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Version résumée

Introduction
L’ objet d’étude de cette thèse est l’ origami d’ ADN issue du travail de Rothemund [1]. Le
nombre important d’applications utilisant cette technique, et leurs diversités, sont une preuve
que ces structures présentées en 2007 sont une avancée importante pour la technologie ADN.
Ces applications vont du détecteurs ARN à forte sensibilité [2] à la visualisation par AFM de
la variation d’une base d’ADN dans une séquence donnée [3], en passant par une nano-usine
fabriquant des assemblages complexes de billes d’or [4]. Les formes des structures, initialement
limitée aux structures bi-dimmentionelles, ont été rapidement étendues à de nombreux types
de structures tri-dimmentionelles [5, 6].

Au début de cette thèse, du fait de la facilité de création de ces origamis, ainsi que la
robustesse du processus de formations, les propriétés mécanique de ces objets, ainsi que leurs
processus de formation n’étaient pas étudiés. Cette thèse est donc dédiée à la compréhension
de ce processus de formation qui implique 200 brins d’ADN diffèrent ainsi qu’à la modélisation
des propriétés mécaniques de ces objets. Finalement une applications de ces structures à la
détection SERS est proposée, et les résultats expérimentaux concernant la réalisation de cette
structures sont discutés.

Figure 1: Extrait de Rothemund et al [1]. Différents exemples de schéma d’ origamis d’ADN
(a,b); et leurs réalisations expérimentales (c,d)
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Résumé
La première partie de cette thèse est consacrée à l’étude des propriétés mécaniques des origamis
d’ADN. Un modèle couramment utilisé pour décrire les caractéristiques de brins d’ADN est le
modèle WLC (Worm-like chain), dans lequel, la longueur de persistance est une mesure de
la rigidité de la structure. Pour un double brins d’ADN (dsDNA) cette longueur est de 50
nm. En dessous de cette longueur un brin est considéré comme rigide et au dessus comme
un polymère statistique. Un origami d’ADN plan peut être considéré comme un ensemble de
dsDNA couplés entre eux par des crossovers ( des simples brins d’ADN passant d’un double brin
à un autre). Une première approximation pour la rigidité d’une telle structure est de considérer
que la longueur de persistance de l’ origami est proportionnelle au nombre de dsDNA, le facteur
de proportionnalité restant à déterminer (Figure 2).

Figure 2: a) Représentation schématique d’un origami d’ADN constitué de 20 brins d’ADN
b) Zoom. Est-ce que la force nécessaire pour plier un origami (FoDNA est proportionnelle au
nombre de brins qui le constituent?

Des simulations de type monte-carlo, basé sur un modèle [7] publié de dsDNA ont alors été
réalisées. Ce modèle a été étendu à plusieurs brins couplés mécaniquement et interagissant entre
eux par une interaction de type Debye-Huckel. L’importance de la précision de la connaissance
du twist de l’ ADN dans un buffer donné a été soulignée car une légère variation de cette
valeur peut entraîner une grande déformation de la structure finale. Une comparaison des
résultats obtenus par ce modèle avec les différents résultats expérimentaux disponibles a permis
la validation du modèle, et le facteur de proportionnalité a été déterminé: 1.7 pour les structures
les plus longues (300 bases) et 1.5 pour les structures plus courtes (190 bases). Nous avons
également montré que des structures tridimensionnelle pouvait être modélisées par une approche
de mécanique classique pour obtenir des résultats en accords avec les expérience menées par
Kauert et al [8].

Le processus de formation de ces structures est le sujet de la deuxième partie de cette thèse.
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Figure 3: a) Représentation d’un origami composé de 200 brins d’ADN ;b,c) Deux représenta-
tion schématique du soDNA ; d) représentation tous atomes du soDNA

Nous nous sommes tout d’abord intéressé à de petites structures d’ADN (soDNA Figure 3) com-
posées de trois brins dont nous avons fait varier la composition. Le processus de leur formation
a été étudié par spectroscopie UV, pour obtenir des courbes de melting qui rendent compte de
la formation de la structure en fonction de la temperature. En choisissant des brins aux compo-
sitions très différentes il a été possible d’étudier les effets coopératifs du processus de formation
ainsi que l’effet de la position dans la structure elle même. Un modèle sur réseau à l’échelle de
la base a été adapté et validé par rapport à des résultats existant sur les jonctions Hollyday. Il
a permis également de rendre compte des principaux résultats observés expérimentalement.

Suites a ces résultats nous avons étudié 4 origamis et établi d’importantes différences dans
leurs courbes de melting. Le précèdent modèle ne permettant pas d’étudier des structures aussi
grandes, nous avons développé un second modèle à l’échelle du brins d’ADN. Celui-ci est basé
sur les résultats obtenus sur les soDNA et à permis une reproduction des courbes de melting des
4 origamis. Il a également permis la création d’un origami plus stable grâce à la compréhension
des principes de bases en jeux lors du processus de création.
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Figure 4: Experimental setup: The oDNA are deposited on a transparent surface. They are
then detected by afm, and a Raman spectra is collected by reflection.

Finalement le dernier chapitre de cette thèse est consacré à la réalisation d’une plate-forme
SERS (Figure 4) Celle-ci consiste en un origami d’ADN auquel est accroché des nanoparticules
d’or de taille variable. Ces particules d’or, à la manière de lentilles permettent de focaliser
un champs électromagnétique entres elles. Le positionnement d’un système permettant de
piéger la molécule à détecter entre ces particules d’or, permet la détection par spectroscopie
RAMAN de cette cible. Il nous a été possible de réaliser de telles structures avec des particules
d’une taille de 10 nm. Cependant cette taille de particule ne permet pas l’obtention d’un
signal RAMAN d’intensité suffisante pour être séparé du signal des solutions de buffer utilisés.
Différentes stratégies ont été utilisées: grossissement des billes de 10 nm par dépôt d’or une fois
la structure formée, attachement direct de particules plus grosse, sans succès.

Conclusion
J’espère que ce court résumé vous donnera envie de lire le corps principal de la thèse qui a été
rédigé en anglais. La liste des différentes communications orales ainsi que les publications qui
ont été acceptées et celles en cours d’écriture est également disponible (cf Appendix A)



Structure of the document

This page is a short overview of the structure of this document and summarises what will be
presented in the different chapters:

The introduction is divided in two sections. The first one is a presentation of the DNA
origami technique, in which we present the structures one can fabricate, the process of design,
and a few examples of new functionalities a DNA origami platform can provide. The second
section is a short discussion on the scales of interest in energy, length and time, ending with a
focus on the time scale involved in bioinspired technology.

The chapter Mechanical properties of DNA constructs deals with the study of the flexibility
of DNA origamis. The first approach of this study was through the use of polymer physics, as
it is the classical way to study DNA. We then used computer simulations to model the system
in a more detailed manner and to extract general rules on the mechanical behaviour of DNA
constructs.

The chapter Process of formation of DNA origamis first develops an experimental study of
the process of formation realised on the simplest origami that we could envision. This study
was intended to investigate basic principles on the process of formation of DNA structures. A
coarse grain model is then developed to have a first insight onto the formation process. Then
an experimental study on large origamis follows with a modeling of the annealing and melting
curves based on the principles determined from the study of the simplest origami.

The chapter DNA origami as a Raman platform presents the theory of Surface Enhanced
Raman Spectroscopy and the progresses made in order to use DNA origamis as a platform
for the detection of small concentrations of RNA molecules. The progresses as well as the
difficulties encountered when mixing bio-material with metallic colloids are presented.

Then a general conclusion summarises and closes the work done during these four years.
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2 Chapter 1. Can we master energy and information at the nanoscale ?

DNA nanotechnology is a part of the bioinspired nanotechnologies. The term bioinspired
means that we take advantage of what we have learn from life systems to conceive and fabricate
new nanomaterials and nanodevices. In that sense, the bioinspired approach is different from
the mimicking method, the fundamental first learning process. DNA nanotechnology is the
best emblematic example: it uses DNA for its physical characteristics to build structures at the
nanoscale. This technology totally disregards the “living” properties of DNA as it uses it as
an inert building block. It tries to avoid any contact, at least in the process of formation, with
proteins or enzymes, as these ones could interfere with the creation of the structures.

This technology takes advantage of the pairing
properties of DNA: the double helical structure of
DNA is constituted of two single strands (ssDNA)
attached together. These strands composed of a
succession of bases (called sequence of the strand)
interact thanks to Watson-Crick interactions with
the rules that an adenine base (A) attaches with
a thymine base (T) from the second strand and a
guanine (G) with a cytosine (C). For a strand of
7 bases, 74 different sequences are possible. The
energy of binding is maximum if every base of the
two strands are associated according the Watson-
Crick pairing rules. In that case the sequences are
called complementary. This high affinity allows a
high selectivity between two similar sequences toward the exact complementary sequence. The
two strands can be viewed as a key-lock system.

The complementarity and the selectivity allow a precise spatial positioning between two
strands. These features are at the origin of the DNA origami technique that will be introduced
below.

Experimentally, the use of DNA material is also interesting because:

• The DNA synthesis is relatively affordable.(The cost of one strand of 32 bases is of ≈ 5
euros ).

• It is stable and easy to use (Even modelling oriented team like ours can use it).

After introducing the origami DNA which is the main topic of this thesis we will introduce
the energy, length and time scales we will encounter in the nanoworld.
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Figure 1.1: From Rothemund work [1]. Several examples of DNA origami, the geometrical
shape designed (a,b); the experimental structure obtained (c,d)

1.1 DNA Origami

Figure 1.2: Raw material. A long ssDNA and
200 small ssDNA

DNA origamis (oDNA) are geometrical
shapes filled with DNA (Fig. 1.1). Observed
with a low resolution they appear as a solid
shape. Increasing the resolution lets appear a
weaving of DNA. The weaving motif is very
similar to the one of any wool sweater. The
objects are named origami because one long
ssDNA (Fig. 1.2 right) typically 7000 bases
long is folded into a desired geometrical shape
by means of 200 small ssDNA called staples
(Fig. 1.2 left). Before being assembled into
an origami, the system is composed of a long
random coil with small inner parts interacting
one with each others, and 200 smaller random
coils.
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Figure 1.3: a) Shape to be filled. b) and b’) two different possible paths for the scaffold. c) d)
e) different representation of a small oDNA constituted of one scaffold: B3 and two staple B1
B2. B1 attaches two non contiguous parts of B3, f) Molecular detail at the crossover.

1.1.1 Principle of formation

The process of creation of an origami can be decomposed in different steps. First, one has to
choose a geometrical shape. This shape can include holes and angles of any kind. In Fig. 1.3 a)
the shape is a small rectangle filled with two lines. Then this shape must be filled by a path that
will be the scaffold of the origami. Usually the path is circular, as experimentally the scaffold is
a long circular ssDNA of a phage M13mp18 (Fig. 1.3b b’). Different paths can be chosen to fill
the same shape. Then staples have to be positioned on all the path, to attach the different lines
together (This is why they are called staples) (Fig. 1.3 c). A staple is composed of connected
complementary sequences of non contiguous parts of the scaffold. The place where a staple
changes of line and attaches to non contiguous parts is called a crossover and its position has
to be chosen carefully (Fig. 1.3 d,e,f). Indeed both scaffold and staples are ssDNA. A staple is
twisted around the scaffold as it forms with it a dsDNA. The crossovers have to be chosen at
the position were the twist of the staple places its phosphate backbone the closest to the line
were it must connect (see Fig. 1.3 f) molecular detail of this connection). As the twist of DNA
( which is the angle between two consecutive pair of bases) is of 33-34°, connection between
two lines are possible approximately every 5 bases (170◦). In classical origami “weaving”, on a
given line a crossover is positioned every 16 bases: one connecting to a lower line, and one and
a half turn later, another crossover connecting to an upper line.

Once the weaving done, each staple has a given position. But how could we ensure each
staple will attach at the right place along the scaffold? The scaffold which is a ssDNA has a
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defined sequence. The sequence of every staple is chosen to be complementary to the parts of
the scaffold where it is positioned. All these steps constitute the design of the origami. Then
the experimental part takes place. The staples with a given sequence can be ordered to a
specialised seller (in our case Sigma - Aldrich). Once the 200 staples are synthesised, they are
mixed with the scaffold (at a nM range) in a 10 fold excess of staple in a Magnesium (Mg)
buffer. The reason why Mg is necessary will be explained latter. Then an annealing process is
used to create the origami. Typically, the solution is heated until 85°C and then slowly allowed
to cool to 20 °C. The cooling (annealing) duration depends on the complexity of the structure.
For the classical rectangular shape the usual time of cooling is 2 hours.

1.1.2 Design of structures

Figure 1.4: left) Dietz et al[5] Three dimensional dense structure, twisted by playing on the
space between the crossovers; right) Han et al [6] designed several complex structures in two
and three dimensions.

Several kind of structures can be achieved from the initial smiley [1] (Fig 1.1) to the dolphin
[9]. A restriction concerns the total surface of the shape that can not be bigger than ≈ 5000nm2.
For every shape it is possible to fill it with different paths and different sets of staples. This
aspect will be studied more in detail in the chapter Process of formation of DNA origami (Chap
3).

To this bestiary of 2D structures can be added complex structures in three dimensions. To
create 3D structures two possibilities are available: the first one is to fill the space with DNA
[5] (Fig. 1.4 left ). Curved and twisted structures can be designed [5] by varying the location
of the crossovers (See Chapter 3) so that a wealth of topologies are available. A rectangular
or a triangular lattice can be used to fill the space. The second possibility consists in creating
shell-like object [6, 10] (Fig. 1.4 right). Andersen et al [10] created a empty cube of DNA with
a lock system borrowing ideas from DNA tweezers [11]. At any of these structures can be added
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a functionality. As we will see in the next paragraph, since its discovery DNA origamis have
boosted researchers creativity to fabricate template biosensing structures or dynamical systems
in 2D and 3D.

1.1.3 Functionality

Figure 1.5: A) From KE et al [2]. Comparison of atomic force microscope (AFM) images
without a) and with b) the target RNA. The variation of height is clearly visible for the
structure detecting Rag-1 C-myc and β−actin B) From Subramanian et al [3]. oDNA were
labelled with apparent letter. The triggering sequence of the four letter variates of only one
bases on a 32 bases long sequence. Given the high specificity of the folding process, only the
sequence with the perfect complementary sequence triggers the corresponding letter.

oDNA are composed of approximately 200 staples whose positions are exactly defined in
the geometrical shape. This gives to oDNA a unique feature in terms of positioning at the
nanometer scale. Each staple can be lengthen with a sequence that either becomes a probe
or is used to attach a function to the origami. As a consequence, the requirement to attach a
function to the origami is to be able to link this object with a ssDNA. At the location were
the function has to be attached, the closest staple is lengthen with a small sequence. Then the
oDNA is mixed with a strand, complementary to the small sequence, to which the function is
attached. Thanks to the pairing properties of DNA the strand will hybridize and the object
will be attached to the oDNA.

Functionalization was applied for the detection of RNA [2] (Fig. 1.5 A), proteins [12] or
DNA single nucleotide polymorphism [3] (Fig. 1.5 B) which consists in detecting the change
of one base on a given sequence. This detection relies on fixing a probe with a high affinity
for the target to the origami and then to image the structure with an atomic force microscope
(AFM). In the presence of the target, the structure of the origami is modified and the change
in height is easily measured.
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The effect of the distance between divalent ligands interacting with a target protein [13] was
studied in a similar way: the ligands were attached at different distances one to the other, and
the binding with the target protein was measured. Chemical reaction such as bond-cleavage
reactions were also studied [14] by fixing a strand composed of the sequence staple, the bond to
be studied, another small sequence and a streptavidin. A biotin is then added in the solution to
make the strands clearly visible with AFM. When the cleavage takes place, the part connected
to the streptavidin is detached from the origami and goes in solution. This change is easily
visible with AFM. Using aptamer sequences, controlled patterning of protein was also achieved
[15, 16].

DNA origami are also considered as possible platforms for electronics. In a first step toward
that direction, nanotube were patterned to its surface [17]. Furthermore controlled patterning of
origami on different surfaces which is a necessary step was also achieved [18, 19]. DNA origami
are also good candidate for SERS platforms and steps toward this direction were reported.
Chapter 4 is dedicated to this application.

Besides immediate applications such as biosensors [2], many strategies take use of DNA
dynamical behaviours to achieve complex functions or structure reconfiguration. Prescribed
tracks have been used for nanomachines and nanorobots [20, 21, 22], reaching a high complexity
with an assembly line by Gu et al [4].

Strand displacement technique [23] has been used to reorganise dynamically origamis struc-
tures [10, 24].

Strands displacement technique is also the base of the DNA computing field that may also
be called Chemical Reaction Network as proposed by Soloveichik et al [25] and which consist
in realising logic operations such as the one done by computers but with DNA strands. The
complexity reachable by this technique can be seen in the work of Qian et al [26] were a Hopfield
associative memory was achieved with DNA strands. Combining oDNA with DNA computing
seems to be a promising way to achieve programmable behaviours of high complexity in cellulo.

1.1.4 An active field!
Although the oDNA field is young (<7 ans) the number of groups and publication on the
field is rapidly increasing. In 2011 about 40 publications on the origami DNA topic were
published on a total of 160 publications related to the keyword DNA technology (study from
Sebastien Berger). The connection between the principal researchers working on this field can
be illustrated by the graph taken from my personal bibliography and connecting the authors
through their published work (Fig. 1.6). Although oDNA is a new tertiary structure of DNA
with mechanical properties and a stability still to be determined, the physics of dsDNA structure
is a well established domain. Understanding the physic of oDNA seems to us as an important
step toward using oDNA as a building block of DNA nanotechnologies. The energies length
and time scale at stake in the dsDNA world are the subject of the next section.
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Figure 1.6: In my personal bibliography, authors having at least three publications in the DNA/
origami DNA field. The lines show connection betwen authors through publications
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Figure 1.7: Left diving with DNA; Middle DNA in pure water (The tiger represents the electric
field pushing away DNA strands from each other) dsDNA-dsDNA interactions as well as ssDNA-
ssDNA interactions are repulsive; Right DNA condensation. In solution with ions (fish) the
electric field (tiger) diminishes and the dsDNA-dsDNA interaction can even become attractive.

1.2 Diving in the nanoworld with DNA

1.2.1 Energy scale
The energy source the most known and widely used in cell metabolism is the energy coming
from the hydrolysis of ATP, producing ADP. This reaction in typical cellular conditions lib-
erates a Gibbs energy ∆ G = -14 kcal/mol. This reaction takes place in water solvant were
hydrogen bonds structure the water. The energy of these bonds is typically of ∆G = −2.4
kcal/mol. This latest is close from the energy at stake in the pairing of two bases to form the
dsDNA secondary structure. For two bases attaching together this energy is of the order of
∆Gbp ≈ −1 to −2 kcal/mol. The equivalent of the hydrolysis of ATP is approximately the
hybridisation of a 7 bases long dsDNA. The exact energy of pairing of two strands depends on
the chemical composition and length of the sequence. Indeed the energy of folding comes from
two contributions:

• Hydrogen bonds between bases of the two strands. Two liaisons for the A-T pair of bases
and three for the G-C pair that is always more stable.

• Stacking energy between two pair of bases, that explains why the energy depends on the
sequence of bases and not only on the composition.

Knowing the sequence allows to predict the temperature at which the duplex is more stable
than the two single strands, thanks to the Nearest-Neighbour model that also includes the effect
of pairing defects [27].

But the chemical sequence is not the unique parameter that governs the dsDNA stability.
DNA strands are molecules highly charged, with one negative charge per base. The stability of
the complex depends on the salt concentration and on the salt composition. In pure water it
would be impossible to bring together two ssDNA to form a dsDNA as the repulsive electrostatic
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energy between two bases brought at 2 nm is of 0.21 kcal/ mol/base. (2nm corresponds to the
distance between the two strands in the duplex). The electrostatic interaction is a long range
one and it scales as the square of the number of charges for charges close with respect to the
distance between the strands. The repulsive energy between two strands composed of 10 bases
would be of 21 kcal/mol. However in typical cellular condition different salts are presents.
These ions screen the electrostatic interactions and allow two ssDNA to get close enough to
be able to hybridise. The electrostatic energy between two bases in a magnesium buffer of
concentration 25 mM at a distance of two nanometers is of ∆G = 0.06 kcal/mol/bp.

This energy is identical in value to the energy of condensation of two dsDNA together.
The phenomenon of condensation appears in the presence of mutivalent positively charged
ions. dsDNA-dsDNA interactions are no longer repulsive but attractive. This energy has been
estimated to be of −0.06 kcal/mol/b [28].

The last source of energy is the thermal energy which is of 0.6 kcal/mol by degree of freedom.
Several models exist to reproduce dynamic characteristics of the transition dsDNA-ssDNA:

The Peyrard-Bishop model [29], the Poland-Scheraga model [30, 31], models on lattice [32].
All these models concern the reaction of hybridisation from two ssDNA to a dsDNA. In oDNA
structure we are interested in the reaction of 200 staples with one long strand. In this thesis
we tried to have a first look inside the mechanisms of formation of the oDNA. Chapter 3 will
present experimental and theoretical progress in understanding the process of formation of
small origami as the one shown in Fig. 1.3. Then we will try to explain experimental results on
different oDNA thanks to a new model based on the use of the Nearest-Neighbour parameters.

1.2.2 Length and time scales
Double stranded DNA is a helical structure with a pitch of 0.34 nm whereas in single stranded
DNA the distance between bases is of 0.66 nm. The length of 0.34 nm comes from the strong
hydrophoby of the bases that are densely packed in dsDNA with a twist of about 33° between
each pair of bases. The force needed to break a pair of bases can be estimated to f = ∆Gbp

lhydrogene
≈

2kT
0.2nm ≈

2×4.3pN.nm
0.2nm ≈ 43pN . This force has been experimentally measured to be around 10− 15

pN [33].
dsDNA structures are characterised by a long persistence length of 150 bases (≈ 50nm).

oDNA can be considered to be tertiary structures. Two dimensional oDNA are mostly studied
using AFM measurements of the structure deposited on mica surface. As a consequence the
structures are planar and usually stuck on the surface. In this thesis we decided to explore
mechanical properties of oDNA, using an existing model of the flexibility of dsDNA, and ex-
tending it to oDNA structures [7]. Chapter 2 will be dedicated to the results obtained on the
study of the dynamic mechanical properties of oDNA.

Another length that is important in the perspective of application for oDNA in the leaving
cell is the size of proteins. Proteins have a typical size of a few nanometers. Globular proteins
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size can be estimated as a function of the number (N) of amino acid that composes it by the
relation Rg = 0.395N3/5 + 7.2 Å [34]. For a protein of 400 amino acid Rg = 2.2 nm. As typical
oDNA are 100 nm long ( ≈ 300 bases) and 50 nm width a set of several proteins can be attached
on its surface [12, 13], combining several functionalities.

Another aspect is the time scale (that will not be considered in this work). The time scale
of association and dissociation of dsDNA was measured by Jungmann et al [35]. At 20°C it is
respectively of toff = 0.6s and toff = 5s for a 9 and 10 bases long dsDNA. This time is roughly
proportional to the exponential of the energy of the complex (see SI [35]). This can be checked
as toff (10bp)

toff (9bp) = 8.3 ≈ exp(−∆Gbp/RT ) for ∆Gbp = −1.3 kcal/mol. In this thesis, the typical
length of strands is of 32 bases. By comparison they are very stable at room temperature.
On the other hand the association time is independent of the size of the strand [36] as it is
a processus of diffusion and nucleation on a few bases. It is dependent on the inverse of the
concentration and is for the 9 and 10 bases pair long dsDNA 50s at a 10 nM concentration [35].

