Malardalen University Press Doctoral Theses
No.121

Managing Extra-Functional
Properties in Component-Based
Development of Embedded Systems

Severine Sentilles

June 2012

V A
| ¥V 4
MALARDALEN UNIVERSITY

School of Innovation, Design and Engineering

Copyright(© Séverine Sentilles, 2012

ISSN 1651-4238

ISBN 978-91-7485-067-3

Printed by Malardalen University, Vasteras,Sweden

To the ones | love who have always been there for me
when | needed it the most.

Abstract

The continuously increasing complexity of embedded systisra major issue
for their development, which, in addition, must also cosasigpecific extra-
functional requirements and constraints, such as limitedskared resources,
distribution, timing, and dependability. Thus, embeddgstems call for de-
velopment solutions that can efficiently and predictablyewith these issues.
Component-based software engineering is a proven paradidgrandle com-
plexity. Yet, for efficiently managing extra-functionalqmerties, a component
model needs to have dedicated mechanisms that provideshleustupport for
their management. The objective of this thesis is to builsl $hpport.

We have performed a systematic analysis of existing compomedels
and identified challenges of applying a component-baserbapp to embed-
ded system development. Based on these challenges we hauecad the
current state-of-the-art by developing a new componentehathlled Pro-
Com, that accommodates the specifics of embedded systemugthits well-
defined execution semantics and layered structure. Cendgeoeind ProCom,
we have also developedibE, the ProCom Integrated Development Environ-
ment. FRIDE supports the development from early specification to sygishe
and deployment, providing the means to aggregate varicalgsia and verifi-
cation tools.

The main contribution of the thesis is in the design and imm@letation of
an extra-functional property management framework thalbkss to seamlessly
specify, manage and integrate multi-valued context-aveatea-functional
properties of component-based embedded systems. Pespeaiti be attached
to architectural elements of component models and theiregatan be com-
pared and refined during the development process. In plntitiaving multi-
ple context-aware values allows values from different sesito be compared.
The proposed concepts have been demonstrated on sevesdarfative ex-
ample systems.

Resune
— Abstract in French

L'accroissement continu de la complexité des systemedsaegués pose un
probléme majeur pour leur développement lequel doitiguresdre en compte
les exigences extra-fonctionnelles et les contraintesanaihe telles que la
limitation et le partage des ressources, la distributiohes contraintes tem-
porelles et de fiabilité. De ce fait, les systemes embesgaquierent de nou-
velles solutions pouvant efficacement et de maniere gitdei répondre a
I'ensemble de ces besoins. Lingénierie logicielle lmasémposants est un
paradigme qui a déja démontré des aptitudes pour Bppder la complexité
logicielle. Cependant, pour supporter de maniere effiteeeropriétés extra-
fonctionnelles, un modele de composants doit possédsernaecanismes
spécifiques. L'objectif de cette these est de construireelisupport.

Pour ce faire, nous avons analysé de maniere systéreategimodeles de
composants existants a ce jour et identifié des challeetpesfs a la réalisation
d’'une approche basée composants dédiée au développdesssystemes em-
barqués. S’appuyant sur ces challenges, nous avonsealatat de I'art en
développant ProCom, un nouveau modeéle de composant&pomnd aux at-
tentes des systemes embarqués au travers de sa séraatiBgécution et
de sa structuration en niveaux. Centré autour de ProConog agons aussi
développé RIDE, son environnement de développement intégr&DP cou-
vre le procédé de développent des premieres phasesdéication jusqu’a
la synthese et le déploiement et fournit des moyensetjirgf différents outils
d’'analyse et de vérification.

La contribution principale de cette these réside dans dalétisation et

la réalisation d’'un support pour la gestion des propsétktra-fonctionnelles
pour les systemes embarqués construits a base de compdsgiciels. Ce

Vi

support facilite la spécification, le management et égrétion de propriétés
multivaluées tenant compte du contexte dans lequel efieété établies. Les
propriétés peuvent étre attachées aux éléement#tectiraux des modeles de
composants et leurs valeurs peuvent étre comparéesfigteesf durant le

développement. En particulier, le fait d’avoir des vagemultiples avec leur

contexte d'évaluation permet de comparer des valeursepa de differentes
sources. Les concepts proposés ont été illustrés aargral’exemples re-

présentatifs de systemes.

Acknowledgements

When | started my Ph.D. studies, | heard many people sayiaiggitting a
Ph.D. is a journey. Freshly graduated, | could not reallyarathnd how much
different from getting a Master degree it was. But when | Ibakk at it, now
that | am about to finish, | see what they meant and, of couneg,were right!
This is a journey! A journey with its good and bad, its unaipéted events
and challenges, a lot of travels (way more than what | was@me:)) and
plenty of amazing experiences. To me, it has been an adethiairl am really
happy to have set off for. But this adventure would not hawnhgossible nor
enjoyable if | had to go through it alone. And, as the journeglss | take the
opportunity to express my deepest thanks to all who haveibated to make
it so great for me.

My first thanks go to the ones without whom | would never haeetst
my graduate studies here at Malardalen University. | owgaért of this to
Nicolas Belloir who put his trust in me and always tried tolped me forward,
smoothly enough to make me apply to a PhD position here at MitHbacept
it! And, of course, involved in this are my supervisors, li€rnkovic and
Hans Hansson. Thank you so much for believing in me and aiocepte as
a PhD student. | am always amazed by your enthusiasm, conemitand
above all your inexplicable capacity to work so much, esgdcwhen it is for
others! Also, many thanks go to my assistant supervisorCaatson, for the
fruitful discussions, inputs, reviews, help and guidanergtime | needed it,
also for always finding nice ways to give comments. | also warthank my
French supervisors, Franck Barbier and Eric Cariou, whe liggwven me the
opportunity to do a so-called “co-tutelle” with the univigyof Pau.

Many thanks are also way overdue to the “Mental Departmemt’raore
for contributing to making the department a fun, warm, weletg and friendly
place: Cristina, Svetlana, Bob, Hus, Tibi, Aida, Adnan,efa Juraj, Luis,
Farhang, Hongyu, Andreas (G., H., J.), Leo, Mikael, Edudediica, Mehrdad,

vii

viii

Federico, Rafia, Saad, Luka, Josip, Jagadish, Batu, Sefaretaik and Moris
(+1 ;). Thank you guys for all the laughters and great momdating the
fika, lunches and travels. You are really great people to wottk, and above
all great friends. And of course, | don't forget all the calfpies who also
contribute a lot to make IDT's working atmosphere so pleas&®aul, Sasi,
Radu, Daniel, Gordana, Stefan, Sigrid, Barbara, Jan @&rnBKristina, Mic,
Hang, Jiale, Damir, Lars, Anton, Rikard, Stig, Frank, Jukikeomas, Antonio,
Malin (R.,,&.), GunnarAsa, Carola and Suzanne.

There are also lots of friends from childhood and universit | really
want to thank for having been present for me when | really adesipport
and good friends, and this despite being geographicaltgdai away: Anouk,
Flo, Natacha, Aurel, Cristine, Fafou, Eric, Gael, Sophieyid, Pauline, Laure,
Aude, Anne-Sophie and Bea. | must say that | am really luckatze so good
friends around.

And last but not least, | would like to thanks my number onepsutters:
my family. | have no word to express how much | owe you for alsvaging
there for me and supporting me no matter what! It is a strefggtine to know
that | can always count on you. Finally, my last thoughts arewo persons,
my mum and grandad, who always pushed me to do my best in busgyit
tried. | wish they were still here today and | hope that froroadh they can see
this now and are proud of me. | really wish that my mum coulbrted today
as she always did in the pd#&on, t'aurais pu faire mieux quand &me!” with
her usual loving smile.

Séverine Sentilles
Vasteras, June 2012

This work has been supported by the Swedish Foundationrae§ic Re-
search (SSF), via the research cem@ROGRESS

List of Publications

Key Publications Related to the Thesis

Paper A: A Classification Framework for Software Component Modélga
Crnkovit, Séverine Sentilles, Aneta Vulgarakis, Mickaudron. In
IEEE Transaction of Software Engineering, vol 37, nr 5, pb43, Oc-
tober, 2011.

Paper B: A Component Model Family for Vehicular Embedded Systems
Tomas Bures, Jan Carlson, Séverine Sentilles, Anelgavakis. In Pro-
ceedings of the 3rd International Conference on Softwaigirteering
Advances (ICSEA), Sliema, Malta, October 2008.

Paper C: A Component Model for Control-Intensive Distributed Endbei
SystemsSéverine Sentilles, Aneta Vulgarakis, Tomas Buras, Garl-
son, lvica Crnkovic. In Proceedings of the 11th InternadioSympo-
sium on Component Based Software Engineering (CBSE), Kémts
Germany, October, 2008.

Paper D: Save-IDE — A Tool for Design, Analysis and Implementatidbah-
ponent-Based Embedded SysterSBgverine Sentilles, Anders Petters-
son, Dag Nystrom, Thomas Nolte, Paul Pettersson, lvickd@¥ia. In
Proceedings of the 31st International Conference on Soft&agineer-
ing (ICSE), Vancouver, Canada, May 2009.

Paper E: PrRIDE— An Environment for Developing Distributed Real-Time Em-
bedded System<tienne Borde, Jan Carlson, Juraj Feljan, Luka Led-
nicki, Thomas Lévéque, Josip Maras, Ana Petricic, SaeeBentilles.

In Proceedings of the 9th Working IEEE/IFIP Conference ofivre
Architecture (WICSA), Boulder, Colorado, USA , June, 2011.

Paper F: Integration of Extra-Functional Properties in Componenbdi&ls
Severine Sentilles, Petépan, Jan Carlson and Ivica Crnkovié. In
Proceedings of the 12th International Symposium on CompuidBased
Software Engineering (CBSE), East Stroudsburg UniverBignnsylva-
nia, USA, June, 2009.

Paper G: Integrating Behavioral Descriptions into a Component Miofibe
Embedded SystemAneta Vulgarakis, Séverine Sentilles, Jan Carlson,
Cristina Seceleanu. In Proceedings of the 36th Euromicrdéence on
Software Engineering and Advanced Applications (SEAA)18-118,
IEEE, Lille, France, September, 2010.

Paper H: Refining Extra-Functional Property Values in Hierarchi€éampo-
nent Models Thomas Lévéque, Séverine Sentilles. In Proceedings of
the 14th International Symposium on Component Based Sodtivagi-
neering (CBSE), Boulder, Colorado, USA, June, 2011.

Thesis: Towards Efficient Component-Based Software DevelopmeDtsef
tributed Embedded SystemsSéverine Sentilles. Licentiate Thesis,
Malardalen University, Vasteras,Sweden, Novembed920

Additional Publications Related to the Thesis

e Flexible Semantic-Preserving Flattening of Hierarchiddbmponent
Models Thomas Lévéque, Jan Carlson, Séverine Sentillesnikgie
Borde, In Proceedings of the 37th EUROMICRO Conference di+ So
ware Engineering and Advanced Applications (SEAA), IEEEpater
Society, Oulu, Finland, August, 2011.

e Evolution Management of Extra-Functional Properties innGamnent-
Based Embedded System&ntonio Cicchetti, Federico Ciccozzi,
Thomas Lévéque, Séverine Sentilles, In Proceedingseofléith Inter-
national ACM SIGSOFT Symposium on Component Based Software
Engineering (CBSE), ACM SIGSOFT, Boulder, Colorado (USRA)ne,
2011.

e PRIDE, Ivica Crnkovit, Séverine Sentilles, Thomas Lévéddario Za-
gar (University of Zagreb), Ana Petricic, Juraj Feljan, bulkednicki,
Josip Maras, DICES workshop @ SoftCOM 2010, Bol, Croatipt&®a-
ber, 2010.

Xi

e Save-IDE — Integrated Development Environment for Bujdin
Predictable Component-Based Embedded Syste&aserine Sentilles,
John Hakansson, Paul Pettersson, lvica Crnkovic. Indeiags of the
23rd IEEE/ACM International Conference on Automated SafsvEn-
gineering (ASE), L'Aquila, Italy, September 2008.

Other Publications

Conferences and Workshops:

e Energy Management in Embedded Systems — Towards a Taxonomy
Umesh Balaji Kothandapani Ramesh, Séverine Sentilles ©rnkovic.
In Proceedings of the 1st International Workshop on GreenSarstain-
able Software (GREENS) at International Conference orv&oét En-
gineering (ICSE), Zurich, Switzerland, June, 2012

e Collaboration between Industry and Research for the Intitbn of
Model-Driven Software Engineering in a Master PrograrBéverine
Sentilles, Florian Noyrit, Ivica Crnkovi€. In Proceedsf the Educator
Symposium of the ACM/IEEE 11th International Conferenceviodel
Driven Engineering Languages and Systems (MODELS), Tadpu
France, September 2008.

e Valentine: a Dynamic and Adaptive Operating System for MSeSen-
sor Networks Natacha Hoang, Nicolas Belloir, Cong-Duc Pham,
Séverine Sentilles. In Proceedings of the 1st IEEE Inteynal Work-
shop on Component-based design Of Resource-Constrairstdngy
(CORCS), Turku, Finland, July 28 - August 1, 2008.

e A Model-Based Framework for Designing Embedded Real-Tigze S
tems Séverine Sentilles, Aneta Vulgarakis, lvica Crnkowit.the Pro-
ceedings of the Work-In-Progress (WIP) track of the 19thdsicro
Conference on Real-Time Systems (ECRTS), Pisa, Italy, 200y .

MRTC reports:

e Connecting ProCom and REMESneta Vulgarakis, Séverine Sentilles,
Jan Carlson, Cristina Seceleanu, MRTC report ISSN 1404-38RN
MDH-MRTC-244/2010-1-SE, Malardalen Real-Time ResedCemtre,
Malardalen University, May, 2010.

Xii

e ProCom — the Progress Component Model Reference Manuadiover

1.0. Tomas Bures, Jan Carlson, Ivica Crnkovit, SéveremtiBes, Aneta
Vulgarakis. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-230/
2008-1-SE, Malardalen Real-Time Research Centre, Malan Univer-
sity, June 2008.

Towards Component Modelling of Embedded Systems in thewahi
Domain Tomas$ Bure§, Jan Carlson, Séverine Sentilles, Aneta V
garakis. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-226/200
1-SE, Malardalen Real-Time Research Centre, Malarddlgimersity,
April 2008.

Progress Component Model Reference Manual - version 0&mas
Bures, Jan Carlson, lvica Crnkovi€, Séverine Sentilleseta Vulgar-
akis. MRTC report ISSN 1404-3041 ISRN MDH-MRTC-225/2008-1
SE, Malardalen Real-Time Research Centre, Malardaleivetsity,
April 2008.

Contents

1

Introduction 1
1.1 Motivation. 1
1.2 Ohbjectives e 5
1.3 ResearchQuestions 6
1.4 Thesis Contributions 7
1.5 ResearchMethod 12
1.6 ThesisOutline. 14
Classifying Software Component Models 17
2.1 Main Concepts of ComponentModels 18
2.2 The Classification Framework 21
221 Lifecycle 21
2.2.2 Construction, 25
2.2.3 Extra-Functional Properties 33
2.2.4 The Classification Overview 39
2.3 Surveying Existing ComponentModels 40
2.3.1 Component Model Selection 41
2.3.2 Methodology 44
2.4 The Comparison Framework 44
2.4.1 Lifecycle Classification. 44
2.4.2 Construction Classification 48
2.4.3 Extra-Functional Properties Classification 53
2.4.4 Component Models and Domains 55
25 Conclusions 57

Xiv Contents

3 Defining Multi-Valued Context-Aware Extra-Functional Pr operties 59
3.1 Extra-Functional Properties in Component-Based @reent 60

3.1.1 AnHeterogeneousDataSet 60
3.1.2 Extra-Functional Property and Multi-Valuation . . . 61
3.1.3 Extra-Functional Properties and Reusability 63
3.1.4 Extra-Functional Properties in Hierarchical Congian
Models 65
3.1.5 Extra-Functional Properties and Component Types and
Instances 66
3.2 Definitions. L 69
3.2.1 Attribute Type 69
3.2.2 AttributeRegistry 72
3.2.3 MetadataType 74
3.24 Attributelnstance oL oL 76
3.3 Summary and Discussions 78

4 Managing Multi-Valued Context-Aware Extra-Functional Proper-

ties 81
4.1 ThelnherentChallenges 82
4.2 ldentified Supporting Mechanisms per Management Coscer 83
4.3 Two Supporting Mechanisms 87
4.3.1 Value Selection 87
4.3.2 Value Refinement between Component Type and In-
stances 92
A4 SUMMATY o e e e e e e e e e 96
5 nLight — The Attribute Framework 97
5.1 Overview 98
5.2 Introducing Attributes 99
5.3 Extending Component Models with Attributes 001
54 TheRegistry. 101
5.4.1 Specifying Attribute Categories 102
5.4.2 Specifying Attribute Types 103
5.4.3 Specifying MetadataTypes 108
5.5 The Graphical User Interface 111

56 Summary 112

Contents XV

6 The ProCom Component Model 113
6.1 Domain Requirements for Component-Based Developnfent o
Embedded Systems L. 114
6.1.1 Levelsof Abstraction. 114
6.1.2 ComponentGranularity 115
6.1.3 Componentvs. System Development 116
6.1.4 Underlying ComponentModel 117
6.2 A Two-Layer ComponentModel 119
6.2.1 ProSys—theUpperLayer. 120
6.2.2 ProSave —thelowerlLayer 122
6.2.3 Integratingthe Layers — Combining ProSave and Pro&ys
6.3 Extra-Functional Propertiesin ProCom. 271
6.4 SummMary e 129
7 PRIDE: The ProCom Integrated Development Environment 131
7.1 Feedbacks from an Initial Prototype 132
7.1.1 Intended Software DevelopmentProcess 133
7.1.2 SavelDE —the Save Integrated Development Environ-
ment 134
7.1.3 LessonslLearned 139
7.2 ConceptsbehinddE. 142
7.3 Overviewof RIDE 143
7.4 SUMMANY oo e 146
8 Extended Examples 149
8.1 TheTurntable 149
8.1.1 Overall System Description 150
8.1.2 Architecting the Turntable in ProCom 151
8.1.3 Attribute Type Identification and Specification . . . 531
8.1.4 EarlyFormalAnalysis 154
8.1.5 Attribute Instance Creation 157
8.2 The Personal Navigation Assistant System 59 1
8.2.1 Overall System Description 159
8.2.2 Architecting the PNA in ProCom 160
8.2.3 Attribute Type Specification 162
8.2.4 Applicationonthe GPSreceiver 164
8.3 The Automatic DrivingSystem 166
8.3.1 Overall System Description 166

8.3.2 Attribute and Metadata Type Specification. 171

Xvi Contents

8.3.3 Developing the Drive-by-Wire System (lteration 1) .174
8.3.4 Enhancing the Drive-By-Wire System with an Auto-

matic Driving Functionality (Iteration2) 181
8.4 Summary e 190
9 Related Work 193
9.1 On Component Model Classification Frameworks 319
9.2 On Extra-Functional Properties 195
9.2.1 Contract-Oriented Approaches 197
9.2.2 Prediction-Oriented Approaches 199
9.2.3 Fact-Oriented Approaches 202
9.3 On Embedded System Development 204
9.3.1 ComponentModels. 204
9.3.2 Alternative Approaches. 207
10 Conclusions and Future Work 209
10.1 Summary e 209
10.2 DISCUSSIONS v v o o e e e e e e 211
10.3 FutureWork 216

Bibliography 219

Chapter 1

Introduction

Development of embedded systems is a complex process tubjseveral
challengesi) complex functionalityji) efficiency of developmentij) quality

and dependability, anidf) specific requirements such as constrained resources
or real-time issues. This is the main focus of this thesisclvinvestigates
and proposes methods and techniques to improve softwardopevent by
helping guaranteeing that the delivered products will nstehgent quality
requirements.

1.1 Motivation

A suitable and efficient development process is essenti@nwdeveloping
safety-critical systems for a variety of domains such asowgér, automation,
telecommunication and healthcare. A malfunction of thgstesns may have
severe consequences ranging from financial losses (etg.foosecall of non-
conformity products) to more harmful effects (e.g. injsrie users or in the
most extreme cases human’s casualties). Along with thedittonal mechani-
cal functionality, e.g. a combustion engine or mechanicakés in a car, these
products also contain increasingly more software funetiiby) such as an anti-
lock braking system or an electronic stability control uni& car.
Functionality in those types of product are provided thtowgpecial-
purpose built-in computers, calleembedded systemwhich are tailored to
perform a specific task by a combination of software and hardwEmbed-
ded systems have spread rapidly over the past few decadeswviatielly in

2 Chapter 1. Introduction

any kind of modern appliances such as digital watches,ogebbxes, mp3-
players, washing-machines, mobile telephones, carsaétscforest machines
and many others. It is worth noting that the great diversftg@vices con-
taining embedded systems makes the boundaries betweenisvdaasidered
to be embedded systems and what is not, particularly unclany devices
share characteristics with embedded systems without s&glybeen consid-
ered as such. Notebooks, laptops or personal digital apsisare few exam-
ples of devices in the grey zone of the definition of embedgstesms: they
are resources-constrained and possibly integrated ietoethl world through
various equipment such as GPS but they are still regardethigger” than
archetypical embedded systems. Conversely althoughioordalesktop-like
software and means to interact with users, others devicgls as control-
system for robots are still considered as embedded systBetause of this,
a uniform definition covering this diversity is difficult tanpoint and there is
currently no unigue definition of what they are.

The close interconnection of embedded systems with theiognding en-
vironment and their ability to directly impact on this eriiment lead to a
characteristic shared by many of them: their dependalniiture. As defined
by Laprie in [1], dependability of a system is the quality bétdelivered ser-
vice such that a user can justifiably rely on this service.drtipular, depend-
ability is expressed in terms of safety (i.e. the failure leé system must be
harmless), maintainability (probability that a failurendae fixed within a pre-
defined amount of time), reliability (probability that thgstem will not failed)
and availability (probability that the system is workingdasccessible) among
others. This means that to prevent any malfunction, sudiesyshave to react
in precisely defined ways, i.e. be predictable.

In addition, many of these systems also have real-time caingt, which
means that they must react correctly to events in a givenvaitef time. When
all the timing requirements must strictly be ensured, erdbddsystems are
calledhard real-time systemshereassoft real-time systermrere more flexible
towards the timing bounds and can tolerate to occasionallgte them. One
popular example to illustrate this strong interdependédyeteveen real-time
and dependability issue is the one of a car airbag. In case atadent, the
airbag has to inflate suitably at a particular point in timtbgowise it is useless
for saving the driver’s life.

1.1 Motivation 3

To summarize, in contrast to general purpose computerseeédaol sys-
tems are typically:

e reactive systems closely integrated into the environméhtwhich they
interact through sensors and actuators, and

e strongly resource-constrained in terms of memory, bantiwaed en-
ergy,

¢ facing dependability and real-time constraints.

Thanks to embedded systems, tremendous opportunitiesiggered by
the introduction of software functionality, sometimesmeeempletely replac-
ing hardware ones. For example, in the automotive domagradded-value in
high-end models of vehicles is generated mainly by the natémn of new elec-
tronic features that are intended to optimize the costsitifation (e.g. lower
fuel consumption), or to improve the user’s comfort or safétccording to [2]
in 2006, 20% of the value of each car was due to embedded@béedr This
involves features such as airbag control system, antiibgakystem, engine
control system, electronic stability control system, glbbositioning system,
door locking system, air-conditioning system and many mbtere generally
speaking, these features concern control, infotainmeat iiformation and
entertainment) and diagnosis systems.

However, introducing many software functionalities alsmsiderably in-
creases complexity. For example, as highlighted by Broyd 8jigh-end model
of vehicle contains today around thousands of softwaretiomg correspond-
ing to around 100 millions lines of software code that arecaked through a
network of 70 to 100 micro-controllers communicating oveveral dedicated
channels. Such a high complexity leads to the fact that tberéded archi-
tecture solution of decomposing the required functioigsitnto subsystems
that are realised by dedicated computing units using thvairmicrocontroller
does not scale anymore. Instead, there is a need to put bsubsystems on
one physical unit, which implies that resources must beeshbetween sub-
systems. Another aspect of this increasing complexity stribbution, where
systems are designed as distributed systems communicatémga dedicated
network such as a CAN-bus [4] or a LIN-bus [5] in a vehicle. Theerde-
pendence of these concerns together with the need for thbreerification
of the system make the development of embedded systems diffiailt and
time-demanding. For example, in the automotive domain redeecar manu-
facturers strive for low production costs since each carehisdnanufactured

4 Chapter 1. Introduction

in large quantities, the biggest costs — up to 40% of the dgveént costs [6]
— resides in software and electronics costs.

Accordingly, one major issue in dealing with safety-caticeal-time em-
bedded systems is to have efficient solutions to deal witledingplexity while
ensuring that the system always behaves as expected. Erelogment must
hence support thorough analysis and tests, and push thiagtesceven fur-
ther compared to what can be found in general in softwareneeging.

A promising solution for the development of distributed esdfled systems
lies in the adoption of a Component-Based Development (Ciipyoach fa-
cilitating the different types of analysis. The CBD approdas the goal to
increase efficiency in software development by:

e reusing already existing solution encapsulated in wefiirge entities
(components);

e building systems by composing entities (both from a funioand
extra-functional point of view); and

e clearly separating component development from systemlagvesnt.

Stressing reusability, several features of CBD are of highrest in the
development of embedded systems such as complexity maeagegntreased
productivity, higher quality, shorter time-to-market almver maintenance
costs. Despite those appealing aspects and its estabhistaman acknowl-
edged approach for software development, notably for desit business ap-
plications [7], CBD still struggles to meet all the challesdaced by embedded
system development, and this, even though several apsaairently aim at
addressing them. These approaches include AUTOSAR [8&AIXi [9, 10],
Rubus [11], Koala [12] in industry and Pecos [13], SaveCCMI],[ROBO-
COP [15] and PECT [16] in research.

For a better acceptance in this domain, the main challen@eBaf is to
deal with both complexity and functional requirements oa band, and on the
other hand to deal with the specifics related to embeddedrsgsind their de-
velopment needs, and in particular managing extra-funatiproperties. More
specifically, this requires to have a systematic approaathibmogeneously in-
tegrates the various activities and related artefactdveddn the development
process.

1Extra-functional properties are attributes that definewha system performs rather than
“what” it does. They are expressed through numerous clearsiits and can be found under sev-
eral equivalent denominations: non-functional propsrtiality attributes, attributes, etc. Exam-
ples of extra-functional properties important for embetidgstems include dependability, timing
characteristics, and resources consumption.

1.2 Objectives 5

1.2 Objectives

The main purpose of this thesis is to determine solutionsitdg/establishing
an efficient software development of distributed embedgstéms abiding by
the principles of component-based development that cairerise quality of
the delivered products. Assuming that the principles adtextin CBD are also
applicable for developing distributed embedded systehis thesis discusses
how to suitably accommodate the specifics of “traditionatibedded system
development with component-based development and, thertdintegrate
and manage extra-functional properties in the developteoegnsure the pre-
dictability of the final product. This thesis also focusesdmtermining the
required engineering practices and tools to efficientlypsupthe composition
theories which have been proposed.

Formulated as a question, the main challenge that thissttaésis at ad-
dressing is the following:

How can distributed embedded systems be developed in a pre-
dictable and efficient way while using the CBD principles?

This thesis does not provide a direct answer to this quebtibfocuses on
solving parts of this challenge:

1. investigating how to apply component-based developmentiples to
embedded system development,

2. establishing the specific requirements for a dedicatetpboment model,
and

3. providing a support to manage extra-functional propsittiroughoutthe
development.

Concretely, in this thesis, we propose a component-baspbagh for
distributed embedded systems supported by the specificafia dedicated
component model. This component model is endowed with ldeiteharac-
teristics, properties, and features to efficiently suppmtmanagement of the
specific concerns of embedded system domain. Further, éabfmaus is put
on extra-functional properties regarding their integnatand management to
bridge analysis in the development process. The approdhlsisated through
the realisation of an integrated development environm &),

6 Chapter 1. Introduction

1.3 Research Questions

In this section, we break down the main research challertigeaiset of more
concrete research questions, which have served as basisite &nd guide the
different phases of the work described in this thesis.

Research question 1

What characteristics of a component model facilitate saféw
design of distributed embedded systems?

Through this research question, the purpose is (i) to eg@od identify
important needs in the development of distributed embedgstéms (focus-
ing more specifically on the design phase using a CBD app}panH (i) to
propose a new component model endowed with suitable clegistats, prop-
erties and features to provide a solution to these needs.

Research question 2

What mechanisms are suitable to support the management of
extra-functional properties within a component model?

In embedded system development, extra-functional prigseatre as im-
portant for system correctness as the functionality itbelf more challeng-
ing. From the results obtained in answering the previousamre$ questions,
it has been observed that, although essential, extraifunadtproperties are
seldom considered in component-based development. Incaess, they are
evaluated in late development phases through simulatidfoameasurement,
which might be costly if the extra-functional requiremeaits not satisfied. In
some cases, extra-functional properties are consideredrig development
phases only to serve as predictions. Furthermore, few caergenodels pro-
vide support for dealing with extra-functional propertiaad often, this sup-
port addresses a predefined subset of extra-functionagptiep only.

Following these observations, we formulated the aforeiorat research
question, which addresses mainly the predictability aspeeded in the devel-
opment of distributed embedded systems. In that respéstredbearch ques-
tion focuses on determining a way to enhance component moalgrovide

1.4 Thesis Contributions 7

the necessary grounds to efficiently support, in a systemedy, the man-
agement of extra-functional properties in a componenédasvelopment for
embedded systems. Furthermore, through this researchiauése aim is
also investigate solutions to develop a correspondingéxtnctional property
management framework.

Research question 3

How can the different aspects of component-based devetdpme
for embedded systems be seamlessly integrated into a gevehd
environment?

This research question addresses the needs required torsimppractice
the development of embedded systems. Given that for emdesydem devel-
opment, both functional and extra-functional correctrmasst be considered,
different techniques must be used all along the developstariing from mod-
elling low-level functionality, using a behaviour modeld@nable early predic-
tions, and/or using test-cases, simulation and measutsemép till now, the
tools implementing these techniques are rather indepeiaehoften require
manual effort to use them together. Accordingly, one of thpadrtant chal-
lenge that exist in embedded system development is to findyaavarovide
easy and tight integration of the various techniques ani$ teguired for the
development of distributed embedded systems. Hence, threguoal with this
research question is to attempt to develop a prototype #mabe used as a ba-
sis to both demonstrate the feasibility of the proposedsdeal evaluate their
advantages and drawbacks in using them in practice.

1.4 Thesis Contributions

The thesis provides the following four main contributions:
1. A classification framework for component models;

2. A general framework for the management of extra-functipnoperties
in component-based development;

3. A new component model for control-intensive embeddetksys;

4. Two Integrated Development Environments for comporased em-
bedded systems.

8 Chapter 1. Introduction

For each contribution a summary, the relation to the thesisray personal
involvement in its realization are detailed below. Thesetgbutions are the
outcome of a set of results that address the main researtbrdmand ques-
tions presented in the previous sections. While studyiegctivrent state-of-
the-art of component based software engineering and pngyédclassification
of the characteristics of component models, the existehaedarge variety of
component models has been identified — some of them targetrigedded
systems specifically. This has led to contribution 1, whiths turns exposed
the lack of appropriate management support for extra-fanat properties in
component models. From this contribution, we also idemtiieme common
features among existing component models for embeddegisgsiAs a result,
contributions 2 and 3 were devised before being integraigdther through
the corresponding implementation of the attribute frant&for contribution
3 and integrated development environments (contributjofocontribution
2. Benefiting from these implementations, we realised s¢exiamples which
outcomes have had influenced the previous contributionesé& helations are
illustrated in Figure 1.1 together with the corresponddmetveen the thesis
contributions and the chapters of the thesis.

1. A classification framework for component models

This contribution introduces a systematic classificatibcharacteristics of
component models. It relies on a thorough study of twenty-émmponent
models to discuss basic principles of component models anmponent-
based software engineering and identify common charatitsiof compo-
nent. From this, a Component Model Classification Framevgpkoposed
and used to classify the twenty-four component models. hiyaing the
classified component models, it is possible to pinpoinedéhces and iden-
tifies characteristics shared by component models develfgyea similar
domain, such as embedded systems. Paper A [17] has beeslmdhs
the main outcome of this contribution and is used as a basiStiapters 2
and 9.

Personal contributions:

| personally contributed to this work with the initial idehtbe component
model classification, a first simple prototype with few comeot models
and aspects only, and together with Aneta Vulgarakis inectilhg, ana-
lyzing and classifying additional component models. | hiagl main re-
sponsibility over the construction dimension and the eslatork section.
Everyone worked equally in the iterative process to refieftamework
and contributed with discussions, reviews and suggestions

1.4 Thesis Contributions 9

Problem Setting

Chapter 1:

Introduction

h

1- A Classification Framework for Component

Models

Chapter 2:

Classifying Software Component Models

(Paper A)

2- An Extra-Functional Property Framework
for Component-Based Development

Chapter 3:
Core Definitions (Paper F)

Chapter 4:
Supporting Mechanisms
(Papers F, G)

Chapter 5:
Implementation

Y

3- A new component model for control-
intensive embedded systems

Chapter 6:
ProCom Component Model
(Papers B, C)

4- Integrated development environments for
component-based embedded systems

Chapter 7
Save-IDE and Pride
(Papers D, E)

|

Integration

Chapter 8:

Case-Studies (Papers G, H)

Legend:

|:| Topic
I:l Main Contribution

Conclusions
Chapter 9:
Related Work
Chapter 10:

Discussions and Future Work

D Thesis chapter

—> influences

Figure 1.1: Relation between the thesis contributions haahapters of the

thesis.

10

Chapter 1. Introduction

2.

A general framework for the management of extra-functioral proper-
ties in component-based development

This framework enables the specification of multi-valued eontext-aware
extra-functional properties and propose a support forr theiform and
seamless management in component-based developmenterti®an
be attached to selected architectural entities of companedels. Their
values can be compared and refined during the developmetggso In
particular, thanks to having multiple context-aware valuglues from dif-
ferent sources can be compared and reused in approprigextonhis is
done with the main objective of providing an efficient sugppossibly au-
tomated, for analysing selected properties. This cortidhuncludesi) a
study of the possible usage of extra-functional propeitiesomponent-
based developmerit) a specification of multi-valued context-aware extra-
functional propertiesii) an investigation of the necessary supporting mech-
anisms for specifying, managing, refining extra-functiqgmaperties, and
iv) the implementation of an extensible prototype for the psgul solu-
tions. This is the core contribution of the thesis and theesponding
results have been published in Papers F [18], G [19] and H §2d] are
discussed in Chapters 3,4 and 5 and 9.

Personal contributions:

| was the main driver of this work and contributed in idenitify the prob-
lem of the lack of systematic support of extra-functionaperties during
component-based development, in developing the conceputif-valued
context-aware extra-functional properties, and invesiig needed sup-
porting mechanisms. | also supervised the realisationefitht prototype
implementing the concepts of multi-valued extra-funcéilproperties, pro-
totype that | have refined and enriched later on. Ivica Crick@an Carlson
and Thomas Lévéque contributed with valuable discussifeedbacks and
ideas.

. A new component model for control-intensive embedded stems

In this contribution, a component model for the design ancibgment of
control-intensive distributed embedded systems calle@Bm has been de-
veloped. The particularity of ProCom lies in the existentevo layers de-
signed to cope with the different design paradigms whicbktexi different
abstraction levels in distributed embedded systems. Eaeh Is hierarchi-
cal and has its own architectural style and communicatioagigm. More-
over, through its restricted semantic ProCom provide amgldar analyzing

1.4 Thesis Contributions 11

the components and predict their properties, such as resconsumption
and timing behaviour, already in early development phadd®e results
from this contribution have been published in Paper B [2H @n22] and
are described in Chapter 6.

Personal contributions:

ProCom is the result of a team work involving many membershef t
PROGRESssproject which | participated in. | personally contributed to this
topic by actively participating in the discussions condegrthe develop-
ment process, the discussions with the domain expertslectoiformation
on their needs and by influencing some of the decisions througparallel
work on the realization of an integrated development emvirent, called
Save-IDE, for the SaveCCM component model, which are pesters of
PRrRIDE and ProCom respectively.

. Two Integrated Development Environments for componentased em-
bedded systems

This contribution provides an extensible development &aork to eval-
uate in practice research contributions centered aroungnbposed com-
ponent model and a support to integrate the attribute framewlwo pro-
totypes of integrated development environments to supperiproposed
component-based development approach for distributecddda systems
have been specified and developed. These prototypes ersaibig bompo-
nents throughout the development process, from early désideployment
and synthesis, and facilitates the integrations of rebeidemas. Benefiting
from the experience gained from developing the Save-IDEhaxe built
PRIDE, the ProCom Integrated Development Environmemioi is based
on an architecture relying on components with well-defirerdantics that
serve as the central development entity, and as means torsupp ag-
gregate various analysis and verification techniques titrout the devel-
opment from early specification to synthesis and deploymemiDE also
provides generic support for integrating extra-functigraperties into ar-
chitectural definitions through the integration of nLigthte framework for
the systematic management of extra-functional propefResults from this
contribution have been published in [23], in Paper D[24] Bager E [25]
and are used as basis for Chapter 7.

2http://www.mrtc.mdh.se/progress/

12 Chapter 1. Introduction

Personal contributions:

Concerning the realization of the Save-IDE, | was a membeahefde-
veloping team with the main responsibility for the desigmtpancluding
the design of the underlying metamodel and the developmetiteode-
sign tools. This included implementation, testing, bugniixiworking on
the final integration, and supervision of master studerits, Eor FRRIDE,
my contributions are derived from my role as the main sofénanchitect
and include the elicitation of the desired underlying cartsehat should
guide the development ofRPDE and its design specification together with
additional managerial activities for the releases. Camogrthe implemen-
tation, | was mainly responsible for integrating nLight.

1.5 Research Method

In this thesis, we followed a methodology adapted from thelgines pro-
posed by Shaw in [26] to perform software engineering retear

This approach starts with the identification of a problemftbe real world
(Problem Identificatioh in our case the limitations of the current development
methods for distributed embedded systems due to the inogeasmplexity
of new embedded system functionalities. The problem is trarsferred into
a research setting to be investigated with the prospectsidinfis solutions
to it. However, since real world problems are generally ejagdmplex, the
scope of the problem needs first to be restricted to be mahkpeéhin a re-
search contexfHroblem Setting This limitation made us focus on a particular
aspect of the real problem by formulating the research protthat will be ad-
dressed within the workRroblem Formulatiol, and then by statingVorking
AssumptionandResearch Questionwhich together set a frame for the work.
Similarly to passing from a real world problem to a reseancbfem, breaking
down the research problem into a set of research questiorevysadown even
further the problem to investigate and helps on focusingamntiqular aspects
of the research problem. In that sense, the working assanmgirovide a start-
ing point to the work whereas the research questions carnesmore to the
specification of the angle of attack chosen to investigaedkearch problem.

Once the problemis clearly defined, the research work stéttighe study
of related theories, methods, approaches, techniquedutioss that have al-
ready been performed on the topBackground TheorigsWith the knowledge
of the existing state-of-the-art and the questions to anseene solutions can
be devised$olution$. Formulating solutions is not a straightforward process

1.5 Research Method 13

but an iterative one, in which preliminary ideas are forneda worked out,
refined or even sometimes left aside. When the ideas are enataugh, they
must be evaluated and validated to check whether they ranyer the re-
search question in a suitable waya(idation). If this step fails, the proposed
solutions need again to be revisited, refined, improvedromth away. In that
sense, this is an iterative trial and error process, in whitdlysing the causes
of the erroneous solutions might provide useful inputs td fiew, better or
simply working solutions.

After the validation step is satisfied, the applicabilitytbé proposed so-
lutions to solve the real-world problem can be evaluateda(uatior). An
overview of this approach is given in Figure 1.2.

Real-World Context Research Context

1
1
1
1
1
1
1
1
1
i
! Problem Setting
Problem i |
Identification : 7] Problem Work Research
! Formulation Assumptions Questions
1
; v £
i Research Work
1
i
: Backgro'und Solutions
' Theories
1
; v %
Appllcab.lllty) i Validation

Evaluation H
i
1
1
i
1

Figure 1.2: Overview of the applied research process.

Each research questions can be answered in different wayia applying
different approaches, thus we describe below the methggdimat has been
used in the research work described in the previous sections

To answer research question 1, we proceeded by systematyseof ex-
isting component models and construction. The procestedtay studying
both the needs in the development process of distributeceeddga systems
and the current state-of-the-art of component-based aoft@ngineering fo-

14 Chapter 1. Introduction

cusing on existing component models, in particular SaveQGM This study
was based on literature surveys and discussions with doewaierts of vehic-
ular and automation domains. Based on these findings, ergaints for the
component model were extracted and served as foundatidihe &laboration
of ProCom, which addresses some of the limitations of SaW.CC

As for the work concerned with research question 2, we useapproach
by construction. The work also started with a literatureveys on extra-
functional properties and their management and the ideatidin of a few
properties of interest in the development process. Therelaged their man-
agement to their utilisation within the development prec&he methodology
followed here was iterative and started with the develognoém prototype
implementing some preliminary ideas to get a better undedshg of their in-
tegrations and contributions in the development processmFRhe utilisation
of the prototype on development examples, the proposeticauvere refined
and additional supporting mechanisms were identified asired,

As for the work concerned with research question 3, we inyatsd the
feasibility of integrating various aspects of componeasdd approach tightly
into a common development environment. Here, we also pdezkby con-
struction. We started by building a prototype of an integgatievelopment
environment based on the SaveCCT approach, using the Sde@@ponent
model and enabling early formal analysis of timing propextiBased on the
lessons we learned from building this prototype, we devedog second inte-
grated development environment for ProCom.

1.6 Thesis Outline

The thesis includes the following chapters:

Chapter 1: Introduction This chapter introduces the research setting for the

work in detailing the motivation for the work, the researeltting and the
research questions. Additionally, an overview of the thesintributions is
presented together with the followed research processes®hrch meth-
ods.

Chapter 2: Classifying Software Component Modelspresents a thorough
investigation of the concepts related to the notion of congmd models
based on which a classification framework that highlightsilgude and
differences between twenty-four component models is built

1.6 Thesis Outline 15

Chapter 3: Defining Multi-Valued Context-Aware Extra-Func tional Prop-
erties identifies challenges related to extra-functional prdpertin
component-based development and formally establishesdte defini-
tions supporting the concept of multi-valued context-anextra-functional
properties. These definitions set the basis for the manageofiextra-
functional properties in component-based development.

Chapter 4: Managing Multi-Valued Context-Aware Extra-Fun ctional
Properties identifies required supporting mechanisms to handle multi-
valued context-aware extra-functional properties withtomponent-based
development. Examples of such mechanisms include filtevialge selec-
tion, value comparison and value merging.

Chapter 5: nLight — The Attribute Framework describes a prototype im-
plementation of a framework enabling the systematic mamagéof multi-
valued context-aware extra-functional properties. Tragiework is exten-
sible: new extra-functional properties can be easily addecbmponent
models. To do so, it is developed as a set of Eclipse plugimgube
Eclipse Modeling Framework.

Chapter 6: The ProCom Component Model identifies first the requirements
to adapt the principles of component-based software eagimgto fit the
specific needs of embedded system development. Based pa tieat com-

ponent model, called ProCom, dedicated to embedded systeaogpment
is specified in this chapter.

Chapter 7: PRIDE: The ProCom Integrated Development Environment
describes the Integrated Development Environment suipgdtte concepts
presented in Chapter 6.

Chapter 8: Extended Examplesexemplifies the contributions on several ex-

amples, including a turntable system, a personal navigatssistant sys-
tem, and an automatic driving system.

Chapter 9: Related Work compares the results of the thesis contributions
with similar work related to component model classificatioextra-
functional properties and component models.

Chapter 10: Conclusion and Future Work discusses the contributions pro-
vided in thesis and suggests possible extension of this.work

Chapter 2

Classifying Software
Component Models

Due to promising features such as alleviating complexity ahortening of
development time, component-based software engineeastpécome a pop-
ular development paradigm. However, there is no consensttseoprinciples
behind component-based software engineering and, as adqugrsce, many
component models have been developed in recent years. Mtsise com-
ponent models focus on some specific points of the paradigiritéa now
difficult to have a clear picture of their differences or damties. The main
purpose of this chapter is to:

e Ascertain the main concepts related to the notion of compomedels
to make them clearly understandable.

e Derive aclassification framework for component models fthese main
concepts.

e Analyse existing component models to identify their diéieces and
similitudes and provide an overview of the current statediy compo-
nent models.

17

18 Chapter 2. Classifying Software Component Models

2.1 Main Concepts of Component Models

In order to classify component models, a clear understgnafithe main con-
cepts and unique terminology used in component-based a@tangineering
(CBSE) is required. Therefore, we define in this section thecepts related to
the notion of component models that a@mponent modetomponent-based
systemcomponenandbinding

We use the definition proposed in [27] that defines a compadtsetitrela-
tively to a specific component model. This definition points that a compo-
nent model covers multiple facets of the development pyasaling with:

1) rules for the construction of individual components, and

2) rules for the assembly of these components into a system.

Definition:

A Component model defines standards for (i) properties that i
dividual components must satisfy, and (ii) methods for cusimy
components.

In this definition, the term “component properties”, is metninclude
functional and extra-functional specifications of individd components. The
term “composing components” is meant to include mechani®msompo-
nent interaction. To explain these terms further, we starhfan architectural
specification of a component-based system.

A component-based system identifies (i) components, (iiyaherlying
platform and (iii) the binding mechanisms, as shown in Fig.ghd presented
formally as:

CBS =< P,C,B >

Where
CBS = Component-based systefh= System platformC = A set of com-
ponent’;; B = Set of bindingsB;.

A component is executadle In contrast to arbitrary executable code, a
component is formed to interact with other components alingrto prede-
fined rules. In other words, a component is a software modiatincludes
both execution code and machine-readable metadata (typiceluding the

INote that executable-property does not necessarily memmbecode. For example. the exe-
cution can be achieved through an interpreter or by a virhathine, or even through compilation
before the execution.

2.1 Main Concepts of Component Models 19

<<COMPONENT>> <<COMPONENT>>

3\;

|

#

<<PLATFORM>>

Figure 2.1: Component-based system

interface-signature) which explicitly describes the s=s that the software
provides and the services that it requires from other coraptsand its execu-
tion environment. The metadata supports the componenefsamk in com-
posing a component with other components, and in deployiirgd an exe-
cution environment. In addition, the metadata can includermation about
extra-functional properties of components.

More formally, we specify a componelit by a set of properties. Prop-
erties are used in the most general sense as defined by statidéwnaries,
e.g.: “a construct whereby objects and individuals can bémdjuished” [28].
There is no unique taxonomy of properties, and there exifgrdnt property
classifications. One commonly used classification is tardjsish functional
from extra-functional properties (also designated asfoaational, or Quality
of Services, or “ilities”). While functional properties slribe functions or ser-
vices a component provides or requires, extra-functioraggrties (EFPs) de-
scribe its non-functional characteristics. Typical exéamf extra-functional
properties are quality attributes such as reliability aegponse-time. A com-
ponentC can expose its functional properties by the means of anfacer .
Hence, we can characterize a compon@ihly its functional interfacé and by
a set of extra-functional propertiés

C = <I,P>, with I = {il,ig,..in};
P = {plap27"pk}-
I defines a set of functional properties (servicggshat a component pro-

vides or requires.
P defines a set of extra-functional propertig®f the component.

