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Chapter 1

Aircraft Performance on
Contaminated Runways

Summary. Le sujet de cette thèse de doctorat a été proposé par Airbus
Operations SAS dans le but de combler une lacune dans les connaissances
opérationnelles actuelles : les performances des avions sur pistes conta-
minées. Au sein d’Airbus engineering, le groupe est divisé en plusieurs
départements et sous-départements. Le département chargé des performances
des avions a pour rôle de fournir les données des performances à haute et
basse vitesse pour les avions de la flotte Airbus. Les performances à basse
vitesse concernent particulièrement les phases de décollage et d’atterris-
sage. Ce département fournit les manuels de vol qui sont utilisés par les
pilotes pour calculer les distances de décollage et d’atterrissage en fonction
des configurations des appareils et des conditions environnementales, telles
que l’altitude-densité, la pente de la piste, les vents etc. Ces informations
sont fournies conformément aux règles de certification publiées par les auto-
rités aériennes compétentes. L’autorité compétente pour la certification des
avions est l’autorité du pays où l’avion a été fabriqué. En Europe, il s’agit
de l’Agence européenne de la sécurité aérienne (AESA), aux États-Unis,
c’est la Federal Aviation Authority (FAA). Afin de fournir des distances de
décollage et d’atterrissage dans toutes les conditions, Airbus s’appuie sur la
modélisation des performances des avions, validée par des essais en vol et
certifiée par les autorités aériennes. Cependant, la modélisation des perfor-
mances au décollage et à l’atterrissage sur pistes contaminées est une tâche
plus compliquée. Les règles de certification varient légèrement d’une auto-
rité aérienne à l’autre, mais les essais en vol sur pistes contaminées ne sont
actuellement demandés ni par l’AESA ni par la FAA. Les modèles utilisés
pour les pistes contaminées sont construits sur des recherches menées lors des
50 dernières années. Ces modèles sont basés de manière empirique sur plu-
sieurs essais en vol sous différentes conditions de pistes. Cependant, comme
ces modèles sont empiriques, il est difficile d’en déterminer des ajustements,



car les conditions sont différentes de celles pour lesquelles le modèle a été
dérivé. Ce sujet de thèse a alors été proposé afin d’améliorer la modélisation
et la compréhension des pistes contaminées. Comme nous le verrons, les
réalités de la modélisation du freinage des avions ont fait évoluer l’objet de
ce projet de thèse de doctorat. Le besoin d’un meilleur modèle La recherche
sur le frottement des pneus, notamment dans le domaine automobile où
d’avantages de recherches ont été menées sur ce sujet, révèle les nombreux
facteurs qui sont connus pour modifier ce frottement et qui ne sont pas pris
en charge par l’industrie aéronautique. Vu la nature du caoutchouc utilisé
pour les pneus, des paramètres tels que la température, le type de caou-
tchouc et la pression de contact modifient les propriétés frictionnelles. De
plus, la texture des pistes jour un rôle non négligeable en créant des forces
de frottement. Ces effets ne sont pas encore entièrement compris et ils ne
sont donc pas pris en compte dans les modélisations des avions.

Des avions atterrissent dans le mode entier, en toute saison. Quel est
l’effet produit par un atterrissage à Dubäı en l’été comparé à un atterrissage
au plein cœur de l’hiver au nord du Canada ? Comment une variation de
80◦C de la température ambiante modifie-t-elle le frottement ? Si certains
pneus sont partiellement dégonflés lors de l’atterrissage, cela dégradera-t-il
le frottement ? En ce qui concerne les caractéristiques des pistes : comment
le frottement diffère-t-il entre une piste dont le revêtement a été récemment
renouvelé et une ancienne piste usée ? Toutes ces caractéristiques ont une
influence sur le frottement, mais la manière dont elles modifient les perfor-
mances d’atterrissage des avions est inconnue. Actuellement, dans l’industrie
aéronautique, il existe peu de données en matière de modélisation du frot-
tement et les seules caractéristiques qui existent pour les avions concernent
les conditions de fonctionnement. Nous nous sommes inspirés de l’industrie
automobile et des types de modèles utilisés. La modélisation de la courbe
µ−slip est largement utilisée chez les acteurs de la filière automobile que sont
les fabricants de freins, de pneus et de voitures. Les modèles se différentient
par leur complexité et la somme de connaissances requises pour les mettre
en œuvre. Comme mentionné, l’objectif final de ce travail est d’obtenir un
meilleur modèle pouvant prédire les distances d’atterrissage sur des pistes
contaminées. Pour y arriver, nous devons améliorer le modèle du coefficient
de frottement qui est la force principale impliquée dans l’arrêt de l’avion.
Le modèle devra s’appuyer sur le phénomène physique qui se produit à
la zone de contact entre le pneu et la piste. Le modèle de la brosse est une
méthodologie couramment acceptée dans l’industrie automobile. Cependant,
avant d’utiliser ce modèle pour les pistes contaminées, il doit être adapté aux
caractéristiques aéronautiques. Nous allons valider et dériver le modèle de la
brosse pour le frottement de freinage sur pistes sèches. La disponibilité des
données des essais sur pistes sèches et une physique du contact plus simple
sont mieux adaptés à la validation du modèle.

L’utilisation du modèle de la brosse comme modèle de frottement pour les



atterrissages sur pistes sèches a nécessité une somme de travail considérable.
Nous avons dérivé le modèle de base et sommes allés plus loin qu’une simple
dérivation pour mieux comprendre les interactions physiques complexes dans
la zone de contact. Nous avons utilisé la tribologie, la science des matériaux
et la résistance des matériaux pour construire un modèle de la brosse capable
de prendre en compte les facteurs dynamiques.

Au vu de la somme de travail nécessaire pour développer un modèle de
la brosse applicable aux avions, le cas des pistes contaminées n’a pas été
entièrement exploré. Cependant, comme ce modèle s’appuie sur la physique
du contact pneu-piste, l’essentiel du travail peut être élargi aux pistes conta-
minées, avec une bonne compréhension de la physique du contact sur pistes
contaminées.

1.1 Introduction

This PhD work was proposed by Airbus Operations S.A.S. in order to
fill a gap in operational knowledge: aircraft performance on contaminated
runways. Within Airbus engineering the group is divided into several de-
partments and sub-departments. The aircraft performance department is
responsible for providing the high and low speed performance data for the
Airbus fleet of aircraft. Low speed performance principally refers to the air-
craft during take-off and landing. The department provides the aircraft flight
manuals which allow a pilot to calculate the take-off and landing distances
for the aircraft as a function of different aircraft configurations and differ-
ent environmental conditions such as airport density altitude, runway slope,
winds etc... This information is supplied in accordance with the certification
rules as written by the applicable aviation authority. The applicable avia-
tion authority for aircraft certification is the authority for the country where
the aircraft is manufactured. In Europe, the applicable aviation authority is
the European Aviation Safety Agency (EASA) while for the United States
it is the Federal Aviation Authority (FAA). In order to provide the take-off
and landing distances for all conditions, Airbus relies on aircraft perfor-
mance modeling that has been validated by flight tests and certified by the
aviation authorities. However, aircraft take-off and landing performance on
contaminated runways is a more complicated modeling problem. The certi-
fication rules vary slightly between different aviation authorities but for the
current EASA and FAA regulations, flight tests on contaminated runways
are not required. The models used for contaminated runways are based on
a combination of research that has been performed during the last 50 years.
The models are empirically based on a combination of flight tests under dif-
ferent runway states. However, since the models are empirically based, it is
difficult to determine adjustments to the model due to conditions which are
different than those for which the model was derived. In order to improve



the modeling and understanding of contaminated runways, this PhD thesis
was proposed. As we will come to see, the focus of the PhD project shifted
over time with the realities of modeling aircraft braking.

1.2 The Problem of Contaminated Runways

The majority of aircraft accidents and incidents occur during the take-off
and landing phases. The pilot workload is at its highest and the margin for
error is the lowest. When broken down into categories, runway excursions
are the number one type of aircraft accident accounting for approximately
25% of all events. The majority of runway excursions occur during the
landing phase as opposed to the take-off phase. During this work we will
concentrate on the landing phase, however the braking modeling is equally
applicable to take-off (for computation of the rejected take-off) or landing.

As with nearly all aviation accidents, runway excursions are due to a
combination of factors. We show in Figure 1.1 how different factors can
affect the landing distance. Using Figure 1.1, we demonstrate how several
small factors can lead to a dangerous situation.

Example 1. We take the case of an aircraft crossing the runway threshold
with an additional 50ft of height, and 10 extra knots of airspeed. As the
aircraft enters the final landing phase, the headwind of 5 knots reverses
direction to a tail-wind of 5 knots. This causes the aircraft’s ground speed
to increase; the sudden change in velocity causes the pilot to extend his flare
for 2 seconds. From Figure 1.1 we see that the additional height adds 20%
to the landing distance, the extra airspeed 20%, the change in wind 30%
and the long flare 30%. The combination of several small factors leads to a
doubling of the landing distance which could be longer than the actual length
of the runway (See Section 1.3 for Regulations regarding runway landing
length). In Figure 1.2 we plot the principal factors that are involved in
runway excursions. Contaminated runways leading to ineffective braking
contribute to between 25 to 40% of runway excursions (the number vary
depending on the source and the accidents in reference).
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Figure 1.1: Factors that can affect the landing distance (Redrawn from [2])



The aviation authority for the USA, the FAA, defines a contaminated
runway when 25% or more of the runway surface is covered with one or
more of the following contaminants: ice, compacted or loose snow, or stand-
ing water. A contaminated runway affects the landing distance by reducing
the available friction between the aircraft tire and the runway when brak-
ing. When an aircraft lands, there are three principal forces involved in
stopping the aircraft: the braking force, the aerodynamic drag forces and
the thrust (negative force if reverse thrust is used). We plot in Figure 1.3
the deceleration for a dry and snow runway and the percentage of the total
stopping force due to each of the three components. We see that for a dry
runway landing the aircraft can decelerate at 3.7m/s2 and 80% of this de-
celeration is due to the braking force, whereas for a compacted snow runway
the aircraft decelerates at approximately 2m/s2 for which the braking is
responsible for 65% of the deceleration. This reduction in the deceleration
of nearly 50% causes the landing distance to nearly double. Correct knowl-
edge of the runway state and its effect on the braking force is essential for a
correct estimation of the distance needed to land.

Figure 1.2: Contributing factors to runway excursions [4]
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Figure 1.3: The two figures show the contribution of each stopping force to
the deceleration of the aircraft for a dry runway 1.3a and a snow covered
runway 1.3b



1.3 Regulations

The regulations differ slightly depending on the aviation authority. The
two largest aviation authorities that have the most influence are that of the
United States, the Federal Aviation Authorities (FAA), and that of Europe,
the European Aviation Safety Authorities (EASA). They set the rules for
which all commercial aircraft must meet in order to remain airworthy. The
regulations are harmonized for a large portion of the rules, however land-
ing distances on contaminated runways remain slightly different, although
harmonization is also sought in this area.

1.3.1 Certified Landing Distances

The first distance we describe is called the Actual Landing Distance
(ALD). The rules are similar between Europe and the USA. The rules con-
cerning the ALD are described in CS 25.125 and FAR 25.125 for EASA and
the FAA respectively. During the certification of the aircraft, the ALD is
demonstrated as the distance between a point 50ft above the runway thresh-
old to the point where the aircraft comes to a complete stop. This distance
must be determined for standard temperatures at each weight, altitude and
wind for which the aircraft is approved for operation. This distance is cer-
tified and published in the Aircraft Flight Manual (AFM) for dry runways.

For contaminated runways, the regulations differ between EASA and
the FAA. The FAA currently does not contain any regulations to determine
the ALD on contaminated runways. Within the EASA regulations, CS
25.1591 demands that the manufacturer provide actual landing distances
on contaminated runways if the aircraft is to be permitted to operate on
such runways. AMC 25.1591 (Acceptable Means of Compliance) provides
a methodology to determine the ALD on contaminated runways without
performing specific flight tests. The AMC provides the coefficient of braking
friction to be used for different runway states which can be used to calculated
the ALD for contaminated runways and thus publish the distances in the
AFM.

The next set of regulations must be followed by the airline company
that wishes to operate the airplane. Known as the OPS regulations, they
define the Required Landing Distance (RLD). Before an aircraft departs
on a commercial flight, the company must calculate the aircraft’s RLD,
taking into account a prediction of the environmental conditions likely to
be encountered upon arrival at the destination. The RLD must be less than
the landing distance available (LDA) i.e. the length of usable runway. If
this condition is not satisfied, the aircraft is prohibited from departing. The
RLD regulations for a dry runway can be found in EU OPS 1.5151 and FAR
121.195 and 197 in EASA and the FAA respectively. It must be shown that
the aircraft can land within 60% of the available runway. In other words, the



RLDdry = ALDdry/0.6 ≤ LDA. For a wet runway, the EASA regulation is
EU-OPS 1.520 and states that RLD wet must be 115% of the RLD dry. For
contaminated runways, also cited in EU-OPS 1.520, the RLD contaminated
must be the greater of the ALDcontaminated × 1.15RLDwet.

1.4 Calculating Aircraft Performance

As cited in the regulations, the aircraft manufacturer must provide the
ALD for all weights, aircraft configurations, and environmental conditions.
The number of possible variations makes it unfeasible to flight test all the
cases. Thus the manufacturer relies on a mathematical model of the aircraft
performance that is validated with flight tests and certified as providing
representative values. This model is based on a balance of forces. The force
balance equation (neglecting any lift generaged by the wings) can be written
as

Ma = T −D − Fb −mgsin(γ) (1.1)

where M is the mass of the aircraft, a is the acceleration, T is the engine
thrust, D is the aircraft drag, Fb is the braking force, g is gravity and γ is
the runway slope. Knowing each of the components on the right hand side
and the aircraft mass, we can determine the acceleration (or deceleration)
of the aircraft at each time step. With the deceleration capability of the
aircraft known, the distance needed to stop, d, can be calculated by

d =
1

2

V 2
i

ā
(1.2)

where Vi is the initial velocity at touchdown and ā is the average deceleration
during the landing. From this equation we note that the distance needed
to stop is inversely proportional to the deceleration. A reduction in the
deceleration capability of the aircraft by 50% leads to an increase of 100%
of the landing distance.

Each of these components inside Equation 1.1 is modeled by Airbus. The
braking force, Fb, can be modeled as

Fb = µFz (1.3)

where µ is the coefficient of braking friction and Fz is the weight on
the braked wheels. The µ is the important component that determines how
much friction force the contact between the tire and the runway can create
to aid in stopping the aircraft.



1.4.1 Dry Runway Friction

The dry runway friction is determined during flight testing of the air-
craft. Under a variety of aircraft and environmental conditions, maximum
braking is applied during landing and the flight test results analyzed. By
inversing equation 1.1 and using the deceleration measured during landing,
the equation can be solved for µ. This is what is commonly called a µglobal
in that it is the combined effects of all of the tires working together as well
as the efficiency of the anti-skid system which regulates the brake pressure
to obtain the maximum friction force. Using the combined results of several
flight tests, an average µdry is obtained which is used in the aircraft model
for determining the landing distances for all conditions.

1.4.2 Wet Runway Friction

Aircraft manufacturers are not obliged to certify the model for wet run-
ways according to the EASA and FAA regulations (a wet runway is not
considered contaminated). Nevertheless, Airbus publishes this information
within the Aircraft Flight Manual (AFM) for operators to use. As there
is no certification process, flight tests are not needed for aircraft landing
on wet runways. However, the regulations do require the aircraft manu-
facturer to provide a model for the accelerate-stop distance (ASD) on wet
runways. The accelerate-stop distance is the distance needed when the air-
craft is on take-off and decides to abort the take-off and apply full brakes
to stop the aircraft. The regulation for the ASD is provided in CS 25.109
and FAR 25.109. As the manufacturer must also provide this calculation for
wet runways, the manufacturer has a choice to flight test on wet runways
and determine a model, or they can use a predefined set of µwet runways
described within the regulations. These µwet values are a function of the
tire pressure and the velocity. In general, the µwet value decreases with in-
creasing velocity and increasing tire pressure. We plot the µwet values as a
function of velocity and tire pressure in Figure 1.4

The µ values are described as the maximum possible coefficient of fric-
tion. The manufacturer must then determine experimentally the efficiency
of the anti-skid system on the airplane. That is to say, how well can the
anti-skid system regulate the brake pressure to obtain the maximum possible
global friction coefficient. There are several ways to perform this analysis,
but they are out of the scope of this work. The final result is that the
manufacturer determines the efficiency, η, of the system and multiplies this
η value by the µwet values as defined by the certification regulations (See
Table 1.1) to determine the effective friction value, µeffectivewet, to be
used in the aircraft model.

µeffectivewet = ηµwet (1.4)
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As these µwet values are certified for the ASD distance, Airbus uses these
values to publish landing distance on wet runways.

Table 1.1: µwet distance used to calculate the accelerate-stop distance as
defined by the EASA Certification Regulations in CS 25.109. The values
cited are also plotted in Fig 1.4

Tire Pressure µ wet
(psi)

50 µ = −0.0350(V/100)3 + 0.306(V/100)2 − 0.851(V/100) + 0.883
100 µ = −0.0437(V/100)3 + 0.320(V/100)2 − 0.805(V/100) + 0.804
200 µ = −0.0331(V/100)3 + 0.252(V/100)2 − 0.658(V/100) + 0.692
300 µ = −0.0401(V/100)3 + 0.263(V/100)2 − 0.611(V/100) + 0.614

1.4.3 Contaminated Runways

We recall a wet runway is not considered contaminated. When the stand-
ing water depth exceeds 3mm, the runway state ceases to be considered wet
and is considered contaminated. As mentioned previously, aircraft land-
ing performance on contaminated runways is currently only covered in the
EASA regulations. Under EASA certification, the aircraft manufacturer is
not obliged to provide information on contaminated runways in order to cer-
tify an aircraft. However, if this information is not provided, the AFM must
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contain a statement that prohibits the operation of the aircraft on contam-
inated runways. This information is provided in CS 25.1591. Similar to the
case of wet runways, the manufacturer has the choice to perform flight tests
on different contaminated runway surface types and determine their own µ
value as done for dry runways or the manufacturer can use the predefined µ
values described in AMC 25.1591.

The AMC contains information on the different effects to take into ac-
count for the aircraft model. These include different drag effects such as
displacement drag (drag associated with pushing the water out from in-front
of the wheels), projection drag (drag associated with water spray impact-
ing airframe)and compression drag (energy absorbed as the tire compresses
loose snow) as well as several other effects such having multiple wheels in
a row and the hydroplaning effect. All of these effects must be taken into
account in the aircraft model. Of interest for this PhD work are the cited µ
values for different runway states. These µ values are summarized in Figure
1.5. The values cited in the regulations are considered to contain the anti-
skid efficiency directly in the µ values. As such, no determination of the
anti-skid efficiency on contaminated runways is necessary.

1.5 Industry Initiative

As mentioned in Section 1.2, runways excursions are the most common
type of aircraft accident. In the last ten years, the issue of runway excursions
has been brought to the forefront and several initiatives have been launched
to raise awareness and combat this problem. Numerous tools have been



developed such as the Runway Safety Initiative (RSI)[4], the Approach and
Landing Accident Reduction (ALAR) toolkit[3], the EASA Runway Fric-
tion Characteristics and Aircraft Braking (RuFAB) project [9] as well as
numerous safety reports and conferences put on by the aviation authorities
in countries such as Canada, Norway, USA and Australia to name a few.

1.5.1 TALPA

One of the largest initiatives was an advisory rule making committee
launched by the FAA in 2006 known as TALPA which stands for Take-
off and Landing Performance Assessment. As mentioned earlier, the FAA
previously did not have specific rules regarding aircraft performance on con-
taminated runways. In addition, there have been concerns in the industry
regarding the representativeness of the actual landing distances (ALDs).
The ALD’s that are certified and published in the aircraft flight manual
are derived from flight tests performed with experienced flight test pilots.
These distances represent the maximum capability of the aircraft, but do
not reflect the normal day to day operations and the varying skills that com-
mercial pilots have. Problems were also identified regarding the calculation
of the required landing distances (RLDs). The RLDs are calculated far in
advance of the actual landing and thus contain a prediction of the envi-
ronmental conditions to be encountered. Winds often change direction and
force which can greatly affect an aircrafts performance, although a pilot is
expected to recalculate the ALD if the conditions have significantly changed
from the first calculation. In addition, the RLD’s do not take into account
temperature variations nor the runway slope unless it is greater than ±2◦.

The decision was made to provide the pilots with an Operational Land-
ing Distance (OLD). This operational landing distance has several changes
with regards to the actual landing distance with the result that the distance
is more representative of the performance achievable by a regular pilot under
operational conditions. The OLD does not replace the RLD that is calcu-
lated before the aircraft takes-off but instead is calculated by the pilot in the
air before landing taking into account the latest environmental and aircraft
conditions. In addition, the OLD takes into account the effect of runway
temperature and runway slope. The recommendation is that a safety mar-
gin of 15% be applied to the OLD distance to provide an additional safety
buffer. This new landing distance is known as a factored landing distance
(FOLD) e.g. FOLD = 1.15OLD.

In addition to the aircraft operation being more representative of a line
pilot, runway contamination calculation was taken into account in a similar
manner to that of the EASA regulations. Some small changes were made
to the contaminated runway state µ values based on new research. The
new TALPA runway states are defined for different runway codes of which
several runway states can fall under the same code. The µ values for the
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runway codes are shown below in Figure 1.6. The correspondence between
the runway code and the runway states is shown in Figure .

The new TALPA rules have not yet been published as regulations by
the FAA and as such are subject to change. In addition, the European
authorities have not yet decided the direction they will take with regards
to Operational Landing Distances. Consequently, there is still considerable
uncertainty regarding the future of operations on contaminated runways.

1.6 Friction Coefficient as a function of Slip Ratio

This section is very important in the understanding of the different ter-
minology used regarding µ in the aircraft world as well as the role of the
anti-skid system. Thus far, the µ values presented for determining aircraft
performance have been what is often referred to as a µglobal. This term is
also often called a global friction coefficient, but the term friction coefficient
is inaccurate as a coefficient of friction normally refers to two objects in
relative sliding motion. We will see in the derivation of the friction model
(Chapter 2) that there are additional forces than just the sliding friction
that contribute to the tire braking.

A more appropriate term for µglobal may be normalized braking force in
that it is simply the total stopping force produced by the tire divided by the
weight on the braked tire. However, the terminology using µ is prevalent in
industry, thus this terminology will be kept. In the derivation of the friction
model we differentiate the coefficients of friction by using the term static
and dynamic coefficients of friction represented by the symbol µs and µk
respectively.



The µglobal, as it is employed, contains the functioning of the anti-skid
system. The curve plotted in Figure 1.7 represents a fundamental curve that
will be used throughout this work. It is commonly referred to as the µ− slip
curve and it plots the µ as a function of the slip ratio. The slip ratio is
a measurement of the amount of braking. As more force is applied by the
brakes, the angular velocity of the wheel, ω, slows down with respect to the
absolute velocity of the wheel axle, Vx. It is this difference in speed that
creates the frictional forces. The slip ratio can be defined by

sx =
Vx − ωRR

Vx
(1.5)

where RR is the rolling radius of the wheel. This equation will be devel-
oped in more detail in Chapter 2. A slip ratio, s, of zero means that the tire
is free-rolling i.e. no braking is being applied. A slip ratio of 1 implies that
the wheel is blocked i.e. the angular velocity is zero and the tire is purely
sliding with a velocity of Vx. The form of this curve is important, we see
that the curve reaches a maximum values and then begins to decrease as the
slip ratio increases. This maximum values (0.45 in the example in Figure
1.7) is important in tire braking and anti-skid design. The max is known
as the maximum obtainable friction coefficient and the s associated with
this value is known as the optimal slip ratio (0.1 in the example in Figure
1.7). This point is the goal of the anti-skid system. The anti-skid system
regulates the brake pressure (and inherently the slip ratio) to obtain the
maximum braking coefficient. The wheel tends to fall into a skid (blocked
wheel) when on the right hand side of the optimal slip ratio. This side is
known as the unstable side. Thus the anti-skid systems tries to maintain
the slip-ratio on the left (stable) side of the optimal slip ratio while obtain-
ing the maximum friction possible. The efficiency of the anti-skid system
is demonstrated by the systems ability to obtain and maintain a friction
coefficient close to that of the max. If the wheel begins to fall into a skid
(evidenced by a rapidly reducing angular velocity of the wheel), the system
reduced the braking pressures to allow the wheel to spin-up and return to
the stable side of the curve, after which point it re-applies braking pressure.

As we have seen, the µ values currently used for calculating aircraft per-
formance are either constant values (for snow and ice) functions of velocity
(dry, wet and water/slush) and functions of tire pressure (for wet, water
and slush). In all of these cases, we do not define µ as a function of
the slip ratio. For dry runways, the µ value is determined experimentally
thus it implicitly contains the functioning of the anti-skid system. For wet
runways, we include and efficiency factor η in the µ and for contaminated
runways, the predefined µ values are thought to be conservative and contain
implicitly the anti-skid functioning. In order to determine the true impact
of contaminated runways, we need to be independent of the anti-skid sys-
tem. Knowing the shape of the µ − slip curve for all environmental and
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Figure 1.7: General form of the µ − slip curve showing the stable and un-
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aircraft conditions provides significantly more information as to the effect
that contaminated runways has on the braking.

1.7 The Need for a Better Model

Research into tire friction, most notably into the automobile world where
more research has been done regarding tire friction, unveils numerous factors
that are known to affect tire friction that are not taken into account in
the aeronautical industry. Due to the nature of the rubber used in tires,
effects such as temperature, rubber type and contact pressure will change
the frictional properties. In addition, the texture of the runway plays an
important effect in creating frictional forces. These are effects that are not
completely understood and thus not taken into account in aircraft modeling.

Aircraft land throughout the world at all times of the year. What ef-
fect does landing in Dubai in the middle of the summer have, as opposed
to landing in the north of Canada in the middle of winter. How does a
ambient temperature change of 80◦C affect friction. If some of the tires are
partially deflated during landing, will this degrade the friction? Runway
characteristics; how does the friction differ if the runway has recently been
resurfaced as opposed to an old worn runway? These are all characteris-
tics that affect friction, but the manner in which they change the aircraft’s
landing performance is unknown.

Currently in the aeronautical industry, little exists in terms of modeling



friction and the unique characteristics that are present for aircraft operating
conditions. For inspiration, we focused on the automobile world and the
types of models used in this industry. Modeling of the µ − slip curve is
prevalent among all of actors in the automobile industry: brake, tire and
car manufacturers. The models differ in complexity and the amount of
knowledge needed to implement the models.

1.7.1 The Brush Model

A model that is common is known as the Brush Model due to its simplic-
ity to implement. As the model is based on the physics of the interactions
occurring at the tire-runway contact surface, the model serves as a good base
and starting point. The model can be developed with simple assumptions
and then built upon to include more complex effects. The Brush Model is
also mathematically low-cost to implement as opposed to a finite element
model which allows for rapid computation time and possible integration into
real-time systems.

1.7.2 Modeling Dry Runway Friction

As mentioned at the beginning of the report, the end goal of this research
is to obtain a better model that can predict the aircraft landing distances
on contaminated runways. To do this, we must obtain a better model of
the coefficient of friction which is the principal force involved in stopping
the aircraft. The model should be based on the physical phenomena that
occurs in the tire-runway contact zone. The Brush Model is an accepted
methodology to model that is commonly used in the automotive industry.
However, before we can use this model for contaminated runways, this model
must be adapted to the particular characteristics present in the aeronautical
environment. We will derive and validate the Brush Model for the case of dry
runway braking friction. The availability of flight test data on dry runways
and the simpler contact physics are more adept to model validation.

The amount of work involved in using the Brush Model as a friction
model for dry runway landings proved to be considerable. We derived the
basic brush model, and then went beyond the basic derivation to better un-
derstand the complex physical interactions which occur in the contact zone.
We used advanced Tribology, Material Science and Strength of Materials to
build a more complete Brush Model capable of taking dynamic factors into
account.

Due to the amount of work involved in developing the Brush Model for
use in the aircraft model, the specific cases of contaminated runways were not
fully explored. However, as the model is based on the tire-runway contact
physics, the core work can be expanded to cover contaminated runways with
a proper understanding of the contact physics involved on contaminated



runways.

1.8 Conclusion

The following Chapters will deal with the derivation of the Brush Model
(Chapter 2), the understanding of the complex interactions of the tire and
the runway (Chapters 3 through 6) and finally a validation of the Brush
Model by comparison with flight test data (Chapters 7 through 9).

Figure 1.8 presents schematically the work that will follow for Part II
of this work, the Brush Model. We will derive the Basic Brush Model in
Chapter 2. Chapters 3 through 6 will expand the Brush Model and de-
velop the relationships that different scientific branches bring to the Brush
Model. We see that the Science of Tribology permits to develop the sliding
friction between the tire and the runway. The Strengh of Materials per-
mits to characterize the tire behavior under various loading and conditions.
Both the tire behavior and the sliding friction will depend on Material Sci-
ence. The mechanical properties of rubber vary extensively depending on
environmental conditions and thus the Material Science will determine the
representativeness of the Brush Model.
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Chapter 2

The Brush Model

Summary. Ce chapitre présente le modèle de la brosse qui sera utilisé pour
modéliser les forces de frottement produites par le pneu lors du freinage.
Le modèle de la brosse est une approche théorique de la modélisation pneu-
surface basée sur deux lois physiques : la loi de Coulomb sur le frottement de
glissement et la loi de Hooke sur l’élasticité. Le modèle de la brosse repose sur
une division de la zone de contact en un nombre infini de poils de brosse. Le
mouvement et la force de chaque poil sont calculés au moment où il traverse
la zone de contact et la force totale de frottement s’obtient en sommant
tous les efforts générés à chaque poil pour un moment donné. Nous pouvons
décrire comme suit le mouvement d’un poil quand il se déplace sur la zone
de contact :

– Quand le poil entre dans la zone de contact en partie avant de la roue,
il adhère à cette de surface contact (Point −a Figure 2.1).

– Quand la carcasse du pneu traverse la zone de contact, le poil com-
mence à s’allonger élastiquement et produit alors des forces résistives
dues à la déformation du poil, conformément à la loi de Hookes Fax =
Cx∆x.

– À un certain point le long de la zone de contact, cette force d’adhérence
est supérieure au coefficient de frottement statique entre le poil et la
surface (Point xs, Figure 2.1).

– C’est à ce point, dit point de transition, que le poil commence à glisser
le long de la zone de contact, produisant des forces résistives dues au
glissement, conformément à la loi de Coulomb Fsx = µsxFz

– La somme de ces deux forces, la force d’adhérence et la force de glis-
sement, forme la force de freinage du pneu Fx = Fax + Fsx.

Pour les études de freinage des avions, nous nous intéressons tout d’abord
au déplacement dans la direction longitudinale. À ce titre, pour simplifier la
dérivation du modèle de la brosse, nous supposons l’absence de mouvement
dans la direction latérale. La forme finale du modèle de la brosse est illustrée
page 50. Le modèle calcule la force de frottement dans la zone de contact



pneu-piste sous la forme d’un polynôme du 3e degré du glissement, σx. Les
autres paramètres utilisés pour construire le modèle de la brosse sont la
longueur de la zone de contact, 2a, la charge verticale sur l’axe de la roue,
Fx, la rigidité longitudinale du pneu, cpx, et les coefficients de frottement
statique et dynamique, respectivement µsx et µkx. Nous effectuons alors une
analyse de sensibilité de la forme finale du modèle de la brosse en faisant
varier chaque paramètre et en examinant l’effet de cette variation sur la
forme du modèle. Nous traçons ensuite le modèle de la brosse sous la forme
communément utilisée dans l’industrie, c’est-à-dire la force de frottement
Fx en fonction du taux de glissement longitudinal, σx. Cette courbe est
illustrée page 52. À l’aide de l’équation du modèle de la brosse, nous dérivons
plusieurs points clés sur la courbe µ−slip, notamment la force de frottement
maximale, la pente initiale de la courbe et le taux de glissement longitudinal
optimal. Nous terminons le chapitre par une rapide discussion sur le besoin
d’un développement ultérieur du modèle de la brosse. Cette forme du modèle
de la brosse comporte trois inconnues qui doivent être définies afin d’utiliser
pleinement le modèle. Ces trois inconnues sont la rigidité du pneu, cpx, et les
coefficients de frottement, µsx et µkx. Les chapitres suivants sont consacrés
à l’étude de ces paramètres.

2.1 Introduction

The brush model theoretical approach to tire-surface modeling is char-
acterized by using two basic physical laws: Coulomb’s law of sliding friction,
Fsx = µsxFz, and Hooke’s law of elasticity, Fax = Cx∆x. The brush model
is based on the premise of dividing the contact zone into an infinite num-
ber of brush elements (or bristles) much like of a comb. By following the
movement of a bristle through the tire-surface contact zone and calculating
the resistive forces at each step, the forces generated in the entire contact
zone can be determined by summing the effect of the bristles. The concept
of the brush model is that the effects of the two physical laws causes the
contact zone to be partitioned into two zones, an adhesion zone, governed
by Hooke’s law, and a sliding zone, governed by Coulomb’s law. Figure 2.1
shows the bristle concept and we can describe the movement of a bristle as
it moves through the contact zone as follows.

