that facilitates the integrationsof tools
compliant with the exchange format specified in [76]. It is developed as a set
of plugins for the Eclipse framework. As illustrated in Figure 7.2, it supports
three key activities of the development process:i) component-based design
that distinguishes between system and component development and includes
modelling and design of the components, the architectural design of the system
and specification and implementation of components,ii ) analysisof the system
and the components, andiii ) synthesisthat includes transformation from com-
ponents to tasks, setting up execution parameters like priorities and periodicity
of execution, glue code generation and compilation.
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Figure 7.2: Overview of the Save-IDE tool-chain

1The Save-IDE is available for download from the web page
http://sourceforge.net/projects/save-ide/
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Figure 7.2 also shows the tools involved in each of these activities and how
they are organised together. A screenshot of the environment is provided in
Figure 7.3. Eight tools are currently integrated into the Save-IDE: theArchi-
tecture Editor, theComponent Development Editorfor the component-based
design; theTimed Automata Editor, UPPAAL port with its simulator and for-
mal verifier based on UPPAAL for the analysis; and thesynthesis tooltargeting
the SaveOSand acompiler for the synthesis activity. The remainder of this
section describes these tools per activity.

Figure 7.3: Screenshot of the Save-IDE

Component-Based Design Toolset

In SaveCCT, the design of a system distinguishes between twoindependent
activities:software system designandsoftware component development. Soft-
ware system design consists of designing a system out of independent and
possibly already implemented components, i.e. componentsbeing produced
through the component development activity. Alike, theArchitecture Editor
(see(a) in Figure 7.3) supports both.
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It enables creating systems and components compliant with the SaveCCM
component model. To do so, the tool provides support for designing systems
and components with the set of architectural elements prescribed by SaveCCM.
These elements are component, assembly, composite, clock,delay and switch.
Furthermore, the component model also enforces the “pipe-and-filter” com-
munication paradigm distinguishing between control-flowswith trigger ports
and data-flows with data ports when the architectural elements are connected
together.

For each composite architectural element (e.g. assembly, composite and
switch), two views coexist: theexternal view(see(a) in Figure 7.4) and the
internal view(see(b) in Figure 7.4). The external view describes the name and
type of the element, the ports, and the models annotated to the element (such as
time behaviour represented by a timed automata). In other words, the external
view specifies the component interface. On the other hand, the internal view
handles the inner elements and their connections only. Thisview can be hier-
archical since SaveCCM allows hierarchical compositions of components and
assemblies. This separation is done through partitioning of diagrams which
allows having a clear distinction between the design of the external from the
design of the internal elements. For SaveCCM “primitive” components, only
the external view is available. Their internal view corresponds to their imple-
mentation within the component development editor.

In addition to the specification of functional interface, the Architecture Ed-
itor makes it possible to assign different attributes to thecomponents, such as
execution time, or behavioural model as visible in the properties page(e) in
Figure 7.3.

The Component Development Editor (see(c) in Figure 7.4) is realized by
the integration of the Eclipse C/C++ Development Tooling (CDT) that provides
the features required for the implementation of the primitive components in C
language. To increase development efficiency and reduce therisks of errors
in manually translating the component interfaces into code, skeletons for the
implementation files are generated directly from the specification of the com-
ponent. The skeletons for the C and header files contain the mappings from
ports to variables and function headers. As a result, the component developer
only needs to implement the component functionality.



7.1 Feedbacks from an Initial Prototype 137

Figure 7.4: Screenshot of the tools involved in the component-based design,
in which (a) shows the external view of a composite component,b) its internal

view and(c) the component development editor for the “com” primitive
component.

Figure 7.5: Screenshot of the tools involved in the analysis, in which (a)
shows the timed-automata editor for a delay component,b) the tool

facilitating the mapping and(c) UPPAAL PORT.
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Analysis Toolset

The analysis part in the Save-IDE supports the theoretical contributions on par-
tial order reduction techniques proposed by Håkansson andPettersson in [75].
These techniques exploit the specific execution semantics of SaveCCM compo-
nents, restricted to a “read-execute-write” execution sequence, and the hierar-
chical structure of the system. The main purpose of this semantics is to be able
to perform model-checking analysis of the system in the early phases of the de-
velopment process without requiring any component implementation. To sup-
port these techniques, several tools have been implementedand/or integrated
in the Save-IDE: a Timed Automata Editor, a simulator, and a model-checker.

The Timed Automata Editor (TAE) (see(a) in Figure 7.5) provides devel-
opers with a graphical user interface for creating formal functional behaviour
and timing models of SaveCCM components. The models are expressed in a
timed-automaton formalism and can be created independently of the targeted
component. This increases the reusability of the model but requires means to
associate it with a corresponding component. In the Save-IDE, this associa-
tion is done in a semi-automatic mapping process. First, it requires the user
to manually create a “TA” attribute in the architectural editor that points to the
location of timed automata model. Then, the external ports of a SaveCCM ele-
ment are mapped with the variables of the corresponding timed automata (see
(b) in Figure 7.5) .

Once every component in the system have a timed-automata model, the sys-
tem can be analysed using UPPAAL PORT (see(c) in Figure 7.5) . UPPAAL

PORT is implemented as an extension on the UPPAAL model-checker [78], and
features a graphical simulator and a formal verifier. UPPAAL PORT requires
a specific XML-format that is automatically generated from the Save-IDE by
merging together the architectural description of the system compliant with
the SaveCCM exchange format, the output of the TAEs and the mapping files.
Using the simulator, it is possible to explore the dynamic behaviour of a com-
plete SaveCCM design. In this way, designers can validate the design and gain
increased confidence in the design. Using the verification interface, it is possi-
ble to establish by model-checking whether a SaveCCM model satisfies formal
requirements specified as formulas in a subset of the logic Timed CTL. This
helps to further increase confidence in the component-baseddesign, w.r.t., e.g.,
functionality and timing. More information on UPPAAL PORT can be found
in [79].
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Synthesis Toolset

SaveCCM systems can be automatically synthesized using thesynthesis tools
integrated into the Save-IDE. The synthesis enables to transform the component-
based design of the system into an execution model that can then be com-
piled before being installed on the target platform. External tools, such as CC-
Simtech [80], can also be used to simulate the system on a standard desktop
computer.

The synthesis takes the SaveCCM model and constructs a set oftrees based
on the applications triggers. These trees are then used to generate the software
code realized into the tasks, i.e., the function calls to thesoftware components
as well as glue code needed for passing data between the components. Each
tree is mapped to one real-time task, and the configuration ofthe task is done
with respect to the parameters of the trigger, e.g., settingof periods and priori-
ties. The synthesis is performed towards the Save OperatingSystem (SaveOS),
which is an abstraction layer allowing systems to be ported to different operat-
ing systems and hardware platforms. SaveOS is designed and implemented in
a way that it requires minimal computing and memory resources and provides
a neglecting overhead. It enables systems to indirectly call native operating
system services through the SaveOS application programming interface. Like-
wise, the configuration of the run-time environment can be changed without
having to change the system design or the implemented behaviour of the com-
ponents.

7.1.3 Lessons Learned
This environment has been used internally by the members involved in its real-
isation and externally by students outside the projects to develop diverse small
applications. In [81], a comparison between Save-IDE and a professional tool
enhanced with a profile for SaveCCM has been performed. This experiment is
performed on a small group of students concerns only the modelling aspect of
the environment. Yet the students’ feedback show some indications that a dedi-
cated design environment is more efficient than a general-purpose environment
customized to fit a particular need.

The environment has also been used in [82] and in [24], in which an indus-
trial control system and a simple truck application have been realized respec-
tively. Those two examples show the feasibility of the integrated approach. In
particular, they highlight the possibilities of tightly interconnecting design and
formal analysis tools, which enable formal analysis of on-going design already
in an early design phase.
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Several lessons have been drawn from the development and useof this
integrated development environment. These are the following:

1) Component as a central and uniform development unitDespite its
precise specification, the concept of component in the Save-IDE is am-
biguous. One of the cause of this ambiguity stems from the presence of
other concepts such as assembly, composite, system. These concepts are
only distinguished from one another by the execution semantics which is
restricted for composite and primitive components. At design-time, this
principal difference is not intuitive for the users. Moreover, components
are considered as one of the artefacts used during the development pro-
cess. Other main development artefacts include timed-automata models,
source codes, etc.

Due to that, the various artefacts used or produced during the develop-
ment process are not tightly bounded to their correspondingcomponents.
For instance, analysis models such as timed-automata models, do not
necessary belong to the file structure of the components as shown in the
project explorer in Figure 7.3. This implies that upon reuseof a compo-
nent, the models that have been specified as attributes must be retrieved
and place in the exact location specified by the attribute in the new envi-
ronment. This is a cumbersome process that limits the reusability of the
analysis models of a component and of the component itself.

Accordingly, components must instead be considered as the main de-
velopment units. In that view, a component should be seen as aplace-
holder (somewhat similar to the concept of package in object-oriented
programming): it enables gathering the different artefacts corresponding
to the component. As a result, a component should be then the collection
of assets created or required during the development process. These as-
sets correspond, for example, to architectural models, behavioural mod-
els, source code, tests, documentation, etc., and must be kept consistent.
This can be seen as integrating aspects of model-based development into
component-based development.

2) Enforcing component type and instanceIn the Save-IDE, components
are essentially design entities that are directly created within the design
of a composite entity such as system, assembly or composite compos-
ite. The benefit of such an approach is to provide a lot of flexibility in
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the design. However, this leads to unconsciously intermixing compo-
nent types and component instances. In taking the availablepossibility
of copying components directly within a design of a composite element,
this leads for example to have two instances of a component type. Users
are then able to modify one of the instances, which implies eitheri) they
are instances of two different component types, orii ) they are instances
of the same component type and therefore the second instanceshould
be modified too to keep the consistency between the two instances. In
other words, this means that an instance of the component canbe mod-
ified independently of its component type and consequently,ensuring
consistencies of a component type with its instances and implementa-
tion requires numerous checking. As a consequence, one problem with
this approach is that it is difficult to determine when the design of the
component is completed and must not be changed any longer.

3) Flexible and multi-step synthesisIn the current approach supported
by Save-IDE, the transformation of the design model into an execution
model allowing synthesis and optimisation steps is performed at the end
of the process only, after the design has been verified and validated. Yet,
the validation and verification are performed at a high-level of abstrac-
tion without connection to the component implementation used in the
synthesis and without any specific information regarding the target plat-
form. It is assumed that the implementation does not break the behaviour
formally modelled. This can have some negative effects on the efficiency
of the approach when the fully implemented system does not meet its
timing requirements or the timing requirements are not feasible. The
development process might then start over at the design stepwith the
re-design and re-implementations of the erroneous parts. As a conse-
quence, the validation and verification steps must be carried out again.
Furthermore some analysis techniques, such as schedulability, cannot
be performed on a high-level of abstraction. Some potentialsolutions
that need to be further investigated are to connect implementation with
analysis or generating implementation from the models usedby the anal-
ysis techniques. Also, synthesis must be viewed as more complex than a
single-step operation performed at the end of the development process. It
requires many analysis, tests and optimisations that are closely related to
the design, implementation and various extra-functional properties such
as timing or resource usage, and must therefore be also tightly connected
with them.
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4) Lifting the importance of extra-functional properties In Save-IDE,
attributes are viewed as simple means to display information on extra-
functional properties extracted from analysis results or alternatively as
a convenient support to link an analysis model with a component. Yet,
most of the time, the attribute elements were rarely used at all. This
is due to the lack of a clear purpose for the attribute conceptin the
SaveCCT approach together with an unclear specification of the concept.

7.2 Concepts behind PRIDE

Since the theories underlying the creation of the Save-IDE tally with several
aspects of the contributions of the thesis, our initial intention was to reuse the
Save-IDE and modify it to support the novel ideas. As for the Save-IDE, the
aim is to support component-based software development of embedded sys-
tems in a process spanning from early specification up to synthesis. However,
instead of mainly considering early formal analysis, it is envisioned that an
interlacing of analysis techniques is to be applied at different stages of the de-
velopment process. The development process is intended to be flexible and to
enable suitable information from one of the development activities to be avail-
able in the others. For example, information on the target platform on which
a component is planned to be allocated to should be availableto the analy-
sis. Likewise, results from analysis should be available inthe software design.
After balancing these aspects with the features provided bythe Save-IDE, we
decided to develop PRIDE, the ProCom Integrated Development Environment,
as a new integrated development environment.

The knowledge and experience gained from the development and use of
the Save-IDE have been integrated into PRIDE. PRIDE is designed as a stand-
alone environment that can be easily extended through, for example, the in-
tegration of new analysis techniques. PRIDE is centered around the notion of
components as main development artefact. A component is considered as a
rich design-time concept that corresponds to the collection of all the related
development artefacts that are needed, specified and produced during the de-
velopment process. In other words, in addition of having clear functional
boundaries derived from its component model, a component consists of re-
quirements, documentation, source code, various models (e.g. behavioural and
timing), predicted and experimentally measured values (e.g. performance and
memory consumption), etc.
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PRIDE also allows components of different maturity, from early specifi-
cations to fully implemented components with more detailedinformation, to
co-exist within the same model and to be manipulated in a uniform way. This
provides ability to leave component realization undecided. The component re-
alization decision can be thus postponed while still being able to reason about
the design of the system. For example, this allows to performdifferent analy-
ses in early stages of development process based on the software architecture
and provide system architects with early estimates on system behaviour and
properties. In this way, possible problems can for example be detected before
the system is implemented and avoid late changes.

Reusability is also one of the key concepts in PRIDE, aiming to signifi-
cantly shorten development time. The tool introduces the distinction between
component type and component instance. Each use of a component type cre-
ates a component instance of the given type, and by editing a component type,
all its instances are affected. To foster reusability, components can be stored
in (and imported from) a shared repository, making them available for reuse
in different projects. As a result of the rich design-time component concept,
component reuse implies reuse of component properties and previous analysis
results. In those cases where analysis of a component depends also on factors
outside the component, special care must be taken to identify to what extent
the reused information is still applicable in the new environment.

Finally, through the integration of nLight (see Chapter 5),PRIDE makes
extra-functional property a first class citizen of the development and facili-
tates their seamless management. Elements of the software architecture can
be enriched with a collection of structured attributes suchas behaviour and re-
source models, dependability measures, timing properties. Additionally, users
can contribute to the pool of extra-functional properties available in PRIDE in
registering new user-defined attribute types.

7.3 Overview of PRIDE

Based around ProCom and the described overall approach, we have developed
several tools and tightly integrated them together to create PRIDE. PRIDE is
built as an Eclipse RCP application that can be easily extended through the ad-
dition of new plugins. As shown in Figure 7.6, the core part ofPRIDE currently
consists of a component explorer, component editors, an attribute framework
(nLight), an analysis framework and a synthesis tool. PRIDE can be extended
by adding new extra-functional properties (attribute definitions) together with
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Figure 7.6: Architecture of PRIDE.

their corresponding analysis support when needed. Figure 7.7 shows a screen-
shot from PRIDE, with some of these parts highlighted.

Component Explorer The component explorer enables browsing the list of
components available in the current development project. In it, a component
owns a predefined and extensible information structure thatcorresponds to the
aforementioned rich component concept. The component explorer also sup-
ports component versioning, and importing and exporting ofcomponents from
a project to a component repository, making them available for reuse in other
projects.