1.2.3 DNA, a perspective on bioinspired technologies.
Other timescales at stake with DNA are illustrated in (Fig. 1.8). This figure shows the different
steps involved in the emergence of a bioinspired technology. In the case of DNA technology, the
molecule itself is implied deeply in the process of emergence as DNA molecules began to code for
the human race as we know it 200000 years ago. The transmission and the increase of knowledge
to this century leaded to the understanding of the importance of DNA 80 years ago. One
breakthrough for this technology was realised 70 years ago, when Watson and Crick discovered
the double helical structure. This knowledge allowed Nadrian Seeman 30 years ago to take
advantage of DNA characteristics for its own purpose: to create small and self assembled shapes
composed of double helical structure of DNA. Finally 6 years ago Rothemund with the technique
of the DNA origami amplified the complexity and the possibility reachable with this technique,
leading to several applications and probably to a lot more to come. This breakthrough was also
possible because of technical progress leading to faster and cheaper synthesis of DNA. We saw
that understanding the DNA structure was the first step toward the DNA technology. In order
to reach another level of complexity we think that a full comprehension of the mechanisms at
stake in the oDNA structures is necessary. Given the complexity of these structures that are
the result of the assembly of hundreds of different molecules in a single object, this work is
a first step in understanding the processes involved. This understanding could allow to reach
higher complexity and functionality in future structures.



12 Chapter 1. Can we master energy and information at the nanoscale ?

Figure 1.8: Implication of DNA through ages. Bottom left: Watson and Crick;Top right struc-
ture. Early DNA structure from the work of Nadrian Seeman; Bottom right: DNA structure
realised thanks to the oDNA technique (Work of Shawn Douglas, Picture take from the website
cadnano.org )
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2.1 Introduction:
The mechanical properties of a DNA molecule depend on of its secondary structure and may
vary significantly depending on with the state of hybridisation. Indeed a ssDNA molecule is
one hundred times less rigid than a dsDNA molecule. As a consequence a hundred base ssDNA
molecule in solution is a random coil of globular shape with a radius of gyration of approximately
6 nm. This value can be compared to the total length (or contour length Lc) of the strand
which is 60 nm. In contrast, the same hundred bases divided into two complementary ssDNA
can form a very stiff molecule of 17 nm. The rigidity of dsDNA at this scale is the reason why
we are able to image a oDNA as it allows the structure to be planar once attached to a surface.
A similar construction with the mechanical properties of the single stranded DNA would look
like a blob.

Mixed structures of dsDNA and ssDNA strands [37] give rise to tensegrity structures (Fig.
2.1). A mechanical analogue is a bow in which the string is the ssDNA streched close to its
contour length and the flexible limb is the oDNA. The oDNA is curved under the entropic
tension of the streched ssDNA. Such structures allow the estimation of the rigidity module of
a 6 helix bundle oDNA, rigidity that has been studied more in detail by Kauert et al. [8], and
that will be discussed later in this chapter.

Figure 2.1: Figure from [37], (left) scheme of the tensegrity structure, (right) Transmission
electron microscopy(TEM) image of the structure

At the beginning of this project we also wanted to build a planar origami with a long ssDNA
strand joining the two extremities of the oDNA. The goal being to achieve a structure with a
curvature that would depend on the length of this strand (herafter called a bridge). In order
to guide us in the choice of the length of the bridge across the DNA layer, we decided to study
a model of this system. The modeling of the system is composed of two parts, the ssDNA
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bridge and the planar oDNA. The properties of the ssDNA bridge are modelled by an analytic
polymer model [38] (see Sec. 2.2.2). This model can also be used to model long dsDNA (see
Sec. 2.2.3.1). However, at the scale of an oDNA (≈ 100 nm) a single dsDNA behaves more
like a rigid body than a flexible polymer. Because an oDNA is composed of several dsDNA,
a polymer model is no longer applicable and the oDNA must be thought as an elastic body.
An existing elastic model for small dsDNA [39] was extended to an oDNA, and gave us a first
estimation of the shape of the system that we wanted to build where the shape is a result of
an equilibrium between the force exerted by the ssDNA (that behaves like an entropic spring),
and the force due to the rigidity of oDNA (cf Sec. 2.2.4).

From our point of view oDNA structures can be considered as several dsDNA coupled
together. The previous simple model depends critically on how the strands composing the
oDNA are coupled. The interactions coupling the dsDNA are: covalent crossover junctions,
and electrostatic interactions (that must be taken into account given the high charge density
of dsDNA). This latter interaction (see Sec. 2.3.1.1) can be modelled analytically [40] or
numerically [41], and ranges from repulsive forces to attractive ones, leading to the phenomenon
called DNA condensation.

We will introduce the numerical model that we used to study the mechanical properties
of oDNA in Sec. 2.3. We adapted Mergel’s model [7] parameters to be in agreement with
recent experimental results and included electrostatic interactions. The results were compared
to different experimental data and to another model using a finite-element-based approach [42].

Unfortunately for reasons that became clear to us now, at the end of this work, we were not
able to experimentally create bridged oDNA. This will be discussed in Sec. B.
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2.2 Analytic model of elasticity.

2.2.1 Introduction to an analytic model of DNA.
From the point of view of polymer physicist ssDNA and dsDNA are polymer molecules consti-
tuted of monomer units. Even if constituted of four possible different bases and consequently
of sequences that are not necessarily periodic, the monomer unit of ssDNA and dsDNA can be
assimilated to one base. In aqueous solution, the mean angle between two bases of a ssDNA
molecule is fixed. This is due to the chemical link between the two bases and also to the nega-
tive charge carried by every base. For dsDNA molecule, the helical secondary structure makes
it very rigid, with a mean angle between bases of approximatively 6◦C . This one is close to
zero as the molecule is very rigid. The analytic models used to describe the physic of polymer
having a given angle between monomer unit are the freely rotating chain (FRC) model and
the worm-like chain (WLC) model [38, 43]. The first is a discrete model used for polymers
rather flexible like ssDNA [44], while the second is a continuous model which can be seen as a
particular case of the FRC model for rather rigid polymer like dsDNA [38]. As the WLC is a
particular case of the FRC model we will first introduce the FRC model.

Figure 2.2: Figure from [38], schematic representation of a freely rotating chain.

The freely rotating chain model describes the physics of a polymer represented by N con-
nected segments of length l. The angle between two segments is constant and equal to θ and
the torsion angle is free to rotate. As the N segments are free to rotate the angular correlation
between two segments is:

< ~r(i).~r(j) >= l2cos(θ)|i−j| (2.1)
with ~r(i) the vector between i and i+ 1.

Then we have:

cos(θ)|i−j| = exp(|i− j|ln(|cos(θ)|)) = exp

(
−|i− j|

lp

)
(2.2)
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with lp = −1
ln(cos(θ)) . The later relation defines the persistence length. This length is a parameter

of the model that characterises the rigidity of the polymer. A rigid polymer will have a per-
sistence length much larger than the monomer unit length. On the contrary for very flexible
polymer the persistence length is close to the distance between monomers. In the case of a
rigid polymer, for distances between monomers smaller the persistence length (|i − j| << lp),
cos(θ)|i−j| ≈ 1. This means that θ ≈ 0 and that the segments are aligned. So for distance
shorter than the persistence length the polymer chain is often described as a rod. Another
interpretation of this length is that the mean angle between two points separated by lp is 1
radian (about 60 degrees).

The equation 2.2 can be used to evaluate lp, once given, for example the structure of a set
of polymers trapped on a surface [45], or given a numerical model and a good sampling of the
system modelled [7].

Figure 2.3: Schematic representation of a worm-like chain chain.

This equation (Eq. 2.2) is also true in the case of the WLC model (Fig 2.3). In the WLC
model the description of the polymer is continuous and |i− j| becomes simply the curvi-linear
distance between i and j. Furthermore as θ is small the relation cos(θ) ≈ 1 − θ2

2 is used to
calculate various quantities.

Given this persistence length, one can evaluate the force distance relation [46] which quan-
tifies the force F needed to constrain the two extremities of a polymer to a given length x. This
relation is different for the WLC and the FRC model. The two models agree for small extension
and have different asymptotic behaviour for x ≈ Lc with Lc = n× l the contour length of the
polymer, and n the number of monomers. For the WLC model:

F (x)lp
kBT

≈ 1
4(1− x/Lc)2 −

1
4 + x/Lc (2.3)

This equation is only an approximation as the relation between F and x in the WLC model
cannot be solved analytically. It can also be used to determine experimentally the persistence
length of dsDNA [47]. As explained previously ssDNA are more flexible and the FRC model
should be of better agreement with the experimental data. The FRC model leads to a very
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good agreement with the experimental data if one add an extra parameter [44]. However as
mentioned in [48] an agreement almost as good can be obtained using the WLC equation.

This is why Eq. 2.3 will be used for both cases. The value of the parameters of the model
(the persistence length and the distance between monomers) will be discussed in the following
section for both ssDNA and dsDNA.

2.2.2 Analytic model of ssDNAs:
2.2.2.1 Persistence length

A single stranded DNA is a chain of bases linked together by a phosphate sugar backbone. Its
persistence length has three contributions:

lp = l0 + lstack + lelec (2.4)

with l0 = l/2 the intrinsic persistence of the chain, lstack = 2l−3l [49] the persistence length
induced by stacking effects and lelec the electronic contribution (each base has one electronic
charge) and l the distance between bases.

Sain et al.[49] use a partition function with different proportions of (A,T,C,G) on the ssDNA
to estimate lstack. The effect of stacking is important for purine-purine interaction(A-A, G-G),
and purine-pyrimidine interaction (A-T) , but it is weak for pyrimidine stack(T-T,T-C, and C-
C). They estimate lp = l0 + lstack ≈ 11− 13 Å by using l ≈ 4.3 Å. The value of l is a parameter
of the model and 5.6 Å is used in [47]. The ionic strength is known to have a strong influence
on the persistence length of polyelectrolytes (charged polymers) and lp increases when lowering
the ionic strength because of the repulsive phosphate-phosphate interaction ([50] (Tab. 2.1)).

I(mol/L) 10−3 10−2 10−1

lp(Å) 84.4± 21.5 44.1± 6.8 13.5± 4.5

Table 2.1: Persistence length as a function of the salt concentration (ionic strength). Data from
[50] for the model in agreement with [47]

2.2.2.2 Force distance

In the case of a ssDNA Eq. 2.3 gives the force needed to constrain the extremities of the strand
to a distance x. The values of the parameters are Lc = n × 0.43 nm with n is the number
of bases of the strand and lp = f(I) (where I is the ionic strength). Weak interaction at the
molecular scale can be suitably express in unit of kBT , where at room temperature kBT = 4.3
pNnm.
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For a ssDNA of 260 bases the entropic forces exerted as a function of the distance for
different ionic strength are shown in Fig. 2.4. We observe that the force is divided by three
when I goes from 10−2 to I = 10−1 mol.L−1.

Figure 2.4: Elastic force exerted by a ssDNA of 260 bases (contour length=110 nm) whose
extremities are stretched (for various ionic strength).

Figure 2.5: Schematic representation of the origami layer and the ssDNA bridge

In our case, the objective was to bend a 110 nm long origami. In this context we wanted to
predict

the force a ssDNA bridge (Fig. 2.5) will exert to estimate the relevant size of the bridge.
In figure 2.6 is ploted the force generated by such a strand for different lengths between 260 to
800 bases, when it is constrained to a length of 110 nm. The ionic strength chosen of 0.5×10−2

M corresponds to that of an usual oDNA buffer (12mM MgCl2).
This force grows very fast when the distance at which the strand is stretched is close to

the contour length of the strand. In the following section we compare these forces to the one
exerted by a dsDNA , then to a simple model of oDNA.
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Figure 2.6: Elastic force excerced by ssDNA of various lengths whose extremities are stretched
to 110 nm for a ionic strength of 0.5× 10−2 M (each dot corresponds to a different strand)

2.2.3 Analytical model of a dsDNA:
2.2.3.1 Persistence length of a simple dsDNA :

The persitence length of a dsDNA is around 150 bp ( ≈ 50 nm) at 25 °C and for a ionic strength
of 0.2 M [51]. It is constant between 10 mM and 600 mM ionic strength. This value is the
subject of controversy as in [52](p107) it is said that the persistence length of a dsDNA is around
240 base pair, and has always been underestimated because in average one was considering that
the dsDNA is straight but in fact there is a deviation of 1 to 3 degrees between each base pair.

As explained in the introduction a dsDNA behaves differently if its length is short or long by
comparison to its persistence length ,e.g. like a rod or a random coil. These two behaviours can
be illustrated with the experimental formula [53] of the mean end to end distance < R(Lc) >:

< R(Lc) >=
(
Lc
lp

)ν0 (
1 + Lc

lp

)ν1−ν0

(2.5)

with ν0 = 1.03 and ν1 = 0.589 experimentally verified for a range of molecule lengths between
10 and 10000 bp. This formula describes the two behaviours of a dsDNA:

< R(Lc) >≈
Lc
lp

if Lc << lp (2.6)

< R(Lc) >≈
√
Lc
lp

if Lc >> lp (2.7)

For short contour length (Eq. 2.6) the dsDNA behaves like a rigid body, as its end to
end distance is proportional to the number of bases. For longer contour lengths the molecule
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behaves like a random coil as its end to end distance grows like the square root of the number
of bases. These two equations are equally predicted by the WLC model.

The validity of the WLC model is also demonstrated by Bustamante et al. [48] where
the force distance relation of the WLC model is used to fit the experimental force distance
relationship. The parameters of best fit are the following lp = 53 nm, Lc = n × 0.33 nm with
n the number of bases. For a 48000 bases long dsDNA phage this model is good up to forces
of 10 pN [48]. For forces from 10 pN to 50 pN the structure of the strand deviates from the
canonical B-DNA structure. For higher forces (from 65 pN to 150 pN) a transition from the
B-DNA to the S-DNA form is achieved, and for higher forces the strand melts. It is possible
to include all these different behaviours in one model [46] for forces from 0.01pN to 100 pN.

The comparison (Fig. 2.7) of the force distance curves of a 1000 bases long ssDNA and
a 1000 bases long dsDNA shows the differences of mechanical properties between these two
possible structures of a DNA molecule.

Figure 2.7: Elastic force exerted by a dsDNA and a ssDNA with the same number of bases per
strand

Note that the use of a reduced coordinate x/Lc in equation 2.3 gives a universal force-
extension curve whatever the contour length of the chain keeping in mind that short dsDNA
of about 10 bp behave differently under tension [54]. Indeed the estimated tension before an
important deformation is of 0.08 pN. This force is small compared to the force of 10 pN required
to induce a change in the canonical B-DNA for longer dsDNA.

In this paragraph we saw that the WLC model can be used to describe dsDNA. We will
now use this model to compute the energy needed to bend small dsDNA.

2.2.3.2 Energy necessary to bend small dsDNA

For sizes close to its persistence length, dsDNA can be considered as a rigid rod. For the system
we want to model (oDNA) the typical length is a hundred nm, giving the length scale of the
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problem. Although a dsDNA in the WLC model is a continuous chain, it is possible to coarse
grain several bases together and model it by a succession of segment while keeping the energy
dependency of the WLC model. It has been shown [39] that for segment lengths longer than
10-15 nm the link between lp and the energy of bending of a strand predicted by the WLC
model is accurate:

E(θ)
kBT

= 1
2
lp
l
θ2 (2.8)

with θ the angle between two consecutive segments and l the coarse grain length. For segments
shorter than 15 nm another model should be used [39]. In the following we will consider the
dsDNA as if it was divided in two shorter coarse grain monomers and evaluate the force needed
to bend these two segments.

Figure 2.8: Schematic repre-
sentation of the system di-
vided in two monomers

The WLC model is still valid but the force needed to bend the
strand must be calculated differently. The force predicted by the
WLC model tends to zero when the constrained distance tends to
zero, that cannot be the case for a rigid rod. If x is the distance
between the two extremities of the DNA strand cos θ2 = x/Lc.
The force needed to bend this strand is given by

F (x) = −|−−→gradE(x)| = −2kBT
lp

Lc/2
d arcos(x/Lc)2

dx

as in our case Lc = 2l (Fig. 2.8)

F (x) = 8kBT
lp
L2
c

arcos(x/Lc)√
(1− (x/Lc)2

(2.9)

The force (Fig. 2.9) is evaluated for different length of dsDNA. The force is almost constant
for a given size of strand and equal to:

F ≈ 8kT
lp
L2
c

(2.10)

It increases when the strands are shorter and tends to zero for longer strands.
The generalisation of this model to compute the force needed to bend an origami is discussed

in the following section.

2.2.4 Simple model to calculate the rigidity of a DNA origami:
In section 2.2.2 we have evaluated the force needed to stretch a ssDNA. In section 2.2.3.2 we
have evaluated the force needed to bend a dsDNA. In this section we want to estimate the
effect of attaching a ssDNA bridge over a 110 nm long oDNA. A first approximation for oDNA



2.2. Analytic model of elasticity. 23

Figure 2.9: Force required to bend short dsDNA

is to consider a linear dependency of the total rigidity with the number N of rows of dsDNA.
The total force needed would be N -fold the force needed to bend one dsDNA if we consider
the rows as independent. The equivalent persistence length is therefore given by N × lp (Fig.
2.10).

Figure 2.10: a) Top view of an origami constituted of 20 rows of dsDNA of about 300 bases
each. b) Zoom on a sub-part and equivalency of the forces

Therefore for an oDNA constituted of 20 row of dsDNA of 110 nm length the bending force
is at least 20 times the one of a dsDNA (Eq. 2.9).

In our experimental construct we want to predict what will be the shape of the oDNA under
constraint (Fig. 2.11). The final shape will result of an equilibrium between the forces needed
to bend the oDNA and the entropic force exerted by the ssDNA bridge.
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Figure 2.11: Schematic representation of the
forces at stake.

From figure 2.12 one can calculate the
length at which the force of the oDNA and
the force exerted by the ssDNA strand can-
cel. For instance a 300 bases long bridge (Fig.
2.12) will bend the oDNA with a total length
of 80 nm whereas the forces exerted by a 750
bases long ssDNA is too weak to curve it.

The persistence length of a dsDNA corre-
sponds to fluctuations of the molecule in three
dimensions. However origamis are anisen-
tropic, and the fluctuation are mostly along
the direction perpendicular to the plan of the origami. Trapping a polymer in two dimensions
increases its persistence length by a factor 2 [45]. As the force is proportional to lp, in this
hypothesis the force required to bend the origami of figure 2.12 would be multiplied by two
(green curve).

Figure 2.12: Competition between the rigidity of an oDNA and the entropy of a ssDNA.

This analytic model for the two parts of the system gives a first estimation of the forces
at stake. However the total persistence length of the oDNA is only roughly estimated. If the
total persistence length is underestimated (for example by another 2 factor), the system is not
going to be curved. Thus, we decided to use a more detailed model in order to evaluate the
total persistence length of the origami.
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2.3 Persistence length simulation:
The Mergel’s energy model [7] and its adaptation to oDNA is presented in the following, as
well as a description of the Monte Carlo method of simulation.

2.3.1 Mergel’s Energy Model

Figure 2.13: Figure from [7], illustration of the model

In [7] , a dsDNA is modelled by a
succession of ellipses, that are con-
nected at their extremities by two
springs (Fig. 2.13). One ellipse rep-
resents a pair of bases, and a spring
represents the phosphate backbone.
In an origami, constituted of a suc-
cession of dsDNA, the crossovers be-
tween two dsDNA are constituted of
phosphate backbone, they will also
be modelised by a spring.

The model [7] takes into account
two energies:

• A stacking interaction between ellipses, that modelises the fact that bases are hydrophobic
and attract each other in aqueous solvent.

• A spring energy associated to the phosphate backbone.

The stacking interaction is minimal if the distance between ellipses is 3.3 Å, and the spring
energy is minimal if the distance between the extremities of two ellipses is 6 Å. To conciliate
these two constraints, there is a rotation of around 36° between two contiguous ellipses.

The model does not incorporate differences between right and left dsDNA. In order to
include this difference, in the Monte Carlo trajectories configurations where the twist between
two adjacent bases is inferior to −0.2 radian are rejected.

The original model does not include interactions between different strands. To take them
into account, we add an interaction of excluded volume between close strands modelised by a
simple excluded volume potential between ellipses of two different dsDNA: any configuration
with negative distance between ellipse is rejected. The function used to evaluate the distance
between ellipses is an approximation of the exact expression and is detailed in [7].

In Mergel et al. model [7] , no charges are explicitly taken into account, as the value of
the persistence length is a consequence of interaction between adjacent ellipses. In the case of
oDNA constructs, two strands are close one to the other. As a consequence the negative charge
of each phosphate of the backbone, interacts with the phosphate of any adjacent strand. The
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need to add electrostatic interaction between phosphates to the model will be discussed in the
next section.

2.3.1.1 DNA electrostatics

There are three models of electrostatic interaction between dsDNA [55]: attractive electro-
static forces due to counterion correlations, screened Debye-Huckel interaction between helical
molecules, and water-structuring or hydratation forces. These three theories have been moti-
vated by the fact that although dsDNA molecules are highly negatively charged they can be
compacted tightly in the cell in the presence of counter ions.

This phenomenon of attraction between dsDNA is called DNA condensation [41, 55, 28, 56].
It can take place in presence of divalent charged ion to hexavalent charged ions. However this
phenomenon of condensation does not take place for Mg2+ ions [40] which is the salt present
in oDNA buffers. Consequently only repulsive forces will be considered.

High resolution AFM images (Fig. 2.14) suggest a balance between repulsive forces between
strands and the local energy of curvature of the dsDNA, as the strands are not densely packed
and can be distinguished individually.

From AFM measurement it is possible to estimate the maximum distance between coupled
dsDNA. In the figure 2.14 b) we can observe 9 intervals between strand in a distance of 51.7
nm. The mean interval between crossovers is of 5.7 nm, and given the fact that a dsDNA is 1.8
nm wide, the center to center distance between strands is of 3.9 nm (Fig. 2.14 c))

In this context, a common model for electrostatics is to use a Poisson-Boltzmann solution
that describes dsDNA-dsDNA interaction as charged continuous cylinder-cylinder interaction
[57]. Mergel’s model is less coarse grained as it describes dsDNA at the bases pair level and
it is possible to associate to every phosphate (positioned at the extremities of an ellipse) an
electric charge. In solution, electrostatic interactions between charges are screened by the ions
in solution, and the electrical potential in the Debye-Huckel approximation corresponds to a
screened Coulomb (SC). potential given by:

ESC(r, T ) = ECoulomb(r, T )e−r/λDebye(T ) (2.11)

where λDebye(T ) the Debye length is given by the formula [58]:

λDebye(T ) =
(
ε0εr(T )kBT
6.103c0NAe2

)1/2

(2.12)

with ε0 the permittivity of the vacuum, εr the relative permittivity of the solution, c0 the
concentration of divalent ions in solution in mol/L.

The temperature dependence εr(T ) [59] should also be taken into account (Tab. 2.2)
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Figure 2.14: a) AFM imaging of an Origami, b) section of the AFM picture, c) schematic
representation of the dsDNA as measured by AFM
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T = 0°C T = 20°C T = 85°C
εr(T ) 88 80 59

εr(T ) = 88− 0.33× T 88 81.3 60.0

Table 2.2: Experimental value of εr as a function of the temperature. The second row shows
that this dependency is almost linear

ECoulomb(r, T ) is given by:

ECoulomb(r, T ) = q2

4πεr(T )ε0r
(2.13)

We studied two variations of the model. One where only volume excluded interactions are
present, and another one were we add explicit Debye-Huckel interactions between phosphate
belonging neighboring dsDNA. Including phosphate-phosphate interactions between phosphates
of the same dsDNA would lead to an increase of the persistence length of each dsDNA.

2.3.2 General description of Monte Carlo Simulations
Monte Carlo simulations are widely used in condensed matter physics. They are mostly used
to compute average properties of a physical system. More generally they allow to sample the
configuration space. This type of simulation need four different ingredients to run:

• An energy model for the system.

• A set of moves that will modify the system, for example “physical” moves such as the
translation of an atom, or of a set of atoms, or “nonphysical” moves such as flipping
a whole molecule or cutting the inner part of a chain an reconstructing it with other
coordinates.

• An algorithm that constrains the transition between two states according to the distribu-
tion that we want to sample. In most cases the transition between the states is such that
the degrees of freedom of the system follow a Boltzmann distribution.

• Some computers to run the simulations, or a set of motivated humans as it was done at
the beginning [60].

