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Résumé

Cette thése traite des Equations aux Dérivées Partielles Stochastiques Quasilinéaires. Elle est
divisée en deux parties. La premiére partie concerne le probléme d’obstacle pour les équations
aux dérivées partielles stochastiques quasilinéaires et la deuxiéme partie est consacrée a
I’étude des équations aux dérivées partielles stochastiques quasilinéaires dirigées par un
G'—mouvement brownien.

Dans la premiére partie, on montre d’abord l'existence et I'unicité d’un probléme d’obstacle
pour les équations aux dérivées partielles stochastiques quasilinéaires (en bref OSPDE).
Notre méthode est basée sur des techniques analytiques venant de la théorie du potentiel
parabolique. La solution est exprimée comme une paire (u, v) ol u est un processus prévisible
continu qui prend ses valeurs dans un espace de Sobolev et v est une mesure réguliére
aléatoire satisfaisant la condition de Skohorod.

Ensuite, on établit un principe du maximum pour la solution locale des équations aux
dérivées partielles stochastiques quasilinéaires avec obstacle. La preuve est basée sur une
version de la formule d’It6 et les estimations pour la partie positive d’une solution locale qui
est négative sur le bord du domaine considéré.

L’objectif de la deuxéme partie est d’étudier ’existence et I'unicité de la solution des équa-
tions aux dérivées partielles stochastiques dirigées par G—mouvement brownien dans le cadre
d’un espace muni d’une espérance sous-linéaire. On établit une formule d’Itd pour la solution
et un théoréme de comparaison.






Abstract

This thesis deals with quasilinear Stochastic Partial Differential Equations (in short SPDE).
It is divided into two parts, the first part concerns the obstacle problem for quasilinear
SPDE and the second part solves quasilinear SPDE driven by G—Brownian motion.

In the first part we begin with the existence and uniqueness result for the obstacle problem of
quasilinear stochastic partial differential equations (in short OSPDE). Our method is based
on analytical technics coming from the parabolic potential theory. The solution is expressed
as a pair (u,v) where u is a predictable continuous process which takes values in a proper
Sobolev space and v is a random regular measure satisfying minimal Skohorod condition.

Then we prove a maximum principle for a local solution of quasilinear stochastic partial
differential equations with obstacle. The proofs are based on a version of Itd’s formula and
estimates for the positive part of a local solution which is negative on the lateral boundary.

The objective of the second part is to study the well-posedness of stochastic partial differ-
ential equations driven by G—Brownian motion in the framework of sublinear expectation
spaces. One can also establish an Itd formula for the solution and a comparison theorem.
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Introduction

L’objet de cette thése est I'étude les Equations aux Dérivées Partielles Stochastiques (dans la
suite EDPSs). Elle est divisée en deux parties : La premiére partie est consacrée au probléme
d’obstacle pour les EDPSs quasilinéaires. On étudie I'existence et I'unicité de la solution et
on établit un principe de maximum pour les solutions locales. Dans la deuxiéme partie, on
étudie les EDPSs dirigées par un G—mouvement brownien dans le cadre d’un espace muni
d’une espérance sous-linéaire.

Le point de départ est 'EDPS suivante :
dur(z) = 0 (aiy(@)0uelw) + gilt 7, ui(), Vae @) dt + F(t, @, ui(x), Vo )t

400 )
+3 bt x w(x), Vuy(z)dBY, (1)
j=1

ou a est une matrice mesurable bornée symmeétrique qui définit un opérateur du seconde
ordre sur @ C R?, avec la condition nulle au bord. La valeur initiale ug = ¢ est une variable
aléatoire prenant ses valeurs dans L2(O) et f, g = (g1,...,94) et b = (hi,...h;,...) sont les
fonctions aléatoires non linéaires. Pour un obstacle donné par S : Q x [0,7] x O — R, nous
étudions le probléme d’obstacle pour 'EDPS (1), i.e. on veut trouver une solution de (1) qui

satisfait "u > S" o l'obstacle S est régulier dans un certain sens et contrdlé par la solution
d’une autre EDPS.

Nualart et Pardoux [55] ont étudié le probléme d’obstacle pour I’équation de la chaleur non-
linéaire sur l'intervalle spatial [0, 1] avec la condition de Dirichlet, dirigée par un bruit blanc
spatio-temporel. Ils ont prouvé l'existence et I'unicité de la solution et leur méthode s’est
fortement basée sur 'inégalité variationnelle déterministe. Donati-Martin et Pardoux [26]
ont généralisé le modéle de Nualart et Pardoux. La non-linéarité apparait a la fois dans le
coefficient de drift et dans le coeflicient de diffusion. Ils ont prouvé 'existence d’une solution
par la méthode de pénalisation mais ils n’ont pas obtenu I'unicité. Ensuite en 2009, Xu et
Zhang ont résolu le probléme de I'unicité, voir [79]. Pourtant, dans tous leurs modéles, il
n’y avait pas de terme de divergence c’est a dire qu’ils n’ont pas considéré le cas ou les
coefficients dépendent de Vu.

Le travail de El Karoui et al [27] traite le probléme d’obstacle pour les EDPs semilinéaires
déterministes dans le cadre des équations différentielles stochastiques rétrogrades (en bref
EDSR). L’équation (1) est considérée avec f dépendant de u et Vu, alors que la fonction

11
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g est nulle (aussi h) et I'obstacle S est continu. Ils ont considéré la solution de viscosité du
probléme d’obstacle pour I’équation (1) , et représenté cette solution comme un processus.
Le nouvel objet principal de ce cadre d’EDSR est un processus croissant continu qui controle
I'ensemble {u = v}. Bally et al [5] (voir [52]) souligne que la continuité de ce processus per-
met d’étendre la classe de notion de la solution variationnelle forte. (voir Théoréme 2.2 de
[7] p.238) et d’exprimer la solution d’un probléme d’obstacle comme une paire (u,v) ol v a
son support inclus dans 'ensemble {u = v}.

Matoussi et Stoica [53] ont prouvé un résultat d’existence et d’unicité pour le probléme d’obs-
tacle de PEDP stochastique quasilinéaire rétrograde sur 'espace R? tout entier et dirigée
par un mouvement brownien de dimension infinie. Leur méthode est basée sur l'interpréta-
tion probabiliste de la solution & I'aide de I’équation différentielle doublement stochastique
rétrograde (en bref EDDSR). Ils ont aussi prouvé que la solution est une paire (u,rv) o u
est un processus continu prévisible qui prend ses valeurs dans un espace de Sobolev et v est
une mesure réguliére aléatoire qui satisfait la condition de Skohorod. En particulier, ils ont
donné une interpréstation probabiliste de la mesure réguliére v en fonction d’un processus
croissant continu K ou (Y, Z, K) est la solution d’'une EDSRD réfléchie généralisée.

Notre objectif est de prouver I’existence et 1'unicité sous des hypothéses convenables sur &,
f, g and h de 'EDPS suivante avec l'obstacle S, ce qu’on écrit formellement comme :

duy(x) = ; (ai j(2)05ur(2) + gi(t, x, ur(2), Vu(x))) dt + f(t, 2, ue(x), Vug(x))dt
+o00
hj(t, x,us(x), Vug(x ng,
+ 3 e, (), Vo) o)
ug > S,

ug = &.

Heuristiquement, une paire (u,r) est une solution d’un probléme d’obstacle pour (2) si les
conditions suivantes sont satisfaites :

1. uw € Hp et u(t,z) > S(t,x), dP @ dt @ dx — p.p. et up(x) =&, dP @ dx — p.p.;
2. v est une mesure aléatoire définie sur [0,7) x O ;

3. la relation suivante est vraie presque partout, pour tout ¢ € [0,7] et Vo € C°(RT) @
c2(0),

t t d pt
(ut»SOt) - (57 QOO) _/ (USaasSos)d5+/ g(u5a¢s)d5+2/ (g;(u&vus)7ai@s)ds
0 0 —Jo
t
0

-/ <fs<us,ws>,sos>ds+§ [ ity s+ [ [ owmtanas)

/OT/OWW?) — S(s,x))v(dz,ds) =0, p.s.
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Mais la mesure aléatoire qui dans un certain sens oblige la solution a rester au-dessus de la
barriére est un temps local donc, en général, elle n’est pas absolument continue par rapport
a la mesure de Lebesgue. Par conséquent, par exemple, la condition

/oT /o(“(s’ ) = S(s,2))v(dx,ds) = 0

n’a pas de sens. On doit donc considérer des version précisées de u et S définies v—presque
surement.

Pour faire face a cette difficulté, nous introduisons la notion de capacité parabolique sur
[0,T] x O et la notion de version quasi-continue des fonctions introduites par Michel Pierre
dans plusieurs articles (voit par exemple [70, 71]|) dans lesquels il a étudié¢ 'EDP parabolique
avec obstacle a I'aide de potentiel parabolique. Il a prouvé que la solution existe uniquement
et est quasi-continue. Remarquons que ces outils sont aussi utlisés par Klimsiak ([41]) pour
obtenir une interprétation probabiliste de 'EDP semilinéaire avec obstacle.

Afin de donner une définition rigoureuse de la solution de (2), nous utiliserons les techniques
de la théorie du potentiel parabolique développée par M. Pierre dans le cadre stochastique.
Le point critique est de construire la solution qui admet une version quasi-continue donc
définie en dehors d’un ensemble polaire et les mesures réguliéres qui en général ne sont
pas absolument continues par rapport a la mesure de Lebesgue mais ne chargent pas les
ensembles polaires. Nous établissons d’abord un résultat de quasi-continuité pour la solution
de PEDPS (1) avec la condition nulle au bord sur un domaine O et dirigée par un mouvement
brownien de dimension infinie. Ce résultat n’est pas évident et la preuve s’appuie sur un
argument de trajectoire et le résultat d’existence de Mignot et Puel [54] pour un probléme
d’obstacle de 'EDP déterministe. En plus, nous prouvons dans notre cadre que la mesure
réfléchie v est une mesure réguliére aléatoire et nous donnons la représentation analytique
d’une telle mesure en terme de potentiel parabolique au sens donné par M. Pierre in [70].
Le théoréme principal qu’on obtient est :

Theorem 0.1. Supposons que f, g et h satisfont des hypothéses de continuité de type Lip-
schitz et d’intégrabilité, & € L2(Q x O), que S est quasi-continu et Sy < S; ou S’ est la
solution de ’EDPS linéaire :

dS; = LS{dt+ fldt+ 3L 0l ,dt + >V, ,dB]
S'(0) = Sp,

avec Sj € L2(Q x O), f', g' et ' des processus adaptés de carré intégrable.

Alors il existe une unique solution (u,v) du probléme d’obstacle pour I’EDPS (2) associée a
(&, fyg,h,S) i.e. u est un processes continu prévisible qui prend ses valeurs dans un espace
de Sobolev, u > S et v est une mesure réquilére aléatoire tels que :

1. la relation suivante est vraie presque surement, pour tout t € [0,T] et Vi € C°(RT) ®
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c2(0),

t t d pt
(u 21) — (€, 00) — / (115, Duspi) s + / Elus, po)ds + 3 / (6} (s, Vs), Biips)ds
0 0 i=1 70

t
0

oo t
— [etwn Vs + Y [ (bt Vo e+ [ [ putds,as)
=i 0o Jo
2. u admet une version quasi-continue, u, et on a la condition de Skohorod
T
/ / (u(s,z) — S(s,z))v(dx,ds) =0 p.s.
0 @

Nous commencons la preuve par le cas linéaire, i.e. f, g et h ne dependent pas en u et Vu. A
I’aide de la méthode de pénalisation on prouve que le probléme d’obstacle admet une unique
solution. Et puis on établit une formule d’It6 par approximation afin d’utiliser 'itération de
Picard pour obtenir le résultat dans le cas non linéaire. Grace a la formule d’It6 on peut
déduire un théoréme de comparaison pour les solutions des EDPS avec obstacle.

Dans le chapitre suivant nous prouvons une principe de maximum pour les solutions locales
de 'EDPS quasilinéaire avec obstacle. On commence par 'EDPS avec obstacle (2).

Dans la théorie des Equations aux Dérivées Partielles déterministes, le principe de maximum
joue un role important car elle donne la relation entre la borne de la solution sur le bord et la
borne de la solution sur tout le domaine. Dans le cas déterministe, le principe du maximum
pour les équations paraboliques quasilinéaires a été prouvé par Aronson-Serrin (voit Théo-
réeme 1 de [3]). Dans [23]|, Denis-Matoussi-Stoica ont adapté la méthode de Aronson-Serrin
dans le cadre stochastique et prouvé la principe de maximum pour 'EDPS avec l'opérateur
du second ordre homogéne et dirigée par un mouvement brownien de dimension infinie. Les
preuves sont basées sur la notion de semigroupe associée a l'opérateur du second ordre et
sur la propriété de régularisation du semigroupe. Dans [24] Denis-Matoussi ont généralisé
les résultats dans [23]| au cas de 'EDPS avec opérateur du second ordre non-homogéne et
dirigée par un bruit qui est blanc par rapport au temps et coloré par rapport a 'espace.
Les preuves sont basées sur la fonction de Green associée & 'opérateur non-homogeéne et les
résultats de Aronson [1| concernant I'existence et les estimations Gaussiennes de la solution
faible fondamentale de 'EDP parabolique.

Il existe une large littérature sur les EDPS paraboliques sans obstacle. L’étude de la norme
LP—de la norme uniforme sur I'espace-temps des trajectoires de 'EDP stochastique est ini-
tiée par N. V. Krylov dans [42], pour un apergu plus complet des travaux existants sur ce
sujet voir [23, 24| et les références indiquées. Concernant le probléme d’obstacle, il y a deux
approches, 1'une est probabiliste (voir [53, 41]) basée sur la formule de Feynmann-Kac via
les équations différentielles doublement stochastiques rétrogrades et I'autre est analytique
(voir [26, 55, 79]) basée sur la fonction de Green.

A notre connaissance, jusqu’a maintenant il n’y a pas de principe de maximum pour 'EDPS
quasilinéaire avec obstacle et méme trés peu de résultats dans le cas déterministe. L’objet de
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ce chapitre est d’obtenir, sous les hypothéses d’intégrabilité convenables sur les coefficients,
des estimées de la norme LP— de la norme uniforme (par rapport aux temps et espace)
de la solution, un principe du maximum pour les solutions locales de I’équation (2) et des
théorémes de comparaison similaires & ceux obtenus dans le cas sans obstacle dans |21, 23].
On obtient, par exemple, le résultat suivant :

Theorem 0.2. Soit (M;)i>0 un processus d’Ito vérifiant certaines conditions d’intégrabilité,
p > 2 et u une solution faible locale du probleme d’obstacle (2). Supposons que 0O est
Lipschitzien et u < M sur 0O, alors, pour tout t € [0,T] :

E|[(u= ML ., <k pt)C(S. f.g,h, M)

00,005t —

ot C(S, f,g,h, M) dépend seulement de l’obstacle S, la condition initiale &, les coefficients
f,9,h et la condition au bord M et k est une fonction qui dépend seulement des contantes
de structure de UEDPS. || - ||oo,00t désignant la norme uniforme sur [0,t] x O.

Remarquons qu’afin d’obtenir ce résultat, nous définissons la notion de solutions locales au
probléme d’obstacle, qui sont des solutions faibles sans la conditions au bord. Par exemple
la solution obtenue dans une domaine plus grande D O O avec la condition nulle au bord,
quand considérée sur O devient une solution locale. Concernant le probléme d’obstacle, nous
avons besoin d’introduire ce que nous appelons les mesures réguliéres locales.

Ce chapitre est organisé comme suit : dans la deuxiéme section nous introduisons les no-
tions et les hypothéses et détaillons les conditions d’intégrabilité qui seront utilisées dans ce
chapitre. Dans la troisiéme section, nous prouvons un résultat d’existence et unicité pour
I’EDPS avec obstacle (2) avec la condition nulle au bord sous les hypothéses d’intégrabilité
plus faibles sur f et aussi donnons une estimation de la partie positive de la solution. Dans
la quatriéme section, nous établissons les estimées LP— de la norme uniforme de la solution
avec la condition de Dirichlet. La cinquiéme section est consacrée au résultat principal : la
principe de maximum pour les solutions locales dont la preuve est basée sur une formule
d’Ité satisfaite par la partie positive de la solution locale avec la condition au bord M. La
derniére section est I’appendice dans laquelle nous donnons les preuves des lemmes.

L’objectif de la deuxiéme partie est d’étudier l'existence et 1'unicité de solution des équa-
tions aux dérivées partielles stochastiques dirigées par un G—mouvement brownien (en bref
EDPSG) dans le cadre d’un espace muni d’une espérance sous-linéaire.

Motivé par des problémes d’incertitude, la notion de mesure de risque et le superhedging en
finance, Peng [64, 65, 66| a introduit le G—mouvement brownien. L’espérance E[-] associée
auG—mouvement brownien est une espérance sous-linéaire qui est appelée G'—espérance.
Le calcul stochastique par rapport au G—mouvement brownien a été introduit dans [66].
Il y a eu plusieurs travaux concernant l’existence et 1'unicité des équations différentielles
stochastiques dirigées par G—mouvement brownien, voir [4, 30, 47, 48, 66| et des équations
différentielles stochastiques rétrogrades, voir [66].

A notre connaissance, jusqu’a maintenant il n’y a pas eu de résultats sur les équations aux
dérivées partielles stochastiques dirigées par un G—mouvement brownien. On veut étudier
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la solvabilité de I’équation aux dérivées partielles stochastique dirigée par un G—mouvement
brownien suivante :

dug(z) = 0;(aij(x)0ju(x) + gi(t, x,u(z), Vue(x))) dt + f(t, x,u(x), Vu(z))dt

dy )
+ > hi(tz,u(x), Vg (z)dBY, (3)
j=1

ol a est une matrice mesurable bornée symmetrique qui définit un opérateur du second
ordre sur O C R, avec la condition nulle au bord. La valeur initiale est donnée comme ug =
Ee€L?(O), et f, 9= 1(91,-,94) et h = (hy,...hg,) sont des fonctions aléatoires nonlinéaires
qui satisfont les conditions de Lipschitz avec les coefficients lipschitziens appropriés, B est
un G—mouvement brownien de di—dimension.

A cet effet, nous avons besoin de développer le calcul stochastique pour les processus a valeurs
dans un espace de Hilbert par rapport au G—mouvement brownien et de prouver 'inégalité
de Burkholder-Davis-Gundy. L’existence et 'unicité de 'EDPSG est comme suivant :

Theorem 0.3. Sous les hypothéses de continuité de type Lipschitz et d’intégrabilité de f, g
et h, il existe une unique solution u de (3) dans un espace approprié.

Puis on établit une formula d’It6 pour la solution de (3) ainsi qu'un théoréme de comparai-
son.



Introduction

The objective of this thesis is to study the Quasilinear Stochastic Partial Differential Equa-
tions. It is divided into two parts. The first part concerns the obstacle problem for Quasi-
linear Stochastic Partial Differential Equations. We study the existence and uniqueness of
solution and prove a maximum principle for local solutions. In the second part, we study
quasilinear stochastic PDEs driven by G—Brownian motion in the framework of sublinear
expectation spaces.

The starting point of the first part is the following parabolic stochastic partial differential
equation (in short SPDE)

dur(z) = 0;(aij(x)0ju(x) + gi(t, x,ue(z), Vue(x))) dt + f(t, z, ue(x), Vue(z))dt
400 )
+Zhj(t,x,ut(x),Vut(q:))dBtj, (4)

j=1
where a is a symmetric bounded measurable matrix which defines a second order opera-
tor on O C R%, with null Dirichlet condition. The initial condition is given as ug = &, a
L%(O)—valued random variable, and f, g = (g1, ..., ga) and h = (hq, ...h;, ...) are non-linear
random functions. The existence and uniqueness result for SPDE (4) without obstacle has
been studied, see for example [17] and [20]. Now given an obstacle S : 2 x [0,T] x O — R,
we study the obstacle problem for the SPDE (4), i.e. we want to find a solution of (4)
which satisfies "u > S" where the obstacle S is regular in some sense and controlled by the
solution of an SPDE.

Nualart and Pardoux [55] have studied the obstacle problem for a nonlinear heat equation
on the spatial interval [0, 1] with Dirichlet boundary conditions, driven by an additive space-
time white noise. They proved the existence and uniqueness of the solution and their method
relied heavily on the results for a deterministic variational inequality. Donati-Martin and
Pardoux [26] generalized the model of Nualart and Pardoux. The nonlinearity appears both
in the drift and in the diffusion coefficients. They proved the existence of the solution by
penalization method but they didn’t obtain the uniqueness result. And then in 2009, Xu
and Zhang solved the problem of the uniqueness, see [79]. However, in all their models,
there isn’t the term of divergence and they do not consider the case where the coefficients
depend on Vu.

The work of El Karoui and al [27] treats the obstacle problem for deterministic semilinear
PDE’s within the framework of backward stochastic differential equations (BSDE in short).

17
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Namely the equation (4) is considered with f depending of u and Vu, while the function g
is null (as well h) and the obstacle v is continuous. They considered the viscosity solution of
the obstacle problem for the equation (4) , they represented this solution stochastically as a
process and the main new object of this BSDE framework is a continuous increasing process
that controls the set {u = v}. Bally et al [5] (see also [52]) point out that the continuity
of this process allows one to extend the classical notion of strong variational solution (see
Theorem 2.2 of [7] p.238) and express the solution to the obstacle as a pair (u,v) where v
is supported by the set {u = v}.

Matoussi and Stoica [53] have proved an existence and uniqueness result for the obstacle
problem of backward quasilinear stochastic PDE on the whole space R% and driven by a
finite dimensional Brownian motion. The method is based on the probabilistic interpreta-
tion of the solution by using the backward doubly stochastic differential equation (in short
DBSDE). They have also proved that the solution is a pair (u,r) where u is a predictable
continuous process which takes values in a proper Sobolev space and v is a random regular
measure satisfying minimal Skohorod condition. In particular they gave for the regular mea-
sure v a probabilistic interpretation in term of the continuous increasing process K where
(Y, Z, K) is the solution of a reflected generalized BDSDE.

Our aim is to prove existence and uniqueness, under suitable assumptions on £, f, g and h,
for the following SPDE with given obstacle S that we write formally as:

dug(w) = 0 (a3,5(2)0jue () + go(t, @, up(w), V(@) dt + (1,7, ue(w), Vuy(w)) dt
+o00
+ Z hj(t, z, u(x), Vut(x))ng,
J=1

up > St

U,O:f.

Heuristically, a pair (u, v) is a solution of the obstacle problem for (5) if we have the follow-
ings:

1. uw € Hp and u(t,z) > S(t,x), dP @ dt @ dx — a.e. and ug(z) =&, dP @ dx — a.e.;
2. v is a random measure defined on [0,7) x O;

3. the following relation holds almost surely, for all t € [0, 7] and Yy € C*(R*) @ C2(0),

t t d  pt
(ut»SOt) - (57 QOO) _/ (USaasSos)d5+/ 5(u5,g05)d$—|—2/ (g;(u&vus)78i@s)ds
0 0 —Jo
t
0

-/ <fs<us,ws>,sos>ds+§ [ it ug s+ [ [ owptanas)

/OT /OW(swv) — S(s,a))v(de,ds) = 0, a.s.
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But, the random measure which in some sense obliges the solution to stay above the barrier
is a local time so, in general, it is not absolutely continuous w.r.t Lebesgue measure. As a
consequence, for example, the condition

/OT/@(U(S’x) — S(s,x))v(dxds) =0

makes no sense. Hence we need to consider precise version of u and S defined v—almost
surely.

In order to tackle this difficulty, we introduce the notions of parabolic capacity on [0, 7] x O
and quasi-continuous version of functions introduced by Michel Pierre in several works (see
for example |70, 71]|) in which he has studied the parabolic PDE with obstacle using the
parabolic potential as a tool. He proved that the solution uniquely exists and is quasi-
continuous. Let us remark that these tools were also used by Klimsiak ([41]) to get a
probabilistic interpretation to semilinear PDE’s with obstacle.

To give a rigorous definition to the notion of solution to (5), we will use the technics of
parabolic potential theory developed by M. Pierre in the stochastic framework. The key
point is to construct a solution which admits a quasi continuous version hence defined outside
a polar set and that regular measures which in general are not absolutely continuous w.r.t.
the Lebesgue measure, do not charge polar sets. Hence, we first prove a quasi-continuity
result for the solution of the SPDE (4) with null Dirichlet condition on given domain O and
driven by an infinite dimensional Brownian motion. This result is not obvious and its based
on a mixing pathwise arguments and Mignot and Puel [54] existence result of the obstacle
problem for some deterministic PDEs. Moreover, we prove in our context that the reflected
measure v is a regular random measure and we give the analytical representation of such
measure in term of parabolic potential in the sense given by M. Pierre in [70]. The main
theorem we obtain is:

Theorem 0.4. Assume that f, g and h satisfy some Lipschitz continuity and integrability
hypotheses, € € L2(2 x O), S is quasi-continuous and Sy < S, where S’ is the solution of
the linear SPDE

ds; LSyt + fldt + >0, 0igldt + Y15 1 ,dB]
S'(0) S0,

where Si € L2(Q x O), ', ¢ and h' are square integrable adapted processes.

Then there exists a unique solution (u,v) of the obstacle problem for the SPDE (5) associated
to (&, f,9,h,S) i.e. w is a predictable continuous process which takes values in a proper
Sobolev space, u > S and v is a random reqular measure such that:

1. the following relation holds almost surely, for all t € [0,T] and Yo € C*(RT) ®@C2(0),

t t d
(urr 21) — (€, 00) — / (15, Duspi)ds + / Elug, g )ds + 3 / (6} (s, Vts), Bips)ds
0 0 — Jo

t
0

-/ (fs<us,ws>,sos>ds+§ / (4 (e, V), ) B + / t [ eawda,s)
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2. u admits a quasi-continuous version, u, and we have the mininal Skohorod condition
T
/ / (u(s,xz) — S(s,z))v(dr,ds) =0 a.s.
0 @]

We begin the proof with the linear case, i.e. f, g and h do not depend on v and Vu. Using
the method of penalization we proved that the obstacle problem admits a unique solution.
Then we established an It6 formula by approximation in order to use Picard iteration to get
the result in the nonlinear case. With the help of 1t6’s formula we deduced a comparison
theorem for the solution of SPDE with obstacle.

In the following chapter we proved a maximum principle for local solutions of quasilinear
stochastic PDEs with obstacle. We begin with the Stochastic PDEs with obstacle (5).

In the theory of deterministic Partial Differential Equations, the maximum principle plays
an important role since it gives a relation between the bound of the solution on the boundary
and a bound on the whole domain. In the deterministic case, the maximum principle for
quasilinear parabolic equations was proved by Aronson-Serrin (see Theorem 1 of [3]). In
[23], Denis-Matoussi-Stoica adapted the method of Aronson-Serrin to the stochastic frame-
work and proved maximum principle for SPDE with homogeneous second order operator
and driven by a finite dimensional Brownian motion. The proofs are based on the notion of
semigroup associated to the second order operator and on the regularizing property of the
semigroup. In [24] Denis-Matoussi generalized the results in [23] to the case of SPDE with
non-homogeneous second order operator and driven by a noise which is white in time and
colored in space. The proofs are based on the Green function associated to the operator
and use heavily the results of Aronson [1] on the existence and the Gaussian estimates of
the weak fundamental solution of a parabolic PDE.

There is a huge literature on parabolic SPDE’s without obstacle. The study of the L” —norms
w.r.t. the randomness of the space-time uniform norm on the trajectories of a stochastic
PDE was started by N. V. Krylov in [42], for a more complete overview of existing works
on this subject see [23, 24| and the references therein. Concerning the obstacle problem,
there are two approaches, a probabilistic one (see [53, 41]) based on the Feynmann-Kac’s
formula via the backward doubly stochastic differential equations and the analytical one (see
|26, 55, 79]) based on the Green function.

To our knowledge, up to now there is no maximum principle result for quasilinear SPDE
with obstacle and even very few results in the deterministic case. The aim of this chapter
is to obtain, under suitable integrability conditions on the coefficients, LP-estimates for the
uniform norm (in time and space) of the solution, a maximum principle for local solutions
of equation (5) and comparison theorems similar to those obtained in the without obstacle
case in [21, 23]. This yields for example the following result:

Theorem 0.5. Let (Mi)i>0 be an Ito process satisfying some integrability conditions, p > 2
and u be a local weak solution of the obstacle problem (5). Assume that 0O is Lipschitz and
u < M on 90, then for all t € [0,T]:

El(u— "7 . <k(p,t)C(S, f,9,h, M)

00,005t —



CONTENTS 21

where C(S, f,g,h, M) depends only on the barrier S, the initial condition £, coefficients
f,9,h, the boundary condition M and k is a function which only depends on the structure
constants of the SPDE, || - ||oo,c0it S the uniform norm on [0,t] x O.

Let us remark that in order to get such a result, we define the notion of local solutions to
the obstacle problem (5), which, roughly speaking, are weak solutions without conditions
at the boundary. For example a solution obtained in a larger domain D O O with null
conditions on 9D, when regarded on O becomes a local solution. Regarding the obstacle
problem, we need to introduce what we call local regular measures.

This chapter is organized as follows: in section 2 we introduce notations and hypotheses
and we take care to detail the integrability conditions which are used all along this chapter.
In section 3, we prove an existence and uniqueness result for the SPDE (5) with obstacle
with null Dirichlet condition under a weaker integrability hypothesis on f and also give an
estimate of the positive part of the solution. In section 4, we establish the LP—estimate
for uniform norm of the solution with null Dirichlet boundary condition. Section 5 is de-
voted to the main result: the maximum principle for local solutions whose proof is based
on an [td’s formula satisfied by the positive part of any local solution with lateral boundary
condition, M. The last section is an Appendix in which we give the proofs of several lemmas.

The objective of the second part of this thesis is to study the existence and uniqueness of
solutions to stochastic partial differential equations driven by G—Brownian motion in the
framework of sublinear expectation spaces (GSPDE for short).

Motivated by uncertainty problems, risk measures and the superhedging in finance, Peng 64,
65, 66] introduced G—Brownian motion. The expectation E[-] associated with G—Brownian
motion is a sublinear expectation which is called G—expectation. The stochastic calculus
with respect to the G—Brownian motion has been established in [66]. There have been
several works concerning the well-posedness of Stochastic Differential Equations driven by
G —Brownian motion, see [4, 30, 47, 48, 66] and also Backward Stochastic Differential Equa-
tions, see [66].

To our knowledge, up to now there is no result about Stochastic PDEs driven by G—Brownian
motion, we want to study the solvability of the following stochastic partial differential equa-
tion driven by G—Brownian motion:

dus(@) = 0y (asy(@)Oyun(@) + gilt, v, up(@), Vur(a))) dt + F(t, 2, us(w), Vg )t
dy
+ > hy(t,x,u(), Vug(2))dBY, (6)
j=1
where a is a symmetric bounded measurable matrix which defines a second order operator
on O C R?, with null Dirichlet condition. The initial condition is given as ug = ¢ € L%(O),
and f, g = (g1,...,94) and h = (h1,...hgq,) are non-linear random functions which satisfy
Lipschitz condition with proper Lipschitz coefficients, B is a d; —dimensional G—Brownian
motion.
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For this purpose, we need to develop the stochastic calculus for Hilbert space valued process
with respect to G—Brownian motion and to prove the Burkholder-Davis-Gundy’s inequality.
The existence and uniqueness result of GSPDE is as follows:

Theorem 0.6. Under the assumptions Lipschitz continuity and integrability of f, g and h,
there exists a unique solution u of (6) in a proper space.

We can also establish an It6 formula for the solution of (6) and a comparison theorem.



Chapter 1

Preliminaries

1.1 Introduction

In this chapter we will recall some results which will be useful for us. The first one concerns
the notion of parabolic potential. The so-called obstacle problem for Stochastic PDEs means
that we want to find a solution of a SPDE which always stays above a given barrier. Hence
the natural idea is that when the solution touch the barrier we add a force to push it up.
In mathematical language, that is, we add a term of measure v into the equation. This
random measure v is a local time, in general, it is not absolutely continuous with respect
to Lebesgue measure. So, for example, the minimal Skorohod condition make no sense. We
have to consider a precise version of solution which is defined v—almost surely. In order to
do this, we follow the technics of parabolic potential theory developed by M. Pierre |70, 71|
in stochastic framework. The key point is that we construct a solution which admits a quasi-
continuous version hence defined outside a polar set and that regular measures do not charge
polar sets. With the help of parabolic potential we can give an analytical representation of
regular measures. This analytical representation will give us more information.

The second one is the wellposedness of SPDE without obstacle. The existence and unique-
ness of solution, Itd’s formula and comparison theorem will play a basic role in our work.
See, for example, [17], [20] and [42].

1.2 Parabolic Potential Analysis

In this section we recall some definitions and results in [70] and |71]. We will specify some
spaces and modify some notations for our convenience.

In [70] and |71, Michel Pierre has studied the obstacle problem for parabolic equation with
Dirichlet boundary condition as follows:

u>¢, u(0)=ug, ulpo=0

— —Au>0, (%—Au)(u—g)z& (1)

23
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where O is an open domain in R?, the obstacle ¢ : [0,7[xO — R and the initial value
uo - O — R

When the obstacle is regular, the problem is well-posed (see [9], [10] and [11]). When the
obstacle is not regular (only measurable), the problem has been studied by Mignot-Puel (see
[54]) using the method of parabolic variational inequality. They have proved the existence of
the smallest weak solution which can be viewed as a solution to the obstacle problem, but,
in general, there isn’t the uniqueness of the weak solutions. Michel Pierre used an analytical
method to study the existence and uniqueness of solution to this problem. The fundamental
difficult is that, unlike the case of elliptic case, the solution of parabolic equation is not
quasi-continuous. The elliptic equation with obstacle is well-posed thanks to the fact that

all the elements v of HZ(O) admit a unique quasi-continuous version ¥ satisfies that for all
u of H}(O) with —Au >0,

/ VuVov = / vd(—Au)
[0,7[x0O [0,T[xO

where —Awu is a finite energy measure. To tackle this difficult, Michel Pierre began the
problem with the case of quasi-continuous obstacle, in this case the solution uniquely exists
and is quasi-continuous. Moreover, this solution coincide with the smallest solution of the
inequality variational that has been founded by Mignot-Puel. Then he dealt with the case of
quasi-s.c.s obstacle and the case of any obstacle which, in fact, can be reduced to the case of
quasi-s.c.s. In these two cases he needed the so-called 'représentant précis’ in order to give
a quasi-continuous version of the solution. We will focus on the case of quasi-continuous
obstacle.

1.2.1 Parabolic potentials

Let O be an open domain in RY. L%(O) is the space of square integrable functions with
respect to the Lebesgue measure on O. H{(O) denotes the usual Sobolev space with null
Dirichlet conditions on O, we shall denote Hy'(O) its dual space. Tt is well-known that

Hy(0) — L*(0) = (L(0)) (= L*(0)) < Hy ' (O).

K denotes L>([0, T); L2(O)) N L2([0,T); H}(O)) equipped with the norm:

0 1 Zeeqo.yz200)) + 110 12030

T
sup | v |I? + / (| v |2 +E(vy) dt.
tel0,T] 0

o l%

C denotes the space of continuous functions with compact support in [0, 7[xO and finally:

W= {p e L2(0,7); HY(0)): 92  I2(0, T H (0N},

: I
endowed with the norm|| ¢ ||},=] ¢ HZH([O,T];H&(O)) + || N ||%2([0,T};H*1(o))-
It is known (see [49]) that W is continuously embedded in C([0,T]; L?(0)), the set of
L?(0)-valued continuous functions on [0,7]. So without ambiguity, we will also consider

Wr = {p € W;p(T) =0}, Wt = {p € Wip >0}, Wf = Wrn W,
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Definition 1.1. An element v € K is said to be a parabolic potential if it satisfies:

@GWT, ; ( ot dt—F 5(@t,vt)dt>0

We denote by P the set of all parabolic potentials.
The next representation property will help us to define the so-called regular measure:

Proposition 1.2. (Proposition 1.1 in [71]) Let v € P, then there exists a unique positive
Radon measure on [0,T[xO, denoted by v¥, such that:

Yo € WrNC, / —_, t)dt—F/ 5 th,'Ut dt / / t Cl?)dl/

Moreover, v admits a right-continuous (resp. left-continuous) version v (resp. v) : [0,T] —

L*(0) .
Such a Radon measure, vV is called a regular measure and we write:
_Ov
U
— 4+ A
v = o + Av.