Component Editors The component editors are used for developing an ar-
chitectural model of components and a system as a whole. Theyare built
around the ProCom component model and represent one of the central parts
of PRIDE. Components from both ProCom layers are treated in a uniformway.
The component editor provides two independent views on a component,exter-
nal andinternal view. Theexternal viewhandles the component specification,
including information such as the component name, its interfaces and possi-
bly extra-functional properties. Theinternal viewfocus on component internal
structure implementing its functionality and it depends onthe component re-
alization type. For composite components, the internal view corresponds to a
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Figure 7.7: A screenshot of PRIDE showinga) the component explorer;b) a
component editor;c) a code editor;d) the repository browser; ande) the

attribute framework.

collection of interconnected subcomponent instances, anda graphical editor is
available allowing modifications to this inner structure (e.g., addition/deletion
of component instances, connectors and connections). For primitive compo-
nents, the internal view is linked to the component implementation in form of
source code. Editing the component code is facilitated by features such as syn-
tax highlighting and auto-completion, provided through the integration of the
Eclipse C/C++ Development Tooling (CDT) plugins.

Extra-Functional Property Assurance The extra-functional properties as-
surance is realised by the integration of two tools: nLight,the attribute frame-
work described in Chapter 5 and the analysis framework. nLight provides a
uniform and user-friendly structure to seamlessly define and manage extra-
functional properties in a systematic way. Moreover, it also supports the pack-
aging of the different development artefacts in components. It enables attach-
ment of extra-functional properties, as attributes, to selected architectural ele-
ments of the component model. Attributes are defined by an attribute type, and
include attribute values with metadata and the specification of the conditions
under which the attribute value is valid. One key feature is that the attribute
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framework allows an attribute to be given additional valuesduring the devel-
opment without replacing old values. This allows us to defineearly estimates
for extra-functional properties even before actual architectural element is im-
plemented. Such values can be used for analysis in early stages of system de-
velopment. Later, when the element is more mature, we can addrefined values
for extra-functional properties allowing us to conduct more accurate analyses.

The Analysis Frameworkprovides a common platform for integrating in
a consistent way various analysis techniques, ranging fromsimple constraint
checking and attribute derivation (e.g., propagating porttype information over
connections) to complex external analysis tools. Analysisresults can either be
presented to the user directly, or stored as component attributes. They are also
added to a common analysis result log, allowing the user easyaccess to earlier
analysis results.

Through the use of extension points in the analysis and attribute frame-
works, PRIDE provides support to easily integrate new analysis techniques
together with their associated extra-functional properties. The analysis tech-
niques already integrated in PRIDE include parametric component-level worst-
case execution time analysis [83], model checking of behavioural models [84],
and fault-propagation [85].

Synthesis The synthesis part of PRIDE automates the generation of inter-
faces for primitive components in the lower layer, and generation of code for
composite components in both layers. It also produces buildconfigurations (in
debug and release mode) for each level of composition.

Based on models of the physical platform and the allocation of components
to physical nodes, the synthesis also produces the binary executable files of
each node in the system [86]. The synthesised code relies on amiddleware that
has been ported to different platforms, including POSIX-compliant operating
systems, FreeRTOS and JSP.

7.4 Summary

In this chapter, we have described two integrated development environments
supporting a component-based development approach for building embedded
systems. The first IDE, the Save-IDE, a prototype based on theapproach pre-
scribed in SaveCCT, allowed us to get valuable inputs for thedevelopment
of PRIDE. In particular, many concepts that have been introduced in PRIDE

are based on the experiences gained from the development anduse of the
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Save-IDE. These concepts include for example having components as the main
development units, enforcing the separation between component type and in-
stances at design, providing a flexible and multiple steps synthesis and lifting
the importance of extra-functional properties during the development.

PRIDE is based on an architecture relying on ProCom components with
well-defined semantics that serve as the central development entity, and as
means to support and aggregate various analysis and verification techniques
throughout the development — from early specification to synthesis and de-
ployment. Through the use of nLight, PRIDE also provides generic support for
integrating extra-functional properties into architectural elements and system-
atically managing them in an uniform way.

In addition to complement PRIDE with new modelling and analysis tech-
niques, and additional extra-functional property specifications, an interesting
future work would be to investigate how PRIDE could be extended to sup-
ported multiple, possibly distributed, users. In this way,PRIDE would also
enable distributed component-based development of embedded systems.





Chapter 8

Extended Examples

Applying research results in practice provides valuable insights on contribu-
tions. Among others, it facilitates discovering their advantages and limitations.
This is the main purpose of this chapter which investigates through three ex-
amples:

1) the integration of analysis techniques based on dedicated models into
component models through ProCom and nLight,

2) the inheritance of extra-functional property values between component
type and component instances, and

3) how nLight can be used in practice through the development.

Due to limitations of PRIDE and nLight, some of the aspects presented of this
chapter have been realised outside these tools such as the synthesis and analy-
ses. Additionally, for clarity purpose, the architecturaldesigns and the excerpts
of extra-functional properties are not illustrated through screenshots but have
been recreated based on the original artefacts.

8.1 The Turntable

In this section, we evaluate how ProCom can be combined with analysis mod-
els through nLight. This evaluation is based on the turntable drilling system
by Bos and Kleijn [87] and Bortnik et al. [88], and the use of REMES [74] as
a representative analysis model. REMES is a language for high-level formal

149



150 Chapter 8. Extended Examples

Figure 8.1: The turntable system (load and unload stations are not shown),
illustration courtesy of Jan Carlson.

behaviour modelling that allows modelling the behaviour ofindividual compo-
nents in terms of functionality, timing and resource usage.In turn, this permits
analysing system level properties, while also supporting reuse of behavioural
models when components are reused. It also illustrates the use of models as a
special type of extra-functional properties.

8.1.1 Overall System Description

The system, depicted in Figure 8.1, consists of a rotating table that moves
products between processing stations where they are drilled and tested. Four
types of processing stations are involved in the turntable drilling system: a load
station, a drilling station, a testing station and an unloadstation. For clarity
purpose, load and unload stations are not shown in Figure 8.1.

The load station places new products on the table (1), after which they are
moved to the drill station (2) by rotating the turntable90◦. Drilling requires that
the product is securely held in place by a clamp mechanism. After drilling, the
product is moved to the testing station (3) where the depth ofthe drilled hole is
measured. Finally, the unload station (4) removes the product from the table,
provided that it passed the test. If not, it remains on the table to be drilled and
tested again. The turntable has four slots, each capable of holding one product.
Thus, the stations can operate in parallel, so that while thefirst piece is being
tested, a second piece can be drilled, etc.
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System Requirements

From the system requirements, we focus on the following:

• Requirement 1:The system must be deadlock free.

• Requirement 2:A product must be clamped when drilled.

• Requirement 3:The table should never turn when one of the stations is
operating

• Requirement 4:Processing five products should never take more than 25
seconds (assuming at most one failed drilling).

In addition, we want to address the following question:
• “What is the minimum energy consumption for processing five prod-

ucts?”

8.1.2 Architecting the Turntable in ProCom

Since the different stations are relatively independent, we model each station,
and the turntable, with a separate component. Accordingly,we define the
Loader, Driller , Tester, Unloader and theTurntablesubsystems in ProSys.
In order to achieve synchronization between the stations and the table, e.g.,
guaranteeing that the table turns only when no processing station is operating,
as expressed in requirement 3, and that only products which pass the test are
unloaded, we define an additional subsystem: theController.

Next, the interfaces of these identified components need to be specified.
Since the component model has been imposed, the available communication
mechanisms between components are restricted to asynchronous message pass-
ing for the active and independent parts of the system (synchronous control-
and data-flows are available only in the lower layer). At thisstep, it is possi-
ble to browse a component repository to find pre-existing components which
functionalities and possibly extra-functional properties that match the require-
ments. In the case of our turntable system, we assume that theLoaderand
Unloadercomponents can be reused from a previous project. For the remain-
ing components, i.e. Drilling Station, Tester station, Turntable and Controller,
the interfaces remain to be specified. Figure 8.2 illustrates the component in-
terfaces and shows how components are connected together.
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Figure 8.2: ProCom design of the turntable system.

The Turntablecomponent receives a message when the table should be
rotated. In order to make the component reusable in different systems (e.g., a
turntable with more than four stations), the angle of rotation of the table can be
specified in the message. When the table has been turned, a message is sent to
inform other parts of the system.

TheTesterandDriller have similar interfaces; an incoming message telling
the station to start processing, and an outgoing message indicating that it has
finished. The output message ofTesteralso contains a boolean value represent-
ing if the test succeeded or not.

TheController keeps track of the current status of the four slots, and acti-
vates stations accordingly, by sending messages to each stations and receiving
messages back once they are done. Consequently, the interfaces ofController
must be compatible with the interfaces of the stations (including those of the
reusedLoaderandUnloader).

It is possible to further decompose each of the ProSys components specified
in the architecture design. According to the level of complexity of the function-
ality and the potential for distribution, each component can be decomposed into
smaller ProSys components or alternatively into ProSave components. How-
ever before doing that, the developer may want to validate first the feasibility
of the design proposed so far. Some properties can be directly analyzed from
the ProCom design alone, such as verifying conformance between connected
ports and channels. To reason about requirements such as theones identified
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in Section 8.1.1, it is typically necessary to use a dedicated formalism possibly
supported by various analysis techniques.

For this extended example, we exemplify through the use of REMES how
such formalism can be integrated into ProCom to facilitate analysis of selected
extra-functional properties.

8.1.3 Attribute Type Identification and Specification

The first step towards integrating analysis of functional and extra-functional
properties into ProCom is to identify the set of required attribute types. It cor-
responds to the functional and extra-functional properties needed to satisfy the
system requirements extracted in Section 8.1.1 plus all theartefacts required or
produced during the development process, including the analysis models and
the analysis results. In case no suitable specification is available in the attribute
registry, necessary attribute type specifications must be created and registered.
Table 8.1 presents a non-exhaustive list of attribute typesfrom nLight that can
be used in the context of the turntable drilling system.

From a reuse point of view, it is convenient to have a dedicated attribute
type for REMES. Through the use of the REMES attribute, it is possible to
package a REMES model with the component type which it formally specifies
the behaviour of. This facilitates reusing the component and its corresponding
analysis model. According to the REMES attribute type specification, REMES

attribute instances can be attached to both ProSys subsystems and ProSave
components, and have complex attribute values consisting of (i) a reference to
the relative position of the REMES model in the component structure and(ii) a
reference to the relative position of a file containing the mapping between the
component’s ports and the variables used in the REMES model.

Furthermore, in order to provide analysis results, REMES models are trans-
formed into Priced Timed Automata (PTA) models that are analysed with the
UPPAAL model-checker [78]. If PTA models can be easily and efficiently ob-
tained from REMES models then there is no need to package them in the com-
ponent. Consequently, the correspondingPTAattribute type is not necessary.
On the other hand, if this translation takes time or the models need to be re-
generated often, it can be useful to store them instead and make use of thePTA
attribute type. For the purpose of this example, we assume the latter option.

The deadlock free, minimum energy consumptionand maximum energy
consumptionattribute types are example of “simple” extra-functional proper-
ties that can be extracted from analysing the models.
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Table 8.1: Attribute type specification for the Turntable System

Support Mechanisms
TypeID Attributables Data Format

Viewer Editor
Short Documentation

REMES Component <Path; Path>
REMES

Editor
REMES

Editor

Reference to a REMES model, with:
Path1 corresponding to the relative path
to the REMES model, and Path2 to the
relative path to the mapping file

Priced
Timed-
Automata

Component Path PTA
Editor

PTA
Editor

Reference to a priced timed automata
model

Deadlock
Free

Component,
Instance,
Service

“Yes”
“No”

“Unchecked”
Inline Inline

Whether for all reachable states, there
exists some path to a quiescent state.

Minimum
Energy
Consump-
tion

Component Float Inline Inline
the Minimum amount of energy drawn
from the supply during a single clock
period

Maximum
Energy
Consump-
tion

Component Float Inline Inline
the Maximum amount of energy drawn
from the supply during a single clock
period

8.1.4 Early Formal Analysis

In this section, we give a brief overview on the formal analysis performed for
the Turntable system based on the use of REMES behaviour models.

Behaviour Modelling in REMES

We model the functional, timing and resource usage behaviour of the turntable
components as REMES models. Since theLoaderand theUnloadercompo-
nents are supposed to be reused, we assume that they already have their own
behavioural model. For each of the remaining components, a REMES models
is created. Given that this case study focuses on integration of analysis tech-
niques in component models and not on the analysis part itself, we only present
here the REMESmodels ofDriller andController, depicted respectively in Fig-
ure 8.3 and 8.4.

TheDriller component is responsible for moving the drill up and down and
for locking and unlocking the clamp. In order to do this, it reads values from
the drill and clamp sensors, modeled by boolean variablessdu(drill in upmost
position),sdd (drill in downmost position),scl (clamp fully locked) andscu
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Entry

Driller

Idle

ExitCase1

Clamp_locking

           

eng’=eng_pow+eng_clamp

Init:  clock x;

         resource eng: Tc;

         const int on=1, off=0, locked=1, unlocked=0,  idle=0, down=1;

 int tdrill1, tdrill2; eng_pow, eng_drill, eng_clamp,

                drill_power=off, drill_clamp=unlocked,  drill_position=idle;

         bool drill, drilled, scl, sdd, sdu, scu

Init

Case2 

Label2

Label2: x=0; drill_power=on

Label3: drill_clamp=locked

Label4:  drill_position=down

Label5:  drill_position=idle

Label6  drilled=true; drill=false; drill_clamp=unlocked;

              drill_power=off, System[Driller]=Idle

 x<=tdrill2 Case3    
           

eng’=eng_pow+eng_drill

 x<=tdrill2

Driller_moving_up

Case4              

eng’=eng_pow+eng_drill

 x<=tdrill2

Driller_moving_down Clamp_unlocking

           

eng’=eng_pow+eng_clamp

Case5     x<=tdrill2 Case6    

Label6    

Case1:  System[Driller]==Idle

Case2:  drill 

Case3:  scl

Case4:  sdd

Case5:  sdu

Case6:  scu and x>=tdrill1

Label3    Label4    Label5    eng’=eng_pow

Figure 8.3: The Driller modeled in REMES.

(clamp fully unlocked). Neither of the two message ports ofDriller carries
values, and thus they are mapped to two boolean variablesdrill anddrilled.

TheDriller remains in theIdle mode until receiving adrill message. When
this happens, the component goes through a sequence of submodes:
Clamp locking, Driller movingdown, Driller movingupandClamp unlocking.
Each of these submodes is exited as the result of a sensor value turningtrue.
When exiting the last submode, adrilled message is sent, indicating that the
operation is finished.

REMES model also enables modelling the consumption of energy of the
Driller subsystem. We assume the following: powering theDriller consumes
engpow units of energy per time unit, locking or unlocking the clampcon-
sumesengclampunits of energy per time unit and drilling consumesengdrill
units of energy per time unit. Moreover, we assume that the time of each
Driller operation cycle is bounded to the interval[tdrill1, tdrill2] .

TheControllercomponent, depicted in Figure 8.4, keeps track of the states
of the four slots and operates the stations and the turntableaccordingly by
exchanging messages with all of them. The behaviour defined by the REMES

mode consists of two main submodes, one in which the controller waits for
messages from the stations, and one waiting for the turntable to finish turning.