20 Chapter 2. Classifying Software Component Models

If a componentC = (I, P) complies with a component modélM/, then
this implies that its interface and its properties must clyrgth the rules of
the component model. This is formally denoted as follows:

CECM=1,PECM

Bindings define connections between interfaces. We digishigbindings
between (i) the components and the platform (which enaldagonent inte-
gration into a system) from (ii) bindings between composdntich enables
component interaction). In the first case, we talk almmmponent deployment
(denoted a&l in Fig. 2.1) and in the second abaamponent bindingdenoted
ast).

The component®’; and C, bounded by their interfaces and I, con-
struct anassemblyd = {C;, C2}. If a component model includes assembly
as an architectural element, then the assembly is specifiid interfacel 4:

A= {01, Cg},A = <IA> |IA = <]1 @Ig)

Note that an assembly is not necessary a component itselfindt neces-
sary that it conforms to the component model. If an asserbly {C;, C2}
conforms to the component model, i.e.

C:<],P>;]:<Il @]2>,C':CM

the assembly is a component, also called a composite compone

A composite component also exhibits a set of extra-funelipnoperties.
In the above example, the composite component is specified by (I, P)
but we did not define@ as a composition of component propertigsand Py .
We can state a question: C&be defined as a composition Bf andP,? As
we will see later, the extra-functional properties of a cosife component are
in most cases not only the result of component property caitipo, but also
of the external environment (e.g. underlying platform attteo components).
Formally, we express this as

C:<01€B02> $12<]1 EBIQ> A\ PezFP:<P1@PQ>

whereP,, denotes a specification of the external (system) contekhie
an impact on the composition of component extra-functigmaperties. A
more detailed discussion about binding and compositiomasgnted in Sec-
tion 2.2.2.

2.2 The Classification Framework 21

2.2 The Classification Framework

The rules a component model defines for the design and cotigrosi compo-
nents cover different principles and hide many complex angntation mech-
anisms. Furthermore, different component models covéaréifit phases in the
component lifecycle; while some support only the modellng design stage,
others support mainly the implementation and run-timeegagor this reason,
we cannot simply list all possible component models charatics, but we
group the characteristics according to their similar cons@nd aspects.

Starting from these premises, we divide the basic chalatitsrand prin-
ciples of component models into the following three dimensi

D.1 Lifecycle. The lifecycle dimension identifies the support provided by a
component model and the component forms throughout theytife of
components. CBSE is characterized by a separation of thedafament
processes of individual components from the developmemtgss of
the overall system. A component lifecycle covers stages fitte com-
ponent specification until its integration into the systemd possibly its
execution and replacement.

D.2 Construction. The construction dimension identifies principles and
mechanisms for building systems from components includipghe
component functional specification (of which timterfaceis a promi-
nent part), (ii) the means of establishing connections betwthe com-
ponents, i.ebinding and the means of intercommunications, irger-
actionsbetween the components.

D.3 Extra-Functional Properties. The extra-functional properties dimen-
sion identifies the facilities a component model offers far specifica-
tions, management and composition of extra-functiongbertes.

Below, we discuss these dimensions and introduce theiurfesiti.e. the
characteristics of component models.

2.2.1 Lifecycle

An important characteristic of CBSE is the separation ofténeclopment pro-
cess of the overall system from the development processedieidual com-

ponents [29]. These processes can be completely indepeasiéor exam-
ple in the development of COTS (Commercial Off-The-Shadfhponents and
COTS-based systems, up to the point where a component ggateel into a
system.

22 Chapter 2. Classifying Software Component Models

The development of an individual component follows thedaihg stages
(see Fig. 2.2): requirements, design, implementationlogepent and execu-
tion. During its lifecycle, a component has different forf38]: initially, a
component is represented by a set of requirements, yetgldeisign the same
component is represented bysat of models Subsequently, the same com-
ponent is represented by meanssotirce codecomplemented bynetadata
After deployment, the component is integrated in an exeoutinvironment.
And at run-time, the same compongig now represented bybject-codeof
the target platform. Optionally, at intermediate stagespmponent may be
packaged and represented by means of a set of files in a dirextaip-file.
Fig. 2.2 shows these successive stages of a componentigcliée The lower
half of the figure lists the ways in which components may beasgnted in
that particular stage of the lifecycle. In the figure, theuiegments and ex-
ecution stages are depicted with dashed lines to indicateintthese stages
components do not necessarily exist as independent units.

Most component models provide support for several stagédseatompo-
nent’s lifecycle. Support in the design stage may consistaddicated design
notation or predefined approach for modelling differeneg$pof components.
For example, the Koala component model [12] has an explasigh notation
which includes representations for, amongst others, coemis, interfaces,
and bindings. Other component models dictate the use @-stathines for
modelling the behaviour of components. In the implemeatestage, a com-
ponent model typically defines which construction elemshtaild be used for
encoding a componentin a programming language. Implertientavel rules
typically include conventions for the naming and structgrof interfaces. The
component models that cover several stages often providpgog for trans-
formation between the different component forms; typicareples are trans-
formations from models to code, such as interface spedditato stubs in
programming languages. In some cases, the transformatiescan be quite
complex, as for example in the domain of real-time systemahiich the de-
sign units, the components, are transformed into exectatils, the real-time
tasks.

2Actually, aninstanceof this component.

2.2 The Classification Framework 23

R —_ - : . D ————— i mmm -
| requirements >4ﬁ modelling >—>. implementatior>l—>[packaging >—>[deployment >—IM execution
————————— . : . Ce ol
Specification . | Code . Storage Installed files . |Executable code|
-interface .| - source code . - repository .
- models . | - executable code : - package
- meta data . | - executable models | - - meta data

Component forms in a component lifecycle

Figure 2.2: Component lifecycle and component forms

Component Lifecycle Stages

We identify the following stages of the component lifecycle

L.1

L.2

Modelling stage Component models provide support for the modelling
and the design of components and component-based systeodeldM
are used either for the architectural description of théesys, the com-
ponents and the interaction between them (for example @sstgndard
or a dedicated ADL), or for the modelling and verification afrficular
system and component properties (using different modgtéchniques
such as statecharts or different variants of finite autombta example,
the KobrA [31] component model uses UML profiles with new ordno
ified UML architectural elements and annotations, while@Gnm [22]
and Pin [32] have their own modelling languages.

Implementation stagegComponent models provide support for the pro-
duction of code. The support for implementation stage may wsith the
provision of the source code, or may continue up to the géoeraf a
binary (executable) codeMost of the component models use standard
programming languages. Some component models assumectiof ais
particular language for the implementation. In such catfescompo-
nent model may require that (elements of the) language acaccord-
ing to some specific rules. For example, the EJB componenehfidd]
uses Java, with some extensions and additional requiremédthers

3Considering the component model definition and Szypersldfnition of a component, it
can appear strange that component models do not addresspleerientation stage. However, the
component models specify characteristics of componeatsatfe executable units, although not
necessarily the implementation rules themselves.

24

Chapter 2. Classifying Software Component Models

L.3

L.4

component models explicitly aim to be language-indepetfdethe im-
plementation. Such component models may have translatorstheir
modelling and specification languages to a particular, oretomes mul-
tiple, programming language(s) as for CCM [34].

Packaging stage.Because of the separation of the development pro-
cesses in the component-based lifecycle, there is a nedddfatorage
and packaging of components, either in a repository or fstridution.

A component package is a set of metadata and code (sourcesor ex
cutable). The metadata contains information about theecdsitof the
files in the package. Accordingly, the result of this stageloaa file, an
archive, or a repository in which the packaged componestidegrior

to their use. For example, in Koala [12], components are @adkto a

file system-based repository, with one folder per compariem folder
includes a number of files: a Component Description Lang(&gd.)

file and, a set of C and header files, test file and different ohgeus. An-
other example of packaging is used in the EJB [33] componetet
There, packaging is done through JAR archives, called RM-Each
archive contains an XML deployment descriptor, a compodestrip-
tion, a component implementation and interfaces.

Deployment stageAt a certain point in time, a component is integrated
into an executable system or some target environment, acoimes
ready for execution. This may happen at different stagelsarsystem’s
lifecycle. In general, a component can be deployed at:

(a) compilation time Components are integrated before the system
starts executing. Compilation (and linking) achievesgna¢ion
of components through the resolution of references to fater
names. Binding at compilation-time is typical for embeddgs-
tems in which the components and the execution platformare c
piled and linked together into an executable image. Thiphap
for instance in the Koala component model.

(b) run-time Components may be added or replaced in a system which
is executing. Run-time deployment may be realized by using a
registry (COM [35]), or by containers which handle instada
and communication of the component using information ofttee
ployment descriptor packed with the component implemantat
(CCM [34], EJB [33)).

2.2 The Classification Framework 25

2.2.2 Construction

As defined in Oxford advanced learners dictionary [28Jnstructionmeans

“the process or method of building”. The construction disien of our clas-
sification includes three parts: (i) connection pointsingerfaces (i) mecha-
nisms for establishing connections, ibéadingmechanisms, and (iii) commu-
nication itself, i.e.interaction The next section discusses each of these aspects
in more detail, and provides a list of elements that charaet¢his dimension.

Interface

A component interface defines a set of actions which is utaleidsy both the
provider (the component) and user of that interface (otheymonents, or other
software). The actions of an interface can be charactebgedhame and a list
of parameters that are input to or output from the action. & ¢e@mmon way
of specifying an interface is by means of a set of operatifurscfions) with
parameters, as for example used in Java Beans [37] and O8|GHB8wever,
there exist other types of interfaces; so called “port-tfsavhere ports are
entries for receiving/sending different data types anchtsyeas for instance
implemented in IEC61131 [40] and SaveCCM [14]. Fig. 2.3slhates the
"operation-based” and "port-based” interfaces and irtioa styles. In the
first case, a component invokes an operation from anotheponent (which
may return a result), while in the second case, a componesfitgsudata to
another component and possibly starts the execution obther component
by sending a trigger. Alternatively, triggers can be serd lojock invoking the
periodical execution of the component.

Most component models distinguish the actions that commisn@rovide
to their environment, calledrovided interfacefrom the actions they require
from this environment, calletequired interface This is an important feature
that makes explicit the dependencies of a component. Thigrmfacilitates
independent development and deployment of components.

An interface is not a constituent part of a component, butsdst indepen-
dently of components as a standard for representing soroe giéunctionality
in a system. The independent existence of interfaces magessible to spec-
ify interfaces independently of their implementation.

In different stages of development, an interface may be eétimrough dif-
ferent languages. In the modelling stage, component maoadayseither pro-

“Note that the “port-based” concept is different from theaapt in UML 2.1 [39] in which a
port is defined as a set of interface specifications.

26 Chapter 2. Classifying Software Component Models

o— a o4 o o/ a <

\; function2() U
a) operational-based interface

@f o —f o @f o
~ 1 i —q ¢

|:: triger0 - triger2

: : : [triger3

: triger1 : triger2’ -
Tt o datal -

= triger0’ _: U ata E 1 triger3’

: - _triger2” _ :
: _ triger1” : : triger3”
= ; i = :

b) port-based interface

functionO
function1()

LA

Figure 2.3: Operation-based and port-based interfaces

vide their own languages (often similar to some ADL), or uséLL{possibly
with some extensions or profiles) for defining interfacegsh&nimplementation
stage, there are two common ways of defining interfaces.

One way is to describe interfaces by means of an interfacerigiden
language (IDL) that is independent from a particular pragrang language.
Through mappings between specific programming languagethariDL, in-
teroperability between multiple programming languagescisieved: compo-
nents implemented in different programming languages eatolmbined into
one system. IDLs focus only on syntactic interoperabilityt, they (implicitly,
and sometimes unintentionally) also determine the styflag@raction through
which components can communicate. The syntactic inteedyiléy achieved
by IDLs yields the benefit of using different programmingdaages for the
component implementations.

Another way of specifying an interface is to directly use aggjamming
language, as for example using an object-oriented langudgeically, in
object-oriented programming languages, a component i®egpd as a class in
which the interface is defined as a set of methods and atsbpbssibly with
some extensions or syntactic convention to distinguishpmment architectural

2.2 The Classification Framework 27

elements (for instance required and provided interfacedther languages, the
structured (stereotyped) use of header files or abstrasgadaserves as a means
of defining interfaces.

Driven by the requirements of independent deployment anhuhyc re-
configuration, some component models define a standarddduittary repre-
sentation of interfaces. This binary representation isl wgethe deployment
stage and during run-time. MS COM is an example of a companedtl that
has such a binary standard for interfaces.

To make it possible to perform advanced checks on the cobilitgtbe-
tween interfaces, the notion of contract has been adjoiméutérfaces. Ac-
cording to [41], contracts can be classified hierarchidcallipur levels which,
if taken together, may form a global contract. In our clasatfon, we adopt the
first three levels, since the last level is concerned witheefinctional proper-
ties which are covered in more detail in Section 2.4.

e Syntactic leveldescribes the syntactic aspect, also called signatunme of a
interface. This level ensures that the interacting comptsefer to the
same data types. This is the most common and most easy agreeme
certify as it relies mainly on a (either static or dynamigeychecking
technique.

e Functional Semantic leveteinforces the previous level of contracts in
certifying that the values of the parameters are within ttogper range.
This can be asserted using pre-conditions, post-conditiod invariants.

e Behaviour levelexpresses either constraints on the temporal ordering of
interactions between components or constraints on the aoem’s in-
ternal behaviour (e.g. allowed internal states) in respém@teractions.
Behaviour contracts are typically expressed by statestmrtifferent
variants of finite state machines.

We conclude our discussion on aspects of interfaces byipgiout that
several component models have distinctive features rktatevolvability and
variability. For instance, for evolvability (e.g. to supporeating new function-
ality but maintaining backward compatibility), a compoheray offer multiple
interfaces for the same functionality. This makes it pdsdith embody several
versions or variants of functions in the component.

28 Chapter 2. Classifying Software Component Models

Binding mechanisms

Binding is the process that establishes connections betweenponents
(through use of their interfaces and interaction channéis)CBSE, binding
is also often calledomponent compositioly reference to the composition
of the functionality of the components. Similarly by assdicin to wires in
electrical engineering, binding is also referred tavirsng in the literature e.g.
[42] and [7].

An important question coming from the possibilities offédgy binding
mechanisms relates to the composability of components {2&n an assem-
bly, i.e. a set of components mutually connected, be trea$ea component
itself?”. That is, does an assembly composed from a set opoaents fully
comply to the rules imposed by the component model, bothrmgef func-
tional and extra-functional properties? The answer is mopke. To discuss
component composition, we must first distinguish differgpies of binding:
horizontal bindingandvertical bindingas defined below.

Let us assume that the following component§ = (I;, P;) and
C; = (I, P;) satisfy the rules imposed by a component maci#d, i.e.

CZ‘, C7): CM = Ii,]j,Pi,Pj ': CM

If we composeC; and C; together through ahorizontal bindingmeaning
that their respective interfaces are connected togetleer {j & I;)), then the
assemblyA resulting of this composition is merely a set of componentgpe
erating together to realize a functionality, i4.= { C;, C;}. Here,A does not
necessary comply with the component mod8l/. In spite of this, this type
of binding is often improperly referred to as horizontal qmsition. At the
modelling stage, horizontal binding is often realized bymecting a provided
interface of a component with a required interface of anotieenponent. At
the implementation stage, this horizontal binding is taflicrealized through
glue-code or wrappers.

On the other hand, if we identify the assemblyas a component with an
interfacel4 which is a composition of interfaces of the involved compusge
i.e. if we have

A={GC, GhA=(Ia)=1a = (Li®l)
wherely, E CM

then A results from avertical bindingand has an interfack; that satisfies the
rules of the component modélM . At the modelling stage, vertical binding is

2.2 The Classification Framework 29

often attained through connecting two interfaces of theeskimd: a provided
interface of the assembly (resp. required interface) tmaiged interface of an
inner component (resp. required interface). This type ohection is called
delegation Whereas when all the interfaces of the inner componentsaade
available to the outside environment through the intedatéhe assembly, we
speak ofaggregation

If the assemblyA satisfies the component model’s rules with respect to
both its interfacd 4 and its propertie® 4, i.e.

A:<]A,PA> = A:<IZ@IJ,P61FP1@PJ>
where I4,P4 E CM

then the component model supportstical compositionThis is a very pow-
erful property, but unfortunately very difficult to achiemepractice. Neverthe-
less, many component models suppmattial vertical compositionin which
functional interfaces can be composed recursively.

In SaveCCM [14], vertical binding is supported and the congra model
defines an assembly as a set of components which export hyatiele a set
of selected ports, the interface elements. If the assenibly @eserves the
“read-execute-write” semantics defined by SaveCCM for comepts, then in
that particular case, the assembly is a component becacmmlies with the
definition of a SaveCCM component.

Binding does not necessarily correspond only to a one-toeirect con-
nection between two components; some component modelsafgmort in-
direct connections through the utilisation of connectd#en introduced as
first class citizens of a component model, connectors aceasators between
components and enable (i) making the interaction betweempoaents ex-
plicit, and (ii) the addition (and removal) of advanced naidin mechanisms
that are transparent to components. In several componeafglm@onnectors
are implemented as special types of components (e.g. adabtmkers or
proxies). Implementing connectors in terms of impleméatatevel compo-
nents opens up the possibility of building more complexrat&ons patterns
in comparison to using basic connectors.

The use of connectors corresponds to the concepkofenous composi-
tion because the (logic for handling the) interaction betweenpmmnents is
handled outside of the components themselves. In contresiottgenous com-
position,endogenous compositioefers to a binding without any intermediary
connector. In this case, the handling of binding and inteawag@rotocols is part
of the components themselves.

30 Chapter 2. Classifying Software Component Models

At the modelling and implementation stages, binding is doya system
developer who explicitly states which components are asksirtogether by
connecting the interfaces of the involved components. iBhase of the forms
of third-party bindingin which the establishment of the binding is initiated by
an entity outside the components involved in the binding.ti@nother hand,
in afirst-party binding a component decides itself which other component it
is to be bound to. Most of the component models enables the plairty bind-
ing. Typical solutions for first-party binding use an infpestion (or reflexion)
interface, which enables the discovery of the interfaceh@fcomponents to
connect to, and a registry, which can look up the identityhef tomponents
that support a specific functionality (or interface).

When the binding occurs at deployment stage, a dockingfattelis com-
monly used. This docking interface does not offer any apgibe function-
ality, but serves instead for managing the binding and syles# interaction
between a component and the underlying run-time infragtrac In many
component models (e.g. CCM, EJB), the binding specificaiolocation-
transparent: the run-time location of components (pladteeon a local or a
remote node) is specified separately from the binding in&tion.

Interactions

Component models use one or more architectural stylesifmitpa specifign-
teraction stylego define the patterns of interactions between componeets, i
how components communicate with each other. For instaheelient-server
architectural style, widely used for distributed compgtinuses a
request-responsiteraction model. This means that for any interaction be-
tween two components, one component sends a request to ificspéwer
component, which then returns a reply. Hence traffic acroesbinding is
bidirectional.

Two variants of request-response are distinguished. adynchronous
request-response, the client initiates the communicadiod continues its ac-
tivity until, at some point, it receives the results of itgjuest from the server
component. The interaction can also $§grchronouswhich means that the
client waits until its request has been processed.

2.2 The Classification Framework 31

Another typical interaction style igipe & filter, which is mostly used for
the streaming of events. This style uses unidirectionalmanication between
components. In this style, components are filters that gottee data, and the
bindings are the pipes that transfer the data to the nextsfil#e characteristic
of this style is that it allows the separate control of theaeffdw and control-
flow between components. The control flow is activated bygaeting interac-
tion model, which enables the activation of a particular porent in response
to a particular signal such as an event, a clock tick, or awstismfrom another
component, as illustrated in Fig. 2.3.b. This interacticoded includes event-
triggering, or event-driven, and time-triggering. The@# filter architectural
style is widely used in embedded and real-time systems lsegantrol theory
can be easily mapped to this interaction model. Some conmpomedels such
as Rubus [11] decouple the specification of data flow fromrobfibw.

There are other interaction styles utilized in componendet® and some
prominent examples are broadcast, blackboard and pufiliskeribe. In most
cases, component models provide a single basic interastiyten Support for
this style is often hardwired in the execution platform. Heer, some compo-
nent models, such as Fractal [43], Pin [32] and BIP [44] allibe/construction
of different interaction styles.

An interaction style determines which types of dependenmiast or may
exist between components. As a result, the architectukdsssupported by
a component model have a large impact on the flexibility dukioth the de-
velopment and the execution of components. In general)@wtyich induces
more or stronger dependencies will need more complex potgdor binding
and hence for the replacement of components.

Components may differ with respect to the way their inteawivity and
interactions are initiatedPassive componengge activated only by external
events (for example being called by another component)reasactive com-
ponentamanage their activation themselves, and can be executeskipaaiate
thread. Some component models provide support only foiygassmponents
(e.g. AUTOSAR, SaveCCM) while others have developed difiemays for
component startup and execution (e.g. CCM, MS COM). Oftea,mhecha-
nisms for the activation of components are governed by tdeying middle-
ware [45] or operating system, or are taken from the supmpmaplementation
language.

32 Chapter 2. Classifying Software Component Models

Construction classification

In accordance with the observations and reasoning fromeghag identify
the following classification characteristics for inte#a@and connections in the
construction dimension.

C.1 Interface specificationin which different characteristics allowing the
specification of interfaces are identified:

(a) The distinction of interface type: operation-based.(anethods
invocations) and port-based interface (e.g. data passing)

(b) The distinction between the provides-part and the regtpart of
an interface.

(c) The existence of some distinctive features.

(d) The language used to specify the interface.

(e) Interface levels which describe the levels of contralitation of
the interfaces, namely syntactic, functional semantic/@nde-
haviour level.

C.2 Binding, which describes the characteristics of the patterns ardhae
nisms used for binding components. It consists of two sudgyp

(a) The exogenous sub-category describes whether the cmnpo
model includes connectors as architectural elements or not

(b) The hierarchical sub-category expresses the posgibilihaving
a hierarchical composition of components (horizontal cositjon
is an intrinsic part of all component models, thus it is imijply
assumed to be supported).

C.3 Interactions which comprise the following characteristics:

(a) Interaction style, which describes the main underlgiraitectural

style used.
(b) Communication type, which details if the communicatised is

synchronous and/or asynchronous.

2.2 The Classification Framework 33

2.2.3 Extra-Functional Properties

Components and component-based systems are carriers ofteenof extra-

functional properties. The most basic support that a cormpbmodel can
provide for extra-functional properties is to facilitatpesifying such extra-
functional properties. For example in Robocop [15], congus may spec-
ify the maximum execution time per method of an interface. pacification

of such properties makes it possible to check at the compisrieployment

whether a component breaks the system integrity or requiae resources
than the system can ensure.

Another type of support that a component model can providelaed
to the management of particular extra-functional properti For example,
CCM [34] explicitly provides redundancy mechanisms for ienging reliabil-
ity.

Yet another type of support provided by component modelslated to
property compositions; it enables the prediction of systgnoperties derived
from the properties of the integrated components and thenlyidg compo-
nent framework.

In this section we discuss the EFP specification, managemecitanisms
and EFP composition issues, and then we identify the elesriarthe clas-
sification framework that make it possible to distinguisfiedtent component
models.

Specification of extra-functional properties

Component models rarely address the specification of éxtretional proper-
ties (which by definition belongs to metadata). In many casdsa-functional
properties are specified implicitly, not as a part of a congmnmodel, but
as a part of the component technology. A basic form of EFPispetion is
the one proposed by Mary Shaw [46], where an EFP is specifiedtagle
(Attribute, Value, Credibility) whereAttributedescribes the property itself,
Valuethe corresponding data, a@tedibility specifies the confidence in the
value. The attribut&/alueis often a simple data type, but some component
models provide a more complex value type (such as a rebalitribution).
The Pin component model has an associated “PredictaBitighled Compo-
nent Technology (PECT)” [32] [47], which enables the speatfon and han-
dling of the extra-functional properties through “anatgli interfaces”. Pin
requires that a reasoning framework is specified which defireev to anal-
yse a particular type of property. In Robocop [15], a reseunodel describes

34 Chapter 2. Classifying Software Component Models

the resource consumption of components in terms of matheshabst func-
tions, and a behavioural model specifies the sequence irhwhedr operations
must be invoked. Based on this information, associatedyaisalechniques
can then analyse the total resource usage and response finatarly, Pal-
ladio [48] extends behaviour specifications with annotetifr extensions) of
their resource usage, and their failure probabilities. etbgr with a model
of the physical resources, performance and reliabilityrietan be derived.
Most of the component models define extra-functional prigers attributes
of components or, more seldomly, as attributes of assemblief a systems.

Management of extra-functional properties

Component models provide different types of support for agamg EFP. This
management is related to run-time extra-functional prilgeand realised in
combination of components and underlying component ei@tptatform that

can often be integrated as a part of a middleware. Differestthranisms for
management of extra-functional properties (as well as donmonent deploy-
ments and communication mechanisms) can be found in [45]digmguish

four types of support (see Fig. 2.4):

1. Exogenous Managemerfthe EFP management is provided outside the
components.

2. Endogenous Managemefithe EFP management is implemented in the
components, i.e. the componentdevelopers are respotwibiplement
it.

3. Management per CollaborationThe EFP management is realized in
direct interactions between components.

4. Systemwide ManagemeniThe EFP management is provided by the
component framework, or underlying middleware.

2.2 The Classification Framework 35

component O) component component O) component
EFP {EFP mar] [EFP management——Q), (Or—{EFP management]
Endogenous EFP \r \r
management
EFP management]
Component Execution Platform)
Component Execution Platform
C D
< X 9) Component component [— ®) —] component
O - O
Exogenous EFP EFP management EFP management O
management |
EFP management]
Component Execution Platform Component Execution Platform
EFP managed per collaboration EFP managed systemwide

Figure 2.4: Management of extra-functional properties

By a combination of these types we get four possible typehefBEFP
support:

e Approach A(endogenous per collaboratipnA component model does
not provide any support for EFP management, but it is expletbiat a
component developer implements it. This approach makessgiple to
include EFP management policies that are optimized towasfsecific
system, and also can cater for adopting multiple policiesnia system.
This heterogeneity may be particularly useful when COTS paments
need to be integrated. On the other hand, the fact that sulitigso
are not standardized may be a source of architectural minhatween
components. A risk of using this approach is a hetereogenéjpoli-
cies for handling a single EFP in a system. As a result, magaand
predicting emerging properties at the system level can bedifficult.

e Approach Blendogenous systemw)dén this approach, there is a mech-
anism in the component execution platform that containgiesl for
managing extra-functional properties for individual campnts as well
as for extra-functional properties involving multiple cpaments. The
ability to negotiate the manner in which extra-functionadgerties are
handled requires that the components themselves have smwel&dge
about how the extra-functional properties affect theirctioning. This
is a form of reflection applied to EFP management.

36

Chapter 2. Classifying Software Component Models

e Approach C(exogenous per collaboratidn In this approach, compo-

nents are designed such that they address only functiopattsand
are oblivious to EFP. Consequently, in the execution envirent, these
components are surrounded by a container. This contaimaios the
knowledge on how to manage extra-functional propertiesthis ap-

proach, containers are connected to other containers. ectathcon-
tainers then manage the extra-functional properties f@ictimponents
that they encapsulate.

The container approach is a way of realizing the separaficomcerns
in which components concentrate on functional aspects anthin-
ers concentrate on extra-functional aspects. In this wamponents
become more generic because no modification is requiredegrite
them into systems that may employ different policies foraxunctional
properties. Because these components do not addressuexttanal
properties, they are simpler to implement. A disadvantdgbe con-
tainer approaches might be a degradation of the systemrpaafxe.

Approach D(exogenous system-wjdeThis approach is similar to ap-
proach C, except that the system can coordinate the managefren
EFP from a global system-wide perspective (e.g. global leddncing).
Consequently, a more complex support need to be built ird@tmpo-
nent execution platform.

Composition of extra-functional properties

The most difficult challenge in CBSE is related to composixigeefunctional
properties. Compositions of extra-functional properéies based on different
composition theories, and, in addition, they are often midy ¢he result of
compositions of component properties, but also dependlogr elements of a
particular system architecture or even its environmentekample, determin-
ing the composition of component performance may depenti@adheduling
policies and the system architecture. According to [28f;afunctional prop-
erties can be classified in categories depending on the csitigpodomains
(i.e. type of parameters that determine the compositiohg fdllowing cate-
gories are proposed:

2.2 The Classification Framework 37

Directly composable propertiesA property p;, of an assemblyd =
(Cy ® Cq) is a function of, and only of, the same property of the com-
ponents involved.

pr (A) = f (px (C1) ,pk (Ca2))

An example of such property is static memory consumptiothénsim-
plest case, the system static memory is the sum of compotetit s
memories plus a constant.

Architecture-related propertiesA property p, of an assemblyd =
(C; @ Cy) is a function of the same property of the components and
of the software architecturgA.

pe(A) = f(SApr(C1),pk (C2))

An example of such property is performance: increasing theumt
of parallel processing impacts the performance of the systithout
changing the properties of individual components (for itiesee [28]).

Emerging propertiesA property p; of an assemblyd = (C; @ Cs)
depends on several different propertigsp; of the components and of
the software architecture.

i (A) = f(SA,pi (C1),pi (C2) ,pj (C1),p; (C2)...)

An example of an emerging property is response time of amasdge
which depends on the execution time and resource consumgitithe
involved components.

Usage-depended properties property of an assembly is determined by
its usage profild/.

pe (AU) = f(SA,...pi(C},U5)...)

Reliability is an example of such property type. The religpof a same
system can be different for the different usage profiles af slystem.

System environment context propertidsproperty of a systend' is de-
termined by other properties and by the state of the systertexbX
defined by external parameters outside the system.

pk(S,U,X) = f(SA,X,pl(CJ,UJ))

Examples of this type are security and safety. These priegatepend
also on external conditions (such as different measurepaddures).

38 Chapter 2. Classifying Software Component Models

e Non-composable propertieBroperties that are not composable. Exam-
ples of such properties are maintainability, robustnesgapility, etc.

This classification indicates the limitations of the comiposs of extra-
functional properties. In general, determining the conitfmss of component
properties becomes feasible only when restrictions ar@asg on the design
of individual components. In practice, such restrictions @anposed by the
rules/constraints of the component model and system anthie. For exam-
ple, static memory usage of an assembly can be defined asrhefsstatic
memory usage of involved components, but only using pdafcomposition
policies (e.g. no concurrency). Other properties are edl& usage profile,
and if we cannot predict/specify the usage profile, we capredict the sys-

tem properties.

Extra-functional properties classification

For the extra-functional properties, we provide a clasiitn with respect to
the following questions:

E.1 Management of EFPSNhich type of management (if any) is provided
by the component model?

E.2 EFP specification Does the component model contain means for the
specification of specific EFPs? If yes, which properties and/hich
form?

E.3 Composability of EFPs Does the component model provide means,
methods and/or techniques for the composition of certaitraex
functional properties and/or what type of composition?

2.2 The Classification Framework 39

2.2.4 The Classification Overview

Fig. 2.5 summarizes the classification framework in a grapmf The num-
bered items that describe the classification elements othtlee dimensions
are listed in the figure.

Modelling
L1

implementatior
L2

Packaging
L3

Deployment
L4

Lifecycle
D.1

At compilation

Interface
Type Port-based

Distinction of
Provides / Requires|

Operation-based|

i

Interface —
Specification Distinctive
C1 Features

Interface
Language

Syntactic

Functional
semantic

Interface
Levels

Behaviour

Horizontal

Interaction
Style
ICommunication
Type

Endogenous
Collaborative

Vertical

Component Construction Binding
Model D.2 Cc2

Endogenous

Exogenous

Synchronous

Interactions
C3

Asynchronous

Management
]

Endogenous
Systemwide

Extra-Functional I
Properties Specification Exogenous
D3 E2 Collaborative
Composability Exogenous
E3 Systemwise

Figure 2.5: The hierarchical structure of the classificaframework

40 Chapter 2. Classifying Software Component Models

2.3 Surveying Existing Component Models

Using the classification framework, we can analyze compbnuels de-
veloped in different research groups or in industry. In dassification of
component models, the first question is whether a partiegdproach (model,
technology or method) is a component model or not. This ajgoda be a dif-
ficult task due to the diversity of component models. Simtitdbiology, where
viruses straddle the border between life and non-life gli®a wide range of
models, from those having many elements of component mogstlaot being
considered component models, via those that lack many eksiizut still are
designated as component models, to those that are widedyptartas compo-
nent models. Therefore, we identify the minimum criteriguieed to classify
an approach as a component model.

The minimum criteria correspond to the definition of compan@aodels
given in the introduction and in Section 2.1:

1) A component model includes a component definition;
2) A component model provides rules for component interalpity;

3) Component functional properties are unambiguouslyiipddy com-
ponent interface;

4) A component interface is used in the interoperability haggsms;

5) A component is an executable piece of software and the coem
model either directly specifies its form or unambiguoushates to it
via interface and interoperability specification.

Note that the items from the “lifecycle” and “constructiodimensions
from the classification framework belong in the minimumenig, while extra-
functional properties are not included in the minimum, armhgncomponent
models do not provide that support.

There is a wide range of approaches that comply with someette-
ments in the minimum criteria. For example, many modellemguages have
“components” and even (semi-)formally specify componeamis component
compositions. For instance in ADLSs, the basic elements amgponents [49].
UML 2.0 provides a metamodel for components, interfacegamts. Still, we
have deliberately chosen not to select them as componerglsmad contrast
to other classifications such as [50]. One reason is that thepose is not

2.3 Surveying Existing Component Models 41

component-based development, but rather the specificattisystem architec-
tures, and they do not provide any support for componentsexiéable units.
Certain languages derived from UML, such as xUML [51], in ehthe com-
ponent specification is translated into an executableyemtie even stronger
candidates for consideration as component models. Howay®tL and simi-
lar languages do not operate with components as first cléiiegfor example
components are not treated as separate development otaecentities), but
again the components are treated only as architecturabalsm

On the other side of the lifecycle line are services. It caratgried that
services are special types of components. Services aredd@n run-time re-
trieval and run-time deployment. Similar to componentsyises are specified
by an interface, and provide support for construction [Fll, we have not
included services in the classification for similar reasamshose that applied
to ADLs — they are not defined as executable units. In analogiDLs,
services are not component models but rather use compomeietsn

2.3.1 Component Model Selection

In our classification framework, we have selected 24 compom®dels that
we encountered in the research literature and in practareely:

e AUTOSAR (AUTomotive Open System ARchitecture) [8], a new stan-
dard architecture created by a partnership between sewaralfacturers
and suppliers from the automotive field.

e BIP (Behaviour, Interaction, Priority) [44], a framework démged at
Verimag for modelling heterogeneous real-time components

e BlueArX [10], a component model developed and used by Bosch for the

automotive control domain.

e CCM (CORBA Component Model)] [34], a part of the CORBA 3 stan-
dard defined by Object Management Group (OMG).

e COMDES Il (COMponent-based design of software for Distributed Em-
bedded Systems, version Il) [53], a component-based sadtivame-
work aimed for efficient development of reliable distribditembedded
control systems with hard real-rime requirements.

e CompoNETS [54], a general-purpose component model developed at

the Université de Toulouse 1 that uses high-level Petts kg behaviour
modelling.

42

Chapter 2. Classifying Software Component Models

EJB (Entreprise JavaBeans) [33], a component model develop8dib
MicroSystems.

Fractal [43], a component model developed by France Telecom R&D
and INRIA.

Koala [12], a component model developed by Philips for buildinf-so
ware for consumer electronics.

KobrA (KOmponentenBasieRte Anwendungsentwicklung)] [31], a
general-purpose software engineering method for the dpwednt of
component-based application frameworks.

IEC 61131[40], a standard for the design of Programmable Logic Con-
trollers approved by the International Electrotechnicairnission.

IEC 61499[55], a standard developed by the International Electiotec
nical Commission to support the development of automatimhcantrol
systems.

JB (Java Beans) [37], a portable, platform-independent so#wgompo-
nent model for the Java Standard Edition platform.

MS COM (Microsoft Component Object Model) [35], one of the most
commonly used general-purpose component model for desktalp
server side applications.

OpenCOM [56], a lightweight component model developed at Lan-
caster University.

OSGi (Open Services Gateway Initiative) [38], a consortium afuis-
trial partners working together to define a service-oridritamework
with open specifications.

Palladio [48], a component model developed at Karlsruhe Institute of
Technology and FZI Karlsruhe for early performance préolict of
component-based software architectures of businessafown systems.

Pecos(PErvasive COmponent Systems) [57], a joined project betwe
ABB Corporate Research and Bern University that providesrapmo-
nent model for the development of software for field devices.

2.3 Surveying Existing Component Models 43

e Pin [32], a component model, developed at Carnegie Mellon Sofw
Engineering Institute (SEI),to serve as basis in predicgoabled com-
ponent technologies (PECTS).

e ProCom (PROGRESSComponent Model) [22], a component model for
control-intensive distributed embedded systems devedlap®lalardalen
University.

e Robocop (Robust Open Component Based Software Architecture for
Configurable Devices Project) [15] [58], a component modailet
oped by the consortium of the Robocop ITEA project, inspbg€OM,
CORBA and Koala component models.

e Rubus [11], a component model developed as a joint project between
Arcticus Systems AB and Malardalen University for devehmmt of dis-
tributed, resource-constrained, embedded control sygsteith a mix of
hard-, soft- and non real-time requirements.

e SaveCCM (SAVE Components Component Model) [14], a component
model for predictable embedded control applications inah&®motive
domain, developed as a collaboration between several Stwadiversi-
ties.

e SOFA (Software Appliances) [59], a component model developed at
Charles University in Prague.

While some of these component models are in widespreadtialusse,
others are used as demonstrators or vehicles for illustratisearch ideas. The
classification framework does not show the success of péaticomponent
models, or any business model, but is based only on theintemhcharac-
teristics. The component models that we have included iflishare briefly
characterized [17]. A more detailed description of eachpoment model with
the characteristics defined in the classification frameveank be found in a
technical report in [60].

For some of the component models that we found, our selecfiteria
were satisfied; however, because of the scarcity of availdbtumentation
about some component models, it was impossible to get theseany detailed
information (which usually is a sign that no activity arouthé model is going
on). In these cases, we have decided to omit them from our list

44 Chapter 2. Classifying Software Component Models

2.3.2 Methodology

Our research methodology followed an empirical approactsisting of the
successive iterations of the steps of: (i) observationsaaraldysis, (ii) clas-
sification, and (iii) validation. The observations and ge& included study-
ing of a number of component models and the literature reltiethe gen-
eral principles of CBSE [61, 42, 62, 27, 29, 7, 41], and relatkassifica-
tions [49, 28, 63, 50]. In addition, we utilized our own exiperce gained from
the development of the SaveCCM [14], ProCom [22], and Rop¢§t5] com-
ponent models, and our tight cooperation with industry tisgd some compo-
nent technologies in their development (ABB (COM, Pin)cEson (Service-
oriented architecture), Philips (Koala, Robocop), VoMTOSAR, Rubus),
Arcticus (Rubus)). Based on this, our classification framswwas built, incre-
mentally populated and refined with a set of component modéis validation
consisted of trying to fit at each iteration a larger set of porent models into
the framework. Further validation was performed by distgsthe framework
with several CBSE-experts from industry and academia arthl ngsearchers
in the broader field of software engineering. For severalmament models,
we contacted their developers and obtained feedbacks anatbsfication we
proposed for “their’ component models. The resulting asialgnd discussions
have also led to a refinement of the framework.

2.4 The Comparison Framework

The characteristics of the component models are colleatétkitables below,
following the dimensions in the classification framewor&mrely lifecycle (Ta-

ble 2.1), construction (Tables 2.2 and 2.3), and extratfanal properties (Ta-
ble 2.4). Following each table, a short discussion summngur observations
is presented.

2.4.1 Lifecycle Classification

Table 2.1 shows the lifecycle dimension, indicating therabgeristics of the
selected component models in different lifecycle stagesigtiing, implemen-
tation, packaging and deployment).

2.4 The Comparison Framework

45

Table 2.1: Classification for the Lifecycle Dimension

Non-formal
AUTOSAR N/A C specification of | At compilation
container
A 3-layered representation:
BIP behaviour, interaction, and BIP Language N/A At compilation
priority
BlueArX ASCET-MD models C Packages | At compilation
CCM N/A Language independent JARs, DLLs At run-time
COMDES I ADL-like language C N/A At compilation
CompoNETS Petri Nets Language independent JARs, DLLs At run-time
EJB N/A Java JARs At run-time
ADL-like language Java (Julia, Aokell) File system .
Fractal (Fractal ADL, Fractal IDL), C/C++ (Think) based renositor At run-time
Annotations (Fractlet) .Net lang. (FracNet) P
ADL-like languages File system _
el (IDL,CDL and DDL) c based repositor At compilation
KobrA UML Profile Language independent N/A N/A
Function Block Diagram (FBD
Ladder Diagram (LD) Structured Text (ST) i
1S© Gkl Sequential Function Chart Instruction List (IL) NIA At compilation
(SFC)
IEC 61499 Function Block Diagram (FBD) Language independent N/A At compilation
JavaBeans N/A Java JARs At compilation
MS COM N/A 00 languages DLLs At compilation
and at run-timg
OpenCOM N/A OO languages DLLs At run-time
OSGi N/A Java JARs | Atcompilation
and at run-time
] .. _..| lLanguage independent
Palladio Meta-model based specification (specific support for N/A N/A

language

Java)

46 Chapter 2. Classifying Software Component Models
Table 2.1: Classification for the Lifecycle Dimension
PECOS ADL-like language (CoCo) OO languages JARs, DLLs | At compilation
Pin ADL-like language (CCL) C DLLs At compilation
Meta-model based specificatipn)
ProCom language C b F|Izsy3tem At compilation
REMES ased repositor
Meta-model based specification At compilation
ROBOCOP language Cand C++ ZIP file piiati
and at run-time
Resource management model
; File system _
RUBUS Rubus Design Language C based repositor At compilation
ADL-like (SaveComp) File system _
SEVEEEN Timed automata C, Java based repositor At compilation
Meta-model based specification File system .
SOFA 2.0 language Java based repositor At run-time

From this table, we can observe that the most common focusrmapo-
nent models is on the implementation stage. Some componat¢ismeven
exclusively support the implementation stage. Additibnalome component
models support the run-time stage by providing a run-tinafptm that fa-
cilitates run-time reconfiguration or a management of efirectional system
properties.

The modelling stage is characterized by an extensive usenofih-specific
modelling languages, whereas standard modelling langsagé as UML or
ADLs are less common. We can also note that 32% of the componed-
els gathered in the framework do not provide any supporttierrhodelling
of components or component-based applications, but cavigrtbe imple-
mentation part (specification and deployment). All thesegonent models
that omit the modelling stage are from the state of the pracind many of
them widely used. One can ask why component models in peas@dom
cover component and system modelling. The reason for thmidegound in
the common state-of-the-practice. In many industrialgxty, designs are ex-
pressed in a non-formal way, mainly for documentation psepanly, or in a
semiformal way, possibly using UML. In both cases, neittherprecise defi-
nitions of components nor their interactions are assumée tf high priority,

2.4 The Comparison Framework a7

and no high needs for modelling components and componesaesystems
are expressed. This is also an indicator of the differenedsden state-of-
the-art and state-of-the-practice: many solutions froedtate-of-the-art that
include the modelling have still not been realized or scaleth practice.

Further, we can observe from Table 2.1 that with regards fdmenta-
tion, component models can be divided into four group$:language-
independent (18%}i) OO language-based (36%), with a clear dominance of
Java,iii) C language (36%), anid) domain-specific language-based (10%),
either compiled to C or directly interpreted. The dominaot®O languages
is not surprising since technologies based on the OO paredig dominant
today, and because many principles from OO are directly osédrther de-
veloped in CBSE. The “C language” component models are pimygor
domain-specific component models that target more the dereant of em-
bedded and real-time systems. The C-language provides andreasier ac-
cess to details of operating system and underlying hardmlatirms facilitat-
ing optimisations. Domain-specific programming languagegightly related
to the modelling of component-based systems and compqragrd®bviously
used for a more efficient design and implementation.

Packaging and component repositories are not the main édcaesnponent
models. In most cases, certain standard archives are ussugs DLL or JAR
packages), also as deployment units. The lack of reposstandicates a low
focus on reuse, in particular of COTS components.

Deployment at compile time and run-time almost occurs tocarabextent
among the component models being studied. Deployment gitotime lim-
its the flexibility at run-time, but on the other hand enalelasier predictability,
richer composition features (such as hierarchical contipn$j and more effi-
cient reuse (such as deployment of implementation partsititidbe used in
the application). This might be a reason why this is the printeeployment
style chosen by specialized component models (see Table &m this ta-
ble, we can observe that the most common focus of componetisi on
the implementation stage. Some component models evensésadiysupport
the implementation stage. Additionally, some componerd@®support the
run-time stage by providing a run-time platform that faaikés run-time recon-
figuration or a management of extra-functional system ptagse

48 Chapter 2. Classifying Software Component Models

2.4.2 Construction Classification

Table 2.2 presents the interface characteristics of tleetssl component mod-
els, and Table 2.3 the binding and interaction specificatidiable 2.2 shows
that most of the interfaces are of the operation-based wyp&h means that
the component models use methods and parameters for ddfiténface sig-

natures. Still, many component models use ports as thdaoteelements to
exchange data. In port-based interfaces, input and outperfaces consist
of ports that receive and send data, respectively (ofteigdated as sink and
source), hence corresponding to the concepts of providédequired inter-

face. Such component models are typically used in embedgstdnss and

have their basis in hardware components. Several of the @aoemp models

examined do not distinguish required from provided integfg but their inter-

face is referred only to the “provided” interface, whichiimgar to what exists

in the object-oriented approach. These component modesszentially used
in practice, and are developed earlier, even on the way torbeg obsolete

(like MS COM, for example). They illustrate the evolution@BSE.

Because interfaces are a mandatory part of the componagitisption, all
component models provide at least the first level, i.e. s}ittapecification.
A considerable number of component models also have bealraspecifica-
tions, in most cases represented by a particular form okfstéite machines
(statecharts or timed automata). Here we distinguish bebegpecification
of components (used for the modelling and predictabilityhaf behaviour of
the system), from specifications used for synchronizationthe communi-
cation between the components). In a few cases, componeatelsnallow
behaviour specification with resource consumption to belined, or some
other attribute specifications, which makes it possible tmlehresource usage
or performance or some other properties. Examples of sutiponent models
are Palladio, SaveCCM, ProCom, and Pin. Only few componeuieats offer
support for defining the functional semantic level of indeds. If there is sup-
port, then this is mostly addressed through the use of pepast-conditions.