Remark 1.3. As a consequence, we can also define for all v € P:

vp =limo; € L*(O).
T

Proposition 1.2 is a consequence of the following lemma:

Lemma 1.4. Let L be a positive linear mapping on Wr, then there exists a unique positive

Radon measure v on [0, T[xO such that:

Yoe WrnC, L(v)= / v(s,x)v(dzds).
[0,T[xO

The existence of the measure comes from Hahn-Banach theorem and the uniqueness is a
consequence of the fact that Wpr N C is dense in C.

Integral by parts yields the following proposition which describes the regular potential and
the measure associated:

Proposition 1.5. Let v € W, then

(veP) s (% +Av >0 in L*([0,T]; Hy*(0)), v(0)>0);

2. YueCNWryp,

T v
/[()T[Xou(t,x)u(dxdt) = (v(0),u(0)) +/O <E + Av, u)dt.
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Each potential can be approximated by the regular potentials (i.e. the ones in W):
Proposition 1.6. (Proposition 1.3 in [71]) If v € P and vg = limy,_,g+ %fohv(s)ds, for all
A >0, if vy is the solution of
A A A a0 A
v e W, v(0) =g, v +)\(W+Av ) =v.

A

then v* € P and when X tends to zero, v increasingly converges to v in L?(0,T; L*(0))

and weakly in L*(0,T; Hi(O)). Moreover, ot converges vaguely to v¥ on [0,T] x O.

1.2.2 Capacity

Firstly, we define the capacity of compact sets. For this purpose, we introduce the following
definition:

Definition 1.7. Let K C [0,T[xO be compact, v € P is said to be v—superior than 1 on

K, if there exists a sequence v, € P with v, > 1 a.e. on a neighborhood of K converging to
v in L2([0,T]; HL(0)).

We denote:
Sk ={v € P; vis v — superior to 1 on K}.

Then we have:

Proposition 1.8. (Proposition 2.1 in [71]) Let K C [0,T[xO compact, then Sk admits a

smallest element v € P and the measure vy, whose support is in K satisfies

T T
/ / dvy, = inf{/ / dv’; v € Sk}
0o Jo veP Jo Jo

Now, we can give the definition of capacity of any borelian sets:

Definition 1.9. (Parabolic Capacity)

o Let K C [0,T[xO be compact, we define cap(K) = fOT Jo dvi;
e let O C [0,T[xO be open, we define cap(O) = sup{cap(K); K C O compact};
e for any borelian E C [0,T[xO, we define cap(E) = inf{cap(O); O D E open}.

Definition 1.10. A property is said to hold quasi-everywhere (in short g.e.) if it holds

outside a set of null capacity.

Proposition 1.11. Let K C O a compact set, then ¥Vt € [0,T

cap({t} x K) = Aa(K),
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where A\g is the Lebesgue measure on O.

As a consequence, if u : [0,T[xO — R is a map defined quasi-everywhere then it defines
uniquely a map from [0,T] into L*>(O). In other words, for any t € [0,T[, wu; is defined
without any ambiguity as an element in L*(O). Moreover, if u € P, it admits version u
which is left continuous on [0,T] with values in L*(O) so that ur = tup- is also defined

without ambiguity.

Corollary 1.12. Ifu!, u?: [0,T[xO — R, and u! = u?, q.e., then Vt € [0,T[, u'(t) =
u?(t), \g — a.e..

In other words, this corollary says that a function defined quasi-everywhere defines a unique
function from [0, T[ to L?(0).

The next proposition, whose proof may be found in [70] or [71] (see Proposition 2.5 and
Corollary 2.2 in [71]) shall play an important role in the sequel, for example, it ensures that
the minimal Skohorod condition makes a sense (see Definition 2.22 in Chapter 2):

Proposition 1.13. Regular measures do not charge polar sets (i.e. sets of capacity 0).

Remark 1.14. The capacity only depends on the space H&((’)) in the sense that, if we define
another capacity associated to another bilinear form on H}(O) x H}(O) (satisfying the same

hypotheses as the former one), they will be equivalent.

1.2.3 Quasi-continuity

Now, we come to another very important definition in our work:

Definition 1.15. (Quasi-continuous) A functionw : [0, T[xO — R is called quasi-continuous,

if there exists a decreasing sequence of open subsets Oy, of [0, T[xO with:

1. for all n, the restriction of u, to the complement of O,, is continuous;

2. limy,—s 4 oo cap (Op) = 0.

We say that u admits a quasi-continuous version, if there exists u quasi-continuous such that

U=u a.e..

Proposition 1.16. (Theorem 3.1 in [71]) If ¢ € W, then it admits a unique quasi-
continuous version that we denote by @. Moreover, for all v € P, the following relation
holds:

T
/ pdv’ = / (—=0rp,v) + E(p,v)dt + (o1, v7) -
[0,T[xO 0

The uniqueness comes from the following lemma:
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Lemma 1.17. Let v : [0,T[xO — R be quasi-continuous, if v > 0 almost everywhere on
[0,T[xO, then v > 0 quasi-everywhere on [0,T[xO.

Corollary 1.18. Let v' and v? be quasi-continuous, then

1

(v' = v? almost — everywhere) = (v' = v? quasi — everywhere).

The proof of the existence is based on the following two lemmas. Before recalling the lemmas,
we introduce a notation: for any function ¢ : [0, T[xO — R and vy € L*(O), we define

k(1,v9) = essinf{v € P; v > 1) a.e., u(0) > vp}.

Lemma 1.19. There exists k > 0 such that, for all w € W and all vy € L*(0O),

I 5 (w, vo) e < Bl w lw =+ [l vo ll22(0))-

Lemma 1.20. There exists C > 0 such that, for all open set ¥ C [0,T[xO and v € P with
v>1a.e ond:
capd < C || v ||% .

That is: a set 9 is of null capacity if there exists a sequence of elements of VW which are
superior than 1 on the neighborhood of ¥ converge to 0 in WW. This provides an idea to
prove the quasi-continuity of a function. See, for example, Theorem 2.18 in Chapter 2 which
concerns the quasi-continuity of the solution of SPDEs.

Corollary 1.21. All the elements u € P admits a quasi-s.c.i. version u defined by

W =sup quasi ess W q.e.
A>0

where W is defined as in Proposition 1.6.

Moreover, w € LY(v°) for all v € P with the estimation

T
/ / adv’ < C | ullkllv |k - (1.2)
0 (@

Proof: From Proposition 1.6 we know that Yu € P there exists a sequence of u* € W
increasingly converges to u. By Proposition 1.16, we get the following relation

/OT/OﬂAdu” = /T(— / E(wr ) + (ug, vr)
/Euv /Suv uT,UT)

A
Clla™ [kl vk,

IN

A\

the second inequality is obtained from the fact that v € P, then we take the sup and get
the estimation (1.2). O
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Remark 1.22. Note that u is left-continuous from [0,T] to L*(O), hence, it is not a ‘good’

representative of the solution of a parabolic equation.

We end this subsection by a convergence lemma which plays an important role in our ap-
proach (Lemma 3.8 in [71]), see, for example, Theorem 2.25 in Chapter 2 and Theorem 3.22
in Chapter 3:

Lemma 1.23. Ifv™ € P is a bounded sequence in K and converges weakly to v in L*(0,T; H} (0));
if u™ is a sequence of quasi-continuous functions and |u™| is bounded by a element in P. Sup-

pose that there exists wg € P and u quasi-continuous with
lim || uw—u" ||5=0,
n—oo

where || u —u™ ||g,= inf{a €]0,00], |u—u"| < awy g.e.}. Then

T . T
lim udvt = udv®.
n—+ Jo Jo o Jo

1.2.4 Applications to PDE’s with obstacle

For any function ¢ : [0, T[xO — R and ug € L?(0), following M. Pierre [70, 71|, F. Mignot
and J.P. Puel [54], we define

k(1 up) = essinf{u € P; u > 1 a.e., u(0) > up}. (1.3)

This lower bound exists and is an element in P. Moreover, when ) is quasi-continuous, this
potential is the solution of the following reflected problem:

or

KEP, k21, o

+ Ak =0 on {u >}, k(0) = ug.
Mignot and Puel have proved in [54] that (1, u) is the limit (increasingly and weakly in
L*(0,T; H}(0))) when € tends to 0 of the solution of the following penalized equation

a € € B
U €W, u(0) = g, L4 Au, — L=V g

ot €
Let us point out that they obtain this result in the more general case where v is only
measurable from [0, T into L?(0O).

For given f € L2(0,T; H~1(0)), we denote by i, the solution of the following problem:

keW, k(0) = uo, %4—14/@:]0.

The next theorem ensures existence and uniqueness of the solution of parabolic PDE with
quasi-continuous obstacle, it is proved in [70], Theorem 1.1. The proof is based on a regu-
larization argument of the obstacle:
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Theorem 1.24. Let ¢ : [0, T[xO — R be quasi-continuous, suppose that there exists ( € P

with || < ¢ ae., f € L20,T; H-1(0)), and the initial value ug € L?(O) with ug > 1(0),

then there exists a unique u € /@50 + P quasi-continuous such that:

T
u(0) =g, u>1, ge.; /0 /O(ﬂ _ J)dy“_’“éo —0

The first basic tool is the well-posedness of the obstacle problem for parabolic equation in
the case where the obstacle is 'regular’, see Charrier-Troianiello (see [11], [10]):

Theorem 1.25. (regular obstacle) Let » € WNP —W NP and ug € L*(O), and
u = infess{v € ngo +P,v>1 ae.}.

Then u € WN (kY, +P) and we have

9 4w <(ZY 4 ap)* in L20, T H-(0)).
ot ot
Moreover, u is unique element of W such that
T ou
u(0) = uo v 0(0), [ (G + Auu =) =0.
0

The following lemma allows us to approximate quasi-continuous obstacle by ’regular’ pro-
cesses.

Lemma 1.26. Let u € P quasi-continuous, then there exists a sequence of v € WNC and
w € P with

i o
Jim || =iz o) = lim @ = flo= 0.

This lemma is a consequence of the density of WNC in C.

Remark 1.27. With the help of the ’représentant précis’ (see [71]), the similar existence
and uniqueness result of the general case, for example, the obstacle is quasi-s.c.s., can be

obtained. But in our work, we only concentrate on the case of quasi-continuous obstacle.

1.3 Existence and uniqueness for SPDE

In this section, using an analytical method, we prove an existence and uniqueness result for
the following stochastic partial differential equation (see, for example, [17], [20] and [42]):

d
dug(z) = Luw(z)dt + f(t,z,ui(x), Vur(z))dt + Z 0;gi(t, z,us(x), Vug(z))dt
i=1
00 )
+ ) byt m w(@), Vug(x))dBY (1.4)
j=1
where L is an elliptic second order symmetric differential operator defined on some do-
main O C RY, with Dirichlet boundary condition. We also establish an It6 formula and a
comparison theorem for the solution. These results play a basic role in our work.
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1.3.1 Hypotheses and definitions
We consider a sequence ((B(t))¢>0)ien+ of independent Brownian motions defined on a
standard filtered probability space (2, F, (F¢)¢>0, P) satisfying the usual conditions.

Let © C R? be an open domain in R? and L?(O) the set of square integrable functions
with respect to the Lebesgue measure on O. Let A be a symmetric second order differential
operator given by

d
A=—-L=— Z 8i(ai’j8j).

ij=1

We assume that a = (a®/); ; is a measurable symmetric matrix defined on O which satisfies
the uniform ellipticity condition

AeP? < de a ()¢ < AP, Vo € O, £ €RY,
ij=1
where A and A are positive constants.
Let (F,€) be the associated Dirichlet form given by F := D(AY?) = H}(O)and
E(u,v) == (AY?u, AY?0) and E(u) =|| AV?u ||?, Yu,v € F

where (-,+) and || - || are respectively the inner product and the norm on L%(O). HE(O) is
the first order Sobolev space of functions vanishing at the boundary.

We consider the quasilinear stochastic partial differential equation (1.4) with initial condition
u(0,-) = £() and Dirichlet boundary condition u(t,x) =0, V (t,z) € RT x 0.

We assume that we have predictable random functions

[ RYxQxOxRxR— R,
g=1(91,-90) :RTxQx O xR xR = R
h=(hi,....hi,..) Ry x Qx O x RxRY - RV,

In the sequel, | - | will always denote the underlying Euclidean or [?—norm. For example

“+oo
|h(t,w,z,y, z)\2 = Z |hi(t, w,z,y, Z)P
i=1

Assumption (H): There exist non negative constants C, «, ( such that for almost all w,
the following inequalities hold for all (z,y,2,t) € O x R x R x R™:

Lf(tw,z,y,2) = ftw 2y, ) < Clly —o/| + |2 = 2)),

1
. (Z?:l |gi(t7w7x7y7z) - gi(tvwax)y/7zl)|2)§ S C‘y - y,‘ + a|z - Zl|7

[\

3. (Ih(t,w,2,y,2) — h(t,w, 2,y 2)[*)F < Cly — y/| + Bz — 2/,

4. the contraction property: 2a + 3% < 2.
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With the uniform ellipticity condition we have the following equivalent conditions:
I f(u, V) = f(0,V0) | C | u—v || +OAT2EY2 (u — v),
I 9(u, Vu) = g(v, Vo) || 200 < C |l u = v || +aA ™2V (u - v),
I h(u, V) = (v, Vo) | 2oy < C |l u—v || +8372EV2 (u—v).
Moreover for simplicity, we fix a terminal time 7" > 0, we assume that
Assumption (I):
£ € L*(Q x 0) is an Fo — measurable random variable
f(,,0,0) == f2 € L*([0,T] x Q x O;R)
9(5+0,0) == ¢° = (g1, . 9) € L*([0,T] x 2 x O;RY)

h('7 B '707 0) = ho = (h?7 “wh?? ) € L2<[07T] x £ x O;RN*)'

Now we introduce the notion of weak solution.
We denote by Hyp the space of HE(O)—valued predictable L?(O)—continuous processes
(ut)sejo,r) Which satisfy

T 1/2
(E sup || u || +E/ E(ut)dt> < +o00.
t€[0,T) 0

The space Hrp is the basic space in which we are going to look for solutions.

The space of test functions is denote by D = C°(RT) @ C2(0O), where C>*(R") is the space
of all real valued infinite differentiable functions with compact support in R™ and C2(O) the
set of C2-functions with compact support in O.

Definition 1.28. (Weak solution) We say that u € Hy is a weak solution of the equation
(1.4) with initial condition ug = & the following relation holds almost surely, for allt € [0,T]
and ¥y € D,

t t d
(Ut,wt)—(f,cpo)—/ (us,assos)ds+/ 5(us,¢s)ds+2/ (95(us, Vus), 9ips)ds
0 0 = Jo

t oo ¢
_/(fs(uS,Vus),cps)ds+Z/ (h (us, Vg, 05 )d B
0 - 0
J=1

Definition 1.29. (Mild solution) We call w € Hrp a mild solution of the equation (1.4) with
initial condition ug = & if the following equality is verified almost surely, for each t € [0,T],

t t oot
uy = P& —|—/ P,_sfsds +/ P,_cdivgsds + Z/ P,_shldB! . (1.5)
0 0 . 0
7=1

We begin with proving all the terms in the RHS of (1.5) are well defined.
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Remark 1.30. (The spectral theorem for self-adjoint operators) Let A be a self-adjoint
operator, we recall that if x € H, then for allt > 0, Pux € D(A), and the map t — Pyx is

H—continuous on [0, +o00[ and H—differentiable on ]0,+o0o| and its derivative is
atPt.T = —APtI' = —PtAl'

The spectral decomposition of A is:

“+oo
A_/ ME),
0

where Ey is the resolution of identity associated to A. So

“+o00
Pix = / e_)‘tdEAx.
0

1.3.2 Mild solution

Lemma 1.31. Let € be in L2(O x Q). Then

1. the process I': t € [0,T] — P£ admits a version in Hr;

2. for all ¢ € D and for all t € [0,T], we have
t t
[ Catupdis = (Moo = o) + [ Eupdds Poae. (10)
0 0
3. Forall0<s<t<T, fst I'ydu belongs to D(L) P—a.e. and

t
I,—T,= L(/ Iydu), P —a.e.

Proof. : We fix w € Q, £(w) € L?(O). Tt is well known that V ¢ €]0,7], P£(w) € F. From
now on, we omit w from the notation.
By Remark 1.30, we have

+oo
vt € [0,T], P = / e MAE\E .
0

Therefore,
_ _0Rg 0 <
BRSPS = —(LR&RE = ~(GE PO =~ [ Mame, [T eNapyg)
o —\t —\t _ —2\t
= /0 P IoNT /O e MAE,¢) = /O A Md(E ¢, €)
and

| P |= ( /O NAE)E, /0 e MAEE) = /0 e MA(BAE€).
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Hence,
2 2 +oo 2\
VteﬂxTL||as|p—ecasJ%@+w|afn——/" (14 N Md(Byg, €).
0

This yields

r 2
Anagum

o0 _ 2T
/O 1+ N (B 6)

2
01— 672)\T S 672)\T
= /O 2>\d(E,\£,£)+/O fd(EAS,S)
0 o0 1
< /0 Td(EA§,§)+/ fd(Exé,f)

(T + ) 1€ 1I*< +o0,

which proves 1.
Assume first that £ € D(L). Then, for all t € [0, T fot P, fds belongs to D(L), and the map

t € [0,T) — P& is L2(O)—differentiable, 2% = L(P;¢), s

Vi (0.7, Pé— €= /0 CL(Pg)ds = L /0 P eds),

which is assertion 3.
Moreover, for all ¢ € D,

Oy(P&, 1) = (LB, pr) + (P, Opr)
—E(P, ) + (P, Orepr)

Then we get the relation (1.6) by integrating by part. This relation will be used to obtain
the equivalence between weak solution and mild solution.

For the general case, £ € L?(0), there exists a sequence £" in D(L) which converges to & in
L?(O). Thanks to the proof of 1, we know that (P£™) converges to P,£ in L2([0,T]; HL(O))
which yields 2 by density.

Moreover, for ¢t € [0,T], by 3, we have, for all n, m € N*|

t t
L[ Pt [ Pgm = Rie - €7 = (€ = ¢,
As P is continuous on L?(0), it is clear that ( fo ,£™du)) is a Cauchy sequence in L?(O)

and so converges. As L is a closed operator, we conclude that fo P,&du belongs to D(L)
and that

L(/Olt P,&du) = hm L(/ P,£"du).

Remark 1.32. We have the following relation

(ExE, EXE) = (B5ENE, €) = (ERE,€) = (B¢, ).
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Lemma 1.33. Let f € L*([0,7T] x Q x O) and adapted. Then

1. the process a: t € [0,T] — fg P,_¢fsds admits a version in Hr;

2. for all o € D and all t € [0,T], we have

t

t t
/ (s, Ostps)ds = (au, pr) — / (fs,ps)dt +/ E(as,ps)ds P —a.e.
0 0 0
3. forall0<s<t<T, fst aydu belongs to D(L) P — a.e. and
t ¢
o — Qg = L(/ aydu) + / fudu P —a.e.
S S

Proof. Assume firts that f € C'([0,7]) ® L?(Q) ® D(L) and is adapted, we fix w € , so
for all t € [0,T], a4(w) € D(L) and t — ay(w) is L?(O)—differentiable and satisfies

dOét

Vtelo,T], =

(w) = fr(w) + Low(w).

From now on we omit w from the notation.
Integrating by part we get, for all ¢ € D and all ¢ € [0, 7],

t ¢ t
/ (s, Osps5)ds = (ou, pt) — / (fs, ps)ds +/ E(as, ps)ds.
0 0 0
Moreover, still integrating by part, we have, for all ¢ € [0, 7],

t
| o ||2 = 2/0 (Osvs, ais)ds

t
2/ (fs + Las, o)ds
0

2/0t(f8,as)ds — 2/:5(045)d8.

This yields

o242 "lan)ds = 2 / (o a)ds < / U £ 12+ 1 o [PV

Taking the supreme, we get

T T
sup o |P< [P det [ sup o dr
t€(0,T] 0 0 tel0,T)

Thanks to the Grownall’s lemma, we have

T
sup | e [°< 7 / | £ |2 dt,
te[0,7] 0
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and
T T T
2 / E(an)dt < / 12+ 1l e |12 dt < (14 TeT) / | £ |2 d.
0 0 0

By density argument, we get 1 and 2.
Consider 0 < s <t < T, f € L*([0,T] x Q x O) and a sequence (f"),en+ of elements in
C([0,T]) ® L*(Q) ® D(L) which converges to f in L*([0,T] x  x O). We put

t
Vn e N*, vt € [0,T], of = / P, flds.
0
It is clear that for all n € N* and P—almost all w € €2, f; ajidu € D(L) and

t t
L(/ andu) = af — ol — / fodu.
S S

Thanks to the relations we have established at the beginning of this proof, we conclude that
[Falrdu converges to [T ay,du in L*(O) and that moreover, L(fst aldu) converges in L%(O)
to oy — g — fst fudu, for P—almost all w € €. This ensures that fst aydu belongs to D(L)
and that

t t
op — g = L(/ aydu) —|—/ Sudu.

Lemma 1.34. Let g be in L*([0,T] x Q x O) and adapted. Then

1. the process v : t — fg P,_idivgsds admits a version in Hr;

2. for all ¢ € D and for all t € [0,T], we have

t

t t
/(%,assos)dSZ(%,sOt)vL/ (gs,0¢s)ds+/ E(ys, ps)ds P —a.e.
0 0 0

3. forall0 <s<t<T, fst Yudu belongs to D(L) P — a.e. and
t t
Ve — Vs = L(/ Yudu) +/ divg,du P — a.e.
S S

Proof. Assume first that g € C*([0,T]) ® L*(Q) ® D(L?/?) and is adapted. It is clear that
divg € C1([0,T]) ® L?(2) ® D(L) and is adapted.

We fix w € Q, for all t € [0,T], 1(w) € D(L) and t — v (w) is L?(O)—differentiable and
satisfies
dry Ty
Vtelo,T], E( ) = divgi(w) + Ly (w).

From now on, we omit w from the notation.
Integrating by part, for all ¢ € D and for all ¢ € [0, 7], we get:

t t t
/O(WS,ascps)ds = (%,tpt)—/o(divgs,ws)der/O E(vs, ps)ds

t t
= (%%)Jr/o(gs,@«ps)der/O E(s, ps)ds.
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Moreover, still integrating by part, we obtain, V¢ € [0, 77,

t ¢
llie = 2 [ @awrds =2 [ (divg, + Lrnds
t t
= 2/ (divgs,'ys)ds+2/ (Lys,7vs)ds
0 0
t ¢
= —2/ (gs,a%)ds—2/ E(vs)ds (1.7)
0 0

Using the inequality ab < cca® + €b? and the uniform elliptic condition, we get

t tr1 €
P42 [ gas < [ (510 P 45660 ) as.
0 0 \€

therefore,
2 € ! L[ 2
eI+ 5) [ etds <2 [ oo P d,
0 €Jo

We can take e small enough such that (2 — {) > 0, then taking the supreme, we have the
following two relations:

o1 4 2
sup [y "< = [ [l gs |7 ds
t€[0,7] €Jo

T A T )
s)ds < ——— s |7 ds.
| gtis< 2 [ o as

By density argument, we get 1 and 2.

Consider now 0 < s <t < T, g € L?([0,T] x  x O) and a sequence g, € C1([0,7]) ®
L2(9) ® D(L3/?) which converges to g in L*([0,T] x Q x O).

We put

and

t
Vn e N*, vVt € [0,T], 7 = / P,_divgds.
0
It is clear that for all n € N* and P—almost all w € €, fst Yodu € D(L) and
t t
L(/ Yudu) =7 =7 —/ divg, du.
Thanks to the relations we have established at the beginning of the proof, we conclude that

fst i du converges to fst Yudu in L?(O) and that moreover, L(fst du) converges in L?(O)

to v —vs — fst divgydu, for P—almost all w € Q. This ensures that fst ~Yudu belongs to D(L)
and that

t t
Tt — Vs = L(/ Yudu) + / divgydu.
s s

Lemma 1.35. Let h € L*([0,T] x Q x O) and adapted. Then

1. the process B: t € [0,T] — fg P,_shsdBs admits a version in P(F);
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2. for all ¢ € D and for all t € [0,T], we have
t t t
[ Bsduprds = Gon + [ EGupis = [ (hpaB, P - ae.
0 0 0
3. forall0<s<t<T, fst Budu belongs to D(L) and
t t
8= o= L[ puti)+ [ hadB, P-ae.
S S

Proof. Assume first that h € C1([0,7T]) ® L?(Q) ® D(L) and adapted. It is clear that the
process

t
vt € [0, 7], Bt—/ P,_,hydB,
0

is a square integrable D(L)—valued martingale (see [D] Prop. 2.3). Hence, for all ¢ € [0, T7,
we have almost surely (see Protter (1985) theorem 3.3)

t t s
B = / P,_hydBs + / ( / LP,_yhydB,)ds
0 0 0

t t
0 0

Thanks to the Itd’s formula, we have almost surely, for all ¢ € D and for all ¢ € [0, 77,

t t t
(5t7§0t) = (BOaSOO)"‘/O (65785¢5)d8+~£ <h57905)dB5+/0 (Lﬁsa¢s)d5

This yields

t t t
/ (557 8S¢s)d5 = (52&7 th) + / 5(65, @s)dS — / (hs, (,Os)dBS P —a.c.
0 0 0

We apply Ité’s formula to 32 and obtain:

t t t
vee [0,7], || B |2 +2/0 S(ﬁs)ds:2/0 (Bs,hs)st+/O | s |2 ds, as.  (19)

Taking the supreme and the expectation, we have:

t T
E[ sup || B ||*] < 2E[ sup | (65,h5)st]+2E/ | s ||* ds.
0

te[0,7] te[0,7] JO
By Burkholder-Davies-Gundy’s inequality, we get that there exists a constant C' such that

T T
E[ sup || B ||?] < ZCIE[/ (Bs,hs)ds]1/2+2E/ | hs ||* ds
t€(0,T] 0 0

IN

C T
CeEl sup | 6 %+ (Z + 2 / | ho |2 ds
t€[0,7] € 0

Therefore

C T
(1— COE[ swp || A |2 < (£ +2E / | ho |2 ds
t€[0,T] € 0
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We can take e small enough such that 1 — C'e > 0, thus we have

T
E[ sup || e | < CE / | hy |2 ds.
te[0,T] 0

Again from (1.9), we obtain:

T T 1 T
E/ E(Bs)ds gE/ (ﬁs,hs)st+E/ | ks ||* ds.
0 0 2 Jo

Hence,

T 1 T

B[ e@aas < g8 [ n P as

0 0
By density argument, we get assertions 1 and 2.
For the last one, we remark that if h € C1([0,T]) ® L*(Q) @ D(L), it is given by relation
(1.8). The general case is obtained by density argument. [

1.3.3 Equivalence between weak and mild solutions

We now consider the mild equation
t t
ut(r) = Pg(r)+ / s fs(yus (), Vus () (@) ds + / Py—sdivgs (-, us(+), Vus(+))(x)ds
0 0
t
+ / Pi_shs(-yus(+), Vus(+))(x)dBs (1.10)
0
Proposition 1.36. u € Hr is a weak solution of (1.4) if and only if it satisfies (1.10).
Proof. Let u be in Hp. We put, for all t € [0,T], oy = fot Pr_sfs(-yus(+), Vus(+))(x)ds,
= Jo Prosdivgs(-,us(-), Vus(-)(x)ds and By = [7 Pr_shs(-,us(-), Vus(+))(2)dBs. Thanks
to the lemmas in the previous section, it is easy to conclude that if u € Hy satisfies (1.10)

then wu satisfies (1.4).
Conversely, if u € Hp is a solution of (1.4), then define the process

d(x) = Pe(e)+ / Preofu(rus("), Vg () (2)ds + / Preudivga (-, us(-), Vus()) (z)ds
0 0

4 /O Preshy(- (), V() (@) dB.

Using the previous calculus, we have, for all ¢ € D,

T T T
/ (o Dupr)dt = —(€0) + / £ty )t / (Folue, Vue), 1)t
0 0 0

T T
4 / (gu(uue, Var), Vi)t — / (he(uigs Ve, 1) d By
0 0

On the other side, as u is a solution of (1.4), for all ¢ € D,

T T T
/ (ug, Oppr)dt = —(&,%0) +/ E(ut, or) —/ (fe(ug, Vug), r)dt
0 0 0

T T
+ / (9¢(ue, Vug), Vioy)dt — / (he(ug, Vug), pr)dBy
0 0
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If we put v(z) = u(z) — uj(x), it is clear that v belongs to Hp and that for all ¢ € D,

T T
/ (vt,atgot)dt—/ E(vg, pp)dt a.s.
0 0

Hence, v is the weak solution of the equation dyv; — Lvy = 0 with initial condition vy = 0.
Then we can conclude thanks to Lemma 4.10 in [17]. [

1.3.4 1Itd’s formula

Lemma 1.37. Assume that f, g, h belong to L*([0, T]xQxO) and adapted and £ € L*(Q2xO)
and consider v = U(E, f,g,h). Let ® : Rt x R — R be a function of class C*2. We
denote by ® and ®" the derivatives of ® with respect to the space variables and by %—? the
partial derivative with respect to times. We assume that these derivatives are bounded and
®'(t,0) =0 for all t € [0,T]. Then we have the following relation P—almost surely, for all
te 0,77,

/q)(t,ut(:z:))da:+/tS(cb’(s,us),us)ds:/ q)(o,g(x))der/t/ %‘I’(Syusm)dm
/Ot( '(5,us), fsds—Z//fb”susaus( x)gi(x dxds+2/ (5, us), hl)dB]

- "(s,us(x)) (M (x))?dzds.
+2;/0/0<1><,3<>><h5<>>dd

Proof. Assume first that f, h € C*([0,T]) @ L*(Q)@D(A), g € C*([0,T]) ® L*(Q2) @ D(A3/?)
and adapted and ¢ € L?(Q) ® D(A), then u is a semi-martingale and it posses the following
form:

t ¢ t t
Vte[0,T], up =& — / Augds +/ fsds —|—/ divgsds +/ hedBs.
0 0 0 0

Thanks to It6’s formula for Hilbert-valued semi-martingale we have almost surely for all
tel0,7]:

/Oé(t,ut(x))dx:/ (0,&(x da?—}—/ / s (s, us(x d;vds—/ (®'(s,us), Aug)ds

+/t(<1> (5, 1s), fs ds+/ / (s, us(x))dzvgs(x)d$d8+/ (®'(s, us), hs)dBs
/ / " (s, us(x))h2(x)dzds

(D (s,us), Aus) = E(P' (s, us), us)

Then, as

and

/Q/(s,us)divgsdx:—/ D" (5, us)Ousgsdx
O (@]
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we get the desired equality.
For the martingale part, by the Burkholder-Davis-Gundy inequality

t T
E( sup /((I)’(s,us),hs)st)gC]E(/ (@' (s, us), hs)?ds)"/?
tel0,7] J0 0

T
scmén@@%w%mWwW2

T

< CEl sup || (s [P+ [ e | ds] <
s€[0,T] 0

we deduce that fg(q)’(s, us), hs)dBs is a martingale.

The general case is obtained by approximation: if f, g et h € L?([0,T] x 2 x O) et £ € L2,
3£k, Bk e CY([0,T)) ® L*(Q) @ D(A), ¢* € C*([0,T]) @ L*(Q) @ D(A%/?) and ¢F € L*(Q) ®
D(A), and they converge strongly respectively. u¥ := U(&F, f¥, g% h¥) is a Hilbert-valued
semi-martingale and it satisfies limj_, oo E || u¥ —u ||2= 0, where u :=U(&, f, g, h). For such
uy 1t0’s formula is valid, then, thanks to the dominated convergence theorem, we take the
limit and get the desired result. ]

1.3.5 Existence and uniqueness result

Theorem 1.38. Under the hypotheses in subsection 1.3.1, the equation (1.4) admits a

unique solution in Hr.

Let v and 4§ be 2 positive constants. On Hp, we introduce the norm

T
[ fly6= E(/O e (0 | us P + || Vus |*)ds),

which clearly defines an equivalent norm on Hrp.
Proof. We define the application A : Hr — Hr as following:

t

t t
(Au), = Pthr/ Pt_sf(s,us,VuS)der/ Pt_sdivgs(s,us,Vus)ds+/ P,_sh(s,us, Vug)dBs
0 0 0

we will prove that A is a contraction with respect to the norm || - || 5.

Denoting u; = Auy — Avy with u and v are in Hr, f = f(u,Vu) — f(v,Vv), g = g(u, Vu) —
g(v,Vv) and h = h(u, Vu) — h(v, Vv). Applying Itd’s formula to e 7742 we have almost
surely:

T T T
e || g |2 +2/ e~ (1) ds — —'y/ e || G, |2 ds+2/ = (1, .)ds
0 0 0

d T 00 T T
—22/0 e'ys(aius,g;)ds—FQZ/o e%(us,h;)ng+/o e || s || ds
i=1 j=1
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The following calculus are based on the Lipschitz conditions and Cauchy-Schwarz’s inequal-

ity:

IN

T _ 1 [T g F
2/ e (us, fs)ds / e || @ ||? ds+6/ e fs 17 ds
0 €Jo 0
1 [T s = 112 g —s 2
- e 7 || us |7 ds + Ce e |lus — s |7 ds
€Jo 0

T
+ Ce/ e || V(us — vs) ||? ds
0

IN

and

d T '
22/ e 7%(gs, Oius)ds
i=170

IN

T
2/0 e | Vs || (C us —vs || +o || V(us —vs) [|)ds

IN

T C T
C’e/ e || Vs ||* ds + / e || us — vy ||* ds
0 € Jo
T T
—m/‘e”|W%W@+a/‘e”|W%—%HP®
0 0

and

T ~ 1 /7 T
/ e 77| |hs| ||2 ds < C(1+ 6)/ e 7 | us — vs H2 ds + 52(1 + 6)/ e 7| V(us — vs) ||2 ds
0 0 0

where C, o and 3 are the constants in the Lipschitz conditions. Using the elliptic condition
and taking expectation, we get:

1 T T
(7_)E/‘5WH@H%B+QA—a—0@E/ 1 || Vi, |2 ds <
€ 0 0
2 T T
C(l+e+ e>/ e || us — s ||? ds + (Ce+ o+ B3(1 —l—e))E/ e || V(us —vs) ||* ds
0 0

We choose € small enough and then 7 such that

/e C(1+€+2/e)
21 2 — — /7 ==
Ceta+p(1+¢€) <2\ —a Ceand2)\—a—06 Ce+a+p%(1+e€)

If we set § = #11606, we have the following inequality:

C’e+a+,6’2(1+e)
2 —a—Ce

| @ Hvﬁg | u—w H%5 .