One of the advantages of such techniques compared for example to molecular dynamics is
the possibility to move an important set of atoms in a coordinated way and in only one move.
The state obtained could have never been reached in molecular dynamics, or reached in a very
long computing time. But the advantage of the method is also its drawback, as it requires for
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every different system to create a set of intelligent moves that will allow the fast sampling of
the phase space.

As the energy model and the set of moves are dependent on the particular system of interest,
we will first describe the different algorithms used in classical Monte Carlo simulations.

2.3.3 Metropolis algorithm of transition between states in Monte
Carlo Simulations

The objective of a Monte Carlo simulation is to generate a set of configuration according to a
probability distribution p, once the system reaches the equilibrium. Mathematically the system
is at equilibrium when the probability into and out any state A is identical:

∑
B

pAPA−>B =
∑
B

pBPB−>A (2.14)

with pA the probability to be in the state A and PA−>B the transition probability from A
to B

One sufficient condition to achieve this equality is called the condition of detailed balance:

pAPA−>B = pBPB−>A (2.15)

This equality ensures that given any starting configuration the probability distribution will
tend to the distribution p if the simulation runs long enough. Indeed this condition eliminates
possible limits cycles in which the system could be trapped, as the detailed balance condition
would not be satisfied in this case [61].

In the case of a Boltzmann distribution pA = e
−EA
kBT . Equation 2.15 requires the condition

on the transition probability:
PA−>B
PB−>A

= e
−EB−EA

kBT (2.16)

It is possible to divide the transition probability PA−>B into two parts:

PA−>B = gA−>BAA−>B (2.17)

with gA−>B the probability to select a state B from state A and AA−>B the acceptance ratio
of B given the previous configuration A.

The most used algorithm is the Metropolis Algorithm. In this algorithm the probabilities
gA−>B = gB−>A for every state A and B. The acceptance ratio between the two configurations
A and B with energy EB < EA have to be chosen in order to satisfy Eq. 2.16. Several
choices are possible, but one that ensures a good sampling is to set the acceptance ratio of
a new configuration B, given a starting configuration A to AA−>B = 1. Given Eq. 2.16 the
acceptance ratio AB−>A is fixed:
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AB−>A = e
−EB−EA

kBT if EB > EA (2.18)

AA−>B = 1 if EB < EA (2.19)

In practice a random number r between 0 and 1 is generated and the new configuration A
is accepted if r < e

−EB−EA
kBT .

The Metropolis algorithm is not the only option. In the case of a spin system other al-
gorithms such as the Wolff algorithm or the Swendsen-Wang algorithm [61] are of interest for
temperatures near the critical temperature. These algorithms use the fact that one can choose
gA−>B 6= gB−>A .

2.3.4 Monte Carlo moves

Figure 2.15: a) a pivot move; followed by a cranck-shaft move of a part of the first dsDNA. b)
side view, c) top view

Several different moves were proposed for the following simulations besides the translation
and rotation of single ellipses. Two different types of pivot moves were tested:

• One base at random Br is selected then all the bases Bt such as ~t(Br).( ~CM(Bt) −
~CM(Br)) > 0 ( ~CM the center of mass) are rotated. The center of rotation is ~CM(Br),

the axis of the rotation a random vector in the plane (~b(Br), ~n(Br)), the angle of rotation
is also random. ~b(Br) and ~n(Br) are the two principal axis of the ellipse (they are both
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perpendicular to the main axis of the strand) and ~t(Br) is the vector perpendicular to
(~b(Br), ~n(Br)) .

• One row at random is selected and all bases from one side or the other side of the row
are rotated in the same way as above

These two moves give an identical result (Fig. 2.15 a)) when the structure is close to the initial
(flat) structure, but they are a little bit different for important deformations.

Finally a cranck-shaft move (Fig. 2.15 b,c) is also applied. It consists in a rotation of all
the bases between two bases pairs chosen randomly, the axe of rotation being defined by the
center of mass of the two pairs, the angle being random.

Usually the parameters of the Monte Carlo moves (for example the size of the maximum
translation) are set to have an acceptance ratio of 40 %.

2.3.5 Averaging values in MC simulation
In MC simulation there is no physical time, an analogue is the number of moves tried at a given
moment of the simulation. The number of moves needed to reach the equilibrium from an initial
state, or to sample the phase space once the equilibrium is reached, are dependent of the size
of the system and of the type of moves. If one compares a strand with fifty bases and a strand
with a hundred bases, approximately two times more moves are needed to reach the equilibrium
in the second case. This is true if only local moves are allowed, because global moves displace
several bases at once and are more efficient. To have an analogue of time identical for systems
of different size, we introduce the notion of MC step which is the number of moves needed to
displace every base at least once in average. This number is given by the formula:

MCstep =
∑
m

pm ∗ nb(m) (2.20)

with m a given MC move, pm the probability of proposing this move, and nb(m) the number
of base displaced by a given move. For local moves like translation of a base, nb(m) = 1 , and
for global moves like the pivot move nb(m) = 0.5 ∗Nb with Nb the total number of bases. The
notion of MC step is important as it ensures that executing the same number of MC step for
two systems of different size allow to reach the equilibrium for both systems. But a question
remains:

When running a Monte Carlo simulation how long to run a simulation in order
to have a good sampling, and enough independent states?

A discussion of this problem can be found in [61]. The simpler answer is to evaluate the
equilibrium time τe, which is the time needed to go from the initial configuration of the simu-
lation to a configuration at the equilibrium (The configuration is considered at the equilibrium
when its energy reaches its mean value in the simulation (Fig. 2.16)) In general this time is
longer than the correlation time between two independent configurations.
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Figure 2.16: Equilibrium time for a DNA construct composed of two 300 bases long dsDNA

In the case shown in Fig. 2.16, the equilibrium time is τe = 100000 MCstep, so the number
of independent samplings is n = tmax

2τe = 400 as the total length of the simulation is 8 ×
107MCstep. It is also possible to evaluate the correlation time of the energy τene by computing
its autocorrelation function.

χ(t) = 1
< E2 > − < E >2

tmax∑
t′

1
tmax − t′

(E(t+ t′)− < E >) (E(t)− < E >) (2.21)

It is expected that χ(t) ≈ e−
t

τene . In our case (Fig 2.17) the correlation function is not
a simple exponential but a sum of exponential functions with two different times τene1 ≈ 106

MCstep and τene1 ≈ 104 MCstep. In a general Markov process the number of times present in
the correlation function is equal to the total number of configurations [61]. However these
times decrease rapidly and only the longer times are visible on the experimental correlation.
To evaluate the number of independent configurations only the longer time τ ene1 is relevant.
τ ene1 gives a number of 40 independent simulations.

Given these results for simulations realised on an oDNA composed of two 300 bases long
strands, the number of MCstep chosen for computing value on the configuration have been
multiplied by almost three compared to this example. The number of MC step will be of
200 × 106 for all the following simulation. For values of particular interest eight simulations
were run in parallel in order to estimate the incertitude of the measure.

We will now present the influence of different parameters of the energy model that we
explored by Monte Carlo sampling.
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Figure 2.17: The energy autocorrelation function of a DNA construct composed of two 300
bases long dsDNA (blue curves). Fit with a sum of two exponential functions (green curves)
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2.4 Results

2.4.1 The twist parameter:
The value of the twist between successive ellipses is imposed by the energy model as a result
of an equilibrium between the length of the bond representing the phosphate backbone (6 Å)
and the distance of minimal energy between ellipses which imposes a center to center distance
of 3.3 Å. This twist corresponds to the twist between successive bases in a dsDNA molecule.
In this paragraph we will first show the importance of the experimental twist of the dsDNA in
the design of an oDNA structure. We will then compare the theoretical shape of a structure
that we obtain in the model to experiments on similar structures and adapt one parameter of
the model to improve the agreement.

In natural B-DNA strand the twist is dependent of the sequence of bases (Tab. 2.3) , the
mean value being 35.45 °. In the energy model[7], the original parameters give a mean value of
the twist (Tw) of 0.617 = 35.35◦, very close to the experimental value.

GC AC AT TA CA CG GA AA GG AG
N 27 10 34 9 23 10 25 50 3 4
Twist (°) 38.3 35.8 33.4 40.0 36.9 31.1 39.3 35.8 33.4 30.5

Table 2.3: Data from [62]. N represents the number of times that the sequence was present in
the 38 different crystals studied

Figure 2.18: a) a structure designed
with a twist of 33.7 °. b): If the twist
is not 33.7 but 35.45, the position of
the crossover has to be changed in order
to preserve the length of the phosphate
backbone at the crossover

When designing an oDNA structure, the value of
the twist is important, because it imposes where to
create a crossover between two strands. In order to
simplify the process of design of an origami the value
of design chosen was initially Tw = 33, 7 ° [1]. This
value corresponds to exactly one turn and an half for
16 bases, this allows to create easily long periodic
structures as crossovers are designed exactly every 32
bases (Fig. 2.18).

Experimental evidences [63] show that the oDNA
structures are twisted in solution. The twist of the
structure is due to a difference between the twist of
design and the natural twist of the dsDNA. The con-
sequence of this difference is an internal stress be-
cause some liaisons are longer when designed as flat
(Fig. 2.18 b)) and the structure of minimal energy is
twisted in order to respect the length of liaisons.
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By controlling the number of bp between crossovers, 3D curved structures can be intention-
ally designed [5]. Also, three dimensional origamis have been fabricated to measure the global
twist of a structure, given a twist of design [63]. The datas collected were TEM images. A
design of the structure with the hypothesis of a 10.5 bp/turn (34,28 °) for the dsDNA structure
gave indeed a twisted oDNA. Planar structures were achieved for a twist of design of 10.44
bp/turn (34.48 °). This experimental observation suggests firstly that the natural twist of ds-
DNA between two bases in the type of buffer is closer to 34.48 ° than to 35.45 ° and also, that
at the crossovers the value of the twist of the B-DNA form is respected.

Therefore, as the structure at the crossover is not a regular B-DNA one could ask wether
the natural twist of the DNA is respected or else if the exceeding twist is relaxed in order to
minimise the internal stress. Molecular dynamics were performed on small DNA constructs
[64]. In these simulations the twist of a B-DNA strand is about 30 − 32 °. The most stable
structures are the ones preserving the natural twist of the B-DNA structure. Otherwise the
fluctuations of the twist are larger , specially at the crossovers, although the mean value at the
crossover seems to be identical to the twist of the other bases. In conclusion the twist between
the two bases at the crossover seems to be preserved, and the value of the twist between two
bases is close to 34.48 °.

Figure 2.19: Structure of the 4-oDNA(315) after 1 million of Monte Carlo steps. Natural twist:
35.45°, Designed twist 33.7°.

Given these results we now discuss the influence of the twist in our model in order to adjust
the parameters to have theoretical results closer to the experimental ones.

Figure 2.19 shows the final configuration of a MC simulation of a 4 dsDNA 315 bases long
each coupled every 32 bases by a crossover. We call this structure 4-oDNA(315). If we choose
a twist of design of 33.7 °, with the parameter of the model that imposes a twist of 35.45 °, the
resulting structure is highly twisted (Fig. 2.19).

In the following we compare the simulations obtained in three different cases for two struc-
tures: the 2-oDNA and 3-oDNA (Fig 2.20). Let us denote TwN the ‘natural’ twist, namely the
twist naturally adopted by an isolated dsDNA in our model, and TwD the twist imposed by
the origami design.
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Figure 2.20: Two representations of a) , b) the structure of 2-oDNA(298) , c), d) the structure
3-oDNA(298)

The three different simulations are the following:

• TwN = 35.35 ° and TwD = 33.7 °(Sim 1)

• TwN = 34.48 ° (Obtained by changing the length of the scaffold from 6 Å to 5.9 Å) and
TwD = 33.7 ° (Sim 2)

• TwN = 34.48 ° and TwD = 34.48 °(Sim 3)

Given a value TwD how to choose the positions of crossovers that respect this value when
designing the oDNA. In our structure a crossover takes place every three helical turns. If we
choose the first base as a reference, a base that will be a part of the crossover must have the
same orientation in order to connect to the upper helix. For the first crossover we must chose
the index i that minimise |Tw0 + i×TwD− 3× 360| with Tw0 the twist of the first base chosen
equal to 10° for convenience. For the second crossover we will chose the index j that minimize
|Tw0 + j × TwD − 2× 3× 360| . To generalise, the index in of the crossover n must minimise:

|Tw0 + in × TwD − n× 3× 360| (2.22)

In Sim 1 and Sim 2 as TwD = 33.7 , the choice of in = 32× n for the crossover n gives a value
close to zero for all n (in Eq 2.22). In Sim 3 the distance between crossovers was chosen to be
either 31 or 32: 31,31,32,31,31,32,31,31,32. The crossovers listed here are the ones between the
first and second strands. The location of the crossovers between the second and third strands
were also modified on the same principle (Sim 3). Another constraint is that the last base must
have the opposite orientation of the first base in our construct. The equation to be minimised
is |ilast × TwD = 180mod(360)| with ilast the index of the last base. For Sim 1 and Sim2 we
choose ilast = 315 and for Sim 3, ilast = 298.
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Figure 2.21: a) The vector ~Ti is the vector passing by the center of the ellipse i of the first
dsDNA row of the structure and the center of the ellipse i of the last dsDNA row. Evolution
of the global twist for b) the 2-oDNA(298) and c) the 3-oDNA(298) structures in the three
simulations. For Sim 1 the expected TwG is -1.44 turn (315 × (33.7 − 35.35)/360), for Sim
2 it is of -0.68 turn. Each simulation was 200 × 108 MC steps long. The values of the twist
was measured every 200× 105 steps. The values indicated in abscissa have to be multiplied by
200× 105 to convert them in MCstep .

We define a measure of the twist of the global structure Twg as the sum of the twist between
two columns of bases. The twist between two columns of bases is defined as the angle between
the vectors colinear to these columns. (Fig 2.21 a).

Twg =
Nbases−1∑

i

α~Ti, ~Ti+1
(2.23)

with α~Ti, ~Ti+1
the angle between the two vectors.

From these experiments it seems that the difference between TwN and TwD is propagated
from the strands to the structure, as the formula ilast(TwN − TwD) gives a good estimation of
the global twist of the different structures (Fig. 2.21 b,c). The structures designed in Sim 3
(named with a p for planar, eg 2-oDNAp ) are flat, and the ones with TwN 6= TwD are twisted.
The planar structures were studied more in detail, and the values given on Tab. 2.4 are the
average of 8 simulations.

2-oDNAp(298) 3-oDNAp(298) 4-oDNAp(298) 5-oDNAp(298)
Twg (turn) −3× 10−3 3× 10−2 3× 10−3 2× 10−2

Table 2.4: Result for the global twist of the untwisted structures for 8 MC simulation 200×108

MCstep long (Sim 3)

The global twist is close to zero for all these structures. Simulations of 4-oDNAp(298) and
5-oDNAp(298) gave similar results. Given the experimental evidences in agreement with this
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Figure 2.22: Two of the configurations used for the calibration of the electrostatic parameter.
a) 2-oDNAp(141) b) 4-oDNAp(141) . c) Distance between bases of same column. The distance
between bases of the 0 th and the 10 th column are represented here.

model, this value of the twist has been chosen for the following simulations by setting the length
of the bond between ellipses to 5.9 Å.

In the following section we will measure the effect of the electrostatic interaction between
strands.

2.4.2 The electrostatic parameter:
For two negative unit charges separated by a distance r, the Coulomb interaction is given by:

ECoulomb(r, T = 300K)
kBT

= e2

4πε0εrkBTr
= (1.6× 10−19)2

4× 3.14× 8.85× 10−12 × 80× 1.38× 10−23 × 300r ≈ 7.0/r

with r in Å.
For the salt concentration of classical oDNA buffer λDebye(T ) = 10.5 Å. The effective inter-

action between every phosphate is given by:

ESC(r, T = 300K)
kBT

≈ 7.0
r
e−r/λDebye(T )(2.24)

As the electrostatic interaction takes a lot of computing time we worked on a smaller con-
figuration to evaluate the effect of this parameter (Fig .2.22)

On the simulations run with a Debye length of 10.5 Å we notice that at the crossover the
stacking between bases was lost (Fig. 2.23). This means that the stacking interaction between
pair of bases (Fig. 2.23 b) green arrows) is not attractive enough compared to the repulsive
electrostatic interaction (Fig. 2.23 b) red arrows). The energy of stacking is the one of the
original model and has been chosen to obtain a persistence length in accordance with the
experimental data. However our results indicate that this interaction is not strong enough. In
order to prevent this opening that probably is not happening experimentally we added an extra
liaison between the bases at the crossovers. (Fig. 2.23 c)
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Figure 2.23: a) Opening at the crossover b) Zoom on a crossover. The red arrow represents
the repulsive electrostatic interaction, and the green one the attractive stacking interactions c)
Extra liaisons added at the crossover.

Figure 2.24: Study of the distance between bases of the same column for systems with different
number of rows of dsDNA

To evaluate the effect of the electrostatic parameter, an interesting measure is the distance
between bases of the same column on two adjacent dsDNA (Fig. 2.22 c)). This distance is of
interest as it can be compared to the distance observed by AFM imaging in Fig. 2.14.

We first studied the effect of the number of dsDNA on this distance for a given Debye length
of 10.5 Å (Fig. 2.24). In the following, the simulation were 200× 108 MC steps long, and the
values shown are the result of an average on eight simulations.

The curves are not completely periodic, due to the fact that the distance between all
crossovers is 31-32 bases, excepted the last one that is 16 bases long. The experimental max-
imal distance between bases of same column is of 3.9 nm. The maximal distance for the
2-oDNAp(141) construct is of 4.5 nm. The distance is reduced for the 3-oDNAp(141) and 4-
oDNAp(141) down to 4.1 nm and for the 5-oDNA(141) down to 3.9 nm. These values are in
very good agreement with the experimental value. The global twist of the molecule is also
modified from almost 0 to ≈ 0.1 − 0.2 turns. This means that the electrostatic interaction
contributes to the global twist of the molecule, as in the simulations presented in the previous
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Figure 2.25: Distance between bases of same row in the case of an excluded volume interaction
(Without interaction) and for two different Debye length for the 4-oDNAp(141).

Figure 2.26: Evolution of the shape during the simulation for the 5-oDNAp

paragraph there was no electrostatic interaction, but only steric interaction between adjacent
strands.

The effect of the value of the Debye length is illustrated in Fig. 2.25. The distance between
bases is almost divided by two when comparing simulations with and without electrostatic
interaction.

The absence of electrostatic interaction has a strong impact on the simulation. We noticed
that sometimes the configurations are not flat anymore but are trapped in a bundle-like shape
(Fig. 2.26)

This is why in the following we will only use the model with electrostatic interactions and
a Debye length of 10.5 Å. We will now compare the persistence length of different structures to
experimental data available in the literature.

2.4.3 Comparaison with experimental data

2.4.3.1 Calculation of the persistence length of DNA construct

In this paragraph we introduce the calculation of the persistence length used in all the follow-
ing simulations. As explained in Sec 2.2.1 for a simple polymer modelled by n segments the
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tangential vector ~t(i) and the persistence length are linked by the relation:

< ~t(j).~t(k) >= e
− |j−k|

lp (2.25)

Practically the correlation function is calculated for a given configuration with the formula:

χ~t(k) =< ~t(j).~t(j + k) >j=
L−k∑
j=0

1
L− k

(
~t(j).~t(j + k)

)
(2.26)

Then this function is averaged on 1000 configurations taken regularly on the whole simula-
tion. Finally the function is averaged on all the strands of the construct.

The correlation function for the different DNA constructs (Fig. 2.27) shows an exponential
decrease for the simple dsDNA and a more complex behaviour for the other DNA constructs.
It is to be noticed that the data shown for the DNA constructs correspond to the correlation
function of one of the strand of the construct. The pattern of distance between crossovers
(31-32) is visible on the correlation function.

Figure 2.27: Example of correlation function for different constructs. The data shown for the
DNA constructs correspond to the correlation function of one strand of the construct

In order to compute lp, we coarse grain the oDNA structure with reference to the ideal situ-
ation where the base-pairs Bij are located on a regular grid where lines (index i corresponding
to the dsDNA strands) and columns (index j, in the direction perpendicular to the lines) can
be defined. The coarse -graining is done in two steps. First, we average the position of the
center of the ellipses belonging to a same column: B1

i = ∑
j Bi,j (Fig. 2.28). In this way, a

family of tangent vectors τ 1
i = B1

i+1−B1
i is obtained. Second, we average these tangent vectors

along the i coordinate: τai = ∑l=i+δi
l=i−δi τ

1
l . This averaged tangent vector field is used to compute

the persistence length for structures containing more than one dsDNA strand.



42 Chapter 2. Mechanical properties of DNA constructs

Figure 2.28: (Left) Example of the tangent field of one strand. It shows a the sinusoidal
component. (Right) If we add the green and red tangents on one column we obtain the blue
tangent field.

In Fig. 2.29 is reported the correlation function of this averaged field for different n-
oDNAp(141) structures and its fit by Eq. 2.25. One can notice that the sinusoidal component
due to the electrostatic interaction is removed.

Figure 2.29: The correlation between the tangent vectors of a same column as a function of
the distance along the strand. For each structure, the continuos line represents the measured
correlation, the dashed line the fitted data

The value obtained for the persistence length of the different systems (Fig. 2.29) will be
discussed later.

The correlation function for a given distance is the result of an average on all the points
separated by this distance. As a consequence for long distances the function is an average of
only few points.

Experimentally it seems that the “regular” behaviour of the curve is observed on 0.9 times
the total length of the structure. This is why the fit of the correlation function will be made
with a cutoff of 0.9 times the total length.
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2.4.3.2 Comparison with indirect measurement ([65])

Indirect measurements of the persistence length of structures similar to 2-oDNA (Fig. 2.30) have
been performed in [65]. These structures called DAE (for Double crossovers, Antiparallel ds-
DNA, Even number of helical half turns between crossovers) have a distance between crossovers
of 21 bases. These structures are the first type of DNA constructs, initially envisioned by See-
man [66].

The measurements were performed using statistical analysis on the fragments (Fig. 2.30 b))
obtained by ligation of the initial DAE molecule [67]. The analysis of the length of the fragments
and of the shape dispersion allows to extract the persistence length. Different lengths of the
junction between ligations were compared to study the impact of this parameter. The results
are gathered in Tab. 2.5.

Figure 2.30: a) Schematic representation of DAE-42. b) Products of the ligation [65]. The
red circle shows the junction between monomers. In [65] the length of this junction was change
from 41 to 43 to evaluate the effect of this parameter

DAE-42 DAE-41 DAE-43 DAE-nicked Duplex-42
lp (bp) 295 350 380 285 130
lp/lpDuplex−42 2.26 2.70 2.92 2.2 1

Table 2.5: Experimental datas from [65] and their normalised value

We studied the monomer DAE (Fig. 2.31 a) and different n-mer (Fig. 2.31 b-f). The values
obtained for the persistence length of the different structures are gathered in (Tab. 2.6). These
results are qualitatively similar for a simple dae.
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Figure 2.31: The different n-mer studied. The length in bases is indicated At the bottom.

dae 2-mer 3-mer 5-mer 11-mer 21-mer
lp/lp0 3.1± 0.1 3.4± 0.2 3.6± 0.2 3.7± 0.2 3.8± 0.1 3.5± 0.2

Table 2.6: Normalised persistence length for DAE of different sizes. Values obtained by fitting
the correlation function of the tangential vector.

A study of the evolution of the persistence length when increasing the structure length leads
to a small dependency with the length and the value seems to converge when increasing the
number of monomers (a monomer being defined by a segment between two crossovers).

Figure 2.32: Reverse bent structure

Even if dae molecule is globally stiff it can
adopt frequently a reversed bent structure (Fig.
2.32). This structure emerges as the natural twist
is not exactly preserved and exerts an internal
stress on the molecule and also, because the re-
pulsive interactions between dsDNA tends to move
them away.

