Thèse soutenue

Transport optimal : régularité et applications

FR  |  
EN
Auteur / Autrice : Thomas Gallouët
Direction : Cédric Villani
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance le 10/12/2012
Etablissement(s) : Lyon, École normale supérieure
Ecole(s) doctorale(s) : École doctorale en Informatique et Mathématiques de Lyon
Partenaire(s) de recherche : Laboratoire : Unité de Mathématiques Pures et Appliquées (Lyon ; 1991-....)
Jury : Président / Présidente : Sylvia Serfaty
Examinateurs / Examinatrices : Cédric Villani, Sylvia Serfaty, José A. Carrillo de la Plata, Hatem Zaag, Lucilla Corrias, Vincent Calvez, Ludovic Rifford
Rapporteurs / Rapporteuses : Young-Heon Kim, José A. Carrillo de la Plata

Résumé

FR  |  
EN

Cette thèse comporte deux parties distinctes, toutes les deux liées à la théorie du transport optimal. Dans la première partie, nous considérons une variété riemannienne, deux mesures à densité régulière et un coût de transport, typiquement la distance géodésique quadratique et nous nous intéressons à la régularité de l’application de transport optimal. Le critère décisif à cette régularité s’avère être le signe du tenseur de Ma-Trudinger-Wang (MTW). Nous présentons tout d’abord une synthèse des travaux réalisés sur ce tenseur. Nous nous intéressons ensuite au lien entre la géométrie des lieux d’injectivité et le tenseur MTW. Nous montrons que dans de nombreux cas, la positivité du tenseur MTW implique la convexité des lieux d’injectivité. La deuxième partie de cette thèse est liée aux équations aux dérivées partielles. Certaines peuvent être considérées comme des flots gradients dans l’espace de Wasserstein W2. C’est le cas de l’équation de Keller-Segel en dimension 2. Pour cette équation nous nous intéressons au problème de quantification de la masse lors de l’explosion des solutions ; cette explosion apparaît lorsque la masse initiale est supérieure à un seuil critique Mc. Nous cherchons alors à montrer qu’elle consiste en la formation d’un Dirac de masse Mc. Nous considérons ici un modèle particulaire en dimension 1 ayant le même comportement que l’équation de Keller-Segel. Pour ce modèle nous exhibons des bassins d’attractions à l’intérieur desquels l’explosion se produit avec seulement le nombre critique de particules. Finalement nous nous intéressons au profil d’explosion : à l’aide d’un changement d’échelle parabolique nous montrons que la structure de l’explosion correspond aux points critiques d’une certaine fonctionnelle.