The submodeWait for turning is exited when theturnedmessage arrives.
Depending on the current state of the four slots, messages are sent out to the
respective station. This is managed by the four conditionalconnectors and the
guards (Case9, . . . , Case16). For example, theload message is only sent if
the first slot is empty, and thedrill message is only sent if the second slot is
occupied. The local variablessignal loaderetc. are used to keep track of what
messages were sent. When all messages are sent, the history variableSys-
tem[Controller] is assigned the valueWait for stations. Thus, theController
will continue executing in that submode when reentered.
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CEntry

Controller

Wait_for_stations 

Exit

Init:  const int empty=0, occupied=1, test_fail=2;

         int P1=empty, P2=empty, P3=empty, P4=empty,  TP1, TP2, 

               TP3,  TP4,  turn_value, signal_unloader=0, signal_loader=0, 

               signal_driller=0, signal_tester=0;

         bool turn=false, load=false, drill=false,  test=false, unload=false,

                   loaded, loaded_value, tested_value, drilled, tested, unloaded, turned;

CaseA:  System[Controller]==Wait_for_stations

CaseB:  Signal[Controller]==Wait_for_turning 

Case1:  (signal_loader==0) and (signal_driller==0) and

              (signal_tester==0) and (signal_unloader==0)

Case2:  (not Case1) and (signal_loader==1) and loaded and loaded_value

Case3:  (not Case1) and (signal_loader==1) and  loaded and not loaded_value

Case4:  (not Case1) and (signal_driller==1) and drilled

Case5:  (not Case1) and (signal_tester==1) and tested and tested_value

Case6:  (not Case1) and (signal_tester==1) and tested and  not tested_value

Case7:  (not Case1) and (signal_unloader==1) and  unloaded

Case8:  turned==true

C

Label4:  signal_driller=0; drilled=false;

               System[Controller]=Wait_for_stations

Label5:  signal_tester=0;  P3=occupied; tested=false

                System[Controller]=Wait_for_stations

Label6:  signal_tester=0;  P3=test_fail; tested=false;

               System[Controller]=Wait_for_stations

Label7:  signal_unloader=0;  P4=empty; unloaded=false;

    System[Controller]=Wait_for_stations;

Label8:  TP1=P4;  TP2=P1;  TP3=P2;  TP4=P3; turned=false

Label9:  signal_loader=1;  load=true

Label10:  signal_loader=0

Label11:  signal_driller=0

Label12:  signal_driller=1;  drill=true

Label13:  signal_tester=1;  test=true

Label14:  signal_tester=0

Label15:  signal_unloader=1;  unload=true;

      System[Controller]=Wait_for_stations

Label16:  signal_unloader=0;

                 System[Controller]=Wait_for_stations
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Init

Case9:  P1==empty

Case10: P1!=empty

Case11: P2==empty

Case12: P2!=empty

Case13: P3!=empty

Case14: P3==empty

Case15: not (P4==test_fail or P4==empty)

Case16: P4==test_fail or P4==empty

Case17: P4==empty

Label1:  TP1=P1;  TP2=P2;  TP3=P3;  TP4=P4;

                System[Controller]=Wait_for_turning;

                turn=true; turn_value=90

Label2:  P1=occupied;  signal_loader=0;

               System[Controller]=Wait_for_stations

Label3:  signal_loader=0;

               System[Controller]=Wait_for_stations

Figure 8.4: The Controller modeled in REMES.

In submodeWait for stations, theController waits until it receives a reply
to one of the sent messages. Since this is a non-lazy mode, it must be exited as
soon as the guard on one of the outgoing discrete actions (Case1, . . . ,Case7) is
satisfied. If the message carry a value (which is the case forloadedandtested),
it is used to update the state of the corresponding slot. Whenall messages
have been received, the messageturn is sent to theTurnable, and the history
variable is set toWait for turning before exiting, meaning that the execution
will be resumed in that submode.

Results From Applying REMES to ProCom

Once a REMES model has been created for each ProCom component, the
turntable drilling system can be formally analysed. To do so, the system is
first transformed into a network of priced timed automata (PTA) models. In
the example, the semantic translation from REMES to PTA is done manually,
as described in [74], although ideally this should be automated.

Next, the design of the system is verified against the identified system re-
quirement that are expressed as temporal logic formulas. Table 8.2 maps the
system requirements from Section 8.1.1 together with theircorresponding tem-
poral logic formulas and verification results.
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Table 8.2: System properties and verification results.

Req. System property Temporal logic formula
Verification

result

1 The system should be free from
deadlocks.

A[] not deadlock Satisfied

2 A product must be clamped
when drilled.

A[] Driller.Driller moving down
imply Driller.drill clamp==locked

Satisfied

3
The table should never turn
when one of the stations is op-
erating.

A[]
(Turntable.Turn1 or Turntable.Turn2)
imply (Loader.Idle and Unloader.Idle
andTester.IdleandDriller.Idle)

Satisfied

4

Processing five products
should never take more than 25
seconds (assuming at most one
failed drilling).

A[]
(not loadedfailed and time>25 and
failed products≤1)
imply processedproducts≥5

Satisfied

5
What is the minimum en-
ergy consumption for process-
ing five products?

E〈〉 (processedproducts==5) 14 300 units1

Property 1 from Table 8.2 is a generic safety property, specifying the ab-
sence of a system deadlock, i.e., the system cannot come to a state from which
it cannot continue operating. The turntable system is verified to be deadlock
free. The next step is to verify that it satisfies the functional system require-
ments, here represented by properties 2 and 3. Properties 4 and 5 are examples
of extra-functional properties addressing time and resource usage, respectively.

8.1.5 Attribute Instance Creation

Relying on the previously described activities, i.e. the creation of the ProCom
components, their behavioural modelling, the analysis andthe availability of
suitable attribute types, it is now possible to associate information about func-
tional and extra-functional properties with the newly defined components. Ac-
cordingly, several attribute instances are added to each ProCom components.

First, an instance of the REMES attribute type is added to each ProCom
component as illustrated in Figure 8.5 for the Controller component. This in-
stance associates with the component, its REMES behaviour model and the
corresponding mapping file which specifies the correspondence between the

1This value is extracted from UPPAAL’s execution traces.
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variables used in REMES model and the component’s ports. Both files are
physically located in the file structure of the components asvisible in the de-
scription of the attribute instance value.

Additionally, for each priced timed automata model derivedfrom a REMES

model and results of the performed analysis, a PTA, deadlockfree, minimum
energy consumption and maximum energy consumption attribute instances, are
inserted into the corresponding component specification through nLight. This
figure also shows the use of nLight for the packaging the various development
artefacts within a component.
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Figure 8.5: The ProSys Controller Component packaged with its behavioural
models (REMES and PTA) through nLight
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8.2 The Personal Navigation Assistant System

In this section, we explain the mechanisms of extra-functional property refine-
ment proposed in Chapter 4 on a personal navigation assistant system that will
be designed as a ProCom system and enriched with extra-functional properties.

8.2.1 Overall System Description

A Personal Navigation Assistant (PNA) relies on the Global Position System
(GPS) to provide aid to navigation functionalities such as computing the best
routes between two cities, distance and time to arrival, current speed, direction,
etc. The GPS system is composed of 24 Earth-orbiting satellites periodically
sending information to GPS receivers that calculate their Earth-based geolo-
cation. In common language, GPS refers to the GPS receiver devices only.
Likewise in this section, we focus on the GPS receiver part ofthe PNA.

A GPS receiver is a device able to determine its location on Earth through
a trilateration calculation method that requires the exactposition of at least
three satellites. With three satellites, a GPS is able to estimate its 2D-position
(longitude and latitude) whereas with four satellites, it can also compute its
altitude. The more satellite positions the receiver get, the more accurate is the
position calculation. For example, most of today receivers, such as the Garmin
G18 [89], tracks simultaneously up to twelve satellites forbetter results. Other
type of receivers includes multiplexing channel receiver that can only follow
one satellite at a time, thus forcing them to switch rapidly between the satellites
being tracked at the cost of time and precision.

In order to know the satellite’s position precisely, the GPSreceiver must be
fully aligned with the signal of the satellite being tracked. To enable satellite’s
position discovery, the GPS receiver uses a clock to have thecurrent time and
an almanac containing the supposed positions of a satelliteat a given time.

To create the PNA, the GPS receiver is associated to a navigation processor
(Navigation System) that computes the navigation data (current position, direc-
tion, current speed, etc.) and a graphical user interface that enables displaying
the device’s geolocation data on maps, together with the navigation data and
other information such as distance and time to destination,point of interests,
etc.
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8.2.2 Architecting the PNA in ProCom

To comply with the previous description, a PNA system (illustrated in Fig-
ure 8.6) is developed out of four ProSys components (theGPS Reveiver, Power
Management, Navigation SystemandUI ) since a PNA installed in a car could
be distributed, i.e. having its central computation unit inone part of the vehicle
while the signal receiver units would be located closer to the roof for better
reception, also with respect to the parallel activity.MNOPQRST USVWXSYWQRZPPWPYSRYMQ[NO\SRSXN]NRY USVWXSYWQR^_PYN]`M^aNbNWVNO cdefghihfjefklm nioipg qorhsoihfj toiouglm vjwpigxmoyzg

Figure 8.6: a PNA system modelled in ProCom

Looking closer at theGPS Receivercomponent shown in Figure 8.7, it is
a composite ProSys component that consists of theClock andAlmanac Store
ProSys components to help the GPS receiver to faster locate the satellites on
start-up and aParallel Receivercomponent that simultaneously tracks up to
twelve satellites to compute the geolocation of the device.{|} ~������� |�������~��������������}���� ���������

����� ������� ��������� �����
��� � ���� � � ¡¢£ ��

Figure 8.7: Model of the GPS receiver as composite ProSys components
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Figure 8.8: A simplified version of a ProSys primitive receiver

TheParallel Receiveris a primitive ProSys component built out of ProSave
components as shown on Figure 8.8. It consists of twelve instances of anAn-
tenna Digital ReceiverProSave component, aTrilateration Processorand an
Output Mode Converter. For readability purpose, only four instances of the
Antenna Digital Receiver are depicted on Figure 8.8.

The Antenna Digital Receiver is in charge of the synchronization with the
satellite’s signal and get the satellite location. The Trilateration Processor com-
putes the actual position of the devices and if activated, the Output Mode Con-
verter converts the position into a different format. The communication be-
tween these components follows a pipe-and-filter architectural style separating
data flows from control flows. Data input and output ports are denoted by small
rectangles whereas trigger ports are triangles. Moreover,the antenna digital re-
ceivers are periodically activated every ten seconds. Onceone of the Antenna
Digital Receiver has terminating its computation, it activates the trilateration
processor.
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8.2.3 Attribute Type Specification

From the above description and the specification of the Garmin G18 [89], sev-
eral extra-functional properties emerge as important to consider when develop-
ing a global positioning system.

One of them is the response time, which can be defined as the time to react
to a given input. In a GPS, this corresponds, for example, to the time needed to
inform the user of his/her physical location. Accordingly,an attribute instance
corresponding to a response time extra-functional property is meaningful be-
tween an input port and a set of output ports or a service. Yet,given that the
main purpose of this section is to evaluate the mechanisms ofinheritance of
extra-functional properties between component type and component instances,
we, instead, associate response time with the component type and instances.

We use the same reasoning for the specification of related extra-functional
properties: the acquisition time that specifies the amount of time that it is re-
quired to correctly receive the satelitte’s position signal, once the position of
the GPS satellite has been found; the searching time that, onthe other hand,
corresponds to the time required to search and acquired the GPS satellite sig-
nals; and the processing time, which is defined as the time required for the
receiver to compute the position.

Other properties that can be useful during the development of a GPS in-
clude the vendor name, worst-case execution time and staticmemory usage.
Table 8.3 summarizes the specification of the attribute types corresponding to
these properties.

Inheritance Policies

In addition, the usage of each attribute type can be constrained by the definition
of inheritance policies. These inheritance policies are used to specify whether
an attribute value specified on a component type is availableto its component
instances, and, if the attribute value is available, the rules which govern its
possible refinement.

Table 8.4 lists the inheritance policies used in the PNA example. For in-
stance, for an attribute type such as “Vendor Name”, it is sufficient to have a
value for the component type. Having this information on thecomponent in-
stance would simply be redundant in that particular case. Asa consequence,
the inheritance policy for the attribute type “Vendor Name”is defined asnotIn-
herited. On the other hand, it is beneficial to be able to inherit attribute values
defined on component types for attribute types such as acquisition time, re-
sponse time and WCET. Using information from the design of the composite
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Table 8.3: Attribute type specification for the PNA System.

TypeID Attributables Data
Format

Short Documentation

Acquisition
Time

Component,
Instance

Int
The amount of time (in ms) to receive the first
information from a satellite

Response
Time

Component,
Instance

Int The amount of time (in ms) to react to a stimuli

Vendor
Name

Component,
Instance

String Name of the component’s producer

Static Mem-
ory Usage

Component,
Instance

Int
The amount of memory (in kb) statically allo-
cated

WCET Service Int
The maximum number of clock cycles a service
uses before terminating

Table 8.4: Inheritance policies used in the PNA system.

Identifier Inheritance Policy Constraint

Vendor Name notInherited none.

Acquisition Time override originalValue≥ refinedValue.

Response Time override originalValue≥ refinedValue.

WCET inherited originalValue≥ refinedValue.

Static memory final none.
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component in which the component instances are used, analyses can provide
more accurate values. Accordingly, we set the inheritance policy for these
attribute types tooverride, which means the value is inherited from the com-
ponent type to the component instances and that this value can be refined. In
addition, we enforce that if the value is refined in the component instances,
this value should be smaller than the original value. This isdone through the
constraint: “originalValue ≥ refinedValue”. The attribute type static mem-
ory is set asfinal. This implies that attribute instances will inherited any static
memory attribute instance defined on a component type but this value cannot
be modified.

8.2.4 Application on the GPS receiver

Table 8.5 lists the attribute values defined on the GPS receiver component type:
one value for vendor name, three values for acquisition time(one requirement
and one measurement for a warm start, and one estimation for acold start), and
one static memory value.

Table 8.5: Attribute instances specified for the GPS Receiver component type.

TypeID Attribute Values

Vendor Name
[-] MDH

Acquisition Time

[-] 50
– Source: Requirement
– Comment: Warm Start

[-] 40
– Source: Measurement
– Comment: Warm Start

[-] 450
– Source: Estimation
– Comment: Cold Start

Static Memory
[-] 305

– Source: Measurement
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Table 8.6 shows how these values have been inherited and refined on the
GPS component instance used in the PNA component. Due to the fact that the
attribute type Vendor Name is specified as notInherited, theattribute instance
defined on the GPS receiver component type is not available for its component
instance.

On the other hand, acquisition time and static memory instances are all
inherited on the GPS receiver component instance. However,whereas the static
memory instance cannot be refined since its inheritance policy is set as final, the
acquisition time instances values can be, their inheritance policy being defined
as override. The first value for the acquisition time, i.e. the requirement for
a warm start, is then constrained from 50s to 43s. After measurement, the
second value should be refined to 60s. However, the constraint specified for
the inheritance policy dictates that a refined value can be smaller or equal to
the one defined on the type only. This raises an alert. Either,the measurement
performed on the component instance is incorrect and in thiscase, 40s should
be the value to use, or the value set on the component type was too small and
must be increased to at least 60s.

Table 8.6: Attribute instances specified for the GPS Receiver component type.

TypeID Attribute Values

Vendor Name [-] MDH Vendor Name is notInherited

Acquisition Time

[-] 50 43 Acquisition Time is override
– Source: Requirement
– Comment: Warm Start

[-] 40 60 Constraint not respected
– Source: Measurement
– Comment: Warm Start

[-] 450
– Source: Estimation
– Comment: Cold Start

Static Memory

[-] 305 305 Static Memory is Final. Cannot
be refined

– Source: Measurement
– Platform: Linux
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8.3 The Automatic Driving System

In this section, we demonstrate the conjoint use of ProCom and nLight for the
development of a representative example of embedded real-time systems. The
choice of the example has been guided by the following rationales:

• Rationale 1:The subject of the study must be small yet representative of
an embedded real-time systems (resource constrained ECU with at least
one sensor and one actuator).