For longer molecules such a mode does not
contribute to the global flexibility as the next
monomer has an opposite curvature resulting in
a flat structure.
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Figure 2.33: Schematic representation of the four (478 nm long) and six helix bundle origami
(370 nm long) [8]

Figure 2.34: Construction of a oDNA similar to a four helix bundle. (Top) shattered view,
(Bottom) realistic representation

2.4.3.3 Comparison with direct measurements ([8])

In the work of Kauert at al. [8] direct measurement of the flexibility of three dimensional origami
are realised using magnetic tweezers. These origamis are the four and six-helix bundle type

Figure 2.35:

origami (Fig. 2.33). Experimental force measurements were realised and com-
pared to a model of dsDNA [57]. The behaviour of the bundle was compared
to that of a single dsDNA with higher persistence length. The experimental
results are in good agreement with the theoretical model for a total persistence
length of 740± 140 nm for the four-helix bundle and a total persistence length
of 1880± 270 nm for the six helix bundle. Compared to a dsDNA with persis-
tence length of 53 nm this gives an increase of 15-fold for the four-helix bundle
and of 38-fold for the six helix bundle.

We modelled structures similar to the 4 helix bundle (Fig. 2.34,2.35). The
shattered version of the structure is presented in figure 2.34(Top). The junction
between the two 2− oDNAp were designed at the bases where the extremities
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4-helix bundle 2-mer 4-mer
lp/l0 16.6 ± 2.5 17.5 ± 6.3

Table 2.7: Normalized persistence length for the 4 helix bundles (fig. ??) as a function of the
number of monomers.

of the strand were on the top (Fig. 2.34 red circles).
In order to keep the time required for the simulation reasonable we worked on a 20 nm and

40 nm long structure with respectively two and four monomers.
The results are gathered in Tab. 2.7 Again, we find good agreement between the Monte-

Carlo simulations and the experimental results obtained with magnetic tweezers. A value of
persistence length for such construct can also be obtained using classical model of elasticity.

2.4.3.4 Comparison with classical model of elasticity.

Figure 2.36: Schematic representation of a) a dsDNA b) Four helix bundle c) 6 helix bundle d)
oDNA

In this section we want to apply the methods of classical elasticity [68] to study the beam
assemblies represented in Fig. 2.36. In a classical model the energy of a beam having a curvature
R is given by:

F = 1
2EI

∫ L

0
( 1
R
− 1
R0

)2dz (2.27)

with E the module of elasticity, I the second moment area of the beam, L its length and R0 the
curvature at the equilibrium. For a circular rod I is given by I = πr4/4 where r is the radius
of the rod.

For the continuous model of the worm-like chain the elastic energy is given by Marko et al
[69]:

F

kT
= 1

2

∫ L

0
lp(
∂2 ~R

∂s2 )2ds (2.28)

As a consequence
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lp = EIds
kT

(2.29)

with Ids = πr4
ds

4 For a single dsDNA rds ≈ 1nm. For the four helix bundle considering that the
four strands form a compact road of radius 2 nm,

I(4− bundle) = 24Ids = 16Ids (2.30)

As lp is proportionnal to I, this gives an increase of 16-fold for the persistence length of the
4 helix bundle (experimentally [8], a factor 15 was found). The result can be derived more
precisely with the parallel axis theorem: The second moment area about a new axis parallel to
the axis of the original second moment area is given by the relation :

In = Ii + AD2
ni (2.31)

with Dni the distance between the two parallel axis and A the area of the shape. This gives for
the four helix bundle:

I(4− bundle) = 4× (Ids + πr2r2) = 20Ids (2.32)

And for the six helix bundle:

I(6− bundle) = I(4− bundle) + 2× (Ids + πr2(2r)2) = 54Ids (2.33)

These two figures (20 and 54) can be compared with the experimental data (14 and 38):
the continuous model exagerates the stiffness. The values obtained for the 4 helix bundle and
the 6 helix bundle are 33% and 42% higher than the experimental ones. The distance to the
axis re = αr that will give a correct estimate of the persistence length for the 4-helix bundle
would be the solution of the equation: 4(1 + 4(α)2) = 15 . This gives α = 0.88.

The same effective value gives as a result for the 6 helix bundle: I(6− bundle) = 37.5Ids.
These calculations even if not predictive, give at least a good order of magnitude, and

considering an effective radius of re = 0.88r give predictions very close to the experimental
value. In the case of planar oDNA the classical model predicts that the persistence length
increase linearly with the number of strands.

2.4.3.5 CanDo-DNA website.

Kim et al. [42], developed a framework to predict the shape and the fluctuations of origami
structures designed thanks to the caDNAno software [70]. This structures can be given to
the website http://cando-dna-origami.org/ and the final shape as well as data on thermal
fluctuation can be obtained. The calculations are based on the finite element theory where
each dsDNA is represented by a set of two-node beam finite elements whose characteristics
stiffness are the one of dsDNA. The 2-oDNA was submitted for calculation and the equilibrium

http://cando-dna-origami.org/
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Figure 2.37: Equilibrium configuration of the 2-oDNA submitted to CanDo

configuration shows a global shape twisted of about −0.5 turn (Fig. 2.37), close to our value
of −0.65. Other information such as the lowest normal modes are available. However, it is not
easy to extract from these datas the persistence length.

A good agreement is being observed between the model and the different experimental
results available:

• The effect of the electrostatic interaction on the distance between strands for the experi-
mental value of the Debye length is well reproduced (Sec. 2.4.2)

• The persistence lengths of the DAE structures (Sec. 2.4.3.2 and the 4-bundle structures
(Sec. 2.4.3.3) are in qualitative agreement with the model.

• The twist of the structure is in good agreement with the different observations (Sec.
2.4.3.5 , 2.4.1)

We then decided to study the effect of different parameters such as the density of crossover,
and the dependency of the persistence length as a function of the number of dsDNA for oDNA
structures.



2.4. Results 49

2.4.4 Study of the persistence length for different constructs
2.4.4.1 Effect of the crossover density

Figure 2.38: The different structures studied in this paragraphs. All are 141 bases long with
various crossover density, respectively a) b) c) d)

In this paragraph we study the 2-oDNAp (141) structure and structure identical in length
but with different numbers of crossovers (Fig. 2.38). For this oDNA structure the maximum
possible number of junctions is 14. There we use the term junction, as connection at the
extremities of the structure are also counted.

# junctions 4 j 6 j (2-oDNAp(141)) 8 j 14 j
lp/lp0 0.6± 0.3 3.2± 0.3 3.9± 0.3 3.9± 0.1
Twg (turn) 0.0± 0.1 0.1± 0.0 0.1± 0.0 0.1± 0.0

Table 2.8: Evolution of the persistence length with the junction density.

As expected, the structure with two parallel strands is generally stiffer than the double helix
(Tab. 2.8), with lp/l0 ∼ 3.2. When only 4 crossovers are present (cf. fig. 2.38(a)), we find
that the persistence length of 2-oDNAp(141) is lower than that of one single helix. This result
can be understood by noticing that the crossovers are separated by 90 base-pairs. Instead of
being parallel, the dsDNA strands are almost free to fluctuate and the electrostatic repulsion
between strands increases these fluctuations, leading to contorted structures with a persistence
length inferior to that of a single dsDNA strand. It should also be noticed that these structures
are difficult to describe by a single coordinate, the coarse-graining procedure reaching here its
limit of validity.
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2.4.4.2 Increasing the number of dsDNA:

We also wanted to quantify the evolution of the persistence length of oDNA as a function of
the number of dsDNA. We saw previously that the persistence length was dependent on the
number of crossovers. We decided to study structures 300 bases long which is the classical
length for oDNA and structures two times smaller to see the impact of number of monomer.
We studied structures with increasing number of dsDNA. For the longer length the number of
dsDNA row variates from two to four and for the the shorter from two to five. The results for
two length of structures are gathered in Tab. 2.9 and Tab. 2.10

2-DNAp (298) 3-DNAp (298) 4-DNAp (298)
lp/l0 3.5± 0.3 5.7± 0.7 7.4± 1.7
Twist (turn) 0.1± 0.0 0.2± 0.0 0.1± 0.0

Table 2.9: eight different simulations were averaged for each system

2-DNAp(141) 3-DNAp(141) 4-DNAp(141) 5-DNAp(141)
lp/l0 3.2± 0.3 5.1± 0.4 5.8± 1.4 6.6± 3.3
Twist (turn) 0.1± 0.0 0.1± 0.0 0.2± 0.0 0.2± 0.0

Table 2.10: Result for structure with half the length of the previous structures

For the structures with 298 base-pairs per row increasing the number of rows increases
monotonously lp, by roughly 1.8 l0 added per row. For shorter structures, the situation is very
similar, as should be expected for a local measure of elasticity. However one can notice that the
incertitude on the measurement is important for the smaller structure. This incertitude come
from the fact that the total length of the structures is of about 50 nm or one l0 which is short
by comparison with their persistence lengths, and as a result the fit of the correlation function
is less precise. If one only considers the longer structures, a simple rule seems to emerge: the
persistence length of a N-oDNA(l) structure with N dsDNA is roughly given by 1.5 × N for l
long enough.

The persistence length characterise the mechanical properties of the structure. In the fol-
lowing section, we will use a special Monte Carlo algorithm called Umbrella Sampling, to realise
simulated Force-distance experiment, and to access directly to the force needed to bend different
constructs.
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2.4.5 Force curves measurement of bending on DNA constructs
2.4.5.1 Umbrella Sampling.

In all the previous section we used Metropolis algorithm to sample the phase space. Here
we introduce the Umbrella Sampling technique [71, 72] that allows to sample high energy
configurations that are not explored by the Metropolis algorithm at room temperature. These
configurations can be of interest if we want to explore highly bent configurations of oDNA or
dsDNA.

Umbrella Sampling allows the sampling of a restrained part of the phase space by rejecting
moves that lead to configurations outside this region. For example only configurations which
have a end to end distance (Ree) that belong to a given interval [l; l + dl] are accepted. We
obtain in this way the distribution of probability of having a given length in a restrained
interval. The free energy can be computed as βA(Ree ∈ [l; l+ dl]) = −ln(p(Ree)) + cte(l). This
additive constant is due to the fact that the probabilities are normalised in a restrained interval
[l; l + dl]. If the same algorithm is applied for a set of interval constrained in [l0; l1] , such that
each interval slightly overlaps with its neighbours, the total free energy can computed as the
constant corresponding to each interval is determined by continuity. So the total free energy is
known only up to an additive constant.

In order to have a good sampling in each interval, the size of each interval has to be chosen
carefully. If the interval [l; l + dl] presents large variations in energy, a limited sampling will
explore only a small part of the interval. This is due to the MC method of sampling that will
spend most of the simulation with configuration having 1 kBT of energy higher than the lowest
configuration. So the size of the interval needs to be chosen such as the maximum variation in
energy of the interval is not superior to NkBT ( with N the number of degree of freedom of the
system).

2.4.5.2 Detailed steps of the Umbrella sampling method.

By using the umbrella sampling method, it is possible to access to the free energy A(Ree) as a
function of the distance between the two ends of the structure and “reproduce” force distance
experiments. Here we illustrate the different steps in an example for a strand of 40 bases. Then,
as this technique allows to obtain force distance curve we will compare the data obtained for
the different sizes of strand to the analytic model (Sec. 2.2.3.2)

The first step is to realise simulations on several different slightly overlapping intervals (Fig.
2.39). The figure represents Ree as a function of the MC steps. Every 3300 steps the interval in
which the configuration is constrained is changed. For this simulation each window was 1 nm
long. For instance, in the first window the strand was constrained to an end to end distance
(Ree) between 14 and 15 nm during 3300 steps.

One can notice that the length interval to which it was constrained (symbolised by a vertical
line of different color) is not fully explored and that Ree stays close to 14 nm. The strand has
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Figure 2.39: Monte carlo trajectory, the windows of constraint are changed during the simula-
tion every 3300 MC steps

a contour length of 13.2nm, and in this window the strand is constrained to be extended. The
configuration of minimal energy is the one having a Ree ≈ 14 nm and extending it slightly
increases rapidly the energy. As MC sampling explores mostly configurations having kBT by
degree of freedom the configurations higly extended are not sampled properly. If we wanted to
sample this region properly, we should divide the window in smaller areas.

However, the region of interest is the one where the strand is bent. In the simulation steps
it corresponds to the MC steps superior to 80000. As the configurations with minimal energy
are the one that are less bent, in each window the more explored configurations are the ones
with a longer end to end distance.

The trajectory is separated in individual windows, and the distribution of probability P (Ree)
is calculated for each window (Fig. 2.40 a). Then, the free energy A(Ree) = kBT ln(P (Ree)) is
computed for each window (Fig. 2.40 b). However, this free energy is defined up to an additive
constant that depends on the window. By continuity each additive constant is adjusted, and
the free energy on the total interval is evaluated within an additive constant (Fig. 2.41). The
additive constant is set to zero for the minimal energy which correspond to a length slightly
smaller than the total length of the strand. This length is smaller because the most likely
configuration is a configuration slightly bent. Then the force F = −∂A

∂l
is computed (Fig.

2.42). The effect of the window size was tested and showed no significant effect on the value of
the force (Fig 2.43). However for large window size, the sampling is not accurate and prevents
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Figure 2.40: a) Distribution P (Ree ∈ [l : l + dl]) of length for each window [l : l + dl], b) Free
energy up to an additive constant, different for each window.

some size extension to be measured. We can also notice that the estimated force is very noisy.
This is due to the fact that we are interested in a derivative of a function extracted from the
simulation.

Figure 2.41: Free energy. The different parts bending equilibrium and extension are clearly
visible. The slope of the extension part is bigger.
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Figure 2.42: Force required to bend the small dsDNA of 40 bases.

Figure 2.43: Force obtained for different lengths of the sampling window.
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2.4.5.3 Result on dsDNA

In Sec. 2.2.3.2 we have shown that for strands shorter than their persistence lengths the force
and the energy of structure constrained to a Ree smaller than their contour length Lc are given
by:

F (Ree) = 8kBT
lp
L2
c

arcos(Ree/Lc)√
(1− (Ree/Lc)2

(2.34)

E(Ree) = 4kBT
lp
Lc
arcos(Ree/Lc) (2.35)

In (Fig. 2.44) results obtained for different length of strands by umbrella sampling (green
curves) are compared to the analytic predictions with lp0 = 160 bases (blue curve). The
agreement between both is good. It is also possible to evaluate the persistence length (lpf ) by
fitting the simulation data (dotted red curve) by both theoretical expressions (Eq. 2.34 and
Eq. 2.35). One can see that for the shortest strands the agreement is good between the value
obtained with these simulations (lpf ) and lp0. (Tab. 2.11). The limit of validity of the model
is clear: for a strands that is two times the persistence length, the strand can no longer be
considered as a rigid rod. In that case (340 bases long strand) there is a large minimum and
the force to bend is almost null. It is to be noted that the force plots are noisy. A longer
sampling would have been required to obtain smoother curves.

length of the strand 40 50 100 340
η (fit force) -4% + 7% +31% -189%
η (fit energy) -5% + 7% + 14% -15%

Table 2.11: Relative error η = lpf−lp0
lp0

for the different lengths of the strands considered in Fig.
2.44
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Figure 2.44: a)Comparison of the free energy for the analytic model (blue),Fit of the analytic
model (dotted red), MC model (green) for different sizes of strand. b) Comparison of the force
for the analytic model (blue),Fit of the analytic model (dotted red), MC model (green) for
different sizes of strand
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2.4.5.4 Force curves measurement of bending on oDNA.

Figure 2.45: a) Fit of the free energy curve with the analytic model for 2-oDNAp(141) and
5-oDNAp(141) . b) Forces curves

In the case of an oDNA construct the constraint is set on the mean end to end distance
of the strands. The energies (Fig. 2.45 a) and forces (Fig. 2.45 b) were computed for the 2-
oDNAp(141) and 5-oDNAp(141) structures. The fit realised thanks to the analytic WLC model
gives a good agreement with the simulation. The analytic model is even good for very bent
shapes. The values of persistence length that were obtained with regular MC trajectories were
of 3.2 l0 for the 2-oDNAp(141) and of 6.6 l0 for the 5-oDNAp(141). The values obtained by fit
of the energy of bending are respectively of 2.4 and 5.8. As these values are proportional to
the number of strands, they are easier to understand. We think that the value obtained at the
equilibrium for these structures were influenced by the fact that the structure were deformed.

It would have been interesting to do the same measurement on the 2-oDNAp(298) and 5-
oDNAp(298) structures to confirm this intuition but it was not possible for computational time
reasons.
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2.5 Conclusion
The analytic model used for dsDNA can be extended to oDNA by adapting only the value of
the persistence length of the construct. As discussed in the analytic model in a first analysis
this value is proportional to the number of strands n. The extremes values were at our sense
nl0 and 2nl0 if we consider that attaching a strand to an oDNA is equivalent to trap it in two
dimensions. From the numeric simulation it results that the persistence length by strand is
approximately 1.5 l0. This intermediary value is due to the fact that thanks to the electrostatic
repulsion, the structure is not densely packed and the strands can still fluctuate partially in the
width of the oDNA. The persistence length also depends on the coupling between strands where
the number of crossovers play a more important role than the distance between crossovers.

The formula to compute the force needed to bend an oDNA composed of n strands is fairly
constant and is given by:

F ≈ 8kT
1.5× nlp

L2
c

(2.36)

For a classical oDNA composed of 20 dsDNA and 300 nm long the value is 6 pN. The
numerical model gives information about the persistence length and also allows to predict the
equilibrium shape in term of twist and in term of density of dsDNA as as the distance between
dsDNA is in adequacy with the experiments.

To conclude this theoretical work it is possible to graphically extract the lengths of equi-
librium of the oDNA composed of 20 dsDNA, each one being 340 bases long, bent by different
sizes of bridges (Fig. 2.46), which was the initial purpose of this chapter.

Unfortunately it was not possible to realise the structures corresponding to these predictions.
The reasons of this failure are explained in Appendix B.

Figure 2.46: Force needed to bend the oDNA ( FoDNA ) vs entropic force of a ssDNA (FssDNA
) for different lengths.
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3.1 Introduction.
The process of formation of an oDNA is very robust as the observed yield can be around 90
% [1]. This can be surprising as the formation process involves about 220 staples. Even if all
oDNA are not perfectly formed this global yield implies that the process of attachment of every
staple has a yield η such as

η220 = 0.9 (3.1)

or η ≈ 0.9995. This yield is a result of the high specificity of the position of folding of the staple
and of the high energy involved when two strands fold. In this chapter we want to address the
following questions:

• For the same shape of oDNA with the same topological scaffold pathway, is the process of
formation identical with a different set of staples, as for instance when doing permutation
of the strand location along the circular scaffold ?

• The process of folding involves 200 hybridisation reactions. Is it possible to have an
insight in the process of formation ?

• Is there any correlation between staples in the process of formation?

• In the case where intermediate states might happen is it possible to predict them?

Figure 3.1: From [73]: Schematic view
of possible differential melting curves
observed for a) short ≈ 102 bp, b) in-
termediate ≈ 103 − 104 bp , and c)
long (≥ 106 bp) DNA sequences.

To obtain the more stable structure the formation
process of oDNAs consists of: mixing together the ss-
DNA in aqueous solution, heating the mix and slowly
cooling the solution. It can be analysed and followed
in several ways (Sec. 3.2). In this work we used UV
measurements at 260 nm that are based on the fact
that hybridized bases absorb less than open bases (phe-
nomenon called hypocromism [74]).

The fraction of hybridized bases as a function of the
temperature (degree of pairing θ(T ) ) can be obtained
from raw absorbance measurements. The derivative of
the melting curve of a short dsDNA displays a maxi-
mum at a well defined temperature [73, 75] (Fig. 3.1 a)
. This maximum is called the melting temperature (
Tm ) of the duplex. For longer dsDNA macromolecules,
several maxima may appear , as a signature of the ex-
istence of contiguous regions that fold (or melt) inde-
pendently (Fig. 3.1 b). For even longer molecules, all the transitions are superposed, leading
to a profile similar to that of a small molecule, but larger in width (Fig. 3.1 c).
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Figure 3.2: (a)Derivative dθ/dT of the degree of pairing with respect to temperature for the
three DNA origamis represented in the insets. (b) dθ/dT for a model where the staples fold
independently.

The set of staples of a oDNA depends on its detailed connectivity. However, the average
AT and GC content of two oDNA based on the same scaffold is identical. Fig. 3.2 a) represents
the derivative of the melting curves of three different origamis based on the same scaffold. The
observed differences (Fig. 3.2 a) point to the existence of mechanisms of folding that are very
different from those at work in dsDNA macromolecule. To further stress this difference, (Fig.
3.2 b) represents the melting curve for each oDNA as a linear combination of melting curve of
each staple. Notice that the hypothesis of an uncorrelated staple folding process gives a melting
temperature 10 ◦C upper than the one experimentally observed. Furthermore the calculated
relative stability of the three oDNA is inverted with respect to the experimental data. This is
a second result showing that the hypothesis of an uncorrelated staple folding is a crude, non
correct, approximation.

Staples are designed to hold together regions of the scaffold that, otherwise, would be
separated by a (possibly) long sequence. The binding of a staple to the scaffold is hindered
by an entropic penalty that depends on the length of this region. At high temperature, this
region of the scaffold forms a coil. Depending on the Tm at which this staple binds, it may
happen that other staples have already folded within the coil, reducing the entropy. Therefore,
the binding of any staple depends on the previous binding state of the other staples, leading to
a field of interacting loops of various sizes. Stated in such a way, the problem of describing the
folding (unfolding) path of oDNA appears untractable.
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Figure 3.3: a) Representation of a regular origami with ≈ 200 staples;b,c) Two schematic
representations of a small origami. This small origami can also be seen as a bent holliday
junction; d) All atoms representation of a small origami

In an attempt to have a more quantitative picture, we first reduce the problem down to a
simple structure made of three ssDNA . This three strand pattern can be viewed as a building
block of the oDNA (Fig. 3.3). This preliminary study intends to shed light on the local process
of pairing in a oDNA.

The experimental results on the small oDNA (soDNA) are presented in section 3.3.1. A
coarse grained model at the scale of the base was developed to study the interactions between
the three strands composing the small oDNA (Sec. 3.4). This model has been published [76].
However this model can not be used at the scale of the oDNA given the complexity of such
structure. Then the different experimental results obtained on the classical oDNA structure
will be discussed in Sec 3.5. A coarse grain model at the scale of the strand was then developed
in a first attempt to understand the process of formation of oDNA (Sec. 3.6).
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3.2 Experimental techniques to study DNA hybridisa-
tion.

This section details the possible experimental ways to study the process of hybridisation, and
what thermodynamic quantities can be extracted from these studies.

Several techniques can be employed to study the process of formation of a dsDNA. The most
common are UV measurement [77], Differential Scanning Calorimetry (DSC) [78], collecting the
fluorescence intensity of a reporter dye [79], circular dichroism [80], Neutron Scattering [81],
attaching a fluorophore and a quencher to two complementary strands (FRET) [82, 83].

We will develop more in detail the DSC method because of the informations that this
technique can provide and the UV measurement technique as it is the one used in this work.

A DSC experiment gives access to the specific heat of transition Cp of a complex by mea-
suring the power needed to keep the sample of interest and a reference at the same temperature
[78]. Once Cp(T ) is known other thermodynamic parameters are accessible, such as, Tm, ∆H
and ∆S of transition and the van’t Hoff enthalpy ∆HvH . The later is related to the change
with temperature of the equilibrium constant for unfolding, and the ratio ∆HvH/∆H is a mea-
sure of the cooperative behaviour of the system. If the ratio is greater than one cooperative
behaviour is indicated, meaning that several bases unfold together, whereas if it is inferior to
one it is likely that there are intermediate states. The partition function can also be directly
calculated, and simplifying hypothesis give access to the proportion of different species (such
as duplex, simplex and partially unfolded state) at every temperature.

Melting curves through UV measurement can also be used to study the melting-annealing
process [77]. These measurements are based on the hypochromism effect: one dsDNA absorbs
less than two ssDNA. This effect is attributed to dipole-dipole interactions between stacked
bases [74]. DNA bases have a maximum of absorption around 260 nm and no absorption at
310 nm. The absorption recorded at these two wavelengths as a function of the temperature
allows to calculate A(T ) = A260(T )− A310(T ).