2.4 The Comparison Framework 49

Table 2.2: Classification for the Construction Dimension
Interface Specification

Interface
o — Distinction Levels
Mo dgls of Provides/ Distinctive features Interface Language (Syntactic,
Requires Semantic,
Behaviour)
Operation-
AUTOSAR based Yes AUTOSAR interface C header files Syntactic
Port-based
Operation- . Syntactic
BIP based No Complete 'f“e’face BIP Language Semantic
Incomplete interface)
Port-based Behaviour
Configuration interface| XML adhering to the|]
BlueArX Port-based Yes Analytic interface MSRSW DTD Syntactic
Operation- Facet and receptacle
CCM based Yes Event sink and event | CORBA IDL (CIDL) | Syntactic
Port-based source
C header files Syntactic
Celvlpssll Port-based Yes N/A State charts diagranjsBehaviour
Operation- Facet and receptacle]
CompoNETS based Yes Event sink and event COR%’:tlr[i)rL]éngL) sg;;?/?éﬁr
Port-based source
Operation- Java Programming
EJB p No N/A Language + Syntactic
based :
Annotations
Fractal Operation- Yes Component interface IDL, JF;\?;frl éDL’ Syntactic
based Control interface) Behaviour
Behavioural Protoco
Operation- Diversity interface .
Koala based Yes Optional interface IDL, CDL Syntactic
Operation-]
KobrA based N/A N/A UML Syntactic
IEC 61131 Port-based Yes N/A N/A Syntactic
Data .
IEC 61499 Port-based Yes Event N/A Syntactic
Operation- .
JavaBeans based Yes N/A Java Syntactic
MS COM O[;)e;sasgn- No Ability to extend interfacg Microsoft IDL Syntactic

50 Chapter 2. Classifying Software Component Models

Table 2.2: Classification for the Construction Dimension
Interface Specification

Interface

o — Ty Distinction Levels
Mo der-)ls type of Provides/ Distinctive features Interface Language (Syntactic,
p Requires Semantic,
Behaviour)

Interfaces additional to

Operation- COM-interface managing . .

OpenCom based No lifecycle, introspections Microsoft IDL Syntactic
etc.

Operation- o -
OSGl based Yes Dynamic interface Java Syntactic

. Palladio language .
Palladio Operation- Yes Parametrization (similar to CORBA Synta(_:tlc
based IDL) Behaviour
Coco language Syntactic
PECOS Port-based Yes Ability to extend interfacg Prolog query Semantic
Petri nets Behaviour

Component
. g Composition Syntactic
Pin Port-based Yes N/A Language (CCL), | Behaviour
UML statechart

g Data and trigger port XML based, Syntactic
HIEET Port-based Yes Message port REMES Behaviour

. Robocop IDL :
Robocap | poreases| ver | AUVoStentad | ol | Smeer

Protocol specification

RUBUS Port-based Yes Data and trigger port C header files Syntactic

’ SaveComp .
g Data, trigger, and Syntactic
SaveCCM Port-based Yes data-trigger port _(XMLbased) Behaviour

Timed Automata
Utility interface
Operation- Possibility to annotate Java Syntactic
SeR 20 based Yes interface and control SPC algebra Behaviour
evolution

2.4 The Comparison Framework 51

Table 2.3 (binding and interactions) shows that binding lmeésms in
component models are in most of the cases of the endogermmisty.e. con-
nectors are not defined as particular architectural elesngdbwever, many
component models use components as connectors or the torsnae auto-
matically generated in the integration/deployment stagkaae not being used
as entities for modelling.

We can also observe that many component models do not sugrtical
binding. Vertical binding is implemented either throughedmted interfaces
(i.e. selected interfaces from sub-components build upinteface of the
composite components) or as aggregation in which the coibepasmponent
includes all the interfaces of the aggregated componesety. f’éw component
models provide means of hierarchical composition, and jftisen it is only
with regards to few particular extra-functional propestior example BIP and
SaveCCM for timing properties).

From the information in Table 2.3, one can conclude that tmidating in-
teraction styles in component models are “request-regidgtypically used in
client/server architectures), and “pipe & filter”. Some gmnent models even
have additional interaction styles such as event-drivemadicast or rendez-
vous. The choice of the interface style is strongly coresldb the interface
type (operation vs. port-based) provided by the componeiaiein

The dominant communication type in component models is laymous.
Component models that provide support for asynchronousraamcation also
support synchronous communication. This indicates thatpament models
are not concerned with architecture (architectural dgsigut rather with tar-
geting detailed design.

Table 2.3: Classification for the Construction Dimension
Binding and Interactions

Binding Interactions
Component

Models icati

Exogenous Vertical Interaction Styles Comrprunlcatlon
ype
AUTOSAR No Delegation Request-Response, Synchronous,
Sender-Receiver Asynchronous
. Triggering, Synchronous
BIP No Delegation Rendez-vous, Asynchronous
Broadcast

52 Chapter 2. Classifying Software Component Models

Table 2.3: Classification for the Construction Dimension
Binding and Interactions

Binding Interactions
Component
Models icati
Exogenous Vertical Interaction Styles Comn_'ll_unlcatlon
ype
. Sender-Receiver, Synchronous,
Bl No Delegation Request-Response Asynchronous
Request-Response, Synchronous,
eiei No No Triggering Asynchronous
COMDES I No No Pipe&filter Synchronous
Synchronous,
CompoNETS No No Request-Response Asynchronous
EJB No No Request-Responsq SYnchronous,
Asynchronous
Delegation, Multiple interaction Synchronous,
iz Yes Aggregation styles Asynchronous
Koala No Delegatlgn, Request-Response Synchronous
Aggregation
Delegation,
KobrA No Aggregation Request-Responsg Synchronous
IEC 61131 No Delegation Pipe&filter Synchronous
. Triggering,
IEC 61499 No Delegation Pipe&ilter Synchronous
Request-Response|,
JavaBeans No No Triggering Synchronous
Delegation,
MS COM No Aggregation Request-Responsg Synchronous
Delegation,
OpenCOM No Aggregation Request-Response Synchronous
. Request-Response|,
OSGi No No Triggering Synchronous
Palladio Yes Delegation Request-Response Synchronous,
Asynchronous
PECOS No Delegation Pipe&filter Synchronous

2.4 The Comparison Framework 53

Table 2.3: Classification for the Construction Dimension
Binding and Interactions

Binding Interactions
Component

Models icati

Exogenous Vertical Interaction Styles Comn_'ll_unlcatlon
ype
Request-Response,
Pin No No Message passing, f;’n::t:?gﬁgjs
Triggering Y!
. Pipe&filter, Message Synchronous,
ProCom Yes Delegation passing Asynchronous
Synchronous,
Robocop No No Request-Response Asynchronous
Rubus No No Pipe&filter Synchronous
Delegation, .)

SaveCCM No Aggregation Pipe&filter Synchronous
. Multiple interaction Synchronous,
SOFA 2.0 Yes Delegation styles Asynchronous

2.4.3 Extra-Functional Properties Classification

Table 2.4 summarizes the characteristics of the selectetbaoent models
with respect to extra-functional properties. We obserat thany component
models provide certain support for the management of dutrational prop-
erties, either system-wide or per container (characieesamples are redun-
dancy, or authentication support). In several cases, &pkmt EFP support
is implemented as an extension to a standard technologgxtomple COM+
used in MS COM and .NET technologies). However, a smaller bemof
component models have formalisms for EFP specifications.igAif&cantly
smaller number of component models provides means for timposition of
extra-functional properties. This is particularly true 6ommercial component
models. Clearly, the composition of extra-functional mujes still belongs to
the research challenges. A majority of extra-functionaperties that are man-
aged by component models belong to resource usage and fimopgrties.

54

Chapter 2. Classifying Software Component Models

Table 2.4: Classification for the Extra-Functional ProjgsrDimension

AUTOSAR

Endogenous per collaboration (

N/A

N/A

BIP Endogenous system wide (B) Timing properties Behaviour compositions
BlueArX Endogenous system wide (B) Resource usage and timirlg Reasoning frameworks
properties
CCM Exogenous system wide (D) N/A N/A
COMDES Il | Endogenous system wide (B) Timing properties N/A
CompoNETS$Endogenous per collaboration (f\) N/A N/A
EJB Exogenous system wide (D) N/A N/A
Ability to add property
Fractal Exogenous per collaboration (G) (by adding property N/A
controller)
Koala Endogenous system wide (B) Resource usage Compile time checks of
resources
KobrA Endogenous per collaboration (A) N/A N/A
IEC 61131 | Endogenous per collaboration (A) N/A N/A
IEC 61499 | Endogenous per collaboration (fA) N/A N/A
JavaBeans | Endogenous per collaboration () N/A N/A
MS COM Endogenous per collaboration (A) N/A N/A
OpenCOM | Endogenous per collaboration (A) N/A N/A
OSGi Endogenous per collaboration (A) N/A N/A
Performance, reliability,
Palladio Endogenous system wide (B) resource usage, Performance and reliabilit
system-level usage
properties
Generic specification of
PECOS Endogenous system wide (B)| properties including timing N/A
properties
_ ’ Different EFP compositior]
Pin Exogenous system wide (D) Timing properties (by theories

adding analytic interface)

(ex: latency)

2.4 The Comparison Framework

55

Table 2.4: Classification for the Extra-Functional ProjgsrDimension

Generic specification of | Timing and resource usage
ProCom Endogenous system wide (B)| properties including timing properties
and resource usage | at design and compile timg
Memory consumption, Memory consumption and
. timing properties, reliability L b
ROBOCOP | Endogenous system wide (B) Ability to add other timing properties at
) deployment
properties
RUBUS Endogenous system wide (B) Timing properties Timing protri)rizles atdesign
Generic specification of Timing properties at desigh
SaveCCM Endogenous system wide (B)| properties including timing gp tri’me 9
properties
SOFA 2.0 Endogenous system wide (B)| Behavioural (protocols) Composition at design

2.4.4 Component Models and Domains

The characteristics listed in the classification framevsiréw some patterns:
similar solutions belong to component models from similpplacation do-
mains, as for instance embedded systems or informatiorregst That is to
say that the requirements from the application domain pateeinto the com-
ponent model. Such component models are, as a consequpeacialised and
not so usable in domains that are subject to different requants.

The other type of component models that have similar saolupiatterns
are general-purpose component models. They provide basibanisms for
the specification and composition of components, but do s&irae any spe-
cific architecture beyond general assumptions (like ittéya style, support
for distributed systems, compilation or run-time deployt)e A general so-
lution that enables component models to be both generafiiicable and to
cater for specific domains is the use of optional frameworks.

According to this, we distinguish the component models as:

e general-purpose component models;
e specialized component models.

56 Chapter 2. Classifying Software Component Models

Table 2.5: General-purpose and domain-specific componedéls

General-purpose X X |[X|[X X X|X|X X| |X X
Specialised XXX X X X|X X X XX [X]|X

Table 2.5 lists the selected component models accordifgeipdominant
use in particular domains.

We see that the distribution between general-purpose coemianodels
and specialized component models is equal. It is likelytivate are more spe-
cialized, proprietary component models that are not phbtis We have also
observed a migration of certain component models. For elamB5Gi was
originally designed for embedded systems, but later has bsed as general-
purpose component model in different domains. Convergelyeral-purpose
component models have been adapted for particular domgittsebaddition
of new features or by applying some restriction to certaircfions.

Specialized component models from our selection belongdodomains:
a) embedded systems, and b) distributed information syste@omponent
models from the embedded systems domain have some commmacita
istics: the “pipe & filter” interaction style is used, compaoris are usually de-
ployable at compilation time, resource-aware, and oftengtis support for the
management of timing properties. These component modelsigmificantly
different from general-purpose component models. The corapt models
from the information systems domains are more similar toegarpurpose
component models. Typically, they have similar charasties as general-
purpose component models, such as the use of “requestrgspiateraction
style, support for run-time deployment, expandable iaef and implemen-
tation in object-oriented languages. Component modelsténget informa-
tion systems differ from general-purpose component mathetsigh specific
support for distributed components, data transaction @upimteroperability
with databases, and some architectural solutions suchdasdancy or loca-
tion transparency. In some cases, an extension of a compomeatel is used
for its specialization (for example, COM+ is an addition tOK2 used for dis-
tributed component-based systems).

2.5 Conclusions 57

Some general-purpose component models have a speciakfghty have
mechanisms for generating new component models. Theygeaviset of
common principles and mechanisms to add new features, agetthe exist-
ing ones (for example different implementation mechanigonsindings or
interactions). An example of these “generative” compomeodels is Fractal.
Fractal supports several variants of particular componerdel elements —
for example, different type of binding and interaction, @hd use of differ-
ent programming languages (Fractal has Java-based ange@-tmaplementa-
tions). Another example of such component model is Robodbprovides
a mechanism for adding different elements of the model (&schodelling
languages, implementations, metadata in a form of docuatient and man-
agement for extra-functional properties). A particulatamce of a Robocop is
a component model that includes selected elements.

From the characteristics defined in the tables, we can obsleat although
there are many component models, they show similar pattéths the same
or related domains. We can conclude that this gives us a gagid to converge
different component models into a smaller number of compbm®dels ded-
icated to domain-specific requirements.

2.5 Conclusions

In this chapter, we have first presented a thorough studyeofithin concepts
related to the notion of component models. Using this as &bag have

derived a framework that allows classifying and comparimgponent models
according to these concepts. The intention of this work is¢cease the under-
standing of the component-based approach by identifyiagrthin concerns,
common characteristics and differences of component reodéde proposed
framework does not include all the elements of all compomendels since
many of them have unique solutions. However, the framewaektifies min-

imal criteria for considering a model to be a component modelups the

characteristics into dimensions and enables a more systeagproach for

their analysis and comparison.

58

Chapter 2. Classifying Software Component Models

From the use of the classification framework with a set of tydaur se-
lected component models, the following conclusions thabéinterest for the
thesis can be drawn:

1)

2)

3)

All the principles promoted by CBD are not always included inall
component models This means that, there is, currently, no complete set
of principles that applies to all component models. Manyhef princi-
ples used in component models are directly taken from otty@oaches,
such as object-oriented development, and ADLs, and fudbeeloped.

As a result, this provides diverse solutions for similarr@aghes.

Common patterns exist between component models from the sam
domain. For example, general-purpose component models utiliee th
“request response” style, while in the specialized domé&imsstly em-
bedded systems) “pipe & filter” is the predominant style. i&iny, the

“C language” is prevailing for component models that speglly target
the development of embedded and real-time system.

A generic support for specifying and composing extra-fundbnal
properties is currently lacking. Few component models have
formalisms for EFP specifications, and significantly fewsartheir com-
positions. There are several reasons for that: in praaiqgjcit mod-
elling and reasoning about of extra-functional propertgestill not
widespread; furthermore, many different extra-functigraperties ex-
ist and many of them are not composable, or not directly ccrable
but instead depend on external factors such as underlyattpph, us-
age scenario, or the context in which the system is running.

Chapter 3

Defining
Multi-Valued Context-Aware
Extra-Functional Properties

As identified in Chapter 2, a few component models providgsufor spec-
ification and management of extra-functional propertiesughout the devel-
opment process. In most cases, this support is limited toglesphase and
unlike the well-established solution of embodying funotbities into inter-
faces, no consensus has emerged on how to handle extréghality in com-
ponent models. When this support exists, it takes diffefembs: additional
interfaces, annotations, or a language separated fronoth@anent models.
These challenges on extra-functional properties manageraa be explained
by the many aspects of extra-functional properties and pleeiic require-
ments of their usage within component-based developmeittwhcreases
the complexity of their management even more. Accordirthlg,purpose of
this chapter is to:

¢ Identify the various aspects and the corresponding clgdiethat must
be taken into consideration for expressing, assessing sing extra-
functional properties in component-based development.

e Define the key concept of multi-valued context-aware efdrectional
properties to enable their management in component madeddhy ex-
tension, in component-based development.

59

60 Chapter 3. Defining Multi-Valued Context-Aware
Extra-Functional Properties

3.1 Extra-Functional Properties in Component-
Based Development

In this section, we examine various aspects of extra-fonetiproperties rele-
vant for component-based development, namely their hgdewity, their multi-

valued nature and their context-sensitivity. Reciprggcalle also correlate as-
pects of component-based development, that are reugahilitthe separation
between component type and instances, with extra-furaitjpmoperties. For

each of these aspects, we identify several challenges thsit Ine addressed
to provide a suitable management support for extra-funatiproperties in

component-based development.

3.1.1 An Heterogeneous Data Set

Extra-functional properties provide additional informoat about the compo-
nents, complementing the structural information that mvjated by the com-
ponent model. This additional information is intended teega better insight
in the behaviour and capability of the component in term=bability, safety,
security, maintainability, accuracy, compliance to a dtad, resource con-
sumption, and timing capabilities, among many others. Atestin [28], the
exhaustive list of possible extra-functional properteesdnsider is endless and
there is no a priori, logical or conceptual method to detagmvhich properties
exist in a system or in components. Due to this, there is atlyr@o unique
list of extra-functional properties.

This problem inheres in one of the fundamental charactesistf extra-
functional properties and properties in general: they ssedd by humans.
Therefore, different users will consider different typésrformation impor-
tant for the development of the software system, and for &mesproperty
they might associate a different meaning and representdfiar example, the
worst-case execution time (WCET) is commonly definedtlas longest exe-
cution time of a program that could ever be observed when fihgram is run
on its target hardware’[64]. However, since it is not possible to obtain the ac-
tual WCET, estimations such as over-, under- and probébidipproximations
are often implicitly used as a substitute. Yet, these vatwresundamentally
different. This difference is important to know in hard réiate systems, for
instance, since for this type of systems the timing propsrtiust be ensured.

3.1 Extra-Functional Properties in Component-Based Devepment
61

The same is true about the representation of their value (dgiresenta-
tion). A WCET can be expressed in standard time units suchiliseoonds,
or clock cycle. On the other hand, a parametric WCET is exgae terms of
formula which parameters are criteria that influence thaezal

Further, different techniques can be used to assess extchidnal prop-
erty value and different techniques often produce differesults. Continuing
with the WCET example, the WCET value can be assessed thtiffghent
techniques as surveyed in [65]: static analysis methodasarements-based
methods, and can be either safe or unsafe. A safe methodnasillre that the
computed value is always greater than the actual WCET valadding some
safety margin to all predictions, whereas other estimagahniques such as
probabilistic methods do not provide such guaranty. In arahthey might be
closer to the actual WCET but on the other hand, they canreriaguy that in
practice, the execution time will never be superior to thavested value. This
is problematic for safety-critical real-time systems. fiere, it is important
to know the techniques that have been used in the assesshaegiven extra-
functional property, as well as the various parameterstthege techniques
relies upon.

Identified Challenges

From the text above, the challenges that need to be solvadpoge a system-
atic support for the management of extra-functional prigeare:

Challenge 1.1 How to supportthe high heterogeneity of extra-functiomafp
erties (hetereogeneity of definition, representationgesand
assessment methods)?

Challenge 1.2 How to ensure that an extra-functional property is used én th
intended way?

3.1.2 Extra-Functional Property and Multi-Valuation

During the software development process, extra-functipraperties emerge
as additional information that needs to be available eitheyuide the devel-
opment, to make decisions on the next step to follow, to pl@wppropriate
(early) analysis and tests of the components, or to givebigelds on the current
status. This need for information starts already in earsgis of the develop-
ment, in which extra-functional properties are considexedonstraints to be

62 Chapter 3. Defining Multi-Valued Context-Aware
Extra-Functional Properties

met and expected to be satisfied later on, thus becomingramsictpart of the
component or system description.

This implies that through the development process:

1) the meaning of an extra-functional property typicallyanges from a
required property to a provided/exhibited property (sepifé 3.1), and

2) its value changes too as the knowledge and the amountarhiation
about the system increases and as a result of design decisory set-
tled.

As illustrated in Figure 3.1, extra-functional values afie successively re-
placed by the latest and most accurate ones. For exampleathe of an
extra-functional property, estimated in a design phasesgkced with a new
value coming from a measurement after the implementati@selis com-
pleted. With more information available, analysis becomese precise and
reliable, and thus is able predict values closer to the otha

However, the gradual refinement of an extra-functional priyptowards
more accurate values is not always the expected way to déabuch proper-
ties. Often, values which are equally valid in the currentedigpment phase,
need to exist simultaneously. In other words, this meantsthigalatest value
must not replace the previous one.

|

Requirements 1 Specification | Implementation | V&V | Release
| T T T >
1

20ms | 15ms 17ms 19ms
requirement | early analysis simulation measures
|
|
|
|
! Y 4 Property value Set
\ v 1:\ v J
required properties provided properties

Legend:

-

i Co-existing values

—> Refinement

Figure 3.1: Co-existing values for a property

3.1 Extra-Functional Properties in Component-Based Devepment
63

This requires an ability for an extra-functional properyhtave multiple
values to handle different values produced by differentces) to keep the
required value and a provided value for verifying the confity to the initial
requirement, or to compare a range of possible values to maeision. In
difference to defining an extra-functional property pereasment techniques
such as “measured WCET" or “estimated WCET”, defining anaektinctional
property with multiple values allows instead to manipuldie property as a
single concept centered around its semantics. This allowsrhetimes ignore
details related to the assessment methods for example ts fat the value
itself. Like this, any of the values of the property could l3ed as a substitute
to perform additional analysis on the system.

Identified Challenges

Following this reasoning, we identify the two following dleanges:

Challenge 2.1 How to support the refinement of extra-functional property
value during the development process?

Challenge 2.2 How to enable values that are equally valid to co-exist?

3.1.3 Extra-Functional Properties and Reusability

Dealing with extra-functional properties in the contextoofmponent-based
software engineering also raises the issue of reusabititest is one of the
cornerstone concepts around which the component-basedambpis built.
While efficiency of reuse for the functional part of compotsdras been proven,
reuse of extra functional properties is still a challenge.

When a componentis reused in different applications orexdst the extra-
functional properties associated to this component msst la¢ reusable, in
the sense that their values are still accurate in the cusetting. However,
many property values depend upon information outside thepcment model
itself. They are for example dependent upon factors sudheasverall system
architecture, the usage profile, the specific hardware ofafgeted platform
and even upon the value of other properties.

64 Chapter 3. Defining Multi-Valued Context-Aware
Extra-Functional Properties

Therefore in order to reuse the extra-functional propgrtieeans to express
the conditions under which the value is correct are requitettpical example
is again the WCET, which requires, for a tight result, infation about the
compiler used to generate the executable code but also thiedatrget platform
specification such as the type of memory, processor or treepee of caches,
among many other factors.

Hence when a software component is reused in a new contextiite-
sponding extra-functional properties, assessed in anotimext, might not be
accurate in this one. This means that to keep consisteri@linformation
concerning the component, both its expected behaviour apdhilities and
the actual ones, it is necessary to specify the conditicatsrttust be fulfilled
so that the value of an extra-functional property remaitislva

However, strictly ensuring the respect of all these validibnditions is a
too restrictive approach since in this case, only the vdlueshich the validity
conditions are fully satisfied would be reusable. This wdufit the reusabil-
ity of some components only due to their extra-functionaparty values (val-
ues that might be false in the intended context). More prallyi a component
should be reused even though the values of some of its axticidnal prop-
erties are not valid in the new context. In this case, eitherextra-functional
property should not be reused or it can be still be reused $at @onscious
decision of the developer. For example, the value might bse@ with a lower
accuracy or confidence, or with the data modified to add sofe¢ysaargins.

Identified Challenges

The questions that emerge here are:

Challenge 3.1How to represent the context-sensitivity of extra-functib
properties?

Challenge 3.2 How to ensure that values are still valid in a new context upon
reuse?

3.1 Extra-Functional Properties in Component-Based Devepment
65

3.1.4 Extra-Functional Properties in Hierarchical Compo-
nent Models

The existence of hierarchical component models that alslodie composite
components — components built out of other components —eanflas the
ways in which the extra-functional properties can be eihbtl. Alike the
composability challenges for components, we would alse tik be able to
reason about their composition, in that sense that the saltia propertyP

of a compound element is the result of a composition of the values of the
sub-component€§'l and C2:

A=Cl10C2 = P(A)=P(C1)eP(C2)
with o acomposition operator for the components
e acomposition operator for the properties

Ideally, all extra-functional properties of a compositenpmnent should
be directly derivable from the values of its sub-componeRi@wever, as de-
scribed in [28], finding a suitable composition operator thoe properties is
generally difficult since the value of many extra-functibp@perties is influ-
enced by other factors such as the software architecturer ptoperties, the
usage profiles and/or the current state of the environment.

Even for composable extra-functional properties, we atbaeit is bene-
ficial to allow them to also be stated explicitly for the corsjffe component
as such. In particular, this allows analysis of the systesun at an early stage
of the development when the internals of a composite comutan@&er con-
struction are not fully known, or not fully analyzed with pext to the extra-
functional properties required to derive a value on the amsiip component.

The specification of extra-functional properties of a cosifgcomponent
is illustrated by the example in Figure 3.2. The compositagonent has been
explicitly given an estimated value of a static memory usagd another value
is provided by composition, which in this example simply m&a summation
over the sub-components.

Identified Challenges

The question that derives from above is:

Challenge 4.1 How to support composition of extra-functional property-va
ues?

66 Chapter 3. Defining Multi-Valued Context-Aware
Extra-Functional Properties

Component A El

g] £] L 7
Component B —©—{ Component C

Figure 3.2: A composite component with explicit and derivatlies.

3.1.5 Extra-Functional Properties and
Component Types and Component Instances

Similarly to the object-oriented paradigm, componentdoasoftware engi-
neering distinguishes between component types and compmstances. A
component typeefines the common characteristics that are shared by all its
instances such as the component name, its functionalktyydimes of its inter-
faces, its implementation. Converselyc@mponent instancis a representa-
tion, either at design-time or run-time, of the correspagdype. Many com-
ponent instances corresponding to a given component typbecareated. Be-
sides, inheriting characteristics from its type, a comporirestance can also
possess instance specific information.

Component instances are used in hierarchical componentlsital built
compound component types, a.k.a. the composites. Thieuagive process,
in which a component instance can be in its turn an instan@aamposite
component type. A representative example of such a cassildevin Fig-
ure 3.3 with the instancB1 of the component typB. Indeed, the component
type B is composite component built out of the instamt®of the component
type E. As a result, a hierarchical component model leadsve multiple in-
stantiation levels, i.e. a hierarchy of component instaniespite of this, most
component model considers mainly one level of instantiatio

3.1 Extra-Functional Properties in Component-Based Devepment
67

Component Types Hierarchy of Component Instances

(with inner component instances)

System

System

ALA B1:B

Legend: Inheritance

O component type

D Component Instance

Figure 3.3: Relations between component types and higrafatomponent
instances.

When looking at extra-functional properties in this comtéxe following
guestions emerge:

1) What are the influences of the dichotomy between compdypatand
component instance on the values of the extra-functiorglgnties?

2) What is the impact of the multiple instantiation levelstbase values?

Similarly to the concept of subtyping in object-orientedgsigm, the value
of an extra-functional property specified for a componepétynust also hold
for all its instances (see the inheritance link for the eftractional property
P1 between the component type E and its instances in Fig8)e lBowever,
for some properties, as for example the worst-case exectitige, the value
of such a property can be smaller in a more constrained envient. Hence
in considering the design of the composite component in kvhit instance
is used, extra-functional property values defined on trstaimce can be make
tighter in regards to the values defined on the component fypeexample, a
smaller value range on an input parameter could remove aaa path that

68 Chapter 3. Defining Multi-Valued Context-Aware
Extra-Functional Properties

would otherwise lead to greater WCET. Hence, this meansitisaould be

possible to refine an extra-functional property value, @efifor a component
type, on one or several of the component instances as dtestin Figure 3.3
with the refinement link.

However, assessing an extra-functional property valuectir on a com-
ponent type might not be straightforward since this valusushhold for all
the component instances. Instead, defining an extra-fumaltproperty value
for a componentinstance in a given context is simpler. Is thise, this means
that it should be possible to make a value defined on a compamances
available for a component types.

Identified Challenges: From Component Typeto Component I nstances

Challenge 5.1 What are the extra-functional property values defined oma co
ponent type that can be refined on the component instances?

Challenge 5.2 How can this refinement be supported?
Challenge 5.3 Are there any constraints associated with the refinement of a

particular property?

Identified Challenges: From Component | nstances to Component Type

Challenge 5.4 How does extra-functional property values specified on com-
ponent instances influence values on the component type?

Challenge 5.5How can extra-functional property values defined on compo-
nent instances be generalized to component type?

Challenge 5.6 Are there any constraints associated with the generalizafi
a particular property?

3.2 Definitions 69

3.2 Definitions

A straightforward way to specify extra-functional propest is to use
(namevalue-pairs of annotations. However, this gives too much freedom
concerning the definition and it brings problems to manageaeuxnctional
properties at a large scale or in automated processes summgmsition or
analysis.

In order to move towards a precise formalisation of extnaefional prop-
erties, which allows an unambiguous understanding and @sgreemantics
both with respect to meaning and valid specification fornfahe value, we
consider extra-functional properties as multi-valued aodtext-aware arte-
facts that must be integrated into component models and geania a sys-
tematic manner. Accordingly, in this section, we define tbeoept of multi-
valued context-aware extra-functional property througdetiof formal defi-
nitions. These definitions are the foundations for the dgwalent of a frame-
work for integrating extra-functional properties in cormgot models and man-
aging them in a systematic manner.

This framework is based upon two formal definitions: the dédin of
attribute typethat specifies a class of extra-functional properties ardtie
of attribute instancgalso called attribute value) that refers to a given extra-
functional property value associated with a specific eleréa component-
based design. This is similar to the dichotomy between the&uots of “class”
and “class instance” in object oriented programming. Lilsewan attribute
instance must comply with the specific structure imposedsgarresponding
attribute type.

Notations

We denote byF'(e) (resp. G(e)), the function that retrieves the elemeiit
(resp.G) from a tuplee = (F, G).

3.2.1 Attribute Type

The attribute type provides a consistent definition for thgresentation and
usage of extra-functional properties. It specifies how amextra-functional
property is represented, i.e. what data type is requiredSoralues and how
they should be manipulated. Having such a definition serveaass to au-
tomate the assessment of extra-functional propertienguhie development
process.

70 Chapter 3. Defining Multi-Valued Context-Aware
Extra-Functional Properties

Definition 1. An attribute type is defined by a tupltts,,. so that:

Attyype = (TypelD, Attributable™, Data_format,
SupportMechanism, Documentation)
where,
e TypelD is a unique identifier for the type.

e Aitributable is a set the elements of a component model to whigh
extra-functional properties of type TypelD can be attadioed

e Data_format specifies the data type used to represent the valugs.

e SupportMechanism is a tuple specifying mechanisms to manipl
late the extra-functional properties in a consistent way.

e Documentation describes the extra-functional properties in natf-
ral language. That documentation must supply enough irdtom
to primarily clarify the meaning of the attribute type as had its
intended usage.

Type Identifier

The type identifier element (i.lypelD) is the key that allows retrieving the
corresponding attribute type. For simplicity purpose,nhee of the property
is used as the unigue identifier in the remaining of the thesiglustrated in
Table 3.1. Table 3.1 gives an illustrative representatiosome attribute type
specifications.

Attributable

As mentioned in [7], the additional information provided &ftributes does
not necessarily concern the component as a whole, but inofée points
more precisely to some parts of a component such as an iceesfaan oper-
ation of an interface. In our view, this relation should netlimnited to com-
ponents, interfaces and operations, but be extended satthiautes can be

3.2 Definitions 71

associated with other elements of a component model, imdudr example
ports, connectors or more notably component instancesinstance, having
an extra-functional property on connectors to capture camoation latency
makes it possible to reason about the response time of ceropérations that
involve communication between components. Similarly éingbspecifying

extra-functional property on component type and compoimatance is the
first step towards enabling their refinement as envisageddtic 3.1.5.

Following this standpoint, we define asiributablean element of a com-
ponent model¢omponentinterface component instangceonnector etc.) to
which extra-functional propertiegitributeg can be attached. By this means,
all attributable entities are treated in similar way withaieds to the definition
and usage of attributesi¢tributable hence represents the set of the elements
of a component model to which extra-functional properties @iven type
TypelD can be attached to.

Data Format

The set of possible data format varies a lot from one properignother as
explained in section 3.1.1. This means that the part ofvaties concerned
with expressing data must be represented in an unambigadusell-tailored
format implying that in addition to supporting primitivegtgs such as integers,
floats, etc., and structured types such as arrays, compbes tyust also be
covered. These complex types include representation okwdistributions,
various external models, images, formulas, etc. The datadbis defined
through a data type that describes the precise storage ffahaiaan extra-
functional property value must conform to. The data typetrbasssued from
a type system.

Support Mechanisms

Support mechanism corresponds to the collection of all teehanisms re-
quired to handle extra-functional properties in a conetsteay. Such mecha-
nisms include, but are not limited to, suitable composé#iaperators, viewers,
editors, refinement policies, allowed cardinality, etc.that sense, the set of
supporting mechanisms is defined as follows:

72 Chapter 3. Defining Multi-Valued Context-Aware
Extra-Functional Properties

SupportMechanism = (Cardinality, Operator, Policy*,
Viewer, Editor, . . .)

where,

e Cardinality represents the cardinality of the extra-functiongl
properties, i.e. how many values an instance of this atibtpe
can have for a given attributable.

e Operator specifies the compositional operator if any, i.e. how fo
derive the value of an extra-functional properties speatif@ a
composite component from the sub-components and from thefen
vironment.

e Policy is one of the refinement policies described in Chapter 4,

o Viewer specifies how the extra-functional properties should be
sualised.

e FEditor specifies how the properties should be modified.

e ... informally denotes that additional supporting mechanisis
could exist in the tuple.

3.2.2 Attribute Registry

Each attribute type is stored in a repository of attribufgets; which contains
the pool of extra-functional properties that can be assignethe entities of
component models, i.e.:

Definition 2. An attribute registry, R, is a set of all attribute types avail
able in a given design context or in the supporting develpginviron-
ment.

3.2 Definitions 73

Table 3.1: Attribute type specification (without documeiota).

VEllE Viewer: Values are visualized directly.
R Port [Float, Float] | Editor: Values are modified with a dedicated
ange .
editor.
Component Viewer: Values are visualized directly.
p ' Editor: Values are modified directly.
WCET Instance, Int S) .
h Policy: Values can be refined in the compo-
Service ’
nent instances.
Viewer: Values are visualized with a dedicated
. viewer.
Static o . .
Component, Editor: Values are dedicated editor.
Memory Model . .
U Instance Operator: Values for composite componets
S20¢ can be derived by adding the values of fthe
component instances.

In this context, the uniqueness of each attribute type mesrsured as
implied by Property 1 below.

Property 1: Each attribute type in the registri is unique, i.e.:
Vai,a2 € R, if TypelD(a1) = TypelD(az) then a1 = as.

Although this way of specifying attribute types provides treat advan-
tages of being open and extensible so that it can fit the mdéibof extra-
functional properties which need to be defined, it still ieggiusers to have an
intuitive and common understanding of what the meaning atehded usage
of the attributes were when they were created. Therefoiis,ithportant to
provide proper attribute typgocumentation

If the repository of attribute types is global, that is, intains all possible
extra-functional properties independent of an applicatibis then reasonable
to assume that hundreds of attribute types or more will beedtim it. Several
classification schemes (e.g. [66] and [67]) have been pexpadich can be
used as basis to identify groups of attribute types such esolrce usage”,
“reliability”, “timing”, etc. These categories could allonavigation across
attributes more easily and possibly hide the whole subsattbute types that
are uninteresting for a particular project. A remainingligrae is in this case
to determine appropriate categories, as the proposedfidagens are distinct
and often non-orthogonal as mentioned in [28]. Howeves, ignot within the
scope of the definition.

74 Chapter 3. Defining Multi-Valued Context-Aware
Extra-Functional Properties

3.2.3 Metadata Type

It is important to document the way the value of an extra-fismal property
has been obtained to ensure that information about a comp(@eanother el-
ement of a component model) is correct and up-to-date, afemhe compo-
nent is reused. This is done through the concept of attrialtee metadata, or
simply metadata, which role is to capture the context in Whiie correspond-
ing attribute value has been obtained: when, how and, pggsbipwhom and
in which context.

Similarly to attributes, the concept of metadata also wiggtishes between
metadata typ@andmetadata instancevhere metadata type specifies the com-
monalities shared by all the instances of a given type, andtadata instance
is simply a value of the metadata, which characteristicdaroms to what the
type imposes. More formally, a metadata type is specifiedlésifs.

Definition 3. A metadata type is defined by a tuplf,,. so that:
Myype = (MetID, Metadatable™, Value_format, Cardinality, . . .)

where,
e MetID is a unique identifier for the type.

e Metadatable is a set of attribute TypelDs to which the metadata pf
type MetID can be attached to.

e Value_format specifies the type used to represent the values.

e Cardinality represents the cardinality of the metadata, i.e. h@w
many values of this metadata type a given metadatable can ha

e ... informally denotes that additional supporting mechanisihs
could exist in the tuple. For example, it can be specified thdred
metadata must be present for a given metadatable.

Table 3.2 lists some examples of metadata type specificdtiowever, the
question of determining a complete and non-orthogonabfishetadata types
that must be specified remains.

3.2 Definitions

75

Alike attribute types, metadata types must be stored in asiggy. This
repository of metadata types must have access to the reposit attribute
types to be able to link the metadatable to existing atteilypes.

Table 3.2: List of possible metadata type specificationshictv**” means

“any number of”

Example of an Addi-

MetadatalD Desc. Of Value Format Card. .
tional Mechanism
Mandatory: All at-
Creation Time * Timestamp 1 |tributes must have th
metadata
e Mandatory: All at-
Modlflcatlon * Timestamp 1 |tributes must have th
Time
metadata
Mandatory: All at-
\ersion * Int 1 |tributes must have th
metadata
Optional: Can be
*
Accuracy Float 1 added on demand
Mandatory: All the
WCET {“Estimation”, gnr!but?s wh_lch tyPe
Type BCET “Guarantee’} 1 |is in “DescriptorOf
ACET must have this meta
data
{“Estimation”,
Source . “Measurement”, . |Optional: Can be
“Simulation”, added on demand
"Derived”, ...}
Optional: Can be
* *
(el Text added on demand

76 Chapter 3. Defining Multi-Valued Context-Aware
Extra-Functional Properties

3.2.4 Attribute Instance

Values of extra-functional properties are defined as afeilmstances that con-
form to an attribute typeltt,,. represented by its uniquBypelD. Providing
that it is authorized by its type specification, an attridogtance can be associ-
ated with any entity of a component-based design such asaoenp, service,
port, connection or even component instance.

Definition 4. An attribute instance Att;,s; is defined by:
Attinse = (TypelD, Data, Metadata™, ValidityConditions™)
where
e TypelD is the identifier of the corresponding attribute type.

e Data contains the concrete value for the property. The type of he
data must conform to the data format specified in the corme$pd
ing attribute type.

e Metadata is a set of metadata instances represented jas
(name,value) pairs.

o ValidityConditions describes the conditions under which thg
value is valid.

Notations

We denote byAit;,s:(e), the set of the attribute instances attached to an ele-
mente of a component-based desigM, and byatt;,s:, (e) a set of the in-
stances so thdfypelD (att;ns:,) = t. Additionally, for an instancett;,:, (¢e)

of an element € CM, we us€att;ns, (€)| as the notation for the number of
instances of typeé attached te.

Data

Data contains the concrete value for the attribute instaliséype must con-
form to the data format specified for the correspondinglaite type. For
example, for the attribute typ&/alue Rangédefined in the repository shown

3.2 Definitions 77

in Table 3.1, the data format is specified as an interval ofrational numbers.
Accordingly, a correct value for the data of a correspondtistance could be
[10.5, 20.3. Formally, this is specified by the following property:

Property 2: For an attribute instancett;,s: (e) of an element of a compo-
nent-based desighiM, the type of its dat@ is conformed to the data format
specified in the corresponding attribute type:

Vattinst, (€) € Attinst, type(d) = Data_format(attsype,)
e where,type is a function allowing to retrieve the type of a data.

Metadata

Metadata are instances of a given metadata type as speaifittion 3.2.3.
A metadata instanck/;,,s; is simply defined as a identifier-value pat;,,;; =
(MetID, Value). Similarly to what is specified in Property 2 for the data of at
tribute instance, the type of the value of a metadata instangst also conform
to the value format specified in the corresponding metagat t

Validity Conditions

In studying the characteristics of extra-functional pmigs in component-
based development (described in Section 3.1.3), the follpadditional con-
cern emerges:

Data of a given attribute instance are not necessarily valiall
context.

Accordingly to fully benefit of extra-functional propersi@uring compo-
nent-based development, it is important to know in what exinén attribute
instance, or more exactly its data, can be used or not. Thigisole of the va-
lidity conditions which explicitly describe the conditisin which an attribute
value can be trusted. Validity conditions can be seen asaf sestrictions of
the applicability context of the attribute instances. Qmaists on the under-
lying platform, specification of usage profile, and depemitstowards other
attributes are examples of such conditions. However, méfgyeint conditions
can be defined and, as with attribute types, an attempt tdifigehem all is
bound to fail. Yet, validity conditions must be defined in @cstmanner and it
is important that they are publicly exposed.

78 Chapter 3. Defining Multi-Valued Context-Aware
Extra-Functional Properties

We identify three main “types” of validity conditions thatust be ex-
pressed:

e Always the value of the attribute instance is applicable in alltegt) i.e.
the value of the property is context-independent. A typ@ample of
such property is “Line of code”.

e A set of conditionsthe value of the attribute instance is guaranteed to
be valid when the current context of use matches all the tiondi For
example, extra-functional properties such as “response’fi“memory
usage” which values are tightly dependent upon the targéfigpins and
the manner in which they have been assessed would need todradie
tions such asPlatform="Lego Mindstorms RCX"AND Source"Static
Analysis with BoundT” ” defined (in this particular examplaatform
and source refer to the two corresponding metadata types).

e Unknown (or undefinedjhere is no context associated with the attribute
instance. No guarantee can be made on its accuracy.

The complete definition on how validity conditions must bemressed re-
mains to be done.

3.3 Summary and Discussions

In this chapter, we have started by identifying a number aflenges resulting
from the use of extra-functional properties in componeageda development.
These challenges relate to the heterogeneous nature affexictional proper-
ties (Challenges 1.1 and 1.2), their purpose within theldgweent (Challenges
2.1 and 2.2), and other specific aspects directly relateldetdey principles of
component-based software development that are reugaftilitallenges 3.1
and 3.2), composability (Challenge 4.1) and the relaticztasben component
type and component instances (Challenges 5.1 to 5.6).

To address these challenges, we have then introduced thegptaf multi-
valued context-aware extra-functional properties thghlights two important
aspects of the use of extra-functional properties in corapthased develop-
ment:

1) their multi-valued nature, that is several extra-fumcél property values
can be equally valid in a given development context and thezanmust
co-exist, and

3.3 Summary and Discussions 79

2) their context-awareness, i.e. extra-functional propealues are typ-
ically dependent upon their usage context and this depeedemust
be captured and made explicit in order to facilitate reushrey extra-
functional properties together with the component theydles for ex-
ample.

Accordingly, the concept of multi-valued context-awarg@xunctional prop-
erties is formally defined through the provision of four ke&fiditions, namely
attribute type, attribute instance, attribute registrg ametadata type. Alto-
gether, this builds the foundations towards the systenspgcification, man-
agement and integration of extra-functional propertieximponent-based de-
velopment.

Chapter 4

Managing Multi-Valued
Context-Aware
Extra-Functional Properties

In introducing, in Chapter 3, the concept of multi-valuedhiext-aware at-
tributes to specify extra-functional properties, severalllenges arise. These
challenges are mainly inherited from the ability for eadhitaite to have mul-
tiple values that are possibly equally valid in the currestelopment context.
These values have been assessed in different ways, usiegedifassessment
methods for example, or they have been assessed in diffevatexts. This
leads to the possibility to have a large number of values fndrith it is nec-
essary to find the most suitable values to use in a given dewvedot context.
When the number of values goes above a certain threshaddartmount of data
actually becomes an hindrance. This can lead to an incrédse time needed
to identify relevant values or, in the worst case, to conghjefiil to spot them.
In that context, it becomes necessary to determine proggrosting mecha-
nisms to alleviate this issue and facilitate the managemwfesttra-functional
properties. Accordingly, the purpose of this chapter isftih

e Precisely identify the challenges brought by the introgurcbf multi-
valued context-aware extra-functional properties.

¢ Investigate and develop possible solutions to facilitteerhanagement
of multi-valued context-aware extra-functional propesti

81

82 Chapter 4. Managing Multi-Valued Context-Aware
Extra-Functional Properties

4.1 The Inherent Challenges

Due to the introduction of multi-valued context-aware axuinctional proper-
ties, challenges emerge to enable their management duitvgese manage-
ment. These challenges are the following:

Redundancy

Extra-functional property values being estimated by défe assessment tech-
niques are generally different. Yet, nothing prevents aeab be produced
multiple times. For example, such redundant values appbanwhe same
analysis is applied several times but also when applied fiereint platforms
although the value of the extra-functional property is atijuplatform inde-
pendent.

Redundancy is a problem often encountered in database emeagthat
leads to engineering and information overhead. In thatqdar domain, nor-
malisation techniques are used to remove redundant valbiés preserving
data integrity. Similar solutions are needed in the manay¢mf the redun-
dancy of multi-valued context-aware extra-functionalgedies. However, the
definition of such mechanisms requires first to be able tatifyethe redundant
values before deciding how to handle them.

Applicability

As explained in Chapter 3, extra-functional property vataa be assessed in
different context with possibly different validity conitihs. In that context,
the question of the pertinence of the value in the currentldgwnent context
arises. For example, a worst-case execution-time andigsi®een performed
for a component on a given platform. Later on, this compoisimtended to
be reused on another platform. In that scenario, the conmanegrator faces
three choices:

1) This value is useful in the current development context.

2) This value is not at all applicable in the current develeptrtontext.

3) This value is not directly applicable in the current depehent context
but it would be interesting to use it anyway, as an early esion to
perform some analysis for example.

As a consequence of this possibilities, mechanisms to bahdldiversity of
extra-functional property values must be provided.

4.2 Identified Supporting Mechanisms per Management Concers 83

Confidentiality

In enabling extra-functional properties to be describedupgh the provision of

suitable metadata and/or the context under which the valadoben obtained,
this also allows to integrate the specification of functigmaperties without

hampering the utilisation of interfaces. In this contexindtional properties
do not refer to interface specification of the operationsdieth by the com-

ponents, but to the modelling of the behaviour of the comptsim a format

suitable for analysis techniques such as timed automata&ImBg this means,

our intention is to increase the analysability and preditityg of component-

based embedded systems, and enabling a seamless and untfagration of

existing analysis and predictions theories into componerdels. However,
this reveals information concerning the details of the enpéntation of the
system or the components. This is not a major issue for irséndaevelopment,
but it naturally becomes more problematic for its utilisatin the development
of systems or components for which the implementation detaiist remain

hidden such as COTS components. In that context, all the Isdlolet have

served for analysis are packaged together with the comp®n€&he question
that arises in that case is how to ensure that the use of mallied context-
aware extra-functional properties does not reveal confialdnformation.