• Rationale 2: The subject should enable reasoning about typical extra-
functional properties of embedded systems such as execution time, and
memory usage.

• Rationale 3: The subject of study must enable reusing components in
different applications.

• Rationale 4: The subject of study must enable porting the application
between different hardware.

• Rationale 5:A real-time operating systems should be used.

• Rationale 6:A predictable programming language should be used, C (or
C++) preferably.

Based on these rationales, we have accordingly defined the “automatic driv-
ing system” example in section 8.3.1 and, in the subsequent sections, we de-
scribe a part of its development focusing on the modelling and analysis stages.
An important part of the example is also dedicated to explainthe use of multi-
valued context-aware extra-functional properties duringthe development of the
system.

8.3.1 Overall System Description

The automatic driving system is a “drive-by-wire”-like solution inspired by
the “Distance Control Assist” system proposed by Nissan [90], which main
purpose is to enable to electronically assist the driver to maintain a safe distance
to a preceding vehicle.

In the hardware specification of the Nissan’s “Distance Control Assist” sys-
tem, illustrated in Figure 8.9, the system is composed of a main controller in
charge of deciding the behaviour of the vehicle according tothe current situa-
tion. In order to do this, the controller is connected to a radar sensor to estimate
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Figure 8.9: Hardware for the Distance Control Assist systemfrom [90]

the distance of a vehicle in front, a pedal actuator to control the acceleration,
a brake actuator to control the braking. The driver can activate the distance
control assist system through a control switch button, and once activated, the
driver will be informed of the necessity of braking by an indicator and a buzzer
signal. If the driver interferes (for example in braking or accelerating manu-
ally), the distance control assist system is deactivated. In that case, the car is
driven manually again.

The hardware and overall behaviour of the automatic drivingsystem is sim-
ilar to the distance control assist system. However, instead using a real vehicle
as target platform we use the Robotic Command eXplorer (RCX brick as short).
Both platforms provide the same facility to build embedded systems out of a
controller that interacts with the physical world through sensors and motors.
The hardware characteristics of these different parts are listed in Table 8.7.

Furthermore, the development of the system is broken down into the two it-
erations:Iteration 1 in which a software system is developed to electronically
drive a vehicle based on user’s inputs andIteration 2 in which the software
developed in iteration 1 is enhanced with additional functionalities and hard-
ware to enables the vehicle to be driven in an autonomous way in following a
preceding vehicle at a safe distance.
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Table 8.7: Specification for the RCX Platform

CPU Hitachi Renesas H8 series (H8/300)

H8/3292 16Mhz

ROM Total: 16kb

Available: 10kb (6kb used by the OS)

Internal RAM 51kb

External RAM 32kb

Additional Storage None

Sensor ports 3

Available Sensors Light sensor

Touch sensor

Buttons 4

Button Type on/off, program, view, run

Actuator ports 3

Motors 2 at 360 RPM

Display 5-segment LCD

Speaker 1

Communication bidirectional IR

Timers built-in 10Mhz

RTOS BrickOS
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Iteration 1: Manual driving

The purpose of this iteration is to develop the basic part of the system for which
extra-functional properties can be assessed during the development process,
hence demonstrating how multi-valued context-aware extra-functional prop-
erties can be specified and how their values are used and refined during the
development process.

In iteration 1, the system simply enables to manually drive the vehicle for-
ward, backward, left, right, to accelerate, decelerate andalso honk. Since there
is no physical support to manually drive the car, the car is instead driven re-
motely through wireless communication. The vehicle is equipped with a back
parking sensor which signals whether the car touches an obstacle while back-
ing. In that case, a sound-alarm is raised and the car stops. Adisplay informs
the driver about the current direction (back, forward, paused) together with the
speed of the vehicle. In short, in iteration 1, the system behaves as summarized
in scenario 0.

• Scenario 0: Manual driving: The driver is fully in charge of the vehicle
(except when backing in presence of an obstacle).

The hardware for the platform of the vehicle is built out of a Lego RCX
brick that uses brickOS as real-time operating system, two motors to control
the wheels, a speaker, a display, four buttons, a bidirectional IR communication
device, a touch sensor positioned in the back of the platform. Additionally, a
remote control is used to manually drive the car.

Iteration 2: Autonomous driving

In this iteration, the system is enhanced with a “AutonomousDriving Sys-
tem” (ADS) feature, which enables the car to automatically follow a target at
a specified distance such as twice the braking distance by default. If the driver
interferes with the driving in accelerating or braking for example, the system
goes back in manual driving. The ADS is available in two versions: a low-end
and high-end versions. In the low-end version, it is assumedthat the target
vehicle can move back and forth only and cannot make turns. Asin previous
iteration, when in presence of an obstacle the vehicle equipped with the ADS
system must signal when it cannot back further and stops. Thedistance is cal-
culated through a distance sensor. In the high-end version,the target vehicle
can also turn. In that case, the vehicle equipped with the high-end version of
ADS behaves as the low-end version with the difference that it can lose the
target vehicle. As a result, the vehicle equipped with the ADS needs to be able
to relocate the target before pursuing its tracking.
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Figure 8.10: The different driving scenarios

As illustrated in Figure 8.10, five basic driving scenarios are envisaged for
the ADS system in addition to scenario 0 from iteration 1 which is the default
scenario.

• Scenario 1: Following.This is the default scenario for the ADS. Once
the automatic mode has been selected, the vehicle equipped with the
ADS system first wait for a target to follow. Once a target is atdetection
range, the vehicle starts following the target.

• Scenario 2: Decreasing/increasing speed of the target.If the distance to
the target decreases or increases, the vehicle adapts its speed to the target

• Scenario 3: The target is backing.If the target vehicle is backing (i.e. the
distance to the target continue to decrease although the vehicle has re-
duced the speed or stopped), the vehicle equipped with the ADS system
backs too.
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• Scenario 4: Obstacle when the target is backing.While in Scenario
3, the vehicle equipped with the ADS system detects an obstacle when
backing, the vehicle then stops and an alarm signal will sound.

• Scenario 5: Driver’s intervention.If the driver interferes in the auto-
matic driving with braking or accelerating for example, then the system
changes to manually driving (see scenario 0). Note that the interval be-
tween the user action and its effect should be of 215ms at most(this
corresponds to the average reaction time for a human).

The hardware used in this iteration is the same hardware as initeration 1,
with the difference that a light sensor is added in the front of the vehicle to
estimate the distance to the target platform.

8.3.2 Attribute and Metadata Type Specification

Similarly to what has been done in the Turntable and GPS examples, it is nec-
essary to identify the set of attribute types that should be considered during the
development of the system. In case no suitable specificationis available in the
attribute registry, additional attribute type specifications must be created and
registered.

In order to better understand the behaviour of the system, models can be
used such as a UML statechart diagram. Similarly to what has been done
with REMES model in the Turntable example, a dedicated attribute type can be
created. From the availability of this attribute types, thecorresponding model
can be packaged together with the component it depicts.

For the extra-functional properties aspects, when considering the hardware
specification and overall behaviour of the system describedin the previous sec-
tion, timing and memory usage properties emerge as important requirements.
In particular, the response time of the drive-by-wire vehicle should be at least
equivalent to the average response time of a human driving the car, that is,
215 ms. One of the factors influencing the response time is theexecution time.
As a consequence, for the purpose of this example, we will consider theworst-
case execution time. As listed in Table 8.8, the worst-case execution time is
the longest execution time that could be observed when the service is executed
on its target platform. It is worth noting that the SI base unit should be used
as the reference unit. However, in the context of this example, the timers are
cadenced at 10MHz, which implies the timing values are in theorder of magni-
tude of the nanosecond. For the sake of clarity, we then express the worst-case
execution time in nanoseconds.
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Additionally the amount of memory available, both ROM and RAM, is
limited as shown in the RCX specification table 8.7. Thus, it is important to
evaluate, through the development process, extra-functional properties such as
static memory usageandphysical size. The static memory usage corresponds
to the maximum amount of stack space that is used by a component to store
the temporary data that are necessary for its execution. Thephysical size cor-
responds to the size occupied by a component once compiled.

Table 8.8 presents the list of attribute types registered innLight that are
used during the development of the automatic driving systemexample.

Table 8.8: Attribute type specification without the supportmechanisms

TypeID Attributables Data
Format

Short Documentation

WCET Service Int

the longest execution time in nanoseconds
that could be ever be observed when the ser-
vice is executed on its target hardware.

Static
Memory Usage
(stack space)

Component Int

The amount of memory in kb used to store
the temporary data used during the compo-
nent execution

Physical Size Component Int
The physical size in kb occupied by a com-
ponent once compiled.

UML Statechart Component Path
UML Statechart diagram specifying the dy-
namic behaviour of a component.

UML Use case Component Path
UML Statechart diagram specifying the set
of actions available to the system’s users.

Further, the information that will be provided by the attribute instances
need to be complemented by suitable information to capture the context in
which the corresponding attribute value has been obtained:for example, on
which platform, by which method, etc. Table 8.9 presents a non-exhaustive
list of metadata that are suitable to use. ThePlatformmetadata type is used to
specify on which target platform the extra-functional property value has been
set. TheSourcemetadata type describes the method used to assess the value.
The Analysis Type, only available for the WCET attribute type, allows refin-
ing the type of analysis that has been performed: whereasguaranteeimplies
that the value has been assessed with safe margin estimations meaning that
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the actual WCET will always been inferior to this value,estimationdoes not
provide such guarantee. Often, analysis generates outputsthat describe how a
particular value has been evaluated. Accordingly, it is important to keep these
outputs to corroborate the value. This is the role of theAnalysis Outputmeta-
data type, that allows packaging the analysis results with the component for
which the attribute value has been assessed. The metadata typeCommenten-
ables developers to express comments on the value. Other metadata type not
explicitly shown in the table include information related to the creation time,
the accuracy of the values or its version, etc.

Table 8.9: Metadata type specification

MetadataID Desc. Of Value Format Cardinality

Platform *

{ “RCX i1”,
“RCX i2”,
“NXT”,

. . . }

*

Source *

{ “Estimation”,
“Measurement”,
“Simulation”,
“ Inherited”,

“Analysis with Bound-T”,
“Early Analysis,

. . . }

*

Analysis Type WCET
{ “Estimation”,
“Guarantee” }

1

Analysis Output * Path *

Comment * Text *

Author
UML

Statechart
String +
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8.3.3 Developing the Drive-by-Wire System (Iteration 1)

System Requirement

Developing a system necessitates first to have a clear understanding of the sys-
tem boundaries and requirements. Once captured, they can then be thoroughly
studied. This process generally leads to the creation of different artefacts such
as UML diagrams, algorithms, informal documents, etc.

For instance in iteration 1, we use UML use-case diagram to clarify the
interactions of the systems (see Figure 8.11). Further, in order to understand
the behaviour of the system during its execution, we model itas the UML stat-
echart diagram provided in Figure 8.12. In it, the system behaviour has two
main states: either the system is in “idle” state waiting for the driver to start
the system, or the vehicle is being driven, i.e. the system is“moving”. Tak-
ing into consideration the characteristics of a vehicle, the moving state can be
decomposed as a concurrent hierarchical state: one for the direction (forward,
backward or free wheel), one for the speed (constant speed, accelerate, deceler-
ate), one for rotation (left, right, or straight) and one forthe honk. Additionally,
when an obstacle is met while backing (moving state in the reverse sub-mode
for the direction), the systems passes into the “standby andwarn” state until
either the direction changes to forward or the obstacle is removed.

Architecting the System in ProCom

To realize the “drive-by-wire” solution, the system is decomposed into five
independent and active building blocks designed as ProSys components: the
Communication System, theHMI System, theEngine System, theAlarm System
and theController System. Figure 8.13 shows these components and how they
communicate with each others.

The Communication systemis in charge of simulating the presence of a
driver for the vehicle. The communication system receives instructions from
the users through the infrared receiver of the RCX brick, i.e. the communica-
tion device. When an instruction arrives, it is analysed andencoded as a mes-
sage compatible with the command message channel before being sent. Such
command includes driving direction (forward, backward, left and right), driv-
ing speed (faster, slower), stop and warn. Accordingly, thebasic functionality
of the communication system component is to wait for drivinginstructions.

The HMI Systemis the interface between the vehicle and the driver. In-
formation messages from the system are displayed to the useron a dedicated
display and the user can also directly interact with the systems through the
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Drive the vehicle

Vehicle’s 
driver

Set the direction

Start the vehicle

<<include>><<include>>
Accelerate

<<include>>

Turn the vehicle
<<include>>

Brake
<<include>>

Honk

Stop the vehicle

<<include >>
Driving
Monitor

Figure 8.11: Statechart model of the system for iteration 1
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Figure 8.12: Statechart model of the system for iteration 1
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Figure 8.13: High-level description of the system with ProSys components

available buttons. Internally, the HMI system consists of two sub-components:
one dedicated to handle the user inputs from the buttons and the other one for
displaying information to the user.

TheEngine Systemis in charge of controlling the movement of the vehicle.
It sets the speed and direction of the vehicle based on desired movement related
instructions. TheAlarm Systemmanages the sound and warning systems to
inform when an obstacle is met while backing: when an alarm signal message
is received, the alarm system activates the honk for a certain amount of time.

TheController Systemis the component in charge of taking decision for the
whole system. According to the users instructions, it calculates the necessary
operational changes that the vehicle must responds to.

Given that, the main focus of the example does not target the distribution
and concurrent execution of subsystems aspects proposed byProCom, we sim-
plify the proposed design in implementing the Engine Systemand Alarm Sys-
tem as ProSave components in the controller system. This allows on one hand
for simplified analyses and assessments of timing and memoryproperties for
the System component, in the sense that the concurrent execution and distri-
bution is not concerned, but on the other hand, this makes theanalyses and
assessment of these properties more complex for the controller.

Accordingly, the controller system is a ProSys primitive component built
out of ProSave Component. Its inner structure is shown in Figure 8.14 and de-
scribed further in the section “architecting the Controller system with ProSave
components”.
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Setting the Requirements

Now, that a preliminary architecture is available, attribute instances can be used
to annotate the ProCom architectural model with information describing the
requirements and to package the requirement artefacts produced in the previous
requirement analysis phase with their corresponding components.

From the description of the system and the hardware specification, the fol-
lowing requirements can, for example, be extracted:

• Memory Consumption

M1 The software system should fit in 10kb of ROM

M2 The software system can use at most 32kb of RAM

• Safety and Timing

ST1 While moving, the vehicle must respond, at most, in 215ms.

Table 8.10 shows an excerpt of the attribute values attachedto the ProSys
components of the architectural model from Figure 8.13. Theaforementioned
requirements M1 and M2 are set on the System component through the creation
of a “physical size” and “static memory usage” attribute instance respectively.
ST1 could be captured in a similar way through the creation ofan additional
attribute type that correspond to a response time extra-functional property.

The requirements set of the System component can be broken down to its
individual subcomponents. As observable in Table 8.10, this allows for sim-
ple verification of the requirements between the values attached to the sub-
components. For example, the Controller has been assigned 6kb of physical
memory space. Yet, in deriving a physical size attribute instance for the Sys-
tem component from the values of its sub-components, the total amount of
ROM that should be available has become 12kb which is superior to the initial
requirements. Accordingly, the attribute instance for thephysical size of the
controller is refined to pass from 6kb to 4kb.

