Thèse soutenue

Rôle de l’organisation du cytosquelette d’actine branché et des adhésions N-cadhérine dans la dynamique des épines dendritiques

FR  |  
EN
Auteur / Autrice : Anael Chazeau
Direction : Grégory Giannone
Type : Thèse de doctorat
Discipline(s) : Sciences, technologie, santé. Neurosciences
Date : Soutenance le 04/12/2012
Etablissement(s) : Bordeaux 2
Ecole(s) doctorale(s) : École doctorale Sciences de la vie et de la santé (Bordeaux)
Jury : Président / Présidente : Valentin Nägerl
Examinateurs / Examinatrices : Maxime Dahan, Alexis Gautreau
Rapporteurs / Rapporteuses : René-Marc Mège, Dominique Muller

Résumé

FR  |  
EN

Les épines dendritiques sont de petites protrusions post-synaptiques présentant des changements morphologiques corrélés avec la plasticité synaptique. Elles ont pour origine les filopodes dendritiques qui s’élargissent lors du contact avec l’axone. Ces changements morphologiques impliquent une grande variété de molécules dont des protéines associées à l’actine et des protéines d’adhésion. Cependant, comment ces différentes protéines sont coordonnées dans le temps et l’espace est encore largement méconnu. De plus, les techniques de microscopie conventionnelle ne permettent pas d’étudier l’organisation et la dynamique de ces protéines dans les épines dont la taille est proche de la limite de resolution. L’objectif de ma thèse a donc été d’explorer le rôle des protéines associées à l’actine ainsi que celui des protéines d’adhésion N-cadhérines dans l’organisation et la dynamique du cytosquelette d’actine des épines dendritiques. Dans une première étude, nous avons suivi la motilité des filopodes et épines dendritiques de neurones en visualisant l’actine-GFP. Nous avons couplé cette approche avec : 1) une technique de piégeage optique de microsphères recouvertes de N-cadhérines ou des substrats micro-imprimés également recouverts de N-cadhérines afin de contrôler temporellement et spatialement les adhésions cadhérine-cadhérine, 2) la stimulation pharmacologique de la myosine II afin d’induire la contraction F-actine/myosine et 3) l’expression de mutants de N-cadhérine non adhésifs. Nous avons ainsi démontré que la stabilisation des filopodes en épines était dépendante de l’engagement d’un embrayage moléculaire entre les adhésions trans-synaptiques N-cadhérine et le flux rétrograde d’actine généré par les myosines II. Dans une deuxième étude, nous avons utilisé la microscopie super-résolutive (PALM et dSTORM) et le suivi de protéines individuelles (sptPALM) pour étudier l’organisation et la dynamique à l’échelle nanométrique des protéines à l’origine des réseaux d’actine branchés dans les épines. Ainsi, nous avons caractérisé la localisation et la dynamique de l’actine, du complexe Arp2/3, du complexe WAVE, d’IRSp53, de VASP et de Rac-1. Nous avons montré que, contrairement aux structures motiles classiques comme lamellipode, le réseau d’actine branché dans les épines n’ést pas formé aux extrémités protrusives puis incorporé dans un flux rétrograde d’actine. Ce réseau est initié à la PSD puis croît vers l’extérieur afin de générer les protrusions membranaires responsablent des changements morphologiques de l’épine. Nos résultats montrent également qu’un contrôle strict de l’activité de Rac-1 est nécessaire au maintien de la morphologie des épines dendritiques et de l’architecture du réseau d’actine branché. L’ensemble de mon travail souligne l’importance du rôle de l’organisation à l’échelle nanométrique du réseau d’actine branché et des adhésions N-cadhérine dans la dynamique et la formation des épines dendritiques. Ces résultats pourraient avoir un rôle important dans la compréhension des changements morphologiques lors de la plasticité synaptique.