4.2 ldentified Supporting Mechanisms per Man-
agement Concerns

In order to address the redundancy, applicability and cenfidlity challenges
described in the previous section, the following managerencerns must
be considered: conciseness, relevance, accuracy, transgaconsistency. In
this section, for each of this management concern, we iiyemtiet of support-
ing mechanisms that are necessary to efficiently managéwallied context-
aware extra-functional properties in component-basedldpment for embed-
ded systems.

84 Chapter 4. Managing Multi-Valued Context-Aware
Extra-Functional Properties

Conciseness

Except for specific cases, having the same value of an extretibnal property
multiple times is not more informative than having this vahnly once. On
the contrary, this is counter-productive because it adftsnmation overhead
for the users. The conciseness principle consists in disgeaonly strictly
different values whenever possible. Conciseness candiaedtby :

¢ Value Hiding Value hiding is concerned with hiding multiple versions
of a value: only one version for each variant of attributareathould be
displayed. Other versions should be retrieved on demand.

e Value AggregationWhen several occurrences of a value can be found,
these values can be merged together including their metaddtvalidity
conditions into a single value.

e Duplicate RemovalStrictly redundant values should be removed.

Relevance

In a given development context, not all the extra-functigmaperties attached
to an element of the design are relevant. Only a subset ofalues accurately
describes that element. In order to limit the engineeringrlogad and facili-

tate decision making, only the values relevant in the ciirrentext should be

visible and additional values should be accessible upomastgvhen needed.
Relevance can be attained by:

e Value Filtering Value filtering is closely related to value hiding but with
the difference that value filtering aims at masking irretevaalues in
the current context. That is to say values that are not djreelated to
the current development context should be filtered out. Tedalat is
necessary to establish first the criteria that are requvadentify the
values to filter out and then to determine what to do with thiees
that are not directly relevant in the current context but tha developer
explicitly want to have.

4.2 Identified Supporting Mechanisms per Management Concers 85

Accuracy

Having relevant extra-functional property values is nawgh. They also must
be accurate. That is, they must describe as closely as potsielement they
are attached to. For example, values of extra-functiorggrties contribut-
ing to a component type are often over estimated to ensutehtén are still
valid when the component is instantiated in several diffecentexts. Yet, in
benefiting for the knowledge of the usage context, valuedeamade tighter.
Accordingly, accuracy can be attained by:

¢ Value RefinementValue refinement is the process of gradually revis-
ing an extra-functional property value during the develeptmprocess
towards its most accurate quantity. We differentiate betwtvo types
of value refinementrefinement over timerhen the refinement is done
during the development as the knowledge of the system isesg@and
refinement between component types and component instances

Transparency

In general, available tools to compute extra-functionapgrties do not know
how to handle multiple values as they generally assume #esiadue such as
the WCET analysis presented in [65] which considers onlyW@ET value

for each component. Accordingly, since most analysis nusttoan only pro-
cess one value, the questions that arise are: 1) which vafees interest for
a particular analysis, 2) how to select and use these valigsaod 3) how

to ensure that only one value is available per element. Ppamsicy can be
attained through:

e Value Selection This enables providing a suitable value to use in se-
lecting the most representative one in the current contesaraing to
a given set of criteria. Such mechanism would facilitategnation of
existing assessment methods for extra-functional prigseahd their au-
tomation in the development process. Value selection isaident upon
the task accomplished by an user.

86 Chapter 4. Managing Multi-Valued Context-Aware
Extra-Functional Properties

Consistency

Maintaining data consistency is a well-known problem inadaianagement.
During the development process, artefacts used in the siases of extra-
functional property values are often created, modified, edoer sometimes
even removed. This might lead a situation in which informatprovided by
an extra-functional property is not consistent with thegarting artefacts. In
practice, a lack of consistency management leads to loveecdhfidence in
the available extra-functional property values and foresighers to recom-
pute and reassess the values after each modification or wbemonent is
reused.

In addition, many extra-functional properties are co-thejeat, i.e. the
value of an extra-functional property directly influence® @r several other
extra-functional property values. This means that a chamgaee of the value
should be reflected in the dependent values to keep themstemisi

As a consequence, itimportant to ensure that the extraifurat properties
and the related artefacts are kept consistent. Consistamcge attained by:

e Consistency Constraint§ his mechanism ensures that rules specifying
relationships between extra-functional property valuesspecified are
enforced.

e Value Evolution TrackingThe purpose of evolution tracking is to iden-
tify changes that have occurred during the developmentgsothat in-
fluence an extra-functional properties value. Two diffétgpes of evo-
lution tracking can be distinguisheiy:tracking evolution of refined val-
ues that enables identifying changes that have been perfoohed a
value and checking whether the new values conforms to péaticrite-
ria. ii) tracking evolution of dependencjekat allows to detect changes
in elements upon which an extra-functional property valepehd (im-
plementation, analysis model or another property for imst® In or-
der to enable value evolution tracking, mechanisms to emalinaging
traceability between the source artefacts of the analysigtze assessed
values must be present. More details on a solution to adthississue
can be found in [68].

4.3 Two Supporting Mechanisms 87

4.3 Two Supporting Mechanisms

In this section, we describe two of the identified supportmgchanisms,
namely value selection in Section 4.3.1, and value refin¢/netween com-
ponent type and instances in Section 4.3.2.

4.3.1 Value Selection

In introducing the possibility to have a different value &ach specific usage
context, the number of possible configurations of attrituaiiees to consider
can become too big to be manageable by hand. In addition, oty as-
sume a single extra-functional property value for each el@nirhis is why an
automatic or semi-automatic selection mechanism shoulvaiable for the
users.

To be able to select relevant values, it is necessary to leetaléll them
apart. To do so, we adopt similar principles to Software Gumfition Manage-
ment (SCM) for the management of multi-valued context-awaxtra-
functional properties. As explained in [69], SCM distinghués two types of
versioning elements:

e \ersions (also called revisions) that identify evolution of an itewveo
time. Usually the latest version of an item is the one avédlaly default,
but an older version can also be used instead, for exampdeidhra
timestamp to select the latest version created before dfisgaue.

e Variants which allow the existence of different versions of the satemi
at the same time.

These two concepts can directly be applied to the manageshemtlti-valued
context-aware extra-functional properties, thanks tethesibility to have mul-
tiple values for attribute instances and the presence ofdatd that allows
distinguishing them.

Accordingly, a subset of attribute instance (versions aiavds) can be
obtained by the use of appropriatgtching conditionsA matching condition
is a statement that is either derived from the set of avalaidtadata types or
taken from a list of predefined keywords as specified in Dédinib.

88 Chapter 4. Managing Multi-Valued Context-Aware
Extra-Functional Properties

Definition 5.
Formally, we define a matching condition as:

(Condition ::= (MetCond | (KeyCond
(MetCond := (MetID) (Op) (Value)
Op) = =7 | A< | T |
(KeyCond ::= a set of predefined keywords
(MetID) := existing metadata type identifiers
(Valug) ::= values

For example, any metadata type specified in Table 3.2 in @nh&otan
serve as a basis to create matching conditions sudtla®rm = “ARM7,
Source= “Estimatiori. Keywords, such akatestto get the most recent version
or beforeto obtain value created before a certain timestamp, can tedaals
additional selection conditions and shorthand notatiotfe most commonly
used matching condition and their combinations (see “amdiditions in se-
lection filter below).

From the selection point of view, metadata and validity ¢oods are
equivalent. In the selection process, the configuratioer filefines constraints
over metadata or validity conditions in the same way. Thiedéhce is how-
ever in understanding the purpose behind the use of the cwafign filter and
in helping the developer in detecting possible problemssidéfinition.

A configuration filterenables to have more control over the values to re-
trieve by using one or several matching conditions. It isrfally specified in
Definition 6. As illustrated in Figure 4.1, a configurationdil can be seen as a
sequence of matching conditions, combined throiyID or ELSEconnectors.
The “else”-conditions are tested in order until a subsettwibaite instances is
selected. The “else”-conditiq) is evaluated first. If there is no attribute value
corresponding to the matching condition, then the secolsg™eonditiong2)
is examined, and so on until either values are found or trermmivalue that
corresponds to the configuration filter.

4.3 Two Supporting Mechanisms 89

Definition 6.
Formally, we define a configuration filter as:
(Filter) ::= (ConditionOF | NULL
(ConditionO} ::= (ConditionAnd
| (ConditionAnd ELSE (ConditionO}
(ConditionAnd := (Condition
| (Condition AND (ConditionAnd
Condition; AND Conditions ELSE (1)
Conditiong AND Conditiony ELSE (2)

Figure 4.1: Abstract Representation of a ConfiguratioreFilt

A configuration filter can be applied to the entire system,ooatset of
components, and then all architectural elements exposieydar versions of
the attributes that match the filter. This is important wheme system prop-
erties are analyzed using consistent versions of severigiuaes (for example
in an analysis of a response time of a scenario performed emtizydar plat-
form). For example, it is possible to define a configuratiaeffito apply on
the components in Figure 4.2. This configuration filter stésiélect attribute
values that have been assessed by measurement for plagror,‘alterna-
tively, values which have been defined for the release 2.@ase no value
corresponding to these criteria can be found, it is possibleelect the latest
values”.

90 Chapter 4. Managing Multi-Valued Context-Aware
Extra-Functional Properties

In this example, the configuration filter is expressed afat

(Platform = “X") AND (Source = “Measuremen}’ ELSE
(Label="Release 2.0y ELSE

Latest

First, it will attempt to select first all the values which méata matches
“Platform="X" " and “Source= '"Measurement'’. If no value corresponds to
these two conditions, the filter will try to find values with athel metadata
with a “Release 2.0value. Again, if no value can be found, the latest version
of each attribute instance value is retrieved. The selecéhiges are marked
with a tick in Figure 4.2.

£] 15 kB

Component 1 Timestamp: 080220#10:00
Source: Measurement
Platform: X

10 kB
Timestamp: 080120#17:44
Source: Estimation

30 clock cycle
Timestamp: 090128#13:00
Source: Measurement '

Platform: X k/
€] 15 kB
Componer‘lt 2 Timestamp: 080221#15:30

Source: Measurement
Platform: X

30 clock cycle
Timestamp: 090105#15:00
Source: Estimation

Legend: 25 clock cycle
' Static Memory Usage Timestamp: 090128#11:00
- Source: Analysis
Worst-Case Execution Time
. Platform: X '/

J Selected value

Figure 4.2: Attribute value selection.

4.3 Two Supporting Mechanisms 91

In practice, two possibilities of dealing with attributdwes exist:

e Attribute navigation. The possibility to navigate explicitly through dif-
ferent versions of an attribute (i.e. through differentses), and update

the selected value (changing data, or metadata informatianodifying
the validity conditions).

e Configuration. Values are selected, for one or several attributes, accord-

ing to a given selection principle (e.g. based on versionenantime-
stamp).

The first method is intended to be interactive and requiresualentervention
from the users. The underlying purpose is that the enviransteuld provide
users with minimal set of values to view (see the concisepiissiple in Sec-
tion 4.2). By default, this minimal set of values can be alediby having only
the latest values available. However, it is important tobdmaisers to easily
browse and access the “hidden” values when needed. On teelwhd, the
goal with the second method, i.e. the configuration metheth have auto-
mated activities. This can be useful for example to autormasdysis that must
be based on specific extra-functional property values.

The selection mechanism described here does not ensureitiigeness
of the selection per element: i.e. that only one value iscsetk If the con-
figuration filter leads to the selection of multiple valuesyeral options exist
according to the purpose of the configuration filter. Foilaite navigation, the

latest version is selected by default. For automated &ietiyiseveral options
must be made available:

e manual selectionlet the user decide the value to use wherever multiple
values have been retrieved,

e automatic selectiona warning is logged and a non deterministic selec-
tion is performed on this value set. However, the user mugt tiae

possibility to review the selected values and change tleeehs man-
ually.

Moreover, for automated activities, the selection mectramdoes not guar-
antee the existence of a value for all existing attribut¢éaimses. However, in
suitably configuring the selection filter, equivalent &tiite values can be used
as substitutes of a value which otherwise would be missihgo lequivalent
value can be found, an error must be raised.

92 Chapter 4. Managing Multi-Valued Context-Aware
Extra-Functional Properties

4.3.2 Value Refinement between Component Type and In-
stances

In this section, we introduce the concepts and mechanisrasdble refining
multi-valued context-aware extra-functional propertrekierarchical compo-
nent models between a component type and its instances.sTigsially not
supported in component models. The first step to enable staflmamentis to
explicitly specify the relationships that are allowed beéw a type and its in-
stances with respect to the attribute values. This is dameigih the definition
of a metamodel that precisely specifies these relationsHigere 4.3). Addi-
tionally, explicit definitions of property inheritance arefinement policies are
also needed. These policies formally specify consistenagtraints between
the refined values and the original ones. Without such msjdhe consistency
between refined values and the original ones cannot be ehsure

Inheritance Refinement Metamodel

AttributeValue * Instance Type
values
refines instanceOf superType

Figure 4.3: Metamodel for Multi-Level Instantiation andfRement Support
of Extra-Functional Property Values

The metamodel shown in Figure 4.3 describes the key coneggtsopose
to enables a multi-level instantiation of extra-functibpeoperty values with
a support for their refinement. In it, the metaclaggibuteValuerepresents
the attribute instances as defined in Chapter 3. The passifoit an element
to have multiple attribute values is enabled through thepmsition linksval-
uesbetween the two metaclassagributeValueandInstance The metaclass
Instancerefers to any element which is an instance of another elesatt
as a component instance. The metaclBgserepresents object type such as
a component type. Furthermore, object type can also havépheuhttribute
instances thanks to the inheritance link betweenltistanceand Typemeta-
classes. To allow consistency checking, refinement betwakres must be
tracked. This is done through thefinesrelationship.

4.3 Two Supporting Mechanisms 93

Refinement Mechanisms

To make the approach as generic as possible, we use the stpatiation and
specialization paradigm to support the refinement of efxtretional property
values. An object (component or any model element) can beecktdy cre-
ating a new object which is an instance of the original ong. @ component
instance). We choose the following definition for a refinegeob “an object
is a refinement of another object if all information definedligy original ob-
ject is still valid for the refined object’i.e. an original object is an abstraction
of a refined object. Furthermore, several objects can refi@esame original
object, hence creating multiple variants of this objecte3#refined objects
can in their turn also be refined.

As illustrated in Figure 4.3 and described below, two medrmaa of re-
finement are providedefinement by instantiatioandrefinement by special-
ization These mechanisms are based on the following assumptions:

— Assumption 1
Extra-functional properties are defined as annotationhemtodel ele-
ments;

— Assumption 2
Multiple values of extra-functional properties can be dedirand there
are means to distinguish between them (using metadata donge);

— Assumption 3
An extra-functional property value is associated to eyastile model
element;

— Assumption 4
A refined object must be attributable, i.e. it should be ablaave its
own extra-functional property values;

We distinguish between two types of refinement:

1) Refinement By Instantiation

The type-instance design pattern is often used in modellinguages
to allow specifying information in the type that will be skdrby a set
of objects, i.e. the instances. There is an implicit conforrhetween
the instances and their type. For example, object-origmtegramming
languages rely heavily on this pattern in which a class defiine set of
attributes and methods that all object that are instanctg€lass will

94

Chapter 4. Managing Multi-Valued Context-Aware

Extra-Functional Properties

2)

inherit. In such languages, conformity is checked at coatipih time
and at runtime. In general, an instance cannot be a typehdihids the
number of instantiation levels to one.

In our case as explained in Section 3.1.5, we want to allowirgfian
object as many times as necessary. In this case, the numivestaxfti-
ation level is not limited. That is why @ypeinherits fromInstance It
becomes possible to have instances which are also typeBrenadin-
ing them with their instances.

To have explicit refinement traces, an instance is linketsttype thanks
to aninstanceOflink. In order to facilitate evolution management, we
choose to forbid an instance to change its parent afterioretine. In
other words, thenstanceOflink destination is defined at the creation
time of the source element.

Refinement By Specialization

In object oriented languages, a class can be the speciafizaft zero,
one or many other classes. A child class inherits all infaimmafrom
the parent ones except some of them (for example their nand®
child class refines its parent class by adding new informadiech as
new attribute and new methods. We choose to manage onlyesimypl
heritance where a class can at most inherits from anothes.cleo have
explicit refinement traces, a type is linked to his parenetihanks to a
superTypdink. As with instantiation, we choose to forbid a subtype to
change its super type, i.e. to point to another type, afesatwn time.

Inheritance Policies

The computation of refined attribute values is guided byiiitéece policies to
ensure the consistency between refined values and thealragies. We have
defined three inheritance policies, that &eal, Override and NotInherited
An attribute type set with a final inheritance policy impligsit that attribute
instances corresponding to this type and defined on a comptype will al-
ways be inherited on the component instances. However, dheesy cannot
be modified on the instances; they can only be modified on tiginat object
on which it has been defined. An override attribute type islamto a final
attribute type with the difference that inherited values ba modified on the
instances. In that sense, the value can be refined. In that©&4 constraints

4.3 Two Supporting Mechanisms 95

can be specified to check the consistency of the refined valhetle parent
one. Finally, a notinherited attribute value is never iiteel:

Table 4.1 gives some examples of possible attribute irdrerd policies for
various extra-functional properties. The attribute typerfdor Name” cannot
be inherited at all. As a consequence, there is no need toreimement con-
straint defined for this attribute type. Conversely, theeothittribute types can
be refined. As an example, if the WCET attribute type is spetifis override
with the constraint that the refined value cannot be grehter the original
value, this definition will guarantee that all refined WCETuweas should be
smaller than the original value.

Table 4.1: Examples of attribute inheritance policies.

Vendor Name NotInherited None
WCET Override OriginalValue> RefinedValue
Static memory Final None

lllustrative Example

Figure 4.4 illustrates an example of the creation of an imsteof the model
elementO1. All contained elements, i.e. the transitive closure oftaonment,
which includesD2 andO3 model elements, are instantiated together With

O5 which is not contained but referred to is not instantiatelith® links point-
ing to O5 are instead cloned on the newly created instanoeis example,
03’ is linked toO5.

Taking the inheritance policies for the attribute type dediin Table 4.1 as
example, the VendorName value is not available on the iostéxi whereas
WCET and static memory are available. This example also stbat the
WCET value has been refined to a smaller valu@inand the static memory
usage cannot be changed since it is defined as final.

A illustrative example based on the proposed refinement argsims done
on a concrete component model is proposed in Chapter 8.

96 Chapter 4. Managing Multi-Valued Context-Aware
Extra-Functional Properties

Usage Context
05:T5

$]]02:T2 %0212
——o —o

Component O1 03:T3 01 Instance Creation Component Instance O1' 03-T3
— —

Figure 4.4: lllustration of Instantiation with Extra-Fuianal Property Values

4.4 Summary

In this chapter, we have started by identifying three maiallehges that de-
rive from the use of multi-valued context-aware extra-fioal properties.

In order to provide a seamless and efficient managementdésetproperties,
suitable supporting mechanisms must be defined. Accordimgd have first

specified a set of basic supporting mechanisms to addresdarementioned
challenges, before proposing approaches for two of themfanthe selection
of attribute values corresponding to particular critend another one for han-
dling the refinement of attribute values between compoygetand instances.

According to how configuration filters are expressed and oatwlement
they are applied, the selection mechanism can be used forhiding values
and selecting specific values. The values can be hidden extedlbased on
their metadata, validity conditions, and other commonlkydiSitering criteria
such as latest.

In addition, the selection mechanism facilitates autochatealysis in al-
lowing the use of semantically equivalent extra-functiqmaperties when a
value is a missing value. For example, an analysis techrsigcie as “response
time analysis” that uses the worst-case execution timegrtppalues defined
on services can used indifferently a worst-case executios that is obtained
by measurements or by static safe analysis.

The approach to refinement of property values between coemdaypes
and instances also facilitates the uses of equivalent sallie particular, it
avoids having to reassess values to make early estimations.

Chapter 5

nLight —
The Attribute Framework

Based on the concepts presented in Chapters 3 and 4, we hplesriented
nLight, a framework that supports the management of maltiied context-
aware extra-functional properties. The main purpose &f ftimework is to
provide a uniform and user-friendly structure to seamjeast systematically
specify, integrate and manage extra-functional propemieomponent-based
development. In its current implementation, it is built ased of Eclipse plu-
gins using the Eclipse Modeling Framework and it is intentdelde used con-
jointly with any development tool built on top of a componemntdel defined
through a metamodel. This allows extra-functional prapsrto be easily at-
tached to selected types of architectural element of thepoment model. In
nLight, extra-functional properties are specified throaghattribute type and
their values by multiple attribute instances. For eache/atnetadata and the
specification of the conditions under which the value isdralie enumerated.
The purpose of this chapter is to highlight the key aspecte@fmplementa-
tion of the framework, namely:

¢ Introducing the mapping of the concepts of multi-valuedtegtzaware

extra-functional properties into a corresponding metaghod
e Describing how a component model defined through a metanuaahel
be enriched with such properties;
e Characterising the extensible mechanisms for their spatifin.

1In this context, component model is not used in the strict EB&nse. For example, UML or
AADL could use nLight as they provide modelling elementg ttam be considered as components.

97

98 Chapter 5. nLight — The Attribute Framework

nLight
Attribute Framework
Metamodel
System K 1} Extensions
Developer uses v N q
/ \ .
4 N Attribute Metadata .
0 9 Types | Types contributes
PER—
. - Analysis
APland GUI[—> Registry | Gategories | | Viewers Expert

Analyst

Legend:
=-> depends on —> uses I extension points

Figure 5.1: Overview of nLight's main constituents

5.1 Overview

The attribute framework, nLight, features two main partsiptemented by a
graphical user interface described in Section 5.5:
1) The core part
This part provides the core functionalities offered by trenfework. It
is constructed around the “Attribute Framework Metamodelsed on
which an API has been generated using the Eclipse Modellinghe-
work (EMF). This API provides basic methods to create, mpodifid
delete the entities described in the metamodel. Depending this, a
registry has been implemented to provides the necessacjidualities
to register and handle attribute categories and typesbfatirtype or
metadata type), and an API to support functionalities sigcbraation,
modification of attribute instances.
2) The extensible part

In order to support the high heterogeneity of extra-funr@ioproper-
ties as described in Chapter 3, nLight must provide facititpe easily
extended. This is done through the realization of extenpmints us-
ing the extension point mechanisms provided by Eclipse.sé&xten-
sion points provide, among others, the possibility to ada atribute
types, metadata types, categories of extra-functionglgties, and can
be used as support for filtering mechanism and integratimgassess-
ment techniques.

5.2 Introducing Attributes 99

Figure 5.1 illustrates the relations between these patts tive core part
corresponding to the Attribute Framework Metamodel, the &Rl GUI and
the attribute registry, and the extensible part to the glediextension points
and newly contributed attribute types, metadata typesgoates and viewers
for instance. In addition, Figure 5.1 also highlights theeirded use of nLight.
Analysis experts, who, for example, develop new analysibrtgues, are in
charge of contributing to the framework through the prawisdf suitable defi-
nitions of extra-functional properties. These definitians then directly avail-
able to system developers and analysts.

5.2 Introducing Attributes

Following the definitions proposed in Chapter 3, multi-ewcontext-aware
extra-functional properties are conceptually modelleaulgh theAttribute
Framework metamodelwhich simplified representation is depicted in Fig-
ure 5.2. The dichotomy between attribute type and attrimgtance is pre-
served through the relation between #iribute and theAttributeValuemeta-
classes respectively. Also, corresponding to the atiimgtance definition, an
attribute value consists of datB4ta), a set of metadatdetadatg, and pos-
sibly some validity conditionsvalidityCondition3. The Attribute Framework
metamodel is the cornerstone around which nLight is built.

Data

hasData

Attribute 11 AttributeValue . Metadata
o Has

Metadata

hasType

Is valid in

ValidityContext

contributesTo hasValues

hasConditions
0.* 1

Attributable ValidityConditions

Figure 5.2: Simplified representation of the part of theiBttte Framework
metamodel concerned with the multiple attribute instances

100 Chapter 5. nLight — The Attribute Framework

5.3 Extending Component Models with Attributes

To have extra-functional properties attached to an elerokatcomponent-
based design, its corresponding type musAtiebutable meaning that the At-
tributable metaclass is the entry point to nLight. In otherds, the metaclass
of the component model metamodel representing that elemesitextend the
Attributable metaclass of the Attribute Framework metagias illustrated
in Figure 5.3. For this simplified representation of a congammodel meta-
model, components and interfaces are attributables. Coothteary, individual
methods in interfaces cannot have extra-functional ptagser

Attribute Framework
Attributable metamodel

(only Attributable metaclass)

= \\

Interface

B

Method

Component

component model
metamodel

/

Figure 5.3: Defining Attributables for a Component Model

In order to enable the inheritance and refinement of extnatfanal prop-
erty values between component types and instances, we #ygpigheritance
refinement metamodel proposed in Chapter 4 to the AttribiamEwork meta-
model. As a consequence, two metaclasses have been addedAtirtbute
Framework metamodel as depicted in Figure 32hjectTypeand Objectin-
stance Both classes extend the Attributable metaclass and aleirdedments
must inherit from one of them. Either the metaclass reptssetype and, in
this case, must inherit from ObjectType or it is an instarme ia this case it
must inherit from the Objectinstance metaclass.

5.4 The Registry 101

Attributable Object Instance Object Type

0.1 0.1

instanceOf superType

Figure 5.4: Attributable Related Metamodel (see Chapt&P4or details)

5.4 The Registry

The registry manages the specification of attribute typedtadata types and
attribute categories. As shown in Table 5.1, the registppsuts three types of
functionality:

e Registration functionalities to store the specificatioratifibute types,
metadata types, and attribute categories.

¢ Retrieval functionalities which main purpose is to enald#igg lists of
specifications contained in the registry. Specifications lva retrieved
for a given type identifier, a category, or the registry caovjie the
complete list of all the specifications.

e Modification functionalities that help extending a speeifion with new
items. Examples of this include adding a new predefined sealoks
for a given metadata, new contributions of attribute typesttributable,
etc.

On the other hand, the registry prevents the suppressioypetpreviously
registered. This is done to ensure that previously usedsypeifications will
always remain available.

The implementation of the registry is built around an APItfe¥ core func-
tionalities mentioned above and uses the extension poichamésm provided
by Eclipse to enable attribute type contributors to enhdhegoool of exist-
ing attribute types with their own. To do so, two extensioingmhave been
defined: one to register new attribute and metadata typesratbr new cate-
gories. Details on how to use these extension points to fypetiibute types,
metadata types and categories are explained in the folgpsiib-sections.

102 Chapter 5. nLight — The Attribute Framework

Table 5.1: Overview of Functionalities Provided by the R&yi

Addition of new items
Attribute Yes All, Subsets | only (e.g. definition of] No
new attributables)

Addition of new items
Metadata Yes All, Subsets | only (e.g. definition of] No
new predefined values)

Category Yes All, Subsets No No

5.4.1 Specifying Attribute Categories

Extra-functional properties can be classified in differeatiegories as defined
in various literatures such as [66] or [28]. However, notcédissification sort
the properties into the same categories and, what is maegaées are often
named rather differently. In order to provide flexibility the definition of
the attribute categories, we have implemented a dedicatedson point. In
contributing to this extension point as shown in the codeey categories such
as the"Timing category” can be made available to sort attribute types. Only
two parameters are required; a unique identifier for the category, andme
which is the corresponding user-readable name for the agteg

Code 1:Specification of the timing category

< category id = “timingCategory”
name = “Timing”
< /category >

In the attribute type specification, attribute can declaeiging to one of
the contributed category. If no category is defined, a detaiegory‘Misc”
is used.

5.4 The Registry 103

5.4.2 Specifying Attribute Types

Following the attribute type specification introduced ina@ter 3, an attribute
type is defined by a unique identifier, the list of attributstio which the prop-
erty can be attached to, a suitable data format for the vadues of supporting
mechanism to manipulate the values of the instances andumdtation de-
scribing the extra-functional property and its usage. Adiowly, nLight is
built around similar notions as detailed below.

Contributing Attributes to Selected Entities of a Componen Model

In order to precisely define the entities of a component mudehich a given
extra-functional properties can be attached to, two piefesformation are
required:

1) the metamodel of the component model that has been extersdex-
plained in Section 5.3. This information is retrieved thghdhe Uniform
Resource Identifier (URI) associated with each metamodel.

2) the lists of metaclasses that are attributable for thegmty. This list is
formed from the names of the corresponding metaclassestfreicom-
ponent model metamodel. If the list is empty, all the elermémm the
component model can be assigned with the given extra-fumaitiprop-
erty. On the other hand, if this list is not empty, then onlg giements
from this list can be assigned the given extra-functionapprty.

For example, as shown in the extract of code 2, the extratifurad prop-
erty “worst-case execution timefs attached to the component model
specified with the metamodel “http://www.mdh.se/metanhedere”
and only ports, operations and components of this componedél will

be able to have extra-functional properties of this typaciied to them.

The relation between attribute type (attribute), attrébinstance (attribute-
Value) and attributable is depicted in Figure 5.5 which shithe part of the
Attribute Framework metamodel concerns with these corscept

104 Chapter 5. nLight — The Attribute Framework

Code 2: Contributing attribute to entities of a component modelegan
ample

< attribute
id = “se.mdh.progesside.attribute.wcet”
name = “Worst Case Execution Time”
dataPackageURI = “http://DataTypeMM.ecore”
dataType = “IntegerData”
[..]>
< targetPackage
uri = “http://mww.mdh.se/metamodel.ecore” >
< ModelElementname = “Port” / >
< ModelElementname = “Operation”/ >
< ModelElementname = “Component”/ >
< /targetPackage >
< /attribute >

Attribute 1.1 AttributeValue
hasType
0.*
contributesTo hasValues
0.*
Attributable

Figure 5.5: Attribute Type - Attribute instance metamodel

Identifier

As shown in Code 2 with th&d” attribute tag, each attribute type is speci-
fied through a unique identifier. To ensure the uniquenedseoitientifier, we
exploit Eclipse EMF and its capacity to generate univeyaatique identifier
(UUID) conforming to the standard developed by the Openvgo# Founda-
tion.

5.4 The Registry 105

Defining the Attribute Data

As mentioned in Chapter 3, the data format must corresporaddata type
used within a type system. For this, we have defined a genediestendable
data structure, represented by the abstract metaddktssn the metamodel of
the attribute framework as illustrated in Fig. 5.6. Datarespnts the value of
an attribute instance. This metaclass can be specializectte simple data
types that can in turn be used to create more complex data.typeribute
type contributors can extend this structure with their owatadype definition.
Additionally, the data type definition must include operas on the type, such
as a method to compare two data of a given type.

AttributeValue -data Data
@
1 1
IntegerData StringData RefData
-value: Integer -value: String e o o |-value: Object

Figure 5.6: Attribute data.

Similarly to the specification of attribute types to the able entities of
the component models, specifying the data type also resjtvire parameters:
the metamodel of the data type to use and the name of the m&tablat rep-
resents the data format. Continuing with th\&/orst-Case Execution Time”
example introduced before in Code 2, this attribute usesgbrData as for-
mat for the value with the dataType parameter. This formalefined in the
“http://DataTypeMM.ecore” metamodel (dataPackageURI).

Configuring the usage

In addition to specify the data type for the attribute typljiional parameters
must also be provided to configure its usage. These paranelate to the
supporting mechanisms described in Chapter 3 and are regésensure that
all the corresponding attribute instances will be manifadan a uniform and
consistent way. The following parameters are currentlylabte in nLight:

106 Chapter 5. nLight — The Attribute Framework

Data Serialization The Data Serialization parameter specify how the data

should be stored and retrieved.

Data Viewer This allows to specify how the value of the corresponding
attribute instances should be visualised by using a dexticaewer.

Data Editor Similarly, the data editor parameter indicates how theeslu
should be modified.

Data Validator Data validators define constraints on the value. Such con-

straints include checking that the value is always positige instance.
When the data validation fails, several actions can be taken

- GUI_WARNING Raises an alert only. It is the responsibility of the
users to fix it.
- OPERATIONABORT Prevent the creation of the value.

Inheritance Policies This parameter allows to define the inheritance pol-
icy, i.e, how the property value should be derived from a congmt type
and to its instances in a controlled manner. The availalleritance poli-
cies have been defined in Chapter 4.3.2.

This set of parameters is not fixed. New parameters can beladadever
additional supporting mechanisms such as a parameter fgupmparing
and ordering attribute instances.

Documenting the property

Although not indispensable to the specification, it is infpotto properly doc-
ument the extra-functional property being defined. Thisisassary to explain
to the intended users (system developers, analysts, eta)the property is
expected to be used, since the users are not necessarilgritréator of the
property. For that purpose, information regarding how é@kig must be rep-
resented, to which elements the property can be applied hsisvsupplying
a precise definition must be provided. The first part of theudwentation is
automatically generated from the specification whereaptbeise description
of property (including its definition) must be provided asHiPML page. Fig-
ure 5.7 shows the final documentation rendered for the voast- execution

type property.

5.4 The Registry 107

e el o8
. .]
Worst Case Execution Time
Type Information:
Id se.mdh.progesside.attribute. portsMaxExec Time
Name Worst Case Execution Time
Brief description (Max. execution time between input and output port in the same service
Contributing bundle se.mdh.progresside.attributes basic Types
Category Timing
se.mdh.progresside.proComMetamodel.proSave.Service,
|Applicability se.mdh.progresside. proComMetamodel.proSave. InputTri
se.mdh.progresside.proComMetamodel.proSave.Component,
IData Format se.mdh.progresside.attributes BasicAttribute Types.IntegerData
Description:
Definition
A real-time system consists of a mumber of tasks, which realize the required functionality. A task typically shows a certain variation of
execution times depending on the input data or different behavior of the environment. The set of all execution times is shown as the upper
curve. The longest time is called the worst-case execution time (WCET).[1] Here, the worst-case execution time (WCET) of an artifact
is the maximum amount of time that this artifact would need to execute on a specific hardware platform.
The platform for which the WCET has been calculated must set through the metadata " "platform"
In meost cases the state space is too large to exhaustively explore all possible executions and thereby determine the exact worst-case time.
Therefore it is important to distinguish between the exact worst-case execution time, worst-case execution estimates, worst-case
execution guarantee. In order to distinguish between exact. estimate, guarantee, execution times, the metadata ~type" must be used.
Assessment Methods:
o measurement-based
+ static
More information on WCET can be found in[1]
References
o [1]: Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David Whalley, Guillem Bernat,
Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut, Peter Puschner, Jan Staschulat, and Per
Stenstr\&'#246:m. 2008. The worst-case execution-time problem\—overview of methods and survey of tools. ACM Trans.
Embed. Comput. Syst. 7. 3, Article 36 (May 2008), 53 pages. DOI=10.1145/1347375.1347389
hitp://doi.acm.org/10.1145/1347375.1347389
I

Figure 5.7: Screenshot of the generated documentatiohddMCET
attribute type.

108 Chapter 5. nLight — The Attribute Framework

Data 11
1.1
hasData——— hasData
AttributeValue . Metadata
® Has 1
Metadata
hasType hasType
1.1 1.1
Attribute 0.* MetadataType

<——contributesTo

Figure 5.8: Simplified representation of the part of theidttte Framework
metamodel concerned with the metadata.

5.4.3 Specifying Metadata Types

Similarly to the attribute type, it is difficult to know befelnand the exact list of
needed metadata. The use of metadata in the Attribute Frarkéswwo-fold:

i) it enables to distinguish between values and adds meaniingdrmation to
the way the value has been assessediiaiidprovides a support for automat-
ing the management of attributes in the framework. As a apnsece, the
proposed solutions to support metadata in nLight must bensitile. This is
achieved through a similar solution as the one proposechfodefinition of
Attribute Type:

1) Adichotomy between Metadata Type and Metadata Instaepeqsented
in Figure 5.8 by the metaclassbtetadataTypeand Metadatarespec-
tively), and

2) by the reuse of the extensible concept of data by whichpbssible to
specify the precise data format for a given metadata type.

In doing so, all the mechanisms defined for the data as destphkeviously,
can be made available for the metadata if needed.

5.4 The Registry 109

Furthermore, as all metadata types are not necessarilyinggalifor all
attribute types, it is necessary to precise which metadmtabe assigned to
the values of a given attribute type. This is done throughrétation con-
tributesTo between metadataType and Attribute. For exejasd explained
in [65], worst-case execution time calculation methodisifih two categories
(estimate or guarantee) and it is important to distinguistwben them. A
metadatdTimingAnalysisType“as specified in Code 3 can be used to express
the nature of a worst-case execution time attribute fomimst. Note, that the
list of attribute types to which a metadata type can be agtd¢b and the list
of default values are not fixed at creation.

Code 3:Contributing a metadata type with predefined values to astubs
of attribute types

< metadataTypename = “TimingAnalysisType”

< ContributesTo ContributesTo =
“se.mdh.progesside.attribute.portsMaxExecTighe”
< ContributesTo ContributesTo =
“se.mdh.progesside.attribute.portsMinExecTime®
< DefaultValue DefaultValue = “estimate”/ >

< DefaultValue DefaultValue = “guarantee”/ >

< /metadataType>

Cardinality

For some metadata, it makes no sense to have several metatisga of the

same type to describe a value of an attribute instance. Sethdata types

include for example version, modification time and accura®yn the other

hand, for others, several values might be used such as confonémstance.
The cardinality parameter of the metadata type definiti@bkes to specify

how many values of a given metadata type an attribute valudaae. Three

cases are proposed:

N attribute values can have at most N instances of this metayiae.

* attribute values can have any number of instances of thiada# type.

+ each attribute value must have at least one instance of #tizdata type.

110 Chapter 5. nLight — The Attribute Framework

In addition, for each of the cardinality, the optionality thie metadata type
must also be specified: whether the metadata typptisnalor mandatory A
mandatory metadata type implies that it must always be geal/ivhereas an
optional one can be omitted.

Framework Metadata vs. Descriptive Metadata

Metadata are classified in two groups: tin@mework metadatand thede-
scriptive metadata The framework metadata are elements used to facilitate
the implementation of the main functionality in nLight, atigk implementa-
tion of more advanced mechanisms. Version, Creation TindeMuodification
Time are some examples from this group. These metadata ardatoay and
must not be modified by the users of nLight, i.e. they are nadigble.

On the contrary, descriptive metadata are elements usedbtidp addi-
tional information concerning the attribute value suchhesway the value has
been obtained (Source metadata), or the platform on whettvidue is valid
(Platform metadata). These metadata are optional and cerajly be modi-
fied by the user of the framework.

Table 5.2: Characteristics of Framework and Descriptivéadata

Framework .1 Yes No
(typically)
Descriptive * No Yes

Having mandatory and non-editable metadata implies theettmetadata
are always defined by the framework. This requires the existef default
value setter that allows to set the value of the metadata opeation. Any
default value setter must implement the interface showheénterface Defi-
nition 4.

5.5 The Graphical User Interface 111

Interface 4: Standard interface for value setters

public interface DefaultDataValueSetter
/ » This method sets the default value for the

Data. */
/* Ret: the newly created data */
[+ Argl: the data to modify */
public DatasetDefaultValue (Data data)
}
}

5.5 The Graphical User Interface

The main entry point for a system developer or an analyst ¢otlis nLight
framework is the graphical user interface (GUI). As showikigure 5.9, the
nLight GUI consists of two main parts:

1) theAttribute Listwhich displays the list of attribute types available for
a currently selected element of a component-based desigis. ligt is
sorted by attribute categories.

2) theProperties Pageavhich displays the attribute instances currently at-
tached to the selected element of a component-based dasiglist is
also sorted by attribute categories. For each attributarnies, its values
with the corresponding metadata and validity conditiorschsplayed.

\“5 Attribute List 23 = O |f5 Properties 53 | =
Add Atwbute] - 7
Documentation —— -
ot e Attributes | General [Timing | Modess | Documentation | Resource | misc, | -
Resource Worst Case ExecLiion Tire: Atribut J
i Best Case Execuition Tire Valu IR
29
[Best Case Execution Time ey
Source: Estimated
version: 1
Creatiorime: 27 Feb 2012 17:55: 18 GMT.
ModffcationTime: 27 Feb 2012 1755118 GMT
=6 4
Platform: ARM7
Source: MezsLred
version: 1
Creationime: 27 Feb 2012 17:57:45 GMT
ModficationTime: 27 Feb 2012 17:57:45 GMT
[Vattdiy Condios 1
4l | i | o

Figure 5.9: nLight's Graphical User Interface

112 Chapter 5. nLight — The Attribute Framework

5.6 Summary

In this chapter, we have described nLight, the frameworlciéioally devel-
oped to support the seamless management of multi-valugebdesware extra-
functional properties in component-based developmernighilaims at elevat-
ing extra-functional properties as first class entitiesaimponent models that
do not per se provide support for them. As a result, nLightastight to a
particular component model.

Through the repository and dedicated extension pointssus@ contribute
to the framework in providing specifications of multi-vatleontext-aware
extra-functional property as attribute types. The spadtificn provides suffi-
cient parameters to precisely define how the correspondstgrices, i.e. the
values, must be handled. Based on these specificationsratimework pro-
poses a common graphical user interface in which userg sae the complete
list of properties available for an element of a componexgelnl desigrii) vi-
sualise the documentation related to a given propertyjighddd, modify or
remove in a uniform way extra-functional property valuesanfelement of a
component-based design.

Conforming to the definition of multi-valued context-awaextra-
functional properties from Chapter 3, one of the key feawkthe frame-
work is to allow several instances of a given attribute typed-exist for an
element of the component-based design. As a result, newwvdminot replace
previously created ones. This, for example, allows to defimdy estimates
even before the architectural element is implemented, dh@nabling early
reasoning on the design. Later, when the element is morereyaghe early
estimates values can be refined with the values obtaineddratyses or, al-
ternatively the early estimates can be kept as they are amd/aees can be
created instead, thus allowing comparing between therdiftevalues. This
is valuable when values have been assessed, for examplsinip different
analysis techniques. Furthermore, if nLight is closelggnated with different
analysis techniques in a common development environmehies obtained
from one analysis can served as inputs to other analyses.

Chapter 6

The ProCom Component
Model

As pointed out in the introduction of the thesis, a key chimastic of em-
bedded system development is the importance of produciiadpleembedded
systems in an efficient way. This is especially true for sateitical and real-
time systems. One of the foremost concerns to enable suclebbgenent s to
satisfy the extra-functional properties. Others inclute management of the
functional complexity and the strong coupling with the haade platforms. In
that respect, the purpose of this chapter is to:

¢ Identify concepts and requirements suitable for a compbbased ap-
proach for embedded systems development and its underdgimgpo-
nent model.

e Define ProCom, the component model supporting the approach.

e Describe how the conjoint use of ProCom and nLight facésahe as-
sessment of extra-functional properties.

113

114 Chapter 6. The ProCom Component Model

6.1 Domain Requirements for Component-Based
Development of Embedded Systems

Embedded systems have specific requirements such as thg tierinands and
resource limitations, with corresponding developmentiseé order to bene-
fit from the known advantages of component-based developwemobjective
is to use components throughout the development procetiagt@om a rough
design of the system up to its final specification and deplieyaplementa-
tion. Another goal is to apply the component-based approadhe entire
distributed system, not only within each physical node atagon.

In our view, this requires the provision of a fully integrdtepproach man-
aging traceability and dependencies between the artefantrated during the
development process such as source code files, models tiégrdnalysis re-
sults, design variants, etc. as well as providing meansdoous analysis tech-
niques throughout the whole development process. Follpitiis standpoint,
a suitable component-based approach for distributed eddokesy/stems should
cover the whole development process starting from a vagemfsgation of the
system based on early requirements up to its final and prepiseification
and implementation ready to be synthesized and deployesholtld also be
centered around a unified notion of components as a first-elasty gather-
ing requirements, documentation, source code, varioushsppredicted and
experimentally measured values, etc. and, improve theigiadlity of the
developed systems by easily enabling various types of aisalgtoring and
managing the artefacts needed and/or produced by thessandiroughout
the development process.

Combining these specific aspects together results in additconcerns for
component-based development that are described in tlosvialy subsections.

6.1.1 Levels of Abstraction

The use of components throughout the whole developmenépsaneans that
the concept of a component spans a wide range between vagircamplete
specification to a very concrete one. During early desigmpmments are used

as very abstract entities. At this stage, the componensigsifies a functional
unit with no or very little detailed specification (s€&) in Figure 6.1), and
the main objective is to decompose the system into smalleémaore easily
manageable unit@). As the development process continues, the specifica-
tion of components is refined and more details are added. Goemts also
start having very concrete semantics such as specifying hdppens when a

6.1 Domain Requirements for Component-Based Development o
Embedded Systems 115

component sends a messd@g Such a concrete specification is necessary to
perform detailed analysis and to eventually map the systemsét of tasks and
decide upon a deployment scheme. This process ends wheartipwoent or
system satisfies the requireme$ At this point, components or the system
can be synthesized with possibly the use of optimisatiohnriggies.

However, in reality, this process from abstract to concietet necessary
sequential;

e The exploration of different design possibilities implib& need to go
back and forth between the abstraction levels.

e The level of abstraction of different parts of a system cdfedsignif-
icantly, due to the fact that critical parts are typicallyesiied in more
detail first in order to test the feasibility of the design. fdover, reusing
existing components, such as D fr¢#), brings very well specified com-
ponents into a system whose other parts may still be relgtalestract.
This is visible in comparing component B and D(8) in Figure 6.1.

e For some analysis techniques, it is necessary to keep arckxtel of
abstraction (or being able to abstract away from a detapedification)
as a more detailed specification would make the analysisodetbstly.
At contrary, higher abstraction levels might not contafiormation nec-
essary for a particular analysis and need to be concretized.

In summary, this means that components at different levelbstraction
must be able to co-exist within the same model, and theredhas traceability
between a component at a high level of abstraction and itsretaform.

6.1.2 Component Granularity

In distributed embedded systems, it is necessary to modedvhrall system
structure, but also the detailed structure of individuatgpaall the way down
to the low-level control functionality. The granularitypest naturally follows
a decomposition pattern, in that it is possible to implenmm@ component as
a composition of smaller components.

However, the large span between the top and bottom of theilgndiy scale
leads to components of very different size, and potentillgifferent seman-
tics. Large components in such systems (e.g., the engirieotoma car, or one
production unit in an automation system) tend to be actieg, {ivith their own
threads of activity and possibly even including their owal+#me scheduler),
and encompassing complex functionality. Since the comaoatioin between

116 Chapter 6. The ProCom Component Model

Component-Based Development

— == N\
{ Reuse or Independent component realization

Fmmmm
==
Early Paral =
design Realization Realization l

______________ ~

Figure 6.1: Co-existence of different abstraction levels.

these components often involves communication over a n&t(eog., a CAN
bus), it is typically realized by asynchronous messaging.

On the other side of the scale, there are smaller comporesgemsible for
a part of some control functionality, such as computing tvaation of a mea-
sured value from the desired value, or for communicatioh wisingle sensor
or actuator. Since they represent composable low-levetiomal blocks, they
typically do not posses their own threads. Also, the comiation between
them is much more tightly synchronized since most of the camination at
this level is between components located on the same physide.