The difference is done to remove the effect of absorption of the buffer (this assumes that
the buffer has the same behaviour at 260 nm and 310 nm), and the specificity of the cuves used
for the experiment. One obtains a curve that needs to be normalised to obtain the fraction
of folded elements θ: at low temperature the complex is supposed to be formed and θ = 1
and at high temperature its value is zero. However even if the complex is totally unfolded, the
absorption changes with the temperature and this is why the process of normalisation requires
the estimation of a baseline at high and low temperature [77] that can be an important source
of error. Therefore

θ(T ) = L0(T )− A(T )
L0(T )− L1(T ) (3.2)

with L0(T ) and L1(T ) the baseline values of the unfolded and folded species, respectively.
An example of normalisation of a curve can be found in Appendix I.
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Once derived, the fraction of folded bases obtained is very similar to the one given by the
DSC technique [84]. Given this curve, it is straightforward to calculate the temperature Tm
that yields the maximum of the derivative dθ

dT
This value is roughly a measure of the stability

of the complex.
To obtain further information a two states model is supposed. A two states model supposes

that only two states are possible for the DNA strands: they are either totally separated , or in
the duplex state. No intermediary states are allowed. This hypothesis allows the calculation of
the association constant:

Ka(T ) = θ(T )
C(1− θ(T ))2

This equation is correct if both initial ssDNA are at the same concentration C. Ka is linked to
Gibbs enthapy by:

∆G = −RTln(Ka) = ∆HvH − T.∆S
And by plotting :

ln(Ka) = −∆HvH

RT
+ ∆S

R
as a function of 1/T one can determine ∆HvH and ∆S. All these computations are justified
if one assumes that the system is close to the equilibrium. In the case where the equilibrium
is not reached (if there is an hysteresis between the melting and the annealing curve) one can
access the kinetic constants koff(T) and kon(T) (in the hypothesis of a bi-molecular reaction
[85, 86]):

dθ

dt
= koffθ − konC(1− θ)(E − θ) (3.3)

where C is the concentration of the ssDNA , E an excess of one of the specie and dθ
dt

= dθ
dT

dT
dt
.

This equation 3.3 is true at every temperature, and given the fact that an hysteresis is present
between the cooling and the melting process it is possible to solve at every temperature the
system:

dθheating
dt

= koffθheating − Ckon(1− θheating)(E − θheating)
dθcooling
dt

= koffθcooling − Ckon(1− θcooling)(E − θcooling)

and obtain kon(T ) and koff (T ) . Then by plotting ln(koff ) = f(1/T ) and ln((E −
1/2)Ckon/2) = f(1/T ), the intersection gives the thermodynamic Tm and the linear regression
gives Eon and Eoff . And finally one can access to an equilibrium property: ∆G = Eon − Eoff
the Gibbs energy of the equilibrium.

In conclusion the UV technique allows the calculation of several thermodynamics parameters
at the equilibrium and out of equilibrium, given the hypothesis of a two state reaction. In the
following section we present the experimental results obtained in the study of soDNA structures.
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3.3 Small origami
The small origami DNA (soDNA) is made of two ssDNA 32b long (staples) and a 64b long
ssDNA (scaffold) (Fig 3.4 a). This structure is similar to DAO structures [87] and comparable
in size and shape to JX and PX structures which have already been studied experimentally [88],
and theoretically [89, 64]. Such structures being the building block of the DNA technology have
been the subject of different studies. The assembly of a structure similar to the Holliday junction
was studied using FRET technique [83], allowing to evaluate the thermodynamic of formation
of the structure. FRET technique was also used to study more in detail the thermodynamic
of attachment of preformed monomer structure composed of several strands into a dimer. It
allowed to evaluate the effect of the flexibility of the monomer structure on the dimer formation
[90].

To study our structure, three different sets of staples based on the same structure were
chosen to quantitatively evidence cooperative effects during the binding of the staples. In the
first two sets, the two staples (B1 and B2) have very different compositions: the sequence of B1
only contains A or T nucleotide whereas B2 only contains G or C nucleotide. Accordingly, their
melting temperatures are far apart, respectively 57 ◦C and 91 ◦C. This allows to differentiate
the two staples in the melting curve. The third set has two staples, B1m and B2m, designed
with chemical sequences different enough to avoid mispairing with the 64b template B0 and
with close melting temperatures (respectively 77 ◦C and 80 ◦C ) as their AT/GC ratio are
similar.

In this section, for all the experiments the concentration of each strand is 1µM. The buffer
used is the one of classical oDNA: a TAE buffer with magnesium ([Mg] = 12.5 mM). The
experiments have been realised in 200 µL UV cuvets and to prevent evaporation during the
annealing-melting experiments, a paraffin oil invisible to the UV spectra has been dropped on
the top of the solutions.

3.3.1 Experimental datas
3.3.1.1 Effect of the position:

The topology of the binding is illustrated in (Fig. 3.4): each staple contains two contiguous
parts, 16b long, that bind to the scaffold. In (Fig. 3.4 a), B1 is in the ‘outer’ position, B2
is in the ‘inner’ position. The difference between these two ways of binding can be further
stressed by considering what happens when only half of the staple is hybridized. In the ‘outer’
position, the unbound parts of the staple and the scaffold are located on the same side of the
bound moities (Fig. 3.4 b). In the ‘inner’ position, the unbound parts are on the opposite
sides (Fig. 3.4 c). Besides the existence of this entropic hindrance, the inner position requires
that double-helical domains stay in close contact, which could result in additional instability.
Motivated by these considerations, we have investigated two different cases:
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Figure 3.4: (a) Schematic representation of the connectivity of the small origami.(b) B1 staple
is in the ’outer’ position,(c) B2 staple in the ’inner’ position. (b) and (c) show that the binding
of staples in the outer (b) or inner (c) positions are very different.

Figure 3.5: Experimental data on the folding of B1(AT) in the absence of B2(GC) in the
different positions. A) dsDNA. B) outer position. C) inner position

• B2 is located in the inner part, B1 in the outer part.

• B2 is located in the outer part, B1 in the inner part.

In (Fig. 3.5) we report the derivative of the melting curves that show the behaviour of the
B1 strand for different configurations. Fig. 3.5 A corresponds to the melting curve of B1 with
its complementary B1: it shows a maximum peak at 57 ◦C . We analyse first the case where
B1 is outer. Without the staple B2 (Fig. 3.5 B), the structure produces a loop or bulge, as
described in [27] that shifts the free energy towards a lower value and decreases the melting
temperature to 48.5 ◦C . In the inner position the staple hardly folds with the B0 template.
The maximum peak is located at 41.5 ◦C , 15 K lower than the value of the dsDNA and with
a half width as large as 12 K.

Similar trends can be observed for the B2 staple. B2B2 (Fig. 3.6 A) has a maximum peak
at 91◦C while when B2 is in the inner position (Fig. 3.6 B) the peak is located at 83 ◦C . When
B2 is in the outer position (Fig. 3.6 C) the peak is located at 86.5◦C and is slightly narrower.

Therefore, the same differences between the inner and outer positions are observed whatever
the chemical sequence involved.
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Figure 3.6: Experimental data on B2(GC) without B1(AT) in the different positions A) dsDNA.
B) outer position. C) inner position

3.3.1.2 Effect of the cooperativity between strands:

Figure 3.7: Top: Absorbance curve. Bottom:
derivative of the absorbance curve showing two
events

When B1 and B2 are both present two sep-
arated events appear on the melting curve
(Fig. 3.7). The events are clearly sepa-
rated and this allows the identification of
the different staples. In the following we
report the events individually in order to
highlight the cooperative effects.

We first study the case where B2 is in
the inner position. The folding of B2 at
83 ◦C is not modified by the presence of
B1. By contrast, B1 folds at a temperature
higher (Fig. 3.8 C) than when it is alone
(Fig. 3.8 B), with a maximum peak at 51.5
◦C .

Therefore, the inner staple B2 helps the
pairing of the staple B1 located in the outer
part by suppressing part of the entropic penalty related to the bulge formed by the scaffold.
When B1 is in the inner part and when the B2 staple is added (Fig. 3.9 E ), the pairing of B1
is also stabilized with a maximum peak much higher located at 50 ◦C . These experimental
results support the evidence of a strong correlation between the two strands that appears when
B2 is added: the presence of B2 helps the folding of B1 whatever its location. Moreover, these
results also show that the location of the strand is of importance, the inner location being much
less favourable. The origin of this difference is not obvious. It may in part be the result of an
entropic penalty larger than the one a bulge induces, as it occurs when B1 is located in the
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outer domain, but it may also be the consequence of the energy cost of a local curvature the
inner strand imposes to the B0 template.

Figure 3.8: The derivative dθ/dT reported in the three cases corresponds to the folding of the
dotted staple. Experimental data on the folding of B1(AT) in the outer position. A) dsDNA.
B) B1 outer alone. C) B1 outer and B2 inner

Figure 3.9: The derivative dθ/dT reported in the three cases corresponds to the folding of the
dotted staple. Experimental data on the folding of B1(AT) in the inner position. A) dsDNA.
B) B1 inner alone. C) B1 inner and B2 outer

The experimental results obtained with the B1m-B2m ( Tm = 77 ◦C and Tm = 80 ◦C ) set of
staples are shown in (Fig. 3.10 and 3.11). As the Tm of the two staples are close, when the two
staples are present, only one global event is observable on the melting curve. Again, the same
trends as before are observed but with less pronounced effects. When compared with the results
obtained with the previous structure, the temperature shifts and the increase of the half width
are smaller with respect to the melting curves of the double strands B1mB1m and B2mB2m.
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A correlation effect is also noticeable, and is now observed for both strands B1m and B2m.
When the staple B1m is in the solution, the staple B2m, which folds at a higher temperature,
shows a narrower peak at a maximum 1.5 ◦C higher than when it is alone. Therefore partial
folding of the staple B1m helps the folding of the staple B2m. Similarly to what was observed
in the previous case, the correlation effect is even more effective when we consider the influence
of the B2m staple on the folding process of the B1m staple (Fig. 3.10 D) shifting the Tm from
67 ◦C to 72 ◦C. Thermodynamic values were extracted from the melting curves and are listed
in Appendix C

Figure 3.10: Experimental data on the folding of B1m with and without B2m. A) dsDNA C)
B1m outer alone. D) B1m outer B2m inner folding in a single event.

Figure 3.11: Experimental data on B2m with and without B1m. A) dsDNA B) B2m inner
alone. D) B1m outer B2m inner folding in a single event.
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Figure 3.12: A) B1 inner with adaptator . B) B1 inner with adaptator and scaffold with
adaptator. C) B1 inner.

Figure 3.13: A) B1 outer. B) B1 outer with adaptator.

3.3.1.3 Effect of adding an adaptor.

As explained in section 2.3.1.1 repulsive interactions take place between adjacent dsDNA in the
structure. We decided to modify crossover junctions by adding four non-complementary bases
(called adaptor) to increase the distance between the dsDNA parts. The effects on the melting
temperature are gathered in (Fig. 3.12 , 3.13). When inserted, the adaptor is drawn in black
in the middle of the staple.

The presence of the four bases (GGGG) added to the inner AT strand seems to stabilise the
complex (Fig. 3.12 A). The regular inner position (Fig. 3.12 C) is less stable by ≈ 5 °C. Adding
an adaptor to both strands (Fig. 3.12 B) seems to have little effect. In the outer position the
adaptor stabilises the complex by 3°C (Fig. 3.13 B). Adding an adaptor seems to stabilise the
structure in all cases. However it is possible that the free G bases of the adaptor interact with
the part of the scaffold that contains GC bases (Drawn in blue in all figures)).

The experimental data on soDNA lead to two results. First the position of the staple with
respect to the scaffold is important. Second, the strands exhibit a strong cooperative behaviour.
We decided to develop a model based on these experimental results, in order to see if they are
predictable , and also to explore other positions and parameters.



3.4. Thermodynamic model on a lattice for small origami 71

3.4 Thermodynamic model on a lattice for small origami

3.4.1 The model
The Poland-Scheraga (PS) model describes double stranded DNA as a sequence of either helical
structures or coiled loops [31]. The free energy ∆FNN = ∆HNN − T∆SNN to form a helical
structure of m stacked pairs of neighbouring base pairs is given by the nearest-neighbour model
[91]

∆HNN =
m∑
i=1

∆hNN,i

∆SNN =
m∑
i=1

∆sNN,i, (3.4)

where ∆hNN,i and ∆sNN,i are respectively enthalpy and entropy terms associated with one
of the 10 possible pairs of bases. To this sequence dependent terms, it is customary to add
initiation free energies ∆Gini for each of the two ends of the helical segment.

The PS model describes the free energy change involved in a loop formation using the
concepts from polymer physics. The corresponding term in the partition function for a loop of
length N is written as

Zloop(N) = σN−c exp
N∑
i=1

β(∆hNN,i − T∆sNN,i). (3.5)

The exponent c depends on the interaction of the loop with the rest of the chain, it is equal to
∼ 1.75 for non-interacting self-avoiding loops [32]. The prefactor σ is the so-called cooperativity
factor for bubble opening.

The DNA structures we wish to consider involve more than two complementary strands.
For instance, in the case of small origamis, three strands s1,s2 and s3 hybridize partially.
Bubbles can form between s1 and s2 as well as between s2 and s3, and the steric interactions
between these two loops need to be taken into account explicitly. Furthermore, thermodynamic
properties of structures such as helical dsDNA can be easily computed because recurrence
relations exist for sequences of increasing length. Such relations become more complex for
branched structures such as those considered here.

Recent theoretical works have adressed the process of formation of similarly branched struc-
tures such as Holliday junctions [92] and Yurke tweezers [93]. However, as demonstrated by
these studies, the numerical modelling of the dynamics and/or thermodynamics of such objects
remains challenging. Here, we introduce a coarse-grained model that is able to simulate cycles
of annealing-melting of non standard structures, but also the self-assembly of DNA duplexes.

In this model, each base is represented by an occupied site of a 3D triangular lattice. A
single strand is modelled as a self-avoiding walks (SAW) in this lattice. Restricting the possible
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locations to the sites of a triangular lattice, together with an appropriate free-energy model, has
been shown [94] to provide with accurate RNA secondary structure predictions, outperforming
other leading RNA pseudoknot prediction methods. It can be concluded that the restriction to
a grid is not incompatible with, at least, an approximate description of nucleic-acid statistical
properties.

The energy model is that of [32]. More specifically, four independent terms need to be
computed for each configuration:

• The sequence of stacked base pairs determines the ∆GNN contribution (eq. 3.4). Watson-
Crick pairs are only computed if two complementary sites are neighbours and belong to
different chains. Two consecutive Watson-Crick pairs are stacked if the bases belong to
two antiparallel chains (the generalization to three chains leads to unphysical globular
structures). Note also that stacking interactions between bases that belong to the same
loop are not considered.

• an interfacial free energy is associated with each interface between single and double
stranded segments. This term can be related to the cooperativity factor σ.

• the number of free ends of double stranded segments determines the ∆Gini contribution.

• to each kink in a double stranded segment it is associated a constant enthalpic term. This
term ensures a correct bending rigidity.

The link between the PS model and the present lattice model is made through the entropy
attributed to each base pair. This parameter was determined [32] by making equal the contri-
bution of a loop in the lattice model and in the PS model (which is given by eq. 3.5). This
equality will ensure that the thermodynamic description of both models is the same. One pos-
sible way to ensure this equality is to assimilate a loop to a SAW that starts and returns to the
origin. In the triangular 3D grid we consider, the number of such walks of length N has the form
exp (−1.8668 + 1.8774N) as N → ∞. Hence, the requirement that the partitions functions of
the lattice and the Poland-Scheraga models are equal implies that e−βTSPS = e−βTSLattµ, with
log µ = 2× 1.8774 = 3.7548, so that Slatt = SPS + log(µ)k (k is the Boltzman constant). How-
ever, this method is not accurate enough to take into account the contributions of short loops.
Instead, we will consider µ as a parameter of the model that can be adjusted in order to fit the
melting curves obtained for simple dsDNA with the methods of [95] (cf. Fig. 3.16 below). In
the following, the value log µ = 4.3 will be used.

To sample the different configurations, we consider a Monte-Carlo method with two types
of moves: pull moves [94] applied to a single strand and simultaneous pull moves applied to two
strands. A pull move proceeds as follows (Fig. 3.14): randomly, a site is moved to a nearest-
neighbour empty site. In doing so, it is possible that some neighbour sites of the chain become
disconnected. To fix this, recursively each of these disconnected sites is moved to the position
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Figure 3.14: Schematic representation of a pull movement. (a) before the pull. (b) after a pull
on a single strand. Notice that, in this case, the motion is planar only for the sake of simplicity.
(c) and (d) illustrate a simultaneous pull on two strands. (c) before the pull. (d) after the pull.

of the previous (along the chain) site, until all the sites in the chain become nearest-neighbours
once again. It can be shown that pull moves are both reversible and complete (any configuration
can be transformed to another configuration by a sequence of pull moves). They generalize flip
moves [94] and have a semi-local property: the average number of relocated elements is only a
small constant that depends on the length of the chain to be ‘pulled’. To the set of pull moves
we added the possibility to perform simultaneous pull moves on two single strands that are at
least partially hybridized. More precisely, if a pull move is done on a site i of the strand S,
and site i is hybridized with site i′ of strand S ′, a pull is tried also on site i′. This pull can be
either in the same direction as the pull on i (in which case a kink is introduced simultaneously
on strands S and S ′), or in the opposite direction, in which case a bubble forms.

From a numerical point of view, the Monte-Carlo sampling is enhanced by a replica exchange
algorithm: a fixed number NMC (typically NMC = 10) of MC simulations is run simultaneously,
with temperatures Ti, i = 1, ..NMC , separated by ∆T = Ti+1 − Ti = 2K. The probability to
exchange configurations between contiguous simulations is such that the Boltzman distribution
with corresponding temperature Ti is the asymptotic probability distribution for each simulation
[96].

In these simulations, we disregard concentration effects. More precisely, in the simulation
of a structure formed by ns ssDNA, only connected structures will be considered. Notice that
this restriction does not imply that any ssDNA is connected to any other ssDNA. Rather, for
each strand there is at least one WC pair with some other strand.

The usual way to characterize the formation of a DNA double helix is to compute the
number of stacked WC pairs. For instance, the measurement of UV absorption gives access to
this number, because UV absorption is lower for hybridized basis (hypochromic effect). Thus,
for each configuration the degree of pairing (d.o.p.) θ(T ) will be computed: it is the number
of stacked WC pairs (a WC pair is not stacked if it is flanked by two unpaired bases). This
definition of θ(T ) is different of the one introduced in the beginning of this chapter. Indeed in
the experimental analysis we supposed that all the bases fold and θ(T ) is normalised between
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0 and 1. In all the subsections of Sec 3.4, θ(T ) is not normalised and varies between 0 and n,
the maximum number of bases folded.

3.4.2 Results

Figure 3.15: Schematic representation of the DNA structures considered in this section. Up:
(left) Holliday junction (right) small origami. These two schemes show the helicity of an ideal
B-DNA structure. Helicity is not taken into account in the lattice model. Down: (left) Sequence
and connectivity of the small origami (see text) (right) Sequences and connectivity of the two
small origamis.

We have considered three sets of topologically different structures (cf. Fig. 3.15). Double
stranded (DS) chains consist of two antiparallel chains that are Watson-Crick complementary,
with exactly the same number of sites. Holliday junctions (HJ) are formed of four chains
of equal length that, in a first approximation, form a cross-shaped structure. Small origami
(soDNA) that corresponds to a modification of the usual HJ where two single stranded chains
are merged in a single chain that is necessarily bent.
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Figure 3.16: (a) θ(T ) versus temperature for the two short strands (AT and GC rich) that
compose the soDNA of type B (see text). The dashed lines are computed with the partition
function algorithm [95]. (b) Derivative of the d.o.p. |dθ(T )/dT | for the annealing and melting
curves. The slight hysteresis observed in θ(T ) explains the existence of two peaks for each
|dθ(T )/dT |. The position of the maximum determines the melting temperature: Tm(AT rich)
= 330K, Tm(GC rich) = 380K.

3.4.2.1 Double stranded DNA

Here we consider the simplest DNA structures: double stranded DNA. In Fig. 3.16 are repre-
sented the d.o.p. θ(T ) for the two short strands (respectively rich in AT and GC) that compose
the soDNA of type B (see below), each strand folding with its complementary strand. These
two sequences are 32 bp long and have very different melting temperatures. This is illustrated
in Fig. 3.16(b), where the absolute value of the derivative |dθ(T )/dT | is shown. The data of
Fig. 3.16 have been computed with 107 MC steps and still show some hysteresis (around 2K
difference between the heating and cooling cycles for a given value of θ(T )). As a comparison,
we also report the melting curves obtained with the partition fonction method [95]. Both results
agree reasonably in the transition regions and deviate somewhat outside. This difference could
be due to the way the loop entropy is computed in the partition function method [95], wherein
the asymptotic behaviour also describes the contribution of short loops.

3.4.2.2 Holliday junction

Holliday junctions [97] are mobile junctions between four strands of DNA. Here, somewhat
abusively, we also call Holliday junctions stable nonmigrating analogs of the Holliday recombi-
natorial intermediate. Analog structures have been studied experimentally [66]. In this work,
the authors performed calorimetric and optical measurements to characterize the melting tran-
sitions of the junction and of each of its arms. They reached the conclusion that the sum of
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Figure 3.17: (Left) Comparison of the computed melting curves obtained for HJ1 in presence of
its complementary strand (continuous lines) or in the presence of the other strands that form
the Holliday junction HJ (dashed line). Similar results are obtained for HJ2, HJ3 and HJ4 (data
not shown). The dotted line is obtained from the HJ simulation by filtering the structures to
keep only those with the highest d.o.p.;(right)d.o.p. for the HJ1 as a function of the MC step.
The starting point is the ideal HJ structure. After a cycle of melting and quenching, a second
state appears (around 1.4 109 MC step), showing a lower value of d.o.p. The red line indicates
the temperature associated with each MC step (vertical scale on the right y axis).

the transition enthalpies of each arm is very similar to the transition enthalpy of the junction.
This suggests that the formation of the junction does not significantly perturb the B-helical
conformation of the individual arms.

Our HJ is formed of four different branches, named HJ1, HJ2, HJ3 and HJ4, each 32b long,
with sequences generated randomly:

HJ1: CAGTGAGTCAGTCATTACTGACATAAGACAGT
HJ2: GTCAGTAACTGACTCAAATGACTGACTCACTG
HJ3: ACTGTCTTATGTCAGTCAGTATCTGAGTGCTG
HJ4: CAGCACTCAGATACTGTGAGTCAGTTACTGAC
Successive cycles of melting-annealing starting from the ideal cross-shaped form of this junc-

tion show that 80% of the native contacts are recovered in this simulation. Previous simulations
[92] also considered a similar structure, half of the size of the present one. Monte-Carlo simu-
lations starting from fully disorganized (eventually disconnected) structures succeeded to show
how the cross-shaped structure is formed, although with a rather low yield. The same authors
also used umbrella sampling in order to evaluate the free energy of formation. The critical
difference with the work in [92] seems to be the connectivity constraint that we used.
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Figure 3.18: Typical low temperature configurations of HJ.(a) and (b) correspond respectively
to the configurations of HJ noted α and β in Fig. 3.17(right).

In Fig. 3.17(left) is shown the average θ(T ) of component HJ1 compared to the same
quantity obtained for the separate strand in presence of its complementary (similar results are
obtained for HJ2, HJ3 and HJ4). Due to the limitations of our sampling procedure, hysteresis
is apparent in the simulation of the annealing of the HJ structure. The values of θ(T ) at low
temperatures show that 80% of the native contacts are recovered. It is interesting to note that
the simulation of the HJ actually yields the ideal HJ structure for a significant number of MC
steps. The fact that, on the average, only 80% of the native contacts are recovered, is related
to the existence of an alternative configuration where HJ1 does not hybridize with HJ3 nor HJ2
with HJ4.

This is apparent in Fig. 3.17(right), where the non averaged values of the d.o.p. are reported
as a function of the MC step. The data obtained for the low temperatures clearly display two
different clusters, noted α and β. Configurations illustrating each of these clusters are shown
in Fig. 3.18.