Architecting the Controller System with ProSave Components

As illustrated in Figure 8.14, the Controller System internally consists of a rear
Parking Sensor component, a Decision Center component, an Alarm System
component and a Motor Unit component.
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Table 8.10: Excerpt of attribute instances concerned with requirements
(Platform and Validity Conditions are not visible)

Architectural
Element

TypeID Attribute Values

System UML Usecase [-] ./models/UML/uc.uml

Static Memory
Usage

[-] 32
– Source: Requirement
– Comment: M2

Physical Size

[-] 10
– Source: Requirement
– Comment: M1

[-] 12
– Source: Derived
– Comment: M1
– Comment: Derived

from sub-component’s
requirement values

Controller UML Statechart

[-] ./models/UML/statechart.uml
– Author: S éve
– Comment: Approved by Jan

WCET

[-] 150 000
– Source: Requirement
– Type: Estimation

Static Memory
Usage

[-] 10
– Source: Requirement

Physical Size

[-] 6 4
– Source: Requirement
– Version: 1 2

HMI WCET

[-] 30 000
– Source: Requirement
– Type: Estimation

. . . . . . . . .
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Figure 8.14: Controller System built out of ProSave components

The controller system works as follows: At each activation period, deter-
mined by a clock, the rear parking sensor is activated. Upon completion of the
activity of the rear parking sensor, the decision center is next triggered. Bas-
ing its decision from the received instructions from the user (command input
port), the actual speed and the data from the rear sensor, thethrottle, direction
and angle are outputted together with a message to be sent to the display. If
the decision center signals a warn (i.e. the rear parking sensor has detected a
collision), the alarm system is activated together with themotor. Otherwise,
only the motor is activated.

The role of therear parking sensoris, upon activation, to get inputs from
the physical sensor and write into the output port whether the back sensor is
activated or not.

TheDecision centeris the heart of the controller. It is in charge of dispatch-
ing information towards to appropriate subsystems. In the first iteration, it only
consists of the manual regulator component as illustrated in Figure 8.15. The
role of themanual regulatoris simply to calculate the throttle and direction to
apply according to the user inputs. If the vehicle is going backward, the alarm
signals might get activated.

The Decision Center can be enhanced with anAlarm Analyzercomponent
(see Figure 8.16). The Alarm Analyzer component is in chargeof filtering the
input from the sensors to eliminate erroneous signal. For instance, signals em-
anating from the back sensor should only happen when the vehicle is backing.
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Figure 8.15: ProSave model of the Decision Center component
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Figure 8.16: ProSave model of the Decision Center componentwith the
Alarm Analyzer component
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Analysing the components and the system

From the sole design of the Controller component described in the previous
section, several analyses can be performed. Similar process can be repeated
for any component present in the system, including the system itself. The
purpose of these analyses is to assess the feasibility of thedesign and, if needed,
investigate alternative solutions early in the development process. For instance,
one may want to evaluate whether the advanced decision center can be used in
place of the simpler version. In using expert estimates on the sub-components,
extra-functional properties values such as timing properties can be derived for
the composite component. This is possible thanks to the restrictive semantics
of the ProCom component model. In applying the timing analysis proposed
by Carlson [91], newly derived values can be obtained and compared to the
requirements set in the previous development stage. Table 8.11 show an excerpt
of these values. Other types of analyses can also be applied.

Once, the remaining components have been implemented, eachof them
can be validated and verified with respect to functional and extra-functional
properties using various analysis techniques. The values obtained can then be
used to refine the estimations previously derived for the controller component.
Once, all the missing components have been implemented, thesystem can be
synthesized. New values can then be inserted from the Systemcomponents
that would correspond to its execution or simulation. Table8.12 provides an
excerpt of final values for the WCET.

8.3.4 Enhancing the Drive-By-Wire System with an Auto-
matic Driving Functionality (Iteration 2)

In this section, we describe interesting aspects of the development process to
enhance the drive-by-wire system from iteration 1 with an automatic-driving
functionality. This corresponds to iteration 2 from Section 8.3.1, in which a
vehicle should automatically trail a preceding vehicle or be driven manually.
On the overall, the development process followed here is similar to the one
in iteration 1, but with the difference that components developed in iteration
1 are reused. The purpose is here to illustrate how ProCom components and
multi-value context-aware extra-functional properties are used in a context of
reuse.
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Table 8.11: Excerpt of WCET attribute instances for the Controller
component and its sub-components

Architectural
Element

Attribute Values

Controller

[-] 150 000
– Source: Requirement
– Type: Estimation
– Platform: RCX i1
– Validity Conditions: Platform=‘‘RCX

i1’’
[-] 110 000

– Source: Early Analysis
– Type: Estimation
– Validity Conditions: ‘‘Controller

Figure 8.14 with simple decision
center component’’

[-] 120 000
– Source: Early Analysis
– Type: Estimation
– Validity Conditions: ‘‘Controller

Figure 8.14 with advanced decision
center component’’

Simple Deci-
sion Center

[-] 25 000
– Source: Estimation
– Type: Estimation

Advanced De-
cision Center

[-] 35 000
– Source: Estimation
– Type: Estimation

. . . . . .
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Table 8.12: Excerpt of the WCET attribute instances.

Architectural
Element

Attribute Values

Controller

[-] 150 000
– Source: Requirement
– Type: Estimation
– Platform: RCX i1
– Validity: Platform=‘‘RCX i1’’

[-] 110 000 139 663
– Source: Early Analysis Derived
– Type: Estimation

[-] 123 780
– Source: Measurement
– Type: Estimation

Decision Center

[-] 28 150
– Source: Analysis with Bound-T
– Type: Estimation
– Analysis Output: ./models/BoundT/wcet.txt
– Comment: all loops repeat 2 times
– Platform: RCX i0
– Validity: Platform=RCX i1

Motor

[-] 18 888
– Source: Measurement
– Type: Estimation
– Platform: ‘‘RCX i1’’
– Comment: Based on 100 executions.
– Validity: Platform=‘‘RCX i1’’

RPS

[-] 79 000
– Source: Analysis with Bound-T
– Type: Guarantee
– Analysis Output: ./models/BoundT/wcet.txt
– Platform: RCX i0
– Validity: Platform=RCX i1

Alarm System

[-] 13 625
– Source: Analysis with Bound-T
– Type: Guarantee
– Analysis Output: ./models/BoundT/wcet.txt
– Platform: ‘‘RCX i1’’
– Validity: Platform=‘‘RCX i1’’

. . . . . .
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Reusing from the Drive-by-Wire System

The first step of the development is here to identify the partsthat must be
adapted from the drive-by-wire system to provide the advanced functionality
of the automatic driving. This requires to decide which components are needed,
which ones should be removed or modified to map the new requirements for
the system. The same must be done with the extra-functional properties for
the components remaining in the design and the ones that are planned to be
adapted.

In order to do this, we start from the system description for iteration 2 in
Section 8.3.1. The principal differences with iteration 1 are in the ability of the
system to estimate the distance to the preceding vehicle through a light sensor,
decide on the action to do to follow it and hand back the control to the human
driver.

Accordingly, the development process starts this time by reusing the sys-
tem built in iteration 1, i.e. the ProSys “System” component. In reusing this
component, several extra-functional properties are also made available in the
same time since the two systems (the one from iteration 1 and the one from iter-
ation 2) targets a similar platform with the same CPU. These extra-functional
properties correspond to the artefacts produced or needed during iteration 1
such as use-cases, statechart, requirements, analysis values and measurements.
If the content of the System component is unchanged, the values can be reused
directly. However, if the content is modified, it is necessary to identify and use
only suitable values.

In the case in which, the hardware platform for the system being built is
different than the platform from the previous project, it isimportant to also
identify the extra-functional properties which are platform independent and can
be directly reused from the platform dependent values that will typically not be
reused apart for being used as rough estimations. In that case, the validity
conditions play an important role to identify the values that can be reused.

For example, the UML use-case diagram available in the System compo-
nent does not match the functional requirements for the system any longer. To
better understand the system, we decide to keep this diagramand adapt it to
fit the new functional requirements. As a result, a new use-case called “Auto-
matic Drive” is added to the original use-case (see Figure 8.17). This changes
in the original use-case implies that the attribute instance UML use-case can
be reused.
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Figure 8.17: Use-case of the system for the ADS system.

Similarly, the extra-functional requirements M1 and M2 setfor the drive-
by-wire system are still valid in iteration 2 so they can be used as they are.
New requirements can also be derived from the system description such as the
following safety requirement:

ST2 The vehicle must maintain a distance to the target vehicle atleast
equals to twice the braking distance.

Then, the final architecture of the drive-by-wire system, i.e. the internal
view of the System component, is examined to locate the changes that must
be performed on the system. This corresponds to the solutionshown in Fig-
ure 8.13 with the motor unit and the alarm system inside the controller compo-
nent as illustrated in Figure 8.15. However, due to the additional requirements,
none of the ProSys components used within the System component can be
reused without modification. The Communication and HMI components re-
quire to be enhanced with an extra command to enable the activation of the
ADS functionality. The Controller component also needs to be modified to
cope with the new functional requirements. This implies that the attribute in-
stances available for the System component cannot be reuseddirectly. Yet, it is
possible to reuse some of them as a conscious decision to provide some early
estimations on the design. For instance, a physical size attribute instance mea-
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sured for the HMI component can be used as a possible approximation in place
of a measurement as shown in Table 8.13.

The Controller component also needs to be modified with the following
changes:

• Addition of a distance sensor component that evaluates the distance to
the preceding vehicle;

• Modification of the decision center to support the autonomous driving
use-case.

From the components used to build the Controller component,the rear parking
sensor, the Motor Unit and Alarm System ProSave components can be reused
without modification together with their extra-functionalproperties. As for the
use-case diagram of the System component, the statechart diagram within the
controller component is adapted to support the autonomous driving state (see
Figure 8.18). Table 8.13 shows some of attribute instances that can be reused
in iteration 2.

Moving

Idle

Manual Autonomous

manual mode

Auto mode

manual mode

accelerate

brake

accelerate

brake Auto mode

stop

stop

Standby & Warn

Reverse 
&& 

obstacle detected

Forward 
||

no obstacle

stop

Figure 8.18: UML statechart diagram for the ADS system.
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Table 8.13: Excerpt of Attribute Instances reused in Iteration 2.

Architectural
Element TypeID Attribute Values

System UML Use case [-] ./models/UML/uc.uml

Static Memory Usage [-] 32
– Source: Requirement
– Comment: M2

Physical Size [-] 10
– Source: Requirement
– Comment: M1

HMI Physical Size [-] 2
– Source: Requirement
– Comment: M1

[-] 1 2
– Source: Measurement Estimation
– CFlags:

-O2 -Wall -fno-builtin
-fomit-frame-pointer

– Comment: Estimation based on a
previous project.

Alarm System Static Memory Usage [-] 8
– Source: Analysis with Bound-T
– Type: Guarantee
– Analysis Output:

./models/BoundT/sMem.txt

WCET [-] 13 625
– Source: Analysis with Bound-T
– Type: Guarantee
– Analysis Output:

./models/BoundT/wcet.txt

Rear Parking Sensor WCET [-] 79 000
– Source: Analysis with Bound-T
– Type: Guarantee
– Analysis Output:

./models/BoundT/wcet.txt
– Platform: RCX i1
– Validity: Platform=‘‘RCX i1’’

. . . . . . . . .
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Figure 8.19: The ProSys Controller component for the ADS built out ProSave

components.

First, in order for the system to be able to evaluate the distance to the pre-
ceding vehicle, it is necessary to add a distance sensor component to the design
of the controller. As depicted in Figure 8.20, the distance sensor component is
emulated through a light sensor that detects the amount of light reflected from
the target vehicle and a distance estimator that uses the received amount of
light to make a rough estimation of the distance between the two vehicles. The
internal view of the new controller component is shown in Figure 8.19.åæçèéêëì íìêçîïðæñòèíìêçîï åæçèéêëìóçèæôéèîï

Figure 8.20: ProSave realization of the distance sensor

Further, the decision center component needs also to be modified to support
the new functional requirements. As illustrated in Figure 8.21, two additional
components are added to the decision center in the second iteration: the “Au-
tonomous Regulator” and the “Autonomous Target Finder”. The autonomous
regulator is in charge of calculating the required throttle, direction and angle



8.3 The Automatic Driving System 189

with regards to the estimated distance to the target in orderto maintain the
appropriate distance to the target. In addition, if the rearparking signal is en-
gaged and the car is backing, the autonomous regulator must signal a warning.
It is assumed that the target to follow goes back and forth only and do not turn.
If the target vehicle turns, the target will be lost. In that case, the autonomous
target finder is in charge of relocating the target. Its role is to command the
vehicle to progressively rotate the vehicle with increasing angle to try to find
the target again. If after a certain time, the target has not been found, the Au-
tonomous Target Finder raises an alarm, stops the vehicle that goes back in
idle mode, waiting for new instructions. The Manual Regulator is reused from
iteration 1. õö÷øùøúûüöûýöþÿ��������
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Figure 8.21: ProSave model of the Decision Center componentin the second

iteration

Similarly as for the previous iteration, the remaining component are then
implemented and individually tested against functional and extra-functional
properties before the final system being synthesised. New extra-functional
property values can then be added to each component or to the system.
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8.4 Summary

In Section 8.1, we have illustrated on the turntable examplehow a ProCom
design and a dedicated analysis model can be used conjointlyto perform early
analysis of a system. Further, we have also shown how nLight can be used
to packaged analysis artefacts and extra-functional property values into com-
ponents. Through the realisation of this example, several outcomes can be
discussed.

First, the integration of REMES into ProCom and the packaging as com-
ponent was rather straightforward from the component-based design’s point of
view. Indeed, no change was required except simply registering a new attribute
type into nLight. On the other hand, from the analysis point of view, more work
was needed as it was necessary to adapt REMES to correspond to the semantics
of ProCom in order to provide valuable analysis results.

In working on this example, it appears that it is quite difficult to deter-
mine which extra-functional properties would be good candidates to use as
attributes. From the rich REMES model of a component, it is possible to ex-
press how e.g., the resource usage changes over time or in response to arriving
messages, or how consumption of different resources are related. Accordingly,
several isolated extra-functional properties can be extracted to be stored as sep-
arate attributes. For example, from the REMES model of Controller, a bound
on the consumed energy can be extracted. Albeit very simple compared to the
full REMES model, the Maximum Energy Consumption attribute instance at-
tached to the Controller component would provide valuable information about
the component and could serve as input to other analysis techniques. Selections
of appropriate attribute candidates could be facilitated by having a precise qual-
ity process and development guidelines. Further, in extracting properties from
a model a new challenge arises: how to ensure the consistencybetween the
model and the extracted value?

