Thèse soutenue

Identification de champs de propriétés élastiques fondée sur la mesure de champs : application sur un composite tissé 3D

FR  |  
EN
Auteur / Autrice : Renaud Gras
Direction : Stéphane Roux
Type : Thèse de doctorat
Discipline(s) : Mécanique, génie mécanique, génie civil
Date : Soutenance le 18/12/2012
Etablissement(s) : Cachan, Ecole normale supérieure
Ecole(s) doctorale(s) : École doctorale Sciences pratiques (1998-2015 ; Cachan, Val-de-Marne)
Jury : Examinateurs / Examinatrices : Zoheir Aboura, Philippe Boisse, Marc Bonnet, Hugo Leclerc, Julien Schneider
Rapporteurs / Rapporteuses : Jean-François Maire, Julien Réthoré

Résumé

FR  |  
EN

Depuis ces dernières décennies, les matériaux composites sont de plus en plus utilisés dans l'aéronautique. Notamment, les composites tissés 3D présentent des caractéristiques matériau hors-plan intéressantes par rapport aux stratifiés. Cette technologie est développée pour les aubes FAN des moteurs d'avion. La difficulté réside dans l'identification et la validation du modèle orthotrope élastique macroscopique du pied d'aube. En effet, l'hypothèse de séparation des échelles pour l'obtention des paramètres matériau macroscopique par homogénéisation n'est pas clairement vérifiée au sein du pied d'aube comportant plusieurs zones matériau. Le composite tissé 3D formant le pied d'aube est un matériau multi-échelle complexe. Les travaux de thèse ont donc été menés afin de proposer une identification des paramètres du modèle basée sur la mesure de champs de déplacements par Corrélation d'Images Numériques (CIN) et sur la méthode d'identification de recalage de modèles éléments finis (FEMU). Cette identification a pris en compte l'influence du bruit du capteur CCD présent sur les images servant à la CIN sur l'identification des paramètres matériau. Du fait du grand nombre de paramètres matériau à identifier et des éventuels couplages entre ceux-ci, il apparaît que quelques uns ne peuvent pas être identifier à travers l'essai de traction étudié. Par conséquent, une régularisation de la FEMU a été proposée basée sur la connaissance a priori des valeurs nominales et de leur incertitude. Celle-ci consiste en une pondération intelligente vis-à-vis des données issues de l'essai afin de faire tendre les paramètres non identifiables vers leur valeur nominale. Finalement, la qualité de l'identification a été quantifiée grâce aux incertitudes sur les paramètres matériau identifiés et grâce aux cartes de résidus d'identification basées sur les images. Ces cartes traduisent la capacité du champ de déplacement calculé par le modèle éléments finis identifié à corriger l'image déformée pour la recaler sur l'image de référence, images sur lesquelles la mesure par CIN est effectuée. Ces cartes de résidus et les incertitudes obtenues permettent ainsi de valider le modèle éléments finis proposé et le cas échéant de mettre en lumière ses insuffisances. Remettre en cause les valeurs nominales ou la modélisation (par exemple le zonage matériau) pour aboutir à une description compatible avec l’expérience reste du ressort de l’ingénieur. Le travail présenté ici lui permet d’éclairer au mieux ses choix.