We conclude thanks to the fixed point theorem. ]

1.3.6 Comparison theorem

In this subsection we will establish a comparison theorem for the solution of SPDE (1.4) as
following;:
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Theorem 1.39. Let f' be another coefficient which satisfies the same hypotheses as [ and
¢ € L?(0). Let u' be the solution of

d
duy(x) = Luj(z)dt + f'(t, 2, uy(z), Vuy(x))dt + Z 0:9i(t, z,up(x), Vuy(z))dt
i=1

+oco
+ D hylt @, uy(x), Vy(x)dB],
j=1

with initial condition uy = ¢’
Assume that £ < & dx ® dP — a.e. and

f(t,zup(z), Vue(x)) < f'(t, 2, uy(z), Vuy(z)) dt @ dz @ dP — a.e.

then
vVt e [0,T], w <u; dr®dP —a.e.

We put u=u _Aula E = £ - 5/7 .E = f(t7ut7vut) - f/(t7u£7vu2)a gt = g(t,ut,Vut) -
g(t,u}, Vuy) and hy = h(t,us, Vug) — h(t,u}, V). The main idea is to evaluate E || @, |2,
thanks to [t6’s formula and then apply Gronwall’s lemma. Hence, we begin with the following
lemma:

Lemma 1.40. Let u be the solution of (1.4), the following relation holds P—almost surely,
for allt € 10,77,

t

2 ! 2
/O(uzr (z)) dw—|—2/0 & (uf,uf) als:/o(éng (z)) d:v—|—2/0 (uf, fs (us, Vus)) ds

t d .
2[5 (e s (“s’vus))dﬁ/o (10 s (s, V) ) ds

i=1

ot
—I—ZZ/ (ul, hjs (us, Vug)) dBY. (1.11)
=170

Proof. We approximate ¥(y) = (y7)? by a sequence of regular functions: Let ¢ be an
increasing C* function such that ¢ (y) = 0 for any y €] — o0,1] and ¢ (y) = 1 for any
y € [2,00[. We set 9, (y) = y%¢ (ny) , for each y € R and all n € N*. It is easy to verify that
(¥n) pen+ converges uniformly to the function ¢ and that

. / _ + . " _ 9.
Jim 4, (y) =297, lim 4y (y) =2 Iyso0
for any y € R. Moreover we have the estimates

0<vn(y) <v(y), 0<y, (y) <Cy, U (y)] <C,

for any y > 0 and all n € N*, where C is a constant. We have for all n € N* and each
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€1[0,7], a.s
¢ ¢
n d g S S d - n d ’:7/ S/ S S?v S d
/wut(x»ﬁ/ (04 ) ds = [ (€ @)do+ [ (@ () o V) ds
/ Z '(/)x (us au&gzs(u&vus)) ds + — / (@bn” (Us) |h3 (us,Vus)|2) ds
+ Z/ (7/); (us) , hj,s (us, VUS)) dBLZ~
j=1"70

Taking the limit, thanks to the dominated convergence theorem, we get (1.11). m

Proof. (Proof of Comparison Theorem) R
Asu=U, f,g,h) and v =U(E, [, g,h), 1 is the solution of SPDE associated to (&, f, g, h).
So that we can apply (1.11) to (u")? and get for all t € [0, T],

~ 2 t —~
/(ut (z)) dx+2/ 5(Aj,1+)ds—/ (& @) d:p—|—2/ (@5, 7.) ds
@]
t
—2/ Z(l{as>0}aiﬁs,§i’s) dS—l—/ (1{ﬂs>0}, )ds—i—ZZ/ A+ h ng, a.s.
-1 0

As we assume that f(u, Vu) < f/(u/, V'),

ajfs = ai{f(s,us,Vus) - f (S u87vu5 }+u+{f 8 U'S?vus) - f (8,US7VU )}
a;_{f/(s,us,Vus) - f (s,us,Vu )}

IN

then with the Lipschitz condition, using Cauchy-Schwartz’s inequality, we have the following

relations: . .
/<us,: s < (C+ Q) [ar Pas+ S [ e@has
0 0

PN e+a [t c [t
/ (Vu;,gs)ds < 3 / E(ul)ds + 6/ | ut H2 ds
0 0

0

t R t B¢ [t
[ 1 ool Pas<c [ 1arPas+ 550 [ e@as
0 0 0

Taking expectation we obtain the following inequality:

_ 2 +2¢  2C 2 b b
Bl P +e- 22 -2 D Ep [e@has <cp [ at | ds
0 0

A A

We can take e small enough such that 2 — M — 2—06 _ Bte +6 > 0, we have

t
Eal |?<CE /0 |t |2 ds,

then we deduce the result from Gronwall’s lemma. ]



Chapter 2

The Obstacle Problem for Quasilinear
Stochastic PDEs: Analytical
approach

2.1 Introduction

The starting point of this chapter is the following parabolic stochastic partial differential
equation (in short SPDE)

dug(z) = 0;(a;j(x)0ju(x) + gi(t, x,ur(z), Vu(x))) dt + f(t, z,u (), Vug(z))dt

+00 )
+> " hy(t, w,ug(x), Vug(z)dB], (2.1)

=1

where a is a symmetric bounded measurable matrix which defines a second order opera-
tor on @ C R?, with null Dirichlet condition. The initial condition is given as ug = &, a
L*(O)—valued random variable, and f, g = (g1, ..., ga) and h = (hq,...h;, ...) are non-linear
random functions. Given an obstacle S : Q x [0,7] x O — R, we study the obstacle problem
for the SPDE (2.1), i.e. we want to find a solution of (2.1) which satisfies "u > S" where
the obstacle S is regular in some sense and controlled by the solution of a SPDE.

Nualart and Pardoux [55] have studied the obstacle problem for a nonlinear heat equa-
tion on the spatial interval [0, 1] with Dirichlet boundary conditions, driven by an additive
space-time white noise. They proved the existence and uniqueness of the solution and their
method relied heavily on the results for a deterministic variational inequality. Donati-Martin
and Pardoux [26] generalized the model of Nualart and Pardoux. The nonlinearity appears
both in the drift and the diffusion coefficients. They proved the existence of the solution
by penalization method but they didn’t obtain the uniqueness result. And then in 2009,
Xu and Zhang solved the problem of the uniqueness, see [79]. However, in all their models,
there isn’t the term of divergence and they do not consider the case where the coefficients
depend on Vu.

45
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The work of El Karoui et al [27] treats the obstacle problem for deterministic semi linear
PDE’s within the framework of backward stochastic differential equations (BSDE in short).
Namely the equation (2.1) is considered with f depending of u and Vu, while the function
¢ is null (as well h) and the obstacle v is continuous. They considered the viscosity solution
of the obstacle problem for the equation (2.1) , they represented this solution stochastically
as a process and the main new object of this BSDE framework is a continuous increasing
process that controls the set {u = v}. Bally et al [5] (see also [52]) point out that the conti-
nuity of this process allows one to extend the classical notion of strong variational solution
(see Theorem 2.2 of |7] p.238) and express the solution to the obstacle as a pair (u, ) where
v is supported by the set {u = v}.

Matoussi and Stoica [53] have proved an existence and uniqueness result for the obstacle
problem of backward quasilinear stochastic PDE on the whole space R% and driven by a
finite dimentionnal Brownian motion. The method is based on the probabilistic interpreta-
tion of the solution by using the backward doubly stochastic differential equation (DBSDE).
They have also proved that the solution is a pair (u, ) where u is a predictable continuous
process which takes values in a proper Sobolev space and v is a random regular measure
satisfying minimal Skohorod condition. In particular they gave for the regular measure v a
probabilistic interpretation in term of the continuous increasing process K where (Y, Z, K)
is the solution of a reflected generalized BDSDE.

Michel Pierre [70, 71| has studied the parabolic PDE with obstacle using the parabolic
potential as a tool. He proved that the solution uniquely exists and is quasi-continuous.
With the help of Pierre’s result, under suitable assumptions on f, g and h, our aim is to
prove existence and uniqueness for the following SPDE with given obstacle S that we write
formally as:

dug(x) = 0 (a; j(x)0jue(x) + gi(t, x, ue(x), Vug(x))) dt + f(t, x, u(x), Vug(x))dt

+o0
+ 3 hyt,z,ui(x), V() dBY,
j=1

(2.2)
ug(z) > Sy(z),¥(t,z) € RT x O,

ug(x) = &(x), Vo € O,
ut(z) =0, V(t,z) € Rt x 90.

To give a rigorous definition to the notion of solution to this equation, we will use the
technics of parabolic potential theory developed by M. Pierre in the stochastic framework.
We first prove a quasi-continuity result for the solution of the SPDE (2.1) with null Dirichlet
condition on given domain O and driven by an infinite dimensional Brownian motion. This
result is not obvious and is based on a mixing pathwise arguments and Mignot and Puel [54]
existence result of the obstacle problem for some deterministic PDEs. Moreover, we prove
in our context that the reflected measure v is a regular random measure and we give the
analytical representation of such measure in term of parabolic potential in the sense given
by M. Pierre in [70]. The main theorem we obtain is:

Theorem 2.1. Assume that f, g and h satisfy some Lipschitz continuity and integrability
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hypotheses, & € LQ(Q x Q), S is quasi-continuous and Sy < S| where S’ is the solution of
the linear SPDE with null boundary condition:

dS; = LSjdt+ fldt + Y0, Oig;,dt + -1 b) dB]
s'0) = S,

where Sy € L2(Q x O), f', ¢ and h' are square integrable adapted processes.

Then there exists a unique solution (u,v) of the obstacle problem for the SPDE (3.1) associ-

ated to (&, f,g,h,S) i.e. uis a predictable continuous process which takes values in a proper

Sobolev space, u > S and v is a random reqular measure such that:

1. the following relation holds almost surely, for allt € [0,T] and Vo € C*(RT)®C2(0),

t t d pt
(Uta@t)_(f,@o)_/o (u$7as@8)d8+A 8(“57908)d8+2/(; (g;(us,Vus),aigos)ds

/(fs(us,VuS s ds+Z/ uS,VuS ©s) BJ—I—/ /gos v(dx,ds)

2. w admits a quasi-continuous version, u, and we have the mininal Skohorod condition

/OT /OW(S?@ — S(s,2))v(de,ds) = 0 a.s.

This chapter is divided as follows: in the second section, we set the assumptions then
we introduce in the third section the notion of regular measure associated to parabolic
potentials. The fourth section is devoted to prove the quasi-continuity of the solution of
SPDE without obstacle. The fifth section is the main part of the chapter in which we prove
existence and uniqueness of the solution, to do that we begin with the linear case, and then
by Picard iteration we get the result in the nonlinear case, we also establish the Ito’s formula.
Finally, in the sixth section, we prove a comparison theorem for the solution of SPDE with
obstacle.

2.2 Preliminaries

We consider a sequence ((B(t))i>0)ien+ of independent Brownian motions defined on a
standard filtered probability space (2, F, (F¢)e>0, P) satisfying the usual conditions.

Let O C R? be a bounded open domain and L?(O) the set of square integrable functions
with respect to the Lebesgue measure on O, it is an Hilbert space equipped with the usual
scalar product and norm as follows

u,v) = ulxr jvix)axr u ||= U2.’13 @'1/2.
(u ) /o“”d’ o </O (2)dz)

Let A be a symmetric second order differential operator, with domain D(A), given by

Za ;)

3,j=1
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We assume that a = (a®/); ; is a measurable symmetric matrix defined on O which satisfies
the uniform ellipticity condition

NP < de "I (2)§'¢ < AEP, Vo € O, £ € R,
ij=1
where A and A are positive constants.
Let (F,E) be the associated Dirichlet form given by F := D(AY?) = H}(O) and
E(u,v) = (AY?u, AY%0) and E(u) =| AY?u ||?, Yu,v € F,

where H{(O) is the first order Sobolev space of functions vanishing at the boundary. We
shall denote H~1(0) its dual space.

We consider the quasilinear stochastic partial differential equation (1) with initial condition
u(0,-) = &() and Dirichlet boundary condition u(t,z) =0, V (t,z) € R* x 90.

We assume that we have predictable random functions

[ RYxQxOxRxRY =R,
g=1(g1,90) :RTx Q2 x O xR xR = R,
h=(hi,...,hi,..) : RY x Qx OxRxRY = RV,

In the sequel, | - | will always denote the underlying Euclidean or I?>—norm. For example
+oo
|h<t, W, 2, Y, Z)|2 - Z |hi(t7 W, T, Y, Z)|2
i=1

Assumption (H): There exist non negative constants C, «, [ such that for almost all w,
the following inequalities hold for all (t,z,y,2) € RT x O x R x R%:

L |f(t,w,m,y,2) — f(t,w,z,y, )| < Cly —y'| + [z = ']),

2. (X lgi(t,w,2,9,2) — gi(t,w,z,y, 2) %) < Cly —y/| +alz — 2|,
3. (|h(t,w,z,y,2) = h(t,w, 2,1/, 2)[)2 < Cly — /| + Blz — 2|,

4. the contraction property: 2a + 32 < 2.

Remark 2.2. This last contraction property ensures existence and uniqueness for the solu-
tion of the SPDE without obstacle (see [20]).

With the uniform ellipticity condition we have the following equivalent conditions:
| f(u, V) = f(v, Vo) | C || u—v || +CA2EV2(u — v)
I 9(u, Vu) = g(v, Vo) || 2020 < C [l u—v || +aX™ /€Y (u - v)

| 7, V) = (v, Vo) | 2oy < C [l u— v | +8AT2E2 (u = v)
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Assumption (I): Moreover we assume that for any 7" > 0,
¢ € L*(Q x O) is an Fy — measurable random variable

F(0,0) := fO e L2([0,T] x Q x O;R)
g(-,0,0) := g% = (g9, ...,99) € L*([0,T] x Q x O;Rd)
h(-y++0,0) := B0 = (BY,...,hY,...) € L*([0,T] x Q@ x O; RY").

by
Now we introduce the notion of weak solution.

For simplicity, we fix the terminal time 7" > 0. We denote by Hr the space of H, 3((’))—Valued
predictable continuous processes (u)iepo, 7] which satisfy

T
E sup | u |? +E/ E(ug)dt < +o00.
t€[0,7] 0

It is the natural space for solutions.

The space of test functions is denote by D = C°(RT) ® C2(0), where C2°(R*) is the space
of all real valued infinite differentiable functions with compact support in R* and C2(O) the
set of C?-functions with compact support in O.

Heuristquely, a pair (u,v) is a solution of the obstacle problem for (2.1) with null boundary
condition if we have the followings:

—

. u € Hyp and u(t,z) > S(t,x), dP @ dt @ dx — a.e. and ug(z) =&, dP @ dx — a.e.;
2. v is a random measure defined on (0,7") x O;
3. the following relation holds almost surely, for all ¢ € [0,7] and V¢ € D,

t

t d t
(uts 1) — (£, 0) — / (g, Dyips)ds + / Euarpa)ds + 3 / (g} (s, Vuig), Biips)ds
0 0 — Jo

t oo et ) t
— J J v .
/0 <fs<us,ws>,sas>ds+; /0 (1 (1, V), ) dBE + /0 /O pu(x)v(dz, ds);

/OT/O(“(S’:”) = S(s,2))v(dr, ds) =0, as.

But, the random measure which in some sense obliges the solution to stay above the barrier
is a local time so, in general, it is not absolutely continuous w.r.t Lebesgue measure. As a
consequence, for example, the condition

/OT/O(U(S’x) — S(s,z))v(dzds) = 0

makes no sense. Hence we need to consider precise version of u and S defined v—almost
surely.

In order to tackle this difficulty, we introduce in the next section the notions of parabolic
capacity on [0, 7] x O and quasi-continuous version of functions introduced by Michel Pierre
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in several works (see for example |70, 71|). Let us remark that these tools were also used by
Klimsiak ([41]) to get a probabilistic interpretation to semilinear PDE’s with obstacle.

Finally and to end this section, we give an important example of stochastic noise which is
covered by our framework:

Example 2.3. Let W be a noise white in time and colored in space, defined on a standard
filtered probability space (Q,]:, (Ft)e=0, P) whose covariance function is given by:
Vs, t € RY, Va,y € O, E[W(z,5)W(y,1)] = 6(t — s)k(z,y),

where k : O x O+ R is a symmetric and measurable function.
Consider the following SPDE driven by W :

d

dug(x) = Z 0iai j(x)05us(z) + f(t, x, ue(z), Vue(x)) + Z&;gi(t,x,ut(x), Vuy(x)))dt 23)

+ h(t, 2, u(x), Vg () W(dt, z),

where f and g are as above and h is a random real valued function.
We assume that the covariance function k defines a trace class operator denoted by K in
L2(O). It is well known (see [7}]) that there exists an orthogonal basis (e;)ien+ of L*(O)

consisting of eigenfunctions of K with corresponding eigenvalues (\;)ien+ such that

+o00
Z Ai < 400,
=1

and

k(x,y) = Z)\ez

It is also well known that there exists a sequence ((B'(t))i>0)ien+ of independent standard

Brownian motions such that

“+oo
Wdt,-) = 3" A2 Bi(at).
i=1
So that equation (2.3) is equivalent to (2.1) with h = (h;);en+ where

Vi € N*7 hi(sax7y7z) =V )\ih(s,x,y,z)ei(iv).

Assume as in [76] that for all i € N*, ||e;]|ooc < +00 and
+00
> illeill%, < +oo.
i=1
Since
1
(\h(t,w,x,y,z) — h(t,w,x,yd, z0)| )5 <Z)\ ||eZ||OO> ’h (t,2,y,2) — h(t, z,yd, 20) 2,

h satisfies the Lipschitz hypothesis (H)-(ii) if and only if h satisfies a similar Lipschitz
hypothesis.
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2.3 Parabolic potential analysis

2.3.1 Parabolic capacity and potentials

In this section we will recall some important definitions and results concerning the obstacle
problem for parabolic PDE in [70] and [71].
K denotes L>(0,T; L?(0)) N L?(0,T; H}(O)) equipped with the norm:

| v H/Qc = |lv ||2Loo(o,T;L2(0)) + [l v ”%Q(O,T;Hé((?))
T
— s ol [ (o P (o) de
te[0,T] 0

C denotes the space of continuous functions on compact support in [0, 7[xO and finally:

W= {p e 20,7 HO): 5 € 120, H(O)),

endowed with the norm/|| ¢ ||)2/V:|| ¥ ”%2(077“;;15((9)) + H ||L2(0TH LO))

It is known (see [49]) that W is continuously embedded in C([0,T); L?(0)), the set of
L?(0)-valued continuous functions on [0,7]. So without ambiguity, we will also consider
Wr ={p e W;p(T) =0}, WH = {p € W;p >0}, W) = WrnWH.

We now introduce the notion of parabolic potentials and regular measures which permit to
define the parabolic capacity.

Definition 2.4. An element v € K is said to be a parabolic potential if it satisfies:

T
0
vcpew;,/o (aﬁt, tdt+/ E(pr, v)dt > 0.

We denote by P the set of all parabolic potentials.
The next representation property is crucial:

Proposition 2.5. (Proposition 1.1 in [71]) Let v € P, then there exists a unique positive
Radon measure on [0, T[xO, denoted by v, such that:

Yo e WrnC, / —_, tdtJr/ Sapt,vtdt / / tx

Moreover, v admits a right-continuous (resp. left-continuous) version v (resp. v) : [0,T] —

L*(0) .
Such a Radon measure, V¥ is called a regular measure and we write:
v
U
=—+A
v = + Av.

Remark 2.6. As a consequence, we can also define for all v € P:

v = ltiTrjrﬂ“?t S L2(O)
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Definition 2.7. Let K C [0,T[xO be compact, v € P is said to be v—superior than 1 on

K, if there exists a sequence v, € P with v, > 1 a.e. on a neighborhood of K converging to
v in L2(0,T; H}(0)).

We denote:
Sk ={v € P; visv—superiortol on K}.

Proposition 2.8. (Proposition 2.1 in [71]) Let K C [0,T[xO compact, then Sk admits a

smallest v € P and the measure vy whose support is in K satisfies

T T
/ / dvy, = inf{/ / av’; v e Si}.
0o Jo veP Jo Jo

Definition 2.9. (Parabolic Capacity)

o Let K C [0,T[xO be compact, we define cap(K) = fOT Jo dvi;
e let O C [0,T[xO be open, we define cap(O) = sup{cap(K); K C O compact};
e for any borelian E C [0,T[xO, we define cap(E) = inf{cap(O); O D E open}.

Definition 2.10. A property is said to hold quasi-everywhere (in short g.e.) if it holds

outside a set of null capacity.
Definition 2.11. (Quasi-continuous)
A function u : [0, T[xO — R is called quasi-continuous, if there exists a decreasing sequence

of open subsets Oy, of [0, T[xO with:

1. for all n, the restriction of u, to the complement of O, is continuous;

2. limy 100 cap (Oy) = 0.

We say that v admits a quasi-continuous version, if there exists u quasi-continuous such that

U=u a.e..

The next proposition, whose proof may be found in [70] or [71] shall play an important role
in the sequel:

Proposition 2.12. Let K C O a compact set, then ¥Vt € [0,T

cap({t} x K) = Aa(K),

where A\g is the Lebesgue measure on O.

As a consequence, if u : [0,T[xO — R is a map defined quasi-everywhere then it defines
uniquely a map from [0,T] into L*(O). In other words, for any t € [0,T[, u; is defined
without any ambiguity as an element in L*(Q). Moreover, if u € P, it admits version
which is left continuous on [0,T] with values in L?(O) so that ur = tp- is also defined

without ambiguity.
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Remark 2.13. The previous proposition applies if for example u is quasi-continuous.

Proposition 2.14. (Theorem III.1 in [71]) If ¢ € W, then it admits a unique quasi-
continuous version that we denote by . Moreover, for all v € P, the following relation

holds: .
/ Gt = / (—u,v) + E(p,0) dt + (o v7)
[0,T[xO 0

2.3.2 Applications to PDE’s with obstacle

For any function v : [0, T[xO — R and ug € L?(0), following M. Pierre 70, 71], F. Mignot
and J.P. Puel [54], we define

k(1 up) = essinf{u € P; u > 1 a.e., u(0) > up}. (2.4)

This lower bound exists and is an element in P. Moreover, when ) is quasi-continuous, this
potential is the solution of the following reflected problem:

Or

kE€P, k=>1, 8t—|—A/~£:Oon{u>1/J}, k(0) = up.

Mignot and Puel have proved in [54] that x(1,u) is the limit (increasingly and weakly in
L%(0,T; H}(0))) when € tends to 0 of the solution of the following penalized equation
(ue - ¢)_ _

duc
T p Ay - o,

ue €W, uc(0) = ug, B -

Let us point out that they obtain this result in the more general case where ¢ is only

measurable from [0, 7] into L2(O).

For given f € L2(0,T; H~1(0)), we denote by xi, the solution of the following problem:
Ok

k€W, k(0) = uo, E-FA/ﬁ:f.

The next theorem ensures existence and uniqueness of the solution of parabolic PDE with
obstacle, it is proved in [70], Theorem 1.1. The proof is based on a regularization argument
of the obstacle, using the results of [11].

Theorem 2.15. Let ¢ : [0,T[xO — R be quasi-continuous, suppose that there exists ( € P
with |¢| < ¢ a.e., f € L*(0,T; H-Y(0O)), and the initial value ug € L*(O) with ug > 1(0),

then there exists a unique u € K, + P quasi-continuous such that:
T N ;
u(0) = ug, u >, q.e,; / / (T — )dv*Fu0 =0
0 (@]

We end this section by a convergence lemma which plays an important role in our approach
(Lemma 3.8 in [71]):
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Lemma 2.16. If (v"), € P is a bounded sequence in K and converges weakly to v in

L2(0,T; HY(O)); if u is a quasi-continuous function and |u| is bounded by a element in P.

Then
T ; T
lim / /udu” :/ /udu”.
n—+ Jo Jo o Jo

Remark 2.17. For the more general case one can see [71] Lemma 3.8.

2.4 Quasi-continuity of the solution of SPDE without obstacle

As a consequence of well-known results (see for example [20], Theorem 8), we know that
under assumptions (H) and (I), SPDE (2.1) with zero Dirichlet boundary condition, admits
a unique solution in Hp, we denote it by U (&, f, g, h).

The main theorem of this section is the following:

Theorem 2.18. Under assumptions (H) and (I), w = U(E, f,g,h) the solution of SPDE
(2.1) admits a quasi-continuous version denoted by w i.e. w =1u dP X dt x dx a.e. and for

almost all w € Q, (t,2) — w(w,x) is quasi-continuous.

Before giving the proof of this theorem, we need the following lemmas. The first one is
proved in |71], Lemma 3.3:

Lemma 2.19. There exists C > 0 such that, for all open set ¢ C [0,T[xO and v € P with
v>1a.e ond:
capd < C || v || .

Let k = k(u,u™(0)) be defined by relation (2.4). One has to note that x is a random
function. From now on, we always take for x the following measurable version

Kk =supv”,
n

where (v™),, is the non-decreasing sequence of random functions given by

5 = Lol 4+ n(vy' —wy) (25)
v =u"(0).

Using the results recalled in Subsection 2.3, we know that for almost all w € Q, (v™*(w))y,
converges weakly to v(w) = k(u(w),u(0)(w)) in L?(0,T; H}(O)) and that v > w.

Lemma 2.20. We have the following estimate:
2 2 2 4 02 0 112 0| 112
E ﬁl;cSC<E lug I +E [l uo | +E/O 1 117+ 1 Lge 117+ 11 The ] ] dt),

where C'is a constant depending only on the structure constants of the equation.
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Proof. All along this proof, we shall denote by C' or C, some constant which may change
from line to line.
The following estimate for the solution of the SPDE we consider is well-known:

T T
Ets[%%] | e | +E/O E(up)dt < CE(|| uo | +/O (FS2 12+ 1121+ 1 1RET %)) (2.6)
€|0,

where C' is a constant depending only on the structure constants of the equation.

Consider the approximation (v™),, defined by (3.47), P-almost surely, it converges weakly
to v = k(u,u™(0)) in L2(0,T; H}(O)).

We remark that v™ — u satisfies the following equation:

d +o00o
d(vf —up)+ AV —ug)dt = — fy(ug, Vug)dt—>  0igi(ur, Vue)dt—> " hi(ur, Vug)dB +n (v} —u;) " dt,
i=1 j=1

applying the Ité’s formula to (v™ — u)z, see Lemma 7 in [21], we have

t t
o — e |? 42 / £ — ug)ds =] ui — ug > ~2 / (6 — g, fo(tts, V) )ds
0 0
d .t ' t
+2Z / (03 (07 — ), g (us, Vs))ds + / I hs(us, Vas)| | ds
X 0

t
-2 Z/ — g, h? (us, Vug))dBL + 2/ (n(v —us)™,ve — ug)ds. (2.7)
0
The last term in the right member of (2.7) is obviously non-positive so

t t
lof — g |? 42 / £ — ug)ds <|| ui — ug > —2 / (o — g, fu(us, Vus))ds
0
/ I Jhs us,ws|||2ds+22 / 2+ 4 (1, Vi) ds

—zz/ (V" — g, bl (us, Vus))dBI. (2.8)
j=170

Then taking expectation and using Cauchy-Schwarz’s inequality, we get
c t t
E v —u |*+(2 - )\)E/ EW! —ug)ds < B || uf — uo |2 +E/ | " — u, || ds
0 0

t t t
+E/ | f(us, Vi) |2 ds+CeE/ 1 195 (s, V)| |2ds+E/ I 1hs(tts, Vug)| |12 ds.
0 0 0

Therefore, by using the Lipschitz conditions on the coefficients we have:
¢ t t
E | vt —uy ||* +(2 - )E/ E(WD —ug)ds < E || ug — uo |2 —I—E/ | v — u || ds

+OE/ (£ 12+ 162 12 + 1 112 1 >ds+CE/ o | s+ (5 + S+ >E/5us
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Combining with (2.6), this yields
t t
Bl —w P +2= DB [ 602 —w)ds <E | —uo P +E [ |02~ u. [P ds
0 0

T
+ CB(] uo |? +/O (FF2 1P+ 1 1gg HIP A+ 11 1RE] 1))

We take now € small enough such that (2 — §) > 0, then, with Gronwall’s lemma, we obtain
for each ¢ € [0, T

T
E v —u [P< Ce*T(E || ug —uo |* +E || uo ||? +E/O 12+ 1 1ge LI+ 1 1R dt).

As we a priori know that P-almost surely, (v"),, tends to & strongly in L2([0,T] x O), the
previous estimate yields, thanks to the dominated convergence theorem, that (v, ), converges
to  strongly in L?(Q x [0,7] x O) and

T
ts[tépT}E e — e |P< Ce” (B || ug —uo [I* +E | uo ||* +E/O 1212+ 11?1+ (1 1RGP dt).
€0,

Moreover, as (v"), tends to x weakly in L%([0,T]; Hi(O)) P-almost-surely, we have for all
te[0,7):

T T
E/ E(ks —ug)ds < lim infE/ E(vl —ug)ds
0 " 0
'T 2 2 g 2 2 2
STCe™ (B | ug —uo |I” +E | uo | +E/0 2P+ 1 1geHIZ A+ 1 [RELI dt).
Let us now study the stochastic term in (2.8). Let define the martingales
+oo
M[‘—Z/ (v — us, h))dB] and M, = Z/ — g, hl)dBI.
j=1""Y
Then

TJFOO T
B{IMp — My / o h)?ds < B / | e — o0 2] [ha] |2 ds.
0

Using the strong convergence of (v"),, to x we conclude that (M™),, tends to M in L? sense.
Passing to the limit in (2.8), we get:

t t
Ire—u |42 [ £l —udds < uif = o | =2 [ (50— e e, D))
0 0
d t ‘
+ zz/ (8i (ks — us), gt (us, Vus))ds
i=1"0
+o00

t t
- 22/ (ks — us, Wl (us, Vug))dB? —|—/ | |hs(us, Vug)| ||* ds.
0 0
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As a consequence of the Burkholder-Davies-Gundy’s inequalities, we get

“+oo
sup |Z/ — g, Wi (ug, Vug))dBl|

te[o T)

T +0° )
/ us,hg(us,Vus))gals]l/2

<
T+0°
< CBI[ Y sup [k P W, V) [P do
0 jzlte[O,T]
T
< CELswp lm—u | ([ 1t V) 2 a0

te[0,7)

T
< B sup || 5w ||2+C€E/ | Vo (ta, V)| |2 dit.
tel0,7 0

By Lipschitz conditions on h and (2.6) this yields

+oo
E sup |Z/ (ks — s, hs(us, Vug))dBs| < €E sup | &t —u; ||> +C(E || uo ||?
te[0,7 170 te[0,7)

T
L E / S22+ 1912 + 1 1R [2)de)

T
(1—€)F sup || ke —u ||2 + (2- 6)E/ E(ke —up)dt < C(F || uO+ — ug ||2 +FE || uo H2
te[0,7] A 0

T
+ E/O 121+ 1 1g ] 12+ 1 1RE) 11 dt).

We can take e small enough such that 1 —e >0 and 2 — § > 0, hence,

T
E sup || ke —uy H2 + E/ E(ke —uw)dt < C(E || uaL — ug ||2 +E || up ||2
t€[0,T] 0

T
+ E/O 2P+ 1 1ge LIZ + 1 IRELI dt).

Then, combining with (2.6), we get the desired estimate:

T
E sup || ki ||2 +E/ E(ry)dt < C(E | uar ||2 +E || ug ||2
te[0,T 0

T
+ E/O 12+ 1 1ge LIP A+ 1 1RGP dt).

Proof of Theorem 2.18: For simplicity, we put

fo(z) = f(t, 2, u(x), Vug(x)), ge(x) = g(t, z, ue(w), Vug(x)) and hy(x) = h(t, z, u(x), Vug(z)).



58 CHAPTER 2. SPDE WITH OBSTACLE
We introduce (P;) the semi-group associated to operator A and put for each n € N* i €
{1,---,d} and each j € N*:

uy = Piug, f"=Pif, g =Pigi, andh}=Pih;.

Then (u?), converges to ug in L?(Q; L*(0)), (f")n, (¢")n and (h"), are sequences of
elements in L*(Q x [0,T]; D(A)) which converge respectively to f, g and h in L?(Q x
[0,T]; L2(0)). For all n € N we define

t d  rt +0o g
u = Pul + /O Pt,sfgds+z /O Pt,saiggfsdwz /O P_h!! dB!
= Pt+711u0+/ (N fsds—l—Z/ Zglsds+2/ (T hJSdB

We denote by G(t,z,s,y) the kernel associated to P;, then

1 t 1
witw) = [ G oo+ [ [ G s

d t +o00 t
1 i 1 , i
- Z/O /OG(t+ n,:c,s,y)&gs(y)dyderZ/o /OG(tJrn,:c,s,y)hé(y)dydBS-
=1 =

But, as A is strictly elliptic, G is uniformly continuous in space-time variables on any
compact away from the diagonal in time ( see Theorem 6 in [1]) and satisfies Gaussian
estimates (see Aronson [2|), this ensures that for all n, u" is P-almost surely continuous in

(t,z).

We consider a sequence of random open sets
+o00
O = {0 =" > e}, O, =]V

Let i = A ("™ — ™), o (u™ = u)H(0) + m(— 5 (™ —u), (™ — u)7(0)),
from the definition of x and the relation (see [71])

K(lv]) < K(v,07(0)) + K(—v,v7(0))

we know that s, satisfy the conditions of Lemma 2.19, i.e. k, € P et k, > 1 a.e. on ¥,
thus we get the following relation

+oo +o00
cap (©,) < Y cap (9n) <Y |l ki I -
n=p n=p

Thus, remarking that u"*! —y” = L{(ugH ult, frrl — gt — g R — p") | we apply
Lemma 2.20 to /@(é(u”*l — ), L (untt — un)+(0)) and H( n( n+1 — ), en( un
u™)~(0)) and obtain:

€n

Elcap (6)] <ZE||Hn Ik < ZCZ (|| ug™ —ug ||2+E/ LAt =1

+ Ig”+1 gtl 12+ 1 R = Ry | dt)
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Then, by extracting a subsequence, we can consider that
1
E | ugtt —ug | +E/ IS = F 1P 4 U Lgett = g2 LI+ [ 1R = A (1 dt < on

Then we take ¢, = # to get

Cap < Z 2071

Therefore

lim FElcap (©,)] =0

p——+00

For almost all w € Q, u"(w) is continuous in (t,z) on (©,(w))¢ and (u"(w)), converges
uniformly to u on (©,(w))¢ for all p, hence, u(w) is continuous in (t,z) on (O,(w)), then
from the definition of quasi-continuous, we know that u(w) admits a quasi-continuous version
since cap (©,) tends to 0 almost surely as p tends to +o0. O

2.5 Existence and uniqueness of the solution of the obstacle

problem

2.5.1 Weak solution

Assumption (O): The obstacle S is assumed to be an adapted process, quasi-continuous,
such that Sy < & P-almost surely and controlled by the solution of an SPDE;, i.e. Vt € [0, T,

Sy < S (2.9)

where S’ is the solution of the linear SPDE with null boundary condition:

{ dS; = LSjdt+ fldt+ 3, 0igl ,dt + 325 b ,dB] (2.10)

S,(O) = SO?

where Sj) € L*(Q x O) is Fp-measurable, f’, ¢’ and b’ are adapted processes respectively in
L2([0,T] x 2 x O;R), L2([0,T] x Q x O;R%) and L2([0,T] x Q x O;RM).

Remark 2.21. Here again, we know that S’ uniquely exists and satisfies the following

estimate:

T T
E sup | S| +E/ E(Sydt <CE [II So 117 +/ (AN [ Lgel 117+ 1 Rl 11%)de
te[0,T 0 0
(2.11)

Moreover, from Theorem 2.18, S' admits a quasi-continuous version.
Let us also remark that even if this assumption seems restrictive since S’ is driven by the

same operator and Brownian motions as u, it encompasses a large class of examples.
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We now are able to define rigorously the notion of solution to the problem with obstacle we
consider.