With the personal navigation assistant system in Section 8.2, we have ex-
emplified how inheritance policies are used in practice. Thestudy of the system
description highlighted the existence of dependencies between values of extra-
functional properties. Such a dependency occurs within thescope of a project
such as between the acquisition time of an antenna digital receiver and the re-
sponse time of the parallel receiver. Another type of dependency which scope
is global also exists as for instance between execution time, worst-case exe-
cution time and best-case execution. As a result, mechanisms to handle these
dependencies should be provided.
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With the last example of the automatic driving system in Section 8.3, we
have demonstrated the use of the multi-valued context-aware extra-functional
properties during the development of a system. The system has been devel-
oped using the ProCom component model and different analysis techniques to
assess the extra-functional properties: component-basedtiming analysis based
on ProCom semantics [91], static analysis with Bound-T [92]and measure-
ments on the target platform. From this example, it has emerged that several
important aspect must be considered for an efficient management of extra-
functional properties in the development process. First, to foster the use of
extra-functional properties in the development process, it is important that the
various analysis techniques are tightly integrated with nLight. Otherwise, the
analyses are performed outside the framework and this necessitates manual in-
tervention to set the results as extra-functional properties. Furthermore, it is
necessary to have clear rules to decide whether a new attribute value is a re-
finement of a previous value or a different value. Having thisset of rules is
particularly important for automated processes.





Chapter 9

Related Work

In this chapter, we relate the contributions presented in this thesis, namely a
classification framework for component models, a frameworkto manage extra-
functional properties, a new component model for distributed embedded sys-
tems and two integrated development environments to similar relevant work.

9.1 On Component Model Classification Frame-
works

Over the last decade, several attempts have been made to identify key features
of aspects of component software approaches: classification studies of compo-
nents and interfaces ([93], [94]), interfaces, extra-functional properties ([28]),
ADLs ([49]), component models ([50]), and characteristicsof component mod-
els for particular business domains ([63]), among others.

The work presented by Yacoub in [93] and [94] does not consider any com-
ponent model but rather focuses on practical issues of component utilisation
and reutilization. In [93], the interface classification issplit into two categories:
application interfaces and platform interfaces. Application interfaces describe
the information about the interaction with other components (messages proto-
col, timing issues to requests) whereas the platform aspectconcentrates on the
interaction between components and the executing platform. Similarly in [94]
a model for characterizing components is proposed which reuses the classifi-
cation model of interfaces from [93], where: a component is regarded as the
description of three main items (informal description, externals and internals)
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each of them split into several subelements. The informal description is con-
nected with a set of features that relates to the use of a component in a team
and over time. These features can influence the selection of acomponent such
as: its age, its provenance, its level of reuse, its context,its intent and if there is
any related component solving a similar problem. The externals are concerned
with interaction mechanisms both with other application artefacts and with the
platform (application interfaces, platform interfaces, role, integration phase, in-
tegration frameworks, technology and non-functional features). Finally the in-
ternals are concerned with elements related to the potential information needed
during the development process of a system (nature, granularity, encapsulation,
structural aspects, behavioural aspects, accessibility to source code).

A classification that is similar in spirit to our work, is proposed in [95].
This classification framework attempts to determine the core features of a soft-
ware component. However, it differs from ours in including the identification
of a component by a set of characteristics (unit of composition, reuse, inter-
face, interoperability, granularity, hierarchy, visibility, composition, state, ex-
tensibility, marketability, and support for OO). The classification includes only
business components and business solutions. One of the problems with this
classification is the non-orthogonality of some of the characterized items.

In [49], where ADLs are classified, components are defined as basic ele-
ments of ADLs. The components are distinguished by the following features:
interface, types, semantics, constraints, evolution, andnon-functional proper-
ties.

In [63], a classification model is proposed to structure the CBSE body of
knowledge. All research results are characterized according to several aspects
(concepts, processes, roles, product concerns and business concerns, technol-
ogy, off-the-shelf components and related development paradigms). Here, the
component model is only considered as one of the fifty elements among the
CBSE items. However, in this work, a more precise taxonomy ofapplication
domains is proposed. The paper identifies the following application domains in
which component-based approaches are utilized: avionics,command and con-
trol, embedded systems, electronic commerce, finance, healthcare, real-time,
simulation, telecommunications and, utilities.

In [7], several component models (JB, COM, MTS, CCM, .NET andOSGI)
are mainly described according to the following criteria: interfaces and assem-
bly using ACME notation, implementation, and lifecycle. The models are not
compared or evaluated, but rather these characteristics are described for each
component model.
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In [50], a study of several component models is presented that considers
the following aspects: syntax, semantics and composition through an ide-
alized component-based development lifecycle. A smaller number of com-
ponent models are considered (also UML and ADLs are included). Based
on this study, a taxonomy centered on the composition criterion is proposed,
which clarifies at which steps of the development process of agiven compo-
nent model, components can be composed and whether they can be retrieved
from a repository to be composed. Furthermore, the different types of bindings
(compositions) of some of the component models are discussed in more detail.
This taxonomy does not consider extra-functional properties.

In comparison with all these works, the classification framework proposed
in the thesis specifically focuses on component models and their intrinsic char-
acteristics. These have been identified through a thorough and systematic liter-
ature review and analysis. However, the literature review could have been made
more systematic in following the general guidelines proposed by Kitchenham
in [96].

9.2 On Extra-Functional Properties

Extra-functional properties have gradually gained importance in software engi-
neering to be viewed today as an absolute counterpart to functional properties.
However, due to their complex nature, there is still no consensus on their def-
inition, and on how they should be specified, used and assessed during the
development. This results in a lack of support and the fact that they are sel-
dom consider in practice. The same is also true in component-based software
development as pointed out in [97] and [98].

Many works concerned with extra-functional properties canbe found today
in the literature. We use the categories below to group theseworks and some of
them will be described and related to the thesis contributions in the following
Sections 9.2.1, 9.2.2 and 9.2.3.

• Contract-Oriented Approaches: The works gathered in this category
aims at proposing approaches to define contracts, and usage profiles
which guaranty the correct extra-functional behaviour of the system at
run-time. These approaches are often complemented with monitoring
supports and negotiation policies. Hence, these approaches generally
cover mainly two development phases: modelling to specify the extra-
functional contract and runtime for the monitoring and possibly negoci-
ations of the properties.
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• Prediction-Oriented Approaches: Approaches in this category aim at
analysing extra-functional aspects with the intention of determining early
in the development process whether a system will meet its extra-
functional requirements or not. To a certain extend, these approaches
contribute to the modelling activity of the system. These works can be
further sub-categorised between “general-purpose” and “analysis-
specific” approaches. These approaches can often be used conjointly
with model-driven engineering techniques to generate implementation
code complying with the envisaged specification and system model.

• Fact-Oriented Approaches: Approaches belonging to this category are
intended to provide support during the development processto capture
information about extra-functional properties on the system being devel-
oped in order to see whether the requirements are being satisfied. The
approach proposed in this thesis falls into this category.

It is worth noting that works with different focuses on extra-functional
properties in comparison to ones from the above categories can also be found
in the body-of-literature. These works provide useful complementary informa-
tion for the thesis contributions and can be grouped in the following categories:

• Classification-Oriented Approaches: Works belonging to this category
are concerned with the identification, characterization and definition of a
general structure to sort identified properties according to key character-
istics. Some of classifications are generic [99, 100, 66, 101, 102, 103],
whereas others focus on a specific category of properties such as depend-
ability [1] or worst-case execution time [65]. Another subset of works
from this category relates to specific property aspects suchas compos-
ability [28].

These works present the knowledge domain for extra-functional prop-
erties and in summarizing in a succinct form the key aspects of extra-
functional properties, they can be used by approaches from other cat-
egories to know what must be considered. However, most of thepro-
posed classifications are often non-orthogonal and non-consistent be-
tween each other. For instance, Laprie’s dependability classification [1]
collides with the standard IS09126 [66]. As a result, it is still difficult
today to have a clear picture on how extra-functional properties should
be represented, assessed and what factors influenced them.
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• Requirement-Orient Approaches: Works on extra-functional requirements
represents another facet of extra-functional properties,which many works
such as [104, 105, 106, 107] are concerned with. This categories cov-
ers approaches to identify, express and manage extra-functional require-
ments.

9.2.1 Contract-Oriented Approaches

QML

QML [108, 109], Quality of service Modeling Language, proposes a general
language for the specification of extra-functional properties. However, unlike
our approach that considers extra-functional properties as stand-alone entities,
QML envisages them within the scope of a contract (similar toour concept of
category). In QML, a contract is specified through a set of extra-functional
property specification called “dimensions”. Dimensions are declared as fol-
lows: “name : orderdata format [unit ]” with, order describing the way the
values are ordered (increasing or decreasing) anddata format corresponding
to one of three proposed domain numeric, enumerated or set. The unit param-
eter is optional. When a contract is instantiated, optionally the value of each
dimension can be constrained with authorized value range.

The primary motivation for QML is to support the creation of non-functional
contracts for the development of distributed object-oriented systems in order
to monitor whether extra-functional requirements are satisfied at runtime and
dynamically adapt the system in case they are not. In QML, “attributable”
elements are called profile and are limited to interface definition only but en-
ables nonetheless to attached contracts for any entity of the interface definition
as well. This includes operations and parameters for example. Refinement is
also considered in the sense that a contract is a refinement ofanother contract
if its dimensions are more constrained. QML enables properties monitoring,
negotiating and conformance checking.

However, in comparison to our approach, the expressivity ofQML is more
limited and more informal. For example, a same property can be specified
differently in two different contracts. Also, QML only offers a limited set of
data type limited to numeric, set or enumeration values. This excludes the
possibility to express properties through formula, distribution, etc.
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QoSCL

Similarly to QML, QoSCL [110], the Quality of Service Constraint Language,
also aims at the specification of extra-functional propertycontract. This lan-
guage reuses the core concepts from QML and enriched them with two comple-
mentary aspects:i) dependencies between extra-functional properties can be
defined (“QoSCL allows a designer to declare a set of extra-functionalproper-
ties, bonded between them into a network of relations (numerical constraints,
formula, or empirical rules)”) and ii) techniques to automatically generate code
for runtime monitoring and validate contract for componentassembly are pro-
vided. However, QoSCL do not alleviate the drawbacks of QML mentioned
above.

CQML

CQML [111], is a Component Quality Modelling Language builtaround three
core concepts:QoS characteristicsto define types of extra-functional prop-
erties,QoS statementsto specify constraints on the values of the Qos char-
acteristics andQoS Profilesto assign properties to components and parts of
components. Further, QoS characteristics can also be grouped into categories.
QoS Contract can be derived by agreement between QoS Profilesattached to
different elements.

In CQML, types for extra-functional properties are declared through a
unique name used as identifier and a value domain. Additionally, restrictions
on the value domain, a value order and locally defined units can be used to
complement the declaration. Extra-functional propertiescan also be specified
with a statistical definition including for example its mean, variance, maximum
value, minimum value, standard deviation, etc. However, how the statistical
values have been obtained in not integrated into the language.

Refinements between extra-functional property types are envisaged through
a specialisation paradigm enabling to restrict previouslydefined types. This
is similar to the refinement concept proposed by QML for contract. Further-
more, CQML also considers component compositions in that sense that a QoS
characteristic of a composite component can be derived fromthe same QoS
characteristic of the sub-components. However, CQML does not take into con-
sideration the dependencies that exist for example with theusage context, the
resources, etc. as identified in [28] and [112].
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Just as for QML, CQML does not provide a general-purpose typesystem
and considering units as only informative. Value domains are limited to three
predefined “type” consisting of numbers, set and enumerations only. CQML
primary purpose is to provide a set of suitable concepts to support of extra-
functional property aspects during development. CQML doesnot per se pro-
pose any monitoring, adaptation or agreement mechanisms. However, in [111]
a QoS Framework including a QoS Monitor, an Adaptation Manager and a QoS
Negotiator is described.

In [113], Röttger and Zschaler identified some limitationsof QML and ac-
cordingly propose several enhancements for it. In particular, they insist on the
need of having the computation model explicit, i.e. specifying what elements
of that computational model can be enriched with extra-functional properties
information. Furthermore, they propose to extend the language to consider
resource-related properties such as CPU usage, memory.

9.2.2 Prediction-Oriented Approaches

The approaches described in this section use models enriched with extra-
functional specific information for quantitative analysispurpose. These ap-
proaches can be separated into two groups:general that aims at providing
ground for expressing a large variety of extra-functional properties in order to
support their analysis, andspecificthat aims at a given type of analysis pri-
marily. The specific prediction-oriented approaches are generally based on the
particular needs of the targeting analysis to derive the necessary information
which the models must be annotated with. The approaches described below
consider component-based development. Other approaches aiming at the same
thing include for example model-checking approaches such as UPPAAL.

UML Profiles

Several UML profiles have been proposed to provide for the lack of extra-
functional property specification support in UML. Some of these profiles are
UML SPT (the UML Profile for Schedulability, Performance andTime) [114],
UML QoS & FT (the UML profile for Quality of Service and Fault Toler-
ance) [115], and MARTE (the UML profile for Modeling and Analysis of
Real-Time and Embedded systems) [71]. These profiles are general prediction-
oriented approaches in that sense that their main purpose isto provide mod-
elling of extra-functional properties in order to specify and in some cases to
enable analysis and validation of systems in early development phases. These
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profiles allow to enrich any feature of UML diagrams with extra-functional
properties annotations.

However, UML SPT and UML QoS & FT have identified shortcomings.
UML SPT lacks expressivity and flexibility. It essentially supports timing prop-
erties with corresponding schedulability an performance analyses only. Fur-
thermore, the profile cannot be extended to comply with specific user’s needs.
In comparison, UML QoS & FT covers more properties which can be fixed or
dynamically managed. It also provides support for defining categories and a
QoS catalog, i.e. a repository of extra-functional property specifications. But
the language is bulkier while, alike UML SPT, it still lacks formal semantic.
These limitations have led both profiles to be superseded by MARTE.

MARTE defines a general framework for the specification and design of
extra-functional properties with the main intention of supporting any kind of
analysis based on these specifications. To this end, the profile is structured
in four packages of which the foundations one has a sub-package that specif-
ically addresses extra-functional property modelling aspects: the NFP profile.
The NFP profile is concerned with the specification on how to declare, qualify,
and apply semantically well-formed non-functional concerns in real-time em-
bedded system development. Some aspects of extra-functional property man-
agement proposed in this thesis emanate from MARTE and its NFP profile,
namely the need for qualifiers that provide additional information on extra-
functional property values (e.g. source, statistical measure, precision, etc.),
and the need for a dedicated framework. With regards to our approach to extra-
functional property management, MARTE offers a flexible solution to integrate
extra-functional property information without having to modify the underlying
model. However, MARTE is tight to the UML modelling languageand does
not focus on implementation and reuse as our approach.

Palladio

The Palladio Component Model (PCM) [48, 116] is a component model tar-
geting business information systems. It specifically aims at enabling the pre-
dictions of performance and reliability properties in early development phases.
This includes extra-functional properties such as response time, throughput and
resource utilisation. The approach to predictions in the PCM is largely model-
driven oriented and thus centered around several supporting models used by
identified actors during the development process. A noticeable feature of this
approach lies in the possibility to enhance these models with specific extra-
functional property information that can be parameterisedaccording to envi-
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ronment influences such input parameters, resource usage, the usage of re-
quired services. This information is specified through a stochastic expression
language called StoEx. The language is based on mathematical foundations for
describing random variables and their distributions. Thismeans that alike our
approach, the PCM approach also acknowledges the need to make explicit the
dependencies towards the usage context of extra-functional properties.

PECTs

From the Carnegie Mellon Software Engineering Institute (SEI), the Prediction-
Enabled Component Technologies, shorten as PECTs [16, 117,118], have
been developed to facilitate predictability of run-time properties such as per-
formance, safety and security. This approach stresses the importance of pro-
viding suitable quality prediction based on sound analysistheories for compo-
nent models. In that sense, a PECT is defined for a specific component model
(Pin for example [32]) and integrates in it a set of supporting analyses through
dedicated reasoning frameworks. A reasoning framework consists of an an-
alytical interface per property and corresponding analysis theories and mod-
els. Examples of reasoning frameworks for the Pin componentmodel include
ComFoRT [119], a model checking reasoning framework to determine whether
safety and reliability requirements are satisfied; Covert [120] to discover buffer
overflows in C programs and Lambda-∗ [121] for predicting timing properties
such as average or worst-case latency of tasks.