6.1.3 Component vs. System Development

Component-based development distinguishes componeetaperent from
the development of a system. This allows viewing componastseusable
blocks which may be developed independently and at a ceptait assem-
bled to form a system. Although beneficial, this separatigmgs issues in the
development of embedded systems, where the coupling betiivedardware
platform and the software is particularly tight. As a conssace, components
can no longer be developed without some knowledge on thettaigtform
where they are to be deployed. This is also true for many arsalgchniques

6.1 Domain Requirements for Component-Based Development o
Embedded Systems 117

(e.g., detailed execution time estimation, which is notsgale unless the ex-
act specification of the processor, memories, and compikttiaker flags are
known). Therefore, it is important to find a suitable tradietween platform-
awareness and platform-independence. On one hand, informaa the target
platform on which the componentis intended to be deployaxhavhich it has
been used before, must be available. Yet, on the other haadngthe com-
ponent platform dependent should be avoided as this ressthie possibilities
to reuse it in different contexts.

6.1.4 Underlying Component Model

For a component-based approach to suitably support doregimrements,
they must also be reflected by the underlying component madthéd results in
specific requirements being place on the component modeécty derived
from the domain requirements identified in the previousisest the compo-
nent model should:

e Cover the development process from early design up to ththegis

phase.

e Support the co-existence of different levels of abstratiand their in-

terdependent relations.

e Simultaneously address the different requirements atrdifft granular-

ity levels.

e Make the component platform-aware while maintaining itgafigpment

as platform independent.

Combining these requirements together leads to identify dvthogonal
dimensions that must be supported by the component modelfifBh dimen-
sion is the abstraction level, which describes the sucaessfinement from
abstract-to-concrete, i.e. from a rough sketch of a compioteeits final re-
alisation consisting of source code, detailed timing armbuece models for
instance. The second dimension expresses the granukardl I.e. the com-
plexity and size of the componentsto realise. Figure ugtithtes on an exam-
ple the relations between these two dimensions with theatigin dimension
corresponding to the abstract-to-concrete scale, and#mifarity level to the
big-to-small scale. For example, an anti-lock brakingeys{ABS) that con-
stantly adapts the brake pressure in accordance with thelwpeed to prevent
wheel skidding while braking belongs to the big part of thelecOn the other
hand, a brake force controller which task is only to monitod adjust the
pressure in a brake belongs to the small part of the scale.llustrated in
Figure 6.2, a component can be in different abstractiorideve

118 Chapter 6. The ProCom Component Model

oo -)
e ! [[] ¢
Early Partial NG
design Realization Realization subsystem
T e [m
1]
S e
= Brake force
£ Controller
"
abstract concrete

Figure 6.2: Two-dimensional scale

Ideally, a concrete realization should span the full rarfgdl ctequirements.
However, since the span of both granularity and abstra&eials is relatively
large, it would result either in loosely defined conceptsmaivery compli-
cated component model to concretely develop. To mitigateptexity, the
granularity and abstraction concerns can be divided inbsegments handled
differently as illustrated in Figure 6.3.

2
3 UML
2 // (candidate)
8 =
g | ProSys
o
_g S ProSave
7]

abstract<— concrete
Abstraction level

Figure 6.3: Partitioning example of tlygeanularity andabstractionlevels.

6.2 A Two-Layer Component Model 119

On the abstraction scale, the most abstract and concredtarpaset apart
from one another. In the most abstract part, the structutbeofmodels has
little in common with the concrete structure of the final syst For exam-
ple, a system might be modelled there as a collection of usescéy activity
diagrams describing the overall system behaviour, or bijiemhtrepresenting
different aspects of the system functionality and depecigsrbetween them.
These concerns are to a large extent covered by existingafamms such as
UML and UML profiles dedicated to embedded and real-timeesyst such
as SysML [70] or MARTE [71]. For most of these abstract mddglhspects,
concepts related to “big” and “small” units as on the grarityescale can be
found.

Note that each of the three segments in Figure 6.3 cover rhareat single
point on each of the two scales. The abstract part modelleldiibh may range
from very abstract use case modelling to relatively comcsptecification of
temporal requirements, etc. Similarly, the concrete sfdbescale still covers
several levels of abstractness, since the correspondimgaents at an early
stage can be specified as black bdxésen gradually associated with more de-
tailed models specifying its behaviour and internal strtestand finally given
concrete source code implementation.

6.2 A Two-Layer Component Model

ProCom is a component model for distributed embedded sythtaninas been
developed as the concrete component model addressingghieerents de-
scribed in the Section 6.1. The main characteristic of Pro@ys in layered-
structure: ProCom consists of two layers, an upper-laydgd®roSysand a
lower-layer calledProSave Components from both layers (ProSys and
ProSave) are uniformly viewed as units of design and impfeat®n that can
be developed independently, stored in a repository, reinsexdiltiple applica-
tions, etc.

1In this specific context, a black box component refer to a ammept for which the inner im-
plementation has not been decided yet. It could be a prienittmponent, a composite component
or a COTS or a legacy component.

120 Chapter 6. The ProCom Component Model

ProSys covers the upper part of the granularity scale {ne.;big” units in
Figure 6.3), and thus ProSys components are active antvedyanhdependent.
In ProSave, the lower layer, components correspond mohetoanstituents of
the control functionality (i.e., the “small” units in Figei6.3), and accordingly
they are passive and more tightly coupled. As described ilatéhis section,
these two component types have different semantics andsarenmdelled in
different ways. However, the two layers are not independadtcannot either
be arbitrarily mixed. Instead, they are closely related¢siRroSave compo-
nents can be used to constructs the internals of individue®ys components
(as described in Section 6.2.3).

In the rest of this section, we describe the two layers of Brn@nd how
they are related. The detailed description of the compomeatel is available
in [72] with its formal specification in [73].

6.2.1 ProSys — the Upper Layer

In ProSys, a system is constructed as a collection of conratingsubsys-
tems Subsystems execute concurrently, and communicate byclasymous
messages sent and received through typed output andirgastage portsThis
communication style is suitable at this level of granulasince it allows trans-
parent communication between subsystems independentligether they re-
side on the same or different physical nodes.

Input and output message ports are not connected direatlyjdbomessage
channels— explicit design entities representing data that are efadt to more
than one subsystem. Multiple message ports (output- a@&eiput ports) can
be connected to the same message channel, allowing n-tawmanication.

A benefit of these explicit message channels is that infaomabout a
message, such as precision, format and whether it shouletlialale to diag-
nostic tools, can be associated with the message chanteddhsf with a port
where the message is produced or consumed. This way, tbisriafion can
remain in the design even if, for example, the producer itamgal by another
subsystem. Also, since message channels can be introdetae lany pro-
ducer or receiver of the message has been defined, it peranigsneodelling
of the run-time data managed by the system. Message chaalselscrease
the awareness of the signal and information exchanged bataugsystems.

6.2 A Two-Layer Component Model 121

ProSys allows hierarchical nesting of subsystems, i.ebaystem can in-
ternally consist of a collection of interconnected subsyst, accessible only
through the ports of the enclosing subsystem. Contrastiolgcompositesub-
systems, rimitive subsystem is realized either directly by non-decomposable
units of implementation (such as COTS or legacy subsysteond)y further
decomposition in ProSave as described in Section 6.2.3.

Example

Toillustrate ProSys, we use as an example the electrotiistaontrol (ESC)
subsystem of a car. This subsystem combines the functipioélihe anti-lock
braking (ABS) and traction control (TCS) systems, whosé& tago prevent
wheels from locking or spinning when braking or acceleiatespectively, to-
gether with a stability control system (SCS) which handlesrgy caused by
under- or oversteering by reducing the acceleration andrélifg individual
wheels. In our example, braking is handled by the ESC subsyiself, but to
decrease acceleration it communicates with the engineHigeee 6.4). Fur-
ther, it reports its activity and dangerous conditions ®dhiver’s information
panel.

The internals of the ESC can also be modelled in ProSys, assind-ig-
ure 6.5. Inside, there are subsystems corresponding tdisgects of the ESC
functionality (SCS, TCS and ABS). In our scenario, the TC8 ABS subsys-
tems are reused from previous versions of the car, while 2G®&en added to
cope with under- and oversteering. These three subsystamsute responses
based on their internal sensors and the speed of individbakls, which is
provided by a dedicated subsystem. The responses of theeshbsystems are
combined by the “Combiner” subsystem. The overall brakeawgkthrottle re-
sponses are forwarded to the “Brake valves” subsystem tdategthe braking
pressure, and delegated to subsystems outside of the Ep@ctively.

Engine Electronic Info
Throttle TH Skid
control < -adjustment < stability P -indiciattor 2] panel
control

Figure 6.4: The connection of ESC to other subsystems. Negsarts are
connected via message channels.

122 Chapter 6. The ProCom Component Model

Throttle adjustment \ Activity indicator

Wheels Brake valves
speed
0 N
3
gs Stability |
Control
—>1 System
—C
Traction
—>1 Control > SCS Throttle adjust._ >—— |
System .
Combiner
Anti-lock
—3| Braking

System I SABS Brakes pressure>—Y]

Figure 6.5: The ESC is a composite subsystem, internallyaftexdiin ProSys.

6.2.2 ProSave — the Lower Layer

The ProSave layer targets the detailed design of subsystitonated to a sin-
gle physical node and interacting with the environmentulgfosensors and
actuators.

A subsystem can be constructed by a collection of hieraatljistruc-
tured and interconnected ProSa@mponentsThese components are encap-
sulated and reusable design-time units of functionalitth wlearly defined in-
terfaces, but contrasting the subsystem “componentsa8¥s, these compo-
nents are closer in style to tieskconcept traditionally used when developing
and analysing embedded systems.

ProSave is based on a pipe-and-filter architectural styth am explicit
separation between data and control flow. The former is cagtoydata ports
where data of a given type can be written or read, and the latteigger ports
that control the activation of components. ProSave folltvespush-model for
data transfers and an input data port always contain thst laddue written to
it. Data ports always appear in a group together with a sitrigjger port, and
ports in the same group are read and written together in gesittgmic action.

6.2 A Two-Layer Component Model 123

Figure 6.6: A simple ProSave component with one input groupane output
group. Triangles and boxes denote trigger- and data pespectively.

Component semantics

ProSave components gpassivei.e. they do not contain their own threads of
execution and thus cannot initiate activities on their owrstead, each com-
ponent remains in a passive state until one of its input énigerts is activated.

In its simplest form, shown in Figure 6.6, a component hanglsiinput
trigger port, a single output trigger port, and a number @uir and output
data ports grouped together with the two trigger ports. Bmantics of such a
componentis that it is passively accepting data beingevritb the input ports
until the input trigger port is activated. When this happehe component
switches into an active state, performing internal comjpurta with the current
value of the input data ports as input (and possibly baseti@internal state
of the component). The results of the computation appeaniatdly on the
output data ports, together with an activation of the outpgger port. When
the computation has finished, the component returns to tbsvgestate.

More complex components can have several input port gr@aae, corre-
sponding to a particular service provided by the comporfestb, each service
(i.e., each input port group) can have more than one outpuigmhich allows
parts of the result to be made available at different pomtsne, for example
if some of the output is more time critical than the rest. Fég6.7 shows an
example.

The semantics of general ProSave components is not muéhatifffrom
the simple component semantics described above. The ssraie triggered
individually, not the component as a whole. At a given pomtime, each
service is either in the passive or active state. When detiya service only
uses values from the input data ports of its own group. Thezrrat state, how-
ever, can be shared between all services of a componentla8yma service
can only produce output on the ports of its own output groapd, before the
service returns to the inactive state again, each of itsubgfups must have
been written once.

124 Chapter 6. The ProCom Component Model

Figure 6.7: A ProSave component with two servicesh&s two output
groups and $has a single output group.

Activations of the input trigger port of an active service anored, but in-
put data ports can receive data while the component is adtivis data, how-
ever, can not affect the current computation, but will bedusginput the next
time the service is activated (unless overwritten by a nelwevhefore that).
This means that once a service has been activated it is fumadty (although
not temporally) independent from other components exegutoncurrently,
which simplifies analysis.

Primitive and composite components

ProSave components come in two basic tyg@#nitive componentsealized
by code, andomposite componentsalized by a collection of subcomponents.
For a primitive component, each service is implemented bgrasuspending
C function. There is also one function called at systemgpetd initialise the
internal state of the component. Figure 6.8 shows an exaofifie header file
of a primitive component.

Composite components internally consistomponent instancesonnec-
tions and connectors A connection is a directed edge which connects two
ports of compatible types. Connections go from an output fman input
port, but in this respect, the ports of the enclosing compazimponent are
inverted (meaning that, for example, an input port of the posite component
can be connected to an input port of one of the componentioss inside).
Connectors, on the other hand, are constructs that proeidded control over
the data- and control-flow inside a composite component. cBmaectors in
ProSave are selected to support typical collaboratiorepedt but the set of
connectors is expected to grow over time as additional date-control-flow
constructs prove to be needed. The initial set includes ectons forforking

6.2 A Two-Layer Component Model 125

[..-]
typedef struct saveSl.cpt saveSil._cpt;
typedef struct saveS1.S1l.svc saveS1.Sl.svc;

typedef enum
SAVE_S1S1STARTING,
SAVE_S1.S1 triggerOut,
SAVE_S1S1 FINISHED

} SAVE_S1S1COMPUTATIONSTATE;

struct saveS1.Sl.svc
{
saveSl_cpt xcpt;
char activated;
int currentstate;
SAVE_S1S1 COMPUTATIONSTATE computationstates [2];
int triggeredoutputs;

int xin_speed;

float xin_dist;

int xout_control;
char control_updated;

s
[...]
struct Sl_state

/!l Start of user code state variables definition
[...]
/I End of user code

}

void entry.S1.S1(saveS1.S1l.svc % svcC);

void Sl_init(save.Sl_cpt x cpt);

Figure 6.8: Excerpt of the header file of the component in F&gu6

126 Chapter 6. The ProCom Component Model

Selection

Figure 6.9: A typical usage a&felectionandor connectors. When component
A is finished, either B or C is executed, depending on the vallkee
selection data port. In either case, component D is exeaitenvards, with
the data produced by B or C as input.

andjoining data or trigger connections, and for dynamicaklyectinga control
flow path depending on a condition. Figure 6.9 shows a typisabe of the
selectionconnector together witbr connectors. For a complete description of
all connectors, see [72].

6.2.3 Integrating the Layers: Combining ProSave and ProSys

The integration of the two ProCom layers allows a primitive$ys subsystem
to be further specified using ProSave. Concretely, this sedgimilarly to
how composite ProSave components are defined internally a-ca#lection
of interconnected components and connectors — but withdtgian of clock
to specify periodic activation of ProSave components. Aklbas a single
output trigger port which is repeatedly activated at a gragg, its period.

To achieve the mapping from message passing to trigger aadatal vice
versa, the message ports of the enclosing primitive sudasysre treated as
connectors with one trigger port and one data port, when eaminside the
subsystem. An input message port corresponds to a conngittooutput
ports, and whenever a message is received by the messagthpartessage
data is written to the data port and the trigger port is atgida Oppositely,
an output message port corresponds to a connector with an tingger and
input data ports. When triggered, the current value of thia gart is sent as a
message.

In addition to strictly periodic activation, ProCom alsggports aperiodic
activation such as events initiated by external device®ribglic activation are
handled locally by each component responsible of an extdmace and are
modelled through an event connector.

6.3 Extra-Functional Properties in ProCom 127

Example

Modelling in ProSave and its connection to ProSys is ilateidl on the SCS
subsystem from the previous example. The SCS acts as aipesitbsystem
on the ProSys level, meaning that it is not elaborated in Y@y further.
It may be realized either directly by code or by elaboratirig ProSave (thus
changing the level of granularity). We have chosen therlatisee Figure 6.10.
The SCS consists of one periodic activity, which runs at gffemcy of 50Hz
(specified by the clock). When activated, it first reads thea di@m sensors.
Based on their outputs and the speed of individual wheelsifodd from the
latest “Wheels speed” message) it computes the actualtidineaf the vehicle
and the desired direction indicated by the steering wheéterdoth compu-
tation components have finished, the “Slide detection” comgmt compares
their results (i.e., the actual and desired direction) agtdrhines whether any
action is required to ensure the stability of the car. Thedamponent in the
chain computes the actual response of the SCS, which cewsiatjustments
of brakeage and acceleration.

Wheels

speed Stability Control System
% Yaw .
sensing Computing
_actu_al Computing Throttle
Latera! s direction Slide braking adjust.
o acceler_atlon 0 o detection pressure Brakes
sensing > and throttle pressure
Steering Computing
wheel angle desired
sensing direction

Figure 6.10: The SCS subsystem, modelled in ProSave. Tlseaddtcircles
are shorthand notation féork andjoin connectors, respectively.

6.3 Extra-Functional Properties in ProCom

ProCom has been developed to facilitate the expressionraadgsis of func-
tional and extra-functional properties throuhits layered-structure and in
particular the restrictive execution semantics of the iohager, andi) its con-
cepts of rich design-time components. However, contrapther component
models and approaches such as PECT [16], or Fractal [43ptbaide dedi-
cated extra interfaces for managing properties, ProCors dog per se, pro-
vide such capability.

128 Chapter 6. The ProCom Component Model

Instead, through its concept of rich design-time compgriegrtCom is at
a junction between component-based development and ndoideh devel-
opment. From the component-based development side, PrdQdds upon
structuring the system out of well-defined pieces of furdidy that can be
independently developed, analysed and reused. From thelsddden devel-
opment side, ProCom acknowledges the need that differedelmare used
for different purpose throughout the development procéssorder to meet
aspects of component-based development, the scope ofittoetads is limited
to individual components for which they provide dedicatesivws on additional
concerns. This allows to package any artefacts requiretboluged during the
development of a component together, hence providingtdeitaound for dif-
ferent analysis at different phases of the developmentsscNote, that it is
important that the models are kept consistent during theldpment process.

For example, as illustrated on Figure 6.11, a ProSave coemich can
be directly analysed using the architectural model onlysTicludes analysis
such as checking compatibility between ports, assessitigdiproperties, etc.
With new models available, additional types of analysis alan be supported
as shown in Figure 6.12. An example of such analysis is pealgy the in-
tegration of EMES[74], a formalism for the design and analysis of resource-
constraint component-based embedded systems that emadbdted-checking
to verify functional, timing and resources-related praigsr(see Chapter 8).
Similarly to what has been done in [75] withPrBAAL PORT and SaveCCM,
analyses can be improved by the combined usage of both fhesifie model
and the architectural model.

Creation of EFP Value(s)

B D
eV |
Analysis H

c /
Measurement

Composite component Simulation
Tests

Analysis Report

Figure 6.11: Analysis directly derived from a ProCom design

6.4 Summary 129

Creation of EFP Value(s)

|m———
I \’)
' [*EE
1
L 1
Linking t.‘oI
the sourcel o
model - Composite O
1 Architectural Model >Component —S G =D l J
1 A A Analysis H
I_ N Measurement -
Simulation Analysis Report
Tests
Behaviour Model 4

Figure 6.12: Analysis based on dedicated models.

6.4 Summary

In this chapter, we have started by investigating which ireguents must be
met by a component-based development approach to suitappos the de-
velopment of distributed embedded system. In particulag, of the charac-
teristics of this approach is to flexibly cover the whole depenent process
from early design up to synthesis while, at the same timeljtting various
analysis to be performed at any step of the process. Baselgeodédntified
domain requirements, we have then developed ProCom, a cempmodel
for the development of component-based software embeddéehss.

Through its hierarchy of interrelated layers, ProCom eesiltb address
the different concerns that exist at different levels ofrgdarity within a sin-
gle formalism to build distributed embedded systems. Furttore through its
concept of rich-design time components, ProCom allows tbegaany devel-
opment artefacts as components, hence placing them aspireadd entities of
the development and facilitating their reuse. Finally, oo facilitates anal-
ysis of certain properties in early phases of the developprecess thanks to
its formally specified semantics.

Chapter 7

PRIDE: The ProCom
Integrated Development
Environment

In the context of the thesis, the evaluation of the approatimerging
component-based principles and embedded system devetbpeeas requires
the implementation of a complete developmenttoolchaitijttmvers the nec-
essary activities from component-based design up to sgisthad deployment,
andii) supports and integrates various analysis techniquesghaut the de-
velopment process. In the previous chapters, we have descthe contri-
butions of the thesis following two main lines of work in coament-based
development, namely the management of extra-functioraeaties and the
specific requirements for embedded system developmenhidrchapter, we
will show how these contributions have served as a basisitd iegrated
development environments supporting them. This chapaetsdby describing
lessons learned from the development and use of an initabgype built for
SaveCCT [14], a component-based development approacimtoedded sys-
tems that enables early formal analysis of timing propertighen, it presents
how these lessons having been taken into consideratioreinrtation of the
PRIDE tool suite.

131

132 Chapter 7. RIDE: The ProCom Integrated Development
Environment

Start Software

Component
Software System Development System

Design Composition
Select and Adapt T

k
Formal 9
Component
Verification not ok

Formal System
Verification

ot ok:
ok

¥

Synthesis

pd S

Simulation Execution

D Processes done in several —» Workflow
iteration

Figure 7.1: Overview of the SaveCCT development process

7.1 Feedbacks from an Initial Prototype

Our work on integrated development environment starteld kilding an ini-
tial prototype based on the concepts, methods and techsjregiously de-
veloped for SaveCCT [14]. The approach also aims at compdresed de-
velopment for dependable embedded systems. It repressintgpbe use-case
scenario of the approach described in Chapter 6 in whichsge@ficomponents
is restricted to the design only, the analysis is performedystem-scale and
the synthesis is a single-step activity performed at theafitde development
process.

Accordingly, theSave Integrated Development Environmédave-IDE)
has been specified and developed to support the requirear@htsonstraints
of the SaveCCT approach together with SaveCCM, its undeylgomponent
model [76]. In addition, all the tools have been integratedtrictly follow-
ing the exchange format specified in the SaveCCM referenoeai§/6]. The
remainder of this section starts by giving an overview of3age CCT develop-
ment process in Section 7.1.1 before describing the IDH its8ection 7.1.2.

7.1 Feedbacks from an Initial Prototype 133

7.1.1 Intended Software Development Process

In SaveCCT, the development process is designed as a topajgwoach with
an emphasis on reusability. It includes three major phaBesign, Analysis
and Realization, as illustrated on Figure 7.1.

The process begins with tteystem desigphase in which the system is
broken down into subsystems and components compliant ivttsave CCM
Component Model [77]. Following this decomposition, systeequirements
are transformed into component requirements used as atbakitermine the
next step of the development process. If already existimgpmments (par-
tially) matching the requirements exist, thelect and adapactivity is taken.
Otherwise, new component(s) need to be developed (i.eaimponent devel-
opmentactivity is taken).

Correspondingly, the components are first analyzed anéleg:individu-
ally towards the requirement®¢mal component verificatignin a following
phase, after having reconstructed the system (or parteaytstem) out of in-
dividual components and their assemblisgstem compositionthe obtained
compositions also need to be analyzed and verifiedral system verifica-
tion). As long as the results produced in those analysis stepoteatisfy
the requirements, i.e. some problems in the design staitetkie design of the
system is supposed to be modified and checked again agansthirements.

When the results are acceptable from an analysis point of, thee real-
ization phase starts. It consists eynthesisactivity in which the system is
synthesized automatically based on the input from the systesign, on the
implementations of the components and, on static algostfonthe resource
usage and timing constraints. All the necessary glue codéh®run-time
system is produced. The resulted image can then be testediorukator or
downloaded into the target platform.

To reduce the risks of errors in manual activities, and togase the de-
velopment efficiency, several parts of this process arenaaied. A first au-
tomated activity is the production of the skeleton of the lenpentation files
(C files and their corresponding header files) based on ttafigagion of the
component. Another one is the generation of the interchéilegesed as com-
munication medium between tools. This interchange filesfiams the sys-
tem design into an XML-based representation as specifiedsh [The third
one occurs during the synthesis which includes transfoomatf components
into the executable real-time units, tasks, glue code gdioer, inclusion of
a particular scheduling algorithm, compilation and linkall elements in the
executable image.

134 Chapter 7. RIDE: The ProCom Integrated Development
Environment

7.1.2 SavelDE — the Save Integrated Development Environ-
ment

Save-IDE is designed as a platform that facilitates the integratioinols
compliant with the exchange format specified in [76]. It iveleped as a set
of plugins for the Eclipse framework. As illustrated in Figu7.2, it supports
three key activities of the development procegscomponent-based design
that distinguishes between system and component devetdmand includes
modelling and design of the components, the architectesige of the system
and specification and implementation of componéitanalysisof the system
and the components, aiit) synthesighat includes transformation from com-
ponents to tasks, setting up execution parameters likeifeegoand periodicity
of execution, glue code generation and compilation.

Save-IDE
ComponentBased .
Design Analysis
Architecture ITimed Automata| UppPAAL-Port
Editor Editor Simulator

AS N
Tem-
Eag Behaviour

Model Merger
Component
Development
Editor Synthesis
A N
=N
=00 : Task
5] Synthesis
Set
]I Tool e SaveOS

N
l

Compiler

Figure 7.2: Overview of the Save-IDE tool-chain

1The Save-IDE is available for download from the web page
http://sourceforge.net/projects/save-ide/

7.1 Feedbacks from an Initial Prototype 135

Figure 7.2 also shows the tools involved in each of thesgities and how
they are organised together. A screenshot of the envirohimgmovided in
Figure 7.3. Eight tools are currently integrated into theeSEDE: the Archi-
tecture Editor the Component Development Editfor the component-based
design; theTimed Automata EditorUPPAAL port with its simulator and for-
mal verifier based on PPAAL for the analysis; and th&ynthesis todlargeting
the SaveOSand acompilerfor the synthesis activity. The remainder of this
section describes these tools per activity.

Be Edt Dagam Naviste Seach Bropct Rn Sampelenu Window e

2 Project Explorer & 55 = 0| smpk . T smpk it (< Folow.c | s ModeChange.c | L& generatied_modelh | o) ¥DEMOAPPY2savesem d &3 7 - o

Tcompon.
Sswtch
) assembly

& Copy of simpleComposte
= i DEMOAPPY2
& & DEMORPPYZ
odel

Bl composte
©codk
oy

v Trigger In
port

sDataln
Port

o Combined

< Tngger
outport

o<Data Out
Fort

o Combined
utport

= send_e_rec
& simpleAssembly
1 simplComposte

/ Connect,
/" Dekegation

, & Complex

Conrect,

NI
| b Bnirtue <}

ye— ® Bl

0

= Propertes 1 Ee . v =0|G
© Attribut MemoryUsage

NoTerem

oFcrward

seseLandsareeRll slgsteere1,4Tigs1]

@®—0Q

ey $FNOTILD s — i~
YoerseLor gsenseR() 1fFoFe=1, $Tgout=1]

d g =
‘ I»

Figure 7.3: Screenshot of the Save-IDE

Component-Based Design Toolset

In SaveCCT, the design of a system distinguishes betweerintependent
activities: software system desigmdsoftware component developme8oft-

ware system design consists of designing a system out opémdient and
possibly already implemented components, i.e. compor®itg) produced
through the component development activity. Alike, threhitecture Editor
(see(a) in Figure 7.3) supports both.

136 Chapter 7. RIDE: The ProCom Integrated Development
Environment

It enables creating systems and components compliant hétisave CCM
component model. To do so, the tool provides support forgthérsgy systems
and components with the set of architectural elements pbestby Save CCM.
These elements are component, assembly, composite, dielely, and switch.
Furthermore, the component model also enforces the “pikfitter” com-
munication paradigm distinguishing between control-flavith trigger ports
and data-flows with data ports when the architectural elésneme connected
together.

For each composite architectural element (e.g. asseminypaosite and
switch), two views coexist: thexternal view(see(a) in Figure 7.4) and the
internal view(see(b) in Figure 7.4). The external view describes the name and
type of the element, the ports, and the models annotated &l¢iment (such as
time behaviour represented by a timed automata). In othedlsy¢he external
view specifies the component interface. On the other hamdinternal view
handles the inner elements and their connections only. viéwg can be hier-
archical since SaveCCM allows hierarchical compositidrsomponents and
assemblies. This separation is done through partitionfrdjagrams which
allows having a clear distinction between the design of titeraal from the
design of the internal elements. For SaveCCM “primitivefmgmnents, only
the external view is available. Their internal view corrasgs to their imple-
mentation within the component development editor.

In addition to the specification of functional interfaces #hrchitecture Ed-
itor makes it possible to assign different attributes todbmponents, such as
execution time, or behavioural model as visible in the priype pagege) in
Figure 7.3.

The Component Development Editor (§egin Figure 7.4) is realized by
the integration of the Eclipse C/C++ Development Toolin®{Q that provides
the features required for the implementation of the prireitomponentsin C
language. To increase development efficiency and reducaske of errors
in manually translating the component interfaces into ¢e#teletons for the
implementation files are generated directly from the spmatifin of the com-
ponent. The skeletons for the C and header files contain thppimgs from
ports to variables and function headers. As a result, thgpooent developer
only needs to implement the component functionality.

7.1 Feedbacks from an Initial Prototype 137

o simpleComposite.saveccm_diagram#2 &3 8] simpleComposite.saveccm_diagram#4 &2 U
21|32 paette 3
NEI=RE
<Component>> £} compon...
com Switch
< ite > 3
Ti ol Co(;;i)eoglte feaders: Assembly
pomite L B grc\com.c y
@ Diodels: @)————— @ Perryrune_com &l composite _|
Attributes: T1 t T © Clock
Rttributes: X Delay
Bind ports: Trigger In
Port
oiData
Port
<

I Jjcom.c RN
2 #include "generated model.h" -

/* start of user code of entryFunc_com */
/* Please enter your user includes and user globals here. */

/* End of user code */

result_t entryFunc_com()
{
/* start of user code of entryFunc_com */
/* Please enter your user declarations here. */
printf ("com activated");
/* End of user code */

_I-—nhw“ K- Q
q

Figure 7.4: Screenshot of the tools involved in the compthased design,
in which (a) shows the external view of a composite componienits internal
view and(c) the component development editor for the “com” primitive

component.
Bcdsaveccm_diagram X! [delay.sta & =
<Component> £ —[of x|
Headers: parameter port
B O—=4 @ el
s i out_del
in_del |[Ta of)t_
. final Look Up Cancel
thributes:
Bind ports: =

T Uppaal PORT £ ==
[Simuator————— | =
S T
Rese] 2epa] check] Open| save o
R — (Olexec
(Ojwait
IOffinal
IOstart b
Olexec
(Offinal
State
sender: IDLE (Opstart
_ext.T_Triggerinl =0 IOffinal
out = 1
X =0
gobal_time = 151 @mt G
; —di]

Figure 7.5: Screenshot of the tools involved in the analysighich (a)
shows the timed-automata editor for a delay comporghe tool
facilitating the mapping anft) UPPAAL PORT.

138 Chapter 7. RIDE: The ProCom Integrated Development
Environment

Analysis Toolset

The analysis part in the Save-IDE supports the theoretiatibutions on par-
tial order reduction techniques proposed by HakanssorPattérsson in [75].
These techniques exploit the specific execution semarft&a@CCM compo-
nents, restricted to a “read-execute-write” executiorusege, and the hierar-
chical structure of the system. The main purpose of this aiosais to be able
to perform model-checking analysis of the system in theygarases of the de-
velopment process without requiring any component implgaten. To sup-
port these techniques, several tools have been implemant¥dr integrated
in the Save-IDE: a Timed Automata Editor, a simulator, andoaeh-checker.

The Timed Automata Editor (TAE) (s€a) in Figure 7.5) provides devel-
opers with a graphical user interface for creating formaktional behaviour
and timing models of SaveCCM components. The models areesspd in a
timed-automaton formalism and can be created independeiithe targeted
component. This increases the reusability of the modeldmguires means to
associate it with a corresponding component. In the Sa¥e-tbis associa-
tion is done in a semi-automatic mapping process. Firsgquires the user
to manually create a “TA” attribute in the architecturaltedthat points to the
location of timed automata model. Then, the external pdrés2aveCCM ele-
ment are mapped with the variables of the correspondingitimomata (see
(b)in Figure 7.5) .

Once every componentin the system have a timed-automatal ntiogl sys-
tem can be analysed usingPBAAL PORT (sed(c) in Figure 7.5) . WPAAL
PORT isimplemented as an extension on tieeklaL model-checker [78], and
features a graphical simulator and a formal verifierPdAL PORT requires
a specific XML-format that is automatically generated frdre Save-IDE by
merging together the architectural description of the sypstompliant with
the SaveCCM exchange format, the output of the TAEs and thppmag files.
Using the simulator, it is possible to explore the dynamiedséour of a com-
plete SaveCCM design. In this way, designers can validatddisign and gain
increased confidence in the design. Using the verificatitarface, it is possi-
ble to establish by model-checking whether a SaveCCM madisfies formal
requirements specified as formulas in a subset of the logmediCTL. This
helps to further increase confidence in the component-lgesdgn, w.r.t., e.g.,
functionality and timing. More information on RPAAL PORT can be found
in [79].

7.1 Feedbacks from an Initial Prototype 139

Synthesis Toolset

SaveCCM systems can be automatically synthesized usingytitbesis tools
integrated into the Save-IDE. The synthesis enables teftvam the component-
based design of the system into an execution model that eanlih com-
piled before being installed on the target platform. Exéétaols, such as CC-
Simtech [80], can also be used to simulate the system on dasthnesktop
computer.

The synthesis takes the SaveCCM model and constructs atse¢sbased
on the applications triggers. These trees are then usedtoafe the software
code realized into the tasks, i.e., the function calls tosthfeware components
as well as glue code needed for passing data between the nentgo Each
tree is mapped to one real-time task, and the configuratidimeofask is done
with respect to the parameters of the trigger, e.g., settimgriods and priori-
ties. The synthesis is performed towards the Save Oper@yisigm (SaveOS),
which is an abstraction layer allowing systems to be pouetifferent operat-
ing systems and hardware platforms. SaveOS is designedoiemented in
a way that it requires minimal computing and memory resaiacel provides
a neglecting overhead. It enables systems to indirectlynedive operating
system services through the SaveOS application progragimtierface. Like-
wise, the configuration of the run-time environment can benged without
having to change the system design or the implemented bmirasfi the com-
ponents.

7.1.3 Lessons Learned

This environment has been used internally by the membeob/ied in its real-
isation and externally by students outside the projecteteldp diverse small
applications. In [81], a comparison between Save-IDE ana&epsional tool
enhanced with a profile for SaveCCM has been performed. Kpisranent is
performed on a small group of students concerns only the hinglaspect of
the environment. Yet the students’ feedback show someatidits that a dedi-
cated design environment is more efficient than a genengdegze environment
customized to fit a particular need.

The environment has also been used in [82] and in [24], in vaitindus-
trial control system and a simple truck application havenbelized respec-
tively. Those two examples show the feasibility of the imédgd approach. In
particular, they highlight the possibilities of tightlyterconnecting design and
formal analysis tools, which enable formal analysis of @ing design already
in an early design phase.

140

Chapter 7. RIDE: The ProCom Integrated Development

Environment

Several lessons have been drawn from the development andf ubis
integrated development environment. These are the faligwi

1)

2)

Component as a central and uniform development unitDespite its
precise specification, the concept of component in the Hakzeis am-
biguous. One of the cause of this ambiguity stems from thegoree of
other concepts such as assembly, composite, system. Torasepts are
only distinguished from one another by the execution seicewhich is
restricted for composite and primitive components. At gedime, this
principal difference is not intuitive for the users. Moresycomponents
are considered as one of the artefacts used during the gevefd pro-
cess. Other main development artefacts include timedrzatepmodels,
source codes, etc.

Due to that, the various artefacts used or produced duriagi¢ivelop-
ment process are not tightly bounded to their corresporatingponents.
For instance, analysis models such as timed-automata sjadizinot
necessary belong to the file structure of the componentsoassin the
project explorer in Figure 7.3. This implies that upon reofa compo-
nent, the models that have been specified as attributes mustrieved
and place in the exact location specified by the attributbémew envi-
ronment. This is a cumbersome process that limits the rdiigatf the
analysis models of a component and of the component itself.

Accordingly, components must instead be considered as Hie de-
velopment units. In that view, a component should be seenpdaca-
holder (somewhat similar to the concept of package in olpeented
programming): it enables gathering the different artefactresponding
to the component. As aresult, a component should be themtleeion
of assets created or required during the development potégse as-
sets correspond, for example, to architectural modelsaetiral mod-
els, source code, tests, documentation, etc., and musipbedasistent.
This can be seen as integrating aspects of model-baseddeveht into
component-based development.

Enforcing component type and instancen the Save-IDE, components
are essentially design entities that are directly creaténimthe design
of a composite entity such as system, assembly or compasit@as-
ite. The benefit of such an approach is to provide a lot of fiéigiin

7.1 Feedbacks from an Initial Prototype 141

3)

the design. However, this leads to unconsciously intemgi>dompo-
nent types and component instances. In taking the avaifaddsibility
of copying components directly within a design of a composlement,
this leads for example to have two instances of a componpat tysers
are then able to modify one of the instances, which impligeeei) they
are instances of two different component typesj othey are instances
of the same component type and therefore the second insshiocéd
be modified too to keep the consistency between the two iostann
other words, this means that an instance of the componeriieamd-
ified independently of its component type and consequeetiguring
consistencies of a component type with its instances andemmgnta-
tion requires numerous checking. As a consequence, onéepratith
this approach is that it is difficult to determine when theigie®f the
component is completed and must not be changed any longer.

Flexible and multi-step synthesisin the current approach supported
by Save-IDE, the transformation of the design model into>atetion
model allowing synthesis and optimisation steps is peréatiat the end
of the process only, after the design has been verified amnthted. Yet,
the validation and verification are performed at a highdlefebstrac-
tion without connection to the component implementatioadus the
synthesis and without any specific information regardirgttiget plat-
form. Itis assumed that the implementation does not breakéhaviour
formally modelled. This can have some negative effects emfficiency
of the approach when the fully implemented system does net ite
timing requirements or the timing requirements are notifdas The
development process might then start over at the designvatapthe
re-design and re-implementations of the erroneous parssa Aonse-
guence, the validation and verification steps must be choig again.
Furthermore some analysis techniques, such as schedylatginnot
be performed on a high-level of abstraction. Some potesthltions
that need to be further investigated are to connect impléatien with
analysis or generating implementation from the models bgele anal-
ysis techniques. Also, synthesis must be viewed as moreleartimn a
single-step operation performed at the end of the develapprecess. It
requires many analysis, tests and optimisations that aselgirelated to
the design, implementation and various extra-functionapprties such
as timing or resource usage, and must therefore be alstytaghtnected
with them.

142 Chapter 7. RIDE: The ProCom Integrated Development
Environment

4) Lifting the importance of extra-functional properties In Save-IDE,
attributes are viewed as simple means to display informatiio extra-
functional properties extracted from analysis resultsltriaatively as
a convenient support to link an analysis model with a compbn¥et,
most of the time, the attribute elements were rarely usedl.atTais
is due to the lack of a clear purpose for the attribute conagphe
SaveCCT approach together with an unclear specificatidmeafancept.

7.2 Concepts behind RIDE

Since the theories underlying the creation of the Save-i@ily with several
aspects of the contributions of the thesis, our initialmtiten was to reuse the
Save-IDE and modify it to support the novel ideas. As for theesIDE, the
aim is to support component-based software developmenmnbkdded sys-
tems in a process spanning from early specification up tchegig. However,
instead of mainly considering early formal analysis, it iwisioned that an
interlacing of analysis techniques is to be applied at tBffié stages of the de-
velopment process. The development process is intendeslftexible and to
enable suitable information from one of the developmentitiets to be avail-
able in the others. For example, information on the targatf@m on which
a component is planned to be allocated to should be avaitaktlee analy-
sis. Likewise, results from analysis should be availabléésoftware design.
After balancing these aspects with the features providethé®ysave-IDE, we
decided to developm®DE, the ProCom Integrated Development Environment,
as a new integrated development environment.

The knowledge and experience gained from the developmehtsa of
the Save-IDE have been integrated in®IPE. PRIDE is designed as a stand-
alone environment that can be easily extended through,x@ample, the in-
tegration of new analysis techniquesRIBE is centered around the notion of
components as main development artefact. A component isidened as a
rich design-time concept that corresponds to the collaabiball the related
development artefacts that are needed, specified and pddiuring the de-
velopment process. In other words, in addition of havingrchnctional
boundaries derived from its component model, a componemists of re-
quirements, documentation, source code, various modelshehavioural and
timing), predicted and experimentally measured valuas (erformance and
memory consumption), etc.

7.3 Overview of PRIDE 143

PRIDE also allows components of different maturity, from earleaifi-
cations to fully implemented components with more detaitddrmation, to
co-exist within the same model and to be manipulated in soomifwvay. This
provides ability to leave component realization undeciddde component re-
alization decision can be thus postponed while still beinlg o reason about
the design of the system. For example, this allows to perfiiffarent analy-
ses in early stages of development process based on theasofivchitecture
and provide system architects with early estimates on systehaviour and
properties. In this way, possible problems can for examplddtected before
the system is implemented and avoid late changes.

Reusability is also one of the key concepts iRIPE, aiming to signifi-
cantly shorten development time. The tool introduces tk#rdition between
component type and component instance. Each use of a comipggpe cre-
ates a component instance of the given type, and by editiognganent type,
all its instances are affected. To foster reusability, congmts can be stored
in (and imported from) a shared repository, making themlalbe for reuse
in different projects. As a result of the rich design-timengmnent concept,
component reuse implies reuse of component propertiesrawebps analysis
results. In those cases where analysis of a component depéstdon factors
outside the component, special care must be taken to igigntifvhat extent
the reused information is still applicable in the new enmirent.

Finally, through the integration of nLight (see Chapter B}IDE makes
extra-functional property a first class citizen of the depehent and facili-
tates their seamless management. Elements of the softnariéeature can
be enriched with a collection of structured attributes sasbehaviour and re-
source models, dependability measures, timing properidditionally, users
can contribute to the pool of extra-functional propertiegilable in FRIDE in
registering new user-defined attribute types.

7.3 Overview of PRIDE

Based around ProCom and the described overall approachgwesdeveloped
several tools and tightly integrated them together to er@iDE. PRIDE is
built as an Eclipse RCP application that can be easily extgtittough the ad-
dition of new plugins. As shown in Figure 7.6, the core pafRfDE currently
consists of a component explorer, component editors, aibug framework
(nLight), an analysis framework and a synthesis toati0® can be extended
by adding new extra-functional properties (attribute da€ins) together with

144 Chapter 7. RIDE: The ProCom Integrated Development
Environment

Core Concepts

CBSE
ProCom
Rich Components

Support Runtime
for EFPs Efficiency

PRIDE Attribute Definitions
Use | [Remes | [weer
Component Component
System Explorer Editors
Developer uses - creates \q
Analysis Tools and 2
A £re Synthesis adds
ssurance REMES Fault- Analysis
Editor Propagation Expert
import/

Analyst

REMES Parametric
Simulator WCET

Binary
Files

Figure 7.6: Architecture of RIDE.

Component
Repository

their corresponding analysis support when needed. Figdrehows a screen-
shot from RRIDE, with some of these parts highlighted.

Component Explorer The component explorer enables browsing the list of
components available in the current development projecit, b component
owns a predefined and extensible information structuredbrmésponds to the
aforementioned rich component concept. The componenbexpélso sup-
ports component versioning, and importing and exportingpofiponents from

a project to a component repository, making them availadnleduse in other
projects.

Component Editors The component editors are used for developing an ar-
chitectural model of components and a system as a whole. @teyuilt
around the ProCom component model and represent one of tilcparts

of PRIDE. Components from both ProCom layers are treated in a unifzayn
The component editor provides two independent views on gooentexter-

nal andinternal view Theexternal viewhandles the component specification,
including information such as the component name, its fatels and possi-
bly extra-functional properties. Thieternal viewfocus on component internal
structure implementing its functionality and it dependstioe component re-
alization type. For composite components, the internal\derresponds to a

7.3 Overview of PRIDE 145

2 ProCom - FollowMeCar/ProSys 81ca-4264-5193-358 ~ PRIDE "E;;“;‘i‘
Fle Edt Dagram Project Search Run Window Andlyss Heb

@ procom | | [~ Q-ig- L | RREMESVews -

7 = |53 Folowte car 52

UserTnput Waming System

Automatic Follow

[FolonMeCar.tet

5 @ models
54 component.rosys . A (sve n->sve->dacacut updated == 1) v

< S| || Extena PiaSys Subeyeten ra) T
£ component Repostories F\O[[25 unassoned atrbutes 3 add attrbute ~ = O || propertes £3 Remove Vaue Viewdata Edtdata | iz | =0
T8 feochory k1 e At Tipe @ Subsystem FollowMe Car

ACC Controler Models —

ACC Subsystem FauTolerant = Property vae rel

erake Controler = Resource

Attributes

Front Obstade Detecton S Static Memory Usage nbytes

Logger HMI Output AT platform 26624

Object Recogriton

Selecton

SpeedLinit

Repostory R2

° ®

Figure 7.7: A screenshot offfDE showinga) the component explorel) a
component editorg) a code editord) the repository browser; are) the
attribute framework.

collection of interconnected subcomponent instancesaagrdphical editor is
available allowing modifications to this inner structureg(eaddition/deletion
of component instances, connectors and connections). rifoitige compo-
nents, the internal view is linked to the component impletaton in form of
source code. Editing the component code is facilitated bBiufes such as syn-
tax highlighting and auto-completion, provided througé thtegration of the
Eclipse C/C++ Development Tooling (CDT) plugins.

Extra-Functional Property Assurance The extra-functional properties as-
surance is realised by the integration of two tools: nLigf, attribute frame-
work described in Chapter 5 and the analysis framework. mtljigovides a
uniform and user-friendly structure to seamlessly defing mranage extra-
functional properties in a systematic way. Moreover, ibagpports the pack-
aging of the different development artefacts in compondhtnables attach-
ment of extra-functional properties, as attributes, teceld architectural ele-
ments of the component model. Attributes are defined by abuati type, and
include attribute values with metadata and the specifinadfathe conditions
under which the attribute value is valid. One key featurén@ the attribute

146 Chapter 7. RIDE: The ProCom Integrated Development
Environment

framework allows an attribute to be given additional valdasng the devel-
opment without replacing old values. This allows us to defiady estimates
for extra-functional properties even before actual agettiiral element is im-
plemented. Such values can be used for analysis in earlgstdgystem de-
velopment. Later, when the element is more mature, we canddided values
for extra-functional properties allowing us to conduct maccurate analyses.

The Analysis Frameworlprovides a common platform for integrating in
a consistent way various analysis techniques, ranging &iomple constraint
checking and attribute derivation (e.g., propagating g information over
connections) to complex external analysis tools. Analgessilts can either be
presented to the user directly, or stored as componertiitts. They are also
added to a common analysis result log, allowing the user @asgss to earlier
analysis results.

Through the use of extension points in the analysis ancat&riframe-
works, FRIDE provides support to easily integrate new analysis teclasiqu
together with their associated extra-functional propertiThe analysis tech-
niques already integrated irRIDE include parametric component-level worst-
case execution time analysis [83], model checking of behaal models [84],
and fault-propagation [85].

Synthesis The synthesis part of DE automates the generation of inter-
faces for primitive components in the lower layer, and gatien of code for
composite components in both layers. It also produces boitdigurations (in
debug and release mode) for each level of composition.