Definition 2.22. A pair (u,v) is said to be a solution of the obstacle problem for (2.1) with

Dirichlet boundary condition if

1. w € Hp and u(t,x) > S(t,z), dP @ dt @ dx — a.e. and up(z) =&, dP @ dx — a.e.;
2. v is a random regular measure defined on [0,T) x O;

3. the following relation holds almost surely, for all t € [0,T] and Yo € D,

t t d t
(uts 01) — (€, 00) — / (g, Dups)ds + / Eusy po)ds + 3 / (g (115, V), Doy ) s
0 0 — Jo

t too it ) t
- /0 <fs<us,ws>,sos>ds+j§; /0 (1 (s, V) p)dBI + /0 /O s () (de, ds)
(2.12)

4. w admits a quasi-continuous version, u, and we have
T
/ / (u(s,z) — S(s,x))v(dx,ds) =0, a.s..
0 @]

The main result of this paper is the following:

Theorem 2.23. Under assumptions (H), (I) and (O), there exists a unique weak solution
of the obstacle problem for the SPDE (2.1) associated to (&, f, g, h, S).
We denote by R(E, f,g,h,S) the solution of SPDE (2.1) with obstacle when it exists and is

UNIQUE.

As the proof of this theorem is quite long, we split it in several steps: first we prove existence
and uniqueness in the linear case then establish an It6 formula and finally prove the Theorem
thanks to a fixed point argument.

2.5.2 Proof of Theorem 2.23 in the linear case

All along this subsection, we assume that f, g and h do not depend on u and Vu, so
we consider that f, g and h are adapted processes respectively in L2([0,7] x Q x O;R),
L%([0,T] x Q x O;RY) and L2([0,T] x Q x O;RY").

For n € N, let 4™ be the solution of the following SPDE

d 400
duf = Lujdt + fudt + > 0igigdt + > hjedB] +n(uf — S;)~dt (2.13)
i=1 j=1
with initial condition g = £ and null Dirichlet boundary condition. We know from Theorem
8 in [DS04] that this equation admits a unique solution in H7 and that the solution admits
L?(O)—continuous trajectories.
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Lemma 2.24. u" satisfies the following estimate:

T
E sup Hu?HQ—kE Sut dt-l—E/ n || (uff — Sp)~ || dt < C,
te[0,T]

where C' is a constant depending only on the structure constants of the SPDE.

Proof. From (2.13) and (2.10), we know that u™ — S’ satisfies the following equation:

d(u} — S}) = L(ul! St)dt+ftdt+2@ dt+2hﬂd3ﬂ+n( —5)7d
=1 j=1

where f = f— f/, G=g—gand h = h — /. Applying It&’s formula to (u™ — S")2, we have:

t
| upf — S} ||2—|—2 Su —S)ds-?/((u ANA d8—|—22/ u® — S, hl)dB!

22/ Ss) ds+2/ / uy — Ss)_der/O I \ﬁsl 17 ds.

We remark first:

/Ot/o(u? — SOn(ul — S5)"ds = /ot/@(u? — S5+ Sy — SDn(ul — S,)"ds
- /Ot /O”(<“? = 5)7)%ds + /0 t /O (Ss — SLyn(ul — S,)~dds

the last term in the right member is non-positive because S; < S, thus,
t t t
| ur — S0 |2 +2/ 5<ug—s;)ds+2/ n | (= §)- |2ds§2/ (u — !
0 0
d t ) +o0
2" [0 - Sg>,§;>ds+22/ u" — 81, 7)dB] +/ I ol |12 ds.
i=1"0 j=1

Then using Cauchy-Schwarz’s inequality, we have V¢ € [0, 7],

T 1 /T -
o [ - st foast < [ - s Pas+ L 1R Ras
0 0

and

d -t } T 1 /T
23 [t —sp.gas < e [ 19—y P ds+ 2 [ 1R as
=1
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Moreover, thanks to the Burkholder-Davies-Gundy inequality, we get

E sup |Z/ (u? — St hl)dBI| < clE[/ > (uf — S, h))ds)'/?
te[0,T] 0 0

j=1
T o0 .
< aB([ 3 suwp flul - E P ds)?
0 jzlsE[O,T]
r 7 2 1/2
< aB{sw [ul =S| ([ IRl )
s€[0,7 0

T
< €E sup |[u?—S.|? +4E/ | hs |17 ds.
s€[0,T] € Jo

Then using the strict ellipticity assumption and the inequalities above, we get

T T
(1—=2e(T+1)E sup || ul' —S;||* +(2\ — e)E/ E(ul — Sh)ds + 2E/ n || (u? — Ss)~ ||* ds
te[0,7) 0 0

2 (T~ 2~ o ~
<CE|¢| +E/ 1 Fs 12+ 1 gl 17 4G, + 1) 1 Rl [ ds).
e Jo € €
We take e small enough such that (1 —2¢(7 + 1)) > 0, this yields (2A —€) > 0

T T
E sup ||u? — S |? +E/ £(ul — St + E/ n |l (= S~ |2 dt < C.
t€[0,T] 0 0

Then with (2.11), we obtain the desired estimate. [

Proof. |End of the proof of Theorem 2.23] We now introduce z, the solution of the corre-
sponding SPDE without obstacle:

d +oco
dzy + Azdt = fydt + ) igigdt + > hjdB],
i=1 j=1

starting from zg = £, with null Dirichlet condition on the boundary. As a consequence of
Theorem 2.18, we can take for z a quasi-continuous version.
For each n € N, we put v"* = u" — z. Clearly, v™ satisfies

dvy’ + Avi'dt = n(vy’ — (S¢ — z¢))~dt = n(uy — Sy) ™ dt.

Since S — z is quasi-continuous almost-surely, by the results established by Mignot and
Puel in [54], we know that P-almost surely, the sequence (v™),, is increasing and converges
in L2([0,T] x O) P-almost surely to v and that the sequence of random measures v*" =
n(up — S¢)~dtdx converges vaguely to a measure associated to v: v =¥ . As a consequence
of the previous lemma, (u"), and (v"),, are bounded sequences in L?(2 x [0,T]; H}(O))
Hio) DY), by a double
extraction argument, we can construct subsequences (u™*); and (v ) such that the first
one converges weakly in L2(Qx [0, T]; H} (O)) to an element that we denote u and the second

which is an Hilbert space ( equipped the norm (E fOT | e |
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one to an element which necessary is equal to v since (v™),, is increasing. Moreover, we can
construct sequences (u"), and (v"), of convex combinations of elements of the form

Nn

u" = Zaﬁu”’“ and v" Za" Ttk
k=1
converging strongly to u an v respectively in L?(Q2 x [0,T]; H} (0)).

From the fact that ™ is the weak solution of (2.13), we get

t t d pt
(uf', 01) — (€, 0) - / (ul, Duips)ds + /0 E(ul ps)ds + 3 /0 (g}, Dips)ds
=1
/ (fs: ) dS+Z/ ,903 dBJ //QDS n(uy — Ss) " dxds a.s. (2.14)

Hence

t t d pt
(@ 01) — (€, 0) — /0 (@7, Dyips)ds + /0 @, g )ds + Y /0 (¢, Drpy)ds
=1

Nn

:/Ot(fs,gps)ds+§/Ot(hg,<ps)d3g+/Ot/0905 (an >d:cds (2.15)

We have

t T 89015 .
ps(x an dxds = ( L Ut )dt + 5 (1, v7")dt
0 Jo 0

so that we have almost-surely, at least for a subsequence:

t T 8
li . F S | deds = )t ,
s [ [ (S Yo = [ [ e

T
|| erawiaz.an).
0 O

As (™), converges to u in L*(Q x [0,7]; H}(0)), by making n tend to +oc0 in (2.15), we
obtain:

t t d t
(U,t, QOt) - (57 QOO) - /0 (u57 85(,05)618 + A 5(“57 @S)ds + Z/O' (géa 8i805)d8
i=1

t —+o00 t ) ‘ ¢
Z/O(fs,%)ds-f-jz:l/o(hﬁ,sos)ng—i-/o /Ogas(x)z/(dx,ds), a.s..

In the next subsection, we’ll show that u satisfies an Ité’s formula, as a consequence by
applying it to u?, using standard arguments we get that u € Hrp so for almost all w € €,
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u(w) € K. And from Theorem 9 in [20], we know that for almost all w € €, z(w) € K.
Therefore, for almost all w € Q, v(w) = u(w) — z(w) € K. Hence, v = v + Av is a regular
measure by definition. Moreover, by [70, 71] we know that v admits a quasi continuous
version v which satisfies the minimality condition

/ / (5= S + 2u(dwdt) = 0. (2.16)

z is quasi-continuous version hence @ = z + v is a quasi-continuous version of u and we can

write (2.16) as
// u— S)v(dxdt) = 0.

The fact that u > S comes from the fact that v > u — 2, so at this stage we have proved
that (u,v) is a solution to the obstacle problem we consider.

Uniqueness comes from the fact that both z and v are unique, which ends the proof of
Theorem 2.23.

|

2.5.3 Ito’s formula

The following 1t6’s formula for the solution of the obstacle problem is fundamental to get
all the results in the non linear case. Let us also remark, that any solution of the non-linear
equation (2.1) may be viewed as the solution of a linear one so that it satisfies also the Itd’s
formula.

Theorem 2.25. Under assumptions of the previous subsection 2.5.2, let u be the solution of
SPDE(2.1) with obstacle and ® : RT™ x R — R be a function of class C1 2. We denote by ®'
and ®" the derivatives of ® with respect to the space variables and by ¢ the partial derivative
with respect to time. We assume that these derivatives are bounded and d'(t,0) =0 for all
t > 0. Then P —a.s. for all t €[0,T),

/Oq>(t,ut(x))da:+/tg@'(s,us),us)ds:/ @(0,§(x))dm+/t/ %—@(s,us(x))dxds
+/t( (5, s), fs) ds—Z//CI)”sus ))Osus(2)gi (2 d:cds+2/ (s,us), h;)dB?

+oo
+= Z/ / D" (s, us(x))(hjs( dmds—f—/ / (s,us(x))v(dzds).

Proof. We keep the same notations as in the previous subsection and so consider the
sequence (u"), approximating u and also (u"),, the sequence of convex combinations u" =
SOV afu™ converging strongly to u in L2(2 x [0, T]; HY(0O)).

Moreover, by standard arguments such as the Banach-Saks theorem, since (u"),, is non-
decreasing, we can choose the convex combinations such that (™), is also a non-decreasing
sequence. We start by a key lemma:
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Lemma 2.26. Let t € [0,T], then
¢ Nn
lim E uy —Ss)” r " — Ss) " dxds = 0.
Jm /0 /O(uS Ss) ;aknk(us Ss) " dxds =0

Proof. We write as above u" = v" + z and we denote D" = S_0" | al'ng(u — S5)~ so that

/Ot/o(ﬁg — S )" (dxds) / / "(dxds) + / / — S)v" (dxds)

From Lemma 2.16, we know that

/0 t /o (2 — S)0" (dads) — /0 t /o (2 — Se)v(dads).

Moreover, by Lemma II.6 in |70] we have for all n:

S /6( ds—//wdxds
fII or |I” + /5(vs ds—/ /vs (dxds).

As (Dp)n tends to v in L2([0,T], H}(O

and

lim ESdS—/EvS

n—r—+00

Let us prove that (|| 97 ||),, tends to || vz ||.
Since, (%), is non-decreasing and bounded in L?(O) it converges in L?(O) to m = sup,, 0.
Let p € H}(O) then the map defined by ¢(t, z) = p(x) belongs to W hence as a consequence

of Proposition 3.39
T
[ pin = [ ey ds+ (o7,
[0,T[xO 0

T
/ Adv = / E(p,ve) ds + (p,vr),
[0,7[xO 0

making n tend to +oo and using one more time Lemma 2.16, we get

and

lim (p,o7) = (p,m) = (p,vr).

n——+o00

Since p is arbitrary, we have vp = m and so lim,,—, 4« || 07 ||=|| vz || and this yields

T T T
lim / /6;’3”((19(:615):/ /5sy(dxds):/ /(SS—ZS)Z/(d.%‘dS).
n=tee Jo o Jo 0o Jo 0o Jo

This proves that
lim / / — Sg)v"(dxzds) = 0,
n—+oo
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we conclude by remarking that

¢
lim //u —8) 0" (dxds) < lim //(us— )" (dxds) //us s)v(dxds) =
n—-+o0o n—-+o0o Q)

Proof of Theorem 2.25: We consider the penalized solution (u"),, we know that its
convex combination (@"),, converges strongly to u in L?(Q2x [0, T]; H}(O)). And u" satisfies
the following SPDE

d +o00 Ny,
iy + Aupdt = fydt+ Y Oigidt + > hldBl +> " afmng(uft — Si)dt

From the It formula for the solution of SPDE without obstacle (see Lemma 7 in [21]), we
have, almost surely, for all ¢ € [0, 7],

/cp(t, )dm+/ E(/(s, a7 Ag)ds:/ @(O,g(m))dﬂc—l—/t/ g—q)(s,a?)da:ds

+/(<I> (s,a2), fs dS—Z/ / " (s, 0" (x)) 90 () gi(x dxds—i—Z/(q)’ an), h;)dBi

2+§/ / " (s, ul( (x))deder/Ot/Oq#( iaknk S,)~dzds.

Because of the strong convergence of (u"),, the convergence of all the terms except the last
one are clear. To obtain the convergence of the last term, we do as follows:

t Nn
//@’(s,ﬂ?)Zaan(u?k—Ss)dxds = //(@’ ) — (s, 8)) > afng(ult — S~ dwds
0 JO k=1 k=1
Np,
+ / @’(S,SS)Zaan(ugk Ss) " dxds.
0 Jo k=1

For the first term in the right member, we have:

\/ / (s,Ss) Zaknk Ss)~dxzds|
t Nn

< C’/ / |uy — Sl - Zaﬁnk(u?k — Ss) " dxds
0 JO =1
t Nn,

_ c/ / (@ = S)* + (@ — 8)7) S afni(ul — 8,)~duds
0 JO k=1
t Ny, t Nn

= c/ / (@ — ST apng(uft — So)"dwds + c/ / (@ — So)™ > apnp(uft — Sy) " dads
0 JO =1 0 JO =1
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We have the following inequality because (u™),, converges to u increasingly:
t Nn t Nn
/ / (ul — Ss)~ Z apng(uyk — Ss) " dxds / / (us — Ss)T Z apng(uyk — Ss) " dxds
0 JO E—1 0 JO =1

N,

t n
= [ [ 50> ez - 8. dads
0o JO k=1

IN

With Lemma 2.16, we know that

t Nn t ~
lim / / (us — Ss) Zagnk(u?k —Ss) dxds — / / (us — Ss)v(dxds) = 0.
n—eoJo Jo 1 0o Jo

And from Lemma 2.26, we have

t Nn
/ / (@ — So)” > apng(uft — Sy)~dwds — 0.
0 JO =1

Therefore,

t Np,
/ / (@(5,7) — (5, 5,)) 3 o (ul — S4)~duds — 0.
0 Jo k=1

Moreover, with Lemma 2.16, we have

Nn

t t
/ / ' (s,5;) Z apng(us® — Ss) " dxds — / / ' (s, S5 )v(dxds)
0 Jo P 0 Jo

and
|/Ot/O<I>’(s,us)V(dxds)—/Ot/O@’(s,SS)V(dde) < C/Ot/0|ﬂs—58|y(dxds)

= C’/Ot/o(ﬂs — Ss)v(dxds) =0

Therefore, taking limit, we get the desired It6 formula. ]

2.5.4 It6’s formula for the difference of the solutions of two RSPDEs

We still consider (u, ) solution of the linear equation as in Subsection 2.5.2

{ dup + Awdt = fydt + 30 Oigidt + 572 hldB] + v(dt, x)
u > S

and consider another linear equation with adapted coefficients f, g, h respectively in L2([0, T x
Q x O;R), L2([0,T] x © x O;R%) and L2([0,T] x 2 x O;RY) and obstacle S which satisfies
the same hypotheses (O) as S i.e; Sy < & and S is dominated by the solution of an SPDE
(not necessarily the same as S). We denote by (y, ) the unique solution to the associated
SPDE with obstacle with initial condition yy = ug = &.

{ dy: + Aydt = frdt + SO digidt + > hjdB] + v(dt, x)
y =2 S
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Theorem 2.27. Let ® as in Theorem 2.25, then the difference of the two solutions satisfy
the following Ité’s formula for all t € [0,T):

t ¢ )
/ (I)(t’Ut(m) N yt(l'))dx +/ 5(@’(5711,5 - ys)’us - ys)dS = / (<I>/(s,us — ys),fs — fs)dS
o 0 .
d ~+00
—Z/Ot/Oq’”(s,us — ys)0i(us — ys) (95 —gi)dxds—i—Z/ot((I)’(s,us —yo), b — hI)dB?
+= Z//qy’ s,us — ys) (2 h1)2da:ds+// o (s, us — ys)dads

+/0 /ch’(s,ﬂs _ )= D) (dn,ds) as. (2.17)

Proof. We begin with the penalized solutions. The corresponding penalization equations
are

d 400
du + Aupdt = fydt + Y digidt + Y hidB] + n(u — S;)”dt
i=1 Jj=1
and
d too ]
dy" + Ayp'dt = fudt + " O;gidt + > hldB] +m(y" — Sy)"dt
i=1 j=1
from the proofs above, we know that the penalized solution converges weakly to the solu-
tion and we can take convex combinations u" = Zfi"l alu™ and y" = Zﬁl Bly™ such
that (™), and (y™), are non-decreasing and converge strongly to u and y respectively in
L*([0,T], Hy (0)).
As in the proof of Theorem 2.25, we first establish a key lemma:

Lemma 2.28. For allt € [0,T],

HEIEOOE// Zﬁk kys - dmds—E//uZ/ds dz),

and

ngrfooE/ /ySZaknk —Ss)” dmds—E/ /yu (ds,dz).

Proof. We put for all n:

"(ds,dx) Zaknk(u Ss) " dxds and v"(ds, dx) Zﬁknk ys — 8) " dwds.

As in the proof of Lemma 2.26, we write for all n: "™ = z +v™.
In the same spirit, we introduce Z the solution of the linear spde:

d +o00
dz + Az = fudt + Y Oigidt+ > hidB],
i=1 j=1
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with initial condition Zy = £ and put Vn € N, 0" =¢" — 2,0 = 7" —Zand o = y — Z.
As a consequence of Lemma IL.6 in [71], we have for all n, P-almost surely:

A /6 ds—/ @ =i = o). as).
%H vy — Uy ||2—|—/0t5( ’Us)dS—/ /(Us— )(v —p)(dx,ds).

But, as in the proof of Lemma 2.26, we get that 7' — v, tends to v; — ¢ in L?(O) almost

surely and
t ¢
lim/ /ﬁgl/"(dx,ds):/ /5sy(dx,ds),
mJo Jo 0 Jo

hm/ / oo™ (dx, ds) / /vsv(dx ds).
This yields:
t tor t t o
lim (/ /@gﬁn(dx,ds)Jr/ /ﬁ?u”(dm,ds)) :/ /@D(dm,ds)+/ /Gsy(dx,ds).
" 0 Jo 0o Jo 0 Jo 0 Jo

But, we have

¢ ¢ t
limsup/ /i)\gﬂn(d:c, ds) < limsup/ / vs" (dx, ds) —/ /5517(da:,ds),
n 0 Jo n 0 JO 0 JO

and in the same way:
tor topo
limsup/ /U?V”(dx,ds)g/ /vsu(dx,ds).
n 0 Jo 0 Jo

Let us remark that these inequalities also hold for any subsequence. From this, it is easy to
deduce that necessarily:

hm/ / "(dz,ds) / /vsu(dx ds),
hm// "(dz,ds) //vs (dx,ds).

We end the proof of this lemma by using similar arguments as in the proof of Lemma 2.26.
[

and

and

End of the proof of Theorem 2.27: We begin with the equation which u"™ — 5" satisfies:

d —+00
d@y —gi) + A@y —ghydt = (fo— fo)dt+_ 0i(gi — gi)dt + > _(hi — hi)dB]
i=1 j=1
+ (V" =0")(x,dt)
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Applying Ito’s formula to ®(u™ — y™), we have
t t -
[ e @) — @ds + [ @ - 5. - s = [ (@63 - 5. 4~ F)ds
O 0 0
d t . . +w t . —_ . .
S [ s - o - Tl - ghdeds + Y [ (@5, - 52), b - )]
=170 /O j=170
1<t N Lrood
+Z/ / & (s, 0% — ) (b — h;)?dxds+/ / 9% (@ — )dwds
2 Jo Jo 0 Jo Os

t
+/ / O (s, 7" — ) (" — 7")(dx, dt)
0 JO

Because that (u™), and (y"), converge strongly to u and y respectively, the convergence of
all the terms except the last term are clear. For the convergence of the last term, we do as
follows:

s =) = @/ = g )+ [ [ @ 520 = s s

t t
<c [ [ - uprtdnds) + [ [ (30 -yl (e
0 JO 0o JO

As a consequence of Lemma 2.26 and using the fact that u" < u:

t t
lim/ / |uly — us|v" (dzds) = lim/ / (us — uy)v"(dzds) = 0.
mJo Jo nJo Jo

By Lemma 2.28 and the fact that 3™ < y:

t t
lim/ / [y — ys|v" (dx, ds) = lim/ / (ys — Yo )" (dz,ds) =0,
" Jo Jo mJo Jo
this yields:
¢
lim/ / (@' (s, 0 —4) — ' (s,us — ys)v" (dz,dt) = 0,
mJo Jo

but by Lemma 2.16, we know that

t t
lim/ / @’(s,us—ys)un(dx,dt):/ / (5,10, — )7 (da, i),
nJo Jo 0 Jo

t t
lim/ / O (s,al — Y (dx, dt) = / / ' (s, w5 — ys)v(dz,dt).
" Jo Jo 0 Jo

In the same way, we prove:

SO

t t
lim/ / (s, u — g (dz, dt) = / / O (5,5 — s )v(dx, dt).
nJo Jo 0 Jo

The proof is now complete. ]
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2.5.5 Proof of Theorem 2.23 in the nonlinear case
Let v and § be 2 positive constants. On L?(Q x [0,T]; H} (0)), we introduce the norm
T
| wlly.6= E(/O e (0 [l us |1 + 1| Vus [*)ds),

which clearly defines an equivalent norm on L?(Q x [0, T1]; H} (0)).
Let us consider the Picard sequence (u") defined by u® = ¢ and for all n € N we denote by
(u™ 1, v +1) the solution of the linear SPDE with obstacle

(u”H,V"H) =R, f(u", Vu"), g(u™, Vu"), h(u", Vu'"),5).

Then, by Itd’s formula (2.17), we have

T T
T [~ |? 42 /O e E WM — ul)ds = — /0 e |t — | ds

T
+2/ e (fayu u ™ — ™) ds—QZ/ TG, s (utt — u))ds
0

T
+2Z / e udBi e | [l | ds
0

+2/ / e (ui T — ™) (T — v (dads)
0 o

where f = f(u",Vu") — f(u™ 1, Vur ), § = g(u™, Vur) — g(u™t, Vur1) and h =
h(u™, Vu™)—h(u"~t, Vun~1).Clearly, the last term is non-positive so using Cauchy-Schwarz’s
inequality and the Lipschitz conditions on f, g and h, we have

T N 1 /T T N
2/ erS(uZH —ul, fs)ds / e u?“ —uy ||2 ds + e/ e | fs ||2 ds
0 0 0

€

1 T T
/0 1 || w2 ds + C’e/o e || ul — un L |2 ds

€

IN

IN

T
+ C’e/ e | V(uy — u?il) ||2 ds
0

and
1 r l 1
23 [ ot - <2 [T -
T C T
o || V(ul — ut ) [)ds < Ce / e || Vit —un) |2 ds + & / e |l — w2 ds
0 € Jo

. T
v [ IV ) P ds b [ e VG - ) 17 ds
0 0
and

T N 1 /T
[ e iidipas < casg [ e pu—ut 2 as

T
LB+ / e || Vil —u ) | ds
0
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where C, o and 3 are the constants in the Lipschitz conditions. Using the elliptic condition
and taking expectation, we get:

1 T T
(v — 6)E/O e 77| u?“ —ul H2 ds+ (2N —a — Ce)E/O e 77| V(u?"‘1 —uy) H2 ds <

9 (T T
C(1+€+e)/ | u?—ug_l ||2 ds—f—(C’e—i—oz—i—ﬁQ(l—I—e))E/ e 7| V(ug—u?_l) ||2 ds
0 0

We choose € small enough and then + such that

—1/e C(1+€+2/e)
21 2\ — — 7 =
Ceta+pB(1+e) <2\ —a CGandQ)\—a—Ce Ceta+ 5 (1+¢)

If we set 6 = 5 )\7:; 1 €Ce’ we have the following inequality:

Ce+a+B%(1+e€) Ce+a+ B2(1+¢)

unJrl_un < un_unfl < ... < n ul
[ e o Iy o < (LT Dy
when n — oo, (%’%)" — 0, we deduce that u™ converges strongly to u in L?(£2 x

[0, 7]; H3(0)).
Moreover, as (u"*1,v"*l) = R(E, f(u™, Vu™), g(u™, Vu™), h(u™, Vu™), S), we have for any
p € D:

t t d t
(W, 1) — (£, p0) — /0 (u, Buips)ds + /O £, pa)ds + 3 /0 (gi(u?, V), Byp.)ds
=1

t
0

:/ (fs(u?,Vu?),gps)ds—&—Z/ (hg(ug,VuZ),gos)dB§+/ / os(z) " (dzds). a.s.
=0 0 Jo

Let v™*! the random parabolic potential associated to v™*!:
Vn-i—l — at,Un—i-l +A1}n+1.
We denote 21 = ¢yt — yntl g0
AU =UE, f(u, V), g(u”, Vu™), h(u”, V™))

converges strongly to z in L?(Q x [0,T]; H}(O)). As a consequence of the strong conver-
gence of (u"*1),, we deduce that (v"1),, converges strongly to v in L2(Q x [0, T]; H:(O)).
Therefore, for fixed w,

t 8 t t a ) t
/(— s S,"Us)ds—i—/ E(gos,vs)ds:lim/ (—”,vg+1)ds+/ E(ps, v )ds > 0
0 83 0 0 88 0

i.e. v(w) € P. Then from Proposition 2.5, we obtain a regular measure associated with v,
and (v"*1),, converges vaguely to v.
Taking the limit, we obtain

t t d pt
(Ut, Sot) - (57 ‘PO) - / (U578590$)d5 +/ S(Us, (p$>d8 + Z/ (92(“87 Vus), &gos)ds
0 0 = Jo
t too ) t
= [tV eds+ Y [ Vool + [ [ poidrds), as.
0 =i 0o Jo

From the fact that « and z are in Hp, we know that v is also in Hp, by definition, v is a
random regular measure. O
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2.6 Comparison theorem

2.6.1 A comparison Theorem in the linear case

We first establish a comparison theorem for the solutions of linear SPDE with obstacle in
the case where the obstacles are the same, this gives a comparison between the regular mea-
sures.

So, for this part only, we consider the same hypotheses as in the Subsection 2.5.2. So we
consider adapted processes f, g, h respectively in L2([0, T] x Qx O; R), L2([0, T] x Q2 x O; R%)
and L2([0,T] x Q2 x O; RY), an obstacle S which satisfies assumption (O) and ¢ € L?(2x O)
is an Fp-measurable random variable such that & < Sy. We denote by (u,v) be the solution
of R(&, f, g, h, S).

We are given another & € L%(Q x O) is Fp-measurable and such that & < Sy and an-
other adapted process f’' in L2([0,T] x Q x O;R). We denote by (u/,2') the solution of
R, f', g, h, S). We have the followingg comparison theorem:

Theorem 2.29. Assume that the following conditions hold

1. £<¢, dz @dP — a.e.;

2. f<f, dt®@dx®dP— a.e..

Then for almost all w € Q, u < v/, gq.e. and v > V' in the sense of distribution.

Proof. We consider the following two penalized equations:

d +o00
duf = Aujdt + fodt + Y digidt + > hdB] + n(uf — ;)" dt
i=1 =1

d +oo
du" = Audt + fldt + > digidt + > hidB] + n(u" — Sp)"dt
i=1 Jj=1

we denote

Fy(z,ui') = fi(x) + n(uf — St)~

F(z,uf) = fi(x) + n(uf — S¢)~

with assumption 2 we have that Fy(x,u}) < F/(z,u}), dt ® dx ® dP — a.e., therefore, from
the comparison theorem for SPDE (without obstacle, see [D]), we know that V¢ € [0, 77,
ul' < uy, de ® dP — a.e., thus n(ul! — Sy)~ > n(u” — S;)~.

The results are immediate consequence of the construction of (u,v) and (v/,v') given in
Subsection 2.5.2. -
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2.6.2 A comparison theorem in the general case
We now come back to the general setting and still consider (u,v) = R(&, f,g,h,S) the
solution of the SPDE with obstacle

d
dug(x) = Lug(z)dt + f(t,x,u(x), Vu(z))dt + Z 0i9i(t, x, us(x), Vug(z))dt
i=1

+o0o
+ > hi(t 2 w(), Vg (2)dB] + v(x, dt)
J=1

u>S, ug=E¢,

where we assume hypotheses (H), (I) and (O).

We consider another coefficients f’ which satisfies the same assumptions as f, another ob-
stacle S’ which satisfies (O) and another initial condition & belonging to L?(€2 x O) and Fy
adapted such that £ > S{. We denote by (v/,v) = R(¢, f',g,h,5).

Theorem 2.30. Assume that the following conditions hold

1. £<¢, dx ®dP — a.e.
2. f(u,Vu) < f'(u,Vu), dt @ de @P — a.e.

3. 8<8 dt ®@dx P — a.e.

Then for almost all w € Q, u(t,z) < u/(t,z), q.e..

We put @ = u—u, & = &~&, fi = flt,u, V) — f/(t,u), Vup), G = g(t,ur, Vug) —
g(t,u}, Vuy) and hy = h(t,ug, Vug) — h(t,u}, Vu;). The main idea is to evaluate E || @, ||,
thanks to Itd’s formula and then apply Gronwall’s inequality. Therefore, we start by the
following lemma

Lemma 2.31. For allt € [0,T], we have
¢ ~ ¢ R ¢
B\af P +28 [ e@hds = £ € 428 [ (@t ds - 28 [ (var.g.ds
0 0 0

t t
+2E/ /ﬁj(x)(y—u/)(dxds)—i—E/ | Tiasoy el I ds .. (2.18)
0 Jo 0
Proof. We approximate the function ¢ : y € R — (y*)? by a sequence (1,,) of regular
functions: let ¢ be a C'*° increasing function such that
Vy €] = 00, 1], ¢(y) =0 and Vy € 2,400, ¢(y) = 1.

We set for all n:
Yy € R, ¥n(y) = y’p(ny).
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It is easy to verify that (¢,,) converges uniformly to the function ¢ and that moreover we
have the estimates:

Yy e R, Vn, 0 <4n(y) < ¢(y), 0 <1 (y) < Cy, |vn(y)] <C.

Thanks to Theorem 2.27, for all n and t € [0,T] we have

B [ va@dn+ & [ i), aids = £ [ @+ [ i), fies)

—E/ (V! (ts), Gs ds+E//¢nﬂs (dxds) + E//d) Us)h2dads

Taking the limit, thanks to the dominated convergence theorem, we obtain the convergences
of all the terms except £ f(f Jo tn (ts(x))v(dxds).

From (2.19), we know that
t
—E/ /w;l(ﬂs(x))ﬁ(dxds) <C
0 JO

Moreover, we have the following relation:

—E//q/} us(x))v(deds)
= —E/ /w (St(x) — u2(x))v' (dzds) +E/ /w S2(x))v*(dwds)

_ "2 — SY N (dads Ll (1) — S2 (V2 (deds).
= [ [ e - s (dd)+E/0/Oq/;n(S() 7)) ()

By Fatou’s lemma, we obtain

2E/ / — SHx)) vt (deds) + 2E/ / — S%(z)) " *(dxds) < +o0.

Hence, the convergence of the term Efo Jo ¥y (s(x))v(dxds) comes from the dominated
convergence theorem. m

Proof of Theorem 2.30: Applying (2.18) to (u;")?, we have
t t t
E|a |? +2E/ Ia,>01E(Us)ds = ZE/ (uy, fs)ds +2E/ (u,gs)ds
0 0 0

t N t
4 [t 1Pds 428 [ [ (- ) @)~ )z ),
0 0 Jo
As we assume that f(u, Vu) < f/(u, Vu),

a;rfs = ﬁj{f(sau&vus) - f/(s Us’vus)} + ﬂj{f’(s,us,Vus) - f (s,us,Vu )}
< ﬁj{f/(syu&vus) - f/(S,US7VU )}

then with the Lipschitz condition, using Cauchy-Schwartz’s inequality, we have the following
relations:

A c o Ce . [t
B[ @ faas<c+ DE [ ar P e [ e@has
0 € 0 0
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t t t
E / (vt gds < T 0E / g@hds+ < B / | @ | ds
0 0 € 0

t ~ t e B2t t .
E | N Igsolhsl I7ds < OB [ |lug P ds+ ——FE | E(uy)ds.
0 0 0

The last term is equal to —2F fg Jo(us — ul)* (x)v/(dx,ds) <0, because that on {u < u'},

S

(u—u )t =0 and on {u > u'}, v(dr,ds) = 0. Thus we have the following inequality

N 200 +2¢  2C 2 Lo Lo
B a | +(2— 20tz 2t _b +E)E/ S(Uj)dsgCE/ | @l |2 ds.
A A A 0 0
we can take e small enough such that 2 — % — QTOC — % > 0, we have
t
Bl P<cE [ @ | ds
0
then we deduce the result from the Gronwall’s lemma. O

Remark 2.32. Applying the comparison theorem to the same obstacle gives another proof

of the uniqueness of the solution.



Chapter 3

Maximum Principle for Quasilinear
Stochastic PDEs with Obstacle

3.1 Introduction

In this chapter, we consider an obstacle problem for the following parabolic Stochastic PDE
(SPDE for short)

du(z) = 0; (a;,j(z)0jue(x) + gi(t, z, u(x), Vg (x))) dt + f(t, z,u (), Vug(x))dt
400 }
+ ; hj(t, z, u(x), Vug(x))dB] + v(t,dx), (3.1)

ug > St

U():f.

Here, S is the given obstacle, a is a matrix defining a symmetric operator on a bounded
open domain O, f, g, h are random coefficients.

In a recent work [25] we have proved existence and uniqueness of the solution of equation
(3.1) under standard Lipschitz hypotheses and L?-type integrability conditions on the coef-
ficients. Let us recall that the solution is a couple (u,r), where u is a process with values
in the first order Sobolev space and v is a random regular measure forcing u to stay above
S and satisfying a minimal Skohorod condition.

In order to give a rigorous meaning to the notion of solution, inspired by the works of M.
Pierre in the deterministic case (see |70, 71]), we introduce the notion of parabolic capacity.
The key point is that in [25], we construct a solution which admits a quasi continuous ver-
sion hence defined outside a polar set and that regular measures which in general are not
absolutely continuous w.r.t. the Lebesgue measure, do not charge polar sets.

There is a huge literature on parabolic SPDE’s without obstacle. The study of the LP—norms
w.r.t. the randomness of the space-time uniform norm on the trajectories of a stochastic
PDE was started by N. V. Krylov in [42], for a more complete overview of existing works

T
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on this subject see |23, 24| and the references therein. Concerning the obstacle problem,
there are two approaches, a probabilistic one (see [53, 41]) based on the Feynmann-Kac’s
formula via the backward doubly stochastic differential equations and the analytical one (see
[26, 55, 79]) based on the Green function.