In comparison to our approach that does not require changes in the com-
ponents, each Pin components must be enriched with a dedicated analysis in-
terface to enable the use of the corresponding reasoning framework. How-
ever, the approach also intends at making explicit assumptions on environment
and usage context such as the used scheduling policies, target platform, etc.
In that respect, this ties up to our view that these must be made explicit and
maintain for future reference. In PECT, properties are simply defined as an
n-tuple〈name, value, . . .〉, where the triple-dot punctuation mark represents an
arbitrary number of property-specific parameters. The needto attach extra-
functional properties to different entities is also recognized and properties can
be attached to component, assembly, pin, reaction, environment, and environ-
ment service.
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9.2.3 Fact-Oriented Approaches

Credentials
In [46], extra-functional properties are represented through the concept of cre-
dentials. A credential is defined as a triple〈Attribute,Value,Credibility〉,
for whichAttributeidentifies the component property,Valuethe corresponding
data, andCredibility describes how the value has been obtained. Credentials
are considered to be incremental and evolving specifications that requires at-
tribute names to be registered. However, details on the concepts remain rather
vague and succinct. For example, for the concept of credibility, an enumeration
of possible values is simply given.

The concept of credentials has been integrated in Ensembles[122] and in
SaveCCM [14]. In both approaches, credentials are attachedto component
only. An extension to Ensembles is proposed in [7] that allows credentials for
interfaces and their operations. This concept has also inspired the first steps of
the thesis work on extra-functional properties.

A Formal Specification Framework
In [123, 124], Zschaler proposes a formal specification framework for the spec-
ification of extra-functional properties in component-based systems. In many
respects, this approach is closely related to the one presented in this thesis.
First, a distinction between intrinsic and extrinsic property is introduced. An
intrinsic propertyis a property for which the value is solely dependent upon
the component’s implementation. In contrast, anextrinsic propertyis a prop-
erty which value is dependent upon the component usage, i.e.the value is
influenced by factors outside the component. This dichotomyrelates to the dif-
ference between attaching an attribute to a component type (intrinsic property)
and attaching an attribute to an instance of the component type (extrinsic prop-
erty). Second, the approach makes use of models to formally support extra-
functional property specification. In particular, models called context models
are used to analyse specific properties in order to obtain values. Likewise in
our approach, we advocate that extra-functional property assessment can be
facilitated by the use of a hierarchical component model with a precise seman-
tics throughout the development process complemented by suitable allocation
and platform model. Similarly, additional models can also be used to assess
extra-functional property values as illustrated in Chapter 8. Third, the concept
of measurements is introduced. A measurement describes howa value can be
obtained. However, it is unclear how the measurement is linked to the property
once obtained. The degree of formalism of the approach is high and extensive
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as it relies on Temporal Logic of Actions (TLA+)[125] for thespecification of
all the concepts of the framework. However, this renders theapproach rather
unintuitive and due to the use of TLA+ some extra-functionalproperties cannot
be expressed by the approach such as stochastic properties or properties such
as learnability and maintainability.

Global/Local Repositories for Extra-Functional Properties
Some characteristics of the approach proposed by Ježek andBrada in [126,
127] have directly been inspired by the work on extra-functional properties
presented in this thesis. These are namely the main objective of the approach
and the necessity of having a repository for extra-functional properties. The
approach shares our vision of a dedicated framework that enables to system-
atically specify, integrate, manage and assess extra-functional properties in
component-based systems. Similarly, the framework is not tight to a specific
component model but instead allows enriching any componentmodel specifi-
cation with a suitable support for extra-functional properties. Both approaches
differ however in their coverage of component-based development process.
Whereas our approach aims at supporting extra-functional properties in the
whole development process from early design up to synthesis(i.e. excluding
requirement and execution phases), Ježek and Brada’s targets the component
packaging and selection stages in which components are seenas black-box.
As a consequence, extra-functional properties are only attached to component
types and features thereof. Likewise, the approach also acknowledges the use
of a repository of extra-functional properties. In contrast of using the repos-
itory as a catalog of available properties only, the approach uses a system of
repositories distinguishing aglobal repositorystoring extra-functional property
types fromlocal repositoriesgathering extra-functional property values eval-
uated in a given environment. However, the specification does not state what
aspects of the environment are embodied in a given local repository and how
these aspects are related to the extra-functional propertyvalues. Similarly, the
approach does not maintain information on how the value has been assessed
and to which extend the value can be reused, i.e. is this valuereusable in the
same context? or if it can be used in a different environment.The concepts
of metadata is also introduced informally as a record containing any additional
information such as property unit and allowed distinctive name for the prop-
erty. However, such a definition does not provide the flexibility of metadata
concept introduced in Chapter 3 and even implies that a valuewith a differ-
ent unit should be a different extra-functional property, hence weakening the
semantics behind a property.
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9.3 On Embedded System Development
9.3.1 Component Models
A broad range of component models exists nowadays, either general purpose
or dedicated component models, as compiled in various classifications (as in
[7] or [50] for instance). However, few component models actually target the
development of embedded systems and most of them focus on a specific do-
main only. Using the component models from Chapter 2 as a basis, this section
compare the component models targeting embedded systems with ProCom

In the automotive domain, the AUTOSAR (AUTomotive Open System AR-
chitecture) consortium [128] is the first large-scaled initiative to gather manu-
facturers, suppliers and tool developers from the automotive field to establish
an open and standardised software architecture for the automotive domain en-
abling component-based software design modelling. Through this common
standard, the vision of AUTOSAR is to facilitate the exchange of solutions (in-
cluding software components) between different vehicle platforms and subsys-
tem manufacturers as well as between vehicle product lines.In that sense, AU-
TOSAR targets the upper part of the granularity scale of the proposed concep-
tual component model. Similar to our approach, AUTOSAR relies upon the use
of a component-based software design model. However, the two approaches
have principal differences. In particular, AUTOSAR component model pro-
poses both pipe and filter and client-server paradigms communicating trans-
parently across the architecture through the use of standardised interfaces. Al-
though targeting the development of applications for the automotive domain,
the first versions of AUTOSAR were lacking support to expressand analyse
extra-functional properties in particular timing properties as for instance worst-
case execution time or end-to-end deadline. AUTOSAR 4.0, done in cooper-
ation with the TIMMO project [129] and EAST-ADL [130], intends to tackle
this lack by an extension of the current metamodel. In particular, the TIMMO
project intends to propose a standardised infrastructure to manage timing prop-
erties and enable their analysis at all abstraction levels from early design to
deployment.

A second initiative that shows the growing interest from theautomotive
domain in component-based software development comes fromBosch with
BlueArX [9, 131]. Also based on a design-time component model, BlueArX
differentiates itself from AUTOSAR in supporting timing and other non-
functional requirements as well as in focusing on complete development pro-
cess for single ECUs. To this respect, BlueArX is relativelyclose to the ob-
jectives and contributions presented in this thesis in particular with regards to
the lower layer of the component model (ProSave). However, differences ex-
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ist. First, through the ProSys layer of the component model,ProCom intends
to support also the development of embedded software systems distributed
across several ECUs. Another difference lays in the proposed support to inte-
grate analysis. Whereas extra-functional properties can be associated with any
entities of the ProCom component model (components, ports,services, con-
nections or component instances) through the attribute framework extension,
BlueArX on the other hand endows components with an additional analytical
interface to perform analysis either at system- or component-scale. In a re-
cent work [10], BlueArX has been extended to support the analysis of timing
properties in relation to operational mode, a feature whichis not supported yet
within ProCom.

Developed in a close cooperation between Arcticus Systems AB and Mälar-
dalen University, the Rubus Component Technology [11] is another example
of an industrial use of component-based approach in the vehicular domain.
Similarly to ProCom, the RUBUS component model focuses on expressivity
and analysability through a restrictive component model. However, the Rubus
component model allows the specification of timing properties only and is not
primarily concerned with reuse.

The contributions found in this thesis are largely inspiredby previous work
done at Mälardalen University on the elaboration of a component model for
vehicular domain. SaveCCM [76] is a design-time component model consist-
ing of a few design entities with a restrictive “Read-Execute-Write” execution
semantics and communicating through a “pipe & filter” paradigm in which the
control- and data-flows are distinctly separated. Having such a restrictive se-
mantics, it enables formal validation and verification of the system already in
early phase of the development process, prior any implementation as well as
automated part of the transformations into an executable system as explained
in [24]. ProCom is built on the knowledge and experiment gained from the de-
velopment of SaveCCM and tries to alleviate some of the restrictions and draw-
backs of SaveCCM in particular in strengthening the conceptof components,
considering distribution and handling functional and extra-functional proper-
ties in a more systematic way. Whereas the ProSave layer is toa large extent
directly inspired from SaveCCM, the upper layer (ProSys) aims at addressing
the distribution of subsystems, which was not addressed within SaveCCM.

In the field of consumer electronics, Philips has developed and successfully
used the Koala component model [12] for the production of various consumer
electronic product families (TV, DVD, etc.). In comparisonto the aforemen-
tioned initiatives, Koala is less oriented towards safety-critical applications
than what exists in the automotive domain for example. However, as Koala
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still targets severely constrained embedded systems, it pays a special atten-
tion to static resource usage, such as static memory for instance, but it lacks
support for managing other extra-functional properties. The dependencies be-
tween properties are handled through diversity spreadsheet, which is a mech-
anism outside the component. Koala has served as input in theRobocop [15]
project done in collaboration between Philips and Eindhoven Technical Uni-
versity. Similarly to ProCom, Robocop considers components as a collection
of models covering the different aspects of the developmentprocess. Models
are also used to manage extra-functional properties as for instance the resource
model, which describes the resource consumption of components in terms of
mathematical cost functions, or the behavioural model, which specifies the se-
quence in which the operations of the component must be invoked. Additional
models can be created.

Pecos [132] is a joined project between ABB Corporate Research and Bern
University. Its goal is to provide an environment that supports specification,
composition, configuration checking and deployment for a specific type of
reactive embedded systems (field devices) built from software components.
Contrary to ProCom for which the components of each layer have their own
execution semantics, i.e. ProSys components are active whereas ProSave com-
ponents are passive, the two types are put together in Pecos.Also, since com-
ponents in Pecos have only data ports, there is a need for an additional type
of component, called event component, which activation is triggered by the ar-
rival of an event. With regards to extra-functional properties, Pecos enables the
specification in a name-value pair format in order to investigate the prediction
of the timing and memory usage of embedded systems. However,this specifi-
cation is limited to name-value pairs in difference to the possibility offered to
specify extra-functional properties in ProCom.

Pin [32], a component model developed at Carnegie Mellon Software En-
gineering Institute (SEI), serves as basis for the prediction-enabled component
technologies (PECTs) which aims at attaining predictability of run-time prop-
erties such as performance, safety and security. Alike our approach, PECT
stresses the importance of providing suitable quality prediction based on anal-
ysis theories. However, the methods to integrate analysis differ. Whereas Pro-
Com relies on an external attribute framework as means to handle functional
and extra-functional properties resulting from differentanalysis techniques,
PECT is centered around a reasoning framework consisting ofanalytical inter-
faces used to specify specific properties, and corresponding analysis theories
to enable the prediction of these properties. Also in comparison to ProCom,
Pin is a flat component model which does not support distribution.
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9.3.2 Alternative Approaches
This section correlates our work with other approaches thatare not primarily
concerned with the principles and methods advocated in CBSEbut are still
intended to support the development of distributed embedded systems.

In the automation domain, the standards IEC-61131 [40] and its successor
IEC-61499 [55] proposed by the International Electrotechnical Commission
are well-established technologies for the design of Programmable Logic Con-
trollers. Whereas IEC-61131 allows to graphically composesystems out of
function blocks, IEC-61499 has been developed to enforce encapsulation and
provide a support for distribution. From a design perspective, ProCom shares
some similarities with these graphical languages, in particular the encapsulated
entities communicating with a “pipe & filter” paradigm with explicit separa-
tion between data- and control-flow, and the distribution support. However, the
semantics associated with the function blocks are weaker compared to the Pro-
Com components, and the standards lack support for specifying and managing
extra-functional properties and their analysis. This holds back the possibil-
ity for formal analysis of the systems under development, which is one of the
major objectives this thesis aims at.

In the automotive domain, alike ProCom, EAST-ADL (Electronic Archi-
tecture and Software Technology – Architecture Description Language) [130]
aims at providing a support for the complete development of distributed embed-
ded systems by taking into consideration the hardware, software and environ-
ment development assets. Although both approaches share similar objectives,
they differ in the way those objectives are approached. Whereas ProCom em-
phases components as assets for capturing development information thus aim-
ing at reusability, EAST-ADL focuses on architecture description to structure
it. In EAST-ADL information is structured into five abstraction levels, which
describe the functionalities from several standpoints. Each entity of a level real-
izes the entities of the higher abstraction levels. ProCom covers three of these
levels (analysis level, design level and implementation level), and leaves out
the electronic feature design (vehicle level) and the support for the deployment
of the final binary (operational level). Similarly to ProCom, EAST-ADL also
supports modelling of non-structural aspects such as behavioural description
but covers in addition validation and verification activities as well as manage-
ment of requirements. EAST-ADL was originally developed asan EAST-EEA
ITEA project involving car manufacturers and suppliers andnow it is refined as
a part of ATESST project to be aligned with the major standardization efforts
existing in the automotive and real-time domains (AUTOSAR,MARTE, and
SysML).
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The Architecture and Analysis Description Language (AADL)[133, 134],
formerly known as Avionics Architecture Description Language, is a standard-
ization effort led by the Society of Automotive Engineers (SAE) to provide
support for the development of real-time and safety-critical embedded sys-
tems for aerospace, avionics, robotic and automotive domains. Consequently,
AADL stresses the importance of analysis to meet the particular constraints
and requirements of the envisaged target domains. It provides a formal hier-
archical description of the systems including properties to support the use of
various formal analysis techniques related to timing, resources, safety and re-
liability with the aim of validating, verifying and performing trade-off analysis
of the system. Properties are defined as a triple (Name, Type,Value) that can
be attached to different entities and can have specific instance values. To this
respect, AADL is comparable to ProCom with nLight. However,in compari-
son to ProCom, AADL is “only” a description language and doesnot provide
links to design and implementation technologies. In that sense, it decomposes
the system in a top-down manner specifying entities and how they interact and
are integrated together without providing any implementation details. Thus,
AADL is not primarily concerned with reusability issues. Onthe other hand,
AADL includes some features that could be interesting to take into considera-
tion in the further development of ProCom such as the specification of execu-
tion platforms and operational modes.



Chapter 10

Conclusions
and Future Work

This chapter concludes the thesis by taking a step back to theresearch ques-
tions introduced in Chapter 1 to put them in perspective withthe thesis contri-
butions discussed in the previous chapters. The chapter starts in Section 10.1
by summarising the novel contributions of the thesis beforediscussing, in Sec-
tion 10.2, their relation and participation towards the overall research goal and
the research questions. Finally in Section 10.3, the chapter ends by identifying
and introducing possible directions in which the work couldbe continued.