The comparison between different speeds of cooling shows that the probability to observe
these non ideal structures diminishes with the speed of cooling. The parameters we used here
(20 × 106 Monte-Carlo steps for each temperature, with ∆T = 2 K between two points of the
annealing-melting simulations) are the best combination we obtained, taking into account the
computing limitations. Thus, the cluster β should be considered as a spurious configuration only
related to the limitations of the algorithm we have used to generate the structures. Filtering
these spurious structures is possible by clustering the conformations and rejecting those that
belong to the group with the lowest value of the d.o.p. (dotted line in Fig. 3.17(left)). The
resulting melting-cooling curve is similar to the one of the DS (more than 90% of the natif
contacts are recovered), albeit shifted by almost 10K. Overall, the effect of the presence of the
other strands in the HJ structure is a destabilization.

These results can be compared with the experiments of [66], where the difference be-
tween the thermodynamic properties of each separate strand and the whole HJ structure
could be measured. In [66], the authors showed by calorimetric methods that ∆H(HJ) ∼
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Figure 3.19: (a) Schematic representation of the connectivity of the Holliday junction the dotted
line show the connection with the bent Holliday junction. (b) Schematic representation of the
connectivity of the bent Holliday junction. The template strand B1 is colored in green and
blue to stress the fact that different parts hybridize with different staples. (c) Intermediate
situation where B2 staple is in the ’outer’ position and only half of it is hybridized with B1.
(d) B3 staple in the ’inner’ position. (c) and (d) show that the binding of staples in the outer
(c) or inner (d) positions are very different.

0.9(∆H(HJ1) + ∆H(HJ1) + ∆H(HJ3) + ∆H(HJ4)), indicating also a slightly weaker stability
of the Holliday junction compared to the separate strands. Assuming a base-independent ∆H
for base opening, the experimental 0.9 factor is compatible with the 90% recovery of the native
contacts in the simulations. In our case, the existence of hysteresis makes difficult to push
further the analysis in order to get a more accurate estimate of ∆H(HJ).

3.4.2.3 modelling small origami

Using the same algorithm, let us now address the formation of the small origami that can be
seen as bent Holliday junctions (Fig. 3.19). When two of the strands of a HJ structure merge,
a small origami is obtained. This introduces some asymmetry on the system, as the two short
strands are not expected to behave in the same way. The strands used in this section are similar
to the ones presented in the experimental section, however, in the AT staple a G and a C base
were included in order to diminish the potential mispairing.

If the inner staple binds first, the hybridization of the whole inner is expected to take place
in two steps: when half of the staple attaches the scaffold, the other half is going to be kept
away from the region of the long strand where it is expected to bind (Fig 3.19 d). Besides,
this second step of pairing could be hindered by curvature effects or steric hindrances. If the
outer staple binds first, there is a bulge in the structure which implies an entropic penalty. In
both cases (inner or outer staple), the binding is expected to happen at a temperature lower
than the melting temperature of the isolated strand. Let us now consider the binding of the
second strand. In the outer position, the situation is not very different from the formation of a
double stranded linear DNA, because the bulge is constrained by the inner strand. In the inner
position, curvature effects are expected again.

Let us now be more specific and consider the following two small origamis B and C composed
respectively of three strands (B1, B2, B3) and (C1,C2,C3) with sequences:
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B1: TAATAGTAAAATATTTGGCGGACGGGGCCGGCCGGCGCGGCGGTCGGCATT-
TATATACTATAAT

B2: ATTATAGTATATAAATAAATATTTTACTATTA = C3

B3: GCCGGCCCCGTCCGCCGCCGACCGCCGCGCCG = C2

C1: CGGCGCGGCGGTCGGCATTTATATACTATAATTAATAGTAAAATATTTGGCG-
GACGGGGCCGGC

In the preceding terminology, B2 and C2 are outer, B3 and C3 are inner. Owing to the large
difference in melting temperature between the GC and AT-rich strands (respectively 380K and
330K), both B and C fit well in the above simple description.

In Fig. 3.20 we show the non averaged d.o.p. as a function of the MC step: for each MC step,
a point corresponding to the value of θ(T ) is drawn. The more populated structures appear
therefore as thicker lines. Starting from completely disorganized structures (very low values of θ,
high temperature), the soDNA recovers its initial structure upon annealing: both strands show
configurations where d.o.p. is close to their length. However, even for the lower temperature
values, the ideal structure where θ(T ) reaches its maximum is in equilibrium with less folded
structures. Thanks to the large difference in melting temperature between the two strands, the
location of the GC strand in the soDNA structure is found to be of primary importance and
determines the whole double stranded structure of the soDNA final state. When the GC-rich
strand is located at the inner position (soDNA B), two main types of configurations (noted
as α and β in Fig. 3.20) are present, with average values θαinner ∼ 27 and θβinner ∼ 20. The
corresponding values of the associated AT-rich strand are very similar: θαouter ∼ θβouter ∼ 30.
Representative configurations of α and β are illustrated in Fig. 3.21(a) and (b), respectively:
α configurations show a very uniform distribution of hybridization, β configurations show more
deficient patterns of hybridization in one of the arms of the GC-rich strands.

When the GC strand-rich strand is in the outer position (soDNA C), two main types of
configurations (γ and δ, illustrated in Fig. 3.21(c) and (d)) can also be distinguished, with
very similar values for the d.o.p. The main difference between the inner and outer positions of
GC-rich strands comes from the less frequent conformations, with values of the d.o.p. much
more spread out for the inner than for the outer positions (compare frames (b) and (d) of Fig.
3.20). This is reflected in the temperature variation of the average d.o.p. θ(T ). In the annealing
process, the outer position for the GC-rich strand appears to be more stable than the inner
position: the equilibrium value of θ(T ) is already reached for T = 350K for the outer, and
only at T ∼ 320K for the inner. Notice that the same conclusions can also be reached for the
AT-rich strand (see the variations of the thin blue lines in Fig. 3.22).

From these two simulations, it can be concluded that the inner position is a destabilizing
factor in the hybridization of DNA strands. This conclusion holds both in the presence or in the
absence of another strand. However, these simulations also reveal a cooperative effect. More
precisely, the hierarchical hybridization that takes place in the formation of B and C (GC-rich
attaches before AT-rich) is at the origin of a stabilizing effect. To stress this point, we have
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Figure 3.20: In all the plot the staple of interest is represented with dot (blue for AT and red for
GC). Non averaged d.o.p. as a function of the MC step for the two short strands that compose
B and C. (a) AT-rich strand of soDNA B. (b) GC-rich strand of soDNA B. (c) AT-rich strand
of soDNA C. (d) GC-rich strand of soDNA C. The temperature associated to each MC step is
represented by the red line in (a), the corresponding scale being given by the right coordinate
axis. In the soDNA schema (b) and d)) the AT staple has been represented, however when GC
folds the AT staple is not attached to the scaffold.
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Figure 3.21: Typical low temperature configurations of the soDNA.(a) and (b) correspond
respectively to the configurations of soDNA B noted α and β in Fig. 3.20. (c) and (d) correspond
respectively to the configurations of soDNA C noted γ and δ in Fig. 3.20. In all these figures,
the inner strand is in green and the outer strand is in blue, the template strand is in red. Notice
that these are 2D projections of structures in 3D. This is why the arms of (a) seem to be of
different length.



82 Chapter 3. Process of formation of DNA origamis:

Figure 3.22: (a) and (b): Average d.o.p. as a function of the temperature for the two short
strands that compose B and C. Thick (red) lines represent the GC-rich strand, thin (blue) lines
the AT-rich. The strands in the inner position (resp. outer position) are represented by dashed
(resp. continuous) lines. (a) B soDNA (b) C soDNA. The two schemes above the graphs show
a schematic representation of the position of each strand in the soDNA. The arrows in (a)
indicate how the temperature varies along the annealing-melting curves.

considered the formation of structures without the presence of the GC-rich strand, e.g. the B
and C structure with only the AT-rich strand in the inner or outer place: B1 and B2 or C1 and
C3.

Fig. 3.23(a) shows that the outer AT rich strand is only weakly stabilized by the presence
of the GC-rich strand in the inner position (average shift of ∼ 2K when the GC-rich strand
is present with no significant modification of the annealed values of the d.o.p.). The opposite
situation is illustrated in (Fig. 3.23(b)) where in the absence of the outer GC-rich strand, the
pairing is mostly incomplete with only half of the strand (in the average) attached. Therefore,
with cooperativity assimilated to an increase in θ(T ), the supression of the loop entropy (soDNA
of type B) has only a mild cooperative effect on the hybridization in the outer position (Fig.
3.23(a)), while the cooperativity becomes very pronounced when a staple has to bind in an
inner position with the outer part being frozen by another staple (Fig. 3.23(b)).

In order to check the generality of these conclusions, let us now consider a situation where
the melting temperatures of the two staples are similar which correspond to the B1m-B2m case
(The strands are similar in GC content but not identical to the experimental case). The soDNA
structure D is also formed by one long (D1) and two short (B1m and B2m) strands:

D1: CAGTGAGTCAGTCATTACTGACATAAGACAGTCAGCACTCAGATACTGTGAGTCAGT-
TACTGAC

B1m: GTCAGTAACTGACTCAAATGACTGACTCACTG
B2m: ACTGTCTTATGTCAGTCAGTATCTGAGTGCTG
Figure 3.24 compares, for the outer strand Fig. 3.24(a) and inner strand fig 3.24(b), the
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Figure 3.23: d.o.p. θ(T ) as a function of the temperature for the AT-rich strand of B, B2,
hybridized with B1 in the outer position (a) and with C1 in the inner position (b). The
continuous line refers to a simulation where both B1, B2 and B3 (a) (resp. C1, C2 and C3 (b))
are present. Dashed lines refer to simulations where only two strands are present: B1 and B2
(a), C1 and B2 (b).

Figure 3.24: Melting of the soDNA D structure: average d.o.p. θ(T ) as a function of the
temperature for the two short strands (a) outer, B1m (b) inner B2m. The continuous lines
refers to simulations where D1, B1m and B2m are present. The dashed line refers to simulations
where only two of them are present: (a) D1 and B1m (b) D1 and B2m.
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average d.o.p. obtained in the presence (or not) of the other strand. The outer strand B1m is
slightly destabilized by the presence of the inner strand B2m, the maximum d.o.p. decreases
by 2 units and the melting temperature is mostly unchanged. A similar effect can be observed
in Fig. 3.20(d), where the non averaged d.o.p. of the CG-rich strand decreases when the inner
strand hybridizes. On the other hand, the inner strand B2m takes benefit from the presence
of B1m and folds better (increase of almost 4 units in the d.o.p.), with no significant change
in the temperature behaviour. Thus, as in the study of soDNA B and C, we observe a more
pronounced cooperativity for staples in the inner position.

3.4.3 Small origami, comparison with experiment

The model showed clearly the importance of the position of the staple in the final structure.
The AT rich staple in the inner position is hardly folded compared to the one in the outer
position. These results are in good agreement with the experiment. The absolute variation
of d.o.p being very different in these two simulated experiments, we studied the experimental
variation of absorbance for AT in both positions (inner and outer), expecting a lower decrease
for the inner staple. However to the precision of our experiment the two variations are identical
and this variation has the same value than the one observed for the annealing experiment of
the staple with its complementary strand.

The cooperative effect is also well observed for the second staple folding in the inner position
(Fig. 3.23 b) and 3.24 right). This is also in good agreement with the experimental data.
However , for the folding in the outer position, the cooperative effect was not well described by
the model showing only very small differences with and without the inner staple already folded.
In the case of B1m B2m the effect even seems to be reversed, the presence of the outer staple
having a destabilising effect.

3.4.4 Conclusion on the coarse-grained model

To summarize, we have shown that our coarse-grained model is able to simulate melting-cooling
cycles for different types of DNA constructions. We have shown that different types of staples
behave differently according to their position in a soDNA. Inner staples are strongly destabilized
compared to the usual DS structure, similarly to the experimental data. Outer staples bind
much in the same way as in the dsDNA structure with a small loop entropy penalty when
no inner counterpart is preformed. Preformed soDNA, either prepared with outer or inner
staples, show good examples of cooperative effects. When topology constraints are relaxed to
recover the unbent Holliday junctions, these differences are erased. From these simulations we
conclude that the chemical composition of the sequences plays an important role not only in
the determination of the optimal temperature for the formation but also in the existence of
hierarchical folding.
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In general, the staple strategy, used in the formation of more complex structures such
as Rothemund origamis, leads to a destabilization (decrease of the Tm melting temperature)
compared to the analogous DS structure. It also creates competing, less folded structures which
tend to decrease the observed (average) degree of pairing. So far, we cannot exclude that these
are artifacts due to a poor sampling, as in the case of the simulated Holliday junctions.

Helicity plays an important role in the design of more complex structures. Taking into
account helicity in the context of a grid model is not easy. However, we do not expect that
more elaborate DNA models will change significantly the conclusions of the present study.
The main reason is that the lenght of the oligonucleotide sequences have been chosen so that
crossovers in the soDNA are possible with no major distorsion of the underlying double helix
structure. The situation would be very different if this length was not conmensurate with the
period of the double helix structure.

Experimentally, the annealing of soDNA does not show significant hysteresis and we expect
the same for the structures considered here. Therefore, in order to be able to compare our results
with experimental data, further progress is needed to minimize the hysteresis phenomenon
inherent to these simulations. Besides increasing the number of MC steps at each temperature,
it could be useful to modelize the sequence of bindings by an ensemble of coupled reactions.
Once all the kinetic constants have been computed, the steady state can be derived ([77]).
However, this approach assumes that each binding proceeds in a two-state manner with an
Arrhenius kinetics, an hypothesis that needs to be checked for each case. Finally, the application
of the parallel tempering to a more accurate coarse-grained model [93], where both helicity and
full flexibility of the chains are taken into account, needs also to be envisaged.

In the following section we will develop the results obtained with structures having a more
respectable size.
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3.5 Origami

3.5.1 Experimental data.

3.5.1.1 Melting curve of different origamis.

Melting curves of oDNA structures give a global information on the total number of bases
folded. The process of folding of individual staples can not be extracted. However as pointed
out in the introduction the melting curves of different origamis are different. We considered
four different oDNA (Fig. 3.25) with the same scaffold (M13mp18 virus) and about 200 staples.
O1 is the rectangle in the original Rothemund work [1], the staples are mostly 32b long, with
sequences divided in 8-16-8 patterns. O2 is another rectangular oDNA that includes a hole
[98] and presents the same 8-16-8 pattern. O3 has the same connectivity pattern as O1, but
some staples have been merged two by two in four areas (black area in 3.35c), so that the
typical staple pattern is 8-16-16-16-8. Finally, O4 is another rectangular oDNA where a 700b
long subset of the scaffold goes from one side to the other of the rectangle, forming a ssDNA
‘bridge’.

For each oDNA, a series of annealing-melting cycles was performed coupled to UV-
absorption measurements. The concentration in M13mp18 was set as close as possible to 1
nM for each experiment and in all the experiments an excess of 10 staples by M13mp18 strand
was used (unless specified otherwise). For all UV-experiments we did in parallel the annealing-
melting curves of the staple strands alone, of the M13mp18 alone and of the mix staples plus
M13mp18. This was done with the purpose of removing the signal due to the excess of staples
by subtracting the curve of the staple alone to the curve of the mix staples plus M13mp18.
The protocol to obtain the normalised degree of pairing θ(T ) is detailed in Appendix I. The
temperature ramp (0.4 ◦C min−1) is typical for this one-layer origamis. The annealing-melting
process is not symmetrical, the hysteresis between the two phases of a cycle is such that the
melting takes place at temperatures higher than the annealing.

Several thermodynamic parameters can be extracted from these curves in the very simple
hypothesis of a bi-molecular equilibrium (Sec. 3.2, [77]) between the virus and all the staples
(Tab. 3.1). The fits of ln(kon(1/T )) and ln(koff (1/T )) show that these quantities do not follow
a simple Arrhenius equation (Fig. 3.26) as the curves are not linear. The values obtained for
∆G correspond to the energy expected for the annealing of a 20 bases long dsDNA ( oDNA 01
and 02) and for the annealing of a 36 bases long strands (oDNA 04). The energy obtained is
an energy by strand as θ(T ) was normalised between 0 and 1. We were not able to understand
the differences between the values obtained for the different origamis and won’t comment them
much, as the poor fit of ln(kon) and ln(koff ) is an indication that this simple model is not
adapted to the description of the melting and annealing process of an oDNA.

However such a simple model can still help to understand the effect of the concentration on
the melting curve (Sec. 3.5.1.2).
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Figure 3.25: Derivative of the pairing degree versus temperature. The data corresponding to
annealing are in blue, melting in green.

Figure 3.26: Plot of ln(koff ) (green = experimental, cyan = fit) and ln((E−1/2)Ckon/2) (blue
= experimental, red=fit) and their fits for θ ∈ [0.1, 0.9] (With E the excess of staple and C the
M13mp18 concentration)
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Origami Eon Eoff ∆G Tm
O1 -21.07 31.03 -52.10 48.7
O2 -35.59 17.89 -53.47 50.7
O3 -15.12 44.28 -59.40 50.1
O4 -14.09 77.18 -91.26 52.1

Table 3.1: Thermodynamic value extracted from the non-equilibrium curves Eon, Eoff and ∆H
are in kcal/mol and Tm in °C. O1,O2,O3,O4 are the value obtained for αcooling ∈ [0.2; 0.9] and
αheating ∈ [0.2; 0.9].

Figure 3.27: Annealing (left) and melting (right) curves of the O1 origami for different concen-
trations in magnesium.

3.5.1.2 Effect of different experimental parameters on the melting-annealing
curves:

The reproducibility of the experiments is good when repeated with a given buffer. However we
noticed that the use of a new buffer had no effect of the annealing curve but the derivative of
the melting curve exhibited sometimes another secondary peak at high temperature and high
Mg concentration. This led us to study the effect of the concentration in magnesium in the
buffer. We compared three concentrations in magnesium: 6.25 mM (x0.5), 12.5mM(x1) and
18.7mM(x1.5) (Fig. 3.27).

The absorption curves for the different constituents (Virus, Staple, Origami) and for the
different salt concentration can be found in appendix H.1. We can see that the peak at high
temperature increases with the salt concentration for the heating experiment. We also noted
that for other oDNA the same peak appears. Furthermore, melting experiments on the virus
strand alone show a small transition at 65◦C for a magnesium concentration of 18.7 mM. For
these reasons it is possible that this transition is related to the virus strand alone.

To further comfort this idea, an experiment on an oDNA with an incomplete set of staples
was realised. We compared the melting curves of a complete O4 oDNA (Fig 3.28 a.A) to the
same oDNA where 37 staples were omitted (Fig 3.28 a.B), and to another where 47 staples were
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Figure 3.28: a) Comparison of the melting curve of O4 A) and the same oDNA with several
staples removed B) and C) (Mg > 1); b) Comparison of an origami in the regular buffer (salt
x1) and an origami with a salt buffer slightly superior to one.

omitted (Fig 3.28 a.C). It should be noticed that the 37 staples were not chosen randomly. All
of them have a melting temperature between 61 and 63 °C. The 47 staples are the 37 previous
staples plus the staples having a melting temperature between 66 and 68 °C. One can see the
presence of the peak at high temperature for all the oDNA, even if they are probably only
partially folded (because of the missing staples). Also, the comparison of this experiment with
one realised with a 12.5mM Mg buffer (Fig. 3.28 b) (salt x1)) indicates an effect similar to the
one observed for the origami O1.

0.5x 1x 1.5x
Tm Cooling 49.6 52.7 53.6
Tm Heating 54.2 56.6 58.6

Table 3.2: Melting temperatures as a function of the salt concentration

The results of the dependence of Tm with Mg concentration for O1 are gathered in (Tab.˜3.2)
The salt is important in the melting process as it screens the negative charges of the ssDNA and
allows the two ssDNA to get close-by and to fold. In the case of oDNA the presence of the salt
is even more important as discussed in section 2.3.1.1: the dsDNA that constitute the oDNA
are in interaction via repulsive charges. Once the oDNA formed, the screening effect of the
salt diminishes the repulsive interaction between dsDNA. This could explain the increase of the
melting temperature (both for melting and annealing) when increasing the salt concentration.

The dependency of the melting temperature with the heating and cooling rate has been
studied on the origami O4. (See Appendix H.3 for the curves). The annealing curve is one
degree higher when changing the rate form 0.4°/min to 0.2°/min and the melting curve is hardly
shifted. This means that the annealing curve is farther from the equilibrium than the melting
curve.

The excess of staples has been studied by comparing a 5 and 10-fold excess (Appendix H.2).
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Once again the annealing curve is more affected than the melting curve. The annealing curve is
stabilised by 1.5 degree when increasing the excess, whereas the melting curve is stabilised only
by 0.5°C. This can be understood in terms of a simple second-order kinetic reaction model.
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3.6 Thermodynamic model of the formation of a DNA
origami

The model developed in this section proposes a mechanism of formation for oDNA. This model
is based on the cooperativity observed on the small origamis. However, given the complexity of
an origami we need to use simplifying hypothesis to allow the calculation of the folding process
(Sec. 3.6.1) The melting curves of the experiment on the small origami allowed us to extract the
different possible cases of folding for a staple in the origami and help us to calibrate the model
(Sec. 3.6.2). The results of the model for the origamis are compared with the experimental
data in section 3.7. A correct agreement between the model and the data being achieved, we
will use the model to play with the design of origamis to increase the thermal stability. (Sec
3.7.2).

3.6.1 Ideas of the model

Figure 3.29: Notations

The small origamis show cooperative and topological effects that help to start a study on
folding process of oDNA that bear hundreds of staples. For this, we need to make a few
hypothesis in order to make the problem tractable. The difficulty is due to the huge number
of possible configurations that need to be handled to compute average properties such as the
number of open base pairs. Long linear structures of double stranded DNA can be computed
rigorously because recurrence relations can be established in such cases [75, 30]. DNA origamis
are highly connected structures that prevent the use of linear recurrences.

Let us enumerate the working hypothesis of the model. Each staple Si of length |Si| can
be divided in parts that hybridize to non-contiguous regions of the scaffold (Fig. 3.29). Let us
note Si = partSi,1 + partSi,2 + . . . such a division of the strand sequence (typically, each 32b
staple is divided in three parts, see Fig. 3.29 and Fig. 3.30, but other partitions are possible).
Two consecutive parts ( partSi,j , partSi,j+1 ) are connected by a crossover noted cSi,j
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Hypothesis 1: we will focus on configurations where each part Si,k is either completely
hybridized or completely free. Moreover, we also disregard misfolded configurations, that is,
staples that partially hybridize to the ‘wrong’ part of the scaffold. Notice that this assumption
is plausible for the one layer origamis we consider here. For more complex, multi-layered
structures, the staples are divided in smaller parts so that the probability to bind to the wrong
part of the scaffold is considerably increased.

We will call crossover the connection between two contiguous parts of any staple. A
crossover is not associated with a particular DNA base, it is only a convenient notation to
describe the connectivity of the origami. In the examples of Fig. 3.30, typical staples are 32
bases long and composed of three parts (8,16,8 bases long respectively) linked by two crossovers
cSi,1 and cSi,2. On the scaffold side, a crossover is associated with a loop, a subset of the scaffold
that is hybridized (or not) depending on the presence of other staples.

Hypothesis 2: configurations with non contiguous hybridized parts are not considered. This
hypothesis is verified when the central part of the staple is much longer than the other parts.
In the following, we will note Si(k, l) the configuration where partSi,k, partSi,k+1, . . ., partSi,l
are hybridized, the other parts being unpaired.