To our knowledge, up to now there is no maximum principle result for quasilinear SPDE
with obstacle and even very few results in the deterministic case. The aim of this work is
to obtain, under suitable integrability conditions on the coefficients, LP-estimates for the
uniform norm (in time and space) of the solution, a maximum principle for local solutions
of equation (3.1) and comparison theorems similar to those obtained in the without obstacle
case in [21, 23|. This yields for example the following result:

Theorem 3.1. Let (M;)¢>0 be an Ito process satisfying some integrability conditions, p > 2
and u be a local weak solution of the obstacle problem (3.1). Assume that 0O is Lipschitz
and u < M on 00, then for all t € [0,T):

E||[(u—M)*|7 oy <k (0,0)C(S, f.g.h, M)

where C(S, f,g,h, M) depends only on the barrier S, the initial condition &, coefficients
f,9,h, the boundary condition M and k is a function which only depends on the structure

constants of the SPDE, || - ||oo,c0t s the uniform norm on [0,t] x O.

Let us remark that in order to get such a result, we define the notion of local solutions to
the obstacle problem (3.1) and so introduce what we call local reqular measures.

This chapter is organized as follows: in section 2 we introduce notations and hypotheses and
we take care to detail the integrability conditions which are used all along this chapter. In
section 3, we prove an existence and uniqueness result for the SPDE (3.1) without obstacle
with null Dirichlet condition under a weaker integrability hypothesis on f and also give an
estimate of the positive part of the solution. In section 4, we establish the LP—estimate for
uniform norm of the solution with null Dirichlet boundary condition. Section 5 is devoted to
the main result: the maximum principle for local solutions whose proof is based on an It6’s
formula satisfied by the positive part of any local solution with lateral boundary condition,
M. The last section is an Appendix in which we give the proofs of several lemmas.

3.2 Preliminaries

3.2.1 [LPi—gpace

Let O C R be a bounded open domain and L?(O) the set of square integrable functions
with respect to the Lebesgue measure on O, it is an Hilbert space equipped with the usual
scalar product and norm as follows

u,v) = u\xr)v\xr)axr u ||= U2$ fEl/Z.
(u, ) /o”“d’ o </O (2)dz)
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In general, we shall extend the notation
(u,v) = / u(z)v(x)de,
(@)

where u, v are measurable functions defined on O such that uv € L1(0O).
The first order Sobolev space of functions vanishing at the boundary will be denoted by
HZ(0), its natural scalar product and norm are

d 1
(1, 9) () = () + /O >~ O (@) (O (@) da, |[ull 0y = (Iull3 + [ 7ul3)
i=1

As usual we shall denote H~1(0) its dual space.
We shall denote by H,| (O) the space of functions which are locally square integrable in O
and which admit first order derivatives that are also locally square integrable.

For each ¢ > 0 and for all real numbers p, ¢ > 1, we denote by LP([0,t] x O) the space of
(classes of ) measurable functions u : [0,¢] x O — R such that

gt = ( [ ([ wts.opas) " ds)

is finite. The limiting cases with p or ¢ taking the value co are also considered with the use
of the essential sup norm.

Now we introduce some other spaces of functions and discuss a certain duality between
them. Like in [21] and [23], for self-containeness, we recall the following definitions:

Let (p1,q1), (p2,q2) € [1,00]? be fixed and set

1/q

I=1(p1,q1,p2,q2) := {(p, q) €[1,00% /3 pe0,1]s.t.

1 1 11 1 1
it -p) ol
p P P2 q q1 q2

This means that the set of inverse pairs (%, ) P, q) belonging to I, is a segment contained

a)
in the square |0, 1]2 , with the extremities (p%’ q%) and (p%, q%) .
We introduce:
Lig= () L"([0,4] x O).
(p.)el

We know that this space coincides with the intersection of the extreme spaces,
Lp, = LPY% ([0,t] x O) N LP>% ([0,t] x O)
and that it is a Banach space with the following norm
[ull g = lully, gy Vel g g0it -
The other space of interest is the algebraic sum

L= )" P[0, x 0),

(pg)el
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which represents the vector space generated by the same family of spaces. This is a normed
vector space with the norm

[ul| ¥ := inf {Z Vil gp /w= > uiyus € L5 (10,8] x O), (kili) € 1, i =1,..m5n € N*} .

i=1 i=1

Clearly one has L'" < LY ([0,4] x O) and [|u]), ;,, < c|lul|"*, for each u € LT, with a
certain constant ¢ > 0.

We also remark that if (p,q) € I, then the conjugate pair (p/,¢’), with Ilj + Z% = é + % =1,

belongs to another set, I’, of the same type. This set may be described by

1 1 1 1
I'=T(p1,q1,p2, ¢ :={p’,q’ 3(p,q els.t.+=+:1}
< )= {3 erse te bl

and it is not difficult to1 check that I’ (p1,q1,p2,q2) = I (P}, 4}, Ph. d5), where pl, ¢}, ph and

/ 1 1 1 1 1 1 1
are defined by + + 4+ =L+ 4+ L , L 1L, L _
2 yp1+p’1 q1+qi p2+p’2 +

Moreover, by Holder’s inequality, it follows that one has

t
| sy (s, dods <l o (32)

for any u € Lr,; and v € L. This inequality shows that the scalar product of L? ([0,] x O)
extends to a duality relation for the spaces Ly,; and L,

Now let us recall that the Sobolev inequality states that
[ullye < cs [[Vully, (3.3)

for each u € H} (O), where cg > 0 is a constant that depends on the dimension and 2* = %
if d > 2, while 2* may be any number in ]2, 00[ if d = 2 and 2* = oo if d = 1. Therefore one
has

[l 0 < €5 IVullg 9,

foreacht > 0 and eachu € L7 . (Ry; Hg (O)) . Ifu € L2, (Ry; L* (0) ) N L. (R Hj (0))
one has

sa0)

2,2:t ’

One particular case of interest for us in relation with this inequality is when p; = 2,¢1 = 00
and py = 2%, g2 = 2. If I = 1 (2, 00,2%,2), then the corresponding set of associated conjugate

numbers is I’ = I' (2,00,2*,2) = I (2, 1, 23—11,2) , where for d = 1 we make the convention

NI

32 < 01 ([l e + V0

[ellg 005 V llu

with ¢; = cg V 1.

that % = 1. In this particular case we shall use the notation L := Ly, and L;;,t = LI

and the respective norms will be denoted by

It
lull e = lll e = Nello oo V lellos i s Nl o= flull™

Thus we may write

(NI

2 2
el < ex (ful oo + IVl ) (3.4)



3.2. PRELIMINARIES 81

for any u € LS (Ry; L2 (0)) N LY, (Ry; Hy (O)) and ¢ > 0 and the duality inequality
becomes

t
| [ sy (s dods <l ol (35)
for any u € Ly, and v € L*#;t.

For d > 3 and some parameter 6 € [0, 1] we set:

I‘EZ{(p7Q)E[laoo]2/26110"‘;:1—9},

Ly= Y_ I"([0,] x 0)

(P.)ETy

n n
g, == inf {Z willg, e /w=">_ uiu; € LK ([0,] x 0),
=1 =1

(ki,li) S F;, 1=1,..n;n¢€ N*} .
If d =1,2. we put

21 1 2%
Fg:{(p,q)e[l,OO]Z/Q*_Qp—Fq:2*_2+9},

* 2* 1 1

and by using similar calculations with the convention % =1lifd=1.

We remark that I'y = I (007 = 2(1{9) ; oo) and that the norm [|ul|., coincides with |u) Vet =

1 _d ). X
||u||1(°o’ 1-6°2(1-9) ’OO)’t . We recall that the norm Hu||*#t is associated to the set T (2, 1, QEj, 2) ,
2% .
i.e. [lul|%, coincides with ||u||1<2’1’2**1’2>’t.

3.2.2 Hypotheses

We consider a sequence ((B(t));>0)ien+ of independent Brownian motions defined on a
standard filtered probability space (2, F, (F¢)¢>0, P) satisfying the usual conditions.

Let A be a symmetric second order differential operator defined on the bounded open subset
O C RY, with domain D(A), given by

d
A=—L=-Y 0,(a"9).

Z’]:]‘

We assume that a = (a’7); ; is a measurable symmetric matrix defined on O which satisfies
the uniform ellipticity condition

d
AP < D a ()6 < AP, Vo € O, EeRY,

,5=1
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where A and A are positive constants. The energy associated with the matrix a will be
denoted by

d ..
Ewv) =Y /O 0 () (2)Dy0() da. (3.6)

1,5=1

It’s defined for functions w, v € HE(O), or for w € H} (O) and v € H}(O) with compact

loc
support.

We assume that we have predictable random functions

[ RYxQxOxRxRY R,
g=1(g1,90) :RTx Q2 x O xR xR = R
h=(hi,..hi,..) : RF x Qx O xR xR — RY.

We define
f('7 y ‘707 0) = f07 g(? ) '7070) = go = (g?v 793) and h(7 ) '7070) = ho = (h?7 "'7hi07 )

In the sequel, | - | will always denote the underlying Euclidean or [2—norm. For example

“+o00
|h(t,w,x,y,z)|2 = Z |hi(t,w,x,y,z)|2.
i=1

Remark 3.2. Let us note that this general setting of the SPDE (3.1) we consider, encom-
passes the case of an SPDE driven by a space-time noise, colored in space and white in time
as in [76] for example (see also Example 1 in [25]).

Assumption (H): There exist non negative constants C, «, [ such that for almost all w,
the following inequalities hold for all (x,y, z,t) € O x R x R% x RT:

L |ftw,z,y,2) = f(tw, 2y, 2) < Cly — /[ + |2 = 2]),

2. gt w,2,y,2) —g(t,w, z,y/, ') < Cly —¢/| + alz = 2,

3. |t w, .y, 2) — h(t,w, .y, 2')| < Cly —y'| + Blz — 2],

4. the contraction property: 2a + % < 2.
Moreover we introduce some integrability conditions on the coefficients f°, ¢°, A% and the
initial data & : (HI2) and the weaker one (HI#) concerns the case of global solutions and

the one denoted (HIL) concerns the case of local solutions.
Along this article, we fix a terminal time 7" > 0.

Assumption (HI2)

2 2 2
E (”5H§ + HfOHQ,2;T + H’go‘HQ,Z;T + H‘hOmz,Q;T) < o0.



3.2. PRELIMINARIES 83

Assumption (HI#)

* 2 2 2
5 (11 + (1) + N6+ 1A ) <

Assumption (HIL)

T
B[ l@Pdot B [ [ (7@ + I + K@) )dodt < .
K 0 JK
for any compact set K C O.

Remark 3.3. Note that (2,1) is the pair of conjugates of the pair (2,00) and so (2,1)
belongs to the set I which defines the space L7, . Since ||[v]ly,, < \/EHU”ZQ;t for each v €
L?2([0,] x O), it follows that

L*?([0,1] x ©) € L*Y* C Ly,
and ||v|| ., < Vit [v]lg,0.4 , for eachv € L?2([0,t] x O). This shows that the condition (HI#)
is weaker than (HIZ2).
3.2.3 Weak solutions

We now introduce Hr, the space of H}(O)-valued predictable processes (ut)iefo,r) such that
. 1/2
(E sup |us||§—|—/ EE(us)ds> < 00.
0<s<T 0

We define Hjoe = Hioe(O) to be the set of H. lloc((?)—valued predictable processes defined on
[0, T] such that for any compact subset K in O:

. 1/2
(E sup /us(a:)Qd:c—i—E/ / |Vu5(:1:)|2d:cds> < o0.
0<s<T JK 0 JK

The space of test functions is the algebraic tensor product D = C*(R*) @ C2(0), where
C°(R™) denotes the space of all real infinite differentiable functions with compact support
in RT and C2(0O) the set of C?-functions with compact support in O.

Now we recall the definition of the regular measure which has been defined in [25].
K denotes L>([0, T); L2(O)) N L2([0,T]; H}(O)) equipped with the norm:

ol = v li=qoirzon + 1 v 2o mymon

T
sup || v ||2 +/ (|| vy ||2 —I—S(vt)) dt.
0

te[0,T]
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C denotes the space of continuous functions with compact support in [0, 7[xO and finally:

W = {p € L2(0,T}; H)(0)); 57 € L([0,T); H~'(O))},

endowed with the norm|| ¢ ||3,=] ¢ H%Q([QT];H(%(O )+ || HLQ(OT} H-1(0))-
It is known (see [49]) that W is continuously embedded in C([0,T]; L?(0)), the set of
L?(O)-valued continuous functions on [0,7]. So without ambiguity, we will also consider

Wr ={p e W;p(T) =0}, Wr ={peW;p >0}, Wi =WrnWT.

Definition 3.4. An element v € K is said to be a parabolic potential if it satisfies:

T
V@GW;, \/0 (aait, tdt+/ g(,Ot,’Ut)dt>O

We denote by P the set of all parabolic potentials.

The next representation property is crucial:

Proposition 3.5. (Proposition 1.1 in [71]) Let v € P, then there exists a unique positive
Radon measure on [0,T[xO, denoted by v*, such that:

V@GWTOC/ % dt+/ E (@, v)dt = // (t,z)d

Moreover, v admits a right-continuous (resp. left-continuous) version v (resp. v) : [0,T] —

L*(0) .
Such a Radon measure, vV is called a regular measure and we write:
_Ov
Y=—+A
v = + Av.

Definition 3.6. Let K C [0,T[xO be compact, v € P is said to be v—superior than 1 on
K, if there exists a sequence v, € P with v, > 1 a.e. on a neighborhood of K converging to
v in T2((0,T]; H(O)).

We denote:
Sk ={v € P; visv—superiortol on K}.

Proposition 3.7. (Proposition 2.1 in [71]) Let K C [0,T[xO compact, then Sk admits a

smallest v € P and the measure vy whose support is in K satisfies

/OT/OdV}’(—mf{/ /du,vGSK}

Definition 3.8. (Parabolic Capacity)

o Let K C [0,T[xO be compact, we define cap(K) = fOT Jo dvic;

e let O C [0,T[xO be open, we define cap(O) = sup{cap(K); K C O compact};
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e for any borelian E C [0,T[x0O, we define cap(E) = inf{cap(O); O D E open}.

Definition 3.9. A property is said to hold quasi-everywhere (in short q.e.) if it holds outside

a set of null capacity.

Definition 3.10. (Quasi-continuous)

A function u : [0, T[xO — R is called quasi-continuous, if there exists a decreasing sequence
of open subsets Oy, of [0, T[xO with:

1. for all n, the restriction of u, to the complement of O,, is continuous;

2. limy,—s 4 oo cap (Oy) = 0.

We say that v admits a quasi-continuous version, if there exists u quasi-continuous such that

uU=u a.e.

The next proposition, whose proof may be found in [70] or [71] shall play an important role
in the sequel:

Proposition 3.11. Let K C O a compact set, then Vt € [0, T
cap({t} x K) = \(K),

where A\g is the Lebesgue measure on O.

As a consequence, if u : [0,T[xO — R is a map defined quasi-everywhere then it defines
uniquely a map from [0,T[ into L*(O). In other words, for any t € [0,T], u; is defined
without any ambiguity as an element in L*(O). Moreover, if u € P, it admits version u
which is left continuous on [0,T] with values in L?(O) so that ur = tp- is also defined

without ambiguity.

Remark 3.12. The previous proposition applies if for example u is quasi-continuous.

To establish a maximum principle for local solutions we need to define the notion of local
reqular measures:

Definition 3.13. We say that a Radon measure v on [0,T[xO is a local regular measure if

for any non-negative ¢ in C°(O), ¢v is a regular measure.

Proposition 3.14. Local regular measures do not charge polar sets (i.e. sets of capacity 0).

Proof. Let A be a polar set and consider a sequence (¢y,) in C2°(0), 0 < ¢, < 1, converging
to 1 everywhere on O. By Fatou’s lemma,

/ Tydv(z,t) < liminf/ Iadpdv(z,t) = 0.
[0,T[xO [0,T[xO

n—o0

We end this part by a convergence lemma which plays an important role in our approach
(Lemma 3.8 in [71]):
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Lemma 3.15. Ifv" € P is a bounded sequence in K and converges weakly tov in L*([0, T]; H}(O));

if u is a quasi-continuous function and |u| is bounded by a element in P. Then

T . T
lim / / udv’ = / / udr®.
n—=+o0 Jo  Jo 0o Jo

We now give the assumptions on the obstacle that we shall need in the different cases that
we shall consider.

Assumption (O): The obstacle S : [0,7] x © x O — R is an adapted random field almost
surely quasi-continuous, in the sense that for P-almost all w € Q, the map (¢,2) — Si(w, x)

is quasi-continuous. Moreover, Sy < ¢ P-almost surely and S is controlled by the solution
of an SPDE;, i.e. Vt € [0,T],

S <S8, dP®dt®dr— a.e. (3.7)
where S’ is the solution of the linear SPDE
ds, = LSt + fldt + L d,g) ,dt + S50, dB]
, , v (2 J J (3.8)
S (O) = SO’

with null boundary Dirichlet conditions.

Assumption (OL): The obstacle S : [0,7] x € x O — R is an adapted random field,
almost surely quasi-continuous, such that Sy < & P-almost surely and controlled by a local
solution of an SPDE, i.e. Vt € [0,T],

S < S{, dP ® dt ® dx — a.e.

where S’ is a local solution of the linear SPDE (for the definition of local solution see for
example Definition 1 in [23])

dS; = LSjdt+ fidt + Y0 dig},dt + > 7V ) ,dB]
S'(0) = S

Assumption (HO2)

B (1613 + 17/ l13 07 + 1915 5z + [121]157) < o0

Assumption (HO#)

« 2
B (058134 (17 )+ N1+ N ) < o0

Assumption (HOL)

T
E /K S)2dz + E /0 /K (£ + 16)(@) 2 + W (@)]? ) dadt < oo

for any compact set K C O.
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Remark 3.16. It is well-known that under (HO2) S’ belongs to Hr, is unique and satisfies

the following estimate:

T T
E sup || S| +E/ £(Sy)dt < CE [I So II? +/ (12 A+ 0 Lgel 11+ 1 1Re] 1)t |

t€(0,T] 0 0
(3.9)

see for example Theorem 8 in [20]. Moreover, as a consequence of Theorem 3 in [25], we
know that S" admits a quasi-continuous version.

Under the weaker condition (HO#), S’ also exists, is unique and satisfies the following
estimate (see Theorem 3 in [23]):

T T

E sup || S| +E/ E(Sydt < CE {H So II? +/ (A2 1 gt 117+ 11 [he] 117) dt | -
te[0,T) 0 0

(3.10)

Definition 3.17. A pair (u,v) is said to be a solution of the problem (3.1) if

1. w € Hp, u(t,x) > S(t,z), dP @ dt @ dx — a.e. and up(z) =¢&, dP ® dx — a.e.;
2. v is a random regqular measure defined on [0, T[xO;

3. the following relation holds almost surely, for all t € [0,T] and all p € D,
t ¢
(e 1) =€ o) + [ (s Dupudds = [ €l p)ds
0 0
d t
- Z/ (g;<u3a vus)a 8,‘(,03)(18 + / (fs(usa vus)a Sps)ds (3.11)
=170 0

+3° / (hi (s, Vi), 05 dBI + / / (@) (dz, ds):
j=1"0 0o Jo

4. u admits a quasi-continuous version, u, and we have
T
/ / (i(s,2) — S(s,2))(dz,ds) = 0, P—a.s.
0 @

We denote by R(&, f, g, h,S) the solution of the obstacle problem when it exists and it is
unique.

Definition 3.18. A pair (u,v) is said to be a local solution of the problem (3.1) if

1. u € Hipe, u(t,x) > S(t,z), dP @ dt @ dx — a.e. and up(z) =&, dP @ dx — a.e.;

2. v is a local random reqular measure defined on [0, T[xO;
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3. the following relation holds almost surely, for all t € [0,T] and all p € D,
t t
(ur, ) =(&, ¢o) + / (us, Osps)ds — / E(us, ps)ds
0 0

d t
- Z/ (95(us, Vus), dips)ds + / (fs(us, Vug), ¢s)ds (3.12)
=170 0
too ) t
+3 [ e Vuegasi+ [ [ e,
=i o Jo
4. w admits a quasi-continuous version, u, and we have
T
/ / (u(s,z) — S(s,z))v(dx,ds) =0, P —a.s.
0 @]

We denote by Rioe(&, f, g, h, S) the set of all the local solutions (u, ).
Finally, in the sequel, we introduce some constants €, 6 > 0, we shall denote by C,, Cys some
constants depending only on €, 4, typically those appearing in the kind of inequality

ab| < ea® + C.b2.

3.3 Existence, uniqueness and estimates for the solutions with
null Dirichlet condition under a weaker integrability con-

dition

In this section, we prove existence and uniqueness under a weaker integrability on f° and the
obstacle S, improving results obtained in |25], Theorem 4 and then give an It6’s formula and
estimate for the positive part of the solution, which is a crucial step leading to the maximum
principle. Let us note that these results have been established in the case of SPDE without
obstacle (see Section 3 in [23] and [24]).

All along this section, we suppose that (H), (O), (HI#) and (HO#) hold.

3.3.1 Existence, uniqueness and estimates for the solutions

To get the estimates we need, we apply Itd’s formula to u — S’, in order to take advantage
of the fact that S — S’ is non-positive and that as u is solution of (3.1) and S’ satisfies (3.8),
u — S’ satisfies
(s — S1) = Bilas (20 (ue(w) — Sy@)))dt + (F(t 3, us (@), Vur @) - ['(¢,2))dt
+ 0i(gi(t, m, u(w), Vur(x)) = gi(t, @))dt + (hy(t, @, us(x), Vug(2)) — Wj(t, ))dB]

+ v(x,dt), (3.13)
(u - S,)O = g - S(/)a
u—8>8-5
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that is why we introduce the following functions:
fT(t,W,fE,y,Z) = f(t,w,:c,y—i— Sé,Z +VSt,) - f’(t,w,x)
g(t,w,,y,2) = g(t,w,z,y + S}, 2 + VS — ¢ (t,w,z)

h(t,w,z,y,2) = h(t,w,z,y + S, 2 + VS;) — I (t,w,z).

Let us remark that the Skohorod condition for u — S’ is satisfied since

T T
/0 /O (us(z) — S(x)) — (Ss(x) — S (2))w(ds, dz) = /O /O (us(z) — Sy(@))v(ds, dz) = 0.

It is obvious that f, g and h satisfy the Lipschitz conditions with the same Lipschitz coeffi-
cients as f, g and h. Then, using Remark 3.3, we check the integrability conditions for fY,
g° and h0:

1P = 7S VS) = Pl < ISV + 1
17z + C NS Wi + CUVS ez + 1 i
1P+ CVENS |y 00 + CVT VS [y + 1 -

IN

IN

We know that (see Remark 3.16):
K (HS,“ZQ;T + ||VS,||§,2;T> < 0.
Hence, for each t, we have
. \2
E(|170r) < oo
We also have:

H§0||2,2;T = ”g(slvvsl) - gIHZ,Q;T < Hg(S’,VS’)HZZT + ||9/”2,2;T
||90||2,2;T +C ||S,||2,2;T +o ||VS,||2,2;T + ||9,||2,2;T < 0o.

IN

And the same thing for h. Hence,
e N2 o -
E <(||f||#;T) + H9||2,2;T + ||h||2,2;T) < 0. (3.14)

We now state the main Theorem of this subsection:

Theorem 3.19. Under conditions (H), (O), (HI#) and (HO#), the obstacle problem

(3.1) admits a unique solution (u,v), where w is in Hr and v is a random regular measure.

For the proof of this theorem, we need the following two lemmas whose proofs are given in
the appendix. The first lemma concerns the It6’s formula for the solution of SPDE (3.1)
without obstacle under (H) and (HI#). Let us remark that in [23], the existence and
uniqueness result has been established but not the It6’s formula.
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Lemma 3.20. Under the assumptions (H) and (HI#), the SPDE (3.1) without obstacle
admits a unique solution uw € Hp. Moreover, it satisfies the Ité’s formula i.e. if p : R — R
is a function of class C? such that ©" is bounded and ¢'(0) = 0, then the following relation
holds almost surely, for all t € [0,T],

/OSO(ut (x))dx + /Otg (¢ (us) ,us) ds = /O@(f (z)) dz + /ot (¢ (ua) , fa (s, Vi) ds
t d ;

_/ Z (al (SD/ (Us)) 7gi,s(us, VUS) ds + ;/O (30// (us) , |h8(us,vu8)‘2) ds

+Z/ his(us, Vits)) dBJ. (3.15)

The following lemma will be helpful in showing that the solution to problem (3.1) is quasi-
continuous.

Lemma 3.21. The following PDE with random coefficient f° and zero Dirichlet boundary

condition

{ dw; + Awdt = fldt (3.16)

woy = 0
has a unique solution w € Hp. Moreover, w admits a quasi-continuous version.

Proof. |Proof of Theorem 3.19.] We split the proof in 2 steps:

Step 1. We prove an existence and uniqueness result for the problem (3.1) under the
stronger conditions (H), (O), (HI2) and (HO#). The idea of the proof is the same as
Theorem 4 in [25].

We begin with the linear case i.e. we assume that f, g and h do not depend on (u, Vu), this
implies that f = f°, g = ¢° and h = h?. We consider the following penalized equation:

d(uy — S) = L(uj — S)dt + fedt + Z d;gidt + Z hldB] + n(u} — S;)~dt

i=1 7j=1

where f = f — f', =g —g¢'and h = h — h’. Applying It6’s formula (3.15) to (u™ — S")?, we
have:

t t
| — )2 42 /0 El — S)ds = [ €S2 +2 / ((u? — 81, F)ds

- 22/ (u — S%) gsds—I—QZ/ u? — 8), hl)dB?

+ 2/ /(ug — SDn(u —Ss)ds+/ | ks ||? ds.
0o JO 0
We remark first that:

/Ot/ (uy — Sin(ul — Ss)~ds = /t/ (u — Sy + S5 — S)n(u” — Ss)~ds
// (w5 = 55) d8+//5_5/ n(uy — Ss)~ dzds.
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The last term in the right member is non-positive because Sy < S}, thus,

t t
I — S+ 2 aw—%mwz/nwﬂ—&rﬁwsm—%w
0 0
t B d t .
+ z/u@—%me—QES/X@WS—%»¢MS
0 i—1 0
400
- zz/ (u™ —S;,hgdBﬂ+/ | |hs| |12 ds.
7j=1

Then, the Holder duality inequality (3.5) and the relation (3.4) lead to the following esti-
mates, for all ¢ in [0, 7], for any ¢, € > 0,

t B o 9
mAu&—s;gma < 6wt =5+ Cs (1)

e \2
o (H“n - S/Hz,oo;T + Hv(“n - S/)H;,Z;T) +Cs (”fH#;T) ;

IN

and

d ¢ ‘
2| Z/O (Di(uy — 85),g5)ds| < e||V(u" - 5’)H§7Q;T + Ce 191113 2.7 -

Moreover, thanks to the Burkholder-Davies-Gundy inequality, we get

T+oo
E sup |Z/ u? — S' h)dB!| < clE/ (u? — S, hl)2ds]'/?
te[0,7 =

IN

T +00
qm/ sup || u? — 8% 2 Fd |12 ds]"/2
0 Z s€[0,T]

j=1
T
< aB{swp =S ([ )R] 1P s
s€[0,T] 0
12 G T 2
< B sup [ul = SUPAEE [ Rl | ds
s€[0,T] de  Jo
Then using the strict ellipticity assumption and the inequalities above, we get
T
(1—2¢—C8E sup || ul =S ||* +(2\ — e — Cé)E/ | V(u®— S |2 ds
te0,T 0
<CE =Sy I>+E( [ Fir)® + E | gl 1320 +E |l 2] 115 217)-
We take € and ¢ small enough such that (1 —2e —Cd) >0 and (2A —e—C0) >0
T
E sup | u?—S)|? —|—E/ E(uy — Sy)dt < C.
te[0,T 0

Then, to prove existence of uniqueness in this case, we can follow line by line the proof based
on a weak convergence argument given in [25], Theorem 4. The only difference is that now
the estimates depend on || f9]| 4 instead of || f0]2,2;-
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Step 2. Now we turn to the general case, i.e. assume (H), (O), (HI#) and (HO#).
We consider the following SPDE:

dwy + Awydt = fPdt (3.17)
Thus v — w satisfies the following OSPDE:

d(ut — ’lUt> -+ A(Ut — wt)dt = Ft(ut — Wy, V(Ut — wt))dt + dith(Ut — Wy, V(Ut — wt))dt
+ Hi(up —wy, V(ur — wy))dBy + v(z, dt),

where
Fy(z,y,2) = fiz,y +w, 2 + Vw) — f(z)
Gt<x7 Y, Z) = gt<xa Yy + w, z + V'lU)
Hy(z,y,2z) = h(z,y +w,z+ Vw).

We can easily check that F'; G and H satisfy the same Lipschitz conditions as f, g and h and
also [0 € L2(Qx[0,T]xO; R), G° € L*(Qx[0,T]xO; R?) and H® € L2(Qx[0,T]x O; RY").
Moreover, u —w > S —w and S —w < S’ — w where S’ — w satisfies the following SPDE:

d(S; —wy) + A(S] — wy)dt = (f] — f2)dt + divg,dt + h,dB;.

It is easy to see that f' — f, ¢’ and B/ satisfy (HO#). Therefore, from Step 1, we know
that (u — w, v) uniquely exists.

Combining with the existence and uniqueness of w, we deduce that the solution of the
problem (3.1) uniquely exists under the weaker assumptions (HI#) and (HO#).

And the quasi-continuity of u comes from the quasi-continuity of w and u — w. ]

3.3.2 Estimates of the positive part of the solution with null boundary
condition

We recall that we assume that (H), (HI#), (O) and (HO#) are fulfilled. By Theorem
3.19, we know that the problem (3.1) admits a unique solution with null Dirichlet boundary
conditions that we still denote by u. Now we establish an Ito’s formula for (u,v).

Theorem 3.22. Let (u,v) be the solution of OSPDE (3.1) and ¢ : R — R be a function of
class C? and assume that ¢" is bounded and ¢'(0) = 0. Then the following relation holds
a.s. for allt €[0,T):

/O oy (2)) di + /0 € (! () ) ds = /O o (€ () du + /0 (¢ (us) , fu (1, V) ds

_/0 D (00 (¢ (us)) s gis(us, Vus) ds ;/Ot (" (1)« s, V) ) ds

0 t

(¢ (us) , hjs(us, Vuy)) ngJr/O /Ogol(us)u(dacds).
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Proof. We begin with the stronger case, where (H), (O), (HI2) and (HO#) hold. In
this case we have the Itd’s formula, see step 1 of the proof of Theorem 3.19. Then using an
approximation argument we can obtain the [t6’s formula in the general case, more precisely:
We take the function f,,(w,t,z) := f(w,t,z,u, Vu) — fO+ fO, where f0, n € N, is a sequence

2
of bounded functions such that F (Hfo —f9 H;J — 0, as n — 0. We consider the following

equation

dul(z) + Aul(z)dt = f(z)dt + divgy(z)dt + he(x)dBy + V" (x, dt)
where g(w,t,z) = g(w, t,z,u, Vu) and B(w, t,x) = h(w,t,x,u, Vu). This is a linear equation
in ™ so from Theorem 3.19, we know that (u", ™) uniquely exists.

Applying 1t6’s formula for the difference of two solutions to (u™ — u™)? (see Theorem 6 in
[25]),

t
lup — w2 +2/6u _umyds = 2/(U?—UT,fs"—f?)ds
0

¢
+ 2/ /(u? —u) (V" —v")(dxzds)
0 Jo
Remarking that

//(un — Up) (U — U ) (dzds) // — U )Vp(dzds) — // S (dxds) <0

and for § > 0, we have

t 2
2| [ =g = s < Sl =+ s (17 = )

Since E(u™ — u™) > A ||V (u" — u™)||3, we deduce that, for all ¢ > 0, almost surely,
2
(g — ug || + 2X ||V (u" _Um)”zzt <4 u” _UmH#t"’Cé <||fn me#;t) (3.18)
Taking the supremum and the expectation, we get
E n_ mj2 Vn_mQ < SE n__ mj2 CsE n o pm||* 2
[0 = u™ 5 00 + IV (W™ = u™)[59, ) S OE 0" —u™[%;; + CsE (11" = ") -

Dominating the term E ||u™ — um||i;t by using the estimate (3.4) and taking ¢ small enough,
we obtain the following estimate:

2
B (un = 3 + 19 Ctn = )35, ) < 2G5 (11" = 1™ [3) = 0, whem n, m — o0

Therefore, ™ has a limit u in Hp. Now we want to find the limit of v™: we denote by v™ the
parabolic potential associated to v™, and 2" = u™ — v"™, so 2" satisfies the following SPDE

d
dzf'(x) + Az (x)dt = f{(x)dt =Y 0, (x)dt + Z hl(x) dBY.
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Applying Itd’s formula to (2" — zm)Q, doing the same calculus as before, we obtain the
following relation:

F <||zn — Zm

As a consequence:

2
(2n — zm)||§72;t) < 2C5E (||f" - fm||;;t) 40, asn, m— oco.

E (J[on = vml3 et + 1V (0 = vm)334) — 0, as n, m — 0.

Therefore, (v™) has a limit v in Hp. So, by extracting a subsequence, we can assume that
(v™) converges to v in K, P—almost-surely. Then, it’s clear that v € P, and we denote by
v the regular random measure associated to the potential v. Moreover, we have P — a.s.

Y € Wi,
t
//ap(m,s)u(dwds) = lim// x, s)v" (dxds)
0 O n—00

Hence, (u™,v™) converges to (u,v). Moreover, by Theorem 3.19, we know that the solution
of problem (3.1) uniquely exists and we apply the It6’s formula for (u”,v™).

[ ot yde [ &5 )ty ds = /090(5 o [ (6! 0. 57) ds
— /t zd: (0 (¢ (u})),§L) ds + = /Ot (cp” (ul) ) ds + Z/ dB]
/ / O (dads) s, (3.19)

Now, we pass to the limit as n tend to +oo. First, by using Lemma 3.15:

/ / " (dods) / / "(dads) - / / v(dzds) / / (us)0(dads).

Moreover,

t t

(¢ (), f) ds — / (¢ (), ) ds
0 0

t t
' | = ) as +\ [ @ g gy as
0 0
Ol — ull o 1 e .

The relation (3.4) and the strong convergence of u™ yield that E [|u" — ul| ., — 0, as n — oo.
So, by extracting a subsequence, we can assume that the right member in the previous
inequality tends to 0 P—almost surely. So we have

IN

IN

t

tim [ @) ) ds = [ ) 1) ds

n—-+00 0
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The convergence of the other terms in (3.19) are easily deduced from the strong convergence
of (u") to u in Hy and yield the desired formula. [

This yields the estimate of the Hr-norm of u under (HI#):

Proposition 3.23. Under the same hypotheses and notations as in the previous theorem,

we have:
« \2 _
E () o + 1Vul00) < ROE(IE = Soll+ (17 15e) + 180320 + 17115 2

HSéHz (1) + 0918 0+ 191 )

for each t > 0, where k(t) is a constant that only depends on the structure constants and t.

Proof. Applying the above Ito’s formula to (u—S")?, since (u—S5",v) = R(£—S), f, g, h, S —
S"), we have, almost surely, for all ¢ € [0, T7:

t t
Hut—sgy|2+2/ E(us — S)ds = Hg—sg|\2+2/ (s — SL Foltts — S,V (us — S1)))ds
0 0
t t
_2/ (V(us — 81, Gs(tts — S,V (us S’))ds+2/( 8 Bg(us — S, V(us — S1))dB,
0
t
+/ | s (s — S5,V (us — S%)) | ds+2/ / — S (x)v(dzds).
0

Remarking the following relation

// — SHv(dzds) // v(dzds) = 0.