– When a bristle first enters the contact zone at the front of the wheel,
the bristle adheres to the contact surface (Point −a in Figure 2.1).

– As the tire carcass traverses the contact zone, the bristle begins to
stretch elastically thus generating resistive forces due to the deforma-
tion of the rubber bristle by Hookes’ Law Fax = Cx∆x.

– At a certain point along the contact zone, this adhesive force surpasses
the static coefficient of friction between the rubber bristle and the
surface (Point xs in Figure 2.1).



– It is at this point, the transition point, where the bristle begins to
slide along the contact zone, generating resistive forces due to sliding
by Coulomb’s Law Fsx = µsxFz

– The sum of these two forces, the force due to adhesion and the force
due to sliding which form the braking force of the tire Fx = Fax+Fsx.

Fadhesion 
Fsliding 

-a +a xs (transition point) 

vx 

ω 

Re 

x 

z 

Figure 2.1: Cut-away view of the tire and ’bristles’. The tire-axis is moving
forward with a horizontal speed vx while the tire is rolling with a circumer-
fential speed vc = ωRe

2.2 Fundamentals

Before beginning with the derivation of the brush model, the coordi-
nate system, notations and definitions must be clearly defined. The general
formation of the brush model has followed the methodology as outlined by
Svendenuis [24]. However some minor changes have been made regarding
the coordinate system and notations.

2.2.1 Coordinate System

Tire kinematics are defined using the xyz coordinate system as seen in
figure 2.1. The x-axis is defined as the longitudinal direction aligned with



the wheel heading, the lateral y-axis perpendicular to the wheel plane, and
the vertical z-axis to be upwards in accordance with the ISO-standard. This
coordinate system was chosen so that the signs of each parameter retain a
physical sense. The coordinate system is moving with the tire and is fixed
at the tire axis, so that the tire axis is always the point x, y, z = 0.

Friction is defined as a force which resists the relative motion of two
surfaces. When braking, the sliding direction is in the positive x direction
resulting in a friction force in the negative x-axis. In the same way, during
traction (acceleration), for the case of an automobile, the sliding velocity
in the tire-surface contact zone is in the negative x direction resulting in a
traction force in the positive x-axis. The coordinate system also gives the
normal force Fn acting in the positive z-axis.

2.2.2 Notation

Variables are often defined in vector form denoted by a bar such as v̄
where v̄ = (vx, vy, vz), x, y and z referring to the longitudinal, lateral and
vertical components respectively.

Subscripts are chosen to stay consistent with the physical processes in-
volved in the brush model.

– subscript s - denotes sliding
– subscript a - denotes adhesion
– subscript x, y or z denotes direction the variable is acting in

2.2.3 Definitions

Tire Slip

The tire slip is the basis for the development of braking friction forces
between the tire and the runway. The tire slip can be defined in several
different forms but its components include the absolute wheel travel velocity,
v̄, defined at the wheel axis, the circumferential velocity vc = ωRR where ω
is the wheel angular velocity and RR is the effective rolling-radius of the tire,
and the sliding velocity defined as the difference between the wheel travel
velocity and the circumferential velocity v̄s = (vx − vc, vy).

The most commonly used form of tire slip in the aeronautical industry
is the slip ratio s defined as

s̄ = (sx, sy) =
v̄s
v̄

(2.1)

Using this definition of slip will produce values between 0 and 1 (or 0-100%),
where 0 represents a free rolling wheel (vc = vx) and 1 represents a locked
wheel with no circumferential velocity (vc = 0).

In the brush model however, a different form of tire slip will be used that
relates the sliding velocity to the circumferential velocity. This definition will



become clear during the brush model derivation.

σ̄ = (σx, σy) =
v̄s
vc

=
s̄√

1− s2y − sx
(2.2)

These definitions can also be related to each other

σ̄ =
s̄√

1− s2y − sx
(2.3)

s̄ =
σ̄√

(1 + σx)2 + σ2y

(2.4)

Due to the fact the brush model derivation will be applied in the longi-
tudinal sense only, we can simplify these terms

sx = vx−vc
vx

=
σx

1 + σx
(2.5)

σx = vx−vc
vc

=
sx

1− sx
(2.6)

Tire/Rubber Stiffness

As mentioned in section 2.1, the adhesion force generated in the con-
tact zone is due to the deformation of the bristle. This is similar to the
deformation of a spring and can be described by Hooke’s Law of Elasticity

Fx = −Cx∆x

where ∆x is the displacement, Fx is the spring force and Cx is the spring
constant. In the case of a tire, the spring constant is represented by the tire-
stiffness. The tire stiffness can be determined by performing a deflection
test on the tire. The experimental procedure requires that a vertical weight
be placed on a tire with a known internal (gauge) pressure. An increasing
horizontal force is placed at the wheel center, and the corresponding de-
flection of the wheels center is measured. The horizontal force is increased
and the measurement repeated until a force vs deflection curve is plotted.
The typical form of this curve is shown in Figure 2.2. This process can be
repeated for varying vertical forces and tire pressures.

The tire stiffness (or spring constant) is then determined as the slope
derived from the force-displacement curves.

Cx =
∆Fx
∆x

Note: C nominally has the units N/m.
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Figure 2.2: Typical form of the curve obtained from longitudinal tire-
stiffness tests

The brush model method is based on determining the forces involved
for one bristle and then integrating along the contact zone. The coefficient
of stiffness obtained above is the stiffness produced by the contact zone it
its entirety. To obtain the stiffness provided per unit length of the contact
patch, we define the Bristle stiffness, cpx as

cpx =
Cx
2a

where Cx is the total stiffness determined by longitudinal stiffness tests
and a is one half of the length of the contact zone

2.3 Derivation of the Brush Model

The following is a basic derivation of the brush model with several as-
sumptions as outlined in the text. The brush model is applicable for com-
bined slip in both the lateral (y) and longitudinal (x) directions. Never-
theless, due to the fact that aircraft braking is primarily in the longitudinal
axis, we ignore the lateral sense and derive the brush model considering only
longitudinal motion.



2.3.1 Adhesive Zone Forces

To determine the forces generated in the adhesive zone we follow the
movement of one bristle as it moves through the adhesive zone (Figure 2.1).
The contact area has a length of 2a and is centered at x = 0. The model
is simplified in the lateral, y, direction. The bristles are assumed to have
the same width as the tire contact area. Variables in the lateral direction
are assumed to be constant including: tire pressure, tire-stiffness and tire
width.

We must first be able to calculate the position of a bristle and its de-
formation for any point in the contact zone. To do this, we first define an
arbitrary time tc which represents the amount of time since the bristle first
entered the contact zone. We recall that the coordinate system is fixed to
the tire axis and thus is moving in space at a velocity vx. We also recall that
the moment a bristle enters the contact zone (at t = 0) it adheres (or sticks)
to the surface. There is no relative movement between the bristle and the
surface but the point of contact is moving with reference to the coordinate
system which is fixed at the wheel axle and moving at a velocity vx (See
Figure 2.3).

Thus the point xr representing the point of contact between the surface
and the bristle, can be described in our moving coordinate system for any
time, tc as

xr(x) = a−
∫ tc(x)

0
vxdt (2.7)

However the bristle has a known height and the top of the bristle is
moving at a difference speed, vc with reference to the coordinate system
due to the circumferential speed of the tire, ω. Thus we can determine
the position of the top of the bristle, xc for a given time, tc by taking into
account the circumferential velocity of the tire, vc (where vc = ωRR) by

xc = a−
∫ tc(x)

0
vcdt (2.8)

Therefore the deformation that the bristle has undergone is the difference
between the x-positions between the top and the bottom of the bristle

∆x(x) = xr(x)− xc = −vx − vc
vc

(a− x) = −σx(a− x) (2.9)

Using the deformation obtained in equation 2.9 we can calculate the force
generated by this bristle using the stiffness, cpx, of the bristle. Therefore the
force generated by one bristle found at position x along the contact zone is

dFax(x) = cpx∆x(x)dx (2.10)
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Figure 2.3: Computing the deformation of a bristle as a function of the cir-
cumferential and horizontal speeds using a moving coordinate system fixed
at the tire-axis

As a result, to find the total force produced in the adhesion zone, we
sum the deformation forces of each bristle in the adhesion zone. To do this
we must know the size of the adhesion zone, so we designate the point xs
as the transition point between the adhesion zone and the slipping zone.
Integrating over the adhesion zone



Fax =

∫ a

xs

dFax(x)

= −cpxσx
∫ a

xs

(a− x)dx

= −cpxσx
[
ax− x2

2

]x=a
x=xs

= −cpxσx
(
a2 − axs −

a2

2
+
x2s
2

)
= −cpxσx

(
1

2
a2 − axs +

1

2
x2s

)
= −1

2
cpxσx

(
a2 − 2axs + x2s

)
= −1

2
cpxσx (a− xs)2 (2.11)
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Figure 2.4: Schematic of the adhesion zone. The slope of the line IO is
equal to cpxσ. The total adhesive force is equal to the area OSIs.



2.3.2 Adhesion Zone to Sliding Zone Transition Point

The next step is to determined the transition point xs. Conventional
sliding physics define two types of friction: static and kinetic. Static friction
arises from the interlocking of irregularities at the contact point between the
tire and the runway. The static friction coefficient is calculated based on
the force needed to break these bonds and move an object that was initially
at rest. Kinetic friction is calculated based on the frictional force developed
during sliding. For these cases of friction we apply Coulomb’s law

Fx = µFz (2.12)

where µ can either be µs in the case of static friction or µk in the case of
kinetic friction.

In order to remain consistent with the signs it should be recalled that the
friction force is a resistive force which is always opposite the direction of
relative motion of the sliding surface. Thus the form of equation (2.12) can
be written as

Fx = −µ vsx
|vsx |
|Fz| (2.13)

and for the calculation of the friction coefficient µglobal

µglobal = −Fx
Fz

|vsx |
vsx

(2.14)

In the case of braking, the sliding speed vsx is in the positive x-direction,
resulting in a friction force Fx in the negative x−direction which is consistent
with braking.

To calculate the transition point xs recall that in the adhesion zone
there is no sliding motion between the bristle and the runway. However as
the bristle moves through the contact zone, the deformation of the bristle
increases and consequently the adhesive force at the contact point increases.
The transition point xs is found at the point where the force due to adhesion
is equal to the force necessary to break the static friction.

dFax(xs) = −µsxqz(xs) (2.15)

Pressure Distribution - qz(x) In the basic brush model, we will define a
distribution of pressure along the contact zone. Assuming that the pressure
distribution is constant in the lateral axis, we define a parabolic distribution
along the longitudinal contact zone as follows

qz(x) =
3Fz
4a

(1− (
x

a
)2) (2.16)



Inserting equations (2.9), (2.10) and (2.16) into the transition point equa-
tion (2.15)we find

− cpxσx(a− xs) =
3Fz(−µsx)

4a
(1− (

xs
a

)2) (2.17)

and rearranging for xs

xs =
cpxσx4a3

3Fzµsx
− a (2.18)

In order to simplify the equations we will introduce a normalized slip
value defined as

σ̄ =
cpxσx2a2

3Fzµsx
(2.19)

Thus our equation for xs becomes

xs = (2σ̄ − 1)a (2.20)

Inserting the transition point xs into equation (2.11) we obtain the the
frictional force produced in the adhesion zone.

Fax = −1

2
cpxσx

(
a2 − 2axs + x2s

)
= −1

2
cpxσx

(
a2 − 2a(2σ̄ − 1)a+ ((2σ̄ − 1)a)2

)
= −1

2
cpxσxa

2
(
1− 2(2σ̄ − 1) + (2σ̄ − 1)2

)
= −1

2
cpxσxa

2
(
1− 4σ̄ + 2 + 4σ̄2 − 4σ̄ + 1

)
= −1

2
cpxσxa

2
(
4− 8σ̄ + 4σ̄2

)
= −2cpxσxa

2
(
1− 2σ̄ + σ̄2

)
(2.21)

Finally by substituting in σ̄ (from Eq. 2.19)we obtain

Fax = −2cpxσxa
2

(
1− 2

(
cpxσx2a2

3Fzµsx

)
+

(
cpxσx2a2

3Fzµsx

)2
)

Fax = −2cpxσxa
2

(
1− 4

3

cpxσxa
2

Fzµsx
+

4

9

c2pxσ
2
xa

4

F 2
z µ

2
sx

)

Fax = −2cpxσxa
2 +

8

3

c2pxσ
2
xa

4

Fzµsx
− 8

9

c3pxσ
3
xa

6

F 2
z µ

2
sx

(2.22)



2.3.3 Sliding Zone Forces

In the sliding zone, after the transition points xs, the friction force is
created due to the sliding of the bristle along the surface. We treat this as
classical sliding friction Fs = µkFz where µk is the kinetic (dynamic) friction
coefficient. In order to find the vertical force acting in the sliding zone, we
must integrate the distribution of vertical force from the rear of the wheel
(−a) to the transition point xs.
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Figure 2.5: Schematic of the sliding zone in the Brush Model. The total
sliding force is equal to the area under the curve of ESIk.



Fsx = −µk
∫ xs

−a
dFz(x)dx

= −µk
∫ xs

−a

3Fz

4a
(1− (

x

a
)2)

= −3Fzµk
4a3

∫ xs

−a
a2 − x2

= −3Fzµk
4a3

[
a2x− x3

3

]x=xs
x=−a

= −3Fzµk
4a3

[
a2xs −

x3s
3

+ a3 − a3

3

]
= −Fzµk

4a3
[
2a3 − x3s + 3a2xs

]
Substituting xs = (2σ − 1)a

Fsx = −Fzµk
4a3

[
2a3 − ((2σ̄ − 1)a)3 + 3a2((2σ̄ − 1)a)

]
= −Fzµk

4

[
2− (2σ̄ − 1)3 + 3(2σ̄ − 1)

]
= −Fzµk

4

[
2− (8σ̄3 − 12σ̄2 + 6σ̄ − 1) + 6σ̄ − 3

]
= −Fzµk

[
−2σ̄3 + 3σ̄2

]
And finally, re-substituting the value for σ̄

Fsx = −Fzµk

[
−2

(
cpxσx2a2

3Fzµsx

)3

+ 3

(
cpxσx2a2

3Fzµsx

)2
]

Fsx = −Fzµk

[
−16

27

c3pxσ
3
xa

6

F 3
z µ

3
sx

+
4

3

c2pxσ
2
xa

4

F 2
z µ

2
sx

]

Fsx = +
16

27

c3pxσ
3
xa

6µk

F 2
z µ

3
sx

− 4

3

c2pxσ
2
xa

4µk

Fzµ2sx
(2.23)

2.3.4 Total Friction Force

Finally, the total friction developed between the tire and the surface
is the addition of the friction due to adhesion Fax and the friction due to
sliding Fsx.



Fx = Fax + Fsx

Fx =

[
−2cpxσxa

2 +
8

3

c2pxσ
2
xa

4

Fzµsx
− 8

9

c3pxσ
3
xa

6

F 2
z µ

2
sx

]
+

[
16

27

c3pxσ
3
xa

6µk

F 2
z µ

3
sx

− 4

3

c2pxσ
2
xa

4µk

Fzµ2sx

]
(2.24)

Alternate Forms of the Basic Brush Model

The form of the brush model equation in 2.24 can be re-arranged in
several forms:

If we rearrange this in the form of a polynomial with σ as the independent
variable we get

Fx = −2cpxa
2σx +

c2pxa
4σ2x

Fz

(
8

3µsx
− 4µkx

3µ2sx

)
+
c3pxa

6σ3x
F 2
z

(
− 8

9µ2sx
+

16µkx
27µ3sx

)
(2.25)

Simplifying further

Fx = −2cpxa
2σx +

4

3

c2pxa
4σ2x

Fzµ2sx
(2µsx − µkx) +

8

27

c3pxa
6σ3x

F 2
z µ

3
sx

(−3µsx + 2µkx)

(2.26)

Other works on the brush model have simplified the model further by
µsx = µkx. However the science of Tribology (Chapter 6) has shown that the
static and dynamic coefficients of friction are only near equal for very low
sliding speeds. As the sliding speeds in tire-braking operations are normally
greater than 1m/2, we will not use the simplification µsx = µkx.

The next section will demonstrate the strong effect that a difference
between µsx and µkx has on the form of the µ-slip curve. However we can
rearrange equation (2.26) to obtain a ratio of µkx/µsx.

Fx = −2cpxa
2σx+

4

3

c2pxa
4σ2x

Fzµsx

(
2− µkx

µsx

)
+

8

27

c3pxa
6σ3x

F 2
z µ

2
sx

(
−3 + 2

µkx
µsx

)
(2.27)

The majority of curves in the aeronautical industry are presented as
µ-slip curves. This mu, is in fact a normalized braking coefficient F̄x =
−Fx/Fz or alternatively presented as µ or µglobal. To obtain this conven-
tional µ − slip curve from the basic brush model, we divide through by
Fz.



µglobal = −Fx
Fz

|vsx |
vsx

=
2cpxa

2σx
Fz

− 4

3

c2pxa
4σ2x

F 2
z µsx

(
2− µkx

µsx

)
− 8

27

c3pxa
6σ3x

F 3
z µ

2
sx

(
−3 + 2

µkx
µsx

)
(2.28)

Pure Slip

Recall that the brush model theory results in a repartition of the contact
area into two zones, an adhesion zone and a sliding zone. The derivation of
the brush model demonstrates that braking is not-possible without sliding.
This can be visually seen in the schematic of the bristle movement (Figure
2.4). From the moment that the tire begins to brake (slip ratio σx > 0) the
bristles at the rear of the tire will be sliding. As the slip ratio increases, the
sliding zone will grow at the expense of the adhesion zone. The point where
the entire contact zone is sliding we will call pure-slip. From section 2.3.2,
the contact zone will be in pure slip when the transition zone xs is equal to
the start of the contact zone a (In figure 2.5 this can be visualized as when
the transition point xs is at the point O. Thus the triangle representing the
adhesion force disappears and the entire contact zone has sliding friction).
Substituting xs = a into (2.18) we find the limit-slip at which the contact
zone is 100% sliding.

σox =
3Fzµsx
2a2cpx

(2.29)

If the tire-surface is in pure-slip, the µglobal should equal the dynamic/sliding
friction coefficient, µk. Substituting equation (2.29) into the µglobal form of
the brush model, equation (2.28) we find

µglobal = −µk

The point σox is important in the plotting of the µ-slip curve as it defines
the point of discontinuity where the adhesion force becomes nil and the tire
is in pure sliding. After this point the general form of the brush model is
not applicable. Therefore to plot the brush model we define two curves.



If σx ≤ σox then

Fx = −2cpxa
2σx +

4

3

c2pxa
4σ2x

Fzµsx

(
2− µkx

µsx

)
+

8

27

c3pxa
6σ3x

F 2
z µ

2
sx

(
−3 + 2

µkx
µsx

)
Else if σx > σox then

Fx = −µkx
vg
|vg|
|Fz|

Where

σox =
3Fzµsx
2a2cpx

What is interesting to note is the physical significance of pure slip in the
brush model. As mentioned before, the industrial notion of slip is measured
in terms of s, where 0 is a free rolling wheel and 1 is a blocked wheel. We
normally associated a wheel in 100% sliding as that of a blocked wheel (ω = 0
and s = 1), that is to say with 0 circumferential velocity, vc. However, the
brush model demonstrates that 100% (pure-slip) sliding can occur before s =
1, that is, while the tire is still rolling. Intuitively this seems contradictory.
Thus we re-visit the definitions of slip.

sx = vx−vc
vx

=
σx

1 + σx

σx = vx−vc
vc

=
sx

1− sx
Recall that the definition σx is used because in the brush model we are

directly measuring the longitudinal deformation of the bristle (Figure 2.3).

∆x(x) = xr(x)− x = −vx − vc
vc

(a− x) = −σx(a− x)

What does it mean in the brush model for a surface to be in pure-slip?
Essentially it means that the difference in speed between the tangential speed
at the top of the bristle,vc, and the tire forward movement speed, vx, is large
enough that at the moment a bristle enters the contact zone, the difference in
position between the top of the bristle and the bottom is large enough that the
bristle begins to slide. So although the tire is still rolling and thus the bristle
is still traversing the contact zone, the bristle is sliding. This as opposed to
the case of a blocked wheel, s = 0, where the bristles are 100% sliding, but
the bristles are not traversing the sliding zone because ω = 0,vc = 0.

2.4 Conclusion Basic Brush Model Derivation

This concludes the derivation of what we will call the Basic Brush Model.
That is to say, the Brush Model derived under simplified conditions such as:



parabolic distribution of pressure, constant µsx and µkx and linear tire-
stiffness. Chapters 3, 4, 5 and 6 will further develop the Brush Model to
consider the viscoelastic rubber material and its effect on the coefficient of
friction and the tire behavior. The following section (2.5) will perform a
sensibility analysis on the parameters in the Brush Model and identify the
key points on the µ− slip cuve.



Brush Model

If σx ≤ σox then

Fx = −2cpxa
2σx +

4

3

c2pxa
4σ2x

Fzµsx

(
2− µkx

µsx

)
+

8

27

c3pxa
6σ3x

F 2
z µ

2
sx

(
−3 + 2

µkx
µsx

)
(2.30)

Else if σx > σox then

Fx = −µkx
vg
|vg|
|Fz|

Where

σox =
3Fzµsx
2a2cpx

Variables and Units :

2a : Length of tire-surface contact zone [m]
cpx : Tire stiffness per unit length of contact zone length [N/m2]
σx : Longitudinal slip ratio [−]
Fz : Total vertical force applied on the wheel [N ]
Fx : Horizontal Force due to braking [N ]
µkx : Dynamic coefficient of friction [−]
µsx : Dynamic coefficient of friction [−]



2.5 Sensibility Analysis

2.5.1 Brush Model Form

The first step after deriving the brush model is to confirm that the mathe-
matical derivation produces a model that is consistent with basic tire-runway
theory based on the combination of experimental results in the automobile
world. To facilitate the comparison, we examine the shape of the µ-slip i.e.
µglobal = f(σx) which is the conventional curve used in tire-runway contact.

We can summarize that the brush model calculates the force of friction
from 6 variables for pure longitudinal slip

Fx = f(cpx, a, µkx, µsx, Fz, σ)

We recall that Fx is the combined friction force opposing the movement of
the tire, cpx is the tire stiffness coefficient per unit length in the longitudinal
axis, a is one half the length of the tire-surface contact zone, µkx is the
dynamic coefficient of friction at the tire-surface in longitudinal slip, µsx is
the static coefficient of friction at the tire-surface in longitudinal slip and Fz
is the vertical load on the tire.

First, a mathematical derivation of the brush model will reveal some key
points and characteristics of the µ-slip curve which will be of benefit when
trying to understand the physical effects of parameters.

Remark 1. The form of slip s is more commonly used in industry and has
a more physical sense in that it varies between 0 (free-rolling wheel) and 1
(blocked wheel). As such, the majority of the µ-slip figure below are plotted
using the form of slip, s.

Remark 2. Recall that the brush model can be in terms of the horizontal
friction force, Fx, or a µglobal where µglobal = −Fx/Fz. Because the ver-
tical load, Fz is constant as a function of slip, the shape of the µ-slip (or
Fxslip) curve remains the same in both cases, simply the scaling of the ordi-
nate changes. As such, the following plots may be in terms of Fx or µglobal
depending on which gives a more simplistic derivation.

Key Points on the µ-Slip Curve

Remark 3. Although our coordinate system specifies that braking produces
a negative Fx, the curves henceforth plot Fx in the positive y-axis for sim-
plicity.

Slope at Zero Slip

Taking the first derivative of (2.27) with respect to σx and setting σx = 0
will provide the initial slope of the µ-slip curve.
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Figure 2.6: Basic form of the friction-slip curve with key points

dFx
dσx

∣∣∣∣
σx=0

= −2cpxa
2 (2.31)

The above result establishes that the initial slope of the µ-slip curve is
proportional to the tire-stiffness, cpx. This result is consistent in that at
very small slips, we know that the majority of the contact zone is under
adhesion forces which are governed by the stiffness of the tire.

Optimal Slip Ratio

This is the slip value which provides the maximum friction available for
a given tire-surface. This value is important in anti-skid system control as
the goal of the anti-skid system is to regulate the brake pressure (which
in turn regulates the slip ratio) in order to achieve the maximum braking
possible. Maximum braking depends directly on achieving the maximum µ
possible. Using the first-derivative rule, we can mathematically determine
the local maximum of the brush model equation. Differentiating the brush
model equation (2.27) with respect to σx
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(2.32)
Since this is a polynomial of 2-degrees in the form Aσ2x + Bσx + C, we

can use the quadratic formula to find the roots

σx =
−B ±

√
B2 − 4AC

2A
(2.33)

where

A =
24

27

c3pxa
6σ2x

F 2
z µ

3
sx

(−3µsx + 2µkx)

B =
8

3

c2pxa
4σx

Fzµ2sx
(2µsx − µkx)

C = −2cpxa
2

Combining variables and simplifying

σx =
3Fzµsx
2cpxa2

−
(

2− µkx
µsx

)
±
√(

2− µkx
µsx

)2
+
(
−3 + 2µkx

µsx

)
(
−3 + 2µkx

µsx

)
 (2.34)

And further simplifying

σx =
3Fzµsx
2cpxa2


(
−2 + µkx

µsx

)
± mukx

µsx
− 1(

−3 + 2µkx
µsx

)
 (2.35)

Finally this gives two roots of σx

σx1 =
3Fzµsx
2cpxa2

[
−1

2µkxµsx
− 3

]

σx2 =
3Fzµsx
2cpxa2

Since Fx is a third order function with respect to σx we expect two points
of zero slope, a maximum and a minimum. The maximum will correspond
to the maximum friction and the optimal slip ratio. While the minimum
refers to the point where the adhesive forces become nil and the tire-surface
contact zone is in pure sliding. In this case, σx1 refers to the local maximum
while σx2 refers local minimum. Thus it is not surprising to find that σx2 is



equal to the σox that we calculated in equation (2.29) since both refer to the
point where the tire-surface is in pure sliding. The optimal slip ratio, σxopt
is then

OSR = σx1 =
3Fzµsx
2cpxa2

[
−1

2µkxµsx
− 3

]
(2.36)

Maximum Friction

Subbing the σxopt into the general equation for µglobal (2.28) we obtain
the µmax

µmax = − 3µsx
2µkxµsx

− 3
−

3µsx

(
2− µkx

µsx

)
(2µkxµsx

− 3)2
+

µsx
(2µkxµsx

− 3)2
(2.37)

Simplifying

µmax = −3µkx − 4µsx
(2µkxµsx

− 3)2
(2.38)

From this derivation we can determine some important characteristics
about the form of the µ-slip curve. The first is that if µkx = µsx then
σx1 = σx2 = σox. That is to say that the optimal slip ratio and consequently
the maximum friction force occurs when the tire contact zone is in pure
sliding. µkx = µsx results in a µ-slip curve without a true peak, simply an
asymptotic curve at µmax.

The second and most interesting development is that the brush model
equations determine that the maximum available friction does not depend
on the tire characteristics. The vertical force, the contact length, the slip
ratio and tire-stiffness variables all disappear. As such the maximum
available friction is a function only of the static and dynamic co-
efficients of friction.

2.5.2 Physical Effect of Variables

The reason to using the brush model is to introduce a friction model
that takes into account the characteristics of the environment to produce
a physical model. This produces a more robust, flexible friction model in
that if a parameter is changed such as tire size, tire pressure, tire type,
runway texture etc... the new braking performance could be modeled and
thus predicted.

In this section we examine the principal variables involved in the brush
model. We vary each parameter and note its effect on the µ-slip curve. We
then try to explain mathematically and physically the effect of each variable.



Tire-Stiffness Effect

Figure 2.7: Brush Model Effect of Tire Stiffness

Observation Figure 2.7 shows that as the tire-stiffness increases, the ini-
tial slope of the mu-slip curve increases. Although the µmax
remains constant, the optimal slip ratio sopt decreases.

Mathematical Proof From section 2.5.1, we note that the initial slope of the mu-
slip curve is proportional to 2cpxa

2. Also equation (2.38)
states that the µmax does not depend on the tire-stiffness.

Physical Sense A stiffer tire (larger cpx) implies that a greater force per
unit deflection will be required to deform the rubber. As
such, the transition point between adhesion and sliding will
happen at a lower slip ratio due to the fact that a smaller
deformation of the the rubber will be needed to overcome
the static coefficient of friction. Thus we expect that as
the stiffness of the tire increases, the optimal slip ratio will
decrease.



Static Friction Coefficient Effect

Figure 2.8: Brush Model Effect of Tire Static Mu

Observation As the µsx decreases, the optimal slip ratio decreases and
the maximum µglobal decreases as well.

Mathematical Proof Referring to equations (2.36) and (2.38) we can see that the
OSR and the µmax are proportional to the µsx.

Physical Sense Referring to figure 2.9, we note that increasing the µsx serves
two purposes. For a given tire-stiffness, we are increasing the
amount of deflection needed to break the static coefficient
of friction. That is to say, a greater slip ratio is needed. In
addition, we can see by figure 2.8 that increasing the µsx
and thus the σ means a larger area under the curve. This
implies that each bristle is allowed to deform more before
slipping, thus contributing to a higher force of adhesion.

-a a0x
s -a a0x

s

Figure 2.9: Tire Contact zone view of the effect of lowering the static coef-
ficient of friction



Dynamic Friction Coefficient Effect

Figure 2.10: Brush Model Effect of Tire Dynamic Mu

Observation We note that as the dynamic coefficient of friction decreases,
the optimal slip ratio and the µmax decrease.

Mathematical Proof Referring to equations (2.36) and (2.38) we can see that the
OSR and the µmax are proportional to the µkx. It can also
be noted in the diagram that the position of the limit-slip, σox
is unchanged. This corresponds with equation (2.29) which
has no µkx variable involved.

Physical Sense The dynamic coefficient of friction is the variable which gov-
erns sliding in the contact zone. If the µkx is small in com-
parison with the µsx, it means that the forces due to sliding
friction are insignificant compared to the forces due to adhe-
sion. Thus in order to achieve the µmax the majority of the
contact zone should be under adhesive forces. To achieve
this, the slip-ratio will be smaller in order to have a transi-
tion point xs closer to the rear of the tire.
In the reverse sense, if µkx is approaching the same value
as µsx then the sliding zone is producing more friction than
the adhesion zone. Thus as noted by equation (2.36), when
µkx = µsx the optimal slip ratio is found at the limit− slip
when the entire contact zone is in pure slip.



2.6 Introduction to Advanced Brush Model

The basic form of the brush model forms the foundation of the tire-
surface modeling. The brush model is presented as computing the total
force of friction as a function of 6 variables.

Fx = f(cpx, a, µkx, µsx, Fz, σx)

where Fx is the combined friction force opposing the movement of the tire,
cpx is the tire stiffness coefficient per unit length in the longitudinal axis,
a is one half the length if the tire-surface contact zone, µkx is the dynamic
coefficient of friction at the tire-surface in longitudinal slip, µsx is the static
coefficient of friction at the tire-surface in longitudinal slip and Fz is the
vertical load on the tire.

In order to have a complete equation we need the values for each of
these 6 variables. The variables Fz and σx are given parameters. The contact
length, a, is modeled as a function of the vertical load with experimental data
providing the formula. This leaves three variables that need to be defined to
complete the Brush Model: cpx, µsx and µkx. These three variables we call
unknown and must either be estimated or identified from experimental
data.

In order to estimate the unknown variables, we must be able to model
the parameters. This can be done using scientific pricipals and experimental
data to develop analytical models. Chapters 3, 4, 5 and 6 will determine
qualitatively and quantitatively the factors that affect the tire-stiffness, cpx,
and the static and dynamic coefficients of friction, µsx and µkx. To iden-
tify the unknown variables we will use experimental data and curve fitting
techniques to fit the Brush Model to the experimental data.

For the parameter estimation, we use three branches of science to model
these variables. The tire-stiffness, Cx is a mechanical characteristic of the
tire. It depends on the Strength of Materials, which determine the deforma-
tion of the tire, as well as Material Science, which determines the variation
of the tire materials shear modulus.

The Science of Tribology will form the base for the development of the
static and dynamic coefficients of friction. Tribology will be used to deter-
mine the complex interactions that are present between rubber and rough
surface sliding friction.

The Chapter on Material Science will characterize the behavior of the
rubber used in tires. It will be shown that the rubber characteristics vary as a
function of temperature and solicitation frequency. The rubber’s mechanical
strength will affect both the friction characteristics of the rubber as well as
the stiffness of the tire.