The model aims to compute the probability p(Si(k, l), T ) of having a particular folded state
of the staple Si at temperature T . We will assume that at very high temperature T = Th, all
the staples are unfolded: p(Si(k, l), Th) = 0 (in practice, Th = 90 ◦C ). The model is recursive:
p(Si(k, l), T + dT ) is computed based on the knowledge of p(Si(k, l), T ). The increment dT can
be both positive or negative: the algorithm starts from Th, the temperature decreases down
to a value Tl, then increases again. At any temperature T , the probability to observe a given
configuration Si(k, l) will depend upon the presence (or not) of neighbour staples. Therefore, for
each staple a set of neighbour staples {Nα(Si)} needs to be defined. How many staples one has
to consider in this set is a parameter of the model. In the following, the set of neighbour staples
will be limited to the staples that are in the same row of the origami scaffold, and separated
by less than 75b. With these notations, the probability to observe the staple Si in a given
configuration Si(k, l) and for a given neighbourhood Nα(Si) is modelized by an equilibrium
reaction: Si(k, l) +Nα(Si) 
 Nα(Si)Si(k, l).

This modelling therefore does not consider any real kinetic effect. However the value of the
step dT can play such a role (Sec 3.7.1).

Hypothesis 3: because the model only keeps track of the single probabilities p(Si(k, l), T ) and
not of the joint probabilities p(S1(k, l), S2(k′, l′), . . . T ), it is necessary to make an additional
approximation to determine p(Nα(Si), T ). Based on the data from the small origamis, we
assume that there is a strong correlation between the different staples. As the processes of
annealing and melting are monotonous, for two staples Si1 and Si2 we venture the hypothesis
that if p(Si1(k, l), T ) < p(Si2(k′, l′), T ), then the Si2 staple was present in the structure when
Si1 staple began to fold. In order to compute p(Nα(Si), T ), let us generalize this idea and order
the staples in Nα(Si) = {Si1 , Si2 , . . .} in such a way that p(Si1 , T ) ≤ p(Si2 , T ) ≤ . . . < p(S) = 1
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Figure 3.30: To evaluate the fraction of the staple Si folded at the temperature T + dT , one
considers the nearby staples of the staple i at T and calculates the probability of the different
neighbouring crossovers configurations (cSm,2, cSp,1,etc) around Si. The origami is then sub-
divided in different partially folded state(eg Nα(Si)) with a given probability (eg p(Nα(Si))..).
For each of these partial states the equilibrium constant for a partial folded configuration
(Nα(Si)Si(m,n)) of the staple within this restricted local state is calculated as explained in
the energy model. The law of mass action for each partial configuration folded gives a set of
coupled equations. Once solved they allow to determine the fraction of partial configuration
folded in this environment p(Nα(Si), T + dT ). Then we can calculate the total fraction of each
configuration folded p(Si(m,n), (T + dT )), as the sum of the fraction of those configurations in
the different local states, weighted by the probability of each state. This probability will allow
to calculate the probabilities of the neighbouring configurations of every staple at the next step.

where S stands for the scaffold. According to this high correlation hypothesis, we approximate
the joint probabilities in the following way:

p(Si1 , T ) = p(Si1 , Si2 , . . .)
p(Si2 , T )− p(Si1 , T ) = p(Si2 , Si3 , . . .), . . .

For instance, in the case where only two crossovers influence Si, with probability p(Si1) both
cSi1 and cSi2 are present, the probability of only having cSi2 is p(Si2)−p(Si1) and the probability
of only having the scaffold is 1 − p(Si2). We show (Appendix D ) that the set of equilibrium
reactions determines p(Si(k, l)) provided the equilibrium constants of these reactions are known.
This amounts to define an energy model which is detailed in the next section.
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3.6.2 Folding energy of a given configuration
The gain in Gibbs free energy for hybridizing Si(k, l), ∆G(Si(k, l), T ) = ∆H(Si(k, l), T ) −
T∆S(Si(k, l), T ) contains two contributions: ∆G = ∆GNN + ∆Gtop. The local contribution
∆GNN only depends on the sequence of Si(k, l). It quantifies the gain in free energy associated
with the local formation of double helices. We use the parameters of the nearest-neighbour
model [27] with a temperature correction given in [99] (see Appendix G).

∆Gtop gathers several contributions that depend on the connectivity of the origami (∆GNN

depends mostly on the sequence of the scaffold and, to a less extent, on the density of crossovers,
but not on the connectivity). With any crossover, we associate an entropic penalty. This
penalty reflects the difficulty for a staple to hybridize non-contiguous parts of the scaffold. In
a first approximation, the longer the region of the scaffold that connects the two parts to be
hybridized, the larger the penalty. Our previous results obtained with the small origami show
that this needs to be refined. Based on these data, we consider three situations characterized
by transient arrangements of staples that we call local intermediate states (LIS).

In the first one (LIS outer), the staple hybridizes to the scaffold, forming an internal asym-
metric loop [27] (Fig. 3.31a). The length of this loop corresponds to the number of unpaired
bases of the scaffold linked by the crossover. This is a generalization of the ‘outer’ position
found for the three strands origami. Before the crossover formation, when only part of the
staple is folded, the scaffold and the non hybridized part of the staple are on the same side of
the hybridized part of the staple (Fig. 3.4b). In this case, the staple is not involved in the path
that connects the two extremities of the crossover.

A particular case of LIS outer, which we call LIS crossover, is the situation where the length
of the loop is zero: the crossover forms locally a Holliday junction, the staple hybridizes in the
close vicinity of an already hybridized staple (Fig. 3.31b).

The third LIS, LIS inner, corresponds to the inner position in the small origami: the shortest
path that connects the two ends of the crossover involves the staple itself (Fig. 3.31c). Because
of this, before the crossover forms, the non hybridized parts of the strand and the scaffold are
located on opposite sides of the hybridized parts (Fig. 3.4c). Therefore, LIS inner implies a
larger penalty than LIS outer or LIS crossover. In the small origami, the shift in Tm was less
than 10 ◦C for LIS outer, between 5 ◦C and 7 ◦C for LIS crossover and up to 15 ◦C for LIS
inner.

The ∆Gtop contribution for the insertion of a staple in LIS outer can be written:

∆Gtop(outer) = −T∆Sbulge(nT − 0.8 < nbfolded >) (3.6)

(Fig. 3.31). The function ∆Sbulge(nT ) is that of ref. [27]. nT corresponds to the number of bases
along the scaffold and < nbfolded > is the average value of bases folded along the scaffold (this
average takes into account the probabilities of all the possible neighbouring configurations). For
example the value for a bulge of one base is ∆Gtop = 2.7 kcal/mol and for a bulge of 30 bases of



3.6. Thermodynamic model of the formation of a DNA origami 95

Figure 3.31: Computing the entropic penalty for the three different local intermediate states
(LIS). The staple to be inserted is represented by the dotted line, the scaffold by the continuous
line. (a) LIS outer (b) LIS crossover (c) LIS inner. Here, we assume that, because of the
curvature constraints imposed by this configuration, the staple remains partly unfolded. (d) A
typical situation where two types of LIS (LIS outer at the right side of the staple, LIS inner at
the left side) can be attributed to a given crossover.

Figure 3.32: (dotted line = experiment,continuous line = theoretical) Derivative dθ/dT for the
insertion of a staple in LIS outer. blue=B1,green=B1m,red=B2

∆Gtop = 5.9 kcal/mol. The comparison between this model and the experimental results from
the small origami structure is illustrated in Fig. 3.32

For the LIS crossover, we use the following expression:

∆Gtop(crossover) = ∆Hcross − T∆Scross (3.7)

with ∆Hcross = 25.3 kcal/mol and ∆Scross = 65.0 cal/mol/K. This constant contribution
has been derived so as to fit as well as possible the B1-B2 experimental data (left of Fig. 3.33)
and then applied to the B1m-B2m data (right part of Fig. 3.33). At the crossover, two bases



96 Chapter 3. Process of formation of DNA origamis:

Figure 3.33: (dotted line = experiment,continuous line = theoretical) Derivative dθ/dT for
the insertion of B1 in LIS crossover(cyan=B1 in position outer,magenta=B1 in position in-
ner,blue=theoretical identical for both experiements), in green simultaneous binding of B1m
and B2m.

that belong to Si face the bases constituting the crossover made by the other strand. The
initial enthalpic and entropic contribution of these two bases is subtracted from ∆GNN as they
are not nearest-neighbours anymore. One half of the contribution (nearest-neighbour model)
of the two new pairs of bases is added. Wherever the staple is located, in the inner or outer
position, the correlation effect is roughly the same showing nearly identical melting curves with
a difference of about 3 K. As a consequence, in our calculation, the same set of parameters
is used to describe the correlation effect, whatever the location of the strand, in the inner or
outer location. The two melting curves corresponding to AT folding in the inner position and
AT folding in the outer position are displayed in Fig. 3.33 (cyan and magenta curve). This
approximation is also motivated by the fact that in the oDNA structure the separation between
crossovers is 32 bases so that the effect of being in the inner position is less penalising than the
similar situation in the small origami where the distance is twice smaller.

For LIS inner, we use the following expression:

∆Gtop(inner) = ∆Hunbind − T∆Sunbind + ∆Gtop(outer) (3.8)

∆Hunbind (resp ∆Sunbind) quantifies the loss of enthalpy (resp gain in entropy) associated
with the partial unfolding of the ends of the staple involved in this type of LIS. The number
of bases that unfold is a parameter of the model. The data in (Fig. 3.34) correspond to the
unfolding of a total of 8 bases (two bases for each of the four extremities of the staple, see Fig.
3.31c). This is a generalisation of the inner position in the small origami, where a free loop of
length L1 + L2 can be present (Fig. 3.31c) adding a contribution ∆Gtop(outer).
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Figure 3.34: (doted line = experiment,continuous line = theoretical) Derivative dθ/dT for the
insertion of a staple in LIS inner. blue=B1,black=B2m,red=B2

Under some circumstances (Fig. 3.31d), two types of LIS can be attributed to a given
crossover. In such cases, the LIS with the smaller ∆Gtop is taken into account.

The modelling obtained with the contributions ∆GNN and ∆Gtop is quite satisfactory except
for a constant negative shift (∼ −2 K) of the melting temperatures. This shift indicates that
another stabilizing mechanism that is not present in small constructions such as the small
origamis has to be invoked. We first considered mechanisms such as correlations between
counter-ions and hydration forces that are present when DNA condensates [56]. Indeed adding
an energy per base −0.132kcal/mol/base (similar to the one needed for DNA condensation
10−1kBT/base to 10−2kBT/base [28]) correct the shift of 2 degres. However as we saw in
section 2.3.1.1, it seems at least that at short distance the interactions are repulsive. Another
hypothesis to explain this additional stability could be a smaller entropy of the dsDNA in the
origami structure, as only two dimensional fluctuations are possible.

The stabilising term added is proportional to the number of neighbouring bases nn that are
close to the staple Si, and to the length |Si(k, l)| of the partial configuration Si(k, l) considered.

∆Hn(Si(k, l)) = −0.132nn|Si(k, l)|/|Si|(kcal/mol) (3.9)

The salinity of the buffer is taken into account via the correcting terms in [100] in the case
where Mg is dominant (see Appendix G.2). Finally the number of bases folded is converted to
a theoretical absorbance [101] (Appendix F).
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Figure 3.35: Derivative of the pairing degree versus temperature for the oDNA O1,O2,O3 and
O4. The data corresponding to annealing are in red, melting in green, the model is in blue for
both processes.

3.7 Comparison with the annealing-melting data of four
origamis

The overall agreement (Fig. 3.35) between the melting-annealing curves observed experimen-
tally and computed with the model is satisfactory. The model captures the hysteresis between
the annealing and melting processes, as well as the relative strength of this hysteresis between
different origamis (O2 has only 4K shift between annealing-melting, whereas O4 has 10K shift).
The maximum value of the derivative, which can be linked to the overall enthalpy of the tran-
sition in a two-state model, is also reproduced. This feature is robust against small variations
of the parameters of the model.

3.7.1 Kinetic effect.
As presented before, the model does not take into account any kinetic of reaction. Indeed at
every temperature step we consider that each staple is at the equilibrium in a state defined by
the neighbouring crossovers. However, in this model two coupled parameters have an influence
on the hysteresis of the annealing-melting process. The first one is dT , the size of the step in
temperature between two successive updates. The second parameter is the number of times
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that the equations to compute the probability of each staple p(Si(j, k), T ) are iterated at a given
temperature. In fact at each step, the probability for a staple to be folded is computed according
to its neighbouring crossovers. This allows to compute the probability for each crossover. At
that point of the algorithm one could recompute at this temperature the new probability for
the staple to be folded given this new set of crossover probabilities. This is equivalent to set
dT = 0.

Figure 3.36: (Left) Comparison of different melting rate for O4;(Right) Comparison of the 0.4
and 0.01 rate with the 0.4 rate with five dT=0 steps between each temperature steps

Diminishing the temperature step leads to a convergence of the annealing-melting curves
to an equilibrium curve (Fig 3.36). The same phenomenon can be observed when including
between every step in temperature a given number of steps with dT = 0. The comparison
between the theory and the experiments was realised with dT = 0.4 ◦C .

3.7.2 Understanding DNA Origami design
In this section, we use the model to explore how the melting temperature of the rectangular
origamis depends on the specific connectivity. In many instances, this type of considerations are
relevant to improve the stability of the template against temperature when origamis are sought
as platforms controlling chemical reactions or other applications including grafting inorganic
species.

3.7.2.1 Circular permutation of the scaffold.

The scaffold used for the design of rectangular origamis is a circular phage. Thus, it is possible
to choose the beginning of the scaffold sequence anywhere so that 7248 different sets of staples
(with same length and position, but with a different composition) are possible. We compared
the melting curves given by those permutations on the O4 origami, permuting the sequence in
steps of 16 bases as this shifts the middle of one staple to the middle of the nearby staple. The
distribution of temperatures corresponding to the maximum of the derivative for the annealing
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Figure 3.37: (a) Distribution of melting temperatures (annealing and melting) as a function of
the order of the circular permutation of the scaffold strand. (b) two different melting curves
corresponding to two permutations with the lowest and highest annealing temperatures.

and melting curves (Fig. 3.37a) shows an amplitude of variation of about 4 ◦C . Also, corre-
lations exist between consecutive permutations. Depending on the permutation, the melting
curves can be very different in shape (Fig. 3.37b).

3.7.2.2 Decreasing the number of crossovers

In our model, a penalty is associated to each crossover. Reducing the number of crossovers
should in principle increase the stability in the annealing process. We use the most regular
design O1 to investigate the effect of the reduction of the number of crossovers. In the initial
origami there is a length of 32 bases between two crossovers, which corresponds to three periods
in the double helix. Increasing the distance between crossovers leads to consider 54 bases (5
double-helix periods). We considered two possibilities, illustrated in Fig. 3.38: staples 27b long,
split in 13-14 (O5 origami), and staples 54b long, split in 13-27-14 (O6 origami). Indeed, there
is a trade-off between the gain in enthalpy when increasing the length of the staple, and the
additional penalty of having two crossovers/ staple instead of only one. Our model shows that
the net gain in stability, compared to the initial 8-16-8 staple strategy, is almost 20 ◦C (Fig.
3.38 O6). Again, the comparison with the experiments is excellent. Notice that decreasing the
number of crossovers could have an impact on the flexibility of the origami.

Experimentally the hysteresis between the annealing and melting curve of O6 is small ($≈
2$˜◦C ). This means that the system is closer to the equilibrium compared to the other oDNA.
This could be explained by a smaller number of staples for the O6 oDNA: it only has 144
staples compared to the 210 staples of the other oDNA. Having less staples leads to a smaller
number of possible configurations and probably to less hysteresis. Furthermore, the length of
the smaller sub-part of the staples is 13 in the oDNA O6 compared to 8 in the other oDNA.
This should lead to less miss-paring in the annealing process and a faster equilibrium.

Theoretically we predict a melting curve shifted from 6 degrees compared to experimental
one: the maximum of the predicted melting curve is at 73°C whereas the experimental maximum
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Figure 3.38: Annealing curves of the O1 and O6 origamis. The two origamis correspond to the
same scaffold pattern, but different staple pattern (solid line = experimental data, dashed line
= theoretical curves)

is at 67°C. This lower stability when melting could come from a higher flexibility of the structure
compared to the other oDNA, and could require a different value for some of the parameters.
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3.8 Conclusion and perspectives.
Simplifying the complex origami to its smallest component : the small origami , helped us to
to understand the cooperative process at stake in the folding and the importance of the staple
position with respect to the scaffold.

Numerically most of the properties of folding of the small origami were reproduced with
a first coarse-grained model on a grid. However the complexity of real sized origami was not
reachable in a the reasonable amount of computational time.

This is why a new coarse grain at the level of the strands was introduced. This algo-
rithm provides a reasonable account of the observed melting and annealing behaviour of DNA
origamis. The model reproduces hysteresis and melting temperatures, as well as the width of
the melting curve. It emphasizes the role of cooperativity in the folding process by introduc-
ing correlations between the probability of presence of neighbour staples. Finally, it allows to
improve the thermal stability by quantifying the effect of different construction factors such as
staple length and density of crossovers. Extensions to 3D [5, 102] and structures other than
origami [103] are envisioned, as well as tests at the single molecule level (FRET). AFM mea-
surement of Origami as function of the temperature [104] could be envisaged to compare the
observed structure with the model. Preliminary results of AFM imaging gave an agreement
on several points but showed that the model still needs to be improved (Appendix E). and a
collaboration Jie Song in Mingdong Dong teams has partially confirmed the result of the model
[105]. Neutron scattering experiments could also be envisioned .
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4.1 Goal
The general context of this chapter is the detection of low concentrations of molecules such as
DNA, RNA or, more generally, biomolecules involved in any disease. We would like to develop a
methodology to map the distribution of a molecular agent diluted in a nanoscale structured or a
randomly distributed medium without altering the medium (i.e. introducing labels or external
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agents which modify the structure of the medium) and to capture in a nonintrusive manner the
interaction of this agent with a target molecule. More precisely, for the analysis of enzymatic
DNA repair activities, we would like to develop miniaturized DNA- based biosensors that would
provide new powerful tools to further substantiate the role of excision repair capacity in the
development of cancer and human diseases, and to develop screening platforms to search for new
DNA repair activity modulators. The difficulty in the direct spectroscopical detection of a single
molecule is related to the discrimination of its own signal to the surrounding response. In this
respect, the introduction of fluorescent labels was an important achievement since it allowed the
in vivo observation of the intimate structure of cells (cytoskeleton fiber, nuclei compartments
. . . ). However, this method can be considered as non perturbative if the amount of label
remains negligible with respect to the molecule to be recognized. When its concentration drops
down to a few femto-moles the ratio of (number of label)/(number of molecules to be probed)
tends to one. In that case the detection is perturbative, and the response of the molecule can
be changed by the presence of the labelling agent.

The label-free methods, such as Raman spectroscopy, rely on the fact that some molecules
can be detected due to their optical signatures, such as the Raman spectrum. Both approaches
(label or label-free) present advantages and difficulties. In this chapter, we want to explore new
ways to circumvent specific problems related to Surface Enhanced Raman Spectroscopy (SERS)
to conceive devices that overcome the lock of a lack of methods for producing of reproducible
SERS substrates which have a reliable enhancement factor. Roughly speaking, SERS detection
requires two ingredients: (i) the creation in a confined region of a high electric field and (ii) the
closeness of the target molecule to this hot spot. In the standard use of SERS, both (i) and (ii)
take place randomly. The basic approach we want to use is based on origami DNA to locate
the hot spot and the target molecule with a few nanometers spatial resolution.

4.2 State of the art in using DNA to create SERS struc-
ture

Understanding the interactions of DNA, RNA and proteins is of enormous complexity and
requires analytical tools for screening and sequencing DNA and RNA. These tools usually
rely on the molecular recognition of two strands of oligonucleotides which are complementary
to each other: the key issue is to have a probe that allows molecular recognition and that
converts this response to a kind of output that can be amplified and analysed. In recent years,
new technologies have appeared which allow massively parallel analysis on a single device.
In the case of so-called DNA array, large numbers of DNA molecules or oligonucleotides are
immobilised onto various spots. The array is treated with a sample solution containing single-
stranded DNA fragments having a specific label: if the sample DNA hybridizes completely or
partially to the immobilised DNA fragment, it stays on the array whereas if not, it stays in
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solution and it is washed away in the next reaction step. Depending on the nature of the label,
various strategies can be designed: if the label is fluorescent, the array may be scanned and
the spots interrogated by a laser fluorescence confocal microscope. It was also suggested to
monitor hybridisation through fluorescence resonance energy transfer (FRET) ([106]). When
two complementary DNA oligonucleotides, labelled with a different fluorescence dye at the 5’-or
3’-end, hybridize, the donor and the acceptor fluorophores become very close to each other (less
than 8 nm.) so that FRET takes place: there is an enhancement of the acceptor fluorescence
and a quenching of the donor fluorescence.

Although all these approaches are sensitive and powerful, they all need the attachment of
a specific fluorescence dye to the probed molecule. The approach we propose relies on the
use of vibrational spectroscopy (Raman spectroscopy), which is very selective and requires no
specific label. Richard C. Lord and co-workers at MIT in the late 1960s [107] first demonstrated
that Raman spectroscopy is an effective experimental probe of nucleic acid constituents. Then,
Raman methods were implemented in many laboratories to investigate native, model nucleic
acid structures and their biological complexes [108]. A vibrational Raman spectrum is obtained
by excitation of a sample in a transparent region of its absorption spectrum. All of the Raman
allowed vibrational modes of the sample appear, albeit with variable intensity. Each base (A, C,

Figure 4.1: Raman spectra of DNA and RNA bases, ex=785 nm, X 100, P=45 mW, acquisition
time 60s, from De Gelder et al [109]) a) adenine; b) cytosine; c) guanine; d) thymine; e) uracyle

G, T, U) has a specific Raman spectra, as presented Fig. 4.1, exhibiting specific “marker bands”.
However, Raman signals are naturally weak, and there are two basic approaches to overcome
this weakness: one is based on the use of an appropriate incoming exciting laser wavelength,
near or within the energy of an electronic transition of the molecule (260 nm for DNA or
RNA), causing an enhancement of several orders of magnitude (106) of the Raman intensity
(this is Resonant Raman Scattering RRS). The other is based on the adsorption of the probed
molecules on a rough metal surface (typically silver, gold, copper. . . ), with adapted roughness
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in the nanometer size range (e.g. colloids): the resultant Raman intensity of the adsorbed
molecules, obtained under proper illumination, may exceed by several orders of magnitude
the corresponding bulk Raman spectrum. This effect is known as Surface Enhanced Raman
Scattering (SERS) ([110, 111]).

Our challenge is to detect this specific Raman marker band for each base, at low concen-
tration, using SERS spectroscopy, in order to be able to quantify the amount (percentage) of
each base present in single strand, and to reveal the base not involved in a canonical interaction
during the process of hybridisation. Our objective is to detect directly the marker bands of
each base. In the literature, the SERS detection of the process of hybridisation is always done
using a probe [112] . In some cases, the SERS effect becomes stronger because the frequency
of the excitation light is in resonance with an absorption band of the probe (Surface Enhanced
Resonance Raman Scattering: SERRS) ([113, 114]).This probe has a high absorption in the
excitation wavelength providing the resonance Raman effect. The sensitivity with SERRS
methods is high but the characterisation of DNA or RNA is poor. The common situation in
SERS experiments is that single molecular responses are typically obtained by chance with
an emitter aggregated in the spacings of silver or gold nanoparticles ( [115, 116]). There are
only two published demonstrations in 2009 and 2010 of single molecule SERS by design in gold
nanostructures ([117, 118]). However, these examples do not work as label-free sensors since
the target molecules are built directly in the nanostructure. The measured SERS enhancement
is of the order of 1010 which is what is expected in a 1 nm spacing between gold particles of 80
nm of diameter excited at plasmon resonance. There is, in practice, no reported demonstration
of single- molecule SERS measurements following the specific binding of a target molecule on a
recognition site as it would potentially be the case using gold functionalized DNA origamis. In
fact, as shown in recent careful experiments ([119]), eventhough the number of Raman active
molecules per metallic nanoparticle in a typical SERS experiment can be relatively high (103 –
104), the number of molecules at the origin of the observed signal is believed to be much lower
(probably of the order of one).