The Lipschitz conditions in f, g and h and Cauchy-Schwarz’s inequality lead the following
relations: for §, ¢ > 0, we have

t
/ (s — St fi (g = S0, V(ug = S)) ds < e[ V(u—8)2,, +ce|ju— 9|2,

e\ 2
8w = 8"+ o (1715e) -

and
t
/ (V(ta — 1), Galtts — S, V(g — S))ds < (a+6)|[V(u— |7,
0112
e fJu— 8|15 0, + e |85
/nh e S s < (8 +.) [V~ )+ e[ 8+ e[

Since E(u — ') > \||V(u — 8")||5, we deduce that for all ¢ € [0,T], almost surely,

g% 5
oo 42 (30 & ) 9= M < e S - ST

2 _
265 (| 7030e) 206 18715 0+ e [0 5+ 5 10 = 1135 + 2045
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where M; = 372, fg <u5 — SR (ug — S,V (us — Sg))) dB! represents the martingale
part. Further, using a stopping procedure while taking the expectation, the martingale
part vanishes, so that we get

2 5
Bl i3 +2 (A== 5 = 2) BV 91, < Blle— spl + 2 a5,
e N\ 2 _ t
126 (|73) + 20 1573 + B WO 50 [ = 81 .
Then we choose € = % ()\ —a— %2), set v = A —a— %2 and apply Gronwall’s lemma

obtaining

B~ S4B (90— )], < (B 8, + B [F (56— 55,720, 0]) 4o

_ - e 2 _
where F (6, — Sp, f°,3° 1. ¢) = <Il£— SpI + 265 (170110) " + 260 1905+ ||h°||§,2;t)-

As a consequence one gets
2 1 2 07
Bl Sy < o (08— S+ B (0.6~ % 7% 0] (5~ 1) (o0
Now we return to the inequality (3.46) and take the supremum, getting

1= 8|l e < 6 = S

+ F ((5,5 - S0, 72,3, ﬁo,t) + 5ce Hu — S’H; o T 2sup M;
34y SSt
(3.20)
We would like to take the expectation in this relation and for that reason we need to estimate

the bracket of the martingale part,

HQ#;t

(M)

ol
IN

= 8 [ = 90— ) s,

I,
70112
M= 115 s+ e (e = S'N5.00 + [V = 95 + 1711 5,

IN

with 17 another small parameter to be properly chosen. Using this estimate and the inequality
of Burkholder-Davis-Gundy we deduce from the inequality (3.20):

(1= 2Cpen) E |ju— 8|5 ., < 0E |ju— 8|5, + E [F (5,6 = S, °, 3 1%, 1)]

+ (505 + 2C’BDGc77) FE ||u — S/H;,Q;t + QCBDGCWE ||V(u — S/)H;Q;t + QCBDGCnE ||}_ZOH§72¢

where Cpp is the constant corresponding to the Burkholder-Davis-Gundy inequality. Fur-
ther we choose the parameter n = and combine this estimate with (*) and (**) to
deduce an estimate of the form

1
4CBpa

B (lu =813 + IV = 50,) < G2 (0 EJlu— S,
+ e(0,0)E [R(5,€— Sy, [0, 5° 0%, 1)]

_ _ e\ 2 -
where R (6,& — Sp, f°,g°, A%, t) = (||5—55|2+ (||f0||#;t) +18°015.5 + Hh0||§’2;t> and c3(6, )

is a constant that depends of § and ¢, while ¢z (¢) is independent of §. Dominating the term
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Elu— S’Hi;t by using the estimate (3.4) and then choosing 6 = we get the following

1
' 2ciea(t)’
estimate:

)2 _0112 ~0112
B (o= '+ 190 = $1) < 60 (e = 5503+ (17°05)” + 10N+ 10 )-

Combining with the estimate for S’ (see Remark 3.16), we obtain the estimate asserted by
our corollary. n

In the following Proposition, we establish a crucial relation for the positive part of w:

Proposition 3.24. Under the hypotheses of the above Proposition with same notations, the
following relation holds a.s. for allt € [0,T]:

/O(uj(:c))Qd:Hz/o Eut)ds = /O(§+(:r))2d$+2/0 (it fu (g, Vig))ds

— /(Vus ,gs(us,Vus))ds+2/ (uf, hs(us, Vug))dBs

+ /Hl{u soyhs(us, Vus) || ds+2// x)v(dzds).

Proof. We approximate ¥(y) = (y*)? by a sequence of regular functions: Let ¢ be an
increasing C* function such that ¢ (y) = 0 for any y €] — oo, 1] and ¢ (y) = 1 for any
y € [2,00[. We set ¥, (y) = y%¢ (ny), for each y € R and all n € N*. It is easy to verify that
(¥n)en+ converges uniformly to the function ¢ and that

. / _ 9, 3 " —
Jim 4, (y) =297, lim ¢ (y) =2 Iys0
for any y € R. Moreover we have the estimates

0<vn(y) <¥(y), 0< ¢, (y) < Cy, | (y)| <C, (3.21)

for any y > 0 and all n € N*, where C' is a constant. We have for all n € N* and each ¢ > 0,
a.s.,

/ Uy, (ug (z)) doe + /tr‘: (wn/ (us) ,us) ds = / Yy (€ (2)) dx + /Ot (¢n/ (us), fs (us, Vus)) ds
/ Z (n" (us) Osus, gis (us, Vug)) ds + = /Ot (wn” (us) , |hs (us, Vus)|2) ds
+ Z/O (¥n (us) , hjs (us, Vus)) dBI + /Ot /O Uy (us) v(dzds).

(3.22)

Taking the limit, thanks to the dominated convergence theorem, we know that all the terms
except fg Jo ¥n (us) v(dxds) converge. From (3.21) and (3.22), it is easy to verify

t
S%p/o /O(bn(us)u(dxds) <C.
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Then, by Fatou’s lemma, we have

t
//u:(x)y(dxds —hmlnf/ / &, (us)v(dzds) < +o0, a.s.
0 O n—oo

Hence, the convergence of the last term comes from the dominated convergence theorem. m

Now we prove an estimate for the positive part u™ of the solution. For this we need the
following notation:

j?u—S’,O u—:5S’,0

= I{u>S/}fTO g = I{u>5'/}g R4 50 = I{u>S’}}_Z ,
qu_f Jﬂ)_’_fu SO—uS_g g+gu50 huS h— EO+7LU_S,’O,
FUE0F = Trsey (FOV0), (€= S0)T = (6= Sp) Vo (3.23)

Proposition 3.25. Under the hypotheses of the above Proposition with same notations, one

has the following estimate:
2

E<||u+||§,oo;t> < 2k(t)E(||(§—S(’))+||§+ (‘fu s’ 0+H#t) +
o+ (o L)+l

HSO H2+< ! 9’ 2,2,t+ h

Proof. Since (u — S",v) = R(& — S), f,3,h, S — S'), by Proposition 3.24, we have almost
surely V¢ € [0, T7:

/O(( —S)* dx—|—2/€ )" )ds

- / (€ — 8§ (2)2de + 2 / (g — SI)*, Foluus — 81, V(ug — SL)))ds
(@) 0

ufSI,OH2

U,*S',OH2
2,25t

2,2;t

+ ||

g

/’0

).

’ 2

2,2;t

t t
2/ (V(us — S 3o (s S;,V(USS;))ds+2/ (g — S)* Bro(us — S, V(s — S'))dB
0 0
t t
+/ ||I{us—5;>0}(B8(us — 86 V(us — S;)))HQ ds +2 / (us — Sg) " ()v(dwds).
0 0 O

As the support of v is {u = S}, we have the following relation

/Ot/o(us — SO v (deds) = /Ot /O(SS — §')*u(dads) = 0.

Then we repeat word by word the proof of Proposition 3.23, replacing u — S’ f, g, h and
£~ Sy by (u—8)*, furo0+ gu=S0 pu=50 and (¢ — S4)* respectively. Hence, we get the
following estimate:

E(l(w= )y + [Vu—=8)F55,) < kOE(]|E - S5)T5

e (Jr=e,)

2
ru—S’,0+ 7u—S",0
+ pesel” ),
f 2,2;t)

uSOH

2,25t
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Moreover, from Theorem 4 in [23|, we know that

(1570 957 E,,) <50 (s loe () Il )

where S(;+ = 56 V0, f/’0+ = I{S/>O} (f'Vv0), gI’O = I{S/>0}gl and B0 = I{S/>O}h/- Then with
the relation:

Bl )| e < 2 (|10 = 993 e + 165 3 )

we get the desired estimate. ]

3.4 [P estimate for the uniform norm of solutions with null

Dirichlet boundary condition

In this section, we want to study, for some p > 2, the LP— estimate of the uniform norm of
the solution of (3.1). To get such estimates, we need stronger integrability conditions on the
coefficients and the initial condition. To this end, we consider the following assumptions:
for 6 € [0,1[ and p > 2:

Assumption (HI2p)
B (1 + 115 00 + 118°N i+ I 7)< o0

Assumption (HOoop)

S € (2 x 0) and E (||| e seiz)” + (119l o) + (|11

ooooT

p/Q) < 0.

00,00;T"

We still consider f, g and h which have been introduced at the beginning of Subsection 3.3.1.
It is clear that f, g and h satisfy condition (H) and [|¢ — S}l € LP(S2, P). Nevertheless,
we need a supplementary hypothesis:

Assumption (HD6p)

E((I7 o) + (18° Pl + (IR Pl r)?) < oo

This assumption is fulfilled in the following case:

Example 3.26. If [V 5.0, [0+ 19°]5.0

sumptions (H) and (HOoop) hold, then:

and ||h0||;T belong to LP(Q2, P), and as-

f satisfies the Lipschitz condition with the same Lipschitz coefficients:

}f(t,w,x,y,z)—f(t,w,m,y’,z')| = }f(t,w,x,y—f—S,é(a:),z—i—vs,g(x))—|—f’(t,w,x)
— fltw,z,y + Sy(x), 2 + VSi(x) — f'(t,w,z)]
Cly—y|+C|z—7].

IN
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f satisfies the integrability condition:

1Pl = £S5V = Fllgq < 1S Vg + £ lg.r
1262+ CUIS oz + VS llgr + 117l

IN

00,001 *
And the same for g and h, which proves that (HDOp) holds.

We now give the main result of this Section, which is a version of the maximum principle in
the case of a solution vanishing on the boundary of O:

Theorem 3.27. Suppose that assumptions (H), (O), (HI2p), (HOocop) and (HDOp)
hold, for some 6 € [0,1] and p > 2 and that the constants of Lipschitz conditions satisfy

2
a+?+72ﬂ2<)\.

Let (u, v) be the solution of OSPDE (8.1) with null boundary condition, then for all t €
0,77,
E ull%y o < ek E(NENL + | SoI[E. + 17157+ (1921572 + |10 2552
+ |15 + g 55 + 110 H*p/z)’

where ¢(p) is a constant which depends on p and k(t) is a constant which depends on the

structure constants and t € [0,T].

Remark 3.28. The relations || f'|,
w157 < lime]

b < 1 o) NI < (102 o P/ and
/2 and assumption (HOoop)) yield

oooot

E (|15 5%+ llg' 2l + 102l ) < +oo.

As the proof of this theorem is quite long, we split it into several steps.

3.4.1 The case where &, fY, g° and h° are uniformly bounded

In this subsection, we assume that the hypotheses (H), (O), (HI2p), (HOocop) hold and
we add the following stronger one:

e L™ x0),
and
2 3% K e ¥R, x Q x 0).

Then it is obviously that £ — S|, € L>(Q2 x O).

Under these hypotheses, we know that the SPDE with obstacle (3.1) admits a unique weak
solution (u,v) = R(&, f,g,h,S) and that (u — S",v) = R(¢ — S}, f,g,h, S — S'). We start
by proving the following L' estimate:
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Lemma 3.29. The solution u of the problem (3.1) belongs to Mj>2L1([0,T] x O x Q). More-

over there exist constants ¢, ¢’ > 0 which only depend on C, «, B and on the quantity

K =|¢~ S(,)HLOO(QXO) v Hf0||L°°(R+><Q><O) v ||g0HL°°(]R+><Q><O) Vv ||B0||L°°(R+><Q><O)

such that, for all real | > 2,

E / e (2) — Sl(2)|lda < cK2I(I — 1)1 (3.24)
O

! ux—'xl_qu—'a:2ms C/2_ecl(l—1)t )
E/O/O|s<> S1(2)[2|V (s (x) — S(2)) Pdads < KU 1) (3.25)

and

K / -1
E /0 /O lug(z) — ()| v (dwds) < +oo. (3.26)

Proof. Notice first that if (u — S",v) = R(€ — S}, f,,h, S — S'), then
flu=8Vu-29)),g(u-8,Vu-=5)),hi(u-95,V(u-5))eL*([0,T]; L* (2 x 0))

and consequently we can apply the Itd’s formula to (u — S’,v) (See Theorem 5 in [25]).
We fix a real [ > 2, T' > 0 and introduce the sequence (¢p)nen+ of functions such that for
all n € N*:

|z | if |[z|<n
Vz € R, T) = _ .
o) { nl=2 [N (12 — n)? +In(ja| —n) +n2] if |z[>n

One can easily verify that for fixed n, ¢, is twice differentiable with bounded second
derivative, ¢ (z) > 0, and as n — oo one has @,(z) — |z|', ¢/ (z) — Isgn(z)|z|""!,
@!"(x) — (I — 1)|z|'~2. Moreover, the following relations hold, for all 2 € R and n > I:

L |z, (2) |< lpn(z).

2. | () [<| zpi(2) |-

3. | 22 (2) [< (1 = 1)¢n().

4 Jen ()] < Upn(z) +1).

5. len (@)l < Ul = 1) (pn(x) + 1).
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Applying Ito’s formula to ¢, (u — S”), we have P-a.s. for all ¢ € [0, 7],
t
[ entto) = i) da + [ E(elu = 5, ue = 5 ds = [ onle(o) - Sy do
(@] 0 (@]
¥ / | htus(a) = S10a) (5., = 4. Vi, — 1)) dads
—Z / / w(us(x) — S5(2))0;(us(x) — Sg(2)) Gi(s, &, us — S5, V(us — S5)) dr d8.27)
+Z/ / o (us(x) — Si(x)) hy(s, ,us — Sh, V(us — S.)) dedBI
1 U "(x))h2(s, z, us — us — S%)) dxds
+2;/0/Ogon< (@) — (@) (s. 2,0, — S,V (uy — S1) did

4 /0 /O o () — S!(2))v(dads) (3.28)

Since the support of v is {u = S}, the last term is equal to

/ot /O o (Ss(x) — S4(a))v(dwds)

and it is negative, because

/ / oL (S Se(x))Ifis—sr|<nyv(dzds) —l/ / sgn(S—5")|Ss(z Sg(x)|l_1 v(dxds) <0
/ / @ (S — Sy(x)Iis—s|>nv(dads)
= / / I(L=1)(|S = 8| = n)sgn(S — ') + sgn(S — §)In]v(dzds) < 0

By the uniform ellipticity of the operator A we get
E((us — 5), us — S1) > A/ s — 8|V (g — S| de

Let € > 0 be fixed. Using the Lipschitz condition on f and the properties of the functions
(on)n we get

n(us = SOL(1F(s, ) + C (Jus — Sgl + [V (us = S7)1))

n(us = SO (s, 2)] + lus = Sillen (us — SOI (Clus — Sif + CIV (us = SY))))
pn(us = S0) + 1) [F(s,2)] + Clus — Sef*| ¢y (us — SOl + Clus = S|V (us — S|l (us — S9)]
Upn(us = SO + 1) 1(s,2)] + (C + ) [us = SilPon (us — ) + ey (us — S5)|Vus — S

| ( —S;)||f(s,x,u5—Sg,Vu5—S;)|
%
[%

<
<
<
<
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Now using Cauchy-Schwarz inequality and the Lipschitz condition on g we get

ZSD _Sl ( S_S;)gi(3>m7us_S;7V(US_S;))

S Son(us - S;) IV (us — st)’ (\g_]o(s,x)] + Clus — S;| +a|V(us — S;)‘ )
< e (us — S0)|V (us — SO + 2cey (us — S1) (K2 + C?lus — SiI* ) + arply (us — SH)|V (us — S5)I?
<I(l- 1)C€K2 + 2C€(K2 + C’Z)l(l —D)|en(us — SH)| + (a +€) @l (us — SL) |V (us — S;)|2.

In the same way as before

ng — SRS (s, us — S5, V(ug — 55))

S om(us — S5) (cL(|h%(s,2)| + Clus — SL|)* + (14 €)B* |V (us — S5)|?)
< h(us — SL) (26.K? + 26.C%us — SLP + (1 + €)% |V (us — SL)[*)
< 201 — 1)K + 2L (K? + O (1 — 1)pn(us — S) + (1 +€) 82 ol (us — S0) |V (us — S2)[%.

Thus taking the expectation, we deduce
1
E/gon ug(x) — Si(x ))dx—i—()\—i(l—i—e)ﬁ (o + 2¢) E/ / "(us — SL) |V (us — S2)|? dx ds

<1 -1DK? + L1 -1)(K*+C*+C +c)E / / on(us(z) — Si(x)) d ds.
0 JoO
(3.29)

On account of the contraction condition, one can choose € > 0 small enough such that
1
/\—5(1+6)ﬁ2—(0¢+26) >0
and then

E /ngn(ut(m) — Si(x))dr < cK2l(1—1) + cd(l-1)E /Ot/ogon(us(x) — Si(z))dzds.
We obtain by Gronwall’s Lemma, that
E / en(u(x) — Sp(z)) de < ¢ K211 — 1) exp (cl(l — 1)¢) (3.30)
and so it is now easy from (3.29) to get
E /Ot/ogp;;(us(x) (@) V(s — S duds < ¢ K21(1—1) exp (cl(l — 1)1). (3.31)

Finally, letting n — oo by Fatou’s lemma we deduce (3.24) and (3.25).
Then with (3.27), we know that

/ / 2. (s — S (dwds) / / (S — Sw(dads) <

This yields (3.26) by Fatou’s lemma. [

With the help of Lemma 3.29, we are able to prove the following It6’s formula:
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Proposition 3.30. Assume the hypotheses of the previous lemma. Let (u,v) be the solution
of the problem (3.1). Then for | > 2, we get the following Ito’s formula, P-almost surely,
for allt € ]0,T]

/ l ! I\l—1 ! / _ _ Sz l "
/O|ut(a:)—5t(x)\ dm+/0 E(L(us — S5)  sgn(us — SY), us—Ss)dS—/O|f(w) So( )| d

t ! — S (@) (s, us — S, V(us — S')) dzds
1 [ [ sanu, = 82 fusta) = SU@)| '™ Flsva,u, =S4 (= ) dod
d t
—1(1—1) Z/ / |us(m)—S;(x)|l_28i(us(x) Si(x)) gi(s, x,us — S5, V(us — S%)) dz ds

+1 Z/ / sgn(us — S%) |us(z) — Si(x | hj(s,x,us — 8! V(us — S%))dzdB!

z—l Z/ / lus(2) — Si(a)|' "> B2(s, @, us — SL, V(us — SL)) da ds

+l//sgn — 50) |us(x) — S(x ‘ V(dxds).

Proof. From the Itd’s formula (see Theorem 5 in [25]), with the same notations as in the
previous lemma, we have P-almost surely, and for all ¢ € [0,7] and n € N

t
/son(ut( ) = Si(x))dx + /0 E(l (us — SL), us — SL) dS:/Ogon(g(:p)—Sé(x))dx
//S”“ us(@) = Sy(2)) f (s, 2,us — S5, V(us — Sy)) dads

(3.32)

/ [ tua(a) = S)0) = $200) s — 5L,V s — ) s
+Z/O /O%(us(w)—Sé(x))hj(s,x,us—sg,wus—S;))ddeg
+3 Z -/ / () = S1(e) 5,2, 0s — Sl Pl — 1)) do s

//cpn us(x) — S(z))v(dxds).

Therefore, passing to the limit as n — co, the convergences come from the Lemma 3.29 and
the dominated convergence theorem. ]

From now on, we assume the following stronger hypothesis:
1
o+ 562 + 7282 < A (3.33)

At this stage, the idea is to adapt the Moser iteration technics to our setting. To this end,
in order to control uniformly the L! norms and make I tend to 400, we introduce for each
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[ > 2, the processes v and v' given by

wi=sw ([ fuo sy doatt=1) [ [ Ju =817 90 - 5[ doar).
(@] 0o JO

s<t

l l Z011%* -1
vgzz/o}g—sg] dz + e |||u— 5| ‘1’1;t+lHfOHWH\u—S’\ Hw

+ 28 (ea 18P+ es 1P, ) [ — 517

G;t7
where the constants are given by
el 1+e o
N — _
7 i1 g P
C C 342 l+e
=— (14— — 3.34
¢l 2(+46>+ 2€C+3€2(J (3.34)
1 3 1
co = — and 03:—( +e)(1+e)
2e €

The main difficulty in the stochastic case is to control the martingale part. We start by
estimating the bracket of the local martingale in (3.32)

©
M, := ZZ/ / sgn(us — SL) |us(x) — Sg(x)|l_1 hj(s,x,us — St V(us — S.)) dedBI

Lemma 3.31. For arbitrary € > 0, one has

1+¢
€

1+¢
€
l

T B
+V1+e l_lﬁ’vt.

00 < eut g (NP, - 517, + 2 - s

’1,1;t>

(3.35)

The proof is the same as Lemma 12 in [21] replacing v by u — S” and also h by h.

In what follows we will use the notion of domination, which is essential to handle the
martingale part. We recall the definition from Revuz and Yor [73].

Definition 3.32. A non-negative, adapted right continuous process X is dominated by an

increasing process A, if

for any bounded stopping time, p.

One important result related to this notion is the following domination inequality (see Propo-
sition IV 4.7 in Revuz-Yor, p. 163), for any k €]0, 1],

E[(X%)*] < Ck B[(Ax)*] (3.36)
where Cy, is a positive constant and X := sup,<; [ X|.

We will also use the fact that if A, A’ are increasing processes, then the domination of a
process X by A is equivalent to the domination of X + A’ by A + A'.



106 CHAPTER 3. MAXIMUM PRINCIPLE FOR OSPDE

Lemma 3.33. The Process Tv is dominated by the process v’ where

T=1-6e—6V1+e \5[

In other words, we have

T FE sup (/ }uS—Sg‘l dm—l—’yl(l—l)/s/ ’uT—SHl2‘V(ur—5’,ﬁ)|2dxdr>
0<s<t \Jo 0o Jo

SE/ 6= S5l do + P |Ju—sT|  +iB Pl ||le- 517" (3.37)
© ’ ;

‘l,l;t

+ 28 (ca 1Pl + s NP ) [ =17,

where v, c1, ca and c3 are the constants given above.

Proof. Starting from the relation (3.32):
t

/ |ue(z) — S{(x)}l dx +/ E (I (us — SO tsgn(us — SL), us — S.) ds = / |&(z) — Sé(x)v dx
@

+l/ / sgn(us — S4) |us(x) — Si(x | f(s,:c,us — 8!, V(us — S)) dzds

—1(l—1) Z / / |us(z) — S;(:c)|l_2 Oi(us(z) — Si(x)) gi(s, z,us — St V(us — SL)) dx ds

+1 Z/ / sgn(us — 1) |us(x) — S(x)|" " hyj(s, 2, us — S,V (us — S7)) ded B

l -1 ! —272 / /
Z |uS —55( ‘ hi (s, z,us — S, V(us — Sy)) dz ds
+l/ / sgn(us — 54) |us(x) — S(x | V(d:rds).

The last term is negative: from the condition of minimality, we have the following relation,

/ / sgn(us — S5) [us(z) = S(= | " v(dwds)
/0 /o sgn(Ss — 5¢) |Ss(x) — 52(30)|l_1 v(dads) < 0.

Then we can doithe same calculus as in the proof of Lemma 14 in [21], replacing u by u— S’
and f, g, h by f, g, h respectively. ]

The proofs of the next 3 lemmas are similar to the proofs of Lemmas 15, 16 and 17 in [21],
just replacing u by u — S’ and replacing f, g and h by f, g and h respectively.

Lemma 3.34. The process v satisfies the estimate

vt25H|u—S’|l

‘O;t

with § = 1A (20517) , where cg is the constant in the Sobolev inequality (3.3).
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Lemma 3.35. The process

1 _ oL ok
= {177 v = SV 1l v NaPPl5E v AP

0;t

1s dominated by the process

w) = 6k (t) 12 [H|u -9

! Il _ i 7 L
o V= SV 172l v RIS v RIS

d+20
d

where o = and k : Ry — Ry is a function independent of 1, depending only on the

structure constants.

Lemma 3.36. There exists a function k1 : Ry xRy — Ry which involves only the structure

constants of our problem and such that the following estimate holds

* xL - xL
Bk ) B ([l il o+ [, + 10PIsE + AP )

We now prove Theorem 3.27 in the case where &, 9, g° and h? are uniformly bounded:

We set | = po™, with some n € N. By Lemma 3.35 and the domination inequality (3.36) we
deduce, for n > 1,

1

g ! o2t L\
- vl sty LRI NPIE v e

E (H|u g

< Cyon (6 (1) 12)7 E (Hlu ~ g

1
oh

l 2011 *! _ L _ Wl
o VN6 =SSl VP v IGPPI13 v HihUFHQ;) ,

where C,—» is the constant in the domination inequality. This constant is estimated by

. 1\"!
CgfnSO'G" (1_0'77/> .

(See the exercise IV.4.30 in Revuz -Yor, p. 171). So let us denote by

ay, = H\u — S'\pan

o‘i" N P — P
e ShlE v I v NP v e
and deduce from the above inequality the following one
0 1\! e
Eap4 <07 <1 - a") <6k (t) (pcr")2> ” Eay,.

Iterating this relation n times we get

n —1 n
Fapiq < o3 Lm=1 5 H (1 — ;71> (6k: (t)pQ) =1 57 Fay.

m=1
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Now we shall let n tend to infinity in this relation. Since in general one has

Pl = 1Pl
n|| 7w
for any function F' : Ry x O — R, it is easy to see that lim, H‘U_ S'pPe ; =
t

[l — SN2 soit -
Therefore we have

tim an = [[u = 8|2 eV 16 = S0l VP55 v G155 v IIROP5:

n—00 00,005t

which implies
Bllu I, ., < o) Ear
with

-1 oo 1

p(t)=c*Tm=ram ] (1 - ;ﬂ) (5K (t) p?)=m=" 7" .
m=1

Now we estimate Fa; by using the fact that ¢ [||u — S"|P7

expression of v. So we have

1
5., < v, with p replacing [ in the

a 1 * _ *o - * =
Bay = B (|[lu =177, v ll& = S511% v 135 v Mfmﬁvmmmﬁ)
< B (67 o+ |6 = SoI% + 17015 + 118”2155 v 1IROR]55)
Finally one deduces the following estimate by applying Lemma 3.36 with | = p:

Bl 7, <k B (€~ Spl% + 105+ RIS + 0PI (338)

00,005t

Moreover (see Theorem 11 [21]), we have

*p/2 *p/2
B 18|12 e < ROE (16112, + 171155 + g 21050 + 18152
Hence,
EHuHoooot HU_S,‘|oooot+EHS/||oooot
< cpI@ (IR + (156112, + 17155 + g Pl + 11257

*p/2 * /2
+ IIJH’II 18Pl + NPl )
This ends the proof of Theorem 3.27 in this particular case where &, f°, g and A° are
uniformly bounded. We now turn out to the general case.

3.4.2 Proof of Theorem 3.27 in the general case

We now assume that (H), (O), (HI2p), (HOocop) and (HDfp) hold. We are going
to prove Theorem 3.27 by using an approximation argument. For this, for all n € N*,
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1<i<d1<j<ooandall (t,w,z,y,2) in RT x Q x O x R x R, we set

fut,w,z,y,2) = flt,w,xy,2)— fOt,w,z)+ fO(t,w,x) - L4170 (t0,2) | <}

Gint,w,,y,2) = gilt,w,z,y,2) — g (t,w,x) + go(t, w, ) - L{130 (tow,2)|<n}

hin(t,wz,y,2) = hjt,w,z,y,2)— ﬁ?(t,w,x) + B?(t,w,x) : l{lﬁ?(tw,w)lén}
En(w,z) = {(w,z) - Lje(w,)|<n) (3.39)

One can check that for all n, fn, gn, hy, and £ — S satisfy all the assumptions of the
Step 1 of the proof, and that Lipschitz constants do not depend on n. And the obstacle
S — S’ is controlled by 0, which obviously satisfies (HO2). For each n € N*, we put
(@™, v") = R(£" — S}, f*, g™, h™, S — S') and we know that @" satisfies the estlmate of Step
1. We are now going to prove that (@", ") converges to (u,v) = R(£ — Sb, f,3,h, S — S').
Let us fix n < m in N* and put @™ := 4" — a™ and v™"™ := v™ — ™ We first note that
u™™ satisfies the equation

diy™ (x) + Aug™ (z) dt = fom (¢, 2, 07" (x), Vg™ (z)) dt
d

- Z 8i.§_]i,n,m (t, x, a;l,m (.’IJ) ’ V’a?,m (QT)) dt
i=1

oo
+ 3 By (2, (), Va ™ () dB] + v (x, dt)

where
Fam (tw, 2y, 2) = f(tw, 2,y + 0" (2), 2+ V" (2) = f (6w, 2,57 (2), Vi ()
+ O (t,w, ) — fO (t,w, x)
and i n.m, Ajnm have similar expressions. Clearly one has
From (tw,2,0,0) = f2 (t,w,z) — f2 (t,w, x) := ﬁ?’m (t,w,x)

and some similar relations for g; s, m (t, w,,0,0) and hj . m (¢, w, x,0,0) . On the other hand,
one easily verifies that

E|l&, — €[5, — 0, E|f2 =gy — 0
E|gn =gl — 0, Ellhy — 1%y — 0.

By Lemma 3.46 with [ = 2 (see Appendix) we deduce that
E|a" —a™|3 — 0, asn, m — oc. (3.40)
Therefore, ™ has a limit @ in Hrp.
We now study the convergence of (¢™). Denote by v™ the parabolic potential associated to
V" and 2" = " — v", so 2" satisfies the following SPDE
dzf (x) + Az (z)dt = fo(t, z, uf (z), Viy (x))dt — i 0iGin(t, z,uy (z), Vg (x))dt

=1

otz al (z), Vil (z)) dB].

||M8
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We define 21" to be the solution of the following SPDE with initial value £* — S} and zero
boundary condition:
d

dz " (@) + Az ()dt = (filw, u (), Vg (@) — £ (@)dt = > 0i(Gi ez, 47 (x), Vg (x))

— gl (x)) dt+z ja(, @ (x), Vi (z)) — b (x)) dB].

This is a linear SPDE in 2!, its solution uniquely exists and belongs to 7. Applying Ito’s
formula to (21")? and doing a classical calculation, we get:

E|z'" — zl’mH2T < CE(||€" — €3+ la™ —a™|7) — 0, asn, m — oo.

Then, we define 2™ to be the solution of the following SPDE with initial value 0 and zero
boundary condition:

dz2" (@) + Azl (x)dt = FO(t, dtfz&gm (t,x dtJrZh x)dB].
=1 7j=1

This is still a linear SPDE in 2z>", its solution uniquely exists and from the proof of Theorem
11 in [21], we know that

*

E}|22’"—2m||T<CE<anmH A [ >—>0, as n, m - o,

This yields:

0,7

E|z" - 2™|% — 0, as n, m — oo.
Hence, using (3.40) and the fact that @" = 2" + 0", we get:
E|v" —v™||7 — 0, asn, m — oo.

Therefore, v™ has a limit v in Hp. So, by extracting a subsequence, we can assume that
o™ converges to v in K almost-surely. Then, it’s clear that v € P, and we denote by v the
regular random measure associated to the potential v. Moreover, we have P-a.s., Vi € W,

/Ot/oap(x,s)l/(d;vds) = nh_)rr;o// x, s)v" (dzds)

= lim [ —(", %)d +/5 0", s )ds

n—o0 0

t a s t
— /; —(US,%)d8+A S(US,tps)ds.

As a consequence of Lemma 3.45 in the Appendix, we know that

E|ua" — am||7;07oo;T — 0.

Therefore, we can apply Proposition 3.30 to @' and pass to the limit and so we obtain that
this proposition remains valid in this case. Then, one can end the proof by repeating the
first part of Step 1 starting from Proposition 3.30.

We conclude thanks to the uniqueness of the solution of the obstacle problem ensuring that
@ is exactly equals to u — S’
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3.5 Maximum Principle for the local solution

We now introduce the lateral conditions on the boundary that we consider:

Definition 3.37. If u belongs to Hioe, we say that u is non-negative on the boundary of
O if ut belongs to Hr and we denote it simply: v < 0 on 0. More generally, if M is a
random field defined on [0,T] x O, we note u < M on 0O if u— M <0 on 00.

3.5.1 Ito6’s formula for the positive part of a local solution

In this section we are in the general framework with (H), (HIL), (OL) and (HOL) are
assumed to be fulfilled. The following proposition represents a key technical result which
leads to a generalization of the estimates of the positive part of a local solution. Let (u,v) €
Rioe(&, f,9,h,S), denote by u™ its positive part.

Proposition 3.38. Assume that 0O is Lipschitz and that u™ belongs to Hr, i.e. u is non-
positive on the boundary of O.

Let ¢ : R — R be a function of class C?, which admits a bounded second order derivative
and such that ¢’ (0) = 0. Then the following relation holds, a.s., for each t € [0,T],

/go( H(x ))dm—k/té'((p’(uj),uj)ds:/ (T (x dx—i—// (x)dxds

—Z// (uf () Osuf (2)gl(x)dxds + // )y, 0y |hs (@) Pdads
+Z / / H(2))hd (x)dadBI + / / ¢ (uf (@))v(dads). (3.41)

Proof. We consider ¢ € C°(0), 0 < ¢ <1, and put

VYt € [O,T], wy = Puy.

A direct calculation yields the following relation:
B d o )
dwy = Lwydt + fydt + Y 0igigdt + Y hjsdB] + ¢v(x, dt)
i=1 j=1

where

fo=0fi—> aij(0:6)Que) = > (9id)gis
it = Ggin —w Y ai 0, hjs = Shjs .

Now we prove that ¢v is a regular measure:

We know that:
Vo € Wi, / ds—f—/E Psy Vs ds—// s, x)dv. (3.42)




112 CHAPTER 3. MAXIMUM PRINCIPLE FOR OSPDE

We replace ¢ by ¢y in (3.42), where ¢ is the same as before, and we obtain the following

relation:
[0 was+ [eopnnas= [ [opsnan

note that ¢ does not depend on ¢ and by a similar calculation as before, we get

[ vas + / Elpaovds + [(Kuvpds — [, Vo)ds = [ [ ot o)ion

where
ZG‘Z] 1d) 8'[}2& kt—thGZJ j¢

We denote by z the bOhlthn of the following PDE with Dirichlet boundary condition and
the initial value O:

dit + Aftdt = tht + dzvktdt

If we set v = ¢v + Z, then v satisfies the following relation:

t
/( 3% 55d8+/5<p5,v3d8—// (z,s)dov.
0

It is easy to verify that v € P. Thus ¢v is a regular measure associated to .
Hence, we deduce that (¢u, ¢pv) satisfies an OSPDE with ¢¢ as initial data and zero Dirichlet
boundary conditions.
Now, we approximate the function ¢ : y € R — ¢(y") by a sequence (¢,) of regular
functions. Let ¢ be a C* increasing function such that

Vy €] — 00, 1], ((y) =0 and Vy € 2,400, ((y) = 1.
We set for all n:

Yy € R, ¥n(y) = ¢(y)C(ny).

