Thèse soutenue

Cristaux photoniques pour le contrôle de l'absorption dans les cellules solaires photovoltaïques silicium ultraminces

FR
Auteur / Autrice : Guillaume Gomard
Direction : Christian SeassalEmmanuel Drouard
Type : Thèse de doctorat
Discipline(s) : Photonique
Date : Soutenance le 08/10/2012
Etablissement(s) : Ecully, Ecole centrale de Lyon
Ecole(s) doctorale(s) : Ecole doctorale Matériaux de Lyon (Villeurbanne ; 1992?-....)
Jury : Président / Présidente : Gilles Lérondel
Examinateurs / Examinatrices : Jean-Pierre Joly, Pere Roca i Cabarrocas
Rapporteurs / Rapporteuses : Lucio Claudio Andreani, Jean-Jacques Greffet

Résumé

FR  |  
EN

La technologie photovoltaïque se caractérise par sa capacité à réduire constamment le coût de l’électricité délivrée, notamment grâce aux innovations technologiques. Un pas important a été franchi dans ce sens grâce à la mise en place d’une filière utilisant des couches minces, réduisant significativement la quantité de matériau actif nécessaire. Aujourd’hui, ces efforts se poursuivent et des couches semi-conductrices ultraminces voient le jour. Du fait de leur faible épaisseur, ces couches souffrent d’une faible absorption de la lumière, ce qui limite le rendement de conversion des cellules. Pour répondre à ce problème, les concepts issus de la nano-photonique peuvent être employés afin de contrôler la lumière à l’échelle des longueurs d’onde mises en jeu. Dans ce contexte, nous proposons de structurer la couche active des cellules solaires en cristal photonique (CP) absorbant. Cette nano-structure périodique assure simultanément une collection efficace de la lumière aux faibles longueurs d’onde et un piégeage des photons dans la couche active (ici en silicium amorphe hydrogéné) pour les longueurs d’onde situées près de la bande interdite du matériau absorbant. Dans le cadre de cette étude, des simulations optiques ont été utilisées de manière à optimiser les paramètres du CP, engendrant ainsi une augmentation de l’absorption de plus de 27% dans la couche active sur l’ensemble du spectre utile, et à établir des règles de design en vue de la fabrication des cellules structurées. Les principes physiques régissant leurs propriétés optiques ont été identifiés à partir d’une description analytique du système. Des mesures optiques réalisées sur les échantillons structurés, ont conforté les résultats de simulation et mis en évidence la robustesse de l’absorption de la cellule à l’égard de l’angle d’incidence de la lumière et des imperfections technologiques. Des simulations opto-électriques complémentaires ont démontré qu’une augmentation du rendement de conversion est réalisable, à condition d’introduire une étape de passivation de surface appropriée dans le procédé de fabrication de ces cellules.