Based on models of the physical platform and the allocati@omponents
to physical nodes, the synthesis also produces the binagueable files of
each node in the system [86]. The synthesised code reliesmaddeware that
has been ported to different platforms, including POSIXaptiant operating
systems, FreeRTOS and JSP.

7.4 Summary

In this chapter, we have described two integrated developervironments
supporting a component-based development approach firembedded
systems. The first IDE, the Save-IDE, a prototype based oappeoach pre-
scribed in SaveCCT, allowed us to get valuable inputs fordéeelopment
of PRIDE. In particular, many concepts that have been introducecRim®
are based on the experiences gained from the developmenisendf the

7.4 Summary 147

Save-IDE. These concepts include for example having commtsras the main
development units, enforcing the separation between capmdype and in-
stances at design, providing a flexible and multiple stepshgsis and lifting
the importance of extra-functional properties during teeedopment.

PRIDE is based on an architecture relying on ProCom components wit
well-defined semantics that serve as the central developergity, and as
means to support and aggregate various analysis and vegifidechniques
throughout the development — from early specification totlsgsis and de-
ployment. Through the use of nLightREDE also provides generic support for
integrating extra-functional properties into architeatielements and system-
atically managing them in an uniform way.

In addition to complement®DE with new modelling and analysis tech-
niques, and additional extra-functional property speaifims, an interesting
future work would be to investigate howrRDE could be extended to sup-
ported multiple, possibly distributed, users. In this wBRIDE would also
enable distributed component-based development of engldesicdtems.

Chapter 8

Extended Examples

Applying research results in practice provides valuabgigints on contribu-
tions. Among others, it facilitates discovering their agheeges and limitations.
This is the main purpose of this chapter which investigdiesugh three ex-
amples:

1) the integration of analysis techniques based on dedicamdels into
component models through ProCom and nLight,

2) the inheritance of extra-functional property valuesa@sn component
type and component instances, and

3) how nLight can be used in practice through the development

Due to limitations of RIDE and nLight, some of the aspects presented of this
chapter have been realised outside these tools such agtihesig and analy-
ses. Additionally, for clarity purpose, the architectudasigns and the excerpts
of extra-functional properties are not illustrated thrbwsgreenshots but have
been recreated based on the original artefacts.

8.1 The Turntable

In this section, we evaluate how ProCom can be combined wilyais mod-
els through nLight. This evaluation is based on the turetahilling system
by Bos and Kleijn [87] and Bortnik et al. [88], and the use &NRES [74] as
a representative analysis modelEMES is a language for high-level formal

149

150 Chapter 8. Extended Examples

Figure 8.1: The turntable system (load and unload statimaat shown),
illustration courtesy of Jan Carlson.

behaviour modelling that allows modelling the behavioundividual compo-
nents in terms of functionality, timing and resource usédgéurn, this permits
analysing system level properties, while also supporteuge of behavioural
models when components are reused. It also illustratessinefumodels as a
special type of extra-functional properties.

8.1.1 Overall System Description

The system, depicted in Figure 8.1, consists of a rotatibtg tthat moves
products between processing stations where they areddsifid tested. Four
types of processing stations are involved in the turntabléng) system: a load
station, a drilling station, a testing station and an unlsgdion. For clarity
purpose, load and unload stations are not shown in Figure 8.1

The load station places new products on the table (1), atiahnthey are
moved to the drill station (2) by rotating the turntabg. Drilling requires that
the product is securely held in place by a clamp mechanister Afilling, the
product is moved to the testing station (3) where the depthefirilled hole is
measured. Finally, the unload station (4) removes the potdidom the table,
provided that it passed the test. If not, it remains on théetabbe drilled and
tested again. The turntable has four slots, each capabt@dihly one product.
Thus, the stations can operate in parallel, so that whilditsepiece is being
tested, a second piece can be drilled, etc.

8.1 The Turntable 151

System Requirements

From the system requirements, we focus on the following:
e Requirement 1The system must be deadlock free.
e Requirement 2A product must be clamped when drilled.

e Requirement 3The table should never turn when one of the stations is
operating

e Requirement 4Processing five products should never take more than 25
seconds (assuming at most one failed drilling).

In addition, we want to address the following question:
e “What is the minimum energy consumption for processing fivedp
ucts?”

8.1.2 Architecting the Turntable in ProCom

Since the different stations are relatively independeetywodel each station,
and the turntable, with a separate component. Accordinvatydefine the
Loader, Driller, Tester Unloaderand theTurntable subsystems in ProSys.
In order to achieve synchronization between the statiouistha table, e.g.,
guaranteeing that the table turns only when no processitigistis operating,
as expressed in requirement 3, and that only products wizsh the test are
unloaded, we define an additional subsystemQbatroller.

Next, the interfaces of these identified components neec tspecified.
Since the component model has been imposed, the availalimanication
mechanisms between components are restricted to asymelsoressage pass-
ing for the active and independent parts of the system (spmcius control-
and data-flows are available only in the lower layer). At gtep, it is possi-
ble to browse a component repository to find pre-existingmaments which
functionalities and possibly extra-functional propestieat match the require-
ments. In the case of our turntable system, we assume thaiotder and
Unloadercomponents can be reused from a previous project. For thainem
ing components, i.e. Drilling Station, Tester station,ritable and Controller,
the interfaces remain to be specified. Figure 8.2 illustriie component in-
terfaces and shows how components are connected together.

152 Chapter 8. Extended Examples

Turntable
System Turn-
table
sl £
Loader = M= Unloader
S o
=
Load Unloaded
Loaded (bool) r Unload
Controller
Drill Tested (bool)
Driller Drilled Test Tester
D—> >—> | D—> >—>|

Figure 8.2: ProCom design of the turntable system.

The Turntablecomponent receives a message when the table should be
rotated. In order to make the component reusable in diffexgstems (e.g., a
turntable with more than four stations), the angle of rotatf the table can be
specified in the message. When the table has been turnedsageaés sent to
inform other parts of the system.

TheTesterandDriller have similar interfaces; an incoming message telling
the station to start processing, and an outgoing messagaiimd) that it has
finished. The output messageTasteralso contains a boolean value represent-
ing if the test succeeded or not.

The Controller keeps track of the current status of the four slots, and acti-
vates stations accordingly, by sending messages to edinstand receiving
messages back once they are done. Consequently, the ¢etedfController
must be compatible with the interfaces of the stations (idiclg those of the
reused_oaderandUnloadey).

Itis possible to further decompose each of the ProSys coergsspecified
in the architecture design. According to the level of comityeof the function-
ality and the potential for distribution, each componemtica decomposed into
smaller ProSys components or alternatively into ProSavepoments. How-
ever before doing that, the developer may want to validase tfie feasibility
of the design proposed so far. Some properties can be ¢imtlyzed from
the ProCom design alone, such as verifying conformancedsstwonnected
ports and channels. To reason about requirements such as¢kddentified

8.1 The Turntable 153

in Section 8.1.1, it is typically necessary to use a dedéciemalism possibly
supported by various analysis techniques.

For this extended example, we exemplify through the usemdEs how
such formalism can be integrated into ProCom to facilitai@sis of selected
extra-functional properties.

8.1.3 Attribute Type Identification and Specification

The first step towards integrating analysis of functional artra-functional
properties into ProCom is to identify the set of requiredladte types. It cor-
responds to the functional and extra-functional properieeded to satisfy the
system requirements extracted in Section 8.1.1 plus alitiedacts required or
produced during the development process, including thé/sisamodels and
the analysis results. In case no suitable specificatiorgigadle in the attribute
registry, necessary attribute type specifications mustdeted and registered.
Table 8.1 presents a non-exhaustive list of attribute tyqmas nLight that can
be used in the context of the turntable drilling system.

From a reuse point of view, it is convenient to have a deditat&ibute
type for REMES. Through the use of the BMES attribute, it is possible to
package a RMES model with the component type which it formally specifies
the behaviour of. This facilitates reusing the componedtiemcorresponding
analysis model. According to theeERIES attribute type specification, BMES
attribute instances can be attached to both ProSys subsysted ProSave
components, and have complex attribute values consisti(iy) @ reference to
the relative position of the RvEs model in the component structure afijl a
reference to the relative position of a file containing theppiag between the
component’s ports and the variables used in te@Rs model.

Furthermore, in order to provide analysis results MRS models are trans-
formed into Priced Timed Automata (PTA) models that are ysed with the
UppPAAL model-checker [78]. If PTA models can be easily and effidjeob-
tained from REMES models then there is no need to package them in the com-
ponent. Consequently, the correspondfigA attribute type is not necessary.
On the other hand, if this translation takes time or the nodekd to be re-
generated often, it can be useful to store them instead akd usz of thé>TA
attribute type. For the purpose of this example, we assumkatter option.

The deadlock free minimum energy consumptiand maximum energy
consumptiorattribute types are example of “simple” extra-functionader-
ties that can be extracted from analysing the models.

154 Chapter 8. Extended Examples

Table 8.1: Attribute type specification for the Turntablest&yn

Reference to a RMES model, with:
. ReMEs | ReMmes |Pathl corresponding to the relative path
REMES Component | <Path; Patb- Editor Editor |to the REMES model, and Path2 to the
relative path to the mapping file
Priced .)
" PTA PTA |Reference to a priced timed autompta
ity Component Path Editor | Editor |model P
Automata
Deadlock Cﬂ:& %Zznt’ “‘L\'(\‘eos:.’" Inline Inline Whether for all reachable states, there
S exists some path to a quiescent statq.
i Service “Unchecked” P 4
II\E/Imlmum the Minimum amount of energy drayn
nergy Component Float Inline Inline [from the supply during a single clo¢k
Consump- period
tion
II\E/IaX|mum the Maximum amount of energy drayn
nergy Component Float Inline | Inline |from the supply during a single clogk
Consump- period
tion

8.1.4 Early Formal Analysis

In this section, we give a brief overview on the formal anelyserformed for
the Turntable system based on the use Bf1Rs behaviour models.

Behaviour Modelling in REMES

We model the functional, timing and resource usage behawithe turntable
components as BMES models. Since th&oaderand theUnloadercompo-
nents are supposed to be reused, we assume that they al@adthkir own
behavioural model. For each of the remaining componentsaeR models
is created. Given that this case study focuses on integrafianalysis tech-
niques in component models and not on the analysis parfft igebnly present
here the RmMES models ofDriller andController, depicted respectively in Fig-
ure 8.3 and 8.4.

TheDriller componentis responsible for moving the drill up and down and
for locking and unlocking the clamp. In order to do this, iads values from
the drill and clamp sensors, modeled by boolean varigdgagdrill in upmost
position),sdd (drill in downmost position)scl (clamp fully locked) andscu

8.1 The Turntable 155

Driller
Init O (Idle) (Clamp_locking) (Dnllrr moving, ma (T)Hﬂmimo\mg’ux Jamp_unlocking)
& Case2 xe=tdill2 Case3 x<=tdrill2 Cased, x<=tdril ase! il Cases @ oo
Entry O ng‘:er\g pout, Label2 Tong=eng_powseng clamp | L€ [ongiz LabeldT), .. Label5T gng= Jamp]| 206 T
X X \g'=eng_pow+eng_dril leng’=eng_pow+eng_drill eng'=eng_pow+eng_clamp
Init: clock x; Casel: System(Driller]==Idle Label2:x=0; drill_power=on
resource eng:Tc; Case2: drill Label3: drill_clamp=locked
const int on=1, off=0, locked=1, unlocked=0, idle=0, down=1; Case3: scl Label4: drill_position=down
inttdrill1, tdrill2; eng_pow, eng_drill, eng_clamp, Cased: sdd Labels: drill_position=idle
drill_pe , drill_clamp: ked, drill_position=idle; Case5: sdu Label6 drilled=true; drill=false; drill_clamp=unlocked;
bool drill, drilled, scl, sdd, sdu, scu Case6: scu and x>=tdrilll drill_power=off, System|[Driller]=Idle

Figure 8.3: The Driller modeled in RMES.

(clamp fully unlocked). Neither of the two message portdafler carries
values, and thus they are mapped to two boolean varidblesnddrilled.

TheDriller remains in theédle mode until receiving drill message. When
this happens, the component goes through a sequence of dabmo
Clamplocking, Driller _.movingdown Driller _movingupandClamp.unlocking
Each of these submodes is exited as the result of a senser tuahingtrue.
When exiting the last submode dsilled message is sent, indicating that the
operation is finished.

REMES model also enables modelling the consumption of energy ®f th
Driller subsystem. We assume the following: poweringBm#ler consumes
engpow units of energy per time unit, locking or unlocking the claegn-
sumeseng clampunits of energy per time unit and drilling consunezgy drill
units of energy per time unit. Moreover, we assume that tme tf each
Driller operation cycle is bounded to the interjtalrill1, tdrill2] .

TheControllercomponent, depicted in Figure 8.4, keeps track of the states
of the four slots and operates the stations and the turntedderdingly by
exchanging messages with all of them. The behaviour defiggddbREMES
mode consists of two main submodes, one in which the coatralbits for
messages from the stations, and one waiting for the tumtabiinish turning.

The submodé&Vait for_turning is exited when théurnedmessage arrives.
Depending on the current state of the four slots, messageseat out to the
respective station. This is managed by the four conditiooahectors and the
guards Case9 ..., Casel§. For example, théoad message is only sent if
the first slot is empty, and therill message is only sent if the second slot is
occupied. The local variablesgnalloaderetc. are used to keep track of what
messages were sent. When all messages are sent, the histalyle/Sys-
tem[Controller] is assigned the valud/ait for_stations Thus, theController
will continue executing in that submode when reentered.

156 Chapter 8. Extended Examples

Controller

Wait_for_stations|

Casel Labell
Case2 Lal
Case3 Lal
Cased Lal
Ca Lal
Case6 Lal

Case:

(Csonine)

(wﬂ.LmUununQ

Case9 Label9

u

Casell Labelll

Casel3 Label13 (3

Casel0
Label10

Init

Casel2
Label12

Casel4
Label14

Init: const int empty=0, occupied=1, test_fail=2;

int P1=empty, P2=empty, P3=empty, P4=empty, TP1,TP2,
TP3, TP4, tum_value, signal_unloader=0,signal_loader=0,

signal_driller=0, signal_tester=0;

Case9: P1==empty
Casel0:P11=empty
Casel1:P2==empty

bool turn=false, load=false, drill=false, test="false,

loaded, loaded_value, tested_value, drilled, tested, unloaded, turned;

CaseA: System[Controller]==Wait_for_stations

CaseB: Signal[Controller]==Wait_for_turning

Case: (signal_loader==0) and (signal_driller==0) and
(signal_tester==0) and (signal_unloader==0)

Case2: (not Case1) and (signal_loader==1) and loaded and loaded_value
Case3: (not Case1) and (signal_loader==1) and loaded and not loaded_value

Cased: (not Case1) and 1) and drilled

¢
¢
Case5: (not Case1) and (signal_test
¢
(¢

Case6: (not Case1) and (signal_tester==1) and tested and not tested_value

Case7: (not Case1) and (signal_unloader==1) and unloaded
Case8: turned==true

=1) and tested and tested_value

Case12:P2!=empty
:P3i=emp!

==test_fail or Pa==empty)
st_fail or Pa==empty
mpty

Label1: TP1=P1; TP2=P2; TP3=P3; TP4=P4;

System(Controller]=Wait_for_turning;

turn=true; turn_value=90
Label2: P1=occupied; signal_loader=0;
System[Controller]=Wait_for_stations
Label3: signal_loader=0;
System[Controller]=Wait_for_stations

Label4: signal_driller=0; drilled=false;
System|Controller]=Wait_for_stations
Labels: signal_tester=0; P3=occupied; tested=false
SystemiController]=Wait_for_stations
Label6: signal_tester=0; P3=test_fail; tested=false;
System|Controller]=Wait_for_stations
Label?: signal_unloader=0; P4=empty; unloaded=false;
System[Controller]=Wait_for_stations;
Labelg: TP1=P4; TP2=P1; TP3=P2; TP4=P3; turned=false
Label9: signal_loader=1; load=true
Label10: signal_loader=0
Label11: signal_driller=0
Label12: signal_driller=1; drill=true
Label13: signal_tester=1; test=true
Label14: signal_tester=0
Label15: signal_unloader=1; unload=true;
System|Controller]=Wait_for_stations
Label16: signal_unloader=0;
System|Controller]=Wait_for_stations

Figure 8.4: The Controller modeled ireRIES.

In submod@anait for_stations the Controller waits until it receives a reply
to one of the sent messages. Since this is a non-lazy modesithe exited as
soon as the guard on one of the outgoing discrete actasg . .. ,CaseJ is

satisfied. If the message carry a value (which is the cadeddedandtested,

it is used to update the state of the corresponding slot. \Wllemessages
have been received, the messagm is sent to thelTurnable and the history

variable is set tdVait for_turning before exiting, meaning that the execution
will be resumed in that submode.

Results From Applying REMES to ProCom

Once a BEMES model has been created for each ProCom component,
turntable drilling system can be formally analysed. To dpthe system is
first transformed into a network of priced timed automataXPmodels. In

the example, the semantic translation fromMES to PTA is done manually,

as described in [74], although ideally this should be autecha

Next, the design of the system is verified against the idedtilystem re-
quirement that are expressed as temporal logic formulasle Ba2 maps the
system requirements from Section 8.1.1 together with tteiresponding tem-

poral logic formulas and verification results.

the

8.1 The Turntable 157

Table 8.2: System properties and verification results.

1 | The system should be free frg 'R[] not deadlock Satisfied
deadlocks.

2 |A product must be clamped|[] Driller.Driller_moving. down Satisfied
when drilled. imply Driller.drill - clamp==locked

A
The table should never tufpryrntable. Turnlor Turntable. Turn2

3 | when one of the stations is ORmply (Loader.ldle and Unloader.ldlg Satisfied
erating. and Tester.ldleand Driller.Idle)
Processing five produgté]]

4 |should never take more than Hiot loadedfailed and time>25 and Satisfied

seconds (assuming at most gfiled.products<1)
failed drilling). imply processecproducts>5

What is the minimum ern-)
5 |ergy consumption for processE() (processegbroducts==>5) 14300 unitd
ing five products?

Property 1 from Table 8.2 is a generic safety property, $pieg the ab-
sence of a system deadlock, i.e., the system cannot coméatedrem which
it cannot continue operating. The turntable system is egfifo be deadlock
free. The next step is to verify that it satisfies the funaisystem require-
ments, here represented by properties 2 and 3. Propertieb3lare examples
of extra-functional properties addressing time and resmusage, respectively.

8.1.5 Attribute Instance Creation

Relying on the previously described activities, i.e. theation of the ProCom
components, their behavioural modelling, the analysistapdavailability of
suitable attribute types, it is now possible to associdtaimation about func-
tional and extra-functional properties with the newly defitomponents. Ac-
cordingly, several attribute instances are added to eamfidPn components.
First, an instance of the BES attribute type is added to each ProCom
component as illustrated in Figure 8.5 for the Controllanponent. This in-
stance associates with the component, MRS behaviour model and the
corresponding mapping file which specifies the corresporeléetween the

1This value is extracted from kPAAL's execution traces.

158 Chapter 8. Extended Examples

variables used in RMES model and the component’s ports. Both files are
physically located in the file structure of the componentsisible in the de-
scription of the attribute instance value.

Additionally, for each priced timed automata model derifreth a REMES
model and results of the performed analysis, a PTA, deadteek minimum
energy consumption and maximum energy consumption atribstances, are
inserted into the corresponding component specificatioutih nLight. This

figure also shows the use of nLight for the packaging the varaevelopment
artefacts within a component.

REMES™-Controller

L&)
Controller

Priced Timed Automata =
Model | Properties

ProSysiComponent = Controller
External View

Unloaded

Loaded Unload

Controller

Drill Tested
Extra-Functional Properties- Controller I

General | Timing | Models | Documentation | Resources | Misc. |
Specified Attributes Attribute Values
Deadlock Free
vd 1 </modelyREMES/controller.remes;
Maximum Energy Consumption Version: 1
Minimum Energy Consumption CreationTime: 31mars 2010 956 GMT

ModificationTime : 31 mars 2010 9:56 GMT

Static Memory Usage B Yes

Drilled

Status bar

Status bar

Figure 8.5: The ProSys Controller Component packaged ¥gthahavioural
models (REMES and PTA) through nLight

8.2 The Personal Navigation Assistant System 159

8.2 The Personal Navigation Assistant System

In this section, we explain the mechanisms of extra-fumetiproperty refine-
ment proposed in Chapter 4 on a personal navigation asisgststem that will
be designed as a ProCom system and enriched with extradnatproperties.

8.2.1 Overall System Description

A Personal Navigation Assistant (PNA) relies on the Glohadiffon System
(GPS) to provide aid to navigation functionalities such asiputing the best
routes between two cities, distance and time to arrivateruispeed, direction,
etc. The GPS system is composed of 24 Earth-orbiting satelieriodically
sending information to GPS receivers that calculate thaittEbased geolo-
cation. In common language, GPS refers to the GPS receivicesdeonly.
Likewise in this section, we focus on the GPS receiver patti@PNA.

A GPS receiver is a device able to determine its location athEhrough
a trilateration calculation method that requires the exemdition of at least
three satellites. With three satellites, a GPS is able imast its 2D-position
(longitude and latitude) whereas with four satellites,ah@lso compute its
altitude. The more satellite positions the receiver get,tore accurate is the
position calculation. For example, most of today receivaush as the Garmin
G18 [89], tracks simultaneously up to twelve satellitesdfetter results. Other
type of receivers includes multiplexing channel receivt ttan only follow
one satellite at a time, thus forcing them to switch rapidtween the satellites
being tracked at the cost of time and precision.

In order to know the satellite’s position precisely, the GB&iver must be
fully aligned with the signal of the satellite being trackdd enable satellite’s
position discovery, the GPS receiver uses a clock to haveutrent time and
an almanac containing the supposed positions of a sat&llaeyiven time.

To create the PNA, the GPS receiver is associated to a nengabcessor
(Navigation System) that computes the navigation datag¢otposition, direc-
tion, current speed, etc.) and a graphical user interfaateetiables displaying
the device’s geolocation data on maps, together with thégatien data and
other information such as distance and time to destinafiomt of interests,
etc.

160 Chapter 8. Extended Examples

8.2.2 Architecting the PNA in ProCom

To comply with the previous description, a PNA system (ilated in Fig-
ure 8.6) is developed out of four ProSys components®R& ReveivePower
ManagementNavigation SysterandUI) since a PNA installed in a car could
be distributed, i.e. having its central computation uniire part of the vehicle
while the signal receiver units would be located closer w ribof for better
reception, also with respect to the parallel activity.

Personal Navigation Assistant

User |DDI{§S
GPS K

Receiver

Navig@;ign Data

Navigation ul
System
{racks

Management Z_/

Figure 8.6: a PNA system modelled in ProCom

Looking closer at th&PS Receivecomponent shown in Figure 8.7, it is
a composite ProSys component that consists ofileek and Almanac Store
ProSys components to help the GPS receiver to faster ldoatsatellites on
start-up and @arallel Receivercomponent that simultaneously tracks up to
twelve satellites to compute the geolocation of the device.

GPS Receiver
Positions

Agmagee

L/

Almanac
Store Almanac Ugdate
X

Parallel
Receiver

Current Time

y

Clock Clock Sync.

L
AN

Figure 8.7: Model of the GPS receiver as composite ProSygooents

8.2 The Personal Navigation Assistant System 161

Parallel Receiver

. >
Position
T

Antenna
Digital
Receiver

pAlmanac

H Trilateration
1| Processor

Clock

Figure 8.8: A simplified version of a ProSys primitive reagiv

TheParallel Receivers a primitive ProSys component built out of ProSave
components as shown on Figure 8.8. It consists of twelvantsts of arAn-
tenna Digital ReceiveProSave component, &ilateration Processoland an
Output Mode ConverterFor readability purpose, only four instances of the
Antenna Digital Receiver are depicted on Figure 8.8.

The Antenna Digital Receiver is in charge of the synchramznawith the
satellite’s signal and get the satellite location. Theakdtation Processor com-
putes the actual position of the devices and if activatesl(htput Mode Con-
verter converts the position into a different format. Thenoaunication be-
tween these components follows a pipe-and-filter architatstyle separating
data flows from control flows. Data input and output ports ameaded by small
rectangles whereas trigger ports are triangles. Morethegntenna digital re-
ceivers are periodically activated every ten seconds. ©@neef the Antenna
Digital Receiver has terminating its computation, it aatas the trilateration
processor.

162 Chapter 8. Extended Examples

8.2.3 Attribute Type Specification

From the above description and the specification of the Ga1i8 [89], sev-
eral extra-functional properties emerge as important tsicier when develop-
ing a global positioning system.

One of them is the response time, which can be defined as tkdadineact
to a given input. In a GPS, this corresponds, for exampléeditne needed to
inform the user of his/her physical location. Accordingly, attribute instance
corresponding to a response time extra-functional prgpemneaningful be-
tween an input port and a set of output ports or a service. giegn that the
main purpose of this section is to evaluate the mechanisnrghefitance of
extra-functional properties between component type antpoment instances,
we, instead, associate response time with the componenatyginstances.

We use the same reasoning for the specification of related-&xactional
properties: the acquisition time that specifies the amofititree that it is re-
quired to correctly receive the satelitte’s position sigoace the position of
the GPS satellite has been found; the searching time thaheoather hand,
corresponds to the time required to search and acquired R datellite sig-
nals; and the processing time, which is defined as the timeineztfor the
receiver to compute the position.

Other properties that can be useful during the developnfeat@PS in-
clude the vendor name, worst-case execution time and steginory usage.
Table 8.3 summarizes the specification of the attributesygmeresponding to
these properties.

Inheritance Policies

In addition, the usage of each attribute type can be consildiy the definition
of inheritance policies. These inheritance policies arstlus specify whether
an attribute value specified on a component type is avaitalils component
instances, and, if the attribute value is available, theswlhich govern its
possible refinement.

Table 8.4 lists the inheritance policies used in the PNA eplamFor in-
stance, for an attribute type such as “Vendor Name”, it ifideft to have a
value for the component type. Having this information on ¢benponent in-
stance would simply be redundant in that particular casea Asnsequence,
the inheritance policy for the attribute type “Vendor Nanstefined asotin-
herited On the other hand, it is beneficial to be able to inheritlate values
defined on component types for attribute types such as atqmi§me, re-
sponse time and WCET. Using information from the design efdbmposite

8.2 The Personal Navigation Assistant System

163

Table 8.3: Attribute type specification for the PNA System.

TypelD Attributables

Acquisition Component,

Data
Format

Short Documentation

The amount of time (in ms) to receive the fj

rst

=}
T

Time Instance Int information from a satellite

Response Component, Int | The amount of time (in ms) to react to a stimuli
Time Instance

Vendor Component,) ,

NEmE Instance String | Name of the component’s producer

Static Mem-| Component, Int The amount of memory (in kb) statically all
ory Usage Instance cated

WCET Service Int The maximum number of clock cycles a sery

uses before terminating

ice

Table 8.4: Inheritance policies used in the PNA system.

Identifier Inheritance Policy

Vendor Name

notinherited

Constraint

none.

Acquisition Time override originalValue> refinedValue,
Response Time override originalValue> refinedValue,
WCET inherited originalValue> refinedValue,
Static memory final none.

164 Chapter 8. Extended Examples

component in which the component instances are used, asabgs provide
more accurate values. Accordingly, we set the inheritaradeypfor these
attribute types tmverride which means the value is inherited from the com-
ponent type to the component instances and that this valubeaefined. In
addition, we enforce that if the value is refined in the conmgrdrinstances,
this value should be smaller than the original value. Thidose through the
constraint: ‘originalValue > refinedValue”. The attribute type static mem-
ory is set aginal. This implies that attribute instances will inherited atgtis
memory attribute instance defined on a component type baivilue cannot
be modified.

8.2.4 Application on the GPS receiver

Table 8.5 lists the attribute values defined on the GPS recedbmponenttype:
one value for vendor name, three values for acquisition {ome requirement
and one measurement for a warm start, and one estimatiorcédd atart), and
one static memory value.

Table 8.5: Attribute instances specified for the GPS Recelmmponent type.

Vendor Name [] MDH

[-] 50

— Source: Requirement

— Comment: Warm Start
[-] 40

— Source: Measurement

— Comment: Warm Start
[-] 450

— Source: Estimation

— Comment: Cold Start

Acquisition Time

[[] 305
Static Memory — Source: Measurement

8.2 The Personal Navigation Assistant System 165

Table 8.6 shows how these values have been inherited anddeajimthe
GPS component instance used in the PNA component. Due ta¢hthht the
attribute type Vendor Name is specified as notinheritedathrébute instance
defined on the GPS receiver component type is not availablesfoomponent
instance.

On the other hand, acquisition time and static memory itssarare all
inherited on the GPS receiver componentinstance. Howebhereas the static
memory instance cannot be refined since its inheritanceyislset as final, the
acquisition time instances values can be, their inherégdicy being defined
as override. The first value for the acquisition time, i.e thquirement for
a warm start, is then constrained from 50s to 43s. After nreasent, the
second value should be refined to 60s. However, the constpétified for
the inheritance policy dictates that a refined value can balsnor equal to
the one defined on the type only. This raises an alert. Eithemneasurement
performed on the component instance is incorrect and irctge, 40s should
be the value to use, or the value set on the component typeoaastall and
must be increased to at least 60s.

Table 8.6: Attribute instances specified for the GPS Recelmmponent type.

[1 5= 43
— Source: Requirement
— Comment: Warm Start

At e — Source: Measurement
q — Comment: Warm Start

— Source: Estimation

— Comment: Cold Start

[] 265 305

Static Memory — Source: Measurement
— Platform: Linux

166 Chapter 8. Extended Examples

8.3 The Automatic Driving System

In this section, we demonstrate the conjoint use of ProCaimdumght for the
development of a representative example of embeddedinealsystems. The
choice of the example has been guided by the following ratem

e Rationale 1:The subject of the study must be small yet representative of

an embedded real-time systems (resource constrained EBlaweast
one sensor and one actuator).

e Rationale 2: The subject should enable reasoning about typical extra-

functional properties of embedded systems such as exedirtie, and
memory usage.

e Rationale 3: The subject of study must enable reusing components in

different applications.

e Rationale 4: The subject of study must enable porting the application
between different hardware.

e Rationale 5:A real-time operating systems should be used.

e Rationale 6:A predictable programming language should be used, C (or

C++) preferably.

Based on these rationales, we have accordingly defined tivertetic driv-
ing system” example in section 8.3.1 and, in the subsequetioas, we de-
scribe a part of its development focusing on the modellirdyamalysis stages.
An important part of the example is also dedicated to exptagruse of multi-
valued context-aware extra-functional properties duttiregdevelopment of the
system.

8.3.1 Overall System Description

The automatic driving system is a “drive-by-wire”-like atibn inspired by
the “Distance Control Assist” system proposed by Nissar, [@bich main
purpose is to enable to electronically assist the driverdamtain a safe distance
to a preceding vehicle.

In the hardware specification of the Nissan’s “Distance @oAtssist” sys-
tem, illustrated in Figure 8.9, the system is composed of & m@ntroller in
charge of deciding the behaviour of the vehicle accordinifp¢ocurrent situa-
tion. In order to do this, the controller is connected to aragnsor to estimate

8.3 The Automatic Driving System 167

Brake actuator

- Control switch
I S\ \\N Indicator
X ;. Audible buzzer

// \ Brake actuator
/ |

controller

Accelerator pedal actuator

Radar sensor with
main controller

Figure 8.9: Hardware for the Distance Control Assist sydfem [90]

the distance of a vehicle in front, a pedal actuator to coie acceleration,
a brake actuator to control the braking. The driver can atgithe distance
control assist system through a control switch button, arzk@ctivated, the
driver will be informed of the necessity of braking by an icatior and a buzzer
signal. If the driver interferes (for example in braking @calerating manu-
ally), the distance control assist system is deactivatedhat case, the car is
driven manually again.

The hardware and overall behaviour of the automatic drigysjem is sim-
ilar to the distance control assist system. However, imstesing a real vehicle
as target platform we use the Robotic Command eXplorer (R@X ks short).
Both platforms provide the same facility to build embeddgstems out of a
controller that interacts with the physical world througimsors and motors.
The hardware characteristics of these different partsstezllin Table 8.7.

Furthermore, the development of the system is broken dotaritie two it-
erations:lteration 1in which a software system is developed to electronically
drive a vehicle based on user’s inputs dtetation 2 in which the software
developed in iteration 1 is enhanced with additional fumwdlities and hard-
ware to enables the vehicle to be driven in an autonomous mvégllowing a
preceding vehicle at a safe distance.

168

Chapter 8. Extended Examples

Table 8.7: Specification for the RCX Platform

S)

CPU Hitachi Renesas H8 series (H8/30
H8/3292 16Mhz

ROM Total: 16kb
Available: 10kb (6kb used by the G

Internal RAM 51kb

External RAM 32kb

Additional Storage |None

Sensor ports 3

Available Sensors

Light sensor

Touch sensor

Buttons 4

Button Type on/off, program, view, run
Actuator ports 3

Motors 2 at 360 RPM

Display 5-segment LCD

Speaker 1

Communication bidirectional IR

Timers built-in 10Mhz

RTOS BrickOS

8.3 The Automatic Driving System 169

Iteration 1: Manual driving

The purpose of this iteration is to develop the basic pati@siystem for which
extra-functional properties can be assessed during thelafgwent process,
hence demonstrating how multi-valued context-aware dutnational prop-
erties can be specified and how their values are used anddefimeng the
development process.

In iteration 1, the system simply enables to manually dineuehicle for-
ward, backward, left, right, to accelerate, deceleratesdsmhonk. Since there
is no physical support to manually drive the car, the car $¢ead driven re-
motely through wireless communication. The vehicle is ppad with a back
parking sensor which signals whether the car touches aadbsthile back-
ing. In that case, a sound-alarm is raised and the car stopssphay informs
the driver about the current direction (back, forward, gallsogether with the
speed of the vehicle. In short, in iteration 1, the systenafet as summarized
in scenario 0.

e Scenario 0: Manual drivingThe driver is fully in charge of the vehicle

(except when backing in presence of an obstacle).

The hardware for the platform of the vehicle is built out of egb RCX
brick that uses brickOS as real-time operating system, twtors to control
the wheels, a speaker, a display, four buttons, a bidireati®R communication
device, a touch sensor positioned in the back of the platfékdditionally, a
remote control is used to manually drive the car.

Iteration 2: Autonomous driving

In this iteration, the system is enhanced with a “Autonombusing Sys-
tem” (ADS) feature, which enables the car to automaticailiofv a target at
a specified distance such as twice the braking distance laylielf the driver
interferes with the driving in accelerating or braking fomenple, the system
goes back in manual driving. The ADS is available in two vamsi a low-end
and high-end versions. In the low-end version, it is assuthatithe target
vehicle can move back and forth only and cannot make turnsn fsevious
iteration, when in presence of an obstacle the vehicle @guipvith the ADS
system must signal when it cannot back further and stopsdigtence is cal-
culated through a distance sensor. In the high-end veriertarget vehicle
can also turn. In that case, the vehicle equipped with thi-bitd version of
ADS behaves as the low-end version with the difference thean lose the
target vehicle. As a result, the vehicle equipped with theSAi2eds to be able
to relocate the target before pursuing its tracking.

170 Chapter 8. Extended Examples

Scenario 1:
Following distance

Scenario 2:
Decreasing distance

Scenario 3:
Increasing distance

Scenario 4:
Too close

Scenario 5:
Too close & obstacle

Figure 8.10: The different driving scenarios

As illustrated in Figure 8.10, five basic driving scenarios envisaged for
the ADS system in addition to scenario O from iteration 1 whgthe default
scenario.

e Scenario 1: Following.This is the default scenario for the ADS. Once
the automatic mode has been selected, the vehicle equipipledhe
ADS system first wait for a target to follow. Once a target idetection
range, the vehicle starts following the target.

e Scenario 2: Decreasing/increasing speed of the tarjéhe distance to
the target decreases or increases, the vehicle adapteéd gpthe target

e Scenario 3: The targetis backintjthe target vehicle is backing (i.e. the
distance to the target continue to decrease although theledtas re-
duced the speed or stopped), the vehicle equipped with tH& gyBtem
backs too.

8.3 The Automatic Driving System 171

e Scenario 4: Obstacle when the target is backiryhile in Scenario
3, the vehicle equipped with the ADS system detects an diestédten
backing, the vehicle then stops and an alarm signal will doun

e Scenario 5: Driver’s interventionlf the driver interferes in the auto-
matic driving with braking or accelerating for example,ritthe system
changes to manually driving (see scenario 0). Note thatttesval be-
tween the user action and its effect should be of 215ms at (tiust
corresponds to the average reaction time for a human).

The hardware used in this iteration is the same hardware iteration 1,
with the difference that a light sensor is added in the frdnthe vehicle to
estimate the distance to the target platform.

8.3.2 Attribute and Metadata Type Specification

Similarly to what has been done in the Turntable and GPS ebemipis nec-
essary to identify the set of attribute types that shoulddresiclered during the
development of the system. In case no suitable specificetiavailable in the
attribute registry, additional attribute type specifioas must be created and
registered.

In order to better understand the behaviour of the systendeimaan be
used such as a UML statechart diagram. Similarly to what fees l[Wone
with REMES model in the Turntable example, a dedicated attribute tgpebe
created. From the availability of this attribute types, toeresponding model
can be packaged together with the component it depicts.

For the extra-functional properties aspects, when conisigléhe hardware
specification and overall behaviour of the system desciiib#te previous sec-
tion, timing and memory usage properties emerge as impagunirements.
In particular, the response time of the drive-by-wire véhghould be at least
equivalent to the average response time of a human driviagdh, that is,
215 ms. One of the factors influencing the response time isxbeution time.
As a consequence, for the purpose of this example, we williden theworst-
case execution timeAs listed in Table 8.8, the worst-case execution time is
the longest execution time that could be observed when tiveceds executed
on its target platform. It is worth noting that the Sl basetshiould be used
as the reference unit. However, in the context of this exanntpe timers are
cadenced at 10MHz, which implies the timing values are irotider of magni-
tude of the nanosecond. For the sake of clarity, we then egphe worst-case
execution time in nanoseconds.

172 Chapter 8. Extended Examples

Additionally the amount of memory available, both ROM and NRAs
limited as shown in the RCX specification table 8.7. Thuss itmiportant to
evaluate, through the development process, extra-fumatimroperties such as
static memory usagandphysical size The static memory usage corresponds
to the maximum amount of stack space that is used by a comptmstore
the temporary data that are necessary for its executionpiipsical size cor-
responds to the size occupied by a component once compiled.

Table 8.8 presents the list of attribute types registeredLight that are
used during the development of the automatic driving syseample.

Table 8.8: Attribute type specification without the suppogchanisms

the longest execution time in nanoseconds
WCET Service Int |thatcould be ever be observed when the ser-
vice is executed on its target hardware.

Static The amount of memory in kb used to store
Memory Usagg Component Int |the temporary data used during the compo-
(stack space) nent execution

The physical size in kb occupied by a com-
PhySiCaI Size Component Int ponent once Comp”ed'

UML Statechart diagram specifying the d
UML Statechart | Component Path | namic behaviour of a component.

<
T

UML Statechart diagram specifying the set
UML Use case Component | Path |of actions available to the system’s users

Further, the information that will be provided by the atirié instances
need to be complemented by suitable information to captugecbntext in
which the corresponding attribute value has been obtaif@dexample, on
which platform, by which method, etc. Table 8.9 presents -exhaustive
list of metadata that are suitable to use. Fhatformmetadata type is used to
specify on which target platform the extra-functional pedy value has been
set. TheSourcemetadata type describes the method used to assess the value.
The Analysis Typeonly available for the WCET attribute type, allows refin-
ing the type of analysis that has been performed: whegaasanteemplies
that the value has been assessed with safe margin estisatieaning that

8.3 The Automatic Driving System 173

the actual WCET will always been inferior to this valestimationdoes not
provide such guarantee. Often, analysis generates outaitdescribe how a
particular value has been evaluated. Accordingly, it isongnt to keep these
outputs to corroborate the value. This is the role ofAlmalysis Outputneta-
data type, that allows packaging the analysis results wghcomponent for
which the attribute value has been assessed. The metagat@dynmenen-
ables developers to express comments on the value. Othadatettype not
explicitly shown in the table include information relatedthe creation time,
the accuracy of the values or its version, etc.

Table 8.9: Metadata type specification

{“RCX 1",
“RCXi2"
* 4 *
Platform “NXT”,
.}
{ “Estimatiori,
“Measuremerit
“Simulatiori,
Source * “Inherited’, *
“Analysis with Bound-T,
“Early Analysis
.}
. { “Estimatiori,
Analysis Type WCET “Guaranted } 1
Analysis Output * Path *
Comment * Text *
UML .
Author Statechart String +

174 Chapter 8. Extended Examples

8.3.3 Developing the Drive-by-Wire System (Iteration 1)
System Requirement

Developing a system necessitates first to have a clear uaddisg of the sys-
tem boundaries and requirements. Once captured, they eaméithoroughly
studied. This process generally leads to the creation fdrdifit artefacts such
as UML diagrams, algorithms, informal documents, etc.

For instance in iteration 1, we use UML use-case diagramaudfglthe
interactions of the systems (see Figure 8.11). Furtherrderao understand
the behaviour of the system during its execution, we mods the UML stat-
echart diagram provided in Figure 8.12. In it, the systemabiur has two
main states: either the system is idl&” state waiting for the driver to start
the system, or the vehicle is being driven, i.e. the systefmving”. Tak-
ing into consideration the characteristics of a vehicle,rtioving state can be
decomposed as a concurrent hierarchical state: one foiirdtidn (forward,
backward or free wheel), one for the speed (constant speeelgsiate, deceler-
ate), one for rotation (left, right, or straight) and onetfoe honk. Additionally,
when an obstacle is met while backing (moving state in therssysub-mode
for the direction), the systems passes into the “standbyaard” state until
either the direction changes to forward or the obstaclensred.

Architecting the System in ProCom

To realize the “drive-by-wire” solution, the system is degmsed into five
independent and active building blocks designed as Pro@ypanents: the
Communication SystertheHMI SystemtheEngine SysteptheAlarm System
and theController SystemFigure 8.13 shows these components and how they
communicate with each others.

The Communication systeis in charge of simulating the presence of a
driver for the vehicle. The communication system receimsgriuctions from
the users through the infrared receiver of the RCX brick,the communica-
tion device. When an instruction arrives, it is analysed @amcbded as a mes-
sage compatible with the command message channel befarg $Emt. Such
command includes driving direction (forward, backwardt, &ad right), driv-
ing speed (faster, slower), stop and warn. Accordinglypihsic functionality
of the communication system component is to wait for drivimgjructions.

The HMI Systemis the interface between the vehicle and the driver. In-
formation messages from the system are displayed to theonseidedicated
display and the user can also directly interact with theesystthrough the

8.3 The Automatic Driving System

175

P

Start the vehicle
}
[}

|
<<include
[}

<<inc

/
/
/

/ -
Drive the vehicle -
<

Set the direction
7

/

-
-

/
lude>> .
: -
<<include>>
SN
-

_<<include>>""

Accelerate

o]
o
=~
@®

. N <><include><>
Vehicle's <<include >> = ~x(Tum the vehicle -
driver S Driving
Monitor
Stop the vehicle
Figure 8.11: Statechart model of the system for iteration 1
stop \.f stop
stop
— Reverse && obstacle detected
[] Idle d Moving Stavr\ll:I:: &
— - __Forward || no obstacle
Moving | | |
keep keep	
te	
revoff off fwd : l/ decelerate J/ : lefiright left right : honk timeout	
Reverse Forward	£ Faster Slower J
J E	
accelerate’ decelerate	
accelerate	
direction speed | rotation | honk

Figure 8.12: Statechart model of the system for iteration 1

176 Chapter 8. Extended Examples

System

Communication
system

Controller Alarm
System System

] D Sem3]

Engine
System

system

message

Figure 8.13: High-level description of the system with Br@eSomponents

available buttons. Internally, the HMI system consistsaf sub-components:
one dedicated to handle the user inputs from the buttonshendther one for
displaying information to the user.

TheEngine Systers in charge of controlling the movement of the vehicle.
It sets the speed and direction of the vehicle based on dasingement related
instructions. TheAlarm Systenmanages the sound and warning systems to
inform when an obstacle is met while backing: when an alagnaimessage
is received, the alarm system activates the honk for a ceatabunt of time.

TheController Systens the component in charge of taking decision for the
whole system. According to the users instructions, it dateis the necessary
operational changes that the vehicle must responds to.

Given that, the main focus of the example does not targetigighulition
and concurrent execution of subsystems aspects proposga8pm, we sim-
plify the proposed design in implementing the Engine SysiaechAlarm Sys-
tem as ProSave components in the controller system. Tloiwsbn one hand
for simplified analyses and assessments of timing and meproperties for
the System component, in the sense that the concurrenttexeeund distri-
bution is not concerned, but on the other hand, this makearh#/ses and
assessment of these properties more complex for the clentrol

Accordingly, the controller system is a ProSys primitivengmnent built
out of ProSave Component. Its inner structure is shown inr€i@.14 and de-
scribed further in the section “architecting the Contnodfgstem with ProSave
components”.

8.3 The Automatic Driving System 177

Setting the Requirements

Now, that a preliminary architecture is available, atttéhimstances can be used
to annotate the ProCom architectural model with infornratiescribing the
requirements and to package the requirement artefactspeddn the previous
requirement analysis phase with their corresponding comapis.

From the description of the system and the hardware spdaificahe fol-
lowing requirements can, for example, be extracted:

e Memory Consumption

M1 The software system should fit in 10kb of ROM
M2 The software system can use at most 32kb of RAM

e Safety and Timing
ST1 While moving, the vehicle must respond, at most, in 215ms.

Table 8.10 shows an excerpt of the attribute values attaithtbt ProSys
components of the architectural model from Figure 8.13. dfeeementioned
requirements M1 and M2 are set on the System component thtbagreation
of a “physical size” and “static memory usage” attributegamse respectively.
ST1 could be captured in a similar way through the creatioaroédditional
attribute type that correspond to a response time extretifumal property.

The requirements set of the System component can be brokemtdats
individual subcomponents. As observable in Table 8.1@, allows for sim-
ple verification of the requirements between the valueslagtd to the sub-
components. For example, the Controller has been assiddedfghysical
memory space. Yet, in deriving a physical size attributéainse for the Sys-
tem component from the values of its sub-components, tte¢ &mhount of
ROM that should be available has become 12kb which is supteribe initial
requirements. Accordingly, the attribute instance for phgsical size of the
controller is refined to pass from 6kb to 4kb.

Architecting the Controller System with ProSave Componens

As illustrated in Figure 8.14, the Controller System in&diyiconsists of a rear
Parking Sensor component, a Decision Center component/am/ystem
component and a Motor Unit component.