Figure 2.11 represents schematically the scientific approach we have used
to further develop the Brush Model.
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Chapter 3

Material Science

Summary. Ce chapitre est consacré à la compréhension des caractéristiques
mécaniques du caoutchouc utilisé pour les pneus des avions. Le caoutchouc
est un matériau viscoélastique, ce qui a d’importantes conséquences sur ses
propriétés mécaniques. Un matériau viscoélastique est un matériau pour le-
quel la relation entre la contrainte et la déformation est fonction du temps.
Nous pouvons définir plusieurs propriétés de base d’un matériau viscoélastique :

– Si la contrainte est maintenue constante, la déformation augmente avec
le temps (fluage)

– Si la déformation est maintenue constante, la contrainte diminue avec
le temps (relaxation)

– La rigidité effective dépend du taux d’application de la charge
– L’application d’une charge cyclique conduit à une hystérésis (décalage

de phase) qui entrâıne une dissipation de l’énergie mécanique
– Les ondes acoustiques subissent une atténuation
– Le rebond d’un objet suite à un impact est inférieur à 100%
– Lors du roulage, il se produit une résistance de frottement

Les propriétés viscoélastiques du caoutchouc sont importantes pour le frei-
nage des avions, en raison de la charge cyclique qui s’exerce sur le pneu
pendant que le caoutchouc glisse le long de la surface rugueuse de la piste.
En raison des propriétés viscoélastiques du caoutchouc, le décalage de phase
entre la contrainte et la déformation crée une dissipation d’énergie appelée
hystérésis. Le chapitre 6 démontre que cet effet d’hystérésis est la première
source du frottement pneu-piste. Nous pouvons définir, pour un matériau
viscoélastique, la contrainte (σ) et la déformation (ε) d’une sollicitation har-
monique sous la forme : [10]

ε = ε0 sin(tω)

σ = σ0 sin(tω + φ)

où ω est la fréquence de la sollicitation, t le temps et φ le décalage de phase
entre la contrainte et la déformation. Sachant que le module de Young est le



rapport de la contrainte sur la déformation, nous pouvons définir un module
de conservation (E′) et un module de perte (E′′)

E′ = <(E) =
σ0
ε0

cosφ

E′′ = =(E) =
σ0
ε0

sinφ

Un module de conservation et un module de perte en cisaillement (G′ et
G′′) peuvent être définis de la même manière, sachant que le module de
cisaillement est le rapport de la contrainte de cisaillement sur la déformation
de cisaillement. Le module de conservation et le module de perte peuvent
également être représentés comme des variables complexes :

E = E′ + iE′′

G = G′ + iG′′

Afin de mieux comprendre la composition du pneu, nous avons travaillé avec
le Laboratoire de Recherches et de Contrôle du Caoutchouc et des Plastiques
(LRCCP) situé en France, près de Paris, et qui est spécialisé dans l’analyse
des caoutchoucs et des polymères. Nous avons envoyé deux types de pneus
au LRCCP qui en a analysé la structure et les caractéristiques mécaniques.
Nous avons utilisé les données du LRCCP et l’équation de Williams-Landel-
Ferry (WLF) pour extrapoler les caractéristiques mécaniques dans la plage
de fréquence et de température. C’est-à-dire que nous avons utilisé la loi
WLF pour déterminer les caractéristiques mécaniques pour toutes les com-
binaisons de fréquences de sollicitation et de températures du caoutchouc.
Grâce à ce travail, nous avons pu calculer les caractéristiques mécaniques de
l’ensemble pneu-caoutchouc pour les conditions rencontrées lors du freinage
de l’avion.

Goal The goal of this chapter is to determine the mechanical characteris-
tics (the Young’s modulus, E, and the Shear Modulus, G) of the tire rubber.
These characteristics will have an influence on the Tribology which will be
developed in Chapter 6 and the Strength of Materials developed in Chapter 5.
As a consequence, this Chapter will have an direct impact on the evaluation
of cpx, µsx and µkx which are used in the derived form of the Brush Model
(Pg 50) as developed in Chapter 2.

3.1 Introduction

In order to understand the mechanical characteristics that will affect the
tire stiffness and the friction, we must first understand the material. The



General schematic of automobile tire construction.  

Carcass 

Figure 3.1: Typical composition of typical radial type tire used in the auto-
mobile sector

tire is a complex structure made up of several elements as shown in Figure
(5.6). For simplicity, we will model the tire as a two structure element made
up of the tire carcass and the tire tread. This simplification will become
more evident in Chapter 5 as we characterize the tire stiffness.

The tire tread, the part of the tire in direct contact with the ground, is
made of rubber. The formulation of tire rubber is a complicated chemical
process known as vulcanization. The exact additives used in this process are
usually closely guarded trade secrets. However, our experience has shown
that although various tires from separate manufacturers may exhibit dif-
ferent overall mechanical characteristics, the mechanical characteristics of
the rubber itself is often very similar. Thus the following discussion on the
viscoelastic properties of rubber pertains to aircraft tires in general and not
simply one manufacturer.

3.2 Material Properties of Rubber

3.2.1 Viscoelastic Properties of Rubber

Rubber is known as a viscoelastic material. In order to better under-
stand the mechanical characteristics of rubber, one must first understand
the nature of a viscoelastic material. In short, a viscoelastic material is
a material for which the relationship between stress and strain depends on
time. From [8] we can define seven basic properties of a viscoelastic material:

– if the stress is held constant, the strain increases with time (creep)
– if the strain is held constant, the stress decreases with time (relaxation)
– the effective stiffness depends on the rate of application of the load



– if cyclic loading is applied, hysteresis (a phase lag) occurs, leading to
a dissipation of mechanical energy

– acoustic waves experience attenuation
– rebound of an object following an impact is less than 100%
– during rolling, frictional resistance occurs
Another way to visualize a viscoelastic material is to think of the two ex-

tremes: a (near) purely elastic material and a (near) purely viscous material.
If we take a near-purely elastic material such as a rubber band and apply
a tensile force (stress), the rubber band stretches (strain) instantaneously,
and when the force is released the rubber band will return to its original
position instantaneously. That is to say that there is little-to-no phase lag
between the stress and the strain. To the other extreme, we think of an ex-
tremely viscous material like a jar of honey. If we apply a shearing force to
the top layer of the honey and then we suddenly remove this shearing force,
the honey will continue to displace (strain) for a period of time. Thus there
is a phase lag between the the stress and the strain. These two examples are
of course simplistic in nature, but they give a very simple understanding of
the lag that can occur between stress and strain.

Δx 

x 

Figure 3.2: Applying a force to a rubber block and measuring the displace-
ment ∆x

In rubber, the viscoelastic effect can be clearly seen by a phase lag be-
tween the stress and the strain. Figure 3.3 shows how the phase lag between
stress and strain can be calculated by cyclically loading the test specimen.
This phase lag creates a dissipation of energy known as hysteresis and, as
Chapter 6 will demonstrate, for aircraft tires this hysteresis effect is the
primary source of tire-runway friction.

Hysteresis

In rubber, the hysteresis effect can be observed as the dissipation of
mechanical energy when a specimen is loaded and unloaded. In a simple
tensile loading and unloading, the hysteresis effect can be observed as a
difference between the loading and unloading curves as shown in Figure 3.4.
That is to say, that the energy taken to load the specimen is greater than the
energy recovered when unloading the material. This dissipation of energy
is due to the molecular structure of rubber or other polymers. Polymers



Figure 3.3: Cyclic loading of a viscoelastic material demonstrates the lag
between stress and strain

are composed of polymer chains. These polymer chains intertwine together
to form the structure of the polymer – this polymer chain intertwining is
often visualized as a tangled bowl of spaghetti. When a polymer is put into
uni-axial tension these polymers begin to untangle and orient themselves in
the direction of the applied force. This untangling process requires energy
to alter the intermolecular bonds. As a result of this interaction of polymer
chains, we note that in general, the longer the chain length of the polymer
the higher strength a polymer has [22]. This is due to the fact that a longer
polymer chain will have more intertwining with adjacent polymer chains,
thus necessitating greater stress in order to alter the intermolecular bonds.

3.2.2 Viscoelastic Effects

Viscoelastic properties exhibit different characteristics under dynamic
(vibratory) conditions. The ratio of stress-strain under dynamic conditions
is known as the dynamic modulus, E(ω). For a perfectly elastic material,
when a stress is applied and removed the strain occurs instantaneously. That
is to say, the stress and strain are in phase. For a viscous material there is a
90◦ phase lag between the stress and the strain. For a viscoelastic material,
the phase lag is somewhere between 0 and 90◦.

For a viscoelastic material we can define the stress (σ) and strain (ε) in
harmonic solicitation as [10]

ε = ε0 sin(tω)

σ = σ0 sin(tω + φ)



The difference in the stress-strain relationship between elastic and viscoelastic materials. The 

area inside the loop of the viscoelastic stress-strain curves is the energy lost (hysteresis) 
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Figure 3.4: The difference in the stress-strain relationship between elastic
and viscoelastic materials. The area inside the loop of the viscoelastic stress-
strain curves is the energy lost (hysteresis)

where ω is the solicitation frequency, t is time and φ is the phase lag between
stress and strain. Knowing that Young’s Modulus is the ratio of stress over
strain we can define a storage modulus (E′) and a loss modulus (E′′)

E′ = <(E) =
σ0
ε0

cosφ

E′′ = =(E) =
σ0
ε0

sinφ

The storage and loss moduli in shear (G′ and G′′) can be defined in
the same way knowing that the shear modulus is the ratio of shear stress
over shear strain. The storage and loss moduli can also be represented as
complex variables

E = E′ + iE′′

G = G′ + iG′′

For materials that experience small phase angles (such as the rubber
used in an aircraft tire), we simplify and state that the storage modulus, E′

(real part of E), is approximately the static Young’s Modulus i.e E′ ≈ E,
while the loss modulus, E′′ (imaginary part of E), represents the dissipation
of energy due to the viscoelastic characteristics of the material i.e. E′′ ≈ Eφ.
The viscoelastic effect and its effect on the friction will be explore in Chapter
6, but in general we can show that µ = −CE′′/E = −Cφ i.e. we can
demonstrate that the friction due to the viscoelastic nature of the rubber is
proportional to the phase lag of the rubber.



3.2.3 Effects of Horizontal Displacement - Non Linear Effect

Another well noted characteristic of polymers is that the strength mod-
ulus diminishes with increasing stress. This reduction is due to the poly-
mer chains that are cross-linked. As a force is applied to a polymer, these
long chains will begin to align themselves in the direction of the force i.e.
the chains will begin to untangle. The energy is spent in untangling these
chains i.e. altering the intermolecular bonds, but as the chains begin to
align, the force needed to additionally stretch the chains diminishes. Al-
though in Chapter 5 we see this emerge in the diminishing of tire-stiffness
with horizontal displacement, the effect only becomes predominant for large
horizontal deflections that do not occur in normal operations. As a result
we will not take into account the effect of horizontal displacement on the
rubber mechanical properties. Note: Large deflections are not frequent in
longitudinal displacement of the tire, however in the lateral sense significant
deflections can occur.

3.2.4 Effects of Temperature

Polymers such as rubber have a characteristic temperature known as
the glass-transition temperature, Tg. At or around this temperature, the
mechanical characteristics of the material, notably the Young’s Modulus,
E, and shear modulus, G, change considerably. In general, below Tg the
material has glass like properties in that its stiffness E increases by several
orders of magnitude and the material becomes very brittle. For example,
striking a rubber block below its glass transition temperature will cause it to
shatter as though it were glass. For rubber the glass transition temperature
is approximately −70◦C although it can vary based on the use of additives
in the rubber.

We will come to see in the next section that the mechanical characteris-
tics are also a function of the solicitation frequency E(ω, T ) where ω is the
solicitation frequency and T is the temperature. The relationship between
frequency and temperature is such that increasing the solicitation frequency
is akin to increasing the glass transition temperature of the rubber. For
example, rubber solicited at a frequency of 108 − 109Hz will be in the glass
state at room temperature (300K).

The Williams-Landel-Ferry law provides a mathematical relation with
which to relate frequency and temperature

log(aT ) =
−C1(T − Ts)

[C2 + (T − Ts)]
(3.1)

C1 and C2 are constants, T is the actual temperature and Ts is a reference
temperature. For rubber Ts is normally taken as Ts = Tg + 50 and C1 and
C2 determined experimentally ([5])



log(aT ) =
−8.86(T − Tg − 50)

101.5 + T − Tg − 50
(3.2)

We can equate the Young’s modulus, E as a function of frequency and
temperature using the Williams-Landel-Ferry equation

E(ω, T ) ≈ E(ωaT ) (3.3)

So whereas the rubber was in the glassy state at T = 300K and ω ≈
108 − 109Hz, if the temperature is raised to T = 400K, then the frequency
at which the rubber becomes glassy increases by an order of magnitude
ω ≈ 109 − 1010Hz.

3.2.5 Effects of Solicitation Frequency

When rubber is sliding on a rough surface, the rubber continually slides
across and comes in contact with the peaks of the asperities as shown simply
in Figure 3.5. These peaks generate a solicitation frequency in the rubber
ω where

ω = vs/λ (3.4)

vs is the sliding velocity and λ is the wavelength of the asperity. Section
3.2.4 referred to the strong effect of the glass transition temperature. As the
temperature decreases towards the glass-transition temperature, the rubber
becomes stiffer (Young’s Modulus, E, increases). Below the glass transition
temperature, the rubber stiffness increases by several orders of magnitude.

h 

λ 

vs 


 sv


Solicitation Frequency 

Figure 3.5: Mechanical characteristics are a function of the solicitation fre-
quency defined by the sliding speed and the asperity length.



As the solicitation frequency increases, the hysteresis effect increases (as
shown in Figure 3.14 which plots the phase lag, φ as a function of the so-
licitation frequency). This has the analogous effect as increasing the glass
transition temperature of the rubber. Thus for a constant temperature (ne-
glecting any frictional heating), as the sliding velocity increases the rubber
will become stiffer (E increases). Section 3.2.4 demonstrated that rubber
will transition to the glassy state at room temperature if the solicitation
frequency is ω ≈ 108 − 109Hz. This effect is significant in tire braking ap-
plications where the rubber can be solicited at frequencies of 106. Although
this frequency is not in the glass transition region, the dynamic modulus is
significantly larger at these frequencies than at low frequencies. As a tire
brakes, the brush model demonstrates that the rear part of the tire is in
pure sliding. We know that a runway surface is not flat. In fact at the
microscopic level, a runway (or roadway) presents a structure similar to
mountainous terrain i.e. a collection of peaks and valleys. From [14] we can
define a runway (or roadway) surface as a fractal surface, or “self-affine”
surface. A self-affine surface has the property that if we change the scale,
the surface morphology does not change. Thus we can represent a runway
as a set of asperities with a known width to height ratio and within these
asperities will be a smaller set of asperities with approximately the same
width to height ratio (Figure 3.6). This concept of runway surface texture
is expanded further in Section 6. What is important to note is that this run-
way texture will generate a range of solicitation frequencies in the rubber
which can be predicted based on knowledge of the runway texture.

Example An aircraft comes in for landing at approximately 139knots
or 71.5m/s. The regulation of the anti-skid system may generate slip ratios
up to 14% resulting in a sliding speed at the tire-runway interface of approx-
imately 10m/s. The runway is modeled as a fractal surface which can be
shown under different magnifications in Figure 3.6. For the largest aspertiy
sizes of 1mm, the local rubber is being solicted at 10,000Hz. At a magni-
fication of 10 the rubber in that region is being solicited at 100,000Hz and
at a magnification of 100, the local rubber is being solicted at 1,000,000Hz.
For a constant temperature, if the soliciation frequency changes from 104

to 106 this causes approximately a 6 times increase in the loss modulus,
G′′. Consequently, there is a significant effect on the disspiation of energy
(hysteresis) due to the viscoelastic characterteristics of the rubber.
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Figure 3.6: Example of rubber sliding on a runway represented by a fractal
surface. At each magnification level, the solicitation frequency is higher.

3.3 Aircraft Tire Composition

One type of aircraft may have several different tire types available to be
installed on the aircraft. For the purpose of this study we will look at two
tires coming from two different manufacturers – Tire A and Tire B . These
two tires have nearly the same external dimensions in order to properly
fit on the aircraft, however due to their different manufacturers the tire
characteristics may be different. Tire A will be used as the reference tire
in which the majority of the tests will be performed. Tire B will be used
to make comparisons to Tire A in order to determine the effect different
construction techniques may have on tire properties.

We have enlisted the help of the Laboratoire de Recherches et de Controle
du Caoutchouc et des Plastiques (LRCCP) which is a research laboratory
specializing in the analysis of rubber and plastics near Paris, France. LR-
CCP was given both Tire A and Tire B and the structure of the tire and the
mechanical characteristics were analyzed. The following is a small summary
of the work done by LRCCP and the subsequent analysis of the results as
it relates to the viscoelastic properties of rubber.

3.3.1 Tire Tread Rubber Analysis

The rubber from the tire-tread of both Tire A and Tire B were analyzed.
The results showed that the rubber used within the tire tread from each
manufacturer performs similarly, that is to say they have roughly the same
mechanical properties. Consequently, the following analysis is applicable
independent of the tire manufacturer.
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Figure 3.7: Storage Shear Modulus -G′(Pa)- as a function of temperature
for a rubber specimen solicited at a given frequency

As reviewed in Section 3.2 the primary effect that will affect the rubber
properties is the temperature frequency effect. To investigate this effect a
mechanical analysis is performed using Dynamic Mechanical Test (DMA).
This test consists of applying a shear load to the test specimen at a given
frequency and a given dynamic strain while varying the temperature of the
specimen. This test can be repeated for several frequencies to obtain an
array of points as a function of frequency and temperature. From this test
the following data is determined

– δ - Phase Lag between stress and strain
– G′ - Storage shear modulus
– G′′ - Loss shear modulus

Figures 3.7, 3.8 and 3.9 show the initial results from the DMA tester for
a rubber specimen at a given sampling frequency.

A subset of this data, the tan(δ), can be plotted in the frequency domain
as shown in Figure 3.10. We note that the testing was performed for tem-
peratures from −60◦C to 80◦C and for a frequencies from 2Hz up to 200Hz.
We wish to use this data to determine the mechanical characteristics of the
rubber when it is solicited at high frequencies. As we have shown in Figure
3.6, within the tire-runway contact area the rubber can be solicited in the
megahertz range due to the micro asperities.

To extrapolate the measured data we use the Williams-Landel-Ferry
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Figure 3.8: Loss Shear Modulus - G′′(Pa)- as a function of temperature for
a rubber specimen solicited at a given frequency
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Figure 3.9: Phase Lag -δ - as a function of temperature for a rubber specimen
solicited at a given frequency
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Figure 3.10: The tan(δ) data that was measured at different frequencies and
temperatures is plotted as a function of the solicitation frequency.

(WLF) law. The WLF law is an empirical law using time-temperature su-
perposition to calculate the relationship between temperature and frequency.
The law takes the form:

log(aT ) =
−C1(T − Tref )

[C2 + (T − Tref )]

From the mechanical testing we can determine the coeffiicents C1 and C2

which vary depending on the rubber properties. To create a Master Curve
at a temperature of 23◦C, we use this value as the Tref . Then for the each
of the iso-thermal lines shown in Figure 3.10, we can compute the frequency
shift aT that is necessary to represent that data point at a temperature of
23◦C.

This process is shown in Figure 3.11. We see that each iso-therm is
shifted so that it forms the master curve at a reference temperature of 23◦C.
With the master curve create, a curve fitting can be passed through the data
to eliminate the noise.

This process can be repated for the loss modulus and the storage mod-
ulus to obtain the master curves for both of these mechanical properties.
To determine the time-temperature relationship for temperature other than
that of the reference, the frequency shift from the reference temperature
must be computed using again the WLF law.

log(aT ) =
−C1(T − Tref )

[C2 + (T − Tref )]



Measurements 

Figure 3.11: The tan(δ) data that was measured is shifted to a reference
temperature of 23◦C using the Williams-Landel-Ferry law.

Below, we plot the time-temperature curves for the reference tempera-
ture T = 23◦C as well as at T = −50◦C and T = 75◦C. These experi-
mental curves validate the Material Science theory regarding the effects of
temperature and solicitaiton frequency. Figure 3.13 shows that at a tem-
perature of −50◦C, the rubber approaches a brittle state (characterized by
the large modulus) without the rubber being soliciated. This demonstrates
the glass transition temperature for unsolicited rubber. Taking a look at the
T = 23◦C curve, we see that if the rubber were to be solicited in the 1010Hz
range, the rubber would approach a brittle state while at room temperature.

An example of these curves is shown in Figures 3.12, 3.13 and 3.14.
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Figure 3.12: Using the WLF law, we extrapolate storage modulus data to
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Figure 3.13: Using the WLF law, we extrapolate loss modulus data to the
frequency domain for rubber reference temperatures
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Figure 3.14: Using the WLF law, we extrapolate phase lag data to the
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3.4 Conclusion

By analyzing the components of the tire, we were able to determine
the mechanical characteristics (E or G) of the tire components, most no-
tably the tire tread. These characteristics depend on several factors such
as the strain,ε, the temperature, T , and the solicitation frequency, ω. The
Williams-Landel-Ferry equation allows us to extrapolate the data for tem-
perature and frequency to obtain data for the domains that are not possible
to test for e.g. high frequency. When all the data is combined, we are able
to predict the mechanical characteristics of the rubber as a function of tem-
perature and frequency which will then be used as an input in the modeling.
These characteristics will most notably apply in Chapters 5 and 6 as the tire
tread mechanical properties will influence the tire-runway friction and the
tire stiffness.





Chapter 4

Tire Runway Contact Zone

Summary. Pour modéliser les forces de frottement dans la zone de contact
avec le pneu, nous devons connâıtre les charges verticales dans cette zone. Le
modèle de la brosse décrit au chapitre 2 a été dérivé en utilisant une distri-
bution parabolique des pressions dans la zone de contact. Dans ce chapitre,
nous utilisons des données issues des essais conduits sur des pneus d’avion
qui montrent une distribution des pressions plus plate le long de la longueur
de contact. Nous avons donc modélisé la distribution de pressions sous forme
de distribution quadratique. Nous avons inséré la distribution quadratique
dans la forme du modèle de la brosse et avons tracé la modification de l’as-
pect de la courbe µ − slip due à la distribution quadratique des pressions.
Ensuite, nous avons introduit le concept d’” aire de contact réelle ”. L’aire
de contact réelle, AR est la zone qui est en contact direct atome-atome
quand deux surfaces sont en contact. AR est significativement différente de
l’aire de contact apparente, AA, qui est l’aire totale entre les deux surfaces.
Pour étudier l’aire de contact réelle, nous avons d’abord utilisé la théorie du
contact de Hertz qui permet d’estimer la taille de la zone de contact entre
deux corps élastiques. Hertz a mené des expériences au cours desquelles il a
pressé l’une contre l’autre deux sphères de rayon R1 et R2 (voir Figure 4.8)
et déterminé la taille de la zone de contact, ∆A. La théorie de Hertz nous a
permis de déterminer des tendances concernant l’aire de contact réelle : 1. il
existe une relation F 2/3 entre l’aire de contact, ∆A et la force de contact ; 2.
si l’aspérité de contact est plus pointue, c’est-à-dire si le rayon de l’aspérité
décrôıt, l’aire de contact réelle diminue. Cependant, la théorie de Hertz a
un inconvénient majeur quand elle est appliquée pour le contact entre du
caoutchouc et une surface dure : elle suppose que toutes les aspérités ont la
même hauteur et se situent dans le même plan. Ainsi, quand le caoutchouc
est pressé sur la surface, il entre immédiatement en contact avec toutes les
aspérités en même temps. Cette condition idéale est éloignée de la réalité
pour une surface dont la rugosité est aléatoire, avec des aspérités dont la
hauteur est distribuée de manière aléatoire. Pour remédier à ce problème,



nous avons utilisé la théorie de Greenwood. La théorie de Greenwood donne
des résultats intéressants. Généralement, nous pouvons dire que l’aire de
contact réelle est proportionnelle à la charge et que la taille moyenne des
zones de contact ∆A/∆N est indépendante de la charge. Physiquement,
ceci démontre que lorsque la charge augmente et que le caoutchouc s’en-
fonce sur les aspérités, de nouvelles zones de contact se forment en continu.
En conséquence, l’aire de contact réelle s’accrôıt à deux niveaux : aux jonc-
tions déjà formées et aux nouvelles jonctions formées par le caoutchouc qui
s’enfonce et rencontre d’autres aspérités. C’est ce phénomène qui forme la
base de la 1st loi du frottement (loi de Coulomb Fx = µFz), décrite au cha-
pitre 6. Cependant, les hypothèses simplificatrices ci-dessus considèrent un
caoutchouc sur lequel s’exerce une charge nominale. Si la charge verticale sur
le caoutchouc devient très élevée, il y aura moins d’aspérités avec lesquelles
enter en contact. En conséquence, à un certain point, l’aire de contact réelle
ne sera plus proportionnelle à la charge, car le taux de formation de nou-
velles zones de contacts ira en diminuant. Cette situation peut se retrouver
pour les pneus d’avion qui subissent des pressions de contact supérieures à
25bars. Ce phénomène est décrit au chapitre sur la tribologie (6). La fin de
ce chapitre modélise la texture de la piste et la distribution des aspérités.
Le point important pour les frottements est que la surface typique d’une
piste ou d’une autoroute peut être approximée comme une surface fractale
auto-affine. Une surface fractale peut être considérée comme présentant des
aspérités à l’intérieur d’aspérités. Autrement dit, si nous agrandissons une
aspérité de grande taille, nous constatons qu’elle est couverte de plus petites
aspérités. Un autre agrandissement de ces petites aspérités révèlera un autre
ensemble d’aspérités de taille inférieure. Techniquement, une surface fractale
auto-affine ne change pas sous un agrandissement anisotrope.

Goal The goal of this chapter is to develop the models to determine the
contact length, a, for use in the derived form of the Brush Model (Pg 50) as
developed in Chapter 2. The tire contact area and real area of contact will
also influence the tribology as derived in Chapter 6

4.1 Apparent Area of Contact

The contact zone is where the friction forces are generated. As seen
in Section 2.3, the size and the pressure distribution of the contact zone
influence the shape of the µ− slip curve and thus the braking force. There
are three main properties associated with the contact zone: the length of
the contact area, 2a, the shape of the contact area (rectangular, circular,
oval ...) and the contact pressure distribution (parabolic, quartic ...).

The apparent area of contact is the total area under the tire that seems
to be in contact with the surface. In general, we assume that this area is



that which is enclosed by the perimeter of tire-surface contact zone. Auto-
mobile tires have an elliptical shaped contact zone and thus the apparent
area of contact can be calculated by AAcar = πab where a and b are one
half of the ellipses major and minor axis respectively. Aircraft tires, due
to their strong internal structure have an apparent area of contact that is
nearly rectangular. Thus the apparent area of contact can be calculated by
AAaircraft

= 4ab where a and b are the one half the length and the width of
the tire contact zone respectively.

From the derivation of the Brush Model in Chapter 2, we assume that
all parameters remain constant in the lateral direction and derive in the
longitudinal direction using the length, 2a. We use a experimental data to
obtain the length of the contact zone, 2a, through a relation between the
vertical load, Fz and the tire pressure, P . For a semi-rigid structure such
as a tire, as the vertical load increases, the contact length increases. We
interpolate between points.

4.2 Contact Pressure

The relation between the contact pressure and the contact area is com-
plex in tires due to their semi-rigid structure. We can illustrate the com-
plexity by examining the two extremes between a rigid body and an elastic
(inflatable) body. We examine a rigid wheel (for example a wooden wheel)
and an elastic wheel (for example an inflatable rubber tube). In the case
of the rigid wheel, the contact area is fixed. As the wheel is loaded, the
contact pressure increases proportionally with the load. Conversely, with an
elastic wheel as the load increases the contact area increases. As a result
the contact pressure distribution remains constant at P = Fz/A. Where P
is the contact pressure, Fz is the vertical load on the wheel and A is the
contact area. If the elastic wheel is an inflatable body (such as an inflatable
rubber tube) then the contact pressure is equivalent to the gauge pressure,
Pg inside the tube.

An aircraft tire falls between a rigid and elastic body. Although the tire
is inflated with air, the tire housing, including the tire carcass and sidewalls,
give the tire additional load bearing capabilities. This results in part of the
vertical load being assumed by the internal air pressure and the other part of
the load being taken by the internal tire structure. As such, the tire contact
length and contact pressure cannot simply be calculated using Fz = Pg/A
with either A or Pg constant as in a rigid or elastic body respectively.

4.2.1 Pressure Distribution

Figure 4.2 provides an indication of the pressure distribution for an air-
craft tire under static vertical loading conditions. The tire internal gauge
pressure is 17bar. If the tire was an elastic body, the pressure distribution
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Figure 4.1: Difference between a rigid body and a elastic body

would be constant at 17bar across the entire contact zone. However we see
in Figure 4.2 that we have contact pressures up to 25bar and in Figure 4.3
that the pressure distribution is not quadratic as was derived in the Basic
Brush Model (Chapter 2.3).

To provide a flatter pressure distribution, we use a quartic polynomial to
represent the pressure distribution. In order to determine the effect that a
quartic pressure distribution has on the Brush Model, we compare the shape
of the µ−slip curve calculated with two different pressure distributions: the
quadratic pressure distribution used in the derivation of Chapter 2.3 and a
quartic pressure distribution from [23].

Quadratic Pressure Distribution

qz(x) =
3Fz
4a

(1− (
x

a
)2) (4.1)

Quartic Pressure Distribution

qz(x) =
5Fz
8a

(1− (
x

a
)4) (4.2)

At this time, we will not re-derive the Brush Model with the quadratic
pressure distribution. Instead we provide several figures which demonstrate
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Figure 4.2: Pressure map of the contact zone between an aircraft tire and
the runway. The color red represents contact pressures of 25bar, while the
color blue represents contact pressures of less than 5bar.
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Figure 4.3: Averaged Pressure distribution from the middle tire tread versus
the quadratic pressure distribution as used in the derivation of the Brush
Model (see Chapter 2.3)

the different form that the Brush Model takes on when a quartic pressure
distribution is used.

Figure 4.5 presents the µ − slip curve for a quadratic and a quartic
pressure distribution for specified conditions of µkx, µsx, Fz and cpx which
fall within the normal range. We note that the quartic curve does not have
the conspicuous hump that we have come to recognize for the µ−slip curve.
The optimal slip ratio for these two cases are very similar: sopt = 0.096 and
sopt = 0.104 for the quadratic and quartic curves respectively. However,
there is a large difference of the point at which pure-slip begins i.e. the
slip ratio at which the entire tire contact zone is sliding. For the quadratic
curve, the sox occurs around 0.175 whereas for the quartic curve the sox is
around 0.260. Figure 4.4 plots the difference in the shape along the contact
zone. We recall that to the total braking force is the addition of the adhesion
forces and the sliding forces.

We perform the same sensibility analysis as in Section 2.5 to observe the
effect that changing the input variables Cx, µsx and µkx have on the form
of the µ− slip curve. The variables effect is shown in Figure 4.6
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Figure 4.4: For a fixed slip ratio of 6.8%, we note the difference in form of
a parabolic pressure distribution versus a quadratic pressure distribution
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Figure 4.5: The µ− slip curve for a polynomial pressure distribution (solid
line) and a quadratic pressure distribution (dashed line).
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Figure 4.6: These figures display the form of the µ-slip curve using a quartic
pressure distribution. We plot the effects on the µ − slip curve by varying
Cx, µsx and µkx in Figures 4.6a, 4.6b and 4.6c respectively



Conclusion The quartic pressure distribution provides an interesting de-
velopment step in the Brush Model derivation. At first glance, the pressure
distribution seems to be better correlated with the actual pressure distribu-
tion measured on aircraft tires. However, the pressure measurements taken
for aircraft tires were under static conditions i.e. no rolling or braking. As
such, the pressure distribution may not be representative of the pressure
distribution when braking. The shape of the µ − slip curve is significantly
different when using a quartic pressure distribution. It remains to be seen
(when comparing with flight test data) whether the shape is more or less
representative of actual µ− slip data points.

4.3 Tire Treads

Tire treads on aircraft tires are relatively simple when compared with the
complex patterns found on automobile tires. Aircraft tires are most often
outfitted with simple circumferential grooves that number between 2 and 5.
The primary purpose of these treads is for operations on wet/contaminated
runways. These treads allow a channel for the eviction of liquid contam-
inants (primarily water or slush). This aides in preventing a build up of
dynamic pressure in the liquid contaminant, which, if sufficiently large, can
lift the tire from the contact surface, resulting in hydroplaning.

Aircraft tires are defined by a gross contact area and a net contact area.
The gross contact area is the full area enclosed within the border of the
tire-surface contact area. The net contact area is the amount of rubber
underneath the tire-surface contact area minus the effect of the treads. To
give a rough order of magnitude for an aircraft tire (limited treads compared
to a automobile), the net contact area is on the order of 10% less than the
gross contact area. The net result of having less rubber in contact with the
surface (due to the tire treads) is that the contact pressure is higher than if
there was not treads.

Figure 4.7: Comparison between the tire tread design of aircraft and auto-
mobiles



4.4 Real Area of Contact

4.4.1 Introduction

The real area of contact is a concept that will have significant importance
for the sliding friction. This effect of the real area of contact on friction will
be presented in Chapter 6. Here we will introduce the concept of the real
area of contact and give some basic laws used for calculating it.

The real area of contact, AR refers to the surface area which is in direct
atom to atom contact when two surfaces are in contact. As we will see, the
AR is significantly different than the apparent area of contact, AA, which as
we saw in Section 4.1, is the total enclosed area between the two surfaces.
Before beginning the derivation, an example using metal contact will provide
a quick impression of the real area of contact.