It is easy to verify that (¢,,) converges uniformly to the function 1, (],) converges ev-
erywhere to the function (y — ¢'(y*)) and (¢!) converges everywhere to the function
(y = Ity=0y¢” (y*)). Moreover we have the estimates:

VyeRT, neN, 0<v(y) <v(y), 0<4(y) <Cy, |vn(y)] <C,

where C' is a constant. Thanks to the 1t6’s formula for the solution of OSPDE (3.1) (see
Theorem 5 [25]), we have almost surely, for ¢ € [0, 7],

[ vntintanas + [ ewiwawis = [ no@ewndns [ [ o)t
-3 [ [ vty o @ @ns + 3 [ [ i@ dsass

% /Ot/(9¢g(ws(x))|ﬁj;(x)y2dmds+/Ot/ow;(ws(x))dww,s)

Making n tends to +o0o and using the fact that I, ~o0;ws = d;w,, we get by the dominated
convergence theorem:

[ et @ae+ [ e wiwiiis = [ poet e+ / [ &t )t
_Z/Ot/ " (w (@) O ()i ( dxds—i—Z// hjs(@)ddB]
w5 [ [ S @D sy et Pdnds + [ [ o @iz, as
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Then we consider a sequence (¢,,) in C2°(0), 0 < ¢, < 1, converging to 1 everywhere on O
and such that for any y € Hg(O) the sequence (¢,y) tends to y in H(O) and

sup Ienyllmy0) < ClIYllag o) -

where C' is a constant which does not depend on y. Such a sequence (¢,,) exists because 0O
is assumed to be Lipschitz (see Lemma 19 in [24]).

One has to remark that if i € {1,...d} and y € HZ(O), then (yd;¢,) tends to 0 in L?(0).
Now, we set w,, = ¢,u and

fI=nfe =D aij(0i6n) (05u) — Y (0ibn)gis

98 = Ongin —w Y ai0ibn,  hT = dnhiy

Applying the It6’s formula above to ¢(w;), we get

[ etuiants+ [ et dwis = [ conmet @i+ [ [ ol )iz

_Z/ / ns awns( ng d$d3+2/ / ns .’L‘) ( )dde]
—|—2/0 /O90”(wrts(x))f{wn,po]»|hj,s(x)|2dxds—1-/() /Ogbn(p’(wis(x))du(x,s), a.s. (3.43)
We have

¥ (wn s fs Z ©"( 'rtsg'gs = Sol(w:{,s)gsnfs - Z ai,j@,(w'rts)aj‘bnaiuj
+ > am’SO" wn,s>ujaiw;saj¢n (@ (Wit ))gi,sOin + ¢ (wrs ) Pngi Oy .

Remarking that for all s € (0,77, (¢n' (wy ) (vesp. (idng(w;l))) tends to ¢ (ug) (resp.
0) in H}(O) (resp. L?*(O)) we get by the dominated convergence theorem the convergence
of all the terms in equality (3.43) excepted the one involving the measure v. For this last
term, we know that w, is quasi-continuous and we can use the same argument as in the
proof of Proposition 3.24 since we have fot Jo ¥ (uf)v(drds) < +oo. ]

3.5.2 The comparison theorem for the local solutions

Firstly, we prove the Itd’s formula for the difference of two local solutions (u!,v!) €

Rioc(&L, f1,9,h, SY) and (u?,v?) € Rioe(€2, £2,9,h,S%), where (&, fi, g, h, Sl) satisfy as-
sumptions (H), (HIL), (OL) and (HOL). We denote by u = ul —u?, U= vl -2
§ ¢ — €2 and

Ftw z,y,2) = f (tw, 2,y + a2 (2), 2+ Vid (2)) — 2 (tw,z,uf (z), Va? (x))

§(t,w,x,y, Z) =9 (t,w,x,y + U? (x) 2+ Vu% (x)) —49g (tvwvxﬂﬁ (x) ,VU? (37)) )

>

(tow,2,y,2) = h (t,w, 2,y +uf (), 2+ Vui () — b (t,w,z,uf (x), Vi (z)).
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Proposition 3.39. Assume that OO is Lipschitz and that a* belongs to Hr. Let o : R — R
be a function of class C?, which admits a bounded second order derivative and such that
¢©' (0) = 0. Then the following relation holds for each t € [0,T],

/ o(u dm—i—/ E(Y'(u j)ds:/ (& (x dx—i—// (T () fo(z)dads

// Dot ()5 (2)dads + - //go”(u ) (3,20 () Pdads
+Z / / 2))hd ()dzdBI + / / v(dzds)  a.s. (3.44)

Proof. We consider ¢ € C°(0), 0 < ¢ <1, and put
Ve [0,T), @ = i

From the proof of Proposition 3.38, we know that (¢u', ¢v') and (¢u?, ¢pv?) are the solutions
of problem (3.1) with null Dirichlet boundary conditions. We have the It&’s formula for @,
see Theorem 6 in [25]. Then we do the same approximations as in the proof of Proposition
3.38, we can get the desired formula. (]

We have the following comparison theorem:

Theorem 3.40. Assume that (€%, fi, g, h,S?), i = 1,2, satisfy assumptions (H), (HIL),
(OL) and (HOL). Let (u',1") € Ripe (fi,fi,g,h, Si) .1 =1,2 and suppose that the process
(ul — u2)+ belongs to Hr and that one has

E (Hf1 (.,.,uQ,VUQ) _ g2 (""UQ,VUQ)H;&;tY < oo, forall te]|0,T].

If & < & as, fHtwu?, Vu?) < f2 (tw,u? Vu?), dt @ dv ® dP-a.e. and S' < 52,
dt ® dz @ dP-a.s., then one has u'(t,z) < u?(t,z), dt ® dr @ dP-a.e.

Proof.
Applying Ito’s formula (3.44) to (u1)?, we have V¢t € [0, T,

/( dm+2/ E(( ds—/( dx+2// fs x,us(x), Vus(x))dxds

—2_2 / | 94 @) ), V(o) dods + / | Tsorlfuta @), V(o) Pdads

/ / fs z,Ts(x), Vi(z))dzd B! +2/ / x)v(dzds), a.s.

The last term is negative because that:

/ /A+ v(dxds) / / Yl (dzds) / / — S5 T2 (dxds) <
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Then we can do the similar calculus as in Proposition 3.23 and get

B (|2 + IV 125,) <k o (M e (1) )) |

This deduce the result, since ES 0 and ]/”\0 <0and g’ = R =0. ]

fu 0+ EQ,O

‘22t ‘

3.5.3 Maximum principle

In all this subsection, we work under Assumptions (H), (OL), (HIL), (HOL),(HI2p),
(HOoop) and (HDp). By the following property which has been proved in [23], Lemma
2:

lully 17 < cllullar
for some constant ¢ > 0, we know that (HD#p) is stronger than (3.14).
We first consider the case of a solution u such that v < 0 on 00.

Theorem 3.41. Suppose that Assumptions (H), (OL), (HIL), (HOL),(HI2p), (HOxp)
and (HDOp ) hold for some 6 € [0,1[, p > 2 and that the constants of the Lipschitz conditions
satisfy

2
a+ o+ 726% < \.
Let (u,v) € Rioe (&, f,9,h,S) be such that ut € H. Then one has

D
2

B3 e < k@e@E(IE = SolI% + (L g7 + 11" [lo,)

oy, + ([ )7 + g Pl % + il

D
2

+ (1P, 8
)

where k (t) is constant that depends of the structure constants and t € [0,T].

Proof. Set (y,v') = R(¢*, f,g,h,S) the solution with zero Dirichlet boundary conditions,
where the function f is defined by f = f+ f%~, with f©~ = 0V (-~ f°). The assumption on
the Lipschitz constants ensure the application of the Section 3.4, which give the estimate,

E |y = 8'l% e < HOBAIE = So1% + (17 lg.0)” + Mg’ llg.) % + ([1R°2[5,)%).

where fO0F = fO— f/ = fO%t — ' On the boundary, y = 0 and u < 0, hence, © —y < 0 on
the boundary, i.e. (u—y)" € H. Moreover, the other conditions of the comparison theorem
are satisfied so that we can apply it and deduce that © — S’ < y — S’. This implies that
(u— 8" < (y—S’)" and the above estimate of y — S’ leads to the following estimate:

B [[(u = 8|5 e < KOB(IEY = Sol% + (1P 5,07 + (l1a° 2 [50% + (1R250%)

with the estimate of S’

B! (25,08 + (el )5,

oooot

kOB + (|

e
0;t



116 CHAPTER 3. MAXIMUM PRINCIPLE FOR OSPDE

Therefore,

P P
2 2

Elut S < RO@E(IE = Sall2, + UF* g” + 15" )

oo, 005t —
74+ Qg Pl + Al

([
+ ISt + )

b
2

Let us generalize the previous result by onsidering a real It6’s process of the form
t oot )
My =m +/ bsds + / 0jsdB]
0 =Jo

where m is a random variable and b = (b;)i>0, 0 = (01,4, ..., On s, --.)t>0 are adapted processes.

Theorem 3.42. Suppose that Assumptions (H), (OL), (HIL), (HOL),(HI2p), (HOxp)
and (HDOp ) hold for some 0 € [0,1[, p > 2 and that the constants of the Lipschitz conditions
satisfy

2
at o 728% < A,
Assume also that m and the processes b and o satisfy the following integrability conditions

t . p(1-0) t ) p(1-8)
E|mfP < oo, E(/ |b5|19ds) < 00, E(/ |0‘S|1‘9d8) < 00,
0 0

for each t € [0,T]. Let (u,v) € Rioe (&, f,9,h,S) be such that (u— M)t belongs to Hr.

Then one has

Bl M|y < cROELE —m)* (5% —mll+ (1715,
o (wel,) s (erl,) s - @
b (=07 15) + (2, + (I =afl;,)

where k (t) is the constant from the preceding corollary. The right hand side of this estimate is

dominated by the following quantity which is expressed directly in terms of the characteristics

:
* —2|*
+ H A0
0;t 0;t

p
* 2
0;t>

of the process M,

@R EL] €= m)* = (sh—m)| + (|17°*]]5,)" + (H|§°|2

* \P 2l %
9;t> + <H|g ’ 9;t> + <

p(1—0)

t L p(1-0) t ) 5
+mP + (/ b5|1—9d5> + (/ |05|1—9ds> I
0 0

|2

i

s —mye i+ ([




3.6. APPENDIX 117

Proof. One immediately observes that u— M belongs to R (§ —m, f,4,h,S — M) , where

f(tv("-)?x?yaz) :f(t7w7x7y+Mt (W),Z) _bt (UJ),
g(tvw)x)ywz) :g(t,w,x,y—l—Mt (w),z),

h(t7waxayaz) :h(t,w,l’,y—FMt(CU),Z)—Ut(UJ)-

In order to apply the preceding theorem we only have to estimate the zero terms of the
following functions:

Fltw,z,y,2) = F (bw,a,y+ 8 — M2+ V) = f(t,w, ) + b(w),
6@7%%972) :g(t7w7$7y+sl _M72+VS,) —g'(t,w,z),

;L(t,w,x,y,z) =h (t,w,x,y—i— S — M,Z—i—VS’) — W (t,w,x) + op(w).

So we have:

0= fu(S' — M,VS') — fl+ b= [(S',VS") — fl = O,
3 = 9u(8' = M,VS') = g = g(5', VS) =g, = §°,
B = ha(S' = M,VS') = i+ 00 = hy(S', VS) = iy = RO

Therefore, applying the preceding theorem to u — M, we obtain (3.45).
On the other hand, one has the following estimates:

* ’ * t 1 1-0
=l ze o] ([ i) |
/ 211*% \2 71121 * g t 2 1-0
I = oP5.0% < e [ (WP l5) " + ([ 1ol ds) |
0

This allows us to conclude the proof. ]

3.6 Appendix

3.6.1 Proof of Lemma 3.20

Proof. We take the function f,,(w,t,z) := f(w,t,z,u, Vu) — fO + f°, where f9, n € N, is
2
a sequence of bounded functions such that F (Hfo - ng*#t) — 0, as n — 0. We consider

the following equation
dul(z) + Aul(z)dt = f7(x)dt + divgy(x)dt + hy(z)dBy
where g(w,t,z) = g(w,t,z,u, Vu) and }JL(W, t,x) = h(w,t,x,u, Vu). This is a linear equation

in u", from [20], we know that u™ uniquely exists.
Applying Itd’s formula to (u" — u™)?,

t t
g — | + 2 / E(ul —uMyds = 2 / (W — o f7— f7)ds,
0 0
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From (3.5), we have, for 6 > 0,

t 2
2| [ =i 2= s < S =+ Co (17 = )

Since E(u™ — u™) > A ||V (u™ — u™)||3, we deduce that, for all £ > 0, almost surely,
2
2 n m||2 n m || *
g =" 4+ 2NV (" = ™) [ g < 8l =y + Cs (167 = £ 5) - (3:46)
Taking the supremum and the expectation, we get
2
2 2 2 *
B (Ila" = ™3 o + IV " = w3 5) < OB " = w5 + G5B (1" = £™I3)

Dominating the term E ||u" — um||i;t by using the estimate (3.4) and taking 0 small enough,
we obtain the following estimate:

2
B (Jltn = 3 e + 1Vt = )3 ) < G5B (If" = £™13) = 0. when m, m = oo.

Therefore ™ has a limit w in .
See for example [21], we know that for u™ we have the following Ito’s formula:

/Owum)dw/ots(so’<uz>,u::) as= | w(£<m>>dm+/t (¢ (D), f2) ds
—/Otg(ai(so/(u’;)),éi)dw;/Ot (sO”(u )ds+2/ ) asy.

Now, we pass to the limit as n tend to +oo:

/Ot (o (), ) ds—/t( (us) 1) ds

t
'/0 (90 (us (uS fs dS ‘/ 7 fs)
Cllu™ = wll g 1" e _fH#;t'

The relation (3.4) and the strong convergence of u™ yield that E' [[u" — u||,., — 0, as n — oc.
So, by extracting a subsequence, we can assume that the right member in the previous
inequality tends to 0 P—almost surely. So we have

IN

IN

t

tim [ @) ) ds = [ ) 1) ds

n—-+00 0

The convergence of the other terms are easily deduced from the strong convergence of (u™)
to u in Hp and yield the desired formula. ]

3.6.2 Proof of Lemma 3.21

Proof. First of all, this equation is a special case of Theorem 3 in [23] hence, we know that
w exists is unique and belongs to Hry.
Following M.Pierre |70, 71] and F.Mignot and J.Puel |54], we define

k(w,0) :=essinf{u € P; u > w a.e., u(0) > 0}.
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We consider the following equation:

a n
T _ Lol 4+ n(vy —wy)™

ot
vy =0

(3.47)

From [54], for almost all w € Q, we know that v™(w) converges weakly to v(w) := k“(w, 0)
in L2(0,T; H}(O)) and that v(w) > w(w).
(3.16)-(3.47) yields

d(v —we) + Ao} —w)dt = (n(vf —wy)” — f7)dt

so, we have the following relation almost surely, V¢ > 0,
t t t
o — w||* + 2/ E(l —wg)ds = 2/ / (v —wg)n(vy — ws) dxds — 2/ (V™ — ws, f2)ds.
0 0o Jo 0
The first term is negative and

t , L2
[ ] < 50—t w0 (1571

Therefore
2
2 2 2 *
Iof = will3 + 20 V0™ = )35 < 26107 = wlid, +2C5 (|1£°]14,)
Taking the supremum and the expectation, we get
2
2 2 *
B 0" = w3 oo < 20F 0" = wlly +2C5E (]| £°],)

Dominating the term E ||v™ — wHi;t by using the estimate (3.4) and taking ¢ small enough,
we obtain

« 2
B~ wl3 BV~ w)l350 < CB (||7°]3,)

By Fatou’s lemma, we have

T T L\ 2
E sup |/€t—wt|2+E/ 5(m—wt)dt§CE/ (1211, ) ae (3.48)
t€(0,77] 0 0

We now consider a sequence of random functions (f%"),cn which belongs in L*(Q) ®
C(RT) ® C2(0) and such that E || fO" — f0||;_t — 0. Let w™ be the solution of

{ dw! + Awldt = fo"dt

wy = 0.

Then it’s well known that w™ is P—almost surely continuous in (¢, x) (see for example [2]).
Then, we consider a sequence of random open sets

+oo
On = {[w" —w"[ > €.}, O, =[] Un,
n=p
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and iy = K(E (W —w™),0) + £(—L(w"! —w"),0). From the definition of £ and the
relation (see [71] we get

K(lv]) < k(v v7(0)) + K(—v,v7(0).)

Moreover, &, satisfy the conditions of Lemma 3.3 in [71], i.e. K, € P and K, > 1 a.e. on
¥y, therefore, we get the following relation:
W\ 2
) dt,
#

Bleap (©,)] < 3. Bleap (9, <ZE||M||,C<202 S [ ([

n=p

where the last inequality comes from (3.48).
By extracting a subsequence, we can consider that

o (lmoar

and taking €, = % to get

cap < Z 20" .

Therefore

lim FEfcap (©,)] = 0.

p—+o0

Finally, for almost all w € 2, w™(w) is continuous in (¢, z) on (O, (w))¢ and (w"(w)) converges
uniformly to w(w) on (©,(w))¢ for all p, hence, w(w) is continuous in (¢,z) on (O,(w))¢,
then from the definition of quasi-continuity, we know that w(w) admits a quasi-continuous
version since cap(©,) tends to 0 almost surely as p tends to +oo. ]

3.6.3 Technical Lemmas

In this section, we prove technical lemmas that we need in the Step 2 of the proof of
Theorem 3.27. For simplicity, we put, for fixed n < m, ui=a"—am g = =M
f(t W, T,Y,2) := fam(t,w,x,y,2) and similar for g and h.

We recall that the initial value § and ]?0, 7, 1O are uniformly bounded.

Lemma 3.43. Denote

_ 20 ~0 70
- HEHLOO(on) v Hf “LOO(R+XQXO) Vg ||L°°(R+XQXO) v Hh HL“’(RMQX@'

Then there exist constants ¢, ¢ > 0 which only depend on K, C, «, [ such that, for all real
[ > 2, one has

E / [ty (z)'de < eK21(1 — 1)ecU=Dt, (3.49)
@

t
I / / (i (2) =2 Vs (2) 2dads < ¢ K210 — 1)t (3.50)
0o JO



3.6. APPENDIX 121

and

! -~ -1/, n m
E/O /O|us(:c)| (" + ™) (dzds) < +oc. (3.51)

Proof. Beginning from the It6’s formula for the difference of two solutions of obstacle
problems which has been proved in [25]: we take the same ¢, as in the proof of Lemma
3.29,

/ﬁpn(ﬂt(fb))d:ﬂ + /Oté'(ap;l(ﬂs),ﬂs) ds:/ dx+/ / ol (us(z s , ) dxds

—2 AR <>>>@»<s,x>d:cds+z [ [ et hto. asi

+* //@n us(z (s, dmd8+//<pn(us " —v")(dxds), a.s.

(3.52)

The support of v™ is {a™ = S} and the support of v is {a™ = S}, so the last term is equal

to /Ot /o @ (Ss(x) — al*(x)) V" (dx ds) — /Ot /o @l (@ () — Sy(x)) v"™(dx ds)

and the fact that ¢),(x) < 0, when x < 0 and ¢),(x) > 0, when > 0, ensure that the last
term is always negative.
By the uniform ellipticity of the operator A, we get

E(G(@y), T) > A / (@) |V, 2 do.
O

Let € > 0 be fixed. Using the Lipschitz condition on ]?and the properties of the functions
(¢n)n we get

00 @) 1 (s, 2)] < Upa@s) + 1) |7+ (C + co) [P elh (@) + ey (@) V (@) .

Now using Cauchy-Schwarz inequality and the Lipschitz condition on g we get

Zso () 35, 2) < U1 = Dk 4+ 2¢(K* + O = 1lipn(@)] + (o + €) (@) V (@) .
In the same way as before

Zso ) < 260(1 = 1)K? + 2¢(K? + C*)I(l = 1) () + (1 + €) 52 @ ()| V () .

Thus taking the expectation, we deduce

E / on(u(z)) de + (X — %(1 +6)pB% —(a+2¢))E O () |V () |* d ds
(@] (9

& ©

<U(1-1DdK* + JI(1-1)(K*+C*+C+c)E on(Ts(z)) dz ds.
0

Q
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On account of the contraction condition, one can choose ¢ > 0 small enough such that
)\—%(14—6)62—(&—1-26) >0
and then
E /Ogon(ﬁt(a:))da: < cK2A(1—1) + d(l-1)E /Ot/onpn(ﬂs(x))dxds.
We obtain by Gronwall’s Lemma, that

E / en(ty(x))dr < e K21(1— 1) exp (el(l — 1)),
@

and so it is easy to get

E/ / on(Us(2)) | VP deds < ¢ K*1(1—1) exp (cl(l —1)¢).

Then, letting n — oo, by Fatou’s lemma we get (3.49) and (3.50).
From (3.52), we know that

- [ [ ehtaanon - <
[ ] et - ads)

- t [ ntsi@) —ar @y rs) + | t | htai@) = Suw) e ds

= [ [ e - saoviaa + [ [ e - s vrrds

By Fatou’s lemma, we obtain

/ / |a™(z) — Sy(z)| ! "(dacds)—l—/ / | (z) — Sy(x)|" ™ (dads) < +o0, a.s.

which is exactly (3.51). [

Moreover,

Lemma 3.44. One has the following formula for u: Yt > 0, almost surely,

/O|ﬂt(x)|l dx+/0t5(l(ﬂs)llsgn(@s),ﬂs) dSZ/O‘E(x)l

+z/t/ sqn(iis) [s(@)|" Fis, o) dads — 101 — 1) Zd: /t/ iy ()| 0@ (2)) G (s, 7) da ds
+zz/ / sgn(iiy) [is(@)[ By(s, 2) dwaBi + L= 1) Z/ / (@) 2 B(s,,) der dis

us) |u. FLot — v (dads) .
iy /0 /0 sgn(@s) [u(@)'~L (v — v2)(da ds)
(3.53)
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Proof. From the Itd’s formula for the difference of two solutions (see Theorem 6 in [25]), we
have P-almost surely for all ¢ € [0,7] and n € N

[ et ds + /0 (el @ 1) ds = [ pa@enis
/ / O (Us (0 f(s,2) daﬁds—zd:/t/ogoﬁ(us( ))0itis(x) gi(s, x) do ds
+Z/ / ol (Us(z (s,) dedBI +% i/ot/ocpﬁ(ﬁs(x))/ﬁ?(s,x) dzx ds

//gpn Us(x)) (v — v?)(dzds) .

Then, passing to the limit as n — oo, the convergences come from the dominated convergence
theorem. -

Similar as before, we define the processes ¥ and ?’ by

S
% = sup (/ |ﬁsldx+7l(ll)/ / a2 | v, d:z:dr)
s<t (@] 0o JO
l
:/ ‘E‘ dx+l2c1H|aylH +l“f°
o 113
(ot o) 11
+ 2 (Pl + o |AP], ) 01-7,,

where above and below 7, ¢, ¢2 and ¢z are the constants given by relations (3.34).
We remark first that the last term in (3.53) is non positive, indeed:

! ~ 2 =1, 1 2
/ / sgn(ts) |Ss — uZ(z)| (' —v?)(da ds)
0o JO

/t/ sgn(Ss —u?) |Ss — ui(az)|li1 vi(dz ds)

0 JO

—/ / sgn(uy — Ss) luj(z) — Ss(x)‘l_l v2(dx ds) < 0.
0o Jo

Then applying the same proof as the one of Lemma 3.33, we obtain:

S
+E sup (/ @l da+ 1 (1 — 1)/ / T |Vﬂr|2dxdr>
0<s<t \JoO 0o Jo
l *
<5 [[[ff do+reslar], <z |P], o]
10) 1,15t 0,t o;t
P8 (e 8Pl + e | P, ) |7,
+ 28 (g, + e R0, ) 122,
and this yields that the process 70 is dominated by 7’
Starting from here, we can repeat line by line the proofs of Lemmas 15-17 in [21] and apply

the Moser iteration as at the end of Subsection 3.4.1 to obtain the desired estimations,

namely:

i@
0.t o5t



124 CHAPTER 3. MAXIMUM PRINCIPLE FOR OSPDE

Lemma 3.45. There exists a function ky : Ry — Ry which involves only the structure

0:t ’

Lemma 3.46. There exists a function ky : Ry xRy — Ry which involves only the structure

4
0;t

constants of our problem and such that the following estimate holds

Bl o < 202 (6 + |7

*P P ~
s + [

constants of our problem and such that the following estimate holds

%
_|_

* *
0;t

’ 2

l
e
it

Ev, < ki (L,t)E (/ €| da + Hfm ‘BO
@]

0



Chapter 4

Stochastic PDEs driven by
(G—Brownian motion

4.1 Introduction

The aim of this chapter is to study the well-posedness of quasilinear stochastic partial differ-
ential equations driven by G—Brownian motion in the framework of sublinear expectation
spaces (GSPDE for short).

Motivated by uncertainty problems, risk measures and the superhedging in finance, Peng [64,
65, 66| introduced G—Brownian motion. The expectation E[-] associated with G—Brownian
motion is a sublinear expectation which is called G—expectation. The stochastic calculus
with respect to the G—Brownian motion has been established in [66].

We want to study the solvability of the following stochastic partial differential equation
driven by G—Brownian motion:

du(z) = 0;(aij(x)0ju(x) + gi(t, x,w(z), Vug(x))) dt + f(t, x, w(x), Vu(z))dt

dy '
+ Zhj(t,x,ut(x), Vu(z))dBi, (4.1)
j=1

where a is a symmetric bounded measurable matrix which defines a second order operator
on O C R?, with null Dirichlet condition. The initial condition is given as ug = ¢ € L%(O),
and f, g = (91,...,94) and h = (h1,...hg,) are non-linear random functions which satisfy
Lipschitz condition with proper Lipschitz coefficients, B is a d;—dimensional G—Brownian
motion.

For this purpose, we need to develop the stochastic calculus for Hilbert space valued process
with respect to G—Brownian motion and to prove the corresponding Burkholder-Davis-
Gundy inequality.

125
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The existence and uniqueness result of GSPDE is as follows:

Theorem 4.1. Under the assumptions of Lipschitz continuity and integrability on f, g and

h, there exists a unique solution u of (4.1) in a proper space.

We can also establish an It6 formula and a comparison theorem for the solution of GSPDE.

4.2 Sublinear expectation and Stochastic Calculs under Un-

certainty

In this section, we will recall some basic definitions and properties of G—expectation and
G —Brownian motion, which will be needed in the sequel. For the details, one can consult
Peng [66].

Briefly speaking a G—Brownian motion is a continuous process with independent and sta-
tionary increments under a given sublinear expectation. Similar to the Wiener measure, a
G'—Brownian motion can be formulated by a sublinear expectation (i.e. G—expectation) on
the space of continuous paths from RT to R,

4.2.1 Sublinear expectation

Let 2 be a given nonempty fundamental space and H be a linear space of real functions
defined on € such that

1. ¢ € H for each constant c¢;

2. if Xq,..., X, € H then p(Xi,...,X,) € H for each ¢ € C) 1;p(R") where Cy 1;p(R")
denotes the linear space of functions ¢ satisfying

[o(z) = e(y)l < CA+ 2™ + [y|") e —yl, 2,y R,
for some constant C' > 0, m € N depending on ¢.

Remark 4.2. Here one uses Cprip(R)" only for some convenience of technics. In fact
the essential requirement is that H contains all constants and, moreover, X € H implies
| X| € H. In general, C; 1;p(R™) can be replaced by other functional spaces, for the details,
see [66].

The set H is interpreted as the space of random variables defined on Q. X = (X,..., X,,) is
called an n—dimensional random vector, denote by X € H".

Definition 4.3. A sublinear expectation E on H is a functional E : H — R with the following
properties: for all X,Y € H, we have

1. Monotonicity:
E[X] > E[Y], if X >Y.
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2. Constant preserving:
Ele] = ¢, for all c€R.

3. Sub-additivity:
E[X +Y] <E[X]+E[Y].

4. Positive homogeneity:
EAX] = AE[X], for all X > 0.

The triple (22, H, E) is called a sublinear expectation space. It generalizes the classical case of
the linear expectation E[X] = [, XdP, X € L'(Q, F,P), over a probability space (Q, F, P).

Theorem 4.4. (Theorem 2.1 in [66]) Let E be a functional defined on a linear space H satis-
fying subadditivity and positive homogeneity. Then there exists a family of linear functionals
{Ep: 0 € O} defined on H such that

E[X] =sup Fy[X], for X € H
[USC]

and for each X € H, there exists 0x € © such that E[X| = Ey[X]. Furthermore, if E is a

sublinear expectation, then the corresponding Eyg is a linear expectation.

Remark 4.5. 'Ej is a linear expectation’ means that it satisfies the additivity: E[X +Y] =
E[X]+ E[Y]. It is not necessary that Eg corresponds to a probability.

We now give the definition of distributions of random variables under sublinear expectations.
Let X = (X1, ..., X)) € H" be a given n—dimensional random vector on a sublinear expec-
tation space (2,1, E). We define a functional on Cj 1;,(R") by

Fxle] = E[p(X)] : ¢ € Clrp(®") » R

The triple (R", C; 1ip(R™),Fx) forms a sublinear expectation space. Fx is called the dis-
tribution of X under E.

Furthermore, one can prove that there exists a family of probability measure {F%(-)}sco
defined on (R™, B(R™)) such that

Fx(p) = Sug/ p(x)Fé(dx), for each ¢ € Cyrip(R™).
co Jrn

Thus Fx[-] characterizes the uncertainty of the distributions of X.

Definition 4.6. Given two sublinear expectation spaces (2, H,E) and (fvl, 7—~[, E), two random
vectors X € H" and Y € H" are said to be identically distributed, denoted by X 4 Y, if
for each test function ¢ € Crip(R™),

Fx|y] = Fy[y].
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Remark 4.7. In the case of sublinear expectations, X Ly implies that the uncertainty

subsets of distributions of X and Y are the same.

The following notion of independence plays a key role in the sublinear expectation theory.

Definition 4.8. In a sublinear expectation space (2, H,E), a random vector Y = (Y1,...,Y,) €
H" is said to be independent from another random vector X € H™ under E[-] if for each

test function ¢ € Cy 1ip(R™™) we have
Elp(X,Y)] = E[E[p(z,Y)]o=x].

Remark 4.9. For a sublinear expectation space (Q,H,E), Y is independent from X means
that the uncertainty of distributions {Fy (6, : 6 € O)} of Y does not change after the
realization of X = x. In other words, the "conditional sublinear expectation” of Y with

respect to X is Elp(z,Y)].=x.

Remark 4.10. [t is important to note that under sublinear expectations the condition "Y

s independent from X" does not imply automatically that "X is independent from Y .

We recall some useful inequalities, see [66]:
Proposition 4.11. For each X, Y € H, we have
E[IX + Y]] < 2" H(E[|IX|"] + E[[Y]']),
E[XY] < (E[IXP)Y? - (E[Y]D])"Y,
(EIX +YP)YP < (BIXPDYP + (E[ Y1),

wherer > 1 and 1 < p,q < > with%—%—%:l,
In particular, for 1 < p < p/, we have (E[| X |P))/P < (E[| X [P/

4.2.2 (G—Brownian motion and GG—expectation

In this section we will consider the following path spaces: 2 = C’g(Rﬂ be the space of all
R?—valued continuous paths (wi)e>0 with wp = 0, equipped with the distance

“+o0
1 2 —1 1 2
, = 2 — A1)].
plw,w?) ;_1 [(fél[%ff] |wi — wi| A1)]

It is clear that (2, p) is a complete separable metric space. We also denote Qp = {w.ap :
w € Q} for each fixed T € [0, c0).

Let ‘H be a vector lattice of real functions defined on ) such that if Xi,...,X,, € H then
o(X1,...,X,) € H for each ¢ € Cp1ip(R"), where Cj 1;,(R™) denotes the space of all
bounded and Lipschitz functions on R™.
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Definition 4.12. Let (Q,H,E) be a sublinear expectation space. (X)i>0 is called a d— dimensional

stochastic process if for each t > 0, X; is a d—dimensional random vector in H.

Definition 4.13. A d—dimensional random vector X with each component in H is said to
be G—normally distributed under the sublinear expectation E[-| if for each ¢ € C’byLip(Rd),
the function u defined by

u(t,z) := Elp(z + VtX)], t >0, z € R?

satisfies the following G—heat equation defined on [0,00) x R?,

0
a—? — G(D%*u) =0, uli=o = o,

where D*u = (0?2 u)gjzl and

T

1
G(A) = 3 sgg trlyyT A, Aes?
g

S% denotes the space of d x d symmetric matrices. © is a given non empty, bounded and
closed subset of R which is the space of all d x d matrices. We denote by N(0,0) the

G—normal distribution.

Remark 4.14. The above G—heat equation has a unique viscosity solution. We refer to
[12] for the definition, existence, uniqueness and comparison theory of this type of parabolic
PDE (see also [67] for this specific situation). If G is non-degenerate, i.e., there exists a
B > 0 such that G(A) — G(B) < BTr[A— B] for each A, B € ST with A > B, then the above
G—heat equation has a unique CY*—solution (see e.g.[78])

We consider the canonical process by Bi(w) = wy, t > 0, for each w € Q. We introduce the
space of finite dimensional cylinder random variables: for each T' > 0, we set

Lip(QT) = {@(Btl) ...,Btn) Tn> 1, t1,...,ln € [O,T], (RS Cblﬂ‘p(Rdxn)}.
It is clear that L;,(Q;) € Lijp(Qr) C Cyp(Qr), for t <T. We set

“+oo
Lip(Q) := [ Lin(m) € Cy(Q).

n=1
Definition 4.15. Let E : L;,(2) — R be a sublinear expectation, E is called G—expectation

if the d—dimensional canonical process (Bi)i>o is a G—Brownian motion under E, that is,

1. Bo(w) = O,’

2. For each t,s > 0, the increment Bys— By is N(0, sO)—distributed and independent of
(Btys -y By,)), for eachn € N and 0 <t; < ... <t, <t, ie. foreachp € C’LLip(RdX”),

E[@(Btu ) Btm—17Btm - Btm—l)] = EW](Btlv ceey Btnz—l)]’

where Y(x1, ..., tm—1) = Elp(z4,, ...y 2t,, 1, Bt,, — Bt,, 1)]-
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We denote by L% (Qr) (resp. L7,(€)) the topological completion of L, (Q7) (resp. Lip(2))

1
under the Banach norm E[| - [P]», 1 < p < co. E[] can be extended uniquely to a sublinear
expectation on L7,(2). By Proposition 24 in [18], we know that each element in LZ,(Q) has
a quasi-continuous version.

Definition 4.16. LetE : L;,(2) — R be a G—expectation, we define the related conditional
expectation of X € Liy(Qr) under Lip(Q;), 0 <ty < ... <t; <tjp <. <, <T:
EX|Qy] = Elp(By, - Br, = Br, 1) [<)]

= E[(Bi, ..., B, — By, )],

where (x4, ...,x5) = Elp(x1, ..., ), By
Since, for X,Y € Lip(h;),

~ Buy.os By — Byl

Jj+1

E[E[X ;] — B[V ][] <E[X - Y]],

the mapping E[|Qq;] : Lip(Qr) — Lip(S;) can be continuously extended to E[-|S,] :
L (Qr) — L (), 1 < p < 4oo.

4.2.3 (G—expectation as an upper-Expectation

Let P be the Wiener measure on = C([0, T]; RY). The filtration generated by the canonical
process (B¢)¢>0 is denoted by

.Ft = O'{Bu, 0 S u S t}, ]:: {ft}t20~
It is clear that Fy = {0, Q}.
Let Agoo be the collection of all ©—valued {F;, ¢ > 0}—adapted processes on the interval
[0,00), i.e. {0, t >0} € A(?,oo if and only if 6; is 7;—measurable and 6; € O, for each t > 0.