178 Chapter 8. Extended Examples

Table 8.10: Excerpt of attribute instances concerned \eitjuirements
(Platform and Validity Conditions are not visible)

. [] 32
Static Memory — Source: Requirement
Usage — Comment: M2
[[] 10

— Source: Requirement
— Comment: M1

Physical Size — Source: Derived

— Comment: M1

— Comment: Derived
from sub-component’s
requirement values

]

] ./models/UML/statechart.uml

Controller UML Statechart — Author: S eve
— Comment: Approved by Jan

[] 150 000
WCET — Source: Requirement
— Type: Estimation

Static Memory |[-] 10

Usage — Source: Requirement
[e
Physical Size — Source: Requirement
— Version: 1
[[] 30 000
HMI WCET — Source: Requirement

— Type: Estimation

8.3 The Automatic Driving System 179

Iff wam], then stop & activate alarm systes AN
1fjtwam), just motor

Rear
Parking

: H
Sensor .5 H : -
command H : H
: : . :
: : speed
angle 77 angle

message ﬁ]—‘

Figure 8.14: Controller System built out of ProSave compmise

The controller system works as follows: At each activatieniqd, deter-
mined by a clock, the rear parking sensor is activated. Upompdetion of the
activity of the rear parking sensor, the decision centeeis triggered. Bas-
ing its decision from the received instructions from therysemmand input
port), the actual speed and the data from the rear sensdhrtitde, direction
and angle are outputted together with a message to be sdre thisplay. If
the decision center signals a warn (i.e. the rear parkingesemas detected a
collision), the alarm system is activated together with iiinetor. Otherwise,
only the motor is activated.

The role of therear parking sensors, upon activation, to get inputs from
the physical sensor and write into the output port whetherthick sensor is
activated or not.

TheDecision centers the heart of the controller. It is in charge of dispatch-
ing information towards to appropriate subsystems. In tiseiferation, it only
consists of the manual regulator component as illustratddgure 8.15. The
role of themanual regulatolis simply to calculate the throttle and direction to
apply according to the user inputs. If the vehicle is goingkwaard, the alarm
signals might get activated.

The Decision Center can be enhanced wittAtarm Analyzercomponent
(see Figure 8.16). The Alarm Analyzer component is in chafd#tering the
input from the sensors to eliminate erroneous signal. Riairce, signals em-
anating from the back sensor should only happen when theleghibacking.

180 Chapter 8. Extended Examples

Decision
Center

Manual

commarndﬁT Regulator throttle
cspeéd dir
rearS: ﬁ angle
: warn
msg

Figure 8.15: ProSave model of the Decision Center component

=0 Decision
Center

command throttle
cspeed l dir
rearSE A; angle
{ warn
— i msg

Figure 8.16: ProSave model of the Decision Center compamigmthe
Alarm Analyzer component

8.3 The Automatic Driving System 181

Analysing the components and the system

From the sole design of the Controller component descrihdatié previous
section, several analyses can be performed. Similar psazes be repeated
for any component present in the system, including the systself. The
purpose of these analyses is to assess the feasibility déign and, if needed,
investigate alternative solutions early in the developtpencess. For instance,
one may want to evaluate whether the advanced decisionr@amtée used in
place of the simpler version. In using expert estimates erstib-components,
extra-functional properties values such as timing progedan be derived for
the composite component. This is possible thanks to thaaiat semantics
of the ProCom component model. In applying the timing arialpsoposed
by Carlson [91], newly derived values can be obtained andpeoed to the
requirements set in the previous development stage. TablesBow an excerpt
of these values. Other types of analyses can also be applied.

Once, the remaining components have been implemented,céablem
can be validated and verified with respect to functional axtcagfunctional
properties using various analysis techniques. The valb&sreed can then be
used to refine the estimations previously derived for theérotiar component.
Once, all the missing components have been implementedy#tem can be
synthesized. New values can then be inserted from the Systemponents
that would correspond to its execution or simulation. TahlE2 provides an
excerpt of final values for the WCET.

8.3.4 Enhancing the Drive-By-Wire System with an Auto-
matic Driving Functionality (Iteration 2)

In this section, we describe interesting aspects of theldpxeent process to
enhance the drive-by-wire system from iteration 1 with atoaatic-driving

functionality. This corresponds to iteration 2 from Sewt®3.1, in which a
vehicle should automatically trail a preceding vehicle erdsiven manually.
On the overall, the development process followed here idlairno the one

in iteration 1, but with the difference that components d@ved in iteration

1 are reused. The purpose is here to illustrate how ProConpaoents and
multi-value context-aware extra-functional properties ased in a context of
reuse.

182 Chapter 8. Extended Examples

Table 8.11: Excerpt of WCET attribute instances for the @uiler
component and its sub-components

Architectural
Element

Attribute Values

[-] 150 000
— Source: Requirement
— Type: Estimation
— Platform: RCX i1
— Validity Conditions: Platform="RCX
i1”
[110 00O
— Source: Early Analysis
— Type: Estimation
Controller — Validity Conditions: “Controller
Figure 8.14 with simple decision
center component”
[-1 120 000
— Source: Early Analysis
— Type: Estimation
— Validity Conditions: “Controller
Figure 8.14 with advanced decision
center component”

[-] 25 000
Simple Deci- — Source: Estimation
sion Center — Type: Estimation

[-] 35 000
Advanced Det — Source: Estimation

cision Center — Type: Estimation

8.3 The Automatic Driving System 183

Table 8.12: Excerpt of the WCET attribute instances.

Architectural

Attribute Values
Element

[[] 150 000
— Source: Requirement
— Type: Estimation
— Platform: RCX il
— Validity: Platform="RCX i1”
Controller [] ==e—=ee 139 663) .
— Source: EsrbyAnalysis Derived
— Type: Estimation
[[] 123 780
— Source: Measurement
— Type: Estimation

[[] 28 150

— Source: Analysis with Bound-T
Type: Estimation
Analysis Output: ./models/BoundT/wcet.txt
— Comment: all loops repeat 2 times
Platform: RCX i0
Validity: Platform=RCX il

Decision Center

[[] 18 888
— Source: Measurement
Type: Estimation

Motor - Platform: “RCX i1”
— Comment: Based on 100 executions.
— Validity: Platform="RCX i1”
[[1 79 000
— Source: Analysis with Bound-T
— Type: Guarantee
RPS — Analysis Output: ./models/BoundT/wcet.txt

Platform: RCX i0
Validity: Platform=RCX il

[[1 13 625
— Source: Analysis with Bound-T
— Type: Guarantee
Alarm System — Analysis Output: ./models/BoundT/wcet.txt
Platform: “RCX il”
Validity: Platform="RCX i1”

184 Chapter 8. Extended Examples

Reusing from the Drive-by-Wire System

The first step of the development is here to identify the ptrés must be
adapted from the drive-by-wire system to provide the adedrfanctionality
of the automatic driving. This requires to decide which comgnts are needed,
which ones should be removed or modified to map the new regeinés for
the system. The same must be done with the extra-functioopkpties for
the components remaining in the design and the ones thatlarequ to be
adapted.

In order to do this, we start from the system description feration 2 in
Section 8.3.1. The principal differences with iteratiorré ia the ability of the
system to estimate the distance to the preceding vehideadira light sensor,
decide on the action to do to follow it and hand back the comdrthe human
driver.

Accordingly, the development process starts this time logirey the sys-
tem built in iteration 1, i.e. the ProSys “System” compondntreusing this
component, several extra-functional properties are aladenavailable in the
same time since the two systems (the one from iteration lrenalrte from iter-
ation 2) targets a similar platform with the same CPU. Thesedunctional
properties correspond to the artefacts produced or neeatdngdteration 1
such as use-cases, statechart, requirements, analyss eald measurements.
If the content of the System component is unchanged, thesaan be reused
directly. However, if the content is modified, it is neceg<aridentify and use
only suitable values.

In the case in which, the hardware platform for the systemdeéiliilt is
different than the platform from the previous project, iingportant to also
identify the extra-functional properties which are platidndependentand can
be directly reused from the platform dependent values thiktypically not be
reused apart for being used as rough estimations. In that tas validity
conditions play an important role to identify the valueg tten be reused.

For example, the UML use-case diagram available in the 8ystampo-
nent does not match the functional requirements for theerysiny longer. To
better understand the system, we decide to keep this diagmnanadapt it to
fit the new functional requirements. As a result, a new use-called “Auto-
matic Drive” is added to the original use-case (see Figut&)3.This changes
in the original use-case implies that the attribute instad®L use-case can
be reused.

8.3 The Automatic Driving System 185

Set the
iracti Accelerate
Start the direction
I 7/
vehicle K 7
.
' / A
! <<include<<include>>.~
<<inc||ude>>/ <<include>> o e
A ="\ _vehicle
L < -7 <<include>>
vehicle _/ __i oo/ Stop the
) include vehicle /

. y \
Vehl|cle s <<extend>>
driver A

Driving
Monitor

Figure 8.17: Use-case of the system for the ADS system.

Similarly, the extra-functional requirements M1 and M2 fegtthe drive-
by-wire system are still valid in iteration 2 so they can bediss they are.
New requirements can also be derived from the system déscriguch as the
following safety requirement:

ST2 The vehicle must maintain a distance to the target vehicleast
equals to twice the braking distance.

Then, the final architecture of the drive-by-wire systera, ithe internal
view of the System component, is examined to locate the awatigat must
be performed on the system. This corresponds to the solstiown in Fig-
ure 8.13 with the motor unit and the alarm system inside tiirobber compo-
nent as illustrated in Figure 8.15. However, due to the @aftht requirements,
none of the ProSys components used within the System compoae be
reused without modification. The Communication and HMI comgnts re-
quire to be enhanced with an extra command to enable theatiotivof the
ADS functionality. The Controller component also needs ¢ontodified to
cope with the new functional requirements. This implied tha attribute in-
stances available for the System component cannot be rdirsetly. Yet, itis
possible to reuse some of them as a conscious decision t@presme early
estimations on the design. For instance, a physical sigbutt instance mea-

186 Chapter 8. Extended Examples

sured for the HMI component can be used as a possible appatimimin place
of a measurement as shown in Table 8.13.

The Controller component also needs to be modified with thleviing
changes:

e Addition of a distance sensor component that evaluatesigttende to
the preceding vehicle;

e Modification of the decision center to support the autonosndriving
use-case.

From the components used to build the Controller compotteatear parking
sensor, the Motor Unit and Alarm System ProSave componantbe reused
without modification together with their extra-functiomabperties. As for the
use-case diagram of the System component, the statechgradi within the
controller component is adapted to support the autonomouisgl state (see
Figure 8.18). Table 8.13 shows some of attribute instartescan be reused

in iteration 2.
top
Idle 1
uto mod

manual mode

Moving
f ﬁ%manua\ moda—ﬁ
accelerate Manual ‘ e | Autonomous stop— (.
Lbrake—/]\ ‘ uto mod 4\
Reverse Forward
&& Il
obstacle detected no obstacle
Standby & Warn top

Figure 8.18: UML statechart diagram for the ADS system.

8.3 The Automatic Driving System 187

Table 8.13: Excerpt of Attribute Instances reused in ltere2.

Architectural)
Element TypelD Attribute Values
System UML Use case | [] ./models/UML/uc.uml
Static Memory Usage [-] 32
— Source: Requirement
— Comment: M2
Physical Size [1 10
— Source: Requirement
— Comment: M1
HMI Physical Size [1 2

— Source: Requirement
— Comment: M1
[+ 2

— Source: Measoresert Estimation

— CFlags:
-02 -Wall -fno-builtin
-fomit-frame-pointer

— Comment: Estination based on a
previous project.

Alarm System Static Memory Usage [-] 8

— Source: Analysis with Bound-T

— Type: Guarantee

— Analysis Output:
./models/BoundT/sMem.txt

WCET [1 13 625

— Source: Analysis with Bound-T

— Type: Guarantee

— Analysis Output:
./models/BoundT/wcet.txt

Rear Parking Senspr WCET [] 79 000

— Source: Analysis with Bound-T

— Type: Guarantee

— Analysis Output:
./models/BoundT/wcet.txt

— Platform: RCX il

— Validity: Platform="RCX i1”

188 Chapter 8. Extended Examples

Architecting the Controller for the Autonomous Driving System

.1 Distance [
Sensor l

. Rear o

“*| Parking
Sensor

Decision
Center

Figure 8.19: The ProSys Controller component for the AD% buit ProSave
components.

First, in order for the system to be able to evaluate the mitgtdo the pre-
ceding vehicle, it is necessary to add a distance sensoraenpto the design
of the controller. As depicted in Figure 8.20, the distarexessr component is
emulated through a light sensor that detects the amourglufieflected from
the target vehicle and a distance estimator that uses tleévegicamount of
light to make a rough estimation of the distance betweentbevehicles. The
internal view of the new controller component is shown inuf&8.19.

Distance Sensor

Distance
Estimator

Figure 8.20: ProSave realization of the distance sensor

Further, the decision center component needs also to bdiptbtdi support
the new functional requirements. As illustrated in Figurl8two additional
components are added to the decision center in the secoatigte the ‘Au-
tonomous Regulatdiand the ‘Autonomous Target Findér The autonomous
regulator is in charge of calculating the required throtieection and angle

8.3 The Automatic Driving System 189

with regards to the estimated distance to the target in dalenaintain the
appropriate distance to the target. In addition, if the pEaking signal is en-
gaged and the car is backing, the autonomous regulator ngast & warning.
Itis assumed that the target to follow goes back and fortir ant do not turn.
If the target vehicle turns, the target will be lost. In thase, the autonomous
target finder is in charge of relocating the target. Its rsléoi command the
vehicle to progressively rotate the vehicle with incregsamgle to try to find
the target again. If after a certain time, the target has aehldound, the Au-
tonomous Target Finder raises an alarm, stops the vehiategties back in
idle mode, waiting for new instructions. The Manual Reguiés reused from
iteration 1.

Di :stﬁ} Decision

Center

Autonomous :
Target Finder ; desSpeed

- desDir

mode:

cspeefd[

Regulator

rearSé[desAngle

¢ warn

. message

Figure 8.21: ProSave model of the Decision Center compadnéhé second
iteration

Similarly as for the previous iteration, the remaining cament are then
implemented and individually tested against functionad amtra-functional
properties before the final system being synthesised. Nera-&xnctional
property values can then be added to each component or tgdtesrs

190 Chapter 8. Extended Examples

8.4 Summary

In Section 8.1, we have illustrated on the turntable exarhple a ProCom
design and a dedicated analysis model can be used conjmmgrform early
analysis of a system. Further, we have also shown how nLightbe used
to packaged analysis artefacts and extra-functional ptyppalues into com-
ponents. Through the realisation of this example, sevaralomes can be
discussed.

First, the integration of RMES into ProCom and the packaging as com-
ponent was rather straightforward from the componentdssign’s point of
view. Indeed, no change was required except simply registarnew attribute
type into nLight. On the other hand, from the analysis poini@w, more work
was needed as it was necessary to ada@iEs to correspond to the semantics
of ProCom in order to provide valuable analysis results.

In working on this example, it appears that it is quite diffico deter-
mine which extra-functional properties would be good cedatls to use as
attributes. From the rich RMES model of a component, it is possible to ex-
press how e.g., the resource usage changes over time oponsssto arriving
messages, or how consumption of different resources atedelAccordingly,
several isolated extra-functional properties can be etdkto be stored as sep-
arate attributes. For example, from theNrRes model of Controller, a bound
on the consumed energy can be extracted. Albeit very sintgptgpared to the
full REMES model, the Maximum Energy Consumption attribute instariee a
tached to the Controller component would provide valuatiermation about
the componentand could serve as input to other analysieitpods. Selections
of appropriate attribute candidates could be facilitatetdwving a precise qual-
ity process and development guidelines. Further, in etitrgproperties from
a model a new challenge arises: how to ensure the consistetaeen the
model and the extracted value?

With the personal navigation assistant system in Sectidnve have ex-
emplified how inheritance policies are used in practice. §thdy of the system
description highlighted the existence of dependenciesdssi values of extra-
functional properties. Such a dependency occurs withistiope of a project
such as between the acquisition time of an antenna digiteiver and the re-
sponse time of the parallel receiver. Another type of depangwhich scope
is global also exists as for instance between execution, timoest-case exe-
cution time and best-case execution. As a result, mechartistmandle these
dependencies should be provided.

8.4 Summary 191

With the last example of the automatic driving system in Bec8.3, we
have demonstrated the use of the multi-valued contextexextra-functional
properties during the development of a system. The systenbéen devel-
oped using the ProCom component model and different asalyshniques to
assess the extra-functional properties: component-liasied) analysis based
on ProCom semantics [91], static analysis with Bound-T [@2§i measure-
ments on the target platform. From this example, it has eetktigat several
important aspect must be considered for an efficient manageof extra-
functional properties in the development process. Fisfoster the use of
extra-functional properties in the development process,iimportant that the
various analysis techniques are tightly integrated witight. Otherwise, the
analyses are performed outside the framework and this sitates manual in-
tervention to set the results as extra-functional progsrtiFurthermore, it is
necessary to have clear rules to decide whether a new &ttrifalue is a re-
finement of a previous value or a different value. Having @t of rules is
particularly important for automated processes.

Chapter 9

Related Work

In this chapter, we relate the contributions presentedimttiesis, namely a
classification framework for component models, a frameworkanage extra-
functional properties, a new component model for distedutmbedded sys-
tems and two integrated development environments to simalavant work.

9.1 On Component Model Classification Frame-
works

Over the last decade, several attempts have been made tifyitkey features
of aspects of component software approaches: classificstiimlies of compo-
nents and interfaces ([93], [94]), interfaces, extra-fiomal properties ([28]),
ADLs ([49]), component models ([50]), and characteristitsomponent mod-
els for particular business domains ([63]), among others.

The work presented by Yacoub in [93] and [94] does not comsidg com-
ponent model but rather focuses on practical issues of coemautilisation
and reutilization. In [93], the interface classificatiossit into two categories:
application interfaces and platform interfaces. Applmainterfaces describe
the information about the interaction with other composdntessages proto-
col, timing issues to requests) whereas the platform agpecentrates on the
interaction between components and the executing platf@imilarly in [94]

a model for characterizing components is proposed whicke®the classifi-
cation model of interfaces from [93], where: a componenegarded as the
description of three main items (informal description,egrtls and internals)

193

194 Chapter 9. Related Work

each of them split into several subelements. The informstiiletion is con-

nected with a set of features that relates to the use of a coempén a team

and over time. These features can influence the selectioc@hgonent such
as: its age, its provenance, its level of reuse, its contxttent and if there is
any related component solving a similar problem. The extisrare concerned
with interaction mechanisms both with other applicaticefacts and with the
platform (application interfaces, platform interfaceser integration phase, in-
tegration frameworks, technology and non-functionaldesg). Finally the in-

ternals are concerned with elements related to the potérftamation needed

during the development process of a system (nature, gnatyuéncapsulation,

structural aspects, behavioural aspects, accessiluilggurce code).

A classification that is similar in spirit to our work, is proged in [95].
This classification framework attempts to determine the éeatures of a soft-
ware component. However, it differs from ours in includihg identification
of a component by a set of characteristics (unit of compmsitieuse, inter-
face, interoperability, granularity, hierarchy, visityij composition, state, ex-
tensibility, marketability, and support for OO). The clifisation includes only
business components and business solutions. One of theep®lwith this
classification is the non-orthogonality of some of the chinazed items.

In [49], where ADLs are classified, components are definedaaictele-
ments of ADLs. The components are distinguished by thevatig features:
interface, types, semantics, constraints, evolution,raomdfunctional proper-
ties.

In [63], a classification model is proposed to structure tBSE body of
knowledge. All research results are characterized acegtdi several aspects
(concepts, processes, roles, product concerns and bsisioeserns, technol-
ogy, off-the-shelf components and related developmeradigms). Here, the
component model is only considered as one of the fifty elesnamtong the
CBSE items. However, in this work, a more precise taxonomgpgiication
domainsis proposed. The paper identifies the followingiapfbn domains in
which component-based approaches are utilized: aviotiesmand and con-
trol, embedded systems, electronic commerce, financethicea, real-time,
simulation, telecommunications and, utilities.

In[7], several componentmodels (JB, COM, MTS, CCM, .NET @8Gl)
are mainly described according to the following criterigerfaces and assem-
bly using ACME notation, implementation, and lifecycle.€elimodels are not
compared or evaluated, but rather these characteristodescribed for each
component model.

9.2 On Extra-Functional Properties 195

In [50], a study of several component models is presentetdctivasiders
the following aspects: syntax, semantics and compositivough an ide-
alized component-based development lifecycle. A smallenler of com-
ponent models are considered (also UML and ADLs are includ&hsed
on this study, a taxonomy centered on the composition wités proposed,
which clarifies at which steps of the development processgi¥en compo-
nent model, components can be composed and whether theyeaaitrieved
from a repository to be composed. Furthermore, the diftdygres of bindings
(compositions) of some of the component models are disduss®ore detail.
This taxonomy does not consider extra-functional properti

In comparison with all these works, the classification freumik proposed
in the thesis specifically focuses on component models aidittrinsic char-
acteristics. These have been identified through a thorongsygstematic liter-
ature review and analysis. However, the literature reviemldchave been made
more systematic in following the general guidelines prepldsy Kitchenham
in [96].

9.2 On Extra-Functional Properties

Extra-functional properties have gradually gained imack in software engi-
neering to be viewed today as an absolute counterpart tdifunat properties.
However, due to their complex nature, there is still no cosas on their def-
inition, and on how they should be specified, used and asbehksing the

development. This results in a lack of support and the feat tiey are sel-
dom consider in practice. The same is also true in compobased software
development as pointed out in [97] and [98].

Many works concerned with extra-functional propertiesisafound today
in the literature. We use the categories below to group thvesks and some of
them will be described and related to the thesis contribgtia the following
Sections 9.2.1,9.2.2 and 9.2.3.

e Contract-Oriented ApproachesThe works gathered in this category
aims at proposing approaches to define contracts, and usafile
which guaranty the correct extra-functional behaviourhef system at
run-time. These approaches are often complemented withtoniowg
supports and negotiation policies. Hence, these appreaptrerally
cover mainly two development phases: modelling to spetiéydxtra-
functional contract and runtime for the monitoring and jagsegoci-
ations of the properties.

196 Chapter 9. Related Work

e Prediction-Oriented ApproachesApproaches in this category aim at
analysing extra-functional aspects with the intentioneiédmining early
in the development process whether a system will meet itsaext
functional requirements or not. To a certain extend, thggeaaches
contribute to the modelling activity of the system. Theseksaan be
further sub-categorised between “general-purpose” andalyais-
specific” approaches. These approaches can often be usgintgn
with model-driven engineering techniques to generate empgintation
code complying with the envisaged specification and systeahetn

e Fact-Oriented ApproachesApproaches belonging to this category are
intended to provide support during the development proteesapture
information about extra-functional properties on the sgsbeing devel-
oped in order to see whether the requirements are beindieatig he
approach proposed in this thesis falls into this category.

It is worth noting that works with different focuses on exftenctional
properties in comparison to ones from the above categoaiesiso be found
in the body-of-literature. These works provide useful ceamentary informa-
tion for the thesis contributions and can be grouped in theviting categories:

¢ Classification-Oriented Approache$Vorks belonging to this category

are concerned with the identification, characterizatiaha@efinition of a
general structure to sort identified properties accordirigely character-
istics. Some of classifications are generic [99, 100, 66, 102, 103],
whereas others focus on a specific category of propertiésasidepend-
ability [1] or worst-case execution time [65]. Another sabsf works
from this category relates to specific property aspects asatompos-
ability [28].

These works present the knowledge domain for extra-funatiprop-
erties and in summarizing in a succinct form the key aspeicexina-
functional properties, they can be used by approaches fttber ecat-
egories to know what must be considered. However, most optbe
posed classifications are often non-orthogonal and nosist@mt be-
tween each other. For instance, Laprie’s dependabiligsdfiaation [1]
collides with the standard 1S09126 [66]. As a result, it i difficult
today to have a clear picture on how extra-functional prigeshould
be represented, assessed and what factors influenced them.

9.2 On Extra-Functional Properties 197

e Requirement-Orient Approachas/orks on extra-functional requirements
represents another facet of extra-functional propesibssh many works
such as [104, 105, 106, 107] are concerned with. This caegjoov-
ers approaches to identify, express and manage extraidnattequire-
ments.

9.2.1 Contract-Oriented Approaches
QML

QML [108, 109], Quality of service Modeling Language, prepe a general
language for the specification of extra-functional projesrtHowever, unlike
our approach that considers extra-functional propergegand-alone entities,
QML envisages them within the scope of a contract (similasioconcept of

category). In QML, a contract is specified through a set ofaefinctional

property specification called “dimensions”. Dimensions declared as fol-
lows: “name : orderdata_format|unit]” with, order describing the way the
values are ordered (increasing or decreasing)datd format corresponding
to one of three proposed domain numeric, enumerated or ketufit param-
eter is optional. When a contract is instantiated, optigrtak value of each
dimension can be constrained with authorized value range.

The primary motivation for QML is to support the creation ofrfunctional
contracts for the development of distributed object-agdrsystems in order
to monitor whether extra-functional requirements aresfatl at runtime and
dynamically adapt the system in case they are not. In QMliribatable”
elements are called profile and are limited to interface @&fimonly but en-
ables nonetheless to attached contracts for any entityeahtbrface definition
as well. This includes operations and parameters for exanipéfinement is
also considered in the sense that a contract is a refinemanbtiier contract
if its dimensions are more constrained. QML enables pragggenonitoring,
negotiating and conformance checking.

However, in comparison to our approach, the expressivigML is more
limited and more informal. For example, a same property casfecified
differently in two different contracts. Also, QML only offe a limited set of
data type limited to numeric, set or enumeration values.s Bixicludes the
possibility to express properties through formula, dsttion, etc.

198 Chapter 9. Related Work

QoSCL

Similarly to QML, QoSCL [110], the Quality of Service Coraiint Language,
also aims at the specification of extra-functional propedwtract. This lan-
guage reuses the core concepts from QML and enriched théntwatcomple-
mentary aspects) dependencies between extra-functional properties can be
defined (‘QoSCL allows a designer to declare a set of extra-functipnaper-

ties, bonded between them into a network of relations (nizadezonstraints,
formula, or empirical rules) andii) techniques to automatically generate code
for runtime monitoring and validate contract for comporesgembly are pro-
vided. However, QoSCL do not alleviate the drawbacks of QMéntioned
above.

COML

CQML [111], is a Component Quality Modelling Language bailound three
core conceptsQoS characteristicso define types of extra-functional prop-
erties, QoS statement® specify constraints on the values of the Qos char-
acteristics and)oS Profileso assign properties to components and parts of
components. Further, QoS characteristics can also be gddnto categories.
QoS Contract can be derived by agreement between QoS Pitéeied to
different elements.

In CQML, types for extra-functional properties are dedthtbrough a
unique name used as identifier and a value domain. Additigmaktrictions
on the value domain, a value order and locally defined unitsbeaused to
complement the declaration. Extra-functional propertes also be specified
with a statistical definition including for example its megariance, maximum
value, minimum value, standard deviation, etc. Howevew Hte statistical
values have been obtained in not integrated into the larguag

Refinements between extra-functional property types aris&ged through
a specialisation paradigm enabling to restrict previoasfined types. This
is similar to the refinement concept proposed by QML for caettr Further-
more, CQML also considers component compositions in thaesthat a QoS
characteristic of a composite component can be derived flearsame QoS
characteristic of the sub-components. However, CQML dogsake into con-
sideration the dependencies that exist for example withutfagie context, the
resources, etc. as identified in [28] and [112].

9.2 On Extra-Functional Properties 199

Just as for QML, CQML does not provide a general-purpose system
and considering units as only informative. Value domairmslianited to three
predefined “type” consisting of numbers, set and enumersitimly. CQML
primary purpose is to provide a set of suitable concepts ppau of extra-
functional property aspects during development. CQML du#er se pro-
pose any monitoring, adaptation or agreement mechanisovgevér, in [111]
a QoS Framework including a QoS Monitor, an Adaptation Managd a QoS
Negotiator is described.

In [113], Rottger and Zschaler identified some limitatiefiML and ac-
cordingly propose several enhancements for it. In padictihey insist on the
need of having the computation model explicit, i.e. spasgywvhat elements
of that computational model can be enriched with extra-fional properties
information. Furthermore, they propose to extend the lagguo consider
resource-related properties such as CPU usage, memory.

9.2.2 Prediction-Oriented Approaches

The approaches described in this section use models edrigiib extra-
functional specific information for quantitative analypisrpose. These ap-
proaches can be separated into two grougsneralthat aims at providing
ground for expressing a large variety of extra-functioralgerties in order to
support their analysis, angpecificthat aims at a given type of analysis pri-
marily. The specific prediction-oriented approaches aneg#ly based on the
particular needs of the targeting analysis to derive thessary information
which the models must be annotated with. The approachesilieddelow
consider component-based development. Other approaichieg at the same
thing include for example model-checking approaches sadbP@AAL.

UML Profiles

Several UML profiles have been proposed to provide for th& tacextra-
functional property specification support in UML. Some oégb profiles are
UML SPT (the UML Profile for Schedulability, Performance aFithe) [114],
UML QoS & FT (the UML profile for Quality of Service and Fault lew-
ance) [115], and MARTE (the UML profile for Modeling and Analg of
Real-Time and Embedded systems) [71]. These profiles amrggrediction-
oriented approaches in that sense that their main purpdeepi®vide mod-
elling of extra-functional properties in order to specifydain some cases to
enable analysis and validation of systems in early devetopphases. These

200 Chapter 9. Related Work

profiles allow to enrich any feature of UML diagrams with exfunctional
properties annotations.

However, UML SPT and UML QoS & FT have identified shortcomings
UML SPT lacks expressivity and flexibility. It essentiallygports timing prop-
erties with corresponding schedulability an performantalyses only. Fur-
thermore, the profile cannot be extended to comply with $igacser’s needs.
In comparison, UML QoS & FT covers more properties which carfixed or
dynamically managed. It also provides support for definiatggories and a
QoS catalog, i.e. a repository of extra-functional propspecifications. But
the language is bulkier while, alike UML SPT, it still lacksrinal semantic.
These limitations have led both profiles to be superseded ARTME.

MARTE defines a general framework for the specification ansigteof
extra-functional properties with the main intention of pagting any kind of
analysis based on these specifications. To this end, thdepi®ftructured
in four packages of which the foundations one has a sub-gadket specif-
ically addresses extra-functional property modellingeasg the NFP profile.
The NFP profile is concerned with the specification on how wate, qualify,
and apply semantically well-formed non-functional comsein real-time em-
bedded system development. Some aspects of extra-fuattiomperty man-
agement proposed in this thesis emanate from MARTE and i® pl&file,
namely the need for qualifiers that provide additional infation on extra-
functional property values (e.g. source, statistical megsprecision, etc.),
and the need for a dedicated framework. With regards to qunoagh to extra-
functional property management, MARTE offers a flexiblaigioh to integrate
extra-functional property information without having tadify the underlying
model. However, MARTE is tight to the UML modelling languaged does
not focus on implementation and reuse as our approach.

Palladio

The Palladio Component Model (PCM) [48, 116] is a componeodeh tar-
geting business information systems. It specifically aitnsnabling the pre-
dictions of performance and reliability properties in gatévelopment phases.
This includes extra-functional properties such as resptimee, throughputand
resource utilisation. The approach to predictions in th&R€largely model-
driven oriented and thus centered around several supganodels used by
identified actors during the development process. A noieeteature of this
approach lies in the possibility to enhance these models syecific extra-
functional property information that can be parameterizecbrding to envi-

9.2 On Extra-Functional Properties 201

ronment influences such input parameters, resource usageisage of re-
quired services. This information is specified through a@lshstic expression
language called StoEx. The language is based on mathehfatindations for
describing random variables and their distributions. Thésans that alike our
approach, the PCM approach also acknowledges the need mexplcit the
dependencies towards the usage context of extra-funtpooerties.

PECTs

From the Carnegie Mellon Software Engineering Institutelfhe Prediction-
Enabled Component Technologies, shorten as PECTs [16, 111B], have
been developed to facilitate predictability of run-tim@perties such as per-
formance, safety and security. This approach stressesniheriance of pro-
viding suitable quality prediction based on sound analysisries for compo-
nent models. In that sense, a PECT is defined for a specific @oemp model
(Pin for example [32]) and integrates in it a set of suppgrtinalyses through
dedicated reasoning frameworks. A reasoning frameworkistsof an an-
alytical interface per property and corresponding analytseories and mod-
els. Examples of reasoning frameworks for the Pin compomertel include
ComFoRT [119], a model checking reasoning framework tordatee whether
safety and reliability requirements are satisfied; CoviE20] to discover buffer
overflows in C programs and Lambdd321] for predicting timing properties
such as average or worst-case latency of tasks.

In comparison to our approach that does not require chamngeicom-
ponents, each Pin components must be enriched with a dediaatlysis in-
terface to enable the use of the corresponding reasoningefvark. How-
ever, the approach also intends at making explicit asswmptn environment
and usage context such as the used scheduling policiest f@egform, etc.
In that respect, this ties up to our view that these must beeneaglicit and
maintain for future reference. In PECT, properties are §indefined as an
n-tuple(namevalue . ..), where the triple-dot punctuation mark represents an
arbitrary number of property-specific parameters. The reeattach extra-
functional properties to different entities is also reciagd and properties can
be attached to component, assembly, pin, reaction, emaigaty and environ-
ment service.

202 Chapter 9. Related Work

9.2.3 Fact-Oriented Approaches

Credentials

In [46], extra-functional properties are representedubfothe concept of cre-
dentials. A credential is defined as a triglétiribute, Value, Credibility),

for which Attributeidentifies the component propertfaluethe corresponding
data, andCredibility describes how the value has been obtained. Credentials
are considered to be incremental and evolving specificatioat requires at-
tribute names to be registered. However, details on thegmiacemain rather
vague and succinct. For example, for the concept of créwilah enumeration

of possible values is simply given.

The concept of credentials has been integrated in Enserfitii@sand in
SaveCCM [14]. In both approaches, credentials are attathedmponent
only. An extension to Ensembles is proposed in [7] that adlovedentials for
interfaces and their operations. This concept has alsir@tsfhe first steps of
the thesis work on extra-functional properties.

A Formal Specification Framework

In[123, 124], Zschaler proposes a formal specification &awork for the spec-
ification of extra-functional properties in componentdxdsystems. In many
respects, this approach is closely related to the one presbém this thesis.
First, a distinction between intrinsic and extrinsic pndpés introduced. An
intrinsic propertyis a property for which the value is solely dependent upon
the component’s implementation. In contrast,extrinsic propertyis a prop-
erty which value is dependent upon the component usagethe.value is
influenced by factors outside the component. This dichotatates to the dif-
ference between attaching an attribute to a component iypéic property)
and attaching an attribute to an instance of the componpat(gxtrinsic prop-
erty). Second, the approach makes use of models to formalgast extra-
functional property specification. In particular, modeddled context models
are used to analyse specific properties in order to obtairegalLikewise in
our approach, we advocate that extra-functional propestgssment can be
facilitated by the use of a hierarchical component modét wiprecise seman-
tics throughout the development process complementeditabiallocation
and platform model. Similarly, additional models can algoused to assess
extra-functional property values as illustrated in ChapteThird, the concept
of measurements is introduced. A measurement describes lvalue can be
obtained. However, it is unclear how the measurement igtintk the property
once obtained. The degree of formalism of the approach Is &gl extensive

9.2 On Extra-Functional Properties 203

as it relies on Temporal Logic of Actions (TLA+)[125] for tispecification of
all the concepts of the framework. However, this rendersafiy@oach rather
unintuitive and due to the use of TLA+ some extra-functigmaperties cannot
be expressed by the approach such as stochastic propertiesperties such
as learnability and maintainability.

Global/Local Repositories for Extra-Functional Properties

Some characteristics of the approach proposed by JezeBrauth in [126,
127] have directly been inspired by the work on extra-fuorei properties
presented in this thesis. These are namely the main olgeatithe approach
and the necessity of having a repository for extra-funetigmoperties. The
approach shares our vision of a dedicated framework thdilesn# system-
atically specify, integrate, manage and assess extraifurat properties in
component-based systems. Similarly, the framework isight to a specific
component model but instead allows enriching any compomeiate! specifi-
cation with a suitable support for extra-functional prdjgs:. Both approaches
differ however in their coverage of component-based d@mbnt process.
Whereas our approach aims at supporting extra-functioregdgties in the
whole development process from early design up to syntliesisexcluding
requirement and execution phases), Jezek and Brada&tsatge component
packaging and selection stages in which components areaseblack-box.
As a consequence, extra-functional properties are ordglagd to component
types and features thereof. Likewise, the approach alsocadkdges the use
of a repository of extra-functional properties. In contrausing the repos-
itory as a catalog of available properties only, the appnagses a system of
repositories distinguishingglobal repositorystoring extra-functional property
types fromlocal repositoriesgathering extra-functional property values eval-
uated in a given environment. However, the specificatiors due state what
aspects of the environment are embodied in a given locakiepy and how
these aspects are related to the extra-functional propaltgs. Similarly, the
approach does not maintain information on how the value kas lassessed
and to which extend the value can be reused, i.e. is this valusable in the
same context? or if it can be used in a different environm&ht concepts
of metadata is also introduced informally as a record cairtgiany additional
information such as property unit and allowed distinctizene for the prop-
erty. However, such a definition does not provide the fleijbdf metadata
concept introduced in Chapter 3 and even implies that a wailtiea differ-
ent unit should be a different extra-functional propergnée weakening the
semantics behind a property.

204 Chapter 9. Related Work

9.3 On Embedded System Development

9.3.1 Component Models

A broad range of component models exists nowadays, eithergkepurpose
or dedicated component models, as compiled in variousifitad®ns (as in
[7] or [50] for instance). However, few component modelsially target the
development of embedded systems and most of them focus cecHispmlo-

main only. Using the component models from Chapter 2 as & Jth#s section
compare the component models targeting embedded systemBreiCom

In the automotive domain, the AUTOSAR (AUTomotive Open SysAR-
chitecture) consortium [128] is the first large-scaleddtite to gather manu-
facturers, suppliers and tool developers from the autoradigld to establish
an open and standardised software architecture for thenatitee domain en-
abling component-based software design modelling. ThHrahgs common
standard, the vision of AUTOSAR is to facilitate the exchangsolutions (in-
cluding software components) between different vehicdfpims and subsys-
tem manufacturers as well as between vehicle product lingkat sense, AU-
TOSAR targets the upper part of the granularity scale of thpg@sed concep-
tual component model. Similar to our approach, AUTOSARalipon the use
of a component-based software design model. However, theapproaches
have principal differences. In particular, AUTOSAR compothmodel pro-
poses both pipe and filter and client-server paradigms camuating trans-
parently across the architecture through the use of stdisgakinterfaces. Al-
though targeting the development of applications for thimotive domain,
the first versions of AUTOSAR were lacking support to exprasd analyse
extra-functional properties in particular timing propestas for instance worst-
case execution time or end-to-end deadline. AUTOSAR 4.68¢gdo cooper-
ation with the TIMMO project [129] and EAST-ADL [130], inteis to tackle
this lack by an extension of the current metamodel. In palgicthe TIMMO
project intends to propose a standardised infrastruabureinage timing prop-
erties and enable their analysis at all abstraction levels fearly design to
deployment.

A second initiative that shows the growing interest from #utomotive
domain in component-based software development comes Baosch with
BlueArX [9, 131]. Also based on a design-time component mdsleieArX
differentiates itself from AUTOSAR in supporting timing @rother non-
functional requirements as well as in focusing on completeetbpment pro-
cess for single ECUs. To this respect, BlueArX is relativelyse to the ob-
jectives and contributions presented in this thesis inigaer with regards to
the lower layer of the component model (ProSave). Howevterdnces ex-

9.3 On Embedded System Development 205

ist. First, through the ProSys layer of the component md@@Com intends
to support also the development of embedded software sgstistributed
across several ECUs. Another difference lays in the prapsgpport to inte-
grate analysis. Whereas extra-functional properties esasbociated with any
entities of the ProCom component model (components, psetsices, con-
nections or component instances) through the attributadveork extension,
BlueArX on the other hand endows components with an additianalytical
interface to perform analysis either at system- or compbeeale. In a re-
cent work [10], BlueArX has been extended to support theyaigbf timing
properties in relation to operational mode, a feature wisgtot supported yet
within ProCom.

Developed in a close cooperation between Arcticus SystelBrend Malar-
dalen University, the Rubus Component Technology [11] istlaer example
of an industrial use of component-based approach in thecwukgti domain.
Similarly to ProCom, the RUBUS component model focuses qrassivity
and analysability through a restrictive component modehweler, the Rubus
component model allows the specification of timing prosrtinly and is not
primarily concerned with reuse.

The contributions found in this thesis are largely insplyggrevious work
done at Malardalen University on the elaboration of a congmd model for
vehicular domain. SaveCCM [76] is a design-time componesdehconsist-
ing of a few design entities with a restrictive “Read-ExecWTrite” execution
semantics and communicating through a “pipe & filter” pagadin which the
control- and data-flows are distinctly separated. Havinthsurestrictive se-
mantics, it enables formal validation and verification af gystem already in
early phase of the development process, prior any impleatientas well as
automated part of the transformations into an executalggesyas explained
in [24]. ProCom is built on the knowledge and experiment gdifrom the de-
velopment of SaveCCM and tries to alleviate some of theiotisins and draw-
backs of SaveCCM in particular in strengthening the conoépbmponents,
considering distribution and handling functional and atinctional proper-
ties in a more systematic way. Whereas the ProSave layemisaige extent
directly inspired from SaveCCM, the upper layer (ProSys)saat addressing
the distribution of subsystems, which was not addressddm8aveCCM.

In the field of consumer electronics, Philips has develomeidsaiccessfully
used the Koala component model [12] for the production ofower consumer
electronic product families (TV, DVD, etc.). In comparistmthe aforemen-
tioned initiatives, Koala is less oriented towards safgitical applications
than what exists in the automotive domain for example. Haneas Koala

206 Chapter 9. Related Work

still targets severely constrained embedded systemsy# psspecial atten-
tion to static resource usage, such as static memory faariost but it lacks
support for managing other extra-functional propertidse @iependencies be-
tween properties are handled through diversity spreadsiveech is a mech-
anism outside the component. Koala has served as input iRabhecop [15]
project done in collaboration between Philips and Eindnolechnical Uni-
versity. Similarly to ProCom, Robocop considers composi@sta collection
of models covering the different aspects of the developmpestess. Models
are also used to manage extra-functional properties asdtarice the resource
model, which describes the resource consumption of comysrie terms of
mathematical cost functions, or the behavioural modelctvkpecifies the se-
quence in which the operations of the component must be edokdditional
models can be created.

Pecos [132] is a joined project between ABB Corporate Rebeard Bern
University. Its goal is to provide an environment that supgpgpecification,
composition, configuration checking and deployment for acHjr type of
reactive embedded systems (field devices) built from saoéivemmponents.
Contrary to ProCom for which the components of each layee hgir own
execution semantics, i.e. ProSys components are activeeef®roSave com-
ponents are passive, the two types are put together in PAtsus.since com-
ponents in Pecos have only data ports, there is a need forditioad! type
of component, called event component, which activatioriggéred by the ar-
rival of an event. With regards to extra-functional profeesitPecos enables the
specification in a name-value pair format in order to ingzdt the prediction
of the timing and memory usage of embedded systems. Howiggpecifi-
cation is limited to name-value pairs in difference to thegbility offered to
specify extra-functional properties in ProCom.

Pin [32], a component model developed at Carnegie Mellotw&oé En-
gineering Institute (SEI), serves as basis for the preaatietinabled component
technologies (PECTSs) which aims at attaining predictihdf run-time prop-
erties such as performance, safety and security. Alike ppraach, PECT
stresses the importance of providing suitable quality igtexh based on anal-
ysis theories. However, the methods to integrate analyfés.dWVhereas Pro-
Com relies on an external attribute framework as means tdladanctional
and extra-functional properties resulting from differamalysis techniques,
PECT is centered around a reasoning framework consistiagalftical inter-
faces used to specify specific properties, and correspgratialysis theories
to enable the prediction of these properties. Also in coisparto ProCom,
Pin is a flat component model which does not support disiohut

9.3 On Embedded System Development 207

9.3.2 Alternative Approaches

This section correlates our work with other approachesahanot primarily
concerned with the principles and methods advocated in CB&Ere still
intended to support the development of distributed embedgstems.

In the automation domain, the standards IEC-61131 [40] ensliccessor
IEC-61499 [55] proposed by the International ElectrotéciinCommission
are well-established technologies for the design of Prograble Logic Con-
trollers. Whereas IEC-61131 allows to graphically compsgsgtems out of
function blocks, IEC-61499 has been developed to enforcapsulation and
provide a support for distribution. From a design perspecfroCom shares
some similarities with these graphical languages, in paldr the encapsulated
entities communicating with a “pipe & filter” paradigm witlx@icit separa-
tion between data- and control-flow, and the distributigopsurt. However, the
semantics associated with the function blocks are weakepaced to the Pro-
Com components, and the standards lack support for spegifyid managing
extra-functional properties and their analysis. This bdddck the possibil-
ity for formal analysis of the systems under developmentctvis one of the
major objectives this thesis aims at.

In the automotive domain, alike ProCom, EAST-ADL (ElecimArchi-
tecture and Software Technology — Architecture Descniptianguage) [130]
aims at providing a support for the complete developmenistifiduted embed-
ded systems by taking into consideration the hardwareywaodtand environ-
ment development assets. Although both approaches shaitarsibjectives,
they differ in the way those objectives are approached. B4®eProCom em-
phases components as assets for capturing developmemhatfon thus aim-
ing at reusability, EAST-ADL focuses on architecture dgg@n to structure
it. In EAST-ADL information is structured into five abstram levels, which
describe the functionalities from several standpointghteatity of a level real-
izes the entities of the higher abstraction levels. ProCowers three of these
levels (analysis level, design level and implementatioelle and leaves out
the electronic feature design (vehicle level) and the sttgpothe deployment
of the final binary (operational level). Similarly to ProCoBAST-ADL also
supports modelling of non-structural aspects such as limlvay description
but covers in addition validation and verification acte#ias well as manage-
ment of requirements. EAST-ADL was originally develope&asAST-EEA
ITEA projectinvolving car manufacturers and suppliers aad it is refined as
a part of ATESST project to be aligned with the major standattn efforts
existing in the automotive and real-time domains (AUTOSMARTE, and
SysML).

208 Chapter 9. Related Work

The Architecture and Analysis Description Language (AAIPL33, 134],
formerly known as Avionics Architecture Description Large, is a standard-
ization effort led by the Society of Automotive Engineerg\(5 to provide
support for the development of real-time and safety-aitembedded sys-
tems for aerospace, avionics, robotic and automotive dusn&onsequently,
AADL stresses the importance of analysis to meet the padatictonstraints
and requirements of the envisaged target domains. It pesvadformal hier-
archical description of the systems including propertiesupport the use of
various formal analysis techniques related to timing, ueses, safety and re-
liability with the aim of validating, verifying and perforimg trade-off analysis
of the system. Properties are defined as a triple (Name, Mgdee) that can
be attached to different entities and can have specificriostaalues. To this
respect, AADL is comparable to ProCom with nLight. Howewrrcompari-
son to ProCom, AADL is “only” a description language and doesprovide
links to design and implementation technologies. In thasseit decomposes
the system in a top-down manner specifying entities and hew interact and
are integrated together without providing any implemeatatietails. Thus,
AADL is not primarily concerned with reusability issues. @ other hand,
AADL includes some features that could be interesting te tako considera-
tion in the further development of ProCom such as the spatdific of execu-
tion platforms and operational modes.