Example 2. Metal-Metal Contact (from [12])
We assume that as a metal block with mass, M , is lowered onto the hard
metal surface that a single contact is formed giving rise to compressive stress.
As the block is lowered, more junctions begin to form until the entire load of
the metal block is balanced by the contact pressure integrated over the total
area, ∆A, of the junctions. We assume that each junction is in a state of
incipient plastic flow governed by σc, where σc is the penetration hardness
i.e. the largest compressive stress that the material can support without
yielding plastically. Thus from this scenario we can derive

Mg = σc∆A

For the case of a metal cube of size 10cm × 10cm × 10cm, the load due to
gravity is on the order of ≈ 100N and the penetration hardness for steel
is on the order of ≈ 109N/m2. This gives a real area of contact, ∆A of
≈ 0.1mm2 compared to the apparent area of contact of 10000mm2.

From experiments, we can expect for metal-metal contact approximately
1000 junctions each with a diameter on the order of ≈ 10µm.

4.4.2 Real Area of Contact for Rubber

We have shown that for contact between two surfaces, the real-area of
contact is significantly less than the apparent area of contact. Calculating
the real area of contact for rubber will have several difficulties related to the
viscoelastic nature of rubber as discussed in Chapter 3.

Hertz Contact Theory

We start by describing the Strength of Materials theory as derived by H.
Hertz which derives the size of the contact area between two elastic bodies.
Hertz performed experiments where two spheres with a radius R1 and R2



(see Figure 4.8) are pressed together and the size of the area of contact, ∆A
is determined. Hertz found that the contact area ∆AA = πr20 where

r0 =

(
R1R2

R1 +R2

)1/3

(E∗F )1/3 (4.3)

where

E∗ =
3

4

(
1− ν21
E1

+
1− ν ′2

2

E2

)
(4.4)

where E1, ν1, E2, and ν2 are the elastic modulus and Poisson ratio
for material 1 and 2 respectively. From Hertz, we can also determine the
distance u that the two surfaces approach each other by

u =

(
R1 +R2

R1R2

)1/3

(E∗F )2/3 (4.5)

To apply Hertz theory to our system of rubber sliding on a hard surface
we will define rubber as Material 1 and the rough surface as Material 2 (See
Figure 4.8). The Elastic modulus of rubber is several orders of magnitude
smaller than that of a hard surface, E2 >> E1, thus we simplify 4.4 to

E∗ =
3

4

(
1− ν21
E1

)
(4.6)

For the hard surface, we assume for the moment that contact is taking
place at one single asperity for which has a radius R2 that is much smaller
than the radius of the rubber i.e. R2 << R1. As such the ratio (R1R2)/(R1+
R2) ≈ R2 and thus 4.3 combined with 4.6 evalutes to

r0 =

(
3

4

(
1− ν21
E1

)
FR2

)1/3

(4.7)

and 4.5 becomes

u =

(
1

R2

)1/3(3

4

(
1− ν21
E1

)
F

)2/3

(4.8)

From the Hertz theory, we can determine some tendencies re-
garding the real area of contact. The first is that the area of
contact, ∆A is related to the contact force by F 2/3. The second is
that if the contact asperity is more pointed i.e. the radius of the
asperity decreases, the real area of contact decreases.

However the Hertz theory has one major drawback when used for rubber-
hard surface contact; it assumes that all of the asperities are of equal height
and found in the same plane. Thus when the rubber is lowered onto the
surface, it immediately makes contact with all asperities at the same time.
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Figure 4.8: Hertz Idealized contact is applied to the case of rubber being
pushed against a (or several) hard asperities

This idealized condition is not very realistic for a randomized rough surface
which will have a randomized distribution of asperity heights. To treat this
problem we use the Greenwood theory as described by Persson in [20](pg
49-51).

Greenwood Contact Theory

We approximate a surface as consisting of N spherical asperities, each
with the same radius, R, but with different heights. The rubber is idealized
as a flat plane. NΦ(z)dz is the number of spheres between heights z and
z + dz i.e. Φ(z) is the height probability distribution. If the rubber surface
is at a vertical distance d, then all asperities with a height greater than d
will be make contact and they will compress the rubber a distance u = z−d.
If we assume Hertz contact theory and thus equations 4.5 and 4.3 then the
asperity contact area equals πr20 = πRh = πR(z − d) and the asperity load,
L, equals R1/2h3/2/E∗, The total number of contacts is then

∆N =

∫ ∞
d

dzNΦ(z) (4.9)

and the area of real contact is

∆A =

∫ ∞
d

dzNΦ(z)πR(z − d) (4.10)



and the total load

L =

∫ ∞
d

dzNΦ(z)R1/2(z − d)3/2/E∗ (4.11)

Assuming a Gaussian height distribution and simplifying as we are only
concerned for z close to d we can approximate Φ(z) as

Φ(z) ≈ Aeλ(z−d) (4.12)

where

A =

(
1

2πl2

)1/2

e−(d−z0)
2/2l2

λ =
d− z0
l2

where l is the rms width of the probability distribution.

Inserting the probability distribution into 4.9 and 4.10 we find

∆N = NA/λ (4.13)

∆A = πNRA/λ2 (4.14)

L = (2π)1/2NR1/2A/(E∗λ5/2) (4.15)

This theory provides some interesting results. In general we can say that
the real area of contact is proportional to the load and that the average size
of the contact areas ∆A/∆N is independent of the load. Physically this
demonstrates that as the load increases and the rubber sinks into
the asperities, new contact area are continuously being formed.
Consequently, the real area of contact is growing from two sources:
at the junctions that have already been formed, and at new junc-
tions as the rubber sinks down and encounters other asperities.
It is in fact this phenomenon that forms the basis of the 1st Law of Friction
(Coulomb’s Law Fx = µFz)which will be described in Chapter 6.

However, the simplifications made above consider nominally loaded rub-
ber. As the vertical load on the rubber becomes highly elevated, there will
be less asperities with which to come in contact with. As a result, at a
certain point the real area of contact will no longer be proportional to the
load since the rate of formation of new contact areas will decrease. This
may be the case for aircraft tires which experiences contact pressures over
25bars. This phenomenon will be explored in the Chapter on Tribology (6).



Rolling Tire

The previous section has dealt with the tire statically loaded. When a
tire is rolling or braking, as in our case, we must also take into account the
viscoelastic effect of the rubber as it is solicited by the surface asperities.
We recall that the viscoelastic effect was described in Chapter 3(pg 68).
As a consequence, in the equations (4.13) to (4.15) we must consider the
variation in mechanical strength (E and G) as a function of temperature
and frequency.

Figure 4.9: Images of a glass sphere rolling in an epoxy resin at differing
speeds. From [20] The viscoelastic effect on the size and shape of the contact
area is well demonstrated in this Figure. The photographs if the glass sphere
rolling in an epoxy resin is taken from below and thus shows the contact
area. At rest (top left) the contact area is spherical. As the sphere begins
rolling (the sphere is rolling to the left), the contact area deforms. However,
above a certain speed the frequency solicitation in the epoxy resin causes
the resin to stiffen i.e. the loss shear modulus, E′′ becomes large.

4.5 Runway Macrotexture

The previous sections have dealt principally with the characteristics of
the tire. This section takes a look at the runway texture and its influence on



the tire-runway contact area. Airport runways are built to strict regulations
governing the surface texture for friction characteristics. The majority of
airports follow the definitions as set out in ICAO Aerodrome Design Manual
Part 3 - Pavements. We will not go into details into this documents, but
one of the primary criteria is:

– The average surface texture depth of a new surface shall be not less
than 1.0 mm.

In terms of detailed analysis of textures, more information is available for
automobile surfaces such as highways, roads and bridges. Some examples
of surface textures used on highways in Europe is available from the Na-
tional Concrete Pavement Technology Center [21]. In Figure 4.10, we show
the surface characteristics for two highways, one which is has been recently
refurbished 3 years ago, while the other highway surface is approximately
7 years old. Although a direct comparison can not be made regarding the
amount of degradation of texture with age (since the highways were con-
structed at different times in different countries), the images show that the
peaks of the asperities seem more worn with age.

What is important from a friction point of view is that surfaces typical
of a runway or highway can be approximated as self-affine fractal surfaces.
A fractal surface can be thought of as having asperities within asperities.
That is to say if we zoom-in on a large asperity we will see that itself is
covered in smaller asperities. Another zoom on these small asperities will
reveal a set of even smaller asperities. More technically, a self-affine fractal
surface does not vary under anisotropic magnification.

In the surface analysis of a runway we can plot the power spectral height
density, C(q) as a function of wavelength, q. For wavelengths greater than
the cut-off wavelength, q0 (usually 1mm corresponding to the larger stone
sizes), we can model the power spectrum as a fractal surface by

C(q) = C0
q

q0

−2(H+1)
(4.16)

where C0 is the rms-roughness amplitude. By regarding the power spec-
tral height density as a function of the wavelength, we can determine the
Hurst exponent, H, which varies between 0.6 to 0.8 for a typical runway.
From H, we can determine the fractal dimension Df by H = 3−Df . Thus
for a typical runway, we expect a fractal dimension of Df ≈ 2.2 to 2.4. [12]



(a) 3 Years Old

(b) 7 Years Old

Figure 4.10: Runway texture distribution for two different highways of dif-
ferent age [21].



4.6 Conclusion

This Chapter has been used to identify and describe the principal char-
acteristics of the tire-runway contact zone that will affect the friction. We
have put in place an empirical model to determine the length of the contact-
zone, a, as a function of the vertical load, Fz. This model will provide the
value of a to be inputted into the Brush Model equation (Eq. (2.30) pg 50).

The pressure distribution for an aircraft tire has been studied and found
to be better represented by a 4th order polynomial then the 2nd order poly-
nomial used in the original derivation in Chapter 2.

In addition, we introduced the concept of real area of contact. The im-
plications of this theory will become more relevant in Chapter 6 - Tribology,
but in general we have demonstrated that the rubber rests on the top of
asperities which form the hard surface. This has two repercussions: the
first being that the actual surface area which is in direct contact between
the rubber and the hard surface is a small fraction of the apparent area of
contact (≈ 5−10%), while the second repercussion is that the contact stress
is higher since the vertical load is supported by a much smaller surface area.

Lastly, we modeled the surface texture of typical road / runway surfaces.
We found that we can represent a typical runway surface as a self-affine
fractal surface. That is to say that large asperities, are themselves covered
by small asperities of approximately the same height to wavelength ratio.
Due to this fact we can mathematically model the runway texture and it has
be shown that a typical runway surface has a fractal dimension of Df ≈ 2.2
to 2.4.



Chapter 5

Strength of Materials

Summary. L’objectif de ce chapitre est de produire un modèle capable de
prédire la rigidité du pneu dans toutes les conditions. Comme nous l’avons vu
dans la dérivation du modèle de la brosse, la zone de contact est constituée
de deux forces principales : la force d’adhérence et la force de glissement. La
force d’adhérence est due à la déformation longitudinale des poils et cette
déformation est gouvernée par la rigidité de chaque poil. Ainsi, la rigidité
du poil, et implicitement la rigidité de la bande de roulement, est l’une
des premières données à entrer dans le modèle de la brosse qui influencera la
taille relative des zones d’adhérence et de glissement. Cependant, les données
fournies par les fabricants de pneus démontrent que la rigidité du pneu n’est
pas constante : elle varie en fonction de plusieurs paramètres, tels que la
pression interne du pneu, la charge verticale sur le pneu, la température,
la fréquence de sollicitation et nous pouvons voir que la rigidité n’est pas
constante avec la déformation horizontale. Pour obtenir un modèle de la
brosse plus robuste, nous devons pouvoir prédire la rigidité du pneu en
fonction des conditions. Nous devons donc trouver la source des variations
de la rigidité du pneu qui réside dans les caractéristiques des matériaux du
pneu. En utilisant la résistance des matériaux et la science des matériaux
(Chapitre 3), nous pourrons modéliser la rigidité du pneu. Dans ce chapitre,
nous allons dériver un modèle permettent d’estimer la rigidité du pneu sous
forme d’une fonction de la charge verticale sur le pneu et de la pression
interne du pneu.

Goal The goal of this chapter is to use Strength of Materials to calculate
the tire stiffness, Cp. The tire stiffness will have a direct impact on the
variable cpx which is used in the derived form of the Brush Model (Pg 50)
as developed in Chapter 2.



5.1 Introduction

The goal of this section is to be able to generate a model that can predict
the tire-stiffness under any conditions. Recall that in the derivation of the
brush model, the contact zone is made up of two principal forces: the force
due to adhesion and the force due to sliding. The adhesion force is due to the
longitudinal deformation of the bristles and this deformation is governed by
how stiff each bristle is. Thus the bristle stiffness, and implicitly the tread
stiffness, is one of the primary inputs into the brush model that will influence
the relative size of the adhesion and sliding zones.

However tire manufacturer data demonstrates that the tire stiffness is
not constant. It varies depending on several parameters such as the internal
tire pressure, the vertical load on the tire, the temperature, the solicitation
frequency and it can be viewed that the stiffness is not constant with hor-
izontal deformation. To obtain a more robust brush model, we need to be
able to predict the tire stiffness depending on the conditions. For this we
must find the source of these variations of tire-stiffness which lies in the ma-
terial characteristics of the tire. Using the strength of materials and material
science (Chapter 3), we will model the tire-stiffness.

5.2 Availability of Data

5.2.1 Manufacturer Supplied Data

As an aircraft manufacturer we do not always have access to the detailed
material characteristics of an aircraft tire. Due to the competitive nature
of the tire business, tire components and their corresponding characteristics
are closely guarded secrets in order to retain the competitive advantage. In
general, as an aircraft manufacturer we are supplied with the Mechanical
Characteristics of a tire. This report will change slightly from manufacturer
to manufacturer and additionally for different tires, but globally the same
basic mechanical characteristics will be supplied. In general we will be sup-
plied the following characteristics, usually at several different tire pressures
and vertical loads.

– External Dimensions - the radius and width of both a new and grown
tire, statically and dynamically (rolling)

– Footprint Test - the width and size (area) of the tire footprint. In-
cluding the gross area and the net area (due to the treads).

– Vertical Deflection Test - Under several different gauge pressures, the
tire is loaded vertically and the resulting vertical deflection is mea-
sured. This test is performed both statically and dynamically. Dy-
namic testing appears to be performed with a rolling wheel, however
the data from the manufacturer is not explicit. During the vertical
deflection tests, the rise in gauge pressure due to the tire deformation



is also often noted.
– Cornering Characteristics - The drag force, self aligning torque and

cornering force are measured in terms of slip angle.
– Tire Stiffness

– Longitudinal Stiffness - the tire is loaded vertically and then a longi-
tudinal pulling force is placed on the tire. The resulting longitudinal
deflection is measured.

– Lateral Stiffness - the tire is loaded vertically and then a lateral
pulling force is placed on the tire. The resulting lateral deflection is
measured.

– Torsional Stiffness - the tire is loaded vertically and then a torsional
moment is placed on the tire and the resulting angular displacement
is measured.

These are the basic characteristics that are readily available to us as an
aircraft manufacturer. With regards to this thesis work, the most important
tests are the tire stiffness tests. This allows for the computation of a global
shear modulus, that is a shear modulus of the tire as a system. In order
to have additional data than this, either special agreements must be put in
place with the manufacturer or once the tires are in our possession certain
tests can be performed to determine additional characteristics.

5.3 Experimental Tire Stiffness from Manufacturer
Data

We choose a reference aviation tire, Tire B , for which we will attempt to
create a simplified model capable of predicting the tire-stiffness for different
operating conditions.

The longitudinal stiffness test follows the form as shown in Figure 5.1.
The tire is loaded vertically at the tire axle and then a horizontal force, Fx,
is applied at the axle and the corresponding deflection, ∆x, is measured.
For the current data set, this test was performed with three different tire
pressures, 10.3, 15.5 and 17.2bar and repeated under four different vertical
loads: 5000daN, 10000daN, 15000daN and 20000daN. Note: That normal
operation conditions for a large aircraft are 17.2 bar inflation pressure and
100% loading is 15000-30000 daN.

Figure 5.2 plots the force-displacement data for a typical longitudinal
stiffness test.

From the force-displacement data in figure 5.2 we can compute the tire-
stiffness by taking the derivative Cx = ∆F/∆x. However the raw data
contains small oscillations. When computing the slope using two adjacent
points, significant oscillations are revealed which makes identification of the
tire stiffness difficult. An example of the plotted tire stiffness using raw data
is plotted in figure 5.3.



Schematic of tire stiffness testing. Results are of the form of a force-displacement curve. The 

slope of this curve is the tire-stiffness. 
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Figure 5.1: Schematic of tire stiffness testing. Results are of the form of a
force-displacement curve. The slope of this curve is the tire-stiffness.

In order to remove the oscillations, polynomial curve fitting is used. Due
to the relative simplicity of the force-displacement curves, a polynomial to
the fourth degree is sufficient to accurately plot the data (Figure 5.4).

From figure 5.4 we are able to determine several characteristics about the
tire-stiffness. The first is that the tire-stiffness increases with an increasing
vertical load. We know that as the vertical load increases the tire’s vertical
deformation increases. This leads to the supposition that the tire-stiffness
increases as the vertical deformation increases. However, manufacturer data
is also available for several different tire pressures. From this data we find
that as the pressure decreases the tire-stiffness decreases. Our original hy-
pothesis was that the tire-stiffness increased with deformation, however the
results from different pressures contradicts this results because as pressure
decreases, the deformation increases. The exact mechanics are not fully un-
derstood, but it is supposed that the internal tire pressure adds rigidity to
the tire-structure.

In order to model these effects, we first need to develop the relationship
between the tire-stiffness and the mechanical properties of the tires. This is
developed using the strength of materials which will incorporate the shear
modulus and the form of the tire to calculate the tire-stiffness.



Michelin A380 MLG – Force-Displacement curves for different vertical loads at an internal 

pressure of 17.2 bar.  
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Figure 5.2: Force-Displacement curves for an aircraft tire for different ver-
tical loads

Michelin A380 MLG – Taking the derivative of the raw force-displacement data leads to 

significant noise in the curves.  
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Figure 5.3: Taking the derivative of the raw force-displacement data leads
to significant noise in the curves.



Michelin A380 MLG – Using a 4th order polynomial, the curve fitting technique gives smooth 

tire-stiffness curves.  
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Figure 5.4: Using a 4th order polynomial to smooth the tire-stiffness curves.



5.4 Tire-Stiffness as a Function of the Shear Mod-
ulus and Tire Shape

If we regard the forces acting in the adhesion zone of the tire-runway
contact zone, we note that the deformation is due to shear. The contact
between the tire and runway is fixed while the axle of the tire continues to
move forward. This shearing motion deforms the tire. The basic derivation
of the shear modulus is as shown in figure 5.5 using a rectangular element.
The shear modulus can be derived as

G =
τxy
γxy

=
F/S

∆x/l
=

Fl

S∆x
(5.1)

where τxy is the shear stress, γxy is the shear strain, F is the horizontal
force, S is the reference surface area upon which the force is acting, ∆x is
the measured horizontal displacement and l is the height/thickness of the
rectangular block.

We note that in the equation for the shear modulus we have the ratio
F/∆x which is the tire definition of stiffness. Substituting the tire-stiffness
Cx we find that we can calculate the tire-stiffness as a function of the shear
modulus, G.

Cx =
GS

l
(5.2)

However we must take into account that a tire is neither or rectangular
in shape, nor is it one homogeneous material. In fact a tire is a complex
system composed of a myriad of elements that each contribute to the tire
stiffness. Figure 5.6 shows the components of an automobile tire which
clearly shows the complexity involved in tire construction. To simplify this
we will make the assumption that the tire is composed of two elements: the
tread and the carcass. These two elements will be rectangular in shape and
thus the stiffness of each component can be computed using equation 5.2.
We note that tire-stiffness coefficients can be added in the same way that
combinations of springs are added. That is to say, springs in parallel are
added, while springs in series are added using the inverse law. Thus the
global tire-stiffness can be represented as

1

Cg
=

1

2Cc
+

1

Ct
(5.3)

Where the subscript g, c and t represent global, carcass and tread re-
spectively. Replacing the stiffness coefficient with the formula for the shear
modulus we arrive at the formula to predict the global tire-stiffness (Cg).
(Figure 5.8

1

Cg
=

lc
2GcSc

+
lt

GtSt
(5.4)



The derivation of the shear modulus based on the deformation of a rectangular element due to 

a shearing force.  
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Figure 5.6: General schematic of automobile tire construction.



Combing the tire-stiffness coefficients add in the same way that spring stiffness' are added. 

The two sides of the carcass are treated as springs in parallel while they are attached to the 

tread as springs in series.  
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Figure 5.7: Combining tire-stiffness coefficients follow the same logic as
adding spring stiffness’. The two sides of the carcass are treated as springs
in parallel while they are attached to the tread as springs in series.

The proceeding section will develop models to predict the changes in the
tire-stiffness due to the deformation of the tire under different pressures and
vertical loads. external parameters.



Representation of the tire-surface contact zone as two elements, the tread and the carcass. It is 

this area that contributes to the tire-stiffness. 
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Figure 5.8: Representation of the tire-surface contact zone as two elements,
the tread and the carcass. It is this area that contributes to the tire-stiffness.



5.5 Modeling Tire-Stiffness as a Function of De-
formation

In order to compute the tire-stiffness as a function of deformation we
will use equation 5.4. The first assumption that we will make is that the
shear modulus (G) of the tread and the carcass are independent of the
deformation of the tire. This leaves four variables to affect the tire-stiffness:
the two surface areas Sc and St and the two thicknesses lc and lt. Due to
the unknowns in treating a complex object such as a tire, we will depart
with two different hypotheses and then use the manufacturer’s data to test.

5.5.1 Hypothesis 1 - Tire-Stiffness Proportional to Tire-Runway
Contact Size

A tire deforms as a function of two parameters: the tire internal pressure
and the vertical load (Fz) on the axle. We know that as the tire pressure
decreases the vertical deformation (∆z) increases. In the same manner, as
the vertical load increases the vertical deformation increases. An increase in
the deformation of the tire has two consequences: the tire-runway contact
area grows, and the distance between the axle and the surface (an effective
radius) decreases. A schematic is presented in Figure 5.9.

We note from the general definition of the shear modulus (Equation
(5.2)) that as the surface area of an element increases the stiffness increases.
This agrees with the manufacturer data that as the deformation increases
the tire-stiffness increases. Additionally, the general definition of the shear
modulus demonstrates that as the thickness of an element decreases, the
stiffness will increase. This also is in agreement with the manufacturer
data.

Therefore hypothesis 1, will use surface area of the tire-runway contact
as the reference surface and the height of the elements will be derived from
the height between the surface and the rim. We will make the assumption
that the thickness of the tire tread is constant and independent of the ver-
tical load. The deformation of the tread could be taken into account using
Young’s Modulus (E) of the tread, however the effect is seen as negligible.
The change in height of the carcass changes with the vertical deformation
will be taken into account in the model. This information is summarized in
Table 5.1 and Figure 5.8.

As outlined in Section 5.2, the manufacturer performs footprint tests
and vertical deformation tests. This data will be used to determined the
dimensions of S and l for use in the modeling. Below and example using
data from a Tire B will be used. The calculation is done using the nominal
pressure for this tire which is 17.2bar.

For the modeling in this section, we do not wish to take into account the
variation of the tire-stiffness with the horizontal deflection (∆x). Therefore



Effect of deformation on the surface area and the thickness of the elements used to compute 

the tire-stiffness 
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Figure 5.9: Effect of deformation on the surface area and the thickness of
the elements used to compute the tire-stiffness

Table 5.1: Hypothesis 1 assumes the following constraints on the tire geom-
etry

Variable Reference

Sc The reference surface area for the carcass will be the thick-
ness of the carcass walls multiplied by the length of the tire-
runway contact zone

St The reference surface for the tread will be the gross surface
area of the tire-runway contact zone derived from manufac-
turer testing.

lc The reference height of the carcass will be the height between
the surface and the wheel rim minus the thickness of the tire
tread

lt The reference height of the tread will be the thickness of the
tire tread and remains constant under deformation

Table 5.2: Characteristic Data to be used for Hypothesis 1

Load Footprint Footprint
Length

Vertical
Deflection

Height
Rim to
Ground

(daN) (cm2) (mm) (mm) (mm)

5000 392 200 24.9 383.1
10000 713 274 43.8 364.2
15000 983 339 59.3 348.7
20000 1225 391 75.6 332.4



we will choose constant values of the tire stiffness corresponding with small
deflections. Using the coefficients in Table 5.3, we will use the tire-stiffness
at a displacement of 8mm. The value of 8mm was chosen by regarding the
data and choosing a value with small displacement but was less affected by
the noise and oscillations of the first couple millimeters of deflection. Data
in tabulated in figure 5.3.

Table 5.3: Tire Stiffness calculated for a horizontal displacement of 8mm

Vertical
Load

Tire-Stiffness @
X=8mm

(daN) (N/mm)

5000 1323.4
10000 1694.96
15000 1879.6
20000 1976.9

We now have all the information necessary to predict the tire stiffness.
The hypothesis is that the shear moduli of the tread and the carcass are
constant values. However these values are unknowns. In general we will
assume that the tread is composed of hard rubber of which shear modulus
values vary between 1−4MPa. We wish to test if, keeping the shear moduli
constant, the change in surface area and deflected height are able to predict
the change in tire-stiffness. We will use the following procedure to develop
the model.
Procedure

1. Rearrange equation (5.4) to solve for Gc

1

Gc
=

2Sc
lc

(
1

Cg
− lt
GtSt

)
2. Choose a value for the shear modulus of the tread (Gt) corresponding

with values found in literature (between 1− 4MPa)

3. Use the experimentally derived tire-stiffness at near-nominal loads of
20,000daN to determine the shear modulus of the tread.

4. Using fixed values of Gt and Gc use equation (5.4) to predict the tire-
stiffness when the surface area (S) and height (l) change with varying
vertical loads (Fz).

1

Cg
=

lc
2GcSc

+
lt

GtSt

5. Compare the predicted and the experimental values of tire-stiffness Cg

The results are tabulated below in table 5.4 and 5.5.



Table 5.4: Predicted and Experimental Stiffness for Gt = 4MPa and Gc =
55.6MPa

Vertical
Load

Predicted Tire-
Stiffness

Experimental
Tire-Stiffness

Percent
Difference

(daN) (N/mm) (N/mm)

5000 805 1323 39.11%
10000 1227 1695 27.56%
15000 1615 1879 14.04%
20000 1977 1977 0.00%

Table 5.5: Predicted and Experimental Stiffness for Gt = 1MPa and Gc =
176MPa

Vertical
Load

Predicted Tire-
Stiffness

Experimental
Tire-Stiffness

Percent
Difference

(daN) (N/mm) (N/mm)

5000 678 1323 48.70%
10000 1174 1695 30.73%
15000 1595 1879 15.09%
20000 1977 1977 0.00%

Percent Error of predicted tire-stiffness to the experimental values using hypothesis 1.  
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Figure 5.10: Percent Error of predicted tire-stiffness to the experimental
values using hypothesis 1.



5.5.2 Hypothesis 2 - Whole Tire Contributes to Tire-Stiffness

In the first hypothesis, we surmised that only the area directly above
the tire-contact area contributed to the tire-stiffness. In this way, as the
load/pressure changed, the area of the tire-surface contact zone changed.
The second hypothesis is that the entire tire contributes to the tire-stiffness.
In this sense the size of the tire-surface contact zone does not affect the tire-
stiffness. Thus Sc and St are constant. However we still take into account
the change in height to take into account the deformation caused by the
changes in load/pressure. Thus in equation (5.4) we now only have one
changing variable, lc.

As the force is applied at the axle, we will take the area of half the
tire. Thus the width remains the same, we will use the length equal to πR.
Thus Sc = 2tcπR (to take into account the two sides of the carcass) and
St = πRb. We follow nearly the same procedure as in hypothesis 1 except
that the surface area (S) will remain constant.

Procedure

1. Rearrange equation (5.4) to solve for Gc

1

Gc
=

2Sc
lc

(
1

Cg
− lt
GtSt

)
2. Choose a value for the shear modulus of the tread (Gt) corresponding

with values found in literature (between 1− 4MPa)

3. Use the experimentally derived tire-stiffness at near-nominal loads of
20,000daN to determine the shear modulus of the tread.

4. Using fixed values of Gt and Gc use equation (5.4) to predict the tire-
stiffness when the height (l) changes with varying vertical loads (Fz).

1

Cg
=

lc
2GcSc

+
lt

GtSt

5. Compare the predicted and the experimental values of tire-stiffness Cg

The results are tabulated in 5.6, 5.7 5.8 and the percent error is plotted
in 5.11

5.5.3 Conclusion

Considering the entire tire as contributing to the tire-stiffness (hypoth-
esis 2) seems to provide the more accurate results. It should be noted that
the normal operating conditions of the tire are above 15000daN where we
see that the error is less than 3%. Hypothesis 2 also has the advantage of
having only one input variable (l) that varies as a function of the vertical
load. Thus we obtain a direct correlation for the tire-stiffness, Cx (for a



Table 5.6: Characteristic Data to be used for Hypothesis 2

Load Footprint Footprint
Length

Vertical
Deflection

Height
Rim to
Ground

(daN) (cm2) (mm) (mm) mm

5000 5800 1282 24.9 383.1
10000 5800 1282 43.8 364.2
15000 5800 1282 59.3 348.7
20000 5800 1282 75.6 332.4

Table 5.7: Predicted and Experimental Stiffness for Gt = 4MPa and Gc =
14.4MPa

Vertical
Load

Predicted Tire-
Stiffness

Experimental
Tire-Stiffness

Percent
Difference

(daN) (N/mm) (N/mm)

5000 1493 1323 -12.86%
10000 1786 1695 -5.39%
15000 1874 1879 0.24%
20000 1977 1977 0.00%

Table 5.8: Predicted and Experimental Stiffness for Gt = 1MPa and Gc =
16.4MPa

Vertical
Load

Predicted Tire-
Stiffness

Experimental
Tire-Stiffness

Percent
Difference

(daN) (N/mm) (N/mm)

5000 1539 1323 -16.34%
10000 1807 1695 -6.65%
15000 1886 1879 -0.40%
20000 1977 1977 0.00%



Percent Error of predicted tire-stiffness to the experimental values using hypothesis  2.  
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Figure 5.11: Percent Error of predicted tire-stiffness to the experimental
values using hypothesis 2.

given tire pressure), that varies directly as a function of the tire-deflection,
∆z. This is in contrast to hypothesis 1 which had two input variables (S
and l) that varies with the vertical load and the error is significantly larger
than hypothesis 2.



5.6 Modeling Vertical Deformation as a Function
of Changing Tire-Pressure and Vertical Loads

From Section 5.5 we have a model which can calculate the tire-stiffness,
Cx, as a function of the vertical load, ∆z. However, the analysis was made
for one tire pressure (17.2 bar) and used directly the vertical deflection
obtained from manufacturer testing. In order to complete the modeling, we
must have find a way to calculate the vertical deflection as a function of the
tire pressure, P , and the vertical load, Fz.

Figure 5.12 shows the manufacturers results for vertical deflection for
various vertical loads and tire-pressures. The curves can be seen to be non-
linear. However, this data represents a wide range of vertical loading not
seen in normal operating conditions. For example, the tire is subjected to
vertical loads of over 1250KN or 125, 000daN . This is nearly 4x the nominal
(100%) of 33600daN . If we restrict the data to opertional conditions of
between 5000daN and 35000daN we can see that the vertical force-deflection
curves are nearly linear. (Figure 5.13)

5.6.1 Double Linearization

Plotting linear trend lines through this operational load area gives slope
and intercept values for each value of tire pressure. There are of the form

Fz = m1∆z + b1 (5.5)

We obtain a set of m1 and b1 values for each pressure. If we then plot
these slope and intercept values as a function of pressure, we can also lin-
earize these values in the form

m1 = m2P + b2 (5.6)

b1 = m3P + b3 (5.7)

Resulting in the final equation that allows us to calculate the vertical-
force-deflection curve for any inputs.

Fz = (m2P + b2)∆z +m3P + b3 (5.8)

We then rearrange this equation to obtain the deflection as a function
of the vertical load

∆z =
Fz −m3P − b3
m2P + b2

(5.9)

Using experimental data, we obtain the final form of the coefficients as
seen in Figure 5.14. To test the error associated with this model we calculate
a predicted vertical deflection based on a given pressure and vertical load and
compare this to the experimental values. Figure 5.15 gives the results of this
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Vertical deflection curves are nearly linear for operational loading conditions (between 
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Modeling a linear trend of the slope and intercept over the range of pressures.  
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Figure 5.14: We use a double linearization to model the vertical deflection
∆z as a function of the tire pressure, P , and the vertical load, Fz. The plot
above shows that the hypothesis that both effects are linear is correct as
both the slope and intercept line are linear.

test. As we can see, the errors grow at the extremities of the input variables.
That is to say, the largest errors are found when the pressure P = 25.8 and
P = 4.3 as well as when the vertical load is at 5000daN (50KN). However
we note that for mid-range vertical loads (Fz) and pressures (P ), those most
normally found in operations, we have less than 5% error which is deemed
sufficient for this study.

This model to predict the vertical deformation can now be inputted into
the tire-stiffness model developed in Section 5.5.2 to predict the tire-stiffness
as a function of the pressure and vertical load.