For each fixed 0 € .,4800, let Py be the law of the process (fg 0sdBs)i>0 under the Wiener
measure P.

We denote by Py = {Fy: 0 € ASOO} and P = Py the closure of P; under the topology of
weak convergence. By Proposition 49 in [18|, we know that P; is tight and then P is weakly
compact. We set

¢(A) :=sup P(A), A€ B(Q).
Pep

From Theorem 1 of [18|, we know that ¢ is a Choquet capacity. Then we can introduce the
notion of "quasi sure" (q.s.).

Definition 4.17. A set A C Q is called polar if ¢c(A) = 0. A property is said to hold

"quasi-surely" (q.s.) if it holds outside a polar set.

Remark 4.18. In other words, A € B(Q2) is polar if and only if P(A) =0 for any P € P.
For each X € L°(2) (the space of all B(2)—measurable real functions on €2) such that
Ep(X) exists for each P € P, we set

EXL:ggEﬂX}
S
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From Theorem 51 of [18], in fact, L} (£2) can be rewritten as the collection of all the q.s.
continuous random vectors X € L°(Q) with lim, 4o E[|X | x|>,] = 0. Furthermore, for
all X € LL(Q), E[X] = E[X].

Denis, Hu and Peng [18] (see Theorem 31) has obtained the following monotone convergence
theorem:

X, € L5(Q), X, | X, ¢.s. = E[X,] | E[X].
By the definition of I/Ef, the following result is obvious:

X, € L), X, 1 X, ¢.5., Eg(X1) > —oc0 for all Py € P = E[X,] T E[X].

4.2.4 TIt6’s Integral with respect to G—Brownian motion

For T € R, a partition 77 of [0,7] is a finite ordered subset 71 = {to,t1, ...,tx} such that
O=to<ti<..<ty=T.
/~L(7TT) = max{|ti+1 - ti| 1= 0, 1, ..N — 1}
We use 78 = {t),tlV,...,t}} to denote a sequence of partitions of [0, 7] such that
li My =o.
i p(rr)
Let p > 1 be fixed. We consider the following type of simple processes: for a given partition

7 of [0,T] we set
N-1

(W) =Y Ge(@) a0 (1),
k=0

where & € L’é(th), k=0,1,...,N —1 are given. The collection of these processes is denoted
by MS’O(O, T). We then can introduce a natural norm || - ||Mg(0’T), under which, Mg’O(O, T)
can be extended to M (0,T) which is a Banach space:

Definition 4.19. For eachp > 1, M{(0,T) denotes the completion of Mg’O(O,T) under the

norm L
~ [T »
Iilgomy = (B[ )

For simplicity, we begin with the case of 1—dimensional G—Brownian motion.
Let (Bt)¢>0 be a 1—dimensional G—Brownian motion with G(a) = 3(5%a™ — o?a™), where
0<oc<i7 <.

Definition 4.20. For each n € Mé’o((), T) of the form

N—-1
m(w) = Z gk(w)l[tkythrl)(t)’
k=0

we define
N-1

T
I(n) = /0 ndBy = Z k(B — Buy)-

k=0
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Proposition 4.21. The mapping T : Mé’O(O, T) — Lé(QT) s a continuous linear mapping
and thus can be continuously extended to T : MZ(0,T) — L%(Qr). We have

T
Bl [ s =0, (4.2)

and

T T
Bl maB) < o8l ar (4.3)

We now consider the multi-dimensional case. Let G(-) : S — R be a given monotonic and
sublinear function and let (By);>¢ be a d—dimensional G—Brownian motion. For each fixed
a = (ai,...,aq)", a given vector in R?, we set (B);>0 = (a, By)¢>0, where (a, B;) denotes
the scalar product of a and B;. Then (Bf);>0 is a 1—dimensional Ga—Brownian motion

with Ga(a) = %(azaToﬁ — J%aaTa’), where O'zaT = 2G(aa’) and O‘%aaT = —2G(—aal).

Similarly to 1—dimensional case, we can define It6’s integral by

T
I(n) = / nedB2, for n e M&(0,T).
0

We still have, for each n € MZ(0,T),

N T
B[ / mdB2) =0,
0

and
T

T
B( /0 ndB2)? < o2 . B /O nRdt).

Proposition 4.22. (Ezercise 3.9 in [66]) For each X € ME(0,T), we have

E[/O X, |Pdt] g/o E[| X, |P]dt. (4.4)

4.2.5 Quadratic Variation Process of G—Brownian motion

We first consider a 1—dimensional G—Brownian motion (Bi);>p. From the construction of
quadratic variation process of (Bi)i>0 in Peng [66], we know that the quadratic variation
process ((B)¢)¢>0 is an increasing process with (B)g = 0. It characterizes the part of statistic
uncertainty of G—Brownian motion.

A very interesting point of the quadratic variation process ((B))>0 is, just like the G—Brownian
motion (By)>o itself, the increment (B)si — (B)s is independent from €25 and identically
distributed with (B);. In fact, we have

Lemma 4.23. For each fized s,t > 0, (B)s1t — (B)s is identically distributed with (B)y and

independent from ;.
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We now define the integral of a process n € M}(0,T) with respect to (B). We begin with
the simple processes, the mapping Q7 : Mé’O(O, T) — L& () is defined as following:

—1

T
QO,T(U) = /0 77td = Z Ek tk+1 - <B>tk)'

=0

Proposition 4.24. For each n € Mé’O(O, T),

T
B[l Qor(n)]] < & [/ ). (45)

Thus Qo1 : Mé’O(O,T) — L%;(QT) is a continuous linear mapping. Consequently, Qo can
be uniquely extended to Mé(O, T). We still denote this mapping by

T
/0 md(B): = Qor(n), for 1€ ME(0,T).

Moreover, we still have

Bl / nd(B).]) < 28] / nld], for n e M(0,T). (4.6)
Proposition 4.25. Let 0 < s <t, ¢ € LE(Qs), X € L5(Q). Then

E[X +&(B} - B?)] = E[X +¢&(By— By)?]

B
E[X +£((B); — (B)s)].

Proposition 4.26. Let n € MZ(0,T). Then
T T
B[ mapo?) =Bl o)L (@)

We now consider the multi-dimensional case. Let (By):>0 be a d—dimensional G—Brownian
motion. For each fixed a € RY, (B2);>¢ is a 1—dimensional G —Brownian motion. Similar
to 1—dimensional case, we can define

t
B?);:= lim (Bjn — B} /BadBa,
(B = T HOZ = () =2 | Bra:

where (B?) is called the quadratic variation process of B®. The above results also hold for
(B?). In particular,

T T
B / md(B)]] < o? o B / mldt] for n € ML(0,T)
0 0

and

N T N T
B /0 ndB2)?) = B /0 W2A(B%) for n € M3(0,T).
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Let a = (a1,...,aq)T and a = (ai,...,aq)” be two given vectors in R?. We then have
their quadratic variation process of (B?) and (B?). We can define their mutual variation
process by

(B2, B®);: = %[(Ba + B?); — (B® — B?)/]
1

= E[<Ba+5>t —(B* %))

Definition 4.27. Define the mapping Mé’O(O,T) — L&(Qr) as follows:

=

T
Qonzié nd(B* B, = 3 &(B2,, — BR)(BA, — BY).
0

B
Il

Then Q can be uniquely extended to Mcl;(O,T). We still use Q(n) to denote the mapping
fo d(B2,B%),, n € ML(0,T).

4.2.6 G-Itd’s formula

Theorem 4.28. (Proposition 6.3 of [66]) Let o”, n¥ii and 8% € MZ(0,T), v = 1,...,n

1,7 =1,...,d be bounded processes and consider

X! = X{ / ”ds—i—Z/nZ”dBl BY) +Z/ B dBY,

2,7=1

where X¥ € R, v = 1,...,n. Let ® € C*(R") be a real function with bounded derivatives
such that {03.,, @}y ,_ are uniformly Lipschitz. Then for each s,t € [0,T), in L§ ()

(X)) — P /&gv@ u)a”du+/ O ®( X)) d(B', B7 )

/%@ WW+/mW BB d(B B,
where the repeated indices v, p, © and j imply the summation.

Proposition 4.29. (Proposition 6.4 in [66]) Let X € M5(0,T) with p > 2 and let a € R?
be fized. Then we have fOT X, dB? € LY,(Qr) and

E|| / X dB2|P) < C,E|| / X2d(B2),P"?). (4.8)
4.3 Quasi-sure stochastic integral for Hilbert space valued pro-

cesses

In this section, we will define the stochastic integral for Hilbert space valued processes
with respect to G—Brownian motion which we will use in the study of stochastic partial
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differential equations driven by G—Brownian motion.

Firstly, we fix G(-) : S — R a monotonic and sublinear function. By Theorem 2.1 in
[66], we know that there exists a bounded, convex and closed subset © C S? such that
G(A) = %supB,E@(A, B), A € S Furthermore, we know that G—normal distribution

N(0,0) exists. We consider the associated G—Brownian motion {B; := (Bg)je{l 77777 dy }>0
and the sublinear expectation space (€2, H, IAE)

Remark 4.30. As O is bounded, there exists a constant & such that Z?Zl d(B7); < 52dt.

Let H be a separable Hilbert space equipped with the norm ||-||; and the scalar product
(-, )m- Let (ek)keN* be an orthogonal basis of H. For H—valued random variable X, which
satisfies Y 70 | (E(X, ex)m)? < +oo, we define

o
Z (X, ex)mer.
k=1

We introduce the following space: for fixed T' > 0,

Lip(Qp; H) : = {ngk(Btl,...,Btn)ek:Vnz 1, t1,...,tn € [0,7T],
N 2 1, ¢k € Gy ip(RT™),Vk € {1,..., N}}.

It is clear that L;,(S; H) C Lijp(Qp; H), for t € [0,T]. We also denote

+oo
Lip( H) := | Lip(Qn: H).
n=1
We denote by L7 (Qp; H) (vesp. L, (€; H)) the topological completion of Ly, (Qr; H) (resp.

L, (Q; H)) under the Banach norm E[| - |p]%, 1 < p < oo. The same argument as Proposition
24 in [18] yields that each element in LZ,(€; H) has a quasi-continuous version.

We denote by MZ([0,T]; H) the class of H—valued progressively measurable processes X
such that

T
X ”?\/[2([07T]-H): E | X¢ ||} dt ) < +oo.
¢ ’ 0

To construct the stochastic integral, we start with simple processes and then, in a classical
way, we extend it to square integrable progressively measurable processes:

We consider the following type of simple processes: for a given partition mp = {tg, ..., tx} of
[0,T] we set

N-1
=0

where &; € L%(Qti; H),i=0,1,...,N—1 are given. The collection of these processes denoted
by Mé’o([O, T); H). We have the following proposition:

Proposition 4.31. (MZ([0,T); H), |- ||M2(0T] ) is a Banach space and Mé’o([O,T];H) is

dense in it.
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We now can construct stochastic integral in an easy way: assume first that X = (X!, ..., X9)
belongs to (Mé’o([o, T); H))? of the form

Vie{l,...d}, vtel0,T], X Z (W) it 10,1y (1),s

we define
N—

1
J
57, tl+1At t /\t)'
0

d
vt € 10,77, /XdB Z

1 i=

j=
Proposition 4.32. The mapping I : (Mé’o([(), T); H))® — L%(Qq; H) is a continuous linear
mapping and can be continuously extended to I : (MZ([0,T]; H))? — L (Qr; H). We have,
for all t € (0,77,

E| / t X,dB,] =0 (4.9)
and i .
E(||1X|%) < 5°E [/0 1,120 ds} . (4.10)
where & is defined in Remark 4.30.

Proof. For each i and each j, see Example 2.10 in [66], we have

El¢]( Bl - Bl)] = E[- g (Bl - Bl =o0.
Thus, we have
ot o tN_1At A
IE[/O X,dBy = E[>_ </O XIdBI + €y (Bl — BgNlAt)>]
j=1
. d tN 1N\t ) . . . .
= B ([ a8+ Bl (Bl Bl )l
j=1

R d tN_1NE ) )
= E[Z/ XJdBJ)
j=1"0

- tN_1NAE
- E[/ X,dBy).
0

Then we repeat this procedure to get (4.9).
Now we give the proof of (4.10):

Bl X 1% = sup Bl 1 1
t
— sup Bp| / | X. 1 d(B).]
PeP 0
t
- E[/O | X, [ d(B),]

t
< B[ | X, [ dl
0

We conclude by using a density argument. ]
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Proposition 4.33. The map IX : (MZ([0,T); H))? — L%(Qr; H) satisfies the Doob’s

inequality:

B( sup 13X < 45 21@/ 1112, dt. (4.11)
elo,1]

Proof. The Doob’s inequality under each P € P yields

IE(sup ||I£X||§{> = (sup /§sst,ek >
t€[0,T] te[0,7] x5

@( aup [ ssst,emH])

L—1 t€[0,1]

IN

= sup Ep sup Z/ ,ex)dBI]?

PeP P te[o T)
2

4 sSup Ep Z/ (gsa €k ng
J=

PeP

IN

= 4sup Ep ZZ/ 57€k >s

PeP k=1 j—1

T
— B ([ Ixlean).)
N T
45—21@(/ |XS||§Idds>.
0

IN

4.4 Quasilinear Stochastic PDEs driven by G—Brownian mo-

tion

We use the analytical method to prove the existence and uniqueness of the solution of
the following quasilinear stochastic partial differential equation driven by a d; —dimensional
G—Brownian motion:

dur(z) = 0;(aij(x)0ju(x) + gi(t, x,u(z), Vue(x))) dt + f(t, x, ue(x), Vu(z))dt
dq
+ > hy(t, 2, ui(x), Vug(z))dB] . (4.12)
j=1

4.4.1 Preliminaries

We fix G(-) : S — R a monotonic and sublinear function. By Theorem 2.1 in [66], we
know that there exists a bounded, convex and closed subset © C S% such that G(A) =
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tsuppee(4,B), A € S%. Furthermore, we know that G—normal distribution N (0, ©)
exists. We consider the associated G—Brownian motion {B; := (B})jc(1, 4,3 }t>0 and the

sublinear expectation space (9,7, E).

Let O C R? be an open domain and L?(Q) the set of square integrable functions with
respect to the Lebesgue measure on O, it is an Hilbert space equipped with the usual scalar
product and norm as follows

(o) = [ @iz, = ([ vz
o o
Let A be a symmetric second order differential operator, with domain D(A), given by
d . .
A= — Z 8i(al’]aj).
ij=1
We assume that a = (a*); ; is a measurable symmetric matrix defined on O which satisfies

the uniform ellipticity condition
d

NEP < S abi(@)gied < Mg, Va € O, ¢ e RY,
ij=1
where A and A are positive constants.
Let (F,E) be the associated Dirichlet form given by F := D(AY?) = H}(O) and
E(u,v) == (AY?u, AY%0) and E(u) =| AY?u ||?, Yu,v € F,

where H}(O) is the first order Sobolev space of functions vanishing at the boundary.

We consider the quasilinear stochastic differential equation (4.12) with initial condition
u(0,-) = &(+) € L*(0O), and Dirichlet boundary condition u(t, z) = 0, V(t,z) € Ry x 9O.

Assumption (H): f, g and h are random functions satisfying the following Lipschitz con-
ditions:

L |f(tw zy,2) — f(tw,z,y,2)| < Clly — | + |2 = 2]),

2. (X lgiltw,2,9,2) — giltw, 2.9/, 2) )2 < Cly —y/| +alz — 2/,
3. (S0, [ (tw, 2y, 2) — W (t,w,z,y 2)?)F < Cly — /| + Blz — 2|,
4. the contraction property: 2o + %252 < 2.

With the uniform ellipticity condition we have the following equivalent conditions:
| £(u, V) = £(0,90) < C [l u—v || +CA Y22 (u — v)
I 9(u, Vu) = g(v, Vo) || 200 < C [l u—v || +aX™/2EY? (u - v)
| h(u, V) = h(v, Vo) || 200 < C | u—v || +8AT2EY2 (u — v)

Assumption (I): Moreover we assume that for any 7" > 0,
f(0,0) := [0 € ME([0,T]; L*(O));
g(,+0,0) = g° = (g7, ... 9) € ME([0, T]; L*(O));
h(:,-,-,0,0) :=h? = (hY, ..., h] ) € ME([0,T]; L*(0)).
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4.4.2 The existence and uniqueness result

We denote by MZ([0,T]; H}(O)) the completion of Mé’o([O, T); H}(0)) under the norm

1/2
( / %20 dt) |

It is clear that (MZ([0,T]; H}(O)),|| - ||M(2;([07T];H3(0))) is a Banach space. We denote by
HY the sub-space of processes u € MZ([0,T]; H}(O)) with L?(O)—continuous trajectories.
That is for almost all w € Q, t — X;(w) is L?(O)—continuous. This space will be endowed

with the norm
E sup | X, |2+E/ E(Xy)dt
t€[0,T]

It is clear that (7—[7@, I| - Hﬂg) is a Banach space. It is the basic space in which we are going
to look for solutions.

1/2

As in the standard case we consider the space of test functions denoted by D = C2°(R™) x
C%(0), where C2°(RT) is the space of all real valued infinite differentiable functions with
compact support in Rt and C?(O) the set of C?—functions with compact support in O.

Definition 4.34. (Mild solution) We say that u € ”;'-l;cp’v is a mild solution of the equation
(4.12) if the following equality is verified quasi surely, for each t € [0,T],

t t t
ur = Pié —|—/ Py_sfsds + / P,_sdivgsds + Pi_shyedBg (4.13)
0 0 0

Definition 4.35. (Weak solution) We say that u € ng; is a weak solution of the equation
(4.12) if the following relation holds quasi surely for each ¢ € D,

t t
(UtaSOt)(gaSDO)/O (u570890s)d5+/0 E(us, ps)ds

t t t
= S» sd_ s,v sd h87 sst 4.14
[ Geeois= [@vogas+ [ e (414)

We start by showing that the quantities appearing in (4.13) are well-defined.

Lemma 4.36. Let £ be in L?(O). Then

1. Z: t €10,T] — P:£ admits a continuous version in L2([0,T]; H} (0))NL>([0, T]; L*(0));

2. for all ¢ € D and for all t € [0,T], we have
t t
| Euoieids = Een - (€00 + [ EEa s (4.15)
0 0

Proof. See Lemma 1.31 in Chapter 1. |

Lemma 4.37. Let f be in MZ([0,T); L*(O)) and adapted. Then
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1. the process o : t € [0,T] — fg P,_,fsds admits a version in ’Hg and there exists a
constant C depending only on T and the structure constants of the GSPDE such that

I allye< C I ez o:m0) 3

2. for all p € D and all t € [0,T), we have
t t t
[ ewtipdis = @) = [ (fugddrs [ anpis g
0 0 0

Proof. Assume firts that f € C1([0,T]) ® LZ(Qr) ® D(L) and is adapted. It is easy to
check that C1([0,7)) ® L (Q7) ® D(L) is dense in MZ([0,T); H}(O)). Fix w € Qp, for all
t€10,T], ay(w) € D(L) and t — ay(w) is L?(O)—differentiable and satisfies

Vtel0,T], %(w) = fi(w) + Lay(w).

Integrating by part we get, for all ¢ € D and all ¢ € [0, T,
t t t
/ (s, Ostps)ds = (au, pr) — / (fs, ps)ds +/ E(as, ps)ds.
0 0 0

Moreover, still integrating by part, we have, for all ¢ € [0, 7],

t
larl? = 2 [ (Guanais
0
t
= 2/ (fs"’LOd&Oés)dS
0
t t
= 2/ (f57as)d8—2/ E(as)ds.
0 0
This yields
t t t
| o |7 +2/0 E(ag)ds = 2/0 (fs,as)ds < /0 (I fs II? + || o ||?)ds.

Taking the supreme, we get quasi-surely
T T
swp [lar P< [ felPat [ sup o Pt
te[0,7] 0 0 t€[0,1]
Thanks to the Grownall’s lemma, we have
o 1 [T 2
sup o [P< e [ 47t g
te[0,77] 0

and

T T T
g/amw</|MW+nwwﬁ<u+nﬁ/nﬁwﬁ,w.
0 0 0
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Hence, we deduce that
B osup [ o |2 +E/ Eladt < T+ 4 Le )IE/ |, |1 dt.
t€[0,T] 0 22 0

Then for the general case i.e. f € MZ([0,T]; H}(O)), we take f* € C'([0,T]) ® L%(Qr) ®
D(L) such that (f"), converges to f in MZ([0,T]; H}(O)). From the above estimate, we
have

0" = a™ g < C Il /= ™ sz, Vi, m € N

This yields
| ™ —a™ ||M%§H a —a™ “H%S clf—fm ||Mg—> 0, when n,m — oo.
So that we have o € H$ which is the limit of (a™),, in MZ([0,T]; Hi(O)). [

Lemma 4.38. Let g be in MZ([0,T); L*(0)) and adapted. Then

1. the process v : t — fg P_sdivgsds admits a version in ’H% and there exists a constant
C depending only on T and the structure constants of the GSPDE such that

1y g < Cll g a2 qomym20)) 8

2. for all ¢ € D and for all t € [0,T], we have
t t t
/0 (7, Ostps)ds = (i, ¢1) +/0 (g5, Ops)ds +/0 E(Ys,ps)ds q.s.

Proof. Assume first that g € C1([0,7]) ® L%(Qr) ® D(L*?) and is adapted. It is clear
that divg € C([0,T]) ® L*(Q) ® D(L) and C([0,T]) ® L%(Qr) ® D(L*?) is dense in
ME(0,T); HA(O)).

We fix w € Qp, for all t € [0,T], v(w) € D(L) and t — y;(w) is L?(O)—differentiable and
satisfies

%(w) = divgi(w) + Lye(w).

Integrating by part, for all ¢ € D and for all ¢ € [0, 7], we get:

Vtelo,T],

t t t
/0(%,35905)658 = (%,%)—/O(divgs,sos)der/O E(7s, ps)ds

t t
(%%)Jr/o (gs,r?sos)der/O E(Vs, s)ds

Moreover, still integrating by part, we obtain, V¢ € [0, T,

t t
H Ve H%ﬁ 2/0 (Os7s,7s)ds = 2/0 (divgs + Ls,vs)ds

t t
2 [ (divgs,vs)ds + 2/ (Ls,vs)ds
0 0

t t
= —2/ (gs, 0vs)ds — 2 [ E(vs)ds (4.16)
0 0
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Using the inequality ab < c.a® + eb? and the uniform elliptic condition, we get

t t 1 €
w42 [ eds < [ (F oI +500 ) ds, g
0 0 \€

therefore,
2 e, [* I 9
e 17 +(2 = )\)/ E(ys)ds < / I gs I? ds, gq.s.
0 €Jo

We can take e small enough such that (2 — §) > 0, then taking the supremum, we have the
following two relations:

o 17T 2
sup v ["< = [ lgsl”ds, gs.
t€[0,7] €Jo
and
T A T )
E(vs)ds < ——— d .8.
| et < 2 [ o P as o

These yield

T T
B sup | |2 +E / E(v)dt < CB / | gr |12 dt.
te[0,T) 0 0

For the general case, we do the similar density argument as in the previous lemma to get
the desired results. m

Lemma 4.39. Let h be in (MZ([0,T); L*(0)))¢, then

1. the process t € [0,T] — By = fot P,_.hsdBs admits a version in ’H% and there exists a
constant C depending only on T and the structure constants of the GSPDE such that

18 le < C Nl llasz o,1);m20))3

2. for all p € D:
T T T
/ (Bt, Oppr)dt = / (ht7<Pt)dBt+/ E(Br, pr)dt q.s. (4.17)
0 0 0

We denote by P,_shs = (P_shl, ..., Pi_sh?%) and (he, ) = (b, @1), -y (B, 1)) for b =
(RY, ..., h%).

Proof. We denote by S the set of processes h such that:

n—1
V(tz,w) €[0,7] x O x Q, h(t,z,w) = hi(z,w) ], 4,1 (1),
=0

where n € N*, 0 <ty <t; <..<t,<Tandforallie {0,1,....n — 1},

V(z,w) e OxQ, hi(x,w)= i K (w)h ()
j=1
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where n; € N* and for all j € {1,...,n;}, hg € Dom(L) and K,z € LZ ().

As Dom(L) is dense in L?(Q), we can easily prove that S is a dense subspace in Mé’o([O, T); L*(0))
hence in MA([0,T]; L*(0)).

First assume that h € S?. The process

t
vVt € [0,T], Bt :/ P,_shsdBs
0
admits a version in 7—[% . A direct calculation yields:

t
dg;, = PtthtdBt—F/ %(Ptfshsst)'dt
0

t

hedB; + / L(Py_shsdBy) - dt
0

= hdB; + LBdt

then

t t
Bt :/ hsdBg —l—/ LBsds
0 0

Integrating by part, we have, Vo € Dy,

T T T
0 = /0 (B, Becbe)dt + /0 (he. én)d By + /O (LBs, o)t

T T T
/ (5t,3t¢t)dt+/ (ht, ¢¢)dBy —/ E(Be, pr)dt
0 0 0

It6’s formula yields (see Proposition 6.3 in [66]), quasi surely, for all ¢ € [0, T,

t t t
2 o 2
1.2 + 2 /0 £(By)ds =2 /0 (8o, ha)dBs + /O Ihall? d(B). (4.18)

Hence

t

T
E[ sup || 8]|*] < 2E[ sup | (ﬁsﬂs)stlH&QE[/ 17 ]1? ds)
te[0,T] tefo,7] Jo 0

Using Burkholder-David-Gundy’s inequality, we get

1/2 T

|+ 0B [ ] ds]
0

1/2

T
209°8] sup 151 ( /O ||hs||2ds) ]

te[0,T

R R T
Bl sup 87 < 2C&2E[( /O (ﬂs,hs)2d5>

te[0,T]

IN

T
+ B[ ) as

so for any € > 0 we have

~ — cs2 L~ (T
E[ sup ||3:]%] < Co®¢E[ sup II@IQH(HQ)E[/ s ds)
t€[0,T] € 0

te[0,7



144 CHAPTER 4. SPDE DRIVEN BY G-BROWNIAN MOTION

Then we can take € small enough such that

T
B[ sup nﬂAF]S<SUQEp/‘|f%n2dﬂ
te[0,77] 0

Then, relation (4.18) yields,

p/swwwsdﬁm/anwy
0 0

Similar as in the previous lemmas, we conclude by a density argument in the general case.
|

Proposition 4.40. The mild solution (4.13) is equivalent to the weak solution (4.14).

Proof. We can do a similar argument as in Proposition 1.36 thanks to the fact that Lemma
4.10 in [17] can be easily extended to the quasi surely case. ]

Theorem 4.41. Under the hypotheses (H) and (I), (4.12) admits a unique solution in
ME([0,T]; Hy(0)).
We denote by G(&, f,g,h) the solution of (4.12) when it exists and is unique.

To prove this theorem, we need the following It6 formula:

Theorem 4.42. (It6’s formula) Assume that f, g, h belong to MZ([0,T]; H}(O)) and
are adapted and ¢ € L*(O) and consider u : G(€, f,g,h). Let ® : RT x R — R be a function
of class CY2. We denote by ® and ®" the derivatives of ® with respect to the space variables
and by %—cf the partial derivative with respect to time. We assume that these derivatives are
bounded and ®'(t,0) =0 for all t € [0,T]. Then we have the following relation quasi surely,
for allt € 10,77,

Ot ug(z))de + [ E(P'(s,us),us)ds = [ ®(0,&(x))dr + — (s, us(x))dx
/s / /s L L5

t d |
+/O (P (s,us)vfs)ds—;/o /OCD (s,us(x))0us(z)gs(x)dxds (4.19)
dy t ) ' 1 d1 ¢ ' , |
"(s, us(x Ix))dxdB? + = (s ugs(x I(x T J
+];/0 ((I)( ) s( ))7hs( ))d st + 5 ;/0 O(I) ( , s( ))(hs( )) d d<B >$

Proof. We begin with the regular case, i.e. f, h € CY([0,T]) ® LZ(Qr) ® D(L), g €
C([0,T]) ® LA (Qr) ® D(L3/?) and are adapted, and & € D(L), then u is a semi-martingale
and it posses the following form:

t t t t
up =& — / Augds —|—/ fsds —|—/ divgsds —|—/ hsdBs
0 0 0 0
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Thanks to It6’s formula for semi-martingale, we have quasi-surely for all ¢ € [0,T7:

/Ocp(t,ut(x))dx:/O@(o,g(x))dx—/Ot(qﬂ(s,us),Aus)dH/ot/og‘f(s,us(x))ds

+/t(<I> (s,us), fs)ds—i—/t((I)’(s us), hs)dBs —l—/OtA@'(s,us(x))divgs(x)dxds

/ / (s, us(x))h2(x)dwd(B)s

Then, as
((I)/(Sv uS)v AuS) = 5((1)’(57 us)7 Us)

and

/ & (5, us(2))divg, (z)dx = — / 8" (5, 1y () Dus(2)gs (v)
O (@)

we get the desired equality.

The general case is obtained by approximation. We take f™, h" € C1([0,7]) ® LL(Qr) ®
D(L), g" € C([0,T]) ® L&(Qr) ® D(L*?) and ¢ € D(L) such that f* — f, ¢" — g
and h™ — h strongly in MZ([0,T]; H}(O)) and £" — ¢ strongly in L?(O). Therefore,
u" = G(&", f, g", h") converges strongly to u = G(&, f,g,h) in MA([0,T); H}(0O)). Thanks
to the first step, we have the Ito formula for u™, that is, quasi-surely, Vt € [0, 71,

/O (t,uy (x) )dm—!—/ E(P'(s,uy),u )ds—/Oq)(O,f"(x))dx+/0t/Oaaf(s uy (z))ds

+/ (@'(s,u?),f?)ds—i—/o (@’(s,u?),h?)st+/Ot/O(I)/(s,u?(m))divgg(x)dwds

/ / " (s, u”(x))(h"(x))*dxd(B)s

Then, under each P € P, thanks to the dominated convergence theorem under P, we can
easily get the following Itd formula, (see for example Lemma 1.37)

/Oq)(t,ut(z))dar—f—/Oté’(q)'(s,us),us)ds:/ @(0,5(:{:))dw+/t/ aa—q)(s,us(x))ds
+/t(<I> (s,us), fs)der/ (®'(s,us), hs)dBsg +/ / (s,us(x))divgs(x)dxds

/ / " (s,us(x))h%(x)dzd(B)s, P — a.s.

Finally, as each member in the equality admits a quasi-continuous version, we get the formula
quasi-surely. ]

Now we come to the proof of Theorem 4.41:
Proof. Let v and § be two positive constants. On MZ([0,T]; H}(O)), we introduce the
norm

T
w llg= B /0 e | s |2 + || Vs |2)ds)
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which clearly defines an equivalent norm on MZ([0,7]; H}(O)).
We define the application A : MZ ([0, T); HY(O)) — MZ([0,T); H}(O)) as following:

¢ t ¢
(Au)y = P& +/ Pt_sfs(us,VuS)ds—i—/ P,_sdivgs(us, Vus)ds +/ P_shs(us, Vus)dBs
0 0 0
Denoting % = Auy — Avy with u and v are in MZ([0,T]; H (0)), f = f(u, Vu) — f(v, Vv),

g = g(u,Vu) — g(v,Vv) and h = h(u, Vu) — h(v, Vv). Applying Ito’s formula to e 7 u?,
we have quasi surely:

T T T
e || ap |2 +2/ e~ (1) ds — —’y/ e | G |2 ds+2/ AR
0 0

T
22/ e 7% (Oitis, g1) ds+22/ e (us, hl) dBJ+/ e || [hs |I* d(B

The following calculus are based on the Lipschitz conditions and Cauchy-Schwarz’s inequal-

ity:

T _ 1 /T ! f.
2/ ¢ (U, f)ds < / e | g | ds+€/ e || fo |I? ds
0 €Jo 0
I s = 12 r s 2
- e 7 || us |7 ds + Ce e |l us — s ||” ds
€ Jo 0

T
4 Ce/ e || V(ug — vy) |2 ds
0

IN

T
2/0 e Vs || (C | us —vs || +o || V(us —vs) [|)ds

[\
o\
~
)
d
V)
o
%
(S))
<
NP
QL
)
IN

IN

T C T
C’e/ e 7% || Vi, ||* ds + / e | us — vy ||? ds
0 € Jo
T T
+a/ e8| Vg || ds + a/ e || V(us —vs) ||? ds
0 0

and

T B 1 T T
/ =15 | Rl 12 ds < C(1 + 6)/ =15 || ug — vy |2 ds + 21 + e)/ e || V(us — vs) |2 ds
0 0 0

where C, o and 3 are the constants in the Lipschitz conditions. Using the elliptic condition
and taking expectation, we get:

1 T T
(y - 6)E/ e | Gy |2 ds + (22— a — Ce)E/ e | Vi, |2 ds
0 0
1 —2 1 T —s 2
< C((1+E)U —G—e—l-g) e ¥ us — s || ds
0

T
HOe+a+ PP+ NE [ e | Vi — ) | ds
0
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We choose € small enough and then v such that

i —1/e  C(1+1/0)5% +e+1/e)
25201 2N —a — 1 =
Cetatoflte <2 —a=Ceand oo = = s 52821 1 o)

If we set 6 = %, we have the following inequality:

1 os< Ce+a+a2B%(1+e¢)

79= IX—a— Ce I

u—-"v ||’775 :

We conclude thanks to the fixed point theorem. ]

4.4.3 Comparison theorem

In this subsection we will establish a comparison theorem for the solution of GSPDE (4.12)
as following:

Theorem 4.43. Let f' be another coefficient which satisfies the same hypotheses as [ and
¢ € LZ(Q0; L*(0)). Let u' be the solution of

d
duy(z) = Luj(z)dt + f'(t, 2, uy(x), Vuy(x))dt + Z 0;9i(t, v, uh(x), Vus(x))dt
i=1
dy 4
+ Dbyt @, i), Vg (x))dB],

i=1
with initial condition uy = '
Assume that € < & q.e. and for quasi all w € 9,

ft,zu(z), Vug(2)) < f(t, 2, up(z), Vuy(z)) dt @ do — a.e.

then
vt € [0,T), wur<uj q.e.

P’l"OOf. We put a/\: u— ’LL/, é\: é - 5/7 ﬁ = f(taut) vut) - f’(t,u;, VU;), §t = g(tvq\ta vut) _
g(t,u}, Vuy) and hy = h(t,us, Vug) — h(t,u}, Vu;). The main idea is to evaluate E || @, ||?
and then apply Gronwall’s lemma.

We approximate 1(y) = (y7)? by a sequence of regular functions: Let ¢ be an increasing
C® function such that ¢ (y) = 0 for any y €] — 00, 1] and ¢ (y) = 1 for any y € [2,00[. We
set ¥ (y) = y?¢ (ny), for each y € R and all n € N*. It is easy to verify that (Vn) pene
converges uniformly to the function ¢ and that

. / — ot 1 " —
Jim oy, (y) =2y, lim ¢y (y) = 2 Iyso
for any y € R. Moreover we have the estimates

0<vn(y) <¢(y), 0< 14y (y) < Cy,

Un (y)| < C,
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for any y > 0 and all n € N*| where C' is a constant. We have quasi-surely for all n € N*
and each ¢ € [0, 77,

[ont@enars e @@ a0 as= [ (@)t [ (v ) as
/ (Us) Ditis, Gis) ds + = / (1/1n/'( B 2) +Z/ n (Us) hg,)

Hence, under each P € P, a similar calculus as in the proof of Theorem 1.39 in Chapter 1
yields

t
Bp || vuu) [£C [ Ep [ valu) | ds
0
Taking the limit, n — oo, we get
t
Bp |l P<C [ Erla | ds
0

Therefore,
t
B | at|°< c/0 B | at | ds.

We deduce the result from Gronwall’s lemma. ]
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