10.1 Summary

In this thesis, we have investigated how extra-functional properties should
be efficiently treated in component-based development of embedded systems.
This investigation has led to four main contributions, namely i) a component
model classification framework,ii ) a general framework for specifying, inte-
grating and managing extra-functional properties in component-based devel-
opment,iii ) a component model dedicated to embedded system development,
andiv) two integrated development environments supporting the two previous
contributions.
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In Chapter 2, we have first examined the state-of-the-art andstate-of-
practice of component-based development through their keystone, that is the
component model. As a result, twenty-four component modelshave been
thoroughly studied, also with respect to how they specifically support extra-
functional properties. From this study, a component model classification frame-
work has been devised, which presents in a clear and concise manner the im-
portant features of component models. This facilitates identifying the com-
mon characteristics and principal differences between theconsidered compo-
nent models. In particular, it puts in evidence the lack of suitable management
support for extra-functional properties in component models.

Having identified this key fact, we have looked deeper into what challenges
the use of extra-functional properties poses for component-based development.
Based on this, we have formally defined, in Chapter 3, the concept of multi-
valued context-aware extra-functional properties. This concept highlights two
important aspects emanating from the use of extra-functional properties in
component-based development:i) their multi-valued nature, that is, several
extra-functional property values can be equally valid in a given development
context and therefore must co-exist, andii ) their context-awareness, i.e. extra-
functional property values typically depend on their usagecontext and this de-
pendence must be captured and made explicit in order to facilitate reusing the
extra-functional properties together with the component they describe.

Building upon this formal basis, support mechanisms have been identified
in Chapter 4. These mechanisms were necessary to address thechallenges in-
troduced by the multi-valued and context-sensitivity nature of extra-functional
properties, namely redundancy, applicability, and confidentiality. Furthermore,
solutions to facilitate selection of extra-functional properties and refinement
between component types and component instances have also been described.
This has laid the first step towards the systematic consideration and use of
extra-functional properties in component-based development. Another step
derives from the realisation of nLight, a general frameworkfor specifying, in-
tegrating and managing extra-functional properties in component-based devel-
opment. The key implementation details of the framework have been described
in Chapter 5.

In Chapter 6, we have investigated how a component model can be spec-
ified to facilitate the analysis of extra-functional properties while at the same
time presenting the same concept of components throughout adevelopment
process starting from early modelling up to synthesis. The focus has been
placed here specifically on component-based development for embedded sys-
tems due to the importance of ensuring extra-functional properties such as tim-
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ing, resource usage, fault-tolerance in this particular domain. The study of this
concern has led to the creation of a new component model dedicated to embed-
ded systems, called ProCom. Its characteristic features, detailed in Chapter 6,
includei) a two-layered structure to cover the different requirements that exist
at different granularity levels of embedded systems,ii ) a restricted execution
semantics to facilitate analysis, andiii ) a rich design-time component concept
to package the various artefacts require or produced duringthe development
process.

In Chapter 7, we have described the integrated development environments
that have been built to support the development of embedded systems comply-
ing with the solutions proposed in the previous chapters.

10.2 Discussions

Research Question 1:

What characteristics of a component model facilitate software
design of distributed embedded systems?

Based on an analysis of the component model classification framework and
an evaluation of the requirements for embedded system development, we have
identified a number of characteristics that a component-based embedded sys-
tem development and its associated component model should be endowed with.
A component model should support:

– Different abstraction levels (i.e. the coexistence of components in an
early design phase and fully realised components).

– The different concerns that exist at different granularity levels (i.e. an
high-level view of loosely coupled complex subsystems together with a
low-level view of small non-distributed functionalities similar to control
loops).

– Platform awareness while still being platform independent.

– A seamless integration of various analysis techniques.

– A systematic management support for extra-functional properties.
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In addition, as identified bẙAkerholm in [135] for the development of hard-real
time embedded control software, the component model semantics should be
limited to support analysis of important extra-functionalproperties such as tim-
ing, safety or reliability. With regards to efficiency of software development of
possibly less constrained embedded systems, this implies finding the appropri-
ate trade-off between flexibility on one hand and analysability and predictabil-
ity on the other hand. We approached this problem by alleviating some of the
restrictions present in SaveCCM — in particular, for the ProSys level which
requires more flexibility than ProSave since it deals with distributed active
subsystems executing concurrently — while reinforcing theconcept of compo-
nents as a uniform notion throughout the development process. In spite of this,
ProCom provides a semantic precise enough to be formally expressed through
timed finite state machines as demonstrated in [73]. This permits various anal-
ysis tools to benefit from the features offered by ProCom to perform specific
analysis already in early development phases, hence potentially improving the
development process performance and costs. Several analysis techniques have
been built and tested with the strict semantic proposed by ProCom: parametric
worst-case execution time analysis [83], another timing analysis [91], model
checking of behavioural models [74] and fault-propagation[85]. Additionally,
this also allows to perform synthesis of systems fully compliant with the un-
derlying semantic of the component model as described in [86].

The strong coupling between target platform specification and software im-
plementation is an important challenge since the correctness of many analysis
results and values of extra-functional properties strongly depend upon the tar-
get platform specification and the deployment configuration. Postponing the
access to this information to a late development stage couldresult in incorrect
design and implementation of the system to be executed, possibly leading to
a costly redesign and re-implementation of the erroneous parts of the system.
Such information is also foremost important for extra-functional properties.
Yet, breaking the hardware abstraction and making the target specification part
of the component model is not a suitable solution since this would makes all
components platform dependant and hinder their reuse, breaking one funda-
ment of CBSE. Such a problem arises for example when sensors and actuators
are used in primitive components that are used in turn to create composite
components. An appropriate solution lays somewhere in between those two
extreme solutions. Solutions to tackle this problem are presented in [136] for
the integration of sensors and actuators in component models and in [137] for
component allocations.
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Research Question 2:

What mechanisms are suitable to support the management of
extra-functional properties within a component model?

Answering this question corresponds to finding an appropriate way to specify,
integrate and handle functional and extra-functional properties in a compo-
nent model in a systematic way. Thus, after identifying the main challenges
of dealing with extra-functional properties in component-based development,
we have addressed this question through the concepts discussed in Chapters 3
and 4. We have formally defined the concept of multi-valued context-aware
extra-functional properties and identified necessary supporting mechanisms to
facilitate their seamless management. These concepts havebeen implemented
in nLight. In summary, our approach to multi-valued context-aware extra-
functional property management combines a formal definition for specifying
extra-functional properties with techniques outside thisspecification, such as a
property registry and property selection mechanisms, to ensure the correctness
of their utilisation in the current development context.

The concept of multi-valued context-aware extra-functional properties
makes explicit the multi-valued and context-sensitivity nature of extra-
functional properties. In that sense that it enablesi) handling simultaneously
the specification of multiple values for a property, where each value is identi-
fied through the provision of suitable metadata and/or the context under which
the value has been obtained; andii ) expressing the dependencies of the values
towards outside parameters.

This approach can also be used to integrate the specificationof functional
properties without hampering the utilisation of interfaces. In this context, func-
tional properties refer to the modelling of the behaviour ofthe components in a
format suitable for analysis techniques such as timed automata model. By this,
our intention is to increase the analysability and predictability of component-
based embedded systems, and enabling a seamless and uniformintegration of
existing analysis and predictions theories into componentmodels.

However, the concept of multi-valued context-aware extra-functional prop-
erties introduces complexity in the design process in several ways as identified
in Chapter 4. In addition to the possibility to have multiplevalues assessed
at different point of time or by different techniques, it also envisions delegat-
ing the declarations of needed properties to, for example, the developers of the
analysis techniques who know best the types of information they need as input
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and that they produce as outputs. In the end, this could result in an explosion
of property definitions in the registry. A possible solutionwould be to rely on
a standardized catalogue of properties similarly to what exists for units (SI),
date and time representation (ISO 8601) or the standard for evaluation of soft-
ware quality (ISO 9126). Another possibility would be to develop techniques
to avoid the definition of equivalent properties, i.e. a property which semantics
is strictly the same to a property already present in the repository but some
parameters are slightly different. For example, “worst-case execution in ms”
and “statistical worst-case execution time in ms” should not be two different
extra-functional property types but only one: the “worst-case execution time”.
Its definition should correspond strictly to the semantics of property and to the
parameters should be handled within the property with for example conversion
mechanisms.

Our approach to integrate extra-functional properties in component models
reveals a lot of information concerning the details of the implementation of
the components. Although this is not a major issue for in-house development,
it naturally becomes more problematic for its utilisation in the development
of systems or components for which the implementation details must remain
hidden such as COTS components since all the models that haveserved for
analysis are packaged together with the components. A solution could be to
provide mechanisms to identify and automatically remove confidential infor-
mation when components are distributed to third parties.

Research Question 3:

How can the different aspects of component-based development
for embedded systems be seamlessly integrated into a development
environment?

From the knowledge gained from the development and use of theSave-IDE and
PRIDE, described in Chapter 7, we can identify several factors that contribute
to facilitate the integration of different aspects of a component-based approach
into a common environment. First of all, it is important to have the set of
precisely specified theories and concepts that will be embodied within the IDE.
This serves three main purpose:

1) defining the core concepts that will form the backbone of the IDE,
2) clarifying the relationships, dependencies and gaps between these con-

cepts, and
3) identifying what should be the main features of the IDE.
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In the case of the Save-IDE, we strictly followed the concepts and theories de-
veloped for the SaveCCT approach [14], namelyi) a design-time component
model, SaveCCM [76], with a strict execution semantics for the components,
ii ) early formal analysis of timing and behaviour properties [75], andiii ) dedi-
cated synthesis.

Similarly the objective of PRIDE has been to provide a flexible component-
based development process from early design up to synthesissupported by an
interlacing of various analysis techniques. The development has been centred
on the following theories and concepts:i) the rich-design time component con-
cept as the main development unit throughout the development processii ) the
ProCom component model with its well-defined semantics,iii ) a systematic
management support for extra-functional properties [18],iv) the REMESmodel
and its corresponding timing, behaviour and resources analyses [74, 84] , sev-
eral timing analysis techniques [83, 91], and a fault-propagation analysis tech-
niques [85], andv) a flexible synthesis that fully respect the semantics of the
ProCom component model [86].

This implies that, despite its known influence on tool integration (either
positive or negative), the format of a development artefactis not so important
since translating from one format into another is generallypossible. What is
more important, on the other hand, is the information behindthis artefact: its
content and its purpose, i.e. what is this artefact about andhow it is supposed
to be used. Combining the core concepts together can be facilitated by using
model-driven development techniques.

Several aspects of the development process are generally tightly related
such a architectural design decision that depends upon results from a given
analysis techniques. Accordingly, it is necessary to provide traceability be-
tween the different development artefacts involved in the development, and to
track changes and possibly propagate them.

Furthermore, it is also valuable to provide flexible and extensible mecha-
nisms to facilitate handling new requirements and the addition of new activi-
ties. In both, the Save-IDE and PRIDE, we support this needs through the use
of the Eclipse. However, PRIDE, through nLight and the analysis framework
provides additional means to seamlessly integrate new analysis techniques.
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10.3 Future Work

In this section, we describe some of the directions in which the contributions
presented in the thesis can be continued.

Industrial Validation of ProCom and nLight

The study examples presented in Chapter 8 show that different embedded sys-
tems can be modelled and implemented in ProCom. However, thevalidation
of ProCom and nLight on a realistic industrial distributed embedded system
remains to be done. Such an evaluation would allow assessingthe strengths
and limitations of the component model and the attribute framework as well as
their practical impacts on the development process.

Relational Database for Managing Multi-Value Context-Aware Extra-
Functional Properties

The current implementation based on the Eclipse Modelling Framework fo-
cuses on facilitating the integration of nLight with component models specified
through a metamodel that defines their key concepts and theirrelationships.
This implementation has proven useful in many ways, notablyto automatically
set specific elements of a component model as attributables.However, due to
the highly heterogeneous and structured nature of multi-valued context-aware
extra-functional properties, managing them in this way during a development
process can become challenging. As the development processprogresses, the
complexity of the systems grow: many components with many extra-functional
properties must be envisaged. This may lead to a situation inwhich the amount
of information to look through is overwhelming as it is necessary to identify
the values that are relevant in the current development context.

A possible solution to this problem lies in the development of a relational
data model which is an acknowledged solution to handle huge amount of data
with complex relationships between them. Additionally, some of the identified
challenges for the management of multi-valued context-aware extra-functional
properties might have already known solutions in the database domain. In-
deed, databases propose solutions to data indexing, data retrieval and selection
through queries as well as enabling to reduce data redundancy and facilitate
data storage.
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One of the challenges here is to merge the existing model-driven approach
based on metamodelling, with an approach using embedded databases so that,
ideally, the data management aspect of extra-functional properties remains hid-
den from the users of nLight.

Inter-Property Dependencies

When using extra-functional properties in practice withinsystem development,
as in Chapter 8 with the extended examples, dependencies between extra-
functional properties have become visible:global dependenciesbetween at-
tribute types andlocal dependencieswhich are dependencies that only make
sense in a particular project. A global dependency is a relation that always
exists between values of two or more extra-functional properties. For exam-
ple, if one considers the value of the execution time as an interval bounded
by the best-case execution time as lower limit and worst-case execution as the
upper one. Then, there exists a dependency between execution time, best-case
execution time and worst-case execution time. This dependency must be con-
sidered and reflected also in nLight. On the other hand, a local dependency
is a relation between extra-functional properties that emerges from the spe-
cific requirements and design choices of a system development. For example,
in the study example of the GPS in Chapter 8, the response timeof the GPS
depends on the acquisition time of the receiver. The multi-valued nature of
extra-functional properties poses here an interesting challenge with respect to
the inter-property dependency problem.

Validity Conditions Language

As mentioned in Chapter 3, an important characteristic of multi-valued context-
aware extra-functional properties lays in the concept of validity conditions that
specify the criteria under which a value is known to be correct. These criteria
are quite diverse, including for example usage context, specific analysis tech-
niques, and target platforms. It is important that these criteria are somehow
linked to the current development environment of the systemagainst which
they must be checked. As such, a validity condition languagemust be speci-
fied and it should enable the creation of mechanisms to verifywhether a given
extra-functional property value is valid in the current development context.
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Multi-Valued Context-Aware Extra-Functional Property Co mparison

As explained in Chapter 4, an important challenge for the systematic manage-
ment of multi-valued context-aware extra-functional properties in component-
based development is to enable conciseness. The first step towards this is to
identify duplicates and redundant values, i.e. values thatare equivalent. Due to
the complex structure of multi-valued context-aware extra-functional proper-
ties, this is not straightforward. A clear equivalence between values can be es-
tablished when all data, metadata and validity conditions are strictly the same.
Yet, not all of these characteristics are always pertinent to determine equiva-
lent values. For example, at a certain point in time in the development process,
a developer or an analyst might not be interested in differentiating between
the sources of extra-functional property values to performearly estimations.
In that particular example, this implies that the values should be compared in
disregarding the source metadata. Another case relates metadata and validity
conditions. For instance, if a certain attribute value is declared as platform
independent through the validity conditions, then again the platform metadata
should be discarded from the comparison.

All those aspects pose an interesting challenge to solve. Inparticular, be-
ing able to determine which values are the same will enable tocontribute to
the conciseness principle in enabling, for instance, to merge strictly redundant
values.
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proach to Tame Component Based Software Development. InFMCO,
pages 260–275, 2003.

[111] Jan Øyvind Aagedal.Quality of Service Support in Development of
Distributed Systems. PhD thesis, Faculty of Mathematics and Natural
Sciences, University of Oslo, 2001.

[112] Olivier Defour, Jean-Marc Jézéquel, and Noël Plouzeau. Extra-
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