Table 5.9: Linear fit to model the vertical deflection of the form Fz =
m(∆z) + b

Pressure (bar) m b R2

4.3 1.063 -24.8 0.996
8.6 1.789 -26.1 0.999
12.9 2.472 -27.9 0.999
17.2 3.085 -31.6 0.999
21.5 3.724 -32.2 0.999
25.8 4.185 -34.3 0.999



Using our linearized model of the vertical deflection, we test the model error vs the 

manufacturer’s data.  
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5.7 Complete Model Tire-Stiffness

Putting the tire-deflection model into the tire-stiffness model we arrive
with a final equation

1

Cg
=

lc
2GcSc

+
lt

GtSt
(5.10)

With the vertical deflection model we have

1

Cg
=
R− lt − Fz−m3P−b3

m2P+b2

2GcSc
+

lt
GtSt

(5.11)

Using the manufacturers tire-stiffness data for different pressures and
vertical loads we can compare this against our predictive model. To neglect
the effect of elongation on the tire-stiffness we choose constant tire-stiffness
values at a small displacement of x = 8mm.

Table 5.10 gives the results of this model for Tire B



Table 5.10: The complete model allows to predict the tire-stiffness as a
function of tire internal pressure and vertical load

Experimental Data

Load (daN)

Pressure
(bar)

5000 10000 15000 20000

10.3 1251 1476 1539 1531
15.5 1307 1648 1833 1887
17.2 1323 1695 1880 1977
18.9 1336 1678 1932 2021

Predicted Data

Load (daN)

Pressure
(bar)

5000 10000 15000 20000

10.3 1757 1896 2060 2254
15.5 1708 1801 1906 2024
17.2 1698 1782 1876 1979
18.9 1689 1766 1850 1943

Percent Error

Load (daN)

Pressure
(bar)

5000 10000 15000 20000

10.3 40.40% 28.50% 33.80% 47.20%
15.5 30.70% 9.30% 4.00% 7.20%
17.2 28.30% 5.10% -0.20% 0.10%
18.9 26.40% 5.20% -4.20% -3.80%



5.7.1 Conclusion

The derivation proves that we can obtain an approximate model of the
tire-stiffness using the material properties of the tire carcass and the tire
tread. This model takes into account the vertical deformation as a result of
changing vertical loads and/or changing tire pressures. Although we have
proven a rough estimation is possible, the model is not completely able to
take into account the physical effects.

As the vertical force increases the vertical deflection of the tire increases
and the tire-stiffness Cx increases. The change in the characteristic height of
the carcass, lc allows us to take into account this effect. However for the case
if changing tire pressure, as the tire-pressure decreases the vertical deflection
of the tire increases, but the manufacturers data shows that the tire-stiffness
decreases. This is the opposite of the effect from the vertical load, and
thus using the characteristic height of the carcass, lc, we do not obtain the
correct effect. We hypothesize that the internal tire pressure contributes to
the rigidity of the carcass. This can be taken into account with the addition
of a shape factor within the strength of materials. However, for the current
modelisation we have sufficient accuracy for the nominal vertical loads and
tire pressures that the effect of tire pressure will not currently be taken into
account.

This modeling was done assuming a small, constant horizontal deflection
of the tire. Figure 5.3 clearly shows that the stiffness diminishes significantly
as the horizontal displacement increases. Knowing that as a bristle moves
through the contact zone, the deformation increases, the bristle stiffness as
a function of horizontal displacement must be taken into account. This will
be addressed in the following section using Material Science as well as the
effects of temperature and frequency.



Chapter 6

Tribology

Summary. La loi de Coulomb, Fx = µFz, stipule que la force de résistance au
mouvement, Fx, (ou force de frottement) d’un bloc est proportionnelle à la
force verticale Fz. Le coefficient de proportionnalité est appelé coefficient de
frottement. Il est souvent symbolisé par la lettre grecque µ (Mu). En général,
nous considérons que le coefficient de frottement est constant. Même si des
progrès significatifs ont été accomplis depuis l’époque de Coulomb (1800)
dans la science des frottements, connue sous le nom de tribologie, il reste
encore de nombreux phénomènes à expliquer. Il faut souligner que, au sein
du département chargé des performances des avions, nous n’avons pas les
moyens de mener des études approfondies sur le frottement du caoutchouc.
Nous nous appuyons donc sur les travaux d’institutions externes et sur une
bibliographie exhaustive pour acquérir une connaissance fondamentale de ce
phénomène. Le domaine couvert par la tribologie est vaste et de nombreuses
thèses ont été entièrement consacrées à l’étude du glissement du caoutchouc
sur une surface dure. Dans le cadre de ce travail, une étude a été menée sur
les recherches et les découvertes les plus récentes en tribologie pour identi-
fier les principes qui gouvernent le frottement entre le pneu et la surface.
Le coefficient de frottement statique est mesuré au moment où un objet sur
une surface cesse d’être immobile et où le glissement entre les deux surfaces
se produit. Cependant, en réalité, ce moment très bref est difficile à mesurer
et il existe peu d’informations pour quantifier cette valeur, même dans la
littérature. De plus, il a été démontré que le coefficient de frottement statique
est un facteur du temps de repos. Autrement dit, en conditions de labora-
toire, plus le bloc de caoutchouc reste longtemps en repos sur la surface,
plus la liaison entre le caoutchouc et la surface augmente et plus le coeffi-
cient de frottement statique augmente quand le bloc est déplacé. Persson [17]
cite quatre différents mécanismes pouvant entrâıner une augmentation du
coefficient de frottement statique quand le temps passé à l’arrêt augmente.

1. Formation de ponts capillaires dans une atmosphère humide

2. Augmentation de la zone de contact en raison d’une déformation plas-



tique dépendante du temps (activation par la chaleur)

3. Inter-diffusion des châınes de polymères

4. Relaxation de la contrainte de cisaillement à l’interface

Cependant, si nous appliquons le modèle de la brosse aux applications
de roulage des pneus, le temps écoulé entre le moment où un poil entre dans
la zone de contact et le moment où se produit la transition entre le repos
et le glissement est presque instantané. Le temps de repos est donc nul.
Ainsi, pour modéliser le coefficient de frottement statique, nous prendrons
le coefficient de frottement statique égal au coefficient de frottement dyna-
mique à basses vitesses et basses températures. Nous pouvons décomposer
le frottement dynamique en deux effets principaux :

1. Forces d’adhérence

2. Forces viscoélastiques dans le caoutchouc

Les forces d’adhérence sont associées aux forces de Van der Waals, autre-
ment dit à l’attraction moléculaire entre deux matériaux en contact (dans
ce cas, le caoutchouc et l’asphalte). Ces forces d’adhérence sont, dans le
cas du frottement caoutchouc-asphalte, beaucoup plus faibles que les forces
viscoélastiques, de l’ordre de quelques pourcents. Les forces d’adhérence
jouent un rôle plus important lorsque sont impliquées des surfaces propres et
lisses comme le verre. Les forces viscoélastiques dominent les forces de frotte-
ment. Ces forces proviennent de l’excitation du caoutchouc quand il traverse
les aspérités de surface à la fréquence ωo. Cette excitation dissipe l’énergie
due à la nature viscoélastique du caoutchouc et cette dissipation de l’énergie
est à l’origine de la force de frottement. Les recherches portant sur les fac-
teurs modifiant le coefficient de frottement ont été menées en partenariat
avec l’Institut de dynamique et de vibrations (IDS) de l’université Leibniz
de Hanovre, Allemagne. Cet Institut bénéficie d’une large expérience dans
la modélisation, la simulation et les tests du contact de frottement. L’IDS
a reçu deux pneus à tester. La grille des tests est mentionnée au tableau
6.1. La procédure consistait à faire glisser des échantillons de caoutchouc
sur une piste d’essai. L’essai comprenait une phase d’accélération jusqu’à
une vitesse stable et une décélération rapide. Les principaux paramètres
mesurés ont été la charge verticale sur l’échantillon, la vitesse et la force de
frottement. Plusieurs essais ont été pratiqués sur chaque échantillon jusqu’à
l’obtention d’une force de frottement stable. Finalement, un coefficient de
frottement moyen a été obtenu pour chaque point de la grille de test. Cette
recherche en tribologie a confirmé la complexité inhérente à la modélisation
du glissement entre le caoutchouc et une surface dure. Nous avons iden-
tifié trois caractéristiques principales qui doivent être connues pour pouvoir
quantifier le coefficient de frottement.

1. Les caractéristiques mécaniques du caoutchouc, en fonction du temps
et de la fréquence, G(ω, t)



2. La texture macroscopique de la surface h/l

3. Les propriétés thermiques du caoutchouc G(T )

Une fois ces trois caractéristiques connues, les modèles de Persson nous
ont permis de quantifier le coefficient de frottement par glissement en condi-
tions sèches. Les résultats expérimentaux obtenus à partir des tests de frot-
tement par glissement permettent de valider la modélisation du frottement.
En raison des contraintes de délais de cette thèse, la procédure de validation
fera l’objet de travaux futurs au cours desquels les modèles de frottement de
Persson seront comparés aux données obtenues à l’Université de Hanovre.
Une fois les modèles de frottement validés, ils pourront être directement
entrés dans le modèle de la brosse.

Pour la partie III de cette thèse, la validation du modèle de la brosse,
nous n’utiliserons pas les modèles de frottement proposés par Persson dans
le modèle, mais nous utiliserons les résultats expérimentaux de l’Université
de Hanovre.

Coulomb’s Law, Fx = µFz, says that the force resisting movement, Fx,
(or friction force) of a block is proportional to the vertical force Fz. The
coefficient of proportionality is called the coefficient of friction and in most
often symbolized by the Greek symbol µ (mu). In general we consider that
the coefficient of friction is constant. Since Coulomb’s time (1800), signifi-
cant progress has been made into the study of friction, known as the science
of Tribology, although there stills rests a number of phenomena to explain.

It should be noted that within the aircraft performance department we
do not have the means with which to make in depth studies of rubber friction.
As such we have relied heavily on the help of outside institutions as well as
an extensive bibliography to obtain a fundamental understanding of friction.
The domain of tribology is large and entire thesis’ have been devoted to the
study of rubber sliding on a hard surface. In the framework of this thesis
work, a study has been made of the most recent research and advances in
tribology to identify the principle effects that govern tire-surface friction.
The results of this study are summarized below.

Goal The goal of this chapter is to develop the models to determine µsx
and µkx for use in the derived form of the Brush Model (Pg 50) as developed
in Chapter 2.

6.1 Introduction

Friction is generally explained using the simple case of a rectangular
block element placed on a horizontal surface. A vertical load, Fz, is placed
on top of the rectangular element and a horizontal force, starting at zero
and steadily increasing, is applied to the element. The force at which the
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Figure 6.1: Schematic of Basic Friction Test

rectangular element begins to move is measured as Fxs and the force needed
to maintain a prescribed velocity, Fxk is also measured. From these two
forces we can define the static and dynamic coefficients of friction as follows

µs = Fxs/Fz

µk = Fxk/Fz

The principal properties governing friction were studied during the 18th

and 19th century by Amontons, Coulomb and Euler. From this period three
general laws of dry friction (friction between two surfaces without lubrica-
tion) were formulated.

1stLaw - the force of friction, Fx, is directly proportional to the vertical
load, Fz

2ndLaw the force of friction, Fx, is independent of the apparent area of
contact

3rdLaw kinetic friction is independent of the sliding velocity, vs
–

Although in certain conditions these laws still hold true, we will find that in
the case of rubber friction, notably when rubber is sliding against a rough
hard surface, there are deviations to the above laws that must be taken into
account.

6.2 Qualitative Discussion

6.2.1 Coefficient of Friction as a Function of Vertical Load

The first law of friction states that the force of friction is directly pro-
portional to the vertical load. Put in another way, the coefficient of friction,
µ is independent of the vertical load. It was not until the 1950’s that this
phenomena began to be understood and in fact it was not until 1966 that



the term tribology - the science and technology of interacting surfaces in
relative motion, was first used[7]. Friction began to be studied at the micro-
scopic level, the interaction between the asperities of the two surfaces. As
mentioned previously, when viewed microscopically, the surface texture of a
surface such as asphalt resembles a mountain range, with large peaks and
valleys. When two elements are in contact with each other, such as rubber
and asphalt, the rubber is in fact resting on the peaks of these mountains
i.e. the peaks of the asperities. This concept gave way to the notion of real
area of contact as developed in Section 4.4. Real area of contact refers to
the fact that the rubber is only in contact with the peaks of these asperities,
thus the total surface area where there is direct contact between the rubber
and the asphalt is significantly less than the apparent area of contact (See
Section 4.1). It was observed that under particular conditions the friction
force was proportional to the real area of contact and that the real area of
contact was proportional to the vertical load [1]. This was indeed a verifi-
cation of the 1st law of friction, that frictional force was proportional to the
vertical load. However, this law does not always hold true, particularly for
rubber-rough surface sliding under heavy loading. Under light loading, as
the vertical load is increased the real area of contact does indeed increase
proportionally to the vertical load. However, as the rubber becomes
heavily loaded the valleys between the asperities begin to become
filled. Consequently, as the vertical load increases, the valleys be-
tween the asperities become saturated and the real area of contact
is no longer proportional to the vertical load.

This is the case for aircraft tires where the contact pressure is extremely
elevated compared to simple rubber sliding applications. Aircraft tires may
be loaded up to 30 tons per wheel, with an contact pressure exceeding 25Bar.
For this reason, in aircraft tire applications we find that the coef-
ficient of friction decreases with increasing vertical load.
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Figure 6.2: Schematic of the relationship between real area of contact, verti-
cal load and friction force. Case A and B represent lightly loaded conditions
where Coulomb’s law applies. Case C and D represent heavily loaded con-
ditions where Coulomb’s law now longer applies.

Example 3. We use an example to illustrate this concept (Figure 6.2). The
numbers are fabricated to give an understanding of the process and do not
represent real values.

For Case A and B, the rubber blocks are lightly loaded. For Case A
when 10N of vertical load are applied, the real area of contact, Ar, is 4%
and the Fs is 10N giving a µ of 1.0. In Case B, if we double the applied load,
Ar, doubles and since Fs is proportional to the real area of contact, it also
doubles so that µ remains at 1.0. This is an example where Coulomb’s law
still applies. The sliding friction is proportional to the vertical load because
the real area of contact is proportional to the vertical load.

Case C and D are examples of heavily loaded rubber. In Case C the
vertical load is now 100N . The cavities between the asperities are much
more filled and we find a Ar of 30%, leading to a Fs of 80N and a µ of
0.8. If we double the vertical load to 200N such as in Case D we note
that the valleys continues to be filled, but that it is no longer proportional.
The Ar is no longer proportional to the Fz, however the friction force is
still proportional to the real area of contact. Thus we find a Fs of 120N
and a corresponding µ of 0.6. Thus we can see that for the heavily loaded
applications in Case C and D, Coulomb’s law no longer applies. The friction
force is not proportional to the vertical load.



6.2.2 Coefficient of Friction as a Function of Sliding Speed

The third law of friction states that kinetic friction is independent of the
sliding speed. However for rubber sliding on a rough surface this law does
not generally hold true due to the effects of temperature and solicitation
frequency. The section Material Science (3) demonstrated that rubber’s
mechanical properties change as a function of frequency and temperature
due to the viscoelastic effects. When rubber is sliding on a rough surface,
the asperities generate a solicitation frequency in the rubber. This solici-
tation frequency has the effect of increasing the mechanical strength (shear
modulus and Young’s modulus). This increase in stiffness results in the
tire sinking less into the surface asperities for a given vertical load, thus
decreasing the real area of contact and consequently the friction force. In-
versely, as the rubber experiences prolonged sliding, the temperature of the
rubber increases due to the frictional forces generating heat. Material Sci-
ence demonstrated that as the temperature increases, rubber experiences a
decrease in mechanical strength which, by the same mechanism as above,
results in an increase in the frictional force.

To summarize, if temperature effects were not taken into account, an
increase of velocity would result in a decrease in the coefficient of sliding
friction due to the solicitation frequency effects. However due to the asso-
ciated temperature rise in the rubber due to friction, this effect is partially
neutralized. Consequently, in real world conditions, the effect of velocity on
the coefficient of friction is often small due to these two competing effects.

6.3 Static Coefficient of Friction

The coefficient of static friction is measured at the moment that rest is
broken and sliding between two surfaces is established. However in reality,
this extremely brief moment in time is difficult to measure and as such, even
in literature, very little information exists to quantify this value. In addition
we have a second problem in that the static coefficient of friction has been
shown to be a factor of resting time. That it to say that under laboratory
conditions, the longer a rubber block is allowed to remain at rest in contact
with the surface, the adhesive bond between the rubber and the surface
increases, thus increasing the static coefficient of friction when the block is
eventually moved from rest. Persson [17] cites four different mechanisms
that may cause the static coefficient of friction to increase with stationary
time

1. Formation of capillary bridges in a humid atmosphere

2. Increase in the contact area due to time dependent (thermally acti-
vated) plastic flow

3. Chain inter-diffusion for polymers



4. Shear stress relaxation at the interface

However in tire-rolling applications, if we take the brush model theory,
the time from when a bristle enters the contact zone, to the point where the
transition between stick and slip occurs, ranges from zero (in the case of pure
slip) to a maximum value of the length of the contact area divided by the
rolling speed of the wheel e.g. 0.4m divided by 50m/s = 0.008s. The resting
time needed to develop adhesive friction bonds is virtually non-existent in
tire-rolling applications.

Despite the fact that the static friction itself is difficult to measure, we
see the effects of the static coefficient of friction from test data in tire-rolling
conditions. Chapter 2.5 shows the effect that changing the value of the static
coefficient of friction has on the shape of the µ− slip curve. If the static µ
is equal to the dynamic µ then the µ − slip curve has no peak, it becomes
a flat line at µmax = µsx = µkx. However braking test results show
conclusively that the µ − slip curve has a peak with the friction
coefficient diminishing on the unstable (right) side of the curve,
clearly indicating that there is a difference between the dynamic
and static µ.

The test equipment at IDS for sliding friction samples data at 30, 000Hz.
Thus during the dynamic friction testing, we were able to extract some
basic results regarding the static coefficient of friction. Figure 6.3 shows the
results from the four test runs measuring the coefficient of friction. We see
as predicted by the Chapter 3 that the coefficient of friction, both static
and dynamic, are a function of the contact pressure. The test results show
a clear peak representing the static coefficient of friction.

Remark 4. From Figure 6.3, this peak seems to be independent of the
steady-state velocity. This agrees with theory since, by definition, static fric-
tion is the force needed to break the bonds between two non-moving surfaces.

However, the data from Figure 6.3 involved a significant resting time
and as a result the static friction measured is not applicable to the case of a
braking tire where the resting time is negligible. IDS performed further tests
to quantify the effect of resting time as shown in Figure 6.4. These tests
show the strong impact of resting time on the static coefficient of friction.
Nevertheless, it is problematic to measure resting times in the millisecond
range as would be necessary to represent a braking tire. Neither is there a
clear methodology with which to extrapolate the data to millisecond resting
times. Based on the preceding analysis, there is no clear way forward to
model the static coefficient of friction to be used in the brush model.

Persson has shown in [17] that for practical applications, such as a tire
braking, the static coefficient of friction can be approximated as being equal to
the dynamic coefficient of friction at low velocities. Persson showed that for
rubber sliding at low velocities (v = 3.3 × 10−4m/s)on a hard surface, with
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Figure 6.3: Coefficient of friction testing of the rubber found in an aviation
tire tread. Measured at 30,000Hz permits the static coefficient of friction to
be determined.

no resting time to develop molecular bonds, there was no peak which in the
friction vs time curve which would define the static coefficient of friction.

This presents the best way forward for integration into the
brush model. We will equate the µsx to the µkx determined ex-
perimentally by IDS at low sliding velocities. This approach will be
discussed further in the Chapter on Brush Model Validation. However it
should be noted that the definition of low-speeds are significantly different
between IDS and Persson’s experimentation e.g. Sliding speed of 1m/s for
IDS and 3.3× 10−4m/s for Persson.
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Figure 6.4: Static coefficient of friction as a function of resting time

6.4 Dynamic Coefficient of Friction

The literature is appreciably richer concerning the dynamic coefficient
of friction, µk, as opposed to the static coefficient of friction, µs. This is al-
most certainly due to the relative ease in measuring the dynamic coefficient
of friction from experimental tests. To determine the dynamic coefficient of
friction for rubber on a hard surface, one simply needs to move the rubber
sample across the hard surface at a fixed velocity and a constant vertical
load while measuring the horizontal force needed to keep the block at a con-
stant velocity. The coefficient of friction is found from µk = Fxk/Fz. This
simple test procedure facilitates a clearer understanding of the factors affect-
ing dynamic friction as external parameters such as vertical load, velocity,
temperature, rubber type, runway texture are easily varied and their effect
on µk identified. Section 6.6 will explore these effects through experimental
results. The sections that follow will give a brief overview of the literature
and the modeling of the dynamic coefficient of friction. For a much deeper
understanding of tribolgy, the writer refers you to the pioneering works made
by Grosch [5] and the extensive work done by Persson in the last 15 years
[14][15][16][18][19].

In general we can break down the dynamic friction into two principal
effects

1. Forces due to adhesion



Figure 6.5: Two major effects identified for rubber-rough surface friction:
adhesive forces and viscoelastic forces. Taken from

2. Viscoelastic forces in the rubber

Figure 6.5 attempts to visualizing these two principal effects. As we can
see, the adhesive friction is generated from surface to surface contact between
the two surfaces via the Van der Waals forces whereas the viscoelastic friction
(or hysteresis) is an internal friction generated by the deformation of the
rubber.

6.4.1 Adhesion Forces

The adhesion forces are associated with the Van der Waals forces i.e.
the molecular attraction between two materials in contact (in this case the
rubber and the asphalt). These forces of adhesion are, in the case of rubber-
asphalt friction, much smaller compared to the viscoelastic forces, on the
order of a couple percent. The adhesive forces play a more important role
when dealing with clean, smooth surfaces such as glass.

Persson [20] proposes a formula that is valid if the rubber is sufficiently
loaded that it fills all of the asperities i.e. in practice if the height of the
asperities is less than 1000Angstrom = 10−7m.

µka = − S

Fz

(
h

λ

)2

G′′(ωo) (6.1)

Where S is the surface of contact, Fz is the vertical load on the block,
h is the height of the asperities, l is the horizontal distance between the



peaks of the asperities (in general h/l = 1) and G is the shear modulus
of the rubber in function of the solicitation frequency ω0. The solicitation
frequency can be modeled by the velocity at which the rubber encounters
the peaks of the asperities ωo = vl. G′′ is the loss modulus (imaginary part
of the shear modulus) which corresponds to the viscoelastic part of G (See
Section 3.2.5).

Although the adhesive forces are small in comparison with the viscoelas-
tic forces, they can still play an important role in establishing the viscoelastic
forces due to the real area of contact. We note the relationship between the
real area of contact and the adhesive forces; the bigger the real area of con-
tact is under small loads, the bigger the adhesive forces will be. [20](p.87).

6.4.2 Viscoelastic Forces

The viscoelastic forces dominate the forces of friction. These forces come
from the excitation of the rubber as it transverses the asperities of the surface
with a frequency ωo. This excitation dissipates energy due to the viscoelastic
nature of the rubber and it is this dissipation of energy which is at the origin
of the friction force. Persson [13][14] gives an analytical expression for the
viscoelastic friction µkv

µkv = −CE
′′(ωo)

E′(ωo)
(6.2)

where

ω = v/l

C = (δ/R)1/2 ≈ 1

Where δ is the average value (rms) of the height of the asperities and R
is the radius of the asperities. In general for runways and roads we consider
that the ratio δ ≈ R thus C ≈ 1. As before, v is the sliding velocity and
l is the horizontal distance between the peaks of the asperities. To give an
example, for gravel the maximum size of the asperities lo is on the order of
a couple mm and the minimum size l1 is around 0.03mm. Chapter 3 de-
veloped the notion of the loss modulus (E′′) and the storage modulus (E′)
as applicable to both the Young’s Modulus, E, and the shear modulus, G.
These dynamic moduli play an important role in the development of the vis-
coelastic forces. We recognize that the more viscous (larger phase lag φ and
thus larger loss modulus E′′) a material is, the larger the viscoelastic fric-
tional forces will be. Thus the viscoelastic frictional forces are proportional
to E′′.

Maximum Viscoelastic Coefficient of Friction Equation 6.2 for the
viscoelastic friction has a maximum value when



ωo = 1/τ

where

τ = expδE/kBT

τ is a relaxation time, but is also the Boltzmann factor. δE is the ener-
getic transition barrier, kB is the Boltzmann constant 1.38× 10−23J/K(SI)
and T is the temperature in Kelvin.

Parameters affecting the viscoelastic friction

1. Type of rubber which determines the δE and thus the relaxation time
τ as well as the excitation frequency which gives the maximum friction.

2. The temperature which affects the value of τ and thus has an influence
in the same sense as number 1.

3. The size of the asperities l of the surface which determine the solici-
tation frequency ω = v/l for a give sliding velocity.

4. The sliding speed v which, for a given size of asperity, influences the
solicitation frequency ω

Surface complexity The previous formulas are established for one size
of asperity, however in reality a surface is composed of a number of different
sized asperities. This surface can be modeled as fractal surface. Persson
[14][15] gives some methods to take into account this complexity. In [15]
the case of two different asperity sizes is treated where the larger asperity
has an effective radius Ro and the smaller asperity has an effective radius
R1. For the larger asperity, there are N1 small asperities in contact with
the rubber.

Hypothesis 1 - The rubber does not fill all of the cavities formed by the
small asperities

µkv = Co
E′′(ωo)

E′(ωo)
+ C1

E′′(ω1)

E′(ω1)
(6.3)

with

Co = σo/E(ωo) ≈ 1

C1 = σ1/E(ω1)

The concentration of the small asperities n = N1/Ao = 1/a2. The
contact surface around the larger asperity is Ao. nu = 0.5.

Hypothesis 2 - The rubber fills all of the cavities formed by the small
asperities

This is the most likely of the two cases. An automobile tire sliding with
a minimal sliding velocity is in contact with only approximately 5% of the



large asperities, but the contact pressure is sufficient that the rubber fills all
of the small asperities. In this case

µkv = Co
E′′(ωo)

E′(ωo)
+ C1

E′′(ω1)

E′(ω1)
(6.4)

with

Co = σo/E(ωo) ≈ 1

C1 = σ1/E(ω1) =
1

Co

h

λ

2E(ωo)

E(ω1)

where h and λ are the height and length of the large asperities. In general
we can assume that h/λ ≈ 1.

This result can be generalized for several size of asperities, but in ad-
dition, it can be generalized for the fractal surfaces self-affine as shown by
Persson [15][12].

Persson [15] gives some important information with regards to the differ-
ent sizes of asperities. If the rubber fills all of the cavities of the asperities,
then µkv no longer depends on the height and length of the asperities. What
is interesting to note is that even rough surfaces with larger asperities will
give the same values for the viscoelastic friction if the ratio of h/λ is the
same. This is often the case since h/λ often is equal to 1.

However, the roughness of the surface will contribute to µkv as a function
of the velocity. Recall that v = λω and that the sliding speed defines the
maximum of µkv when v/λ = 1/τ . This fundamental results tells us that we
must take into account the roughness of the surface (width of the asperities
λ) in the calculation of µkv.

If we take an example of a surface with two different sizes of asperities
[15](fig.2 p.3841) we make the assumption that the vertical force on the
rubber is sufficient that the rubber fills the entirety of the grand cavity. We
note that the contact pressure at the peaks of the large asperity is higher
that in the valley of the cavity. Thus, concerning the small cavities located
in the valley of the larger asperity, the contact pressure may not be sufficient
for the rubber to fill these small cavities. Thus the participation of these
small cavities in the viscoelastic frictional forces may be lost.

6.4.3 Additional Viscoelastic Forces

Heinrich [6] has also modeled the viscoelastic forces which provide some
additional information to the work by Persson. He describes these forces as
being an dissipation energy due the deformation of the tread. This can also
be though of as hysteresis. Heinrich mentions that these forces are generally
not taken into account in the literature and he gives a general formula to
calculate these forces.



µkvd = µ2kvπσo
h

L

G′′(ω, ε, T )

G′(ω, ε, T )

2

(6.5)

where h is the thickness of the tire-tread, L is the length of the tire-tread
contact zone, σo = Fz/S is the average contact pressure (Fz is the vertical
load and S is the apparent area of the tire-surface contact zone) and ε is
the horizontal elongation of the tread. We note that the shear modulus G
is a function of ω, ε and the temperature T as demonstrated in the chapter
Material Science (3).

In effect, these additional forces represent the part of the spring energy
(Hooke’s Law) that is lost due to the viscoelastic nature of the rubber. In
general these additional forces are small, on the order of 3% of the total
viscoelastic forces. µkvd = 0.03µkv.

6.5 µhot - µcold Theory by Persson

As has been outlined in the previous sections, the modeling of tire rubber
sliding on a hard rough surface is complex. In additions, the complexity of
the models adds to the computational cost which can pose a problem to
implement the complete Brush Model theory in real-time simulations. It is
for this reason that the latest simplified model proposed by Persson could
prove to be very interesting for future development of the Brush Model. Due
to the fact that the article describing Persson’s new theory was published at
the end of 2010, it was not possible to apply this model to the current work
and validate with flight test data. Here we will briefly outline the model as
a recommendation for future work on the Brush Model.

The model is presented as a Phenomenological Rubber Friction Law in
[11]. The theories that Persson has developed model the affect of tempera-
ture that is generated a the rubber is sliding. As has been shown above, a
cold rubber block experiences higher friction coefficients than a hot rubber
block due to the viscoelastic properties of rubber. However as a block is
sliding, this mechanical dissipation of energy generates heat within the rub-
ber. Thus the longer distance that a block slides, the more heat generated
and consequently the µ that the rubber experiences goes from being a µcold
to being a µhot. Persson has demonstrated that this sliding distance
necessary to generate heat is surprisingly small. If the sliding dis-
tance is greater than the diameter of the asperities, D (on the
order of 1cm), then the friction experiences by the rubber is that
of µhot. Thus when the slip distance r(t) << D then the µ(t) ≈ µcold(v(t))
and for sliding distances r(t) > D then µ(t) ≈ µhot(v(t)). These can be
combined to give a history dependent friction law

µ(t) = µcold(v(t), T0)e
−r(t)/r0 + µhot(v(t), T0)[1− e−r(t)/r0 ] (6.6)



where T0 is the background temperature and r0 ≈ 0.2D. We can deter-
mine the functions µcold(v(t), T0) and µhot(v(t), T0) either through experi-
mental data or by following Persson’s full theory as presented in several of
his articles.

The µhot - µcold effect seems analogous to the dynamic and static coeffi-
cients of friction without resting time. We have described in Section 6.3 and
shown in Figure 6.4 that the static coefficient is related to the resting time,
but that in tire-sliding applications the rest time is practically zero. Thus the
small difference that is measured in experimental data between the µs and
the µk is in fact the instantaneous heating effect as described by Persson’s
theory.

This theory gives a way forward to take into account the time-temperature
effect of rubber sliding on a rubber surface. The basic brush model as devel-
oped in Chapter 2 assumed a constant µk all along the contact area. Using
this hot-cold friction law permits for a µ which changes not only with the
length of the contact area, but also the slip ratio, which defines how much
of the contact zone is in sliding.

6.6 Experimental Data for the Dynamic Coeffi-
cient of Friction

The research into the factors affecting the coefficient of friction was done
in partnership with the Institute of Dynamics and Vibration Research (IDS)
at the University of Hannover in Germany. The institute has extensive
experience in modeling, simulating and testing friction contact.

6.6.1 Experimental Setup

The goal of the study was to determine the sliding coefficient of friction
as a function of four main parameters:

– Tamb - ambient air temperature
– Vs - sliding velocity
– P - contact pressure
– Runway properties including texture and contamination

IDS was given two tires, Tire A and Tire B with which to perform tests
on. The test grid is shown in Table 6.1. The test procedure involved slid-
ing rubber specimens on a test track. This involved an acceleration phase
until a stable velocity was reached and a rapid deceleration. The principal
parameters measured were the vertical load on the specimen, the velocity
and the friction force. Several tests were performed on each specimen un-
til a stabilized friction force was obtained. The end result was one mean
coefficient of friction for each point on the test grid.



Table 6.1: Test grid for sliding friction testing of aircraft tires.

Tire Type Tamb P V Runway
(◦ C) (bar) (m/s)

Tire A -20 10 1 Highway - Dry
Tire B 0 15 4 Highway - Wet

20 20 8 Runway
40 25 12

15

6.6.2 Results

A subset of the results will be given here and analyzed. Figure 6.6 shows
a summary of the results obtained from the friction testing for one tire on
a dry runway.
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Figure 6.6: Summary of results for one tire on a dry runway giving coefficient
of dynamic friction as a function of ambient temperature, contact pressure
and velocity.

Coefficient of Friction as a Function of Contact Pressure The prin-
cipal conclusions we can make from Figure 6.6 is that there is a strong effect
of the contact pressure. As the contact pressure increases there is a decrease
in the coefficient of friction. This corresponds well with the qualitative dis-
cussion from Section 6.2.1 which identified that heavily loaded applications



no longer follow the 1st law of friction. We recall that this is due to the as-
perity valleys becoming filled and consequently the real area of contact is no
proportional to the vertical load. Aircraft tires qualify as a heavily loaded
application due to the high contact pressures of aircraft tires (> 18bar).
Thus the experimental results obtained verify the theory that the coefficient
of friction is dependent on the contact pressure.

