Thèse soutenue

Valorisation de déchets composites à matrices polymériques renforcées de fibres de carbone par un procédé de vapo-thermolyse

FR  |  
EN
Auteur / Autrice : Sheng Yin Ye
Direction : Radu BarnaYannick Soudais
Type : Thèse de doctorat
Discipline(s) : Génie des Procédés et de l'Environnement
Date : Soutenance le 03/12/2012
Etablissement(s) : Toulouse, INPT
Ecole(s) doctorale(s) : École doctorale Mécanique, énergétique, génie civil et procédés (Toulouse)
Partenaire(s) de recherche : Laboratoire : Centre de recherche d'Albi en génie des procédés des solides divisés, de l'énergie et de l'environnement (Albi ; 2012-....)

Résumé

FR  |  
EN

Le composite à matrices polymériques renforcées de fibres de carbone (CFRP) est un matériau précieux en raison de ses excellentes propriétés mécaniques, légèreté et durabilité. Un gain important d’efficacité et une réduction des émissions de carbone peuvent être obtenus en remplaçant les pièces métalliques par les CFRPs dans l'industrie du transport. Toutefois, le recyclage de déchets CFRP est problématique, car le renfort de fibres de carbone est chimiquement lié à la matrice de résine réticulée. Néanmoins, la réutilisation de fibres de carbone couteuses rend le recyclage des CFRPs potentiellement viable en termes d’économie. Dans notre laboratoire, une étude multi-échelle d’un procédé de vapo-thermolyse a été réalisée, dont l'objectif est de séparer les fibres de carbone de matrices polymériques en utilisant la vapeur d’eau surchauffée. Afin d’obtenir une meilleure compréhension du comportement de dégradation thermique des matériaux CFRP, de nombreuses analyses thermiques ainsi que les caractérisations physico-chimiques ont été effectuées sur différentes fibres de carbone, résines polymériques (époxyde ou polyphénylène sulfide) et les composites correspondants. Une étude cinétique a été également abordée. Les plans d’expériences réalisées à l'échelle pilote dans un réacteur sophistiqué permettent de déterminer les conditions expérimentales optimales du procédé semi-industriel. Les fibres de carbone récupérées à partir de conditions optimisées apparaissent propres, sans résine et conservent plus de 90% de leur résistance à la traction d’origine. Les phases gazeuse et liquide émises ont également été quantitativement analysées. La modélisation de l’écoulement et des transferts thermiques du réacteur ainsi que la simulation de la dégradation de matrices polymériques montrent les résultats comparables avec les observations expérimentales. L’analyse du cycle de vie indique que le recyclage des CFRPs peut être favorable pour l’environnement par rapport au scénario de mise en décharge.