Thèse soutenue

Construction de modèles réduits numériques pour les écoulements compressibles linéarisés

FR
Auteur / Autrice : Gilles Serre
Direction : Christophe BaillyXavier Gloerfelt
Type : Thèse de doctorat
Discipline(s) : Acoustique
Date : Soutenance le 27/01/2012
Etablissement(s) : Ecully, Ecole centrale de Lyon
Ecole(s) doctorale(s) : Ecole doctorale Mécanique, Energétique, Génie Civil, Acoustique (Villeurbanne ; 2011-....)
Partenaire(s) de recherche : Entreprise : EDF Lab Paris-Saclay
Laboratoire : École nationale supérieure d'arts et métiers (1780-....)
Jury : Président / Présidente : Aziz Hamdouni
Examinateurs / Examinatrices : Jean-Camille Chassaing, Philippe Lafon
Rapporteurs / Rapporteuses : Angelo Iollo, Denis Sipp

Résumé

FR  |  
EN

Dans les centrales nucléaires et thermiques, certaines installations sont sujettes à des couplages acousto-mécaniques pouvant nuire fortement à leur bon fonctionnement. La compréhension et la prédiction de ces couplages multi-physiques nécessitent le développement de modèles numériques de très grande précision. Ces modèles sont si coûteux à résoudre qu’il n’est pas envisageable de les utiliser dans des boucles de contrôle ou encore d’optimisation paramétrique. Dans ce manuscrit de thèse, le but est d’exploiter un nombre limité de calculs coûteux pour construire un modèle numérique qui soit de très faible dimension. Ces modèles numériques réduits doivent être capables, en temps réel, de reproduire ces calculs haute-fidélité mais aussi d’extrapoler ces résultats à d’autres points de fonctionnement plus ou moins proches. L’évolution dé petites perturbations compressibles au sein d’un écoulement complexe moyenné est modélisée à partir des équations d’Euler linéarisées dont la nature hyperbolique complique l’application des méthodes de réduction classiques. Les principales problématiques théoriques et numériques qui émergent lors de la construction du système réduit par méthode de projection sont alors exposées. En particulier, les problèmes fondamentaux de la préservation de la stabilité et du contrôle de l’énergie des systèmes réduits sont largement développés et une nouvelle méthode de stabilisation est proposée. Leur sensibilité paramétrique est aussi discutée. Les modèles réduits stables sont ensuite intégrées dans un code de calcul industriel pour prendre en compte des géométries complexes. De plus, la présence de solides dont les parois peuvent être fixes ou mobiles est abordée. En particulier, les petits déplacements de paroi sont modélisés avec une loi de transpiration. Cette condition aux limites est intégrée dans le formalisme du contrôle de façon à lever la difficulté induite par sa non homogénéité. Finalement, les modèles réduits sont exploités pour prédire en temps réel la réponse des systèmes à une loi de contrôle arbitraire. Par exemple, la fréquence et l’amplitude du chargement peuvent varier. Le code de calcul réduit ainsi développé a pour principale vocation de rendre possible des expertises aéroélastiques à faible coût.