Coefficient of Friction as a Function of Ambient Temperature The
results from IDS also show the strong temperature effect on the coefficient
of friction. From Figure 6.6 we see that the lower the temperature, the lower
the coefficient of sliding friction. This effect can be explained by the fact
that for the rubber used in aircraft tires, the friction is principally due to the
viscoelastic effect as described in Section 6.4.2. The viscoelastic friction is
proportional to the loss modulus, G′′. From the Chapter on Material Science
(3) we know that as rubber gets colder, the mechanical strength increases
as the rubber is approaching its glass transition temperature, Tg. Thus the
phenomena shown during experimental testing represents that predicted by
Material Science and Tribology.

Coefficient of Friction as a Function of Sliding Speed The results
show that the sliding velocity has very little effect on the sliding coefficient of
friction. Upon first glance, this result seems incoherent with the effects pre-
dicted by Material Science. We recall that we have previously demonstrated
that the solicitation frequency, ω, is proportional to the sliding speed, vs
and that the loss modulus G′ increases with solicitation frequency (in the
frequency range normally encountered by tire sliding). From our viscoelastic
friction equations, the friction coefficient is proportional to the loss modu-
lus, consequently for higher sliding speeds we expect the friction coefficient
to increase.

However this does not take into account the thermal effects of the rubber
i.e. the fact that the mechanical dissipation of energy generates heat which
is absorbed by the rubber. For higher sliding velocities, the solicitation
frequency dissipates more energy which is absorbed by the rubber which
raises the temperature of the rubber. Due to the fact that the experimental
results show that there is very little effect due to sliding velocity we assume
that the two opposing effects –decrease of G′ due to increased temperature
and increase of G′ due to sliding speed– are approximately equivalent.

We represent this effect schematically in Figure 6.7 which gives the loss
modulus as a function of solicitation frequency and temperature. We see
that for four different velocities, the solicitation frequency is different, but
due to the temperature effect, the loss modulus experienced remains more-
or-less the same.
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Figure 6.7: Velocity-Temperature effect. At higher velocities, the rubber
temperature increases. Thus the net result is that the loss modulus remains
the same.

Effect of Different Pavement Types Two different test surfaces com-
posed of two pavement types were tested to determine the effect that pave-
ment type as on rubber sliding friction. The first of these test surfaces,
Surface 1, was constructed in a manner consistent with pavement used on
German auto-routes. The second test surface, Surface 2, was constructed
using stone type and composition consistent to an airport runway.

The majority of the friction tests were performed on Surface 1 while
several tests were performed on Surface 2 to determine the variation of
the friction coefficient due to the runway surface. The results showed that
the friction coefficient between the two surfaces did not vary significantly
between the two surfaces. Results were generally within 10% with no clear
tendence for one surface over the other.

From this result we conclude that the macro texture between a highway
developed for cars and a runway constructed for aircraft are not apprecia-
bly different in terms of their effect on friction. In addition, the majority
of airports are constructed using standard construction techniques to en-
sure consistent friction for aircraft. As a result, the experimental data
obtained by IDS is applicable to aircraft landing on standard run-
ways.

However, there are several other runway construction techniques that
may have an influence on friction. Some example of these runway types are:
Porous Friction Course (PFC) runways used at some airports where heavy
rain is frequent or grooved runways which are more commonly used in the
United States. Future work of tire-modeling may try to take these other
runway types into account. But for this work, we will ensure that any flight
test data comes from an airport that has a standard runway construction.



Runway Contamination Effect on Friction Coefficient The tests
performed at IDS also included tests on a wet runway. The level of water
was no explicitly defined, however the water thickness was less than the
asperities height so that there was no visible standing-water. However, the
nature of the test setup is different than what a rolling tire would experience.

When a tire rolls on a wet-runway, the principal effect is that the rolling
tire traps the water so that the water can not easily escape from the path
of the tire. This trapping of water causes the tire to partially lose real
area of contact and it is primarily this effect that causes lower friction on
wet runways. The test setup by IDS uses a square sample that experiences
pure sliding without any rolling effect. As such, the water is pushed away
from the sample and the sample experiences nearly dry friction. Conse-
quently, the wet runways friction coefficients are not directly applicable to
the rolling/braking tire and as such will not be exploited here.

6.7 Conclusion and Way Forward

This research into tribology has confirmed the complexity inherent in
modeling the sliding between rubber and a hard surface. We have identified
three principal characteristics which must be known in order to quantify the
friction coefficient.

1. the mechanical characteristics of the rubber both as a function of time
and frequency, G(ω, t)

2. the surface macroscopic texture, h/l

3. the thermal properties of the rubber G(T )

With these three characteristics known, the models by Persson allow us
to quantify the sliding friction coefficient for dry conditions. The experimen-
tal results obtained from sliding friction tests permit to validate the friction
modeling. Due to time constraints with the bounds of this PhD work, this
validation procedure will be accomplished in future works. The future work
will aim at comparing Persson’s friction models with the data obtained from
the University of Hannover. Once the friction models have been validated
they can be used as direct inputs into the Brush Model.

For Part III of this PhD work, the Brush Model validation, we will
not use the friction models as proposed by Persson in the Brush Model and
instead will use the experimental results given by the University of Hannover.
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Chapter 7

Flight Test Data Cleaning

Summary. Avant de pouvoir comparer les données des essais en vol au
modèle de la brosse, ces données doivent être prétraitées : correction des
erreurs, élimination du bruit et ajustement des valeurs erronées. Les avions
de série modernes enregistrent des milliers de paramètres en vol (et au sol) et
les avions d’essais en vol instrumentés en enregistrent beaucoup plus. Pour
cette étude, nous nous sommes limités aux avions d’essais en vol instru-
mentés car ils sont équipés de deux capteurs supplémentaires, indispensables
à cette analyse. Ces capteurs mesurent :

– Fzlg - La charge verticale mesurée sur le train d’atterrissage - N
– Tq - Le couple appliqué par les freins sur la roue - Nm

Nous avons utilisé deux autres paramètres (disponibles sur les avions d’essais
en vol et les avions de série) :

– vx - La vitesse au sol des avions - m/s
– vc - La vitesse tangentielle des pneus obtenue à partir de la vitesse de

rotation, ω - m/s

En utilisant la charge verticale connue qui s’exerce sur la fusée de roue, nous
calculons la taille de la zone de contact, a, à l’aide d’une donnée empirique
fournie par le fabricant des pneus qui relie la taille de la zone de contact,
2a, à la charge verticale sur la roue, Fz. Cette donnée empirique est fournie
à Airbus quand le fabricant livre ses pneus. Elle comporte les propriétés
mécaniques de base du pneu et les essais qualification pratiqués sur ce pneu.

Nous disposons maintenant de quatre variables, Fx, Fz, s et a, qui sont
directement mesurées et peuvent être entrées dans le modèle de la brosse. Il
reste trois variables supplémentaires pour compléter ce modèle : cpx, µkx et
µsx. Il n’existe actuellement aucune méthode précise et fiable pour obtenir
les variables cpx, µkx et µsx directement à partir des données des essais en
vol. Deux options permettent d’analyser ces variables :

– Estimation : à l’aide des théories scientifiques développées dans les
chapitres 3 à 6



– Identification : à l’aide de l’algorithme d’ajustement de courbe développé
au chapitre 8

Cependant, avant de pouvoir effectuer l’identification du modèle de la brosse,
il convient de vérifier et d’ajuster les données des essais en vol afin de s’as-
surer qu’elles fournissent des valeurs cohérentes. Ce chapitre donne un bref
aperçu de ce procédé. Le couple et la charge verticale sont deux variables
qui ne peuvent être obtenues que lors des vols d’essais, principalement parce
que la mesure de ces variables pose des difficultés techniques et parce que
de fréquents réétalonnages sont nécessaires pour assurer leur fiabilité. En
conséquence, ces capteurs ne sont pas installés sur les avions de série. Ces
deux variables sont sensibles au bruit qui doit être réduit au minimum dans
les données avant de pouvoir les introduire dans le modèle de la brosse. Nous
utilisons donc des filtres pour diminuer le bruit dans ces deux paramètres.
Cependant, la nature du bruit est significativement différente entre les deux
signaux. Les filtres doivent donc être ajustés séparément pour chaque pa-
ramètre afin d’obtenir le vrai signal derrière le bruit. Nous utilisons un filtre
Savitzky-Golay (SG) qui est une technique de lissage des données sur la ten-
dance passée et la tendance future du signal. Nous pouvons nous représenter
le filtre SG comme un ajustement par morceaux d’une fonction polynomiale
de ces données. Le filtre SG sera utilisé pour filtrer les mesures du couple
et de la charge verticale. À cause de l’antidérapage, nous devons analyser
ces données pour éliminer les points où ce système déclenche une réduction
de la pression de freinage, ce qui entrâıne une mise en rotation du pneu,
c’est-à-dire une augmentation de la vitesse de la roue. Dans ces moments,
les capteurs de couple mesurent les effets d’hystérésis qui ne sont pas pris en
compte dans le modèle de la brosse. L’effet d’hystérésis est dû aux propriétés
viscoélastiques du caoutchouc décrites au chapitre 3. Nous réutilisons une
donnée indiquée au chapitre 3 pour la présenter Figure 7.9. Un matériau
parfaitement élastique suivra le même tracé sur une courbe contrainte-
déformation, que la contrainte soit appliquée ou relâchée. En revanche, un
matériau viscoélastique suivra un tracé différent après la diminution de la
contrainte, en raison de la perte d’énergie due au frottement à l’intérieur
du matériau. Ce phénomène se nomme l’hystérésis. Un couple appliqué à la
roue, puis relâché, a le même effet. Ainsi, les points de données mesurés après
relâchement du couple de freinage seront situés significativement plus bas
que les points mesurés lorsque le couple est appliqué. Ces points déforment la
courbe µ− slip et interfèrent avec une identification correcte. Pour éliminer
ces points, nous utilisons un procédé simple dont l’efficacité a été prouvée.
Nous utilisons la dérivée de la vitesse circonférentielle, dvc/dt, c’est-à-dire
l’accélération de la roue. Nous éliminons tous les points où l’accélération de
la roue est positive (mise en rotation). La Figure 7.10 ci-dessous donne un
exemple de tracé de la vitesse de la roue avec élimination de tous les points
d’hystérésis. Le chapitre suivant (8) présente la technique d’ajustement de
la courbe utilisée pour identifier, à l’aide des données des essais en vol, les



paramètres du modèle de la brosse. Le chapitre (9) présente les résultats de
cette technique d’ajustement.

Goal The goal of this chapter is to pre-process the flight test data which
may contain unwanted noise, false values and parameters which need ad-
justment. From flight test data, we will measure the braking force, Fx, the
vertical load, Fz, and the slip ratio, σx. With these parameters obtained from
flight testing, we can use the curve fitting algorithm, presented in Chapter
8-Identification, to determine the remaining three parameters, cpx, µsx and
µkx as is presented in Chapter 9. This resolves all of the parameters con-
tained within the Basic Brush Model derived in Chapter 2.

7.1 Introduction

Before the flight test data can be compared to the Brush Model, the
flight test data should be pre-processed to correct any errors, remove noise,
and adjust false values. Modern serial aircraft record thousands of param-
eters during flight (and on ground) while instrumented flight test aircraft
record significantly more. For this current study, we restrict ourselves to
instrumented flight test aircraft as they contain two extra sensors that are
fundamental to this analysis. These additional sensors measure

– Fzlg - Vertical load measured at the landing gear - N
– Tq - Torque applied by the brakes to the wheel - Nm
We use two additional parameters (available both on flight test aircraft

and serial aircraft):
– vx - ground speed of the aircraft - m/s
– vc - the tangential speed of the tire(s) obtained from the rotational

speed, ω - m/s
With these four variables, we have everything necessary to compare the

braking force from flight test to the Brush Model. The mathematical com-
putations are straightforward. To determine the braking force we divide the
torque by the rolling radius, which itself is an estimated value

Fx = Tq/RR (7.1)

The vertical load on each braked tire, Fz, is estimated based on the
repartition of vertical load on the landing gear, Fzlg , and the number of
wheels on the landing gear, nwlg

. The slip ratio, s, is computed using the
ground speed and the wheel rotational speed

sx = (vx − vc)/vx (7.2)

or
σx = (vx − vc)/vc (7.3)



Note the two definitions of slip ratio. The slip ratio of the
form, s, is the value more commonly used in industry. It varies
between 0 for a free-rolling wheel and 1 for a blocked wheel. The
slip ratio of form, σx, is the ratio used in the derivation of the
Brush Model. It varies from 0 for a free rolling wheel to ∞ for
a blocked wheel. Although the Brush Model is derived with σx,
the µ− slip curves that are plotted below use the form,s, in the
x-axis as it holds more physical sense. The derivation of both
slip ratios can be found in Section 2.2.3 pg 36.

Using the known vertical load acting on the tire axle, we compute the
size of the contact patch, a, using an empirical data obtained from the tire
manufacturer which relates the size of the contact patch, 2a, to the vertical
load on the wheel, Fz. This empirical data is supplied to Airbus when the
tire manufacturer delivers a tire. It contains basic mechanical properties of
the tire and the qualification tests performed on the tire.

We now have four variables, Fx, Fz, s and a, that are directly measured
and can be used as inputs into the Brush Model. This leaves three additional
variables to complete the Brush Model: cpx, µkx and µsx. There currently
does not exist a precise, reliable method with which to obtain the variables
cpx, µkx and µsx directly from flight test data. To analyze these variables
there exists two options, the variables can be:

– Estimated: using the scientific theories developed in Chapters 3
through 6

– Identified: using the curve fitting algorithm that is developed in
Chapter 8

Figure 7.1 provides a visualization of the link between the parameters
from flight test and the Brush Model parameters.

However before Brush Model identification can be accomplished, the
flight test data must be checked and adjusted to ensure they provide con-
sistent values. This Chapter will give a brief overview of this process.
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Figure 7.1: Schematic of the process to use flight test data to obtain the
parameters needed for the Brush Model

7.2 Filtering Torque and Vertical Load

The torque and the vertical load are two variables that are available
only on flight test aircraft. This is primarily due to the technical difficulty
posed in measuring these variables and the frequent recalibration necessary
to ensure reliability. Consequently, these sensors are not installed on serial
aircraft. These two variables are subject to noise in the data which needs
to be minimized before injection into the Brush Model.

As such, we use filters to minimize the noise from these two parameters.
However, the nature of the noise is significantly different between the two
signals. Thus the filter should be adjusted separately for each parameter in
order to best capture the true signal behind the noise.

We use a Savitzky-Golay (SG) type filter, which is a data smoothing
technique based on the past and future tendency of the signal. We can
think of the SG filter as a piece-wise fitting of a polynomial function to the
data. The SG filter has two primary inputs: the frame, F , and the order, O.
The frame describes the number of data points to be used for the spline fit.
The order determines the polynomial order of the spline that is fit through
the data points.

As an example, at the position, xi, we know the point P (xi). In this
case we take an order, O, of 1 (linear fit) and a frame, F , of 5. To determine
the new point, P ′(xi), we make a second order least squares best fit, f1(x)
of the interval [xi − 2 : xi + 2]. From this polynomial best fit, we determine
the new point at xi by P ′(xi) = f1(xi). This process is repeated for every
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Figure 7.2: An example of Savitzky-Golay filtering using an Order of 1
(linear fit) and a Frame of 5.

point. An example of the Savitzky-Golay filter is shown in Figure 7.2.

7.2.1 Torque Filter

The torque data is subject to high frequency noise in the signal. However,
the torque signal also contains large changes in values that are physically
relevant and thus must be preserved. These large changes in value are due
to the anti-skid system. When braking hard, the anti-skid system regulates
the brake pressure by monitoring the wheel speed. If the anti-skid system
detects that the wheel is falling into a skid, then the brake pressure is cut-off.
This brake pressure cut-off results in a rapid decrease of the brake torque.
Thus, it is normal to observe a high level of torque (as more brake pressure
is applied) followed by a sharp decline of the torque value coinciding with
the anti-skid system cutting the brake pressure.

Using the SG smoothing technique, it is advantageous to use a larger
frame to eliminate the noise; yet for the torque signal, when the frame was
increased, the sharp cut-offs in torque due to the anti-skid system were
smoothed out as well. The effect is less noticeable for dry runway tests,
as the wheels do not often skid on dry runways. For wet runways, with
significant skidding, an SG filter with a large frame would omit these anti-
skid actions.

A sensitivity analysis was performed by varying the frame rate and order
and observing the signal output and the average error. Forom this analysis



the results were to use a small frame a 3rd order fit was used. While some
low-frequency noise is retained the actions of the anti-skid system are well
defined. Figure 7.3 shows the result of the chosen SG filter for a dry runway
while Figure 7.4 shows the results for a wet runway.
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Figure 7.3: Torque raw data and filtered for dry runway after using the
Savitzky-Golay filter with a small frame
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Figure 7.4: Torque raw data and filtered for a wet runway using the Savitzky-
Golay filter with a small frame. We see that the filter removes the high-
frequency noise, but retains the torque cut-off caused by the anti-skid system

7.2.2 Vertical Load Filter

The vertical load filtering presented a different problem. There is very
little variation in the vertical load when the aircraft is on the ground. This
naturally leads to the assumption that we can use a very large frame to
remove the high and low frequency noise. However, many of the flight tests
studied were landings, where the vertical load is zero until touchdown, after



which an immediate large force is placed on the wheels. This time-interval,
the detection of the touchdown, is very important in the identification pro-
cess for the recalculation of the rolling radius (see Section 7.3). As a con-
sequence, a proper estimation of the vertical load is needed for the time
interval between touchdown and full weight on the wheels. If a large frame
is used, the important load variation during this time interval is smoothed
out. On the other hand, using a small frame for the entire time interval
results in the retention of the low and high frequency noise.

The solution is to use a variable frame for the vertical load. We first
identify the touchdown by monitoring the vertical load on the wheels. The
variable frame is implemented as:

– from the beginning of the data up until a point in time 4 seconds
after touchdown – a small frame is used which captures the dynamic
conditions associated with the point of touchdown

– from the point 4 seconds after touchdown until the end of the data – a
large frame is used which smooths the oscillations present in the data

The time period of 4 seconds was chosen as a result of an analysis which
showed that the dynamic conditions present at the moment of touchdown
are present for approximately 4 seconds

The result of this variable frame is shown in Figure 7.5

Large Frame Rate Small Frame Rate 

Figure 7.5: Variable frame Savitzky-Golay filter to model the vertical load
taking the importance of the touchdown into account

7.3 Rolling Radius Estimation

The rolling radius, RR, is the effective radius of the tire when it has been
deformed. The most reliable way to measure the rolling radius is to measure
the distance traveled in one revolution by a tire under loading. The distance
traveled, d, is then related to the rolling radius by d = 2πRR



The rolling radius is a critical parameter as it appears in both equations
(7.1) due to the transformation of torque into a braking force and (7.3) as it
is used to calculate the circumferential velocity, vc, from the angular velocity
ωw. However, it is also one of the most difficult parameters to calculate as
there exists no direct method with which to measure it, and it is affected by
several other factors such as tire pressure, vertical load on the axle and tire
braking.

It has been found that in general, the rolling radius varies between 3 to
4% for a tire of nominal gauge pressure and is nominally vertically loaded.
For the calculation of the braking force, Fx, by equation (7.1), this results
in a small but negligible error of 3 to 4% since the braking force is directly
proportional to the rolling radius. For the calculation of the slip ratio, σx,
this will also induce an error of 3 to 4%, however as we will demonstrate
below, this will have a much larger consequence on the estimation of the
braking force from the Brush Model.

7.3.1 Sensitivity of Braking Force on Rolling Radius

As we have seen in the derivation of the Brush Model (Chapter 2), the
final equation which computes the braking force (eq (2.30)) is a cubic poly-
nomial as a function of the slip ratio. Due to the form of this curve, for
small slip values, a small error on the slip ratio creates a very large error on
the computed braking force (and thus the global coefficient of friction µ).
In Figure 7.6, we plot the effects of a 3% error in the slip ratio which would
result from a 3% error in the rolling radius estimation. As we can see, the
percent error is enormous. If we assume that our aircraft’s anti-skid system
is functioning in order to regulate the slip ratio at between 8− 12%, we see
that we could have an error in the µ estimation (or the braking force estima-
tion) of 10− 40%. Consequently, we must have millimeter accuracy
on the rolling radius estimation in order to minimize the error on
our braking force.

7.3.2 Method - Ground Speed Matching

The most straight forward method to determine the rolling radius is to
equate the distance traveled by the axle of the wheel to an equivalent circum-
ferential distance. By this method, we can equate the velocity of the axle of
the actual tire and the circumferential velocity of our equivalent perfectly
circular tire with rolling radius, RR. However, this method is only applicable
if the wheel is free rolling i.e. no tire braking is occurring. The rolling radius
is strongly a function of the vertical load. It is for this reason that we cannot
use the nose wheel (which has no brakes) to determine constantly the rolling
radius. On the aircraft, there are several sources available to measure the
ground speed. Due to the advances in GPS technology, the preferred source
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Figure 7.6: We demonstrate the effects that a 3% error in the slip ratio has
on the estimated values of µ from the Brush Model.
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Figure 7.7: Original wheelspeed with pre-defined wheel radius is adjusted
to match the ground speed when the tire is free-rolling (no braking)

is to use the GPS longitudinal velocity as the reference ground speed, vx
along with the tachometer sensors available on each wheel to measure the
ωw. From this we can equate

vx = vc = ωwRR (7.4)

That is to say, when the tire is free rolling, the circumferential speed,
vc, of an equivalent wheel with a rolling radius, RR, should be equivalent to
the velocity in the x− axis of the wheel axle, vx.

From flight test data, the angular velocity of the wheels, ωw, is measured
using tachometers on each wheel. In the flight test data used, the angular
velocity is multiplied by a constant rolling radius (usually underestimated),
RR0 to obtain a reference wheel speed, vc0 . We see this data in Figure 7.7. As
a consequence, we re-calculate the angular velocity by ωw = vc0/RR0 before
determining the new rolling radius by matching with the ground speed.

7.4 Anti-Skid Functioning

Aircraft are equipped with an anti-skid system similar to the design
used in automobiles more commonly known as ABS. A detailed explication
of the anti-skid system will not be given here as it is not necessary for an
understanding of friction modeling, as well there are in fact several different
types of anti-skid systems. A brief explanation of the anti-skid systems
follows below.

We retrace the generic form of the µ − slip curve as generated by the
Brush Model equation (2.30) and displayed in Figure 7.8. In anti-skid anal-



Figure 7.8: mu− slip curve from an anti-skid point of view

ysis, we partition this curve into two regions: stable and unstable regions.
The stable region is found to the left of the peak of the µ− slip curve, while
the unstable region is found to the right of the µ− slip curve.

If we visualize the braking system as applying a torque that starts at zero
and continuously increases, assuming that the rolling radius and vertical load
remain constant, this increasing torque directly results in the µ increasing
(Fx = Tq/RR and µ = Fx/Fz). As the torque continues to increase, the µ
will increase to its maximum value µmax. If the torque continues to increase,
we pass to the unstable side of the µ− slip curve and the tire slip ratio will
rapidly increase. This is known as the tire falling into a skid. A skidding
tire poses two problems: the µ is lower than its optimum value therefore
braking ability is lost, and more importantly, significant heating will occur
in the tire that may lead to a tire burst if the skid is prolonged.

Thus the basic functioning of the anti-skid system is to monitor
the slip ratio (via the wheel speed) to ensure that the torque
applied to the wheel keeps the braking system on the stable side
of the µ − slip curve. If the anti-skid system detects that the
wheel is falling into a skid, the system intervenes by modulating
the pressure applied to the braking system thus modulating the
torque applied to the wheel.



The difference in the stress-strain relationship between elastic and viscoelastic materials. The 
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Figure 7.9: Using the derivative of the wheel velocity to remove the data
points when the wheel is spinning-up

7.5 Brake Release Removal

It is due to the anti-skid functioning that we have to analyze the data
to remove the points where the anti-skid system is triggering a reduction
in the brake pressure that causes the tire to spin-up i.e. increase its wheel
speed. During these moments, the torque sensors measure the hysteresis
effect which are not taken into account in the Brush Model.

The hysteresis effect is due to the viscoelastic properties of the rubber.
Chapter 3 described the viscoelastic properties that rubber has. We reuse
a figure from Chapter 3 and present it in Figure 7.9. A perfectly elastic
material will follow the same line on a stress-strain curve whether the stress
is being applied or released. However a viscoelastic material will follow a
different line on after the reduction of stress due to the energy lost due
to the internal friction of the material, known as hysteresis. The torque
being applied to the wheel and then released has the same effect. As such,
the data points measured after the brake torque has been released will be
significantly below the points during which the torque was being applied.
These points distort the shape of the µ − slip curve and interfere with a
correct identification.

To remove these points, we use a simple procedure that has proven to
be effective. We use the derivative of the circumferential speed, dvc/dt i.e.
the wheel acceleration. We remove all points where the wheel acceleration
is positive i.e. the wheel is spinning-up. An example of a the wheel-speed
plotted with all of the hysteresis points removed is shown below in Figure
7.10.
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Figure 7.10: Using the derivative of the wheel velocity to remove the data
points when the wheel is spinning-up

7.6 Skid Detection

It will be shown in Chapter 9 that it is beneficial to determine the data
points that are on the unstable side of the µ−slip curve as they will help in
the curve-fitting techniques. Thus we demonstrate a method to determine
if the tire is falling into a skid.

We use the derivative of the wheel speed to obtain the wheel circumferen-
tial acceleration. We then identify all of the zero crossings of the derivative
for which the derivative is a local minimum. These zero-crossings represent
the bottom of the skid i.e. the point where the wheel begins to spin-up
again.

However, there may be small fluctuations in the torque which cause local
zero-crossings of the wheel acceleration that do not represent a true skid,
or the bottom of the skid. Thus we determine whether the local minimum
represents a true skid by taking the average of the wheel acceleration for
the 0.1 seconds preceding and following the local minimum. If the mean
of the preceding points surpasses a set threshold AND the mean of the
subsequent points surpass a different set threshold then we conclude that
the local minimum is a true-skid. The thresholds vary on tire-design and
are manually adjusted for tire types to achieve maximum detectability of
the skids.

Figure 7.11 displays the true-skids detected for an aircraft braking using
the above explained algorithm. We notice that there are several local mini-
mums that are not taken into account as they do not meet the criteria of a
true skid.
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Figure 7.11: Skid-Detection algorithm

7.7 Conclusion

This Chapter dealt with the preprocessing of the flight test data for use
both within the Brush Model and as a comparison to the Brush Model out-
put. The preprocessing focused on three major themes: filtering the data to
remove noise, determining the rolling radius and identifying the functioning
of the anti-skid system. An extensive validation of the processed data was
made to ensure that the final product generated consistent, accurate results.
The validation results are not shown here.

The following Chapter (8) presents the curve-fitting technique used to
identify the Brush Model parameters using flight test data. While the sub-
sequent Chapter (9) presents the results of this curve-fitting technique.





Chapter 8

Identification Algorithm

Summary. Nous avons démontré au chapitre 7, qu’il est possible de dériver
la force de freinage, Fx, à partir des paramètres mesurés sur les avions uti-
lisés pour les tests en vol. Ces paramètres permettent également de dériver
la charge verticale, Fz, la longueur de la zone de contact, a et le taux de
glissement longitudinal sigmax. Il reste donc trois paramètres inconnus ou
restant à estimer : la rigidité du pneu, cpx, et les coefficients de frottement
statique et dynamique, µsx et µkx. Ces trois paramètres peuvent être, soit
estimés par les techniques vues aux chapitres 3 à 6, soit identifiés à partir
des données des essais en vol. Nous allons dériver un algorithme de mini-
misation qui permettra d’identifier les paramètres inconnus en minimisant
l’erreur entre le modèle de la brosse et les données des essais en vol. La
dérivation prend comme hypothèse que ces trois paramètres sont inconnus,
mais l’algorithme peut également être utilisé pour une optimisation à un ou
deux paramètres, c’est-à-dire si l’un des paramètres est identifié.

Goal The goal of this chapter is to derive an identification algorithm that
will minimize the error between the braking force measured in flight tests and
the braking force predicted by the Brush model by varying unknown coeffi-
cients within the Brush Model.

8.1 Introduction

The Brush Model, as derived in Chapter 2 is rewritten below. We have
demonstrated in Chapter 7, that from flight test data we can derive the
braking force, Fx, from parameters measured on the flight test aircraft.
From these measured aircraft parameters we can also derive the vertical
load, Fz, the length of the contact area, a and the slip ratio sigmax. This
leaves three parameters unknown or to be estimated: the tire stiffness, cpx,
and the static and dynamic coefficients of friction, µsx and µkx. These three



parameters can either be estimated using the science derived in Chapters 3
through 6 or they can be identified from flight test data.

We will derive a minimization algorithm that will identify the unknown
parameters by minimizing the error between the Brush Model and the flight
test data. The derivation will assume that all three parameters are unknown,
but the algorithm can also be used for a one or two parameters optimization
i.e. if one of the parameters is identified.

We recall the form of the Brush Model:

If σ ≤ σo then

Fx = −2cpxa
2σx +

4

3

c2pxa
4σ2

Fzµsx

(
2− µkx

µsx

)
+

8

27

c3pxa
6σ3

F 2
z µ

2
sx

(
−3 + 2

µkx
µsx

)
(8.1)

Else if σx > σox then

Fx = −µkx
vg
|vg|
|Fz|

where

σo =
3Fzµsx
2a2cpx

8.2 Notation

The following analysis will use the notation below.

Supercripts
M - Model
E - Flight Test (Essai)
V - Real/True Value (Vrai)
o - Initial Value

8.3 Algorithm

We can represent the Brush Model by:

FMx (i) = f
(
cVpx, µ

V
sx, µ

V
kx, F

V
z (i), σVx (i)

)
The goal of this optimization is to minimize the error between the hor-

izontal braking force given by the brush model, FMx and the horizontal
braking force calculated from the flight test data analysis FEx .

min(|FEx − FMx |)



8.3.1 Simplification

In general, the flight test data consists of one landing which has a dura-
tion of approximately 30 seconds. Because the flight test data are braking
tests, for each moment of time the velocity is decreasing. In order for the
minimization to function, we assume that during the time interval
in which we are making using the algorithm, the three coefficients
cpx, µsx and µkx remain constant. The discussion as to the validity
of this assumption is presented in Chapter 9 Section 9.2. Therefore the
minimization function may be repeated several times for different velocity
intervals. The derivation below is described for the data points contained
within one chosen interval.

The interval of time chosen will be represented by H where i = 1...H

Additionally, aircraft have n tires braking simultaneously. As such for
each time step i, we may have j = 1...n data points for each time step. For
simplicity in the derivation, we will not represent the minimization algorithm
as a function of the number of tires n. The minimization algorithm contains
the ensemble of data points from all chosen tires.

8.3.2 Flight Test Error

Flight test data may include an error or bias. Chapter 7 demonstrated
several preprocessing steps taken to remove data error. However there may
still be residual error included in the data which we do not want to affect
the minimization algorithm. Therefore we make the hypothesis that the
data coming from flight test data has a known error. Thus the real value
(denoted with superscript V ) of the variable must be found within an interval
of uncertainty.

∣∣F Vz (i)− FEz (i)
∣∣ ≤ ε1∣∣σV (i)− σE(i)
∣∣ ≤ ε2∣∣FEx (i)− F Vx (i)
∣∣ ≤ ε3

We will assume that the real value of the braking force, F Vx is associated
with the value calculated from flight test data, within a zone of uncertainty.

FEx − ε3 ≤ F Vx ≤ FEx + ε3

If we input the variables that are available from flight test data we obtain

FMx = f(cpx, µsx, µkx, F
E
z + ε1, σ

E + ε2)



8.3.3 Initial Conditions

We choose initial conditions of the three unknown parameters as copx, µosx
and µokx. The curve fitting algorithm will attempt to identify the correct
values of these parameters by varying [λc, λs, λk] where

cVpx = copx + λcc
o
px

µVsx = µosx + λsµ
o
sx

µVkx = µokx + λkµ
o
kx

The most general constraint we will place on the parameters is that
λi > −1. This ensures that cVpx, µVsx and µVkx are always positive.

We define in the next section several additional constraints that will
bound the problem based on the physics of tire-runway contact theory.

8.3.4 Constraints

The comparison of the Brush Model form with flight test data poses
a particular difficulty to correctly identify the unknown parameters. The
problems associated with the form of the flight test data itself will be treated
in Chapter 9 Section 9.3. The second problem is due to the form of the
model as a third order polynomial in σx with three unknowns. In most
cases, there is a near infinite number of solutions (local minimums) that
satisfy the constraints. Although the solution may be a local minimum, the
identified parameters cVpx, µVsx and µVkx may not represent a realistic value
based on our knowledge of contact physics e.g. a solution could be found
where µVsx = 10 while µVkx = 1E−10. We represent schematically the problem
of several solutions satisfying the flight test data in Figure

Therefore we must correctly bound the problem by representing the
physics of the problem using constraints on the permitted values.

Constraint 1 The first constraint is that µsx > µkx. This constraint is
based on tribology (Chapter 6) which has shown that the static coefficient of
friction is greater than the dynamic coefficient of friction for rubber sliding.