Chapter 10

Conclusions
and Future Work

This chapter concludes the thesis by taking a step back tocefearch ques-
tions introduced in Chapter 1 to put them in perspective Withthesis contri-

butions discussed in the previous chapters. The chapts steSection 10.1

by summarising the novel contributions of the thesis befliseussing, in Sec-
tion 10.2, their relation and participation towards therallgesearch goal and
the research questions. Finally in Section 10.3, the chapids by identifying

and introducing possible directions in which the work cdoédcontinued.

10.1 Summary

In this thesis, we have investigated how extra-functiorrapprties should

be efficiently treated in component-based development dfegited systems.
This investigation has led to four main contributions, ngmga component
model classification framework,) a general framework for specifying, inte-
grating and managing extra-functional properties in congpd-based devel-
opment,iii) a component model dedicated to embedded system develbpmen
andiv) two integrated development environments supportingwhegrevious
contributions.

209

210 Chapter 10. Conclusions and Future Work

In Chapter 2, we have first examined the state-of-the-art statk-of-
practice of component-based development through thesti&eg, that is the
component model. As a result, twenty-four component mobtaige been
thoroughly studied, also with respect to how they speclficalipport extra-
functional properties. From this study, a component moldskification frame-
work has been devised, which presents in a clear and coneisaenthe im-
portant features of component models. This facilitatestifigng the com-
mon characteristics and principal differences betweerctimsidered compo-
nent models. In particular, it puts in evidence the lack dfedale management
support for extra-functional properties in component niede

Having identified this key fact, we have looked deeper intavdhallenges
the use of extra-functional properties poses for compehaséd development.
Based on this, we have formally defined, in Chapter 3, the ejoinaf multi-
valued context-aware extra-functional properties. Thisoept highlights two
important aspects emanating from the use of extra-funatiproperties in
component-based developmen}:their multi-valued nature, that is, several
extra-functional property values can be equally valid in\eg development
context and therefore must co-exist, @jdheir context-awareness, i.e. extra-
functional property values typically depend on their usagetext and this de-
pendence must be captured and made explicit in order tatéeireusing the
extra-functional properties together with the componkeytdescribe.

Building upon this formal basis, support mechanisms haea lidentified
in Chapter 4. These mechanisms were necessary to addredstlenges in-
troduced by the multi-valued and context-sensitivity naif extra-functional
properties, namely redundancy, applicability, and comfliddity. Furthermore,
solutions to facilitate selection of extra-functional pesties and refinement
between component types and component instances haveegisalbscribed.
This has laid the first step towards the systematic condiderand use of
extra-functional properties in component-based deve&pm Another step
derives from the realisation of nLight, a general framewforkspecifying, in-
tegrating and managing extra-functional properties in ponent-based devel-
opment. The key implementation details of the frameworlettaeen described
in Chapter 5.

In Chapter 6, we have investigated how a component model eapéc-
ified to facilitate the analysis of extra-functional projies while at the same
time presenting the same concept of components throughdavelopment
process starting from early modelling up to synthesis. Tdwm$ has been
placed here specifically on component-based developmeehibedded sys-
tems due to the importance of ensuring extra-functiong@riies such as tim-

10.2 Discussions 211

ing, resource usage, fault-tolerance in this particulanaio. The study of this
concern has led to the creation of a new component modelatedito embed-
ded systems, called ProCom. Its characteristic featuegajleld in Chapter 6,
includei) a two-layered structure to cover the different requiretaémat exist
at different granularity levels of embedded systeii)sa restricted execution
semantics to facilitate analysis, atiij a rich design-time component concept
to package the various artefacts require or produced dtin@glevelopment
process.

In Chapter 7, we have described the integrated developmeimbaments
that have been built to support the development of embeddteras comply-
ing with the solutions proposed in the previous chapters.

10.2 Discussions

Research Question 1:

What characteristics of a component model facilitate saiféw
design of distributed embedded systems?

Based on an analysis of the component model classificatamework and

an evaluation of the requirements for embedded systemaaweint, we have
identified a number of characteristics that a componentdambedded sys-
tem developmentand its associated component model sheelddowed with.

A component model should support:

— Different abstraction levels (i.e. the coexistence of porrents in an
early design phase and fully realised components).

— The different concerns that exist at different granuaetels (i.e. an
high-level view of loosely coupled complex subsystems tiogiewith a

low-level view of small non-distributed functionalitiesrslar to control
loops).

— Platform awareness while still being platform independen
— A seamless integration of various analysis techniques.

— A systematic management support for extra-functiongbgries.

212 Chapter 10. Conclusions and Future Work

In addition, as identified bfkerholm in [135] for the development of hard-real
time embedded control software, the component model sérsastiould be
limited to support analysis of important extra-functiopadperties such as tim-
ing, safety or reliability. With regards to efficiency of sohre development of
possibly less constrained embedded systems, this implidisdj the appropri-
ate trade-off between flexibility on one hand and analygglahd predictabil-
ity on the other hand. We approached this problem by allexgatome of the
restrictions present in SaveCCM — in particular, for the B level which
requires more flexibility than ProSave since it deals witktriuted active
subsystems executing concurrently — while reinforcingabiecept of compo-
nents as a uniform notion throughout the development psodespite of this,
ProCom provides a semantic precise enough to be formallyeespd through
timed finite state machines as demonstrated in [73]. Thisgerarious anal-
ysis tools to benefit from the features offered by ProCom tdope specific
analysis already in early development phases, hence allgirhproving the
development process performance and costs. Several ertalgisniques have
been built and tested with the strict semantic proposed bZ&m: parametric
worst-case execution time analysis [83], another timinglysis [91], model
checking of behavioural models [74] and fault-propagaf8%j. Additionally,
this also allows to perform synthesis of systems fully caemglwith the un-
derlying semantic of the component model as described ih [86

The strong coupling between target platform specificatimhsoftware im-
plementation is an important challenge since the correstoémany analysis
results and values of extra-functional properties strpadgpend upon the tar-
get platform specification and the deployment configuratiBostponing the
access to this information to a late development stage cesldt in incorrect
design and implementation of the system to be executedibhp$sading to
a costly redesign and re-implementation of the erroneotts pathe system.
Such information is also foremost important for extra-fiimeal properties.
Yet, breaking the hardware abstraction and making the tapgeification part
of the component model is not a suitable solution since tlualdvmakes all
components platform dependant and hinder their reusekibgane funda-
ment of CBSE. Such a problem arises for example when sensdmcauators
are used in primitive components that are used in turn totereamposite
components. An appropriate solution lays somewhere in d@tvthose two
extreme solutions. Solutions to tackle this problem aregmeed in [136] for
the integration of sensors and actuators in component ra@abe in [137] for
component allocations.

10.2 Discussions 213

Research Question 2:

What mechanisms are suitable to support the management of
extra-functional properties within a component model?

Answering this question corresponds to finding an appropriay to specify,
integrate and handle functional and extra-functional progs in a compo-
nent model in a systematic way. Thus, after identifying tremcthallenges
of dealing with extra-functional properties in componéased development,
we have addressed this question through the concepts skstirsChapters 3
and 4. We have formally defined the concept of multi-valuedtext-aware
extra-functional properties and identified necessary st mechanisms to
facilitate their seamless management. These conceptdbleavemplemented
in nLight. In summary, our approach to multi-valued cortewtare extra-
functional property management combines a formal defmitay specifying
extra-functional properties with techniques outside $ipiscification, such as a
property registry and property selection mechanisms, som@rthe correctness
of their utilisation in the current development context.

The concept of multi-valued context-aware extra-funaioproperties
makes explicit the multi-valued and context-sensitivitgture of extra-
functional properties. In that sense that it enalbjdsandling simultaneously
the specification of multiple values for a property, wherehegalue is identi-
fied through the provision of suitable metadata and/or tiéecad under which
the value has been obtained; andexpressing the dependencies of the values
towards outside parameters.

This approach can also be used to integrate the specificaftimmctional
properties without hampering the utilisation of interfa.ckn this context, func-
tional properties refer to the modelling of the behaviouth&fcomponents in a
format suitable for analysis techniques such as timed aat@model. By this,
our intention is to increase the analysability and preditits of component-
based embedded systems, and enabling a seamless and untfyration of
existing analysis and predictions theories into componmauels.

However, the concept of multi-valued context-aware efktrational prop-
erties introduces complexity in the design process in s¢veays as identified
in Chapter 4. In addition to the possibility to have multipielues assessed
at different point of time or by different techniques, it@lsnvisions delegat-
ing the declarations of needed properties to, for examiptedevelopers of the
analysis techniques who know best the types of informatiey heed as input

214 Chapter 10. Conclusions and Future Work

and that they produce as outputs. In the end, this couldtrigsah explosion
of property definitions in the registry. A possible solutiwauld be to rely on

a standardized catalogue of properties similarly to whatexor units (Sl),

date and time representation (ISO 8601) or the standard/&uation of soft-

ware quality (ISO 9126). Another possibility would be to diap techniques
to avoid the definition of equivalent properties, i.e. a gdpwhich semantics
is strictly the same to a property already present in the siggy but some
parameters are slightly different. For example, “worstecaxecution in ms”
and “statistical worst-case execution time in ms” shoultb®two different

extra-functional property types but only one: the “worate execution time”.
Its definition should correspond strictly to the semantigsroperty and to the
parameters should be handled within the property with fangse conversion
mechanisms.

Our approach to integrate extra-functional propertie®imgonent models
reveals a lot of information concerning the details of the@lementation of
the components. Although this is not a major issue for indeadevelopment,
it naturally becomes more problematic for its utilisationthe development
of systems or components for which the implementation detaiist remain
hidden such as COTS components since all the models thatdeaved for
analysis are packaged together with the components. Aigolabuld be to
provide mechanisms to identify and automatically remowvsfidential infor-
mation when components are distributed to third parties.

Research Question 3:

How can the different aspects of component-based devetdpme
for embedded systems be seamlessly integrated into a gevehd
environment?

From the knowledge gained from the development and use &dhe-IDE and
PRIDE, described in Chapter 7, we can identify several factorsdbatribute
to facilitate the integration of different aspects of a camgnt-based approach
into a common environment. First of all, it is important tovhahe set of
precisely specified theories and concepts that will be enaidagithin the IDE.
This serves three main purpose:

1) defining the core concepts that will form the backbone efibE,

2) clarifying the relationships, dependencies and gapsdsst these con-

cepts, and
3) identifying what should be the main features of the IDE.

10.2 Discussions 215

In the case of the Save-IDE, we strictly followed the consepid theories de-
veloped for the SaveCCT approach [14], namiglg design-time component
model, SaveCCM [76], with a strict execution semantics lfier tomponents,
ii) early formal analysis of timing and behaviour properti&s][andiii) dedi-
cated synthesis.

Similarly the objective of RIDE has been to provide a flexible component-
based development process from early design up to synthgsierted by an
interlacing of various analysis techniques. The develagrhas been centred
on the following theories and concepikthe rich-design time component con-
cept as the main development unit throughout the developprenessi) the
ProCom component model with its well-defined semanficsa systematic
management support for extra-functional properties [¥8the REMES model
and its corresponding timing, behaviour and resourceysesl[74, 84] , sev-
eral timing analysis techniques [83, 91], and a fault-pgat@n analysis tech-
niques [85], and/) a flexible synthesis that fully respect the semantics of the
ProCom component model [86].

This implies that, despite its known influence on tool ingegm (either
positive or negative), the format of a development arteafaobt so important
since translating from one format into another is genenadlgsible. What is
more important, on the other hand, is the information belisl artefact: its
content and its purpose, i.e. what is this artefact abouthamdit is supposed
to be used. Combining the core concepts together can bédtal by using
model-driven development techniques.

Several aspects of the development process are genetdiljytrelated
such a architectural design decision that depends upoitgdsam a given
analysis techniques. Accordingly, it is necessary to mlevraceability be-
tween the different development artefacts involved in teeetbpment, and to
track changes and possibly propagate them.

Furthermore, it is also valuable to provide flexible and egiiele mecha-
nisms to facilitate handling new requirements and the amdidf new activi-
ties. In both, the Save-IDE andRBbE, we support this needs through the use
of the Eclipse. However, ®DE, through nLight and the analysis framework
provides additional means to seamlessly integrate newsigaechniques.

216 Chapter 10. Conclusions and Future Work

10.3 Future Work

In this section, we describe some of the directions in whitghdontributions
presented in the thesis can be continued.

Industrial Validation of ProCom and nLight

The study examples presented in Chapter 8 show that differebedded sys-
tems can be modelled and implemented in ProCom. Howevexalidation
of ProCom and nLight on a realistic industrial distributedbeedded system
remains to be done. Such an evaluation would allow assefisingtrengths
and limitations of the component model and the attributméwaork as well as
their practical impacts on the development process.

Relational Database for Managing Multi-Value Context-Aware Extra-
Functional Properties

The current implementation based on the Eclipse Modellirgrework fo-
cuses on facilitating the integration of nLight with compahmodels specified
through a metamodel that defines their key concepts and riflaiionships.
This implementation has proven useful in many ways, notebfutomatically
set specific elements of a component model as attributabl@esever, due to
the highly heterogeneous and structured nature of multiegacontext-aware
extra-functional properties, managing them in this wayirdya development
process can become challenging. As the development prpoegesses, the
complexity of the systems grow: many components with mainaefinctional
properties must be envisaged. This may lead to a situatishich the amount
of information to look through is overwhelming as it is nesa@y to identify
the values that are relevant in the current developmenegant

A possible solution to this problem lies in the developmérd celational
data model which is an acknowledged solution to handle hogriat of data
with complex relationships between them. Additionallyysoof the identified
challenges for the management of multi-valued contextraeztra-functional
properties might have already known solutions in the da@ltbbmain. In-
deed, databases propose solutions to data indexing, da¢waband selection
through queries as well as enabling to reduce data redupcamtfacilitate
data storage.

10.3 Future Work 217

One of the challenges here is to merge the existing modeduiapproach
based on metamodelling, with an approach using embeddadatss so that,
ideally, the data management aspect of extra-functiomglgnties remains hid-
den from the users of nLight.

Inter-Property Dependencies

When using extra-functional properties in practice witkystem development,
as in Chapter 8 with the extended examples, dependenciesdretextra-
functional properties have become visiblgiobal dependencielsetween at-
tribute types andocal dependencieshich are dependencies that only make
sense in a particular project. A global dependency is aioglahat always
exists between values of two or more extra-functional prijgge For exam-
ple, if one considers the value of the execution time as arvat bounded
by the best-case execution time as lower limit and worse-execution as the
upper one. Then, there exists a dependency between exetiote best-case
execution time and worst-case execution time. This deparyd@must be con-
sidered and reflected also in nLight. On the other hand, d e@endency
is a relation between extra-functional properties that rge from the spe-
cific requirements and design choices of a system developrRenexample,
in the study example of the GPS in Chapter 8, the responsedirie GPS
depends on the acquisition time of the receiver. The maltired nature of
extra-functional properties poses here an interestinfiesigge with respect to
the inter-property dependency problem.

Validity Conditions Language

As mentioned in Chapter 3, an important characteristic dfimalued context-

aware extra-functional properties lays in the concept tflitg conditions that

specify the criteria under which a value is known to be cdrrébese criteria
are quite diverse, including for example usage contexgifip@nalysis tech-
niques, and target platforms. It is important that thesteiga are somehow
linked to the current development environment of the sysagiainst which

they must be checked. As such, a validity condition languagst be speci-
fied and it should enable the creation of mechanisms to vetigther a given
extra-functional property value is valid in the current depment context.

218 Chapter 10. Conclusions and Future Work

Multi-Valued Context-Aware Extra-Functional Property Co mparison

As explained in Chapter 4, an important challenge for théesgatic manage-
ment of multi-valued context-aware extra-functional prdj@s in component-
based development is to enable conciseness. The first stepd®this is to
identify duplicates and redundant values, i.e. valuesafeéquivalent. Due to
the complex structure of multi-valued context-aware eftirectional proper-
ties, this is not straightforward. A clear equivalence leswvalues can be es-
tablished when all data, metadata and validity conditiorssictly the same.
Yet, not all of these characteristics are always pertinemtatermine equiva-
lent values. For example, at a certain point in time in theetigyment process,
a developer or an analyst might not be interested in diffeang between
the sources of extra-functional property values to perfearly estimations.
In that particular example, this implies that the valuesusthdbe compared in
disregarding the source metadata. Another case relatesiatatand validity
conditions. For instance, if a certain attribute value islaleed as platform
independent through the validity conditions, then againgtatform metadata
should be discarded from the comparison.

All those aspects pose an interesting challenge to solvpaiticular, be-
ing able to determine which values are the same will enabtoixribute to
the conciseness principle in enabling, for instance, taymetrictly redundant
values.

Bibliography

[1]

(2]

(3]

[4]

[5]

[6]

[7]

Jean-Claude Laprie. Dependable Computing and Faudrdote : Con-
cepts and Terminology. Irault-Tolerant Computing, 1995, 'High-
lights from Twenty-Five Years’, Twenty-Fifth Internat&Symposium
on, pages 2+, 1995.

Panagiotis Tsarchopoulos. European Research in EneloeSystems.
In Embedded Computer Systems: Architectures, Modeling, and-S
lation, 6th International Workshop, SAMOS 2006, Samose&GreJuly
17-20, 2006, Proceedingpages 2—4, 2006.

K. Venkatesh Prasad, Manfred Broy, and Ingolf Kruegexarhing Ad-
vances in Aerospace & Automobile Software Technoldgpceedings
of the IEEE 98(4):510 —514, april 2010.

Robert Bosch GmbH. CAN Specification, Version 2.0. TachhReport
ISO 11898, 1991.

LIN Consortium. LIN Protocol Specification, Revision 3gptember
2003.
http://www.lin-subbus.org/

Manfred Broy. Challenges in Automotive Software Engiriag. In
ICSE '06: Proceedings of the 28th international confereon&oftware
engineeringpages 33-42. ACM, 2006.

Ivica Crnkovic and Magnus LarssonBuilding Reliable Component-

Based Software System#rtech House, Inc., Norwood, MA, USA,
2002.

219

220 Bibliography

[8] AUTOSAR Development Partnership. Technical Overvie®.2/1,
February 2008.
http://www.autosar.org

[9] Ji Eun Kim, Rahul Kapoor, Martin Herrmann, Jochen Haleidt Franz
Grzeschniok, and Peter Lutz. Software Behavior DescriptibReal-
Time Embedded Systems in Component Based Software Develgpm
In ISORC '08: Proceedings of the 2008 11th IEEE Symposium oedDbj
Oriented Real-Time Distributed Computinmages 307-311, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[10] Ji Eun Kim, Oliver Rogalla, Simon Kramer, and Arne HamaBx-
tracting, Specifying and Predicting Software System Priigeein Com-
ponent Based Real-Time Embedded Software Developmen®rdn
ceedings of the 31st International Conference on Softwaggrteering
(ICSE) 2009.

[11] Arcticus Systems. Rubus Software Components.
http://www.arcticus-systems.com

[12] Rob van Ommering, Frank van der Linden, Jeff Kramer, ZaftiMagee.
The Koala Component Model for Consumer Electronics So#waom-
puter, 33(3):78-85, 2000.

[13] Oscar Nierstrasz, Gabriela Arévalo, Stephane Dagd@oel Wuyts, An-
drew P. Black, Peter O. Mlller, Christian Zeidler, Thoma6&sler, and
Reinier van den Born. A Component Model for Field DevicesPiac.
of the 1st Int. IFIP/ACM Working Conference on Componentl®ep
ment pages 200-209. Springer, 2002.

[14] Mikael Akerholm, Jan Carlson, Johan Fredriksson, Hans Hanssbn, Jo
Hakanssonm, Anders Moller, Paul Pettersson, and MasEiwadi. The
SAVE Approach to Component-Based Development of VehicBies-
tems.Journal of Systems and Softwa89(5):655-667, May 2007.

[15] H. Maaskant. A Robust Component Model for Consumer tEbeic
Products. InDynamic and Robust Streaming in and between Con-
nected Consumer-Electronic Devicamlume 3 of Philips Research
pages 167-192. Springer, 2005.

[16] Scott Hissam, Gabriel Moreno, Judith Stafford, andtkMallnau. Pack-
aging Predictable Assembly with Prediction-Enabled Congod Tech-
nology. Technical report, 2001.

Bibliography 221

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

Ivica Crnkovic, Séverine Sentilles, Aneta Vulgaskind Michel Chau-
dron. A Classification Framework for Software Component kled
IEEE Transaction of Software Engineering7(5):593—-615, October
2011.

Séverine Sentilles, Petr Stepan, Jan Carlson, ama I€nkovic. In-
tegration of Extra-Functional Properties in Component Bled In
Iman Poernomo Christine Hofmeister, Grace A. Lewis, ediidth
International Symposium on Component Based Software Eegig
(CBSE 2009), LNCS 5583pringer Berlin, LNCS 5582, June 20009.

Aneta Vulgarakis, Séverine Sentilles, Jan Carlsom &ristina Sece-
leanu. Integrating Behavioral Descriptions into a Compihdodel for
Embedded Systems. B6th Euromicro Conference on Software En-
gineering and Advanced Applications (SEApages 113-118. IEEE,
September 2010.

Thomas Lévéque and Séverine Sentilles. Refiningeektunctional
Property Values in Hierarchical Component Models. Tie 14th In-
ternational ACM SIGSOFT Symposium on Component Basedgeftw
Engineering (CBSE-2011ACM SIGSOFT, June 2011.

Tomas Bure§, Jan Carlson, Séverine Sentilles, Aamgta Vulgarakis.

A Component Model Family for Vehicular Embedded Systems. In
The Third International Conference on Software EnginggAdvances
IEEE, October 2008.

Séverine Sentilles, Aneta Vulgarakis, Tomas Buyrdan Carlson, and
Ivica Crnkovic. A Component Model for Control-IntensivésBibuted
Embedded Systems. In Michel R.V. Chaudron and Clemens $zype
ski, editors, Proceedings of the 11th International Symposium on
Component Based Software Engineering (CBSE2@@8)es 310-317.
Springer Berlin, October 2008.

Severine Sentilles, John Hakansson, Paul Petterssmd lvica
Crnkovic. Save-IDE — An Integrated Development Environtrfen
Building Predictable Component-Based Embedded Systemd$?rd-
ceedings of the 23rd IEEE/ACM International Conference otofated
Software Engineering (ASE 200&eptember 2008.

Séverine Sentilles, Anders Pettersson, Dag Nystrohomas Nolte,
Paul Pettersson, and Ivica Crnkovic. Save-IDE — A Tool fosiDa,

222

Bibliography

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

Analysis and Implementation of Component-Based Embedys@®s.
In Proceedings of the 31st International Conference on Soéh\kagi-
neering (ICSE)May 2009.

Etienne Borde, Jan Carlson, Juraj Feljan, Luka Lednidikhomas
Lévéque, Josip Maras, Ana Petricic, and Séverine $esitiRIDE— an
Environment for Component-based Development of DistatduReal-
time Embedded Systems. Bth Working IEEE/IFIP Conference on
Software ArchitecturdEEE, June 2011.

Mary Shaw. Writing Good Software Engineering Resedrapers. In
Proceedings of the 25th International Conference on Saé&agineer-
ing, pages 726-736, 2003.

Michel Chaudron and lvica Crnkovi&oftware Engineering: Principles
and Practice, 3rd Editionchapter 18 in H. van Vliet, Component-Based
Software Engineering. Wiley, 2008.

Ivica Crnkovic, Magnus Larsson, and Otto Preiss. Comicg Pre-
dictability in Dependable Component-Based Systems: @ieastson of
Quality Attributes. In R. de Lemos et al. (Eds.):, edidMADS’04 page
pp. 257 278. Springer, LNCS 3549, 2005.

Ivica Crnkovic, Michel Chaudron, and Stig Larsson. Gmmnent-based
Development Process and Component Lifecydtairnal of Computing
and Information Technology 3(4):321-327, November 2005.

John Cheesman and John Daniél#4L components: a simple process
for specifying component-based softwarAddison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2000.

Colin Atkinson, Joachim Bayer, Christian Bunse, Erifiristies, Oliver
Laitenberger, Roland Laqua, Dirk Muthig, Barbara Paealger Wist,
and Jorg Zettel. Component-Based Product Line Engineering with
UML. Addison-Wesley Longman Publishing Co., Inc., Boston, MA,
USA, 2002.

Scott Hissam, James lvers, Daniel Plakosh, and Kurt @llnAu. Pin
Component Technology (V1.0) and Its C Interface. Technivate:
CMU/SEI-2005-TN-001, April 2005.

Bibliography 223

[33] EJB 3.0 Expert Group. JSR 220: Enterprise JavaBeangailgion 3.0
EJB Core Contracts and Requirements Version 3.0, FinabRe|éMay
2006.

[34] OMG CORBA Component Model v4.0. Available at
www.omg.org/docs/formal/06-04-01.pdf

[35] Dale Rogersonlnside COM Microsoft Press, 1997.

[36] Oxford Advanced Learners Dictionary.

[37] Sun Microsystems. JavaBeans Specification, 1997.

[38] OSGi Alliance. OSGi Service Plaform Core Specificatigd.1, 2007.

[39] The Object Management Group. UML Superstructure Sjpation
v2.1, April 2009.
http://www.omg.org/docs/ptc/06-04-02.pdf

[40] IEC. Application and Implementation of IEC 61131-3.0E1995.

[41] Antoine Beugnard, Jean-Marc Jézéquel, Noél Plauzend Damien
Watkins. Making Components Contract Awar€omputey 32(7):38—
45, 1999.

[42] George T. Heineman and William T. CouncilComponent-Based Soft-
ware Engineering: Putting the Pieces Togeth&ddison-Wesley Long-
man Publishing Co., 2001.

[43] Eric Bruneton, Thierry Coupaye, and Jean-Bernarda®iefThe Frac-
tal Component Model Specificatioifhe ObjectWeb Consortium, Tech.
Rep., February2004.

[44] Ananda Basu, Marius Bozga, and Joseph Sifakis. Modéefiateroge-
neous Real-time Components in BIP.Rroc. of the 4th IEEE Interna-
tional Conference on Software Engineering and Formal Mdthpages
3-12. IEEE, 2006.

[45] Wolfgang Emmerich, Mikio Aoyama, and Joe Sventek. Timpact of
Research on the Development of Middleware Technol@dgyM Trans.
Softw. Eng. Methodql17(4):19:1-19:48, August 2008.

224 Bibliography

[46] Mary Shaw. Truth vs Knowledge: The Difference Betweehal/a
Component Does and What We Know It Doéisternational Workshop
on Software Specification and Desjgrage 181, 1996.

[47] PECT homepagavww.sei.cmu.edu/pacc/pect dnit.html

[48] S Becker, H Koziolek, and R Reussner. Model-Based Paxdoce Pre-
diction with the Palladio Component Modéte 6th international work-
shop on Software and performan@907.

[49] Nenad Medvidovic and Richard N. Taylor. A Classificatiand Com-
parison Framework for Software Architecture Descriptiambuages.
IEEE Trans. Softw. Eng26(1):70-93, January 2000.

[50] Kung-Kiu Lau and Zheng Wang. Software Component ModéEE
Transactions on Software Engineerjrg3(10):709-724, 2007.

[51] Stephen J. Mellor and Marc BalceExecutable UML: A Foundation
for Model-Driven ArchitecturesAddison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002. Foreword By-Jacobosoar.lv

[52] Hongyu Pei Breivold and Magnus Larsson. ComponentBasnd
Service-Oriented Software Engineering: Key Concepts anttiples.
pages 13-20, Aug. 2007.

[53] Xu Ke, Krzysztof Sierszecki, and Christo Angelov. CORS-II:
A Component-Based Framework for Generative Developmetigf
tributed Real-Time Control Systems. Bnoc. of the 13th IEEE Interna-
tional Conference on Embedded and Real-Time Computingr8gstnd
Applications pages 199-208. IEEE, 2007.

[54] Rémi Bastide and Eric Barboni. Component-Based Behaal Mod-
elling with High-Level Petri Nets . INVIOCA ’'04 - Third Workshop
on Modelling of Objects, Components and Agents , Aahruspiaek,
11/10/04-13/10/04pages 37—46. DAIMI, octobre 2004.

[55] IEC. IEC 61499 Function Blocks for Embedded and Disttéal Control
Systems Design. IEC, 2005.

[56] Michael Clarke, Gordon S. Blair, Geoff Coulson, and dBkParla-
vantzas. An efficient Component Model for the ConstructibAdap-
tive Middleware. InProceedings of the IFIP/ACM International Con-
ference on Distributed Systems Platforms Heidelpkfigldleware '01,
pages 160-178, London, UK, UK, 2001. Springer-Verlag.

Bibliography 225

[57] M Winter, C Zeidler, and C Stich. The PECOS software pssc\Work-
shop on Components-based Software Development Procé€sig,
2002.

[58] Johan Muskens, Michel R.V. Chaudron, and Johan J. larkki
Component-Based Software Development for Embedded Syshap-
ter A Component Framework for Consumer Electronics Midadiey
pages 164-184. Springer Verlag, 2005.

[59] Tomas Bures, Petr Hnétynkal, and FrantiSeksiPla”SOFA 2.0: Bal-
ancing Advanced Features in a Hierarchical Component Mdd&lro-
ceedings of the Fourth International Conference on So#virgineer-
ing Research, Management and ApplicaticBERA '06, pages 40-48,
Washington, DC, USA, 2006. IEEE Computer Society.

[60] Ivica Crnkovic, Aneta Vulgarakis, Mario Zagar, Ana Reit, Juraj Fel-
jan, Luka Lednicki, and Josip Maras. Classification and 8&uof Com-
ponent Models. IDICES workshop @ SoftCOM 2018eptember
2010.

[61] Clemens Szyperski.Component Software: Beyond Object-Oriented
Programming Addison-Wesley Professional, December 1997.

[62] Nenad Medvidovic, Eric M. Dashofy, and Richard N. Tayléloving
Architectural Description from under the Technology Laragip Inf.
Softw. Technol49(1):12-31, 2007.

[63] Gerald Kotonya, lan Sommerville, and Steve Hall. TodgaA Classifi-
cation Model for Component-Based Software Engineeringet. In
EUROMICRO ’'03: Proceedings of the 29th Conference on EUROMI
CRQ page 43, Washington, DC, USA, 2003. IEEE Computer Society.

[64] Andreas ErmedahA Modular Tool Architecture for Worst-Case Execu-
tion Time Analysis PhD thesis, Uppsala University: Acta Universitatis
Upsaliensis, June 2003.

[65] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahklddi Hol-
sti, Stephan Thesing, David Whalley, Guillem Bernat, GfaisFerdi-
nand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, lskdPuaut,
Peter Puschner, Jan Staschulat, and Per Stenstrom. Tist-Q4me
Execution-Time problem — Overview of Methods and Surveyadl$.
ACM Trans. Embed. Comput. Syst36:1-36:53, May 2008.

226 Bibliography

[66] ISO/IEC. Information Technology - Software produciadjty - Part 1:
Quality model. Report: ISO/IEC FDIS 9126-1:2000, 2000.

[67] Manuel F. Bertoa and Antonio Vallecillo. Quality atitites for COTS
components. IBth International Workshop on Quantitative Approaches
in Object-Oriented Software Engineering (QAOOSE’2(I02.

[68] Antonio Cicchetti, Federico Ciccozzi, Thomas Léuegand Séverine
Sentilles. Evolution Management of Extra-Functional Rmies in
Component-Based Embedded Systems . The 14th International
ACM SIGSOFT Symposium on Component Based Software Engineer
ing (CBSE-2011)ACM SIGSOFT, June 2011.

[69] Reidar Conradi and Bernhard Westfechtel. Version Meder Soft-
ware Configuration ManagementACM Comput. Sury.30:232-282,
June 1998.

[70] Object Management Group. OMG Systems Modeling Langu®@.0,
2007.

[71] Object Management Group. UML Profile for MARTE: Modadimnd
Analysis of Real-Time Embedded Systems. OMG Document Numbe
formal/2011-06-02, June 2011.

[72] Tomas Bures, Jan Carlson, lvica Crnkovic, SawverSentilles, and
Aneta Vulgarakis. ProCom —the Progress Component ModerRete
Manual, version 1.0. Technical Report MDH-MRTC-230/20BSE,
Malardalen University, June 2008.

[73] Aneta Vulgarakis, Jagadish Suryadevara, Jan CarlGuisfina Sece-
leanu, and Paul Pettersson. Formal Semantics of the Pro@ainTitne
Component Model. IfProceedings of the 35th Euromicro Conference
on Software Engineering and Advanced Applications (SEAAYust
2009.

[74] Cristina Seceleanu, Aneta Vulgarakis, and Paul Ps=iter. REMES: A
Resource Model for Embedded Systems. Technical Report [S19M-
3041 ISRN MDH-MRTC-232/2008-1-SE, Malardalen UniveysiDc-
tober 2008.

[75] John Hakansson and Paul Pettersson. Partial OrderdRed for Ver-
ification of Real-Time Components. In Jean-Franois Raskith B S.

Bibliography 227

[76]

[77]

[78]
[79]

[80]
[81]

[82]

[83]

Thiagarajan, editorsProceedings of the 5th International Conference
on Formal Modelling and Analysis of Timed Systems, LectwtedN
in Computer Science 476pages 211-226. Springer Verlag, October
2007.

Mikael Akerholm, Jan Carlson, John Hakansson, Hans HanssongMika
Nolin, Thomas Nolte, and Paul Pettersson. The SaveCCM &geyu
reference manual. Technical Report MDH-MRTC-207/2003EL.-
Méalardalen University, January 2007.

Mikael Akerholm, Jan Carlson, John Hakansson, Hans HanssoneMika
Nolin, Thomas Nolte, and Paul Pettersson. The SaveCCM Lageyu
Reference Manual. Technical Report ISSN 1404-3041 ISRN MDH
MRTC-207/2007-1-SE, Malardalen University, January 200

UpPPAAL. www.uppaal.com , accessed March 2007.

John Hakansson, Jan Carlson, Aurelien Monot, and Pattersson.
Component-Based Design and Analysis of Embedded Systeths wi
UPPAAL PORT. In Moonzoo Kim Insup Lee Mahesh Viswanathan
Sungdeok Cha, Jin-Young Choi, edit@th International Symposium
on Automated Technology for Verification and Analységes 252—-257.
Springer-Verlag, October 2008.

CC Systems AB. CCSimTech. http://www.cc-systems.om

Ana Petricic, Luka Lednicki, and Ivica Crnkovic. An Eimipal Com-
parison of SaveUML and SaveCCM Technologies. TechnicabRep
Malardalen University, March 2009.

Davor Slutej, John Hakansson, Jagadish Suryade@ustina Sece-
leanu, and Paul Pettersson. Analyzing a Pattern-Based IMxfcze
Real-Time Turntable System. Bth International Workshop on For-
mal Engineering approaches to Software Components anditéoch
tures(FESCA), ETAPS 2009, York, | Klectronic Notes in Theoretical
Computer Science (ENTCS), Elsevier, March 2009.

Thomas Lévéque, Etienne Borde, Amine Marref, and Garl-
son. Hierarchical Composition of Parametric WCET in a Compo
nent Based Approach. 144th IEEE International Symposium on
Object/Component/Service-oriented Real-time Distedu€Computing
(ISORC'11) IEEE, March 2011.

228

Bibliography

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

Dinko Ivanov, Marin Orlic, Cristina Seceleanu, and Am&ulgarakis.
REMES Tool-chain - A Set of Integrated Tools for Behaviorabdl-
ing and Analysis of Embedded Systems. Rroceedings of the 25th
IEEE/ACM International Conference on Automated Softwargiieer-
ing (ASE 2010)September 2010.

Malcolm Wallace. Modular Architectural Representatiand Analysis
of Fault Propagation and Transformatidglectr. Notes Theor. Comput.
Sci, 141(3):53-71, 2005.

Thomas Lévéque, Jan Carlson, Séverine Sentilled,Eienne Borde.
Flexible Semantic-Preserving Flattening of Hierarchi€admponent
Models. In37th EUROMICRO Conference on Software Engineering
and Advanced Applications (SEAAEEE Computer Society, August
2011.

V. Bos and J. J. T. Kleijn. Automatic verification of a mdacturing
system.Robotics and Computer-Integrated Manufacturitig(3):185—
198, 2001.

Elena M. Bortnik, Nikola Trcka, Anton Wijs, Bas Luttikl. M. van de
Mortel-Fronczak, Jos C. M. Baeten, Wan Fokkink, and J. E.dRoén-
alyzing ay model of a turntable system using Spin, CADP and Uppaal.
Journal of Logic and Algebraic Programming§5(2):51-104, 2005.

Garmin. GPS 18 Technical Specifications (190-0030)-&&v. D.
Technical report, June 2005.

Nissan. Distance Control Assist System.
www.nissan-global.com/EN/TECHNOLOGY/OVERVIEW/dcas.h tml
last accessed: 02/05/2012.

Jan Carlson. Timing Analysis of Component-based Erdbd®ystems.
In 15th International ACM SIGSOFT Symposium on ComponentBase
Software EngineerindACM, June 2012.

Tidorum Ltd. Bound-T time and stack analyser.
www.bound-t.com/ , last accessed: 15/05/2012.

Sherif Yacoub, Hany Ammar, and Ali Mili. A Model for Clas
fying Component Interfaces. I8econd International Workshop on
Component-Based Software Engineering, in conjunctioh thi¢ 21 st

Bibliography 229

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

International Conference on Software Engineering (ICSE2@es 17—
18, 1999.

Sherif Yacoub, Hany Ammar, and Ali Mili. Characterigim Software
Component. Inn Proceedings of the 2nd Workshop on Component-
Based Software Engineering, in conjunction with ICSFIS09.

Klement J. Fellner and Klaus Turowski. Classificatiaafework for
Business Components. HICSS '00: Proceedings of the 33rd Hawaii
International Conference on System Sciences-Volumpa8e 8047,
Washington, DC, USA, 2000. IEEE Computer Society.

Barbara Kitchenham, Shari Lawrence Pfleeger, Leslekdrd, Peter
Jones, David C. Hoaglin, Khaled EI Emam, and Jarrett RosgniBee-
liminary Guidelines for Empirical Research in Software Egring.
IEEE Trans. Software Eng?8(8):721-734, 2002.

Heinz Schmidt. Trustworthy components—compositiitypand pre-
diction. Journal of Systems and Softwai@5(3):215 — 225, 2003.
Component-Based Software Engineering.

Steffen Zschaler. Formal Specification of Non-funotb Properties
of Component-Based Software Systems: A Semantic Framearmtk
Some Applications ThereoSoftware and Systems Modelling (SoSyM)
9:161-201, April 2009.

Jim A. Mccall, Paul K. Richards, and Gene F. Walters. tbexin Soft-
ware Quality. Volume I. Concepts and Definitions of Softweneality.
Technical Report ADA049014, GENERAL ELECTRIC CO SUNNY-
VALE CALIF, November 1977.

B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative kxaion of
software quality. InProceedings of the 2nd international conference
on Software engineeringCSE '76, pages 592605, Los Alamitos, CA,
USA, 1976. IEEE Computer Society Press.

Mario Barbacci, Mark H. Klein, Thomas A. Longstaff,caharles B.
Weinstock. Quality Attributes. Technical report CMU/S83-TR-021,
Software Engineering Institute, 1995.

ISO/IEC. Software engineering - Software product [@uaequire-
ments and Evaluation (SQuaRE) Quality model. Report: IBO/I
25010:2011, 2011.

230 Bibliography

[103] Re Alvaro, Eduardo Santana De Almeida, Silvio Romarg Lemos
Meira. Quality Attributes for a Component Quality Model. In
the 10th International Workshop on Component-OrientedjRrmming
(WCOP) in Conjunction with the 19th European Conference bje&
Oriented Programming (ECOQR005.

[104] Martin Glinz. On Non-Functional Requirements. Requirements En-
gineering Conference, 2007. RE '07. 15th IEEE Internatippages 21
—26, oct. 2007.

[105] Information Technology — Quality of Service: Framewo ISO/IEC
13236:1998, ITU-T X.641, 1998.

[106] Pere Botella, Xavier Franch, and Xavier Burgus. Usilmp-Functional
Requirements in Component-Based Software Constructi#$f.1

[107] Soo Dong Kim, Jin Sun Her, and Soo Ho Chang. A theorkficanda-
tion of variability in component-based development. Softw. Technal.
47(10):663—-673, July 2005.

[108] Svend Frglund and Jari Koistinen. Quality of servispscification in
distributed object systems design.Rroceedings of the 4th conference
on USENIX Conference on Object-Oriented Technologies gate®s -
Volume 4 COOTS'98, pages 1-1, Berkeley, CA, USA, 1998. USENIX
Association.

[109] Svend Frglund and Jari Koistinen. QML: A Language fara@ty of
Service Specification. Technical report, HPL-98-10, Fabyd 998.

[110] Jean-Marc Jézéquel, Olivier Defour, and Noél Rkau. An MDA Ap-
proach to Tame Component Based Software DevelopmerEMGO,
pages 260-275, 2003.

[111] Jan @yvind Aagedal.Quality of Service Support in Development of
Distributed SystemsPhD thesis, Faculty of Mathematics and Natural
Sciences, University of Oslo, 2001.

[112] Olivier Defour, Jean-Marc Jézéquel, and Noél REau. Extra-
Functional Contract Support in ComponentsCIBSE pages 217-232,
2004.

Bibliography 231

[113] Simone Rottger and Steffen Zschaler. CQML+: Enhammets to
CQML. In Jean-Michel Bruel, editoBroc. 1st Int'l Workshop on Qual-
ity of Service in Component-Based Software Engineeringlotise,
France pages 43-56. Cépaduésh’tions, June 20083.

[114] The Object Management Group. UML Profile for SchedililgbPer-
formance and Time, January 2005.

[115] Object Management Group. UML Profile for Modeling Qtiabf Ser-
vice and Fault Tolerance Characteristics and Mechanisrasifggtion,
version 1.1. OMG Document Number: formal/2008-04-05, Ap@i08.

[116] Steffen Becker, Heiko Koziolek, and Ralf Reussnere Palladio Com-
ponent Model for Model-driven Performance Predictidournal of Sys-
tems and Softwar&2:3—-22, 2009.

[117] Scott Hissam, Gabriel Moreno, Judith Stafford, andtkAallnau. En-
abling predictable assemblyJ. Syst. Softw.65(3):185-198, March
2003.

[118] Kurt C. Wallnau. Volume IlI: A Technology for Predidike Assembly
from Certifiable Components. Technical report, April 2003.

[119] Sagar Chaki, James Ivers, Natasha Sharygina, andWalhhau. The
ComFoRT reasoning framework. Proceedings of the 17th interna-
tional conference on Computer Aided Verificati@®Vv’'05, pages 164—
169, Berlin, Heidelberg, 2005. Springer-Verlag.

[120] Scott Hissam and Sagar Chaki. Certifying the Abserid&uéfer Over-
flows. Technical report, September 2006.

[121] Gabriel A. Moreno and Jeffrey Hansen. Overview of therbda-*
Performance Reasoning Frameworks. Technical reportugep2009.

[122] Kurt C. Wallnau and Judith A. Stafford. Ensembles: thhstions for a
New Class of Design Problem. BEUROMICRQ pages 48-55, 2001.

[123] Steffen ZschalerA Semantic Framework for Non-functional Specifica-
tions of Component-Based Systenfissertation, Technische Univer-
sitat Dresden, Dresden, Germany, April 2007.

[124] Steffen Zschaler. Formal Specification of Non-Fumesl Properties of
Component-Based Software. llm Proc. Workshop on Models for Non-
functional Aspects of Component-Based Systa6.

232 Bibliography

[125] Leslie LamportSpecifying Systems, The TLA+ Language and Tools for
Hardware and Software Engineeraddison-Wesley, 2002.

[126] Kamil Jezek, Premek Brada, and Petr Stepan. Towarde®dndepen-
dent Extra-functional Properties Descriptor for Compdaghlectronic
Notes in Theoretical Computer Scien26é4(1):55-71, 2010.

[127] Kamil Jezek and Pfemek Brada. Correct Matching ah@onents with
Extra-functional Properties — A Framework Applicable to a&igty of
Component Models. IfEvaluation of Novel Approaches to Software
Engineering (ENASE 201,13011.

[128] H. Fennel et al. Achievements and Exploitation of tHi¢TOSAR De-
velopment Partnership. Presented at Convergence 2006iDa4l,
USA, October 2006.
http://www.autosar.org

[129] M. Jersak et.al. Timing Model and Methodology for AUSAR. Elek-
tronik automotive, Special issue AUTOSAZRBO07.

[130] Philippe Cuenot, Deldiu Chen, Sebastien Gerard, Kdronn, Mark-
Oliver Reiser, David Servat, Carl-Johan Sjostedt, RamiraRali Kola-
gari, Martin Torngren, and Matthias Weber. Managing Comxipjeof
Automotive Electronics Using the EAST-ADL. Il CECCS '07: Pro-
ceedings of the 12th IEEE International Conference on Eegjiimg
Complex Computer Systenmages 353-358, Washington, DC, USA,
2007. IEEE Computer Society.

[131] Bernhard F. Weichel and Martin Herrmann. A Backbonéiutomo-
tive Software Development Based on Xml and Asam/Msr. SAEIl&Vor
Congress, 2004.

[132] Michael Winter, Thomas Genler, Alexander Christobscar Nier-
strasz, Stephane Ducasse, Roel Wuyts, Gabriela Arevaler Rder,
Chris Stich, and Bastiaan Schonhage. Components for EaeloleBloft-
ware - The PECOS Approach. In Proc. International Conference on
Compilers, Architecture, and Synthesis for Embedded Bg¢st€ASES
02. ACM Press, 2002.

[133] Peter H. Feiler, Bruce Lewis, and Steve Vestal. The S#¢hitecture
analysis & design language (AADL) standard: A Basis for MelBlased
Architecture-Driven Embedded Systems Engineerfrgceeding of the
RTAS 2003 Workshpp003.

Bibliography 233

[134] Peter H. Feiler, David P. Gluch, and John J. Hudak. Thehifecture
Analysis & Design Language (AADL): An Introduction. Techal re-
port, Software Engineering Institute, 2006.

[135] Mikael Akerholm. Reusability of Software Components in the Vehicular
Domain PhD thesis, Malardalen University Press, May 2008.

[136] Luka Lednicki, Juraj Feljan, Jan Carlson, and Mariga@ia Adding Sup-
port for Hardware Devices to Component Models for Embeddesd S
tems. INICSEA 2011, The Sixth International Conference on Software
Engineering Advancepages 149-154. IARIA, October 2011.

[137] Jan Carlson, Juraj Feljan, Jukka Maki-Turja, and &kSjodin. De-
ployment Modelling and Synthesis in a Component Model fos-Di
tributed Embedded Systems. &6th Euromicro Conference on Soft-
ware Engineering and Advanced Applications (SEABEE, Septem-
ber 2010.

