Thèse soutenue

Inférence statistique dans les modèles mixtes à dynamique Markovienne

FR  |  
EN
Auteur / Autrice : Maud Delattre
Direction : Marc Lavielle
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 04/07/2012
Etablissement(s) : Paris 11
Ecole(s) doctorale(s) : Ecole doctorale Mathématiques de la région Paris-Sud (1992-2015 ; Orsay)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mathématiques d'Orsay (1998-....)
Equipe de recherche : Équipe Probabilités et Statistiques
Jury : Président / Présidente : Elisabeth Gassiat
Examinateurs / Examinatrices : Marc Lavielle, Elisabeth Gassiat, Éric Moulines, Valentine Genon-Catalot, France Mentré
Rapporteurs / Rapporteuses : Jean-Marc Azaïs, Éric Moulines

Résumé

FR  |  
EN

La première partie de cette thèse est consacrée a l'estimation par maximum de vraisemblance dans les modèles mixtes a dynamique markovienne. Nous considérons plus précisément des modèles de Markov cachés a effets mixtes et des modèles de diffusion à effets mixtes. Dans le Chapitre 2, nous combinons l'algorithme de Baum-Welch a l'algorithme SAEM pour estimer les paramètres de population dans les modèles de Markov cachés à effets mixtes. Nous proposons également des procédures spéciques pour estimer les paramètres individuels et les séquences d'états cachés. Nous étudions les propriétés de cette nouvelle méthodologie sur des données simulées et l'appliquons sur des données réelles de nombres de crises d'épilepsie. Dans le Chapitre 3, nous proposons d'abord des modèles de diffusion à effets mixtes pour la pharmacocinétique de population. Nous en estimons les paramètres en combinant l'algorithme SAEM a un filtre de Kalman étendu. Nous étudions ensuite les propriétés asymptotiques de l'estimateur du maximum de vraisemblance dans des modèles de diffusion observés sans bruit de mesure continûment sur un intervalle de temps fixé lorsque le nombre de sujets tend vers l'infini. Le Chapitre 4 est consacré à la sélection de covariables dans des modèles mixtes généraux. Nous proposons une version du BIC adaptée au contexte de double asymptotique ou le nombre de sujets et le nombre d'observations par sujet tendent vers l'infini. Nous présentons quelques simulations pour illustrer cette procédure.