Constraint 2 We will constrain the static coefficient of friction so that
µsx < 1.5. This constraint is based on the specific case of aircraft tires and
runways. Although rubber friction can reach higher values than 1.5 in other
applications, the types of rubber used in the aircraft industry, combined
with the elevated contact pressures have shown that the static coefficient of
friction is not greater than 1.5.



Constraint 3 We will constrain the upper limit of the tire-stiffness, cpx,
to a maximum of 10 times the initial value. This is done because we have a
good initial estimate of the tire-stiffness, copx. We know that the tire-stiffness
varies as a function of vertical load, tire-pressure and temperature, however
it has not been experimentally shown to vary by orders of magnitude.

Constraint 4 The flight test data that is being used are specific tests were
the aircraft is braking at its maximum ability. As such, we assume that
the anti-skid is active and regulating the braking to obtain the maximum
braking on the µ − slip curve. During the interval where the identification
is being performed, we compute the maximum braking force. We recall that
in Chapter 2 Section 2.5 we identified key points on the µ− slip curve. One
of these key points was the maximum braking force predicted by the Brush
Model

Fxmax =
3µkx − 4µsx
(2µkxµsx

− 3)2
Fz

Thus we can add a constraint that the maximum braking force predicted
by the brush model must be close to the actual maximum braking force
measured during the flight test interval with a certain uncertainty

0.9FExmax
< FMxmax

< 1.1FExmax

8.3.5 Curve-Fitting Algorithm

Recall that the brush model, has the form

FMx (i) = f
(
cVpx, µ

V
sx, µ

V
kx, F

V
z (i), σVx (i)

)
Knowing the error associated with the flight test parameters, we can

determine the boundaries that the real value must be found within.

max(0, FEz (i)− ε1) ≤ F Vz ≤ FEz + ε1

max(0, σE(i)− ε2) ≤ σV ≤ σE + ε2

Looking at the form of equation (8.1) we note that:

As F Vz increases, FMx decreases
As σV increases FMx increases

Therefore we can ascertain that the maximum possible value of the hor-

izontal force, F
M
x , occurs when F Vz is at the minimum and σV is at the

maximum. While the minimum possible value of the horizontal force, FMx ,
occurs when F Vz is at the maximum and σV is at the minimum. Such that



ψ(i, λc, λs, λk) = F
M
x

(
i, copx + λcopx, µ

o
sx + λµosx, µ

o
kx + λµokx,max(0, FEz (i)− ε1), σE(i) + ε2

)

ψ(i, λc, λs, λk) = FMx
(
i, copx + λcopx, µ

o
sx + λµosx, µ

o
kx + λµokx, F

E
z (i) + ε1,max(0, σE(i)− ε2)

)
Therefore we know that the horizontal force calculated by the brush

model must fall within the boundary

ψ(i, λc, λs, λk) ≤ FMx ≤ ψ(i, λc, λs, λk)

Additionally, we know that the comparative horizontal force coming from
flight test data must also fall within the boundary of its error

max(0, FEx (i)− ε3) ≤ F Vx (i) ≤ FEx (i) + ε3

Difference between Model and Flight Test

ψ(i, λc, λs, λk)−
(
FEx (i) + ε3

)
≤ FMx (i)−F Vx (i) ≤ ψ(i, λc, λs, λk)−max(0, FEx (i)−ε3)

ψ(i, λc, λs, λk)−
(
FEx (i) + ε3

)
≤ FMx (i)− F Vx (i) ≤ ψ(i, λc, λs, λk)−max(0, FEx (i)− ε3)

B(i, λc, λs, λk) ≤ FMx (i)− F Vx (i) ≤ B(i, λc, λs, λk)∣∣FMx (i)− F Vx (i)
∣∣ ≤ max (B(i, λc, λs, λk), B(i, λc, λs, λk)

)∣∣FMx (i)− F Vx (i)
∣∣ ≤ E(i, λc, λs, λk)

Minimize the error between the flight test and the model while obeying
the constraints posed by the physical representation of the model.

min
T∑
i=1

E(i, λc, λs, λk)

Find λ∗c , λ
∗
s, λ
∗
k

cVpx = copx + λ∗cc
o
px

µVsx = µosx + λ∗sµ
o
sx

µVkx = µokx + λ∗kµ
o
kx



8.4 Conclusion

We have defined an identification algorithm which will identify up to
three unknown parameters by minimizing the error between flight test data
and the Brush Model. The algorithm is flexible in its usage. The unknown
parameters can be estimated before hand using the theories developed within
this report. In this case the three parameter identification can become either
a two or one parameter fitting. Chapter 9 will explore several different
applications of this identification algorithm for both three parameter fitting
and two parameter fitting.





Chapter 9

Comparison Brush Model
and Flight Test

Summary. Nous avons au total sept coefficients : Fx, Fz, a, σx, cpx, µsx et
µkx. À partir des données des essais en vol, nous mesurons (ou calculons à
partir des données mesurées) les quatre coefficients suivants : Fx, Fz, a et σx.
Il reste donc trois paramètres inconnus : cpx, µsx et µkx. Comme mentionné
au chapitre 7, il existe deux méthodes pour obtenir ces paramètres inconnus :

– Estimation : à l’aide des théories scientifiques développées dans les
chapitres 3 à 6

– Identification : à l’aide de l’algorithme d’ajustement de courbe développé
au chapitre 8

Dans ce chapitre, nous allons évaluer plusieurs méthodes de détermination
de ces paramètres, soit par identification, soit par estimation. La Figure 9.1
présente de manière schématique le procédé qui est mis à jour dans chaque
chapitre pour présenter l’approche choisie. Pour pouvoir utiliser l’algorithme
d’identification, nous allons ajuster la courbe sur une plage de points de
données. Nous prenons comme hypothèse que, pour la plage de points de
données considérée, les paramètres inconnus restent constants, autrement
dit, nous allons chercher la ou les valeurs uniques qui remplissent les critères
de la minimisation. Au cours de l’optimisation, cette hypothèse nous oblige
souvent à faire un choix sur la plage de points de données à choisir et sur
la validité de l’hypothèse que, sur cette plage, les paramètres inconnus res-
tent constants. Il existe des avantages et des inconvénients à augmenter le
nombre de points de données. Si le nombre de points augmente, nous avons
un ensemble de données plus large sur lequel nous pouvons effectuer l’ajus-
tement de la courbe, augmentant ainsi la confiance dans l’exactitude des
valeurs trouvées lors de cet ajustement. À l’inverse, un ensemble de données
plus large augmente le risque que les paramètres inconnus ne soient plus
constants sur la plage complète. Nous présentons deux options à considérer
pour déterminer l’ensemble de données pour l’algorithme de minimisation.



Nombre de roues Les avions sont équipés de plusieurs roues freinées. Les
avions de la flotte d’Airbus sont équipés de quatre roues freinées au mini-
mum et de 16 roues freinées simultanément au maximum. Ceci signifie que,
pour un seul pas de temps, nous pouvons avoir jusqu’à 16 points de données.
En prenant en compte toutes les roues, nous multiplions la taille de notre
ensemble de données par le nombre n de roues. Considérant que chaque
pneu est freiné indépendamment des autres, nous obtenons une plage de
données beaucoup plus large pour effectuer l’identification. Cependant, uti-
liser toutes les roues dans l’ensemble de données suppose que tous les pneus
ont des caractéristiques mécaniques et un comportement analogues (la piste
peut être partiellement contaminée par des dépôts de caoutchouc de manière
à ce que seulement certaines roues entrent en contact avec le contaminant).
L’un des paramètres inconnus est cpx, la rigidité du pneu. Comme indiqué
au chapitre 5, la rigidité du pneu est principalement fonction de la charge
verticale sur le pneu et de la pression du pneu. En outre, les recherches
menées en science des matériaux (Chapitre 3) ont démontré que la rigidité
du pneu varie également à cause de la chaleur produite lors du freinage. En
utilisant tous les pneus dans le même ensemble de données, nous considérons
que tous les pneus ont les mêmes propriétés mécaniques et rencontrent les
mêmes conditions sur la piste. Nous allons démontrer l’effet d’une utilisa-
tion de tous les pneus ou d’un traitement de chaque pneu séparément dans
le chapitre résultats. Intervalles de vitesse La taille de l’ensemble de données
dépend de l’intervalle de temps sur lequel les données sont incluses. Comme
tous les tests sont associés au freinage, à chaque pas de temps, la vitesse di-
minue. De la même manière que précédemment, un intervalle de temps plus
large augmente le nombre de points de données sur lesquels effectuer l’iden-
tification. Un ensemble plus large de données comprend en général une plus
grande variation dans les points de données, ce qui augmente la confiance
dans l’identification des paramètres. Cependant, cette méthode repose sur
l’hypothèse que les paramètres inconnus sont constants sur l’intervalle. Nous
rappelons que les paramètres inconnus sont cpx, µsx et/ou µkx. Comme nous
l’avons vu dans le chapitre sur la tribologie (6), le coefficient de frottement
dépend de la vitesse de glissement, qui se modifie constamment sur l’inter-
valle de temps. De plus, l’absorption de chaleur due au freinage augmente
en fonction du temps et modifie les caractéristiques mécaniques du caou-
tchouc. En conséquence, la rigidité du pneu et le coefficient de frottement
sont modifiés. Nous allons analyser les effets de l’intervalle de vitesse et al-
lons essayer de trouver une optimisation entre un nombre de points suffisant
pour identifier les paramètres et l’hypothèse que les paramètres inconnus
sont constants sur l’ensemble de données. Difficultés Partitionnement des
données La Figure 9.3 rappelle la forme de la courbe µ − slip. Si le pilote
freine à l’aide des pédales, au moment où il commence à appuyer sur les
pédales, la pression de freinage augmente, ce qui entrâıne une augmenta-
tion du couple de freinage. Suivant la courbe µ− slip, une augmentation du



couple de freinage entrâıne une augmentation du taux de glissement longi-
tudinal. Si le pilote continue d’appuyer sur les pédales (et si les freins ont
un couple suffisant), la force de freinage atteint un maximum et les pneus
peuvent patiner, autrement dit le taux de glissement longitudinal continue à
augmenter alors que la force de freinage diminue. Cette situation déclenche
le système antidérapage de l’avion, qui régule la pression appliquée sur les
freins pour maintenir la force de freinage la plus élevée sans dérapage des
roues. En général, plus le système antidérapage est perfectionné, plus les
points de données µ − slip sont densément groupés en partie haute de la
courbe µ − slip. Alors qu’un système antidérapage performant est essen-
tiel pour optimiser le freinage des avions, il présente des inconvénients dans
l’utilisation des algorithmes d’identification. Plus les points de données sont
densément groupés, plus il est difficile de déterminer la forme réelle de la
courbe µ − slip à l’aide des algorithmes d’identification. Ceci augmente le
nombre de solutions possibles, comme montré schématiquement Figure 9.2.
Les travaux futurs sur ce sujet peuvent utiliser des essais en vol spécifiques
où le freinage est régulé pour obtenir une plage plus grande de points de
données. Freinage à couple limité Nous avons montré que le système an-
tidérapage maintient la force de freinage sur la partie stable de la courbe
µ−slip. Cependant, il existe une autre condition qui peut également limiter
les points de données sur la partie stable de la courbe : la limitation de
couple. Ceci se produit quand les freins ne peuvent pas donner plus de force
de freinage que le maximum de la courbe µ−slip. En conséquence, même au
freinage maximum, la roue ne patine pas et reste sur la partie stable. Cette
situation est plus susceptible de se produire sur des pistes sèches. Comme
nous le verrons au chapitre 9.4, les points groupés principalement sur la par-
tie stable de la courbe rendent difficile l’identification correcte de µsx et µkx,
s’ils sont tous les deux inconnus. Cela est dû au fait que les variables µsx
et µkx ont une plus forte influence sur la forme de la courbe µ− slip quand
le taux de glissement longitudinal augmente. Les raisons de ce phénomène
peuvent être déterminées à partir de la dérivation du modèle de la brosse
(voir chapitre 2). Dans tous les cas, sans points de données sur la partie
instable de la courbe, il est presque impossible de déterminer les variables
µsx et µkx, comme démontré Figure 9.4. Comme nous pouvons le constater,
malgré des différences significatives entre les valeurs de µsx et µkx, la partie
stable (à gauche) de la courbe a sensiblement la même forme.

Pistes sèches contre pistes humides Pour toutes les raisons précédentes
(points de données groupés, freinage à couple limité), le procédé d’identifi-
cation est plus robuste pour les essais effectués sur des pistes humides que
sur des pistes sèches. Sur les pistes humides, il est moins probable d’avoir
une limitation de couple et, comme la piste est généralement plus glissante,
la roue entre plus souvent en dérapage, avec comme résultat une plage plus
grande de points de données sur la courbe µ − slip. Une telle plage de
points de données rend l’algorithme d’identification plus précis et augmente



la confiance dans les résultats. Néanmoins, les pistes humides posent des
problèmes particuliers en raison des effets de l’hydrodynamique sur le frotte-
ment. Ces effets dépendent de la vitesse des avions, qui, comme mentionné au
chapitre 9.2.2, diminue pour chaque pas de temps. Ainsi, l’hypothèse que les
variables inconnues, à savoir les coefficients de frottement, restent constantes
lors d’un intervalle devient contestable. Nous pouvons réduire l’intervalle de
temps des données pour minimiser la modification de la vitesse sur cet inter-
valle, mais nous devons alors réduire le nombre de points de données dans
l’intervalle pour effectuer l’identification. Néanmoins, la majorité des essais
en vol s’effectuent sur des pistes sèches. Certains essais sont exécutés sur
des pistes humides (ou des pistes contaminées : glace, neige, eau stagnante),
mais, souvent, ils ne sont pas accompagnés de mesures précises ou d’une
description de l’état de la piste (profondeur de l’eau ou de la contamination,
parties de la piste recouvertes par la contamination..). En conséquence, il est
difficile de corréler les données des essais en vol avec l’état exact de la piste.
Données bruitées Le chapitre 7 a présenté le procédé utilisé pour éliminer
et/ou filtrer le plus de bruits possible. Les points des données des essais en
vol contiennent néanmoins toujours du bruit qui déforme les pointsµ− slip.
Comme illustré Figure 9.4, des modifications importantes des coefficients
peuvent ne pas modifier significativement la forme de la courbe µ − slip.
Nous avons développé un algorithme (voir chapitre 8) qui cherche à réduire
les effets du bruit sur l’algorithme d’identification. Malgré tout, le bruit reste
un obstacle non négligeable pour une identification précise. Optimisation
multi-paramètres La difficulté d’une optimisation multi-paramètres réside
dans le fait qu’il existe plusieurs solutions au problème, voire une infinité
de solutions. Alors que la solution peut être un minimum mathématique,
les paramètres identifiés peuvent ne pas avoir de signification physique. Le
problème se complique encore quand les points de données mesurés sont
groupés pendant l’intervalle de temps, en raison du système de freinage,
comme nous l’avons expliqué au chapitre 9.3.1. Plus les points sont proches
les uns des autres, plus il est difficile de faire une identification correcte. Afin
de minimiser le nombre de solutions possibles, il est impératif de circons-
crire le problème en utilisant des contraintes qui représentent la physique
du problème. Ces contraintes ont été définies au chapitre 8. La solution la
plus avantageuse est de réduire le nombre d’inconnues en utilisant des pa-
ramètres estimés à la place des paramètres inconnus. Le chapitre 9.5 apporte
la démonstration de cette procédure. Les résultats de cette comparaison sont
présentés dans ce chapitre. Les travaux se poursuivant sur ce projet, leur ob-
jectif sera d’étendre la validation à un plus grand nombre d’essais en vol.
L’intégration des effets thermiques dans le problème permettront d’expli-
quer les tendances décelées dans les paramètres identifiés. En outre, une
prochaine étape sera de déterminer le coefficient de frottement pour chaque
pas de temps, sur la base de la vitesse réelle de glissement.



Nous avons démontré qu’il est possible d’utiliser le modèle de la brosse
avec les données des essais en vol et que, quand les paramètres ont été
identifiés, ce modèle donne une valeur de la force de freinage, FMx égale à
2% près à celle mesurée lors des essais en vol, FEx . Nous avons donc démontré
que le modèle de la brosse représente correctement la physique du contact
entre le pneu et la piste lors du freinage.

Goal The goal of this chapter is to use the identification algorithm devel-
oped in Chapter 8 along with flight test data to identify unknown parameters
in the Brush Model. We will explore several options by varying the known
and unknown parameters to determine the level of confidence needed for each
of these parameters.

9.1 Introduction

We present again the form of the Brush Model as derived in Chapter 2
on page 50.

If σx ≤ σox then

Fx = −2cpxa
2σx +

4

3

c2pxa
4σ2x

Fzµsx

(
2− µkx

µsx

)
+

8

27

c3pxa
6σ3x

F 2
z µ

2
sx

(
−3 + 2

µkx
µsx

)
Else if σx > σox then

Fx = −µkx
vg
|vg|
|Fz|

In total we have seven coefficients: Fx, Fz, a, σx, cpx, µsx and µkx.
From flight test data, we measure (or calculate from measured data) the
following four coefficients: Fx, Fz, a and σx. This leaves three parameters
as unknown: cpx, µsx and µkx. As mentioned in Chapter 7, there are two
methods to obtain these unknown parameters:

– Estimate: using the scientific theories developed in Chapters 3 through
6

– Identify: using the curve fitting algorithm that is developed in Chap-
ter 8

This chapter will evaluate several methods of determining these parame-
ters, either through identification or estimation. A general schematic of the
process is presented in Figure 9.1 and is updated in each section to display
the chosen approach.



Flight Test Brush Model 

Fz   a   x cpx      µsx     µkx 

Figure 9.1: The identification algorithm will minimize the error between the
brush model frictional force, FMx , and flight test data frictional force, FEx ,
by estimating or varying the unknown parameters

9.2 Algorithm Option Discussion

In order to use the identification algorithm, we will make the curve fit-
ting on a range of data points. We make the assumption that for the range
of data points considered, the unknown parameters remain constant i.e. we
will attempt to find the unique value(s) that satisfies the minimization crite-
ria. Due to this assumption, throughout the optimization process we often
have to make a choice concerning the range of data points we wish to have
and the validity of the assumption that during this range, the unknown pa-
rameters remain constant. There are both advantages and disadvantages to
increasing the number of data points. As the number of points increases,we
have a larger data set with which to perform the curve fitting, thus in gen-
eral, increasing the confidence that the values found during the curve fitting
technique are correct. Contrary to this however, is the fact that the larger
the data set, the increased chance that the unknown parameters may not
be constant for the complete data set.

We present two options to be considered when determining the data set
for the minimization algorithm.

9.2.1 Number of Wheels

Aircraft are fitted with several braked wheels. For the particular fleet
of aircraft that Airbus uses, we have a minimum of 4 braked wheels, to a



maximum of 16 simultaneously braked wheels. This implies that for a single
time step, we may have up to 16 data points. Taking into consideration all
of the wheels, we multiply the size of our data set by n number of wheels.
Given that each tire is braking independently of the others, this generally
gives us a much wider range of data with which to make the identification.

However, using all of the wheels in the data set assumes all of the tires
have analogous mechanical characteristics and behavior i.e. runway may be
partially contaminated by rubber deposits so only certain wheels encounter
the contaminant. One of the unknown parameters is cpx, the tire-stiffness.
As seen in Chapter 5, the tire-stiffness is primarily a function of the vertical
load on the tire and the tire-pressure. In addition, the research into Material
Science (Chapter 3) demonstrated that the tire-stiffness will also vary due to
the heat generated by the braking. By using all of the tires in the same data
set, we consider that all of the tires share the same mechanical properties
and encounter the same conditions on the runway.

We will demonstrate the effect of using all the tires, or treating each tire
separately in the results section.

9.2.2 Velocity Intervals

The size of the data set will depend on the time interval for which we
include the data. Due to the fact that all tests are associated with braking,
at each time step the velocity will be different i.e. decreasing. In the same
way as above, a larger time interval will increase the number of data points
for which we will make the identification. A larger data set will usually
include a greater variation in the data points present which in general will
increase the confidence in our parameter identification.

However this method comes with the assumption that the unknown pa-
rameters are constant during the interval. We recall that the unknown
parameters may consist of cpx, µsx and/or µkx. From the Chapter on Tri-
bology (6), we recognize that the coefficient of friction is dependent on the
sliding speed which is constantly changing during the time interval. In ad-
dition, the heat absorption from braking will increase as a function of time
and affect the mechanical characteristics of the rubber. Consequently, both
the tire-stiffness and the coefficient of friction will be affected.

We analyze the effects on the velocity interval and attempt to find an
optimization between a sufficient number of points for parameter identifica-
tion and the assumption that the unknown parameters are constant in the
data set.



9.3 Difficulties

9.3.1 Clustered Data Points

We recall the shape of the µ − slip curve below in Figure 9.3. If the
pilot was manually braking with the pedals, as the pilot begins to press on
the pedals, the brake pressure would increase causing the brake torque to
increase. Following the µ−slip curve, as the brake torque increases, the slip
ratio will also increase. If the pilot continues to press on the pedals (and if
the brakes have sufficient torque), the braking force will reach a maximum
and the tires may fall into a skid i.e. the slip ratio will continue to increase
while the braking force will decrease. This will trigger the activation of the
anti-skid system of the aircraft, which will regulate the pressure applied to
the brakes in order to maintain the highest braking force without the wheel
falling into a skid. In general the more advanced the anti-skid system, the
more densely clustered the µ− slip data points will be near to the peak of
the µ− slip curve.

While a well functioning anti-skid system is essential to optimize the air-
craft braking, it is disadvantageous for using identification algorithms. The
more closely clustered the data points are, the more difficult it is to determine
the true shape of the µ− slip curve using the identification algorithms. This
increases the number of possible solutions. We demonstrate this problem
schematically in Figure 9.2. Future works on this subject may use specific
flight tests where the braking is regulated to obtain a wider range of data
points.

9.3.2 Torque Limited Braking

We have shown that the anti-skid system functions to keep the braking
force on the stable side of the µ − slip curve. However, there is another
condition that can also limit the data points to the stable side of the curve
– torque limited. This occurs when the brakes are not capable of providing
more braking force than the maximum of the µ − slip curve. As a result,
even at max braking, the wheel does not fall into a skid and it remains on
the stable side. This situation is most likely to occur on dry runways.

As we will see in Section 9.4, points clustered primarily on the stable
side of the curve make it difficult to correctly identify µsx and µkx if both
are unknown. This is due to the fact that the variables µsx and µkx have a
stronger effect on the shape of the µ− slip curve as the slip ratio increases.
The reasons for this can be determined from the derivation of the Brush
Model in Chapter 2. In any case, without data points on the unstable side
of the curve, it is nearly impossible to determine the variables µsx and µkx.
We demonstrate this effect in Figure 9.4. As we can see, despite significantly
different values of µsx and µkx, the stable (left) side of the curve has nearly
the same shape.
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Figure 9.2: This schematic identifies the numerous possible solutions avail-
able with a three parameter optimization. The problem is made more diffi-
cult when the data points are clustered together as is often the case when
braking due to the anti-skid system
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Figure 9.3: The general shape of the µ− slip curve showing the stable and
unstable sides of the curve. When the anti-skid system is functioning, it
regulates the braking pressure to obtain the maximum friction force while
remaining on the stable side of the curve. The more advanced the anti-skid
system, the closer together the µ− slip data points will be clustered.
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µsx = 0.8 µkx = 0.2

µsx = 0.5 µkx = 0.4

Figure 9.4: The blue curve shows the µ − slip curve for a µsx = 0.8 and
µkx = 0.2, while the red-dotted curve uses µsx = 0.5 and µkx = 0.4. We see
that the stable (left) side of these curves are nearly identical. Consequently,
if the flight test data contains only points on the stable side, the identification
algorithm will have problems to correctly identify the µsx and µkx.

9.3.3 Dry vs Wet Runways

For all of the reasons above (clustered data points, torque limited brak-
ing), the identification process is more robust for flight tests performed on
wet runways than on dry runways. On wet runways, we are less likely to be
torque limited and, because the runway is in general more slippery, the wheel
will more often fall into skids, resulting in a larger range of data points on
the µ− slip curve. This larger range of data points makes the identification
algorithm more accurate resulting in higher confidence of the results.

Nevertheless, wet runways pose particular problems due the effect of
hydrodynamics on friction. The hydrodynamic effects are dependent on
the velocity of the aircraft, which, as mentioned above in Section 9.2.2, is
decreasing for each time step. Thus the assumption that the unknown vari-
able(s), namely the friction coefficient(s), remains constant during an inter-
val is questionable. We can reduce the data time interval to minimize the
change in velocity during the interval, however we then reduce the number
of data points in the interval to make the identification.

Regardless, the majority of the flight tests are performed on dry runways.
There exists some flight tests performed on wet runways (or contaminated
runways: ice, snow, standing water), however these flight tests are often not
accompanied by an accurate measurement or description of the runway state



i.e. depth of water or contaminant, portion of the runway covered by said
contaminant. As a result, it is difficult to correlate the flight test data with
an exact runway state.

9.3.4 Data Noise

In Chapter 7 we presented the process followed to remove and/or filter
as much of the noise as possible. Nevertheless, the flight test data points
still contain noise that distort the µ−slip points. As we have seen in Figure
9.4, large changes in the coefficients may not significantly change the shape
of the µ − slip curve. We have developed an algorithm (Chapter 8) that
attempts to reduce the effect that the noise can have on the identification
algorithm. Even so, data noise will remain a significant hurdle to an accurate
identification process.

9.3.5 Multi-Parameter Optimization

What is difficult with a multi-parameter optimization is that there are
often several (if not infinite) solutions to the problem. While the solution
may be a mathematical minimum, the identified parameters may not have
a physical sense.

This problem is further complicated by the fact that the measured data
points may be clustered together during the time interval due to the braking
system as explained in Section 9.3.1. The closer the points are clustered,
the more difficult it is to make a correct identification.

In order to minimize the number of possible solutions, it is imperative to
properly constrain the problem using constraints that represent the physics
of the problem. These constraints were defined in Chapter 8. The most
favorable solution is to reduce the number of unknowns by using estimated
parameters in the place of the unknown parameters. This procedure will be
demonstrated in Section 9.5.

9.3.6 A Note about Data Presentation

Analyzing braking data and presenting it in a coherent understandable
manner is not an easy task. Some of the flight tests were performed on an
aircraft with 16 braked tires, a landing lasts approximately 30 seconds and
data is recorded at up to 128 Hertz. This results in approximately 60, 000
data points.

In addition, as explained in Section 9.2, if we cut the data into velocity
intervals and treat each tire separately this increases the number of cases
e.g. five velocity intervals and sixteen tires will produce eighty different
correlations for one landing.

As such, we will present only a subset of the data below to identify the
robustness of the algorithm and the confidence in the identification process.
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Figure 9.5: The identification algorithm will minimize the error between the
brush model frictional force, FMx , and flight test data frictional force, FEx ,
by varying cpx, µsx and µkx

9.4 Three Parameter Optimization

We start with the worst case scenario i.e. the most difficult identification
case. This is the case where none of the three unknown parameters, cpx, µsx
and µkx, can be estimated. We will use the identification algorithm as
derived in Chapter 8, to identify all three of these unknown parameters.

The process is straight-forward: we will use the identification algorithm
developed in Chapter 8 which will vary the three unknown parameters in
order to minimize the error between the flight test data and the Brush
Model. The process is shown schematically in Figure 9.5

To consolidate the results, we will present two flight tests: one flight
test that was performed on a dry runway while the other was performed
on a wet runway (a runway is considered wet if there is less than 3mm of
water, although for this flight test, no water depth measurement was actually
taken).

9.4.1 Dry Runway

All Tires - No Velocity Intervals

The first result will make the identification on the ensemble of data points
for all tires together, as well as for the entire landing i.e. the data points will
not be separated into velocity intervals. As such, the identification algorithm



will fit one µ− slip curve through the entire range of 60, 000+ points.

Results The identification algorithm identified the three parameters as
shown in Table 9.1. We plot the µ − slip curve in Figure 9.6. The first
observation for Figure 9.6 is the dispersion of the data. With 16 tires all
braking, there is a significant dispersion in the data. The µ−slip curve found
by the Brush Model is shown as the dotted black line. We clearly see that
it passes well through the middle of the points. However, the lack of points
on the unstable side of the curve is evident. As such, the determined form
of the curve on the unstable (right) side is clearly an estimation. Although
the result is a mathematical solution to the problem, the values as shown in
Table 9.1 leave some doubt on the validity of the result. In particular, the
identified value of µkx is lower than expected. Through the experimental
friction tests performed by the University of Hannover and described in
Chapter 6 (page 136), we expect a value of µkx in the range 0.4 to 0.6.
Nevertheless, the difficulty to correctly identify the unknown parameters
does not come as a surprise due to the data clustering and lack of points on
the unstable side of the curve.

Figure 9.7 presents the overall results comparing the braking force from
flight test data to the braking force calculated using the Brush Model equa-
tion and the identified parameters. It is surprising to see the accuracy
between the Brush Model and the flight test. In general, we have less than
2.5% relative error in the Brush Model despite the fact that we know at
least one of the parameters, µkx, is far from a realistic value. On one hand,
this shows the robustness of the Brush Model to determine the braking
force despite variations in the input parameters. On the other hand, this
demonstrates that the percent error is not a reliable indicator of a correct
identification. It is for this reason, we will concentrate on the shape of the
µ−slip curve and value of identified parameters to indicate a correct fitting.

Table 9.1: Identified parameters for a dry runway using all tires without
velocity intervals

cpx µsx µkx
(N/m2)

4.02E+07 0.957 0.096
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Figure 9.6: The µ− slip curve for a three parameter identification on a dry
runway for all tires, without velocity intervals.

5 10 15 20 25 30 35

FX = f(t)

Time [s]

FX
 [

N
]

 

 

Fitted Fx

CDF Data

5 10 15 20 25 30 35
0

0.05

0.1

0.15

0.2
Relative Error

Figure 9.7: The braking force as a function of time, and the relative er-
ror between the Brush Model and Flight Test data for a three parameter
identification on a dry runway for all tires, without velocity intervals.



All Tires - Five Velocity Intervals

The second fitting will use all of the tires data points together, but will
divide the data into velocity intervals. A choice of five velocity intervals was
made which is an optimization to have as many intervals as possible while
still having sufficient number of points within the velocity interval to make
an accurate estimation. The five velocity intervals in knots are

1. 120 < GS

2. 100 < GS < 120

3. 80 < GS < 100

4. 60 < GS < 80

5. GS < 60

With this fitting, we hope to be able to identify the effect that speed has
on the shape of the µ− slip curve.

Results The identified parameters are shown below in Table 9.2. In this
case, we do not plot the braking force as a function of time because it is
nearly identical to that of the case with no velocity intervals (Figure 9.7).
That is to say, that regardless of the accuracy of the identified parameters,
the robustness of the Brush Model algorithm ensures a close fit (in this case
less than 5% error).

In Figure 9.8 we plot the shape of the µ−slip curve for the five different
velocity intervals. However, the clustered data points once again pose a
problem to the identification. Although the identified µ − slip curves are
well fit on the stable (left) side of the curves, the unstable (right) side of the
curve is simply a best guess by the algorithm.

For speed interval number 1, the identified µ − slip curve is far from
expected with a µsx higher than expected and a µkx lower than expected.
In addition, the shape of the curve is significantly different than for the other
velocity intervals.

Speed intervals 2 through 5 present a more consistent shape. In general,
we see that the µmax is increasing as the velocity decreases. This corresponds
with our expectations as explained in the Tribology Chapter (6). However,
simply from the observations of µ − slip curves in literature, we expect a
larger difference between the µsx and µkx which creates the hump (or hill)
shape of the µ− slip curve. In the identified parameters, we have µsx ≈ µkx
and thus the hump of the µ− slip curve is not pronounced.



Table 9.2: Identified parameters for a dry runway test using all tires and
five velocity intervals.

Ground Speed cpx µsx µkx
(m/s) (N/m2)

120 < GS 3.58E+07 1.454 0.145
100 < GS < 120 5.15E+07 0.361 0.343
80 < GS < 100 5.06E+07 0.374 0.356
60 < GS < 80 4.75E+07 0.413 0.392

GS < 60 4.73E+07 0.436 0.415
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Figure 9.8: The µ− slip curve for a three parameter identification on a dry
runway for all tires, with five velocity intervals.



9.4.2 Wet Runway

We will now repeat the procedure with a flight test performed on a wet
runway. As explained in Section 9.3.3, the wet runway will provide more
points on the unstable side of the curve as the anti-skid works to prevent
the wheel from falling into a skid on the wet runway. However, the velocity
effect will be much more pronounced for wet runways. Thus we will skip
the identification All Wheels - No Velocity Interval as the dispersion of the
ensemble of data points is enormous and thus a simple fit through the middle
of this large dispersion of points does not give any meaningful results.

All Tires - Five Velocity Intervals

Due to the large dispersion of data points, we have divided the data
for each velocity interval creating five subgraphs in Figure 9.10. The three
identified parameters are shown in Table 9.3. The first observation is the
large range of points found for each velocity interval. As opposed to the dry
runway where for certain velocity intervals the points were clustered, the
wet runways has a wide range of data points for the entire range of data. In
addition, we note the significant number of points on the unstable (right)
side of the curve. Visually, in Figure 9.10, we can see that the shape of the
µ − slip curves corresponds well with the data points on both the left and
right side of the curves.

