Contribution à l'identification de systèmes non-linéaires en milieu bruité pour la modélisation de structures mécaniques soumises à des excitations vibratoires

par Zoé Sigrist

Thèse de doctorat en Automatique et productique, signal et image, ingénierie cognitique

Sous la direction de Éric Grivel.

Le jury était composé de Benoît Alcoverro, Pierre Fabrie, Pierrick Legrand.

Les rapporteurs étaient Roberto Guidorzi, Jean-Marc Vesin.


  • Résumé

    Cette thèse porte sur la caractérisation de structures mécaniques, au travers de leurs paramètres structuraux, à partir d'observations perturbées par des bruits de mesure, supposés additifs blancs gaussiens et centrés. Pour cela, nous proposons d'utiliser des modèles à temps discret à parties linéaire et non-linéaire séparables. La première permet de retrouver les paramètres recherchés tandis que la seconde renseigne sur la non-linéarité présente. Dans le cadre d'une modélisation non-récursive par des séries de Volterra, nous présentons une approche à erreurs-dans-les-variables lorsque les variances des bruits ne sont pas connues ainsi qu'un algorithme adaptatif du type LMS nécessitant la connaissance de la variance du bruit d'entrée. Dans le cadre d'une modélisation par un modèle récursif polynomial, nous proposons deux méthodes à partir d'algorithmes évolutionnaires. La première inclut un protocole d'arrêt tenant compte de la variance du bruit de sortie. Dans la seconde, les fonctions fitness sont fondées sur des fonctions de corrélation dans lesquelles l'influence du bruit est supprimée ou compensée.


  • Résumé

    This PhD deals with the caracterisation of mechanical structures, by its structural parameters, when only noisy observations disturbed by additive measurement noises, assumed to be zero-mean white and Gaussian, are available. For this purpose, we suggest using discrete-time models with distinct linear and nonlinear parts. The first one allows the structural parameters to be retrieved whereas the second one gives information on the nonlinearity. When dealing with non-recursive Volterra series, we propose an errors-in-variables (EIV) method to jointly estimate the noise variances and the Volterra kernels. We also suggest a modified unbiased LMS algorithm to estimate the model parameters provided that the input-noise variance is known. When dealing with recursive polynomial model, we propose two methods using evolutionary algorithms. The first includes a stop protocol that takes into account the output-noise variance. In the second one, the fitness functions are based on correlation criteria in which the noise influence is removed or compensated.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.