We plot the data of Table 9.3 in Figure 9.9. From here we can determine
trends in the identified parameters as a function of velocity. We note that
in general, the coefficients of friction, µsx and µkx increase as the velocity
decreases. This is consistent with the experimental data and the tribology
theory shown in Chapter 6. For the low speed case, Interval 5, the µkx
is contrary to the trend and the resulting value is lower than expected.
However, a closer look at the data displayed in Figure 9.10e, we see that the
identified µ−slip curve does not correspond well to the data on the unstable
(right) side of the curve. We see that the majority of the points form a
straight line higher than that of the identified curve. In our estimation,
a better fit to the data points would have been achieved with a µkx of
approximately 0.3 which would also correspond with the trend shown in
Figure 9.9

However, we still note that there is a significant data dispersion due
to all of the tire data being used at once. Thus we will perform another
identification with each tire separately.



Table 9.3: Identified parameters for a wet runway test using all tires and
five velocity intervals.

Ground Speed cpx µsx µkx
(m/s) (N/m2)

120 < GS 3.35E+07 0.402 0.099
100 < GS < 120 3.03E+07 0.478 0.110
80 < GS < 100 2.89E+07 0.475 0.187
60 < GS < 80 2.81E+07 0.553 0.248

GS < 60 1.95E+07 0.825 0.182

0.00E+00 

5.00E+06 

1.00E+07 

1.50E+07 

2.00E+07 

2.50E+07 

3.00E+07 

3.50E+07 

4.00E+07 

0.000 

0.100 

0.200 

0.300 

0.400 

0.500 

0.600 

0.700 

0.800 

0.900 

1 2 3 4 5 

c_
p

x 
(N

/m
m

^2
) 

C
o

e
ff

ic
ie

n
t 

o
f 

Fr
ic

ti
o

n
 

Velocity Interval 

µ_sx 

µ_kx 

c_px 

Figure 9.9: We plot the identified parameters cpx, µsx and µkx as identified
for each velocity interval 1 through 5.
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Figure 9.10: We plot the µ− slip curve for different velocity intervals using
all tires for a wet runway. Note: All curves are using the same scale for
comparison.



Each Tire - Five Velocity Intervals

For this identification, we consider the data points from only one par-
ticular tire at a time. Consequently, we perform 80 identifications (16 tires
multiplied by 5 velocity intervals). Due to the large amount of data, we
display below in Figure 9.12 the data for one tire in the five velocity inter-
vals. The particular tire was to represent an average outcome; some tires
had data points which were easier to identify, whereas some tires had data
points with a much larger discrepancy resulting in a poorer fit.

Figure 9.12 shows both the advantages and disadvantages of performing
the fit on one tire. The dispersion of the data is significantly less when using
data points from only one tire. For example for velocity intervals 3 and 5,
we note that the identified µ− slip curve follows well the shape of the data
points. On the other hand, we see the effect of having reduced the number
of data points by a factor of 16. For example on velocity interval 4, there are
no points on the unstable (right) side of the curve with which to influence
the identification process. This is contrary to velocity interval 4 for all tires
in Figure 9.10 where there are an abundance of points on the unstable side.

We present the identified parameters in the form of three sub-figures
within Figure 9.11, one for each parameters cpx, µsx and µkx. The data is
in the form of a bar graph, one bar for each tire and as a function of the
velocity interval as shown before in Figure 9.9. Additionally, we plot the
mean of the 16 tires and plot this data over-top of the bars.

We note that the mean curves follow the same form as for the ’all-tire’
identification i.e. the coefficients of friction are increasing as the velocity
decreases and the cpx is decreasing as the velocity decreases. In addition to
having the same tendency, the mean lines also have roughly the same values.
It is encouraging to see that the identification algorithm arrives at roughly
the same conclusion whether the identification is made on all tires or each
tire individually.

However, we note the large range of values present in the identified pa-
rameters. In the same velocity interval but for different tires we have a µkx
of 0.3 and 0.08. In the same way, we see that the cpx value varies by a factor
of 4 in one velocity interval from 1 × 107 to 4 × 107. This undermines the
confidence in the identification as two tires traveling on the same runway,
experiencing the same runway state, but the identification process finds two
drastically different values.

9.4.3 Conclusion

The three parameter identification was performed as it provides the worst
case scenario. That is to say, when there is no information available con-
cerning the three unknown parameters. The result of this analysis provided
two important conclusions:
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Figure 9.11: We plot the identified parameters as a function of the tire
number and for different velocity intervals
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Figure 9.12: We plot the µ − slip curve for different velocity intervals on
one tire for a wet runway. Note: All curves are using the same scale for
comparison.



1. The form of the µ-slip curve is robust. Despite little variation in the
data, and identified parameters that were non-physical, the resulting
braking force calculated by the Brush Model was within 5% of the
measured braking force. This result allows for a certain tolerance in
future modeling attempts. That is to say, when using estimated values
in place of the unknown variables, the estimated values will provide a
correct result as long as they remain within a certain tolerance.

2. The quality of the identification process is directly related to the distri-
bution of the data points in slip. When the data points are clustered
around a small range of slip, σx, values, a correct identification be-
comes impossible. However, the greater the distribution of slip values,
the more confidence in the identification algorithm. This could lead to
future modifications in the algorithm that calculate a confidence value
based on the distribution of slip values.

Although the confidence in the determined values is low, two general
trends can be derived from the three parameter fitting:

– that the coefficients of friction are inversely proportional to the velocity
– that the tire stiffness, cpx is proportional to the velocity.
The next section will use estimated values to replace one of the unknown

variables, µkx, resulting in a two parameter identification process.



9.5 Two Parameter Identification

As we have seen in the previous section, using the curve-fitting algorithm
with three unknowns leads to uncertain results concerning the identified
values. In particular, the dynamic coefficient of friction, µkx, identified in
the three parameter fitting was susceptible to large variations which are not
physical. Due to the variability in the dynamic friction coefficient, there was
a general lack of confidence in the identified static coefficient of friction, µsx,
as the value is related to the dynamic friction. The identified tire stiffness,
cpx, from the three parameter fitting was more robust. The identified values
from different velocity intervals and different tires were in the same range
indicating that the identification algorithm was consistently finding a similar
value giving us more confidence in the results.

In order to improve the identification process, we will estimate one of
the unknown values using previous experimental results thus leaving two
variables to be identified. The choice was made to estimate the µkx value,
thus using the identification algorithm to find cpx and µsx (Schematic in
Figure 9.13). The dynamic coefficient of friction proved to be the most
erratic variable from the three parameter fitting. From our knowledge of
tire-contact physics and the Brush Model, we know that the dynamic friction
has a greater impact when a larger portion of the tire-contact zone is sliding
i.e. when the slip ratio is greater. As we saw in the previous identification
and discussed in Section 9.3.1, on dry runways the anti-skid system regulates
the braking so that the slip ratio remains on the stable side of the curve.
The lack of data points on the unstable side of the curve prevent an accurate
identification. By estimating the µkx value and inserting it into the Brush
Model, we remove the uncertainty due to the unstable side of the mu-slip
curve. In addition, the µsx identification will be improved as it is linked to
the µkx.

To estimate the dynamic coefficient of friction, we use the experimental
results obtained from the University of Hannover, Germany. A subset of the
results have been presented in Section 9.3.1(pg 136). To estimate the µkx,
for each test and wheel, we first identify the tire pressure and the ambient
temperature. To simplify the algorithm, we currently choose an average
sliding speed value as seen on the flight test. This results in using one µkx
value for all of the flight test (since the tire pressure, ambient temperature
and sliding speed are simplified as constants). Future work of the modeling
may integrate an estimation of µkx at each time step taking into account
the sliding speed at that time step along with the thermal effects due to
tire-heating.

There is currently no experimental results to estimate the µkx on wet
runways. As such, the following analysis will be performed only for the dry
runway case.
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Figure 9.13: Schematic of the Curve Fitting algorithm for two parameters
by estimating the µkx value from experimental results



Remark 5. The chosen flight test for the two parameter fitting on dry
runways is different than the flight test used for the three parameter fitting.
The flight test data for the three parameter fitting had a mature anti-skid
regulation that functioned very well to keep the slip ratio on the stable side
of the curve resulting in clustered data points.

For the two parameter fitting, a new flight test was found which involved
the development of the anti-skid system. For this test, the anti-skid system
was not as well regulated resulting in a greater dispersion of data points
including a greater portion of data points on the unstable side of the curve.
Using this test with the data points on the unstable side of the curve permits
to demonstrate that accuracy of the two-parameter fitting. In particular, we
can observer the correlation of the points on the unstable side of the curve
with the estimated µkx value.

Remark 6. The three parameter fitting used five velocity intervals where
the first velocity interval was for speeds above 120 knots. The flight test data
used for this fitting does not have speeds above 120 knots, thus the data has
been divided into four velocity intervals. For clarity, the same color scheme
has been used as the three parameter fitting.

9.5.1 Four Velocity Intervals - All Tires

The first case to be identified will use velocity intervals and all tires.
That is to say, we will use the curve fitting to identify the two parameters
using the ensemble of points from all 16 braked tires for one velocity interval.
The end result is that we identify 4 µsx and 4 cpx values. The results are
tabulated below in Table 9.4.

We notice two general trends from the identification process. The first
is that, as seen in the three parameter fitting for both dry and wet runways,
the tire stiffness, cpx, decreases with time of the braking (perhaps an effect of
velocity or tire-heating or both). However the tire-stiffness data has shown
that it does not change significantly during a test e.g. a reduction of 20%
is seen in the data. The second trend is that the µsx value is seen to be
increasing with time of the braking. Once again, the total variation of µsx
over the full test is quite small at around 8%.

Plotting the output of the Brush Model, the braking force FMx , against
the braking force measured from the flight test, FEx , we see once again that
there is a very good correlation. The two parameter fitting shows a better
correlation than the three parameter dry-runway fitting with an average
error (disregarding the start of the test) of less than 2%.

Figure 9.15 presents the µ-slip points for the four velocity intervals.



Table 9.4: Two Parameter fitting with four velocity intervals on all tires.

Ground Speed cpx µsx µkx
(knots) (N/m2)

100 < GS < 120 4.35E + 07 0.837 0.506
80 < GS < 100 3.79E + 07 0.916 0.506
60 < GS < 80 3.49E + 07 0.990 0.506

GS < 60 3.42E + 07 0.908 0.506
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Figure 9.14: A comparison of the FMx from the Brush Model and the FEx
calculated from the flight test data for a two parameter fitting on a dry
runway
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Figure 9.15: For the two parameter fitting, we plot the µ − slip curve for
different velocity intervals using all tires for a dry runway. Note: All curves
are using the same scale for comparison.



9.5.2 Four Velocity Intervals - Each Tire

We repeat the identification process done in the previous section, but
in this case we perform the identification on each individual tire within
each velocity interval. In other words, for each tire we will identify the
tire-stiffness and static friction coefficient based on the data points of that
specific tire i.e for 16 tires we will identify 16 tire-stiffness coefficients. We
recall that this process allows us to determine the characteristics of each
tire which could have varying characteristics due to different tire pressures
or tire wear. The disadvantage of this process is that there are significantly
less data points within each velocity interval to make the identification. As
such, there is generally less confidence in the curve-fitting.

To simplify the results, we show the µ-slip curve for one chosen tire, and
then show the identified parameters of the ensemble of velocity intervals
and tires. Table 9.5 shows the results of the identification giving the mean
value of the 16 tires. The results are slightly different than the All-Tires
fitting. Contrary to the All-Tires fitting, we see that the tire-stiffness, cpx,
has little to no change as a function of the braking time, while the static
friction, µsx, decreases slightly with the braking time, which is the inverse of
the All-Tires fitting. Although the difference is small, this does cast doubt
on the precision of the identification. The µ-slip curve for a single tire is
shown in Figure 9.16 and a bar graph of the values found for all 16 tires for
the tire stiffness, cpx and the static coefficient of friction, µsx are shown in
Figure 9.17

Table 9.5: Two Parameter fitting with four velocity intervals on each tire.
The values below represent the mean value found among the 16 tires (Also
plotted as the black dotted line in Figure 9.17).

Ground Speed Mean cpx Mean µsx µkx
(knots) (N/m2)

100 < GS < 120 3.88E + 07 0.968 0.506
80 < GS < 100 3.97E + 07 0.941 0.506
60 < GS < 80 3.87E + 07 0.848 0.506

GS < 60 3.57E + 07 0.892 0.506

9.5.3 Conclusion

Mathematically, the results of the two parameter fitting were obvious.
When one of the unknowns is removed from the equation by introducing an
experimentally validated value, the confidence of the identification process
and the end results improved considerably. The µ-slip curves found from the
curve fitting correspond well to the flight test data points. The identified



Slip Ratio

B
ra

ki
n

g 
Fo

rc
e

 

 

Flight Test 100kts<GS<=120kts

Brush Model 100kts<GS<=120kts

(a) Velocity Interval 2 – 100 < GS < 120

Slip Ratio

B
ra

ki
n

g 
Fo

rc
e

 

 

Flight Test 80kts<GS<=100kts

Brush Model 80kts<GS<=100kts

(b) Velocity Interval 3 – 80 < GS < 100

Slip Ratio

B
ra

ki
n

g 
Fo

rc
e

 

 

Flight Test 60kts<GS<=80kts

Brush Model 60kts<GS<=80kts

(c) Velocity Interval 4 – 60 < GS < 80

Slip Ratio

B
ra

ki
n

g 
Fo

rc
e

 

 

Flight Test GS<60kts

Brush Model GS<60kts

(d) Velocity Interval 5 – GS < 60

Figure 9.16: For the two parameter fitting, we plot the µ − slip curve for
different velocity intervals using a single tire for a dry runway. Note: All
curves are using the same scale for comparison.



1 2 3 4
0

1

2

3

4

5

6

7

8
x 10

7

Velocity Interval

C
p

x

 

 
Tire 1

Tire 2

Tire 3

Tire 4

Tire 5

Tire 6

Tire 7

Tire 8

Tire 9

Tire 10

Tire 11

Tire 12

Tire 13

Tire 14

Tire 15

Tire 16

Mean

(a) cpx

1 2 3 4
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Velocity Interval

S
ta

ti
c
 C

o
e

ff
ic

ie
n

t 
o

f 
F

ri
c
ti
o

n

 

 
Tire 1

Tire 2

Tire 3

Tire 4

Tire 5

Tire 6

Tire 7

Tire 8

Tire 9

Tire 10

Tire 11

Tire 12

Tire 13

Tire 14

Tire 15

Tire 16

Mean

(b) µsx

Figure 9.17: For the two parameter fitting on each tire, we plot the iden-
tified parameters, cpx and µsx, as a function of the tire number and for
different velocity intervals



values for the tire-stiffness and static coefficient of friction have less vari-
ability than in the three parameter fitting which leads to higher confidence
in their values.

Both the All-Tire fitting and the Each-Tire fitting found that the tire-
stiffness, cpx, seems to diminish with tire-braking time. From our knowledge
of material science (Chapter 3), this is due to the effect of a high tempera-
ture in the rubber decreasing the material strength and the reduced velocity
soliciting the rubber at a lower frequency, which also results in lower ma-
terial strength. However, without additional information on the tire-rubber
temperature and the macroscopic texture which solicits the rubber, it is
difficult to determine the influence of these two effects.

The All-Tire and Each-Tire fitting showed inverse effects with regards
to the static coefficient of friction. However, in both cases, the variability
was small within the values. It demonstrates the downside of the Each
Tire fitting in that for a certain velocity interval, there may not be enough
points to make a confident fit which may lead to erroneous identified values.
A future solution to this problem may be to define a confidence parameter
based on the number of data points and the data point spread. As we
have demonstrated, a larger spread of slip values in the data points leads
to higher confidence in the curve fitting. Using a confidence value, we can
reject identifications in which we do not have confidence so that they do not
perturb the results.

9.6 Conclusion

This chapter has been devoted to using the identification algorithm de-
veloped in Chapter 8 to identify unknowns tire-runway contact parameters
from flight test data. There are several difficulties in making the fitting,
most notably due to the flight test data points.

We first demonstrated the worst case scenario, when there were three
unknown in the problem. Due to the form and sensitivity of the Brush
Model, a three parameter identification presents several problems due to
the infinite number of solutions. Constraints were used which represent the
physical nature of the problem, but the three parameter fitting still proved
to be difficult to the quality of the flight test data points. In general, we
demonstrated than a wet runway is easier to identify that the dry runway
case due to the larger interval of data points with which to make the fit.
However, for both the dry and wet runways, the identified parameters were
often inconsistent from one tire or velocity interval to another. This leads
to lack of confidence in the identified values as they do not agree with the
basic physics of the problem which says the values should be similar.

The two parameter fitting provided much more consistent results. By re-
moving one of the unknown parameters, the dynamic coefficient of friction,



the three parameter fitting became a two parameter problem. By imposing
experimentally validated results in the problem, our confidence in the fit-
ting significantly increases. The identified values were consistent from one
interval to another, and the trend of the identified values were consistent
with tire-runway physics.

As work continues on this project, the goal will be to expand the valida-
tion to more flight tests. Integration of the thermal effects into the problem
will aid in explaining the trends seen in the identified parameters. In addi-
tion, an important next step will be to determine the coefficient of friction
for each time step based on the actual sliding velocity.

We have demonstrated that it is feasible to use the Brush Model with
flight test data and that when the parameters have been identified, the Brush
Model gives a braking force value, FMx within 2% of that measured in flight
tests, FEx . The Brush Model has proven to well represent the tire-runway
contact physics present during braking.





Part IV

Conclusion





Chapter 10

Conclusion

Summary. Cette thèse s’est attachée à la modélisation des forces de frotte-
ment qui se produisent entre un pneu d’avion et une piste lors du freinage.
Quand un avion atterrit, trois forces se combinent pour le ralentir : l’inver-
sion de poussée (le cas échéant), la trâınée aérodynamique et le frottement
entre le pneu et la piste dû au freinage. Parmi ces forces, nous avons montré
que la force de freinage est la principale force qui contribue pour jusqu’à 80%
à la force d’arrêt totale. Afin d’assurer la sécurité des avions lors de leurs
opérations quotidiennes, un calcul est fait avant chaque atterrissage pour es-
timer la distance d’atterrissage aux conditions d’arrivée prévues. Ce résultat
est comparé à la longueur de piste disponible pour garantir que l’avion est
capable d’atterrir sur l’aéroport avec une marge de sécurité. Pour calculer la
distance d’atterrissage, nous avons modélisé les forces impliquées dans l’arrêt
de l’avion, principalement la force de freinage. Ainsi, la compréhension des
forces de frottement produites lors du freinage est fondamentale pour un
fonctionnement en toute sécurité.

La méthodologie actuellement utilisée pour calculer les forces de frot-
tement est une méthode empirique qui s’appuie sur les données des essais
en vol. Des essais en vol comportant un freinage sont menés dans ce but
et les forces agissant sur l’avion sont séparées pour pouvoir déterminer la
force restante due aux freins. En divisant la force de freinage par la charge
verticale sur les roues freinées, nous obtenons un coefficient de frottement
équivalent (ou global) : µglobal. L’objectif de ce travail était d’approfondir
notre connaissance des facteurs modifiant le frottement de contact et de
construire un modèle représentatif de la physique du contact dans la zone
entre le pneu et la piste.

Une bonne partie de ce travail a consisté à développer le modèle de la
brosse. Ce modèle n’est pas une nouvelle méthodologie et son utilisation a été
largement documentée dans le domaine automobile. Ce modèle a l’avantage
de bien représenter la physique du contact dans la zone entre le pneu et la
piste ; les calculs sont peu coûteux et permettent des temps de simulation



rapides. L’une des contraintes industrielles imposée à ce travail a été le temps
de calcul : le modèle devait avoir un temps de calcul réduit pour permettre
une future intégration dans le simulateur de vol.

Nous avons révisé le modèle de la brosse ” basique ” et avons dérivé
les équations de base pour modéliser le frottement pneu-piste dans le sens
longitudinal. Nous avons dérivé le frottement de contact en fonction de la
rigidité du pneu, de la charge verticale sur la roue, du taux de glissement
longitudinal et des coefficients de frottement statique et dynamique. Nous
nous sommes alors appuyés sur ce modèle de la brosse ” basique ” pour
mener une étude approfondie de la théorie scientifique et des phénomènes
physiques qui s’appliquent aux paramètres du modèle de la brosse. En par-
ticulier, nous avons étudié les facteurs modifiant la rigidité du pneu et les
coefficients de frottement. Cette étude a permis d’approfondir la connais-
sance des facteurs environnementaux qui influencent le modèle de la brosse
et qui ont par conséquent un effet sur le frottement de contact. Il faut surtout
noter que nous avons développé la relation entre la résistance mécanique du
caoutchouc et la rigidité du pneu ainsi que les coefficients de frottement sta-
tique et dynamique. Ces relations sont particulièrement intéressantes pour
le domaine de l’aviation, car les pneus d’avion ont des propriétés mécaniques
très différentes de celles des pneus automobiles. Cette thèse nous a permis
de mieux comprendre et de quantifier les différences entre le frottement de
freinage des avions (qui est mal connu) et le frottement de freinage des
automobiles (qui est beaucoup plus développé). Plusieurs partenariats de
recherche ont été constitués pour étudier la complexité du frottement entre
un pneu d’avion et une piste. Le partenaire principal a été Airbus Opera-
tions qui a proposé ce thème de recherche, apporté son appui et fourni les
données d’essais en vol. En particulier nous avons travaillé avec le LRCCP
à Paris, France, pour obtenir les données sur les propriétés mécaniques des
pneus et avec l’Institute of Dynamics and Vibration Research de l’université
Leibniz de Hanovre, Allemagne, pour obtenir les données sur les coefficients
de frottement entre un pneu d’avion et une piste. Nous pouvons également
citer : le LMA à Marseille pour la modélisation des pneus, le centre français
de recherche aérospatiale ONERA pour le développement du modèle de la
brosse et l’University Paul-Sabatier pour l’identification du modèle. De plus,
les travaux de Svendenius pour le développement du modèle de la brosse et
de Persson pour la compréhension de la tribologie ont été d’une valeur ines-
timable. La dernière partie de cette thèse traite de la validation initiale du
modèle de frottement à l’aide des données d’essais en vol. Nous avons utilisé
ces données pour identifier les coefficients inconnus dans le modèle de frotte-
ment et évaluer la validité de l’identification. Nous avons d’abord présenté le
cas le plus défavorable où nous n’avions aucune connaissance préalable des
paramètres de frottement. Ce cas présente des inconvénients évidents, mais
il sert de référentiel en termes de capacité et de robustesse du modèle et du
procédé d’identification. Nous avons ensuite étudié un cas plus réaliste où



nous avons estimé le coefficient de frottement dynamique à l’aide de données
expérimentales, ce qui a éliminé une des inconnues dans le procédé d’iden-
tification. Grâce à un algorithme plus intelligent, nous avons démontré la
capacité à identifier correctement les paramètres et prouvé la robustesse re-
lative du modèle de frottement dans la corrélation aux données d’essais en
vol. Cette validation préliminaire a prouvé l’efficacité de la modélisation du
frottement basée sur le modèle de la brosse. Ce modèle de frottement fournit
une base stable sur laquelle nous pourrons appuyer nos travaux futurs.

10.1 Review

This thesis work has concentrated on modeling the frictional forces that
occur between an aircraft tire and a runway during braking. When an air-
craft lands, three forces work together to slow the aircraft: the reverse thrust
(if used), the aerodynamic drag and the friction between the tire and the
runway due to braking. Among these three forces, we have shown that the
braking force is the principal force contributing up to 80% of the total stop-
ping force. In order to ensure aircraft security during everyday operations,
before every aircraft lands a calculation is made which estimates the landing
distance at the predicted arrival conditions and compares this to the actual
available length of the runway. This ensures that the aircraft is capable of
landing at the airport with a safety margin. In order to make the landing
distance calculation, we model the forces that are involved in stopping the
aircraft, most notably the braking force. As such, an understanding of the
frictional forces generated during braking is fundamental to the safety of
airline operations.

The current methodology used in calculating the frictional forces is an
empirical method that relies on flight test data. To this end, flight tests in-
volving aircraft braking are performed and the forces reacting on the airplane
are separated so that the remaining force due to the brakes is determined.
By dividing the braking force by the vertical load on the braked wheels, an
equivalent (or global) coefficient of friction is obtained, µglobal. In order to
expand our knowledge of the factors that affect contact friction, the goal of
this PhD work is to build a model which can represent the contact physics
occurring in the tire-runway contact zone.

A significant portion of this PhD work has been to develop the Brush
Model. The Brush Model is not a new methodology and its use has been
extensively documented within the automobile world. The advantage of the
Brush Model is that it represents well the contact physics involved in the
tire-runway contact zone but is low-cost computationally allowing for rapid
simulation time. One of the industrial constraints imposed for this PhD
work was computation time; the model needed to have a low computational
time in order to permit future integration into the flight simulator.



We reviewed, what we called the basic Brush Model, and derived the
basic equations to model the tire-runway friction in the longitudinal direc-
tion. We derived the contact friction as a function of the tire-stiffness, the
vertical load on the wheel, the slip ratio and the static and dynamic coeffi-
cients of friction. We then built upon the basic brush model by studying in
depth the scientific theory and physics that pertain to the parameters used
within the Brush Model. In particular, we studied the factors that affect
the tire-stiffness and the coefficients of friction. This study permits a deeper
understanding of environmental factors which influence the Brush Model
and as a result have an effect on the contact friction. Of particular interest,
we develop the relationship between the rubber mechanical strength and
the tire-stiffness, as well as the static and dynamic coefficients of friction.
These relationships are of particular interest in the aviation world as air-
craft tires have significantly different mechanical properties than automobile
tires. This PhD work has permitted us to understand and quantify the dif-
ferences between aircraft braking friction (which is poorly understood) and
automobile braking friction (which is significantly more developed).

Several research partnerships were formed to study the intricacies of air-
craft tire-runway friction. The principal partner was Airbus Operations who
proposed the research and provided the background support and flight test
data. In particular, we worked with LRCCP in Paris, France to obtain data
on the tire-mechanical properties and with the Institute of Dynamics and
Vibration Research at the University of Hannover, Germany to obtain data
on the friction coefficients between an aircraft tire and a runway. Other
integral partners included: LMA in Marseille for tire modeling, the French
Aerospace Lab ONERA for Brush Model development and the University
Paul-Sabatier for model identification. In addition, the works of Svende-
nius for the Brush Model development and Persson for understanding of
tribology proved invaluable.

The final section of the PhD deals with an initial validation of the friction
model using flight test data. We used flight test data to identify unknown
coefficients within the friction model and evaluate the validity of the identi-
fication. We presented, first, the worst case scenario, where we had no prior
knowledge of the friction parameters. This case had obvious drawbacks but
it served as a baseline as to the capability and robustness of the model and
the identification process. We then performed a more realistic case where
we estimated the dynamic friction coefficient using experimental data which
reduced one of the unknowns in the identification process. By adding intelli-
gence to the algorithm, we demonstrated the capability to correctly identify
the parameters and the relative robustness of the friction model to correlate
to the flight test data. This preliminary validation proved the effectiveness
of the friction modeling based on the Brush Model theory. The friction
model provides a stable base with which to build upon for future works.



10.2 Future Work

The PhD work has provided a baseline model with which to model the
contact friction between the tire and the runway. This baseline model has
gone through an initial validation process to prove its robustness using flight
test data. The future work of this project will aim at continuing the valida-
tion of the friction model and the addition of more complex effects that are
currently not take into account. In particular:

– This PhD work studies the important effect that temperature has on
the tire-stiffness and the tribology. The current friction model does
not integrate the contribution that thermal heating during the aircraft
braking process has on the tire-model.

– Although this PhD work developed a simple model to predict the tire-
stiffness as a function of the vertical load and the tire-pressure, this
model was not implemented into the version of the friction model used
for validation. Using a model of the tire-stiffness will greatly improve
the identification process. However the important dynamic effects on
tire-stiffness must be studied as the simple model that was developed
is valid for static tire-stiffness.

– The understanding of tribology was greatly advanced by studying the
works of Persson. The next step will be to integrate the friction models
developed by Persson directly into the friction model to replace the
experimental data that is currently used.

– The complex relationship between the static and dynamic coefficients
of friction must be evaluated. There is currently no method to estimate
the static coefficient of friction. As such, in this PhD work, the only
means to obtain this value was from identification. In future works,
there must be a way to estimate this value.

– To expand the friction model to wet runways, the effect of water lu-
brication on friction must be studied.

– To expand the friction model to contaminated runways (standing wa-
ter, snow, ice), more data must be gathered on the friction between
the tire and a runway covered by these contaminants.

10.3 Final Word

It is the hope of this author that this PhD work, which lasted three
years, will provide a sufficient base for which to continue this work.
It seems that friction has often been an afterthought it the aviation
world. The aircraft spends the majority of its time in the air and so
little of its time on the ground. In the past we have been content to
have only a basic understanding of aircraft braking friction. Although
this PhD work has demonstrated the complexity involved in contact



friction, it has also demonstrated that despite this complexity, it can
be understood, and most importantly, it can be modeled. Furthering
our knowledge of the factors that affect friction and obtaining the
ability to correctly model the aircraft braking friction will only serve
to further enhance the safety and security of aircraft.
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Modélisation des forces de contact entre le pneu d’un avion et la piste 

  
Lorsqu’un avion atterrit, la force principale nécessaire pour arrêter l’avion est obtenue par le freinage. Par 
une réduction de la vitesse de rotation des roues, les freins provoquent une vitesse de glissement entre 
les pneus et la piste. C’est cette différence de vitesse qui génère la force de freinage capable de stopper 
l’avion. La modélisation de cette force est essentielle pour l’estimation de la longueur de piste à 

l’atterrissage. 
Les modèles classiques utilisés par les avionneurs sont assez simplistes et dérivent expérimentalement 
des modèles de frictions les plus simples. De sorte que ces modèles sont dans l’incapacité d’estimer 
l’influence de paramètres clefs influençant la force de freinage. Il s’agit, en particulier de la pression des 
pneus, de la nature de la gomme, de la température ambiante et de celle de la gomme, de l’état  de la 
piste, de sa texture, etc. 
L’objectif de la thèse a été de développer un modèle de contact pneu-piste capable d’estimer la force de 

freinage. C’est le « Brush Model » qui a servi de base à cette modélisation. En phase de freinage la zone 

de contact est constituée d’une première zone de déformation de la gomme qui crée une force résistante 
en suivant la loi de Hooke, puis d’une seconde zone de glissement dont la force de résistance suit la loi 
de Coulomb. Ce modèle a été amélioré grâce aux résultats de la mécanique des structures pour la loi de 
Hooke et grâce aux résultats de la tribologie pour la loi de Coulomb. Ces deux modélisations faisant appel 
aux données issues de la science des matériaux. L’ensemble de ces modélisations a été enrichi par une 
coopération avec plusieurs centres de recherches ayant fourni de nombreux résultats expérimentaux. 

Le modèle obtenu a ensuite été confronté avec des résultats d’essais en vol obtenus avec « Airbus 
Operations S.A.S ». La thèse a validé le prétraitement des données d’essais ainsi que le processus 
d’identification qui a permis de montrer l’accord du modèle avec les résultats expérimentaux obtenus lors 
des essais en vol. 
Cette modélisation donne des résultats très encourageants, elle permet une compréhension beaucoup 
plus approfondie des effets de l’environnement sur les forces de freinage. De sorte que cette thèse a 

permis d’améliorer très sensiblement la compréhension fondamentale des phénomènes en jeu lors du 
freinage, au contact entre le pneu et la piste. Chez Airbus,  les résultats obtenus vont servir de base pour 
les travaux à venir sur ce thème. 
 
Mots-Clés : frottement, pneu, piste, brush model, avion, caoutchouc,  taux de glissement,  Coulomb 

 
Modeling the contact forces between an aircraft tire and the runway 

 

As an aircraft lands on a runway, the principal force acting to stop the aircraft within the confines of the 
runway is generated by the brakes. The brakes cause the tire’s rotational speed to slow down with 
regards to the aircraft’s speed over the ground. This difference in speed causes friction and it is this 
friction that is the principal force to stop the aircraft. In order to be able to estimate the stopping distance 
of an aircraft an understanding of this friction is essential.  
Traditionally, aircraft manufactures have relied on simplistic, empirically derived friction models. 

However, these empirical models cannot estimate the influence of several key factors that are known 
(scientifically) to affect friction such as the rubber temperature, the runway texture, the ambient air 
temperature and the rubber composition to name a few.  
This PhD work aims to develop a frictional model that can be used to estimate the friction developed 
between an aircraft tire and the runway. A model commonly known as the Brush Model, is derived for use 
with aircraft tires and runways. The underlying physics of this model are developed using the established 
scientific theories of tribology, material science and strength of materials. Coordination with several 

research institutes provides experimental results to reinforce the model.  
The model is then compared with flight test results obtained from a partnership with Airbus Operations 
S.A.S. The PhD works demonstrates the entire validation process from flight test data cleaning, the 
derivation of a curve-fitting algorithm and the matching of derived model with the flight test data.  
The modeling has shown very encouraging results. It allows for a much deeper understanding of the 
environmental effects on friction. This PhD work has greatly improved the fundamental understanding of 
friction and will serve as a base for future works with Airbus.  

 
Keywords: Friction, Runway, Tire, Brush Model, Aircraft, tribology, rubber, anti-skid, slip ratio, Coulomb 
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