Synthetic strategies to produce gold nanostructures around with DNA ligands have been
developed over the last decade after the pioneering works of C. A. Mirkin and coworkers ([120])
and A. P. Alivisatos and coworkers ([121]). In particular, it is possible to obtain well-defined NP
grouping geometries by controlling precisely the number of DNA single strands grafted on each
gold particle through electrophoretic purification ([122, 123]). This allows combining gold par-
ticles with other nano-objects (such as quantum dots, [124]) on the same template or producing
symmetric 1D ([125]) or 2D ([126]) NP lattices. However there are three major difficulties when
producing DNA templated NP groupings for SERS applications : (i) obtaining short particle
spacings to enable large field enhancements (ii) using a rigid DNA scaffold to control precisely
the grouping geometry (iii) introducing specific binding sites on electromagnetic hot- spots.
S. Bidault and coll. recently demonstrated that reproducible ≈ 1 nm NP spacings could be
obtained in groupings of 5, 8 or 18 nm diameter particles using two DNA double strands (see
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Figure 4.2: From S. Bidault unpublished work. TEM images of gold NP groupings (a) 5 / 8 /
18 nm groupings assembled on two independent 50 base and 100 base long DNA double strands
in a “head to tail” geometry. (b) 30 / 40 nm groupings linked with 30 base or 50 base long
DNA strands in “head to head” (i / ii) or “head to tail” (iii) geometries (scale bar is 50 nm).

Fig. 4.2 a) ([127]). Using several particles of different sizes allows optimizing field enhancement
effects at one specific position of the structure (at the surface of the smallest NP) ([128]). This
geometry still presents two drawbacks : it is not possible to tune the spacing lengths and the
three particles cannot be properly aligned to optimize field enhancements ([128]).

In order to tune NP spacings, Bidault recently managed to graft a controlled number of
DNA single strands as short as 7 nm on particles as large as 40 nm in diameter [129]. After
hybridisation of these building blocks, it is possible to obtain the symmetric or asymmetric NP
dimers shown on Fig. 4.2 b with spacings ranging from ∼ 2 nm to ∼ 15 nm (unpublished result).
DNA origamis are good candidates to overcome the last two issues : controlling precisely the
nanostructure geometry and introducing specific binding sites. The experimental conditions for
the observation of single molecule SERS spectra have been carefully studied in several recent
publications ([130, 119]). From these and other studies, it becomes clear that the existence of a
narrow gap of the order of 1nm between metallic NPs is a necessary condition for the observation
of single molecule SERS, at least for Raman dyes such as Rhodamine G that exhibit strong
Raman cross-section. However, in these studies, the metallic NPs are uncoated. In the present
project, we need to stabilize the NPs with a coating of approximate width 1nm. This implies
that the minimum gap achievable in our approach is around 2nm. It has been shown ([131]),
using numerical simulations based on multipolar expansions, that single molecule SERS is still
possible provided the radius of the NPs is larger than 10nm. Moreover, the Raman effect can
be significantly improved by forming branched arrangements of metallic NPs.

Several works involving oDNA and metallic NP to metallize a whole oDNA are already
reported. The principle is to use NP as seeds and then to use metallizing techniques to cover
the whole oDNA with different metals. The objective is to incorporate oDNA to electronic
circuits. In these works NP of different composition and of small size are first attached to the
oDNA, then the metallisation of all the structure by different metals is achieved by using the
NP as seeds for growing the metal. Gold NP were used to metallize oDNA with gold [132] [133],
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or to metallise it with silver [134]. Other works involved silver seed for the silver metallization
[135] and gold metallization [136]. Finally metallisation of oDNA with Pb was also achieved
[137]

In a work closer to our objectives, oDNA were used to structure NP. In [138] Ding et al
observed a shift of the plasmon resonance with NP of different size (5,10 15 nm of diameter) in
a specific design on an oDNA. Helical metallic structures were also achieved with two different
approaches in Kuzyk et al [139] and Shen et al[140] works. Both observed through circular
dichroism measurements a spectra having the characteristic of the metallic helical structure
formed. In Kuzyk et al [139] metallisation of the structure also increased the observed effect.
These three works proves that oDNA are good templates to achieve complex NP structures.
Plasmonic structures of higher efficiency can be achieved by using particles of different sizes
and shape. A bestiary of all the NP available as well different method to attach them in
ordered DNA array can be found in the review by Tan et al[141]. Asymmetric structures are
also reachable through the use of asymmetric nanoclusters, leading to complex Janus structures
[142].

Once a NP structure has been created it is possible to predict the enhancement in the signal
that it will create. We will now introduce more in detail the Raman phenomenon as well as the
SERS principle to evaluate the gain in signal obtained with a given structure.
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4.3 Introduction to Raman phenomenon and SERS tech-
nique.

4.3.1 The Raman phenomenon:
The Raman phenomenon can be explained by classical electromagnetic theory. In the following
discussion, all the quantities are simplified and considered as scalar quantities. Consider an
emitted electromagnetic wave E = E0cos(ω0t) on a diatomic molecule q = q0cos(ωvt) with
q0 the equilibrium distance between the two atoms. The electrical dipole of the molecule can
have two contributions: a permanent dipole (Eq. 4.1) and a dipole induced by the incident
electromagnetic wave (Eq. 4.2):

µ = µ0 +
(
∂µ

∂q

)
0
q (4.1)

p = αE =
(
α0 +

(
∂α

∂q

)
0
q

)
E (4.2)

The infrared spectrum of the molecule is related to the permanent dipole whereas Raman
phenomenon is related to the induced dipole. We will only consider the induced dipole and
develop Eq. 4.2:

p = αE = α0E0cos(ω0t) + q0E0

(
∂α

∂q

)
0
cost(ω0t)cos(ωvt) (4.3)

and by using a classical trigonometric relation

p = αE = α0E0cos(ω0t) + 1
2q0E0

(
∂α

∂q

)
0

(cos [(ω0 − ωvt)t] + cos [(ω0 + ωvt)t]) (4.4)

The three terms are respectively at the origin of the elastic scattering, the Raman Stokes
scattering and the Raman Anti-Stokes scattering. Classical Raman experiments consist in a
laser of excitation with a fixed wavelength, a sample and a detector for the emitted photon.

Typical spectra represent the number of photons emitted as a function of their frequency.
The frequency reported is the shift in frequency with respect to the frequency of the laser
source. The usual recorded frequencies are detailed in Fig. 4.3. As observed in Fig. 4.1 each
base has a unique spectra composed of several maxima which make the identification of every
component possible in a global spectra. However typical Raman signals are very weak leading
to a need of amplification for the detection of small quantity of molecules.

4.3.2 The SERS phenomenon:
The Surface Enhanced Raman Spectroscopy (SERS) is based on the same physical effect that
Raman spectroscopy. The higher intensity of the signal is explained by the fact that the molecule
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Figure 4.3: from [143]: The visible, near, middle and far infrared region of the spectrum drawn
in a scale linear in wavenumbers. The infrared (IR) and far-infrared (FIR) spectrum is recorded
by absorption of light from a continuous spectrum in the range of λ = 2.5 . . . 100µm ≡ ν̃ =
4000 . . . 100cm−1 and λ = 100 . . . 1000 ≡ ν̃ = 100 . . . 10cm−1 . Raman spectra can be excited
by monochromatic radiation, emitted by different lasers in the visible (VIS) or near-infrared
range (NIR). Molecules emit Raman lines with a frequency difference ∆ν̃ to that of the exciting
frequency ν̃0 between 0 und + 4000 or - 4000 cm−1. Usually only the Raman spectrum which
is shifted to smaller wavenumbers, the ’Stokes’ Raman spectrum, is recorded. Its range is
indicated by bars for different exciting lines: Ar+ laser at 488 and 515 nm, HeNe laser at 623
nm, GaAs laser at 780 nm, and Nd:YAG laser at 1064 nm.

of interest is no more excited directly by the electromagnetic field. Instead a metallic structure
is excited and will create locally a higher electric field that will be the incoming electromagnetic
wave for the molecule of interest [144]. The initial electromagnetic wave has to be close to the
plasmon excitation frequency of the metallic structure for the effect to be maximal.

For simple circular metallic particle the polarizability [110] of a bead of radius R is given
by:

α =
R3(εbω2 − ω2

p) + iωγεb

((εb + 3)ω2 − ω2
p) + iωγ(εb + 3) (4.5)

with εb the contribution of interband transitions to the dielectric function, ωp the metal
plasmon resonance and γ the electronic scattering rate. γ is large for poorly conductive metal
reducing the amplitude of the resonance. Also, considerations on εb allow the classification
of silver > gold > cupper for SERS experiments. In SERS experiment, the cross-section for
such NP is given by Gosh et al [145]. It is proportional to the cube of the radius and the
resonance frequency will depend on the dielectric constant of the medium surrounding it. The
intensity of the resonance being driven by the same consideration than for the polarisation. As
the phenomenon is dependent of the radius to the power of three one would wonder why not



4.3. Introduction to Raman phenomenon and SERS technique. 111

to increase the size of the NP indefinitely. The reason is that for this phenomenon to occur the
size of the particle has to be inferior to the initial wavelength. As a consequence the maximum
size for the particle is around 200nm. Though important enhancement can be achieved by a
single particle, the enhancement achieved with two close-by particles can be of the order of
1011 for the Raman signal of a molecule in the middle of the two NP. Coupling two beads also
shifts the plasmon resonance of the coupled system. This shift decreases exponentially with the
separation to diameter ratio [141].

Detailled calculation of the enhancement factor for different size of particles and different
spacings can be found in Xu et al work [146]. The total photon flux in the SERS experiment
being related to this enhancement factor by

Φ = 2π
ωI
σRAMII

N∑
i

MEM
i MCh

i (4.6)

N being the total number of particles, σRAM the cross-section of the molecule, MEM
i and

MCh
i respectively the electromagnetic and chemical enhancement. By using boundary charge

method [141] the maximal theoretical enhancement is calculated for gold NP of radius 10 nm
( MEM = 106 ).For a radius of 50 nm the enhancement achieved is 1011 for a spacing of 1 nm
and for a wavelength of ≈ 600 nm. The origin of the chemical enhancement is not clear and
is specific of the metal-molecule complex. This factor is added because electromagnetic effect
alone can not explain enhancement of the order of 1014 reported in the literature.

Once the different parameters that play a role in the enhancement are known it is possible
to understand and create adequate structures to detect DNA. The following section reports the
experimental progress made in this direction.
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4.4 Experimental results:
On the works coupling NP and oDNA [139, 138], the classical approch to attach NP in a
controlled manner is to select the different places where to attach the NP on the oDNA and
to extend the oDNA staple at this point with a DNA sequence (Seq1) at least 15 bases long.
Several close staples can be modified to have more than one point of attachment. Then thiol
modified strands complementary to the sequence Seq1 are attached to the NP. Usually the NP
are covered by the thiol modified strands. Then the oDNA and the NP with the strands are
mixed together.

In our case the target of interest is ssDNA. As a consequence it is not possible to have
several ssDNA strands attached to the NP, as the signal of these strands would interfere with
the detection of the strand of interest. In consequence we applied a protocol established by
Sebastian Bidault to obtain NP with only a single ssDNA attached to it. The ssDNA is attached
to a trithiol group (Fig .4.4) at its 5’ extremity. The advantage to use a trithiol compared to a
thiol is a higher strength of interaction.

Figure 4.4: 5’ extremity

The protocol to obtain NP with only a single ssDNA attached at the surface is detailed in
the following section.

4.4.1 Protocol for coupling NP with ssDNA
From available commercial solution Au NP of 10 nm radius are obtained at a concentration of
0.01 nM. We need to concentrate the solution first in order to be able to use it with oDNA
whose concentration is ≈ 1 nM. The solution (50mL) is centrifugated at 7500rpm during 30
minute (2 or 3 times) leading to higher concentrations in the bottom of the solution. The more
concentrated part is preempted and the solution is once more concentrated by centrifugating
in smaller tubes. Once the volume has been reduced to a hundred of µL a solution of BSPP
(5mg BSPP for 20 mL mQ) is added ≈ 100 µL and the solution is concentrated once again.
This operation has to be repeated 2 times to remove the initial buffer. The BSPP solution is
used in order to stabilise the NP. Indeed at low concentration the particles are stable but when
increasing the concentration there is a high risk of aggregation. These steps of concentration
allow to reach a NP concentration of about ≈ 100 nM.
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The trithiolated strand whose sequence is complementary to the free part of the staple on
the oDNA is then hybridised on 10 bases with a 50 bases long DNA strand. The purpose of
this strand is to allow the separation of the NP with one strand from the NP with two or more
strands when running a gel. For NP of higher radius, more than one 50 bases long strands have
to be added.

Then the NP are mixed with the strands during one night. For size of NP superior to 10
nm the NP have to be shacked in order to prevent the sedimentation. Thirty minutes before
running the gel the NP are mixed with a PEG solution (M=356g/mol) that will protect the
NP from aggregation in the oDNA buffer. Then a 2% agarose gel preparated with a 0.5 TBE
buffer is run to separate NP with no strands to NP with one and two strands. (Fig. 4.5)

Figure 4.5: Agarose gel after separation. Several bands can be observed. The right track
contains NP alone. All the other tracks contain NP with zero, one, two and more strands

Finally a slide of gel is removed in front of the NP with one strand, replaced by the buffer,
and the current is turned on. The NP continue to migrate and go in the buffer. The buffer
with the NP is then removed and the operation is repeated until no NP are left in the gel. The
solution of NP obtained is then concentrated by centrifugating. In our case when binding to
the oDNA a small annealing protocol was carried out to remove the 50 bases and to improve
the pairing with the oDNA.

The next step of the experiment is to build the SERS structures by attaching the NP to the
oDNA.
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4.4.2 Attachment of the NP to the origami.
As already explained, the classical method to attach any “object” on a oDNA is to extend one
staple with a small sequence, and then to mix the oDNA with the object of interest. Since
this object is attached to the complementary sequence, a reaction of hybridisation takes place.
The object is positioned with a high precision but can still fluctuate in solution because of the
flexibility of single dsDNA.

First we studied the attachment of a single NP to an oDNA where only on site of attachment
is possible. We compared different values of the ratio origami/Au NP to evaluate the proportion
of well formed structures by AFM. These experiments are gathered in Tab 4.1. A 10 fold excess
gave a yield of 60 percent.

Name Yield (%) CoDNA Excess Au Annealing procedure
PTA1G1 8 0.5 nM 1 20 min 40°C; 40 to 24 (40 min)
PTA1G2 60 0.5 nM 10 20 min 40°C; 40 to 24 (40 min)

Table 4.1: Yield of structure having one bead with different NP excess.

We then worked on structure with three separated binding positions. These positions were
chosen far enough on the oDNA in order to be able to evaluate rapidly the number of beads by
structure. The results are gathered in Tab. 4.2. Differents annealing procedures were followed
showing the importance of a long enough annealing reaction.

Name Yield1 (%) CoDNA Excess Au Annealing procedure
PTD2G1 0.1 0.34 nM 3.9 20 min 40°C; 40 to 24 (40 min)
PTD2G2 0.5 to 0.9 0.34 nM 3.9 then 20 min 40°C; 40 to 24 (80 min)

Table 4.2: 1 Yield of the structures having at least one bead. This experiment shows that a
slow cooling process improves the result

A study of the number of beads by origami gave the following percents: 30 % without beads
30 % with one bead 30 % with 2 and 10 % with three beads. This statistic was established on
a hundred of oDNA structure.

We finally concluded this set of experiments by deciding to work with a 10-fold excess of
NP per binding site and an annealing procedure from 40°C to 20 °C in 120 minutes (Fig. 4.6).
The AFM images show that almost each oDNAs bear at least one bead, and several oDNAs
have two beads or more. The result seems to be better when the binding sites are closer.
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Figure 4.6: AFM images. On the left 3 oDNA have the same orientation with the expected
structure if the beads are on the top of the structure. One has the wrong orientation meaning
that the beads are in contact with the surface. Surprisingly the oDNA have no clear deforma-
tion.
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4.4.3 Raman experiment.
4.4.3.1 Schema of principle of the experiment

Given these encouraging results we decided to realise Raman experiments coupled with AFM
(Fig. 4.9) to further characterize these constructions.

The schema of SERS oDNA structure is represented in Fig. 4.7. The structure include a
single strand having the complementary sequence to the RNA to detect. In the shema Fig. 4.7
the probe is attached to the sequence to detect and is the dsDNA formed by the probe and
the target is drawn vertically. The different states with and without the RNA strand to detect
are illustrated in Fig. 4.8. In the initial state the probe is partially hybridised with a strand
attached to a Rhodamine molecule. This molecule is known for having an important Raman
cross section. Thanks to the NP the initial state has a strong Raman signal. In the presence
of the target RNA molecule, the strands with the Rhodamine is freed because the RNA has a
stronger affinity with the probe, leading to a decrease in the Raman intensity.

Figure 4.7: Schematic representation of the SERS active structure. The structure is composed
of the oDNA, three gold NP of 10 nm and a probe

Figure 4.8: State of the origami without the probe (left) and with the probe (right)

Two wavelengths were available to realise the SERS experiments: 514 nm and 633 nm. We
choose the 633 nm wavelength to excite the plasmons as single Au particles absorb at 540 nm
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and the plasmon wavelength of excitation for two close particles is bigger than the one of the
particle alone (Cf [129] for plasmon wavelength of coupled Au particle of 36 nm of diameter).

4.4.3.2 principle

Figure 4.9: Experimental setup: The oDNA are deposited on a transparent surface. They are
then detected by afm, and a Raman spectra is collected by reflection.

Two type of experiments were envisioned: a classical Raman experiment in solution, and a
Raman experiment coupled with an AFM apparatus.

The principle of the second is to deposit the sample on a transparent surface. The oDNAs are
detected by classical AFM technique. Once an oDNA with NP is found, the laser of excitation
is focused on the tip of the AFM. The tip is mainly composed of silicium (Si), the intensity of
the Raman spectra of the Si help to focus the laser on the bottom of the tip. Once this step
done, the emitted light is collected by a detector.

One difficulty of this technique was to deposit the oDNA on a transparent surface. We
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choose quartz surfaces that are flat up to λ/10 because the surface has to be plan enough in
order to be able to detect oDNA with AFM. The protocol followed to deposit oDNA on a quartz
surface is detailed as follows.

4.4.3.3 Attachment of oDNA to a quartz surface

To attach DNA to a surface this one has to be charged. Mica surfaces that are the classical
support for imaging DNA are negatively charged. Mg ions or positively charged ions in solution
form a bridge between the mica and the oDNA. Unlike Mica sheets, the quartz surface has to
be treated to charge it before depositing oDNA on it.

The following procedure was chosen to negatively charge the surface:

• The surface was immersed in a detergent for 2h at 50 °C

• immersed for 12h in miliQ water

• immersed for 3h in ethanol.

• dried with a nitrogen flux.

3µL of the solution containing oDNA and gold NP is dropped for 1 minute on the quartz
then washed with the buffer solution, and then dried with a kimsweep. The surfaces obtained
were very in-homogeneous on origami concentration, some parts having no oDNA and others
being densely covered (Fig. 4.10). Once the structure and the deposit were obtained the Raman
experiment was carried on.

4.4.3.4 Raman experiments

We first realised coupled AFM SERS experiments on quartz surface, but no correlation between
the oDNA and Raman spectra of the PEG molecules was observed. In fact no Raman spectra
excepted the one of the quartz surface was detected. As this experiments are more complex
than simple Raman spectra, we switched to bulk experiments , where the oDNA are in a drop
and the spectra is gathered by reflection on the surface where the sample is dropped. Three
beads were positioned closely on the oDNA.

From the AFM observation of the dry sample, the beads seem to be touching each other.
The expected Raman spectra correspond to the Raman signal of the PEG molecules as they are
positioned between the NP and to Raman signal of the Rhodamine molecule. In solution the
water molecule dominates the signal. Once the sample dried, the signal observed were coming
from the different compounds constituting the buffer (Fig. 4.11). None of the observedpeaks
can be related to the spectra of the PEG molecule (Fig 4.12 a) or to the Rhodamine (Fig 4.12 b).
(The Raman spectra of all the individual chemical compounds used in all the experiments are
gather in Appendix K).



4.4. Experimental results: 119

Figure 4.10: AFM images of oDNA attached to quartz surface
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Figure 4.11: Spectra observed for in our Raman experiment. The unit of the axis are cm−1 ;a)
TAE buffer Bottom right BSPP buffer

Figure 4.12: a) Raman spectra of the PEG molecule alone; b) of the rhodamine 6G (The unit
of the axis are cm−1)

The fact that the spectra of the PEG molecule or the Rhodamine was not observed means
that its signal was too small compared to the signals of the other compounds in solution and
to the noise of the experiment. The signal coming from the origami is proportional to its
concentration (1nM) , to the cross-section of the molecule and to the enhancement factor. This
last can be estimated to be of the order of 102 - 103 (Fig. 4.13) because the PEG molecules
are preventing the NP from being too close (≈ 2 nm of distance) and the beads are of radius
5nm. So for the PEG or the Rhodamine the signal intensity is of the order of σ10−7 ( with
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σ the Raman cross-section) while for the compounds in the the buffer it is of the order of
σcompound10−3.

The enhancement factor that would be needed to overcome the signal from the buffer for
experiment in solution is at least of the order of 106 − 108. From Xu at al [146] on can notice
(Fig. 4.13) that 106 is the maximum theoretical factor of enhancement for NP of radius 10 nm
at a distance of 1 nm. Given the fact that the distance between the NP is 2nm we considered
working with NP of 15 nm and 20 nm radius. Unfortunatly the NP are no longer stable in the
oDNA buffer because of the presence of 25mM of magnesium. Tests on the stability of the NP
in a salt buffer revealed that they are not stable in the presence of a mM range of Mg. They
were stable for a concentration of 30 mM of Na and aggregated for a concentration of 50 mM.
However, at this concentration in salt the oDNA are no more stable. Indeed the electrostatic
repulsion between strands become too strong and the oDNA “explode”. The stability of the
gold particle is related to the size of the PEG that covers it. Increasing the size of the PEG
molecule increases the stability of the NP but also increases the distance between them, leading
to no real improvement in the enhancement factor.

Figure 4.13: From Xu et al [146]: Enhancement factor for silver (left) and gold (rigth)particle.
Different parameter are compared. The top plot are the enhancement factor for two beads, and
the bottom ones only for one bead.

We then considered another direction which is to increase the size of the NP once they are
attached to the oDNA, using a process of metallisation. After attaching the NP to the oDNA
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we followed the protocol from Kuzyk at al [139] which consist in adding to the solution three
different solutions that will allow the beads to grow. Unfortunately no noticeable increase in
size was observed in our experiments. We think that the main difference between our work and
the work from Kuzyk is the way NP are stabilised.

In their work NP are covered with ssDNA whereas in our case the NP are protected with
PEG molecules. The latter are likely to be more densely packed on the NP as they are smaller.
We tried to decrease the quantity of PEG at the surface of the NP by varying the concentration
and the time for mixing both compounds. When the concentration of PEG is too low, the NP
are no more stable in the oDNA buffer. At the minimun concentration in PEG where the NP
are stable we did not observe a growing of the NP.

4.5 Conclusion
Despite good progress in building an active SERS platform we were confronted to the difficulty
of the instability of the gold particle in “biological” buffer. A direction that was envisioned but
not explored was to protect the gold beads with other compound whose Raman spectra would
not interfere with the Rhodamine and that would still allow the gold particles to grow. For
example protecting the NP with DNA could be envisioned as long as the strands used to cover
the particle would not interfere with the binding of the strand of interest.
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Conclusion

DNA origamis are very flexible tools that virtually allow to couple any nano-constituents to-
gether. These DNA platforms with pixel resolution of about 5 nm are already widely used to
create several applications that ranges from RNA probes [2] to small assembly line [4]. When
realising a SERS platform, we saw that mixing DNA with inorganic material (such as Gold
nano-particles) was not that easy as the conditions of common stability of the two constituents
were narrow and even do not exist for the biggest NP we have used.

In this work we mainly focused on understanding the mechanical properties and the process
of formation of oDNA structures. Regarding the mechanical properties, the main result was
that a dsDNA in a flat oDNA structure has a persistence length of 1.5 its natural persistence
length. Knowing the persistence length allows to characterise the mechanical properties of
these structures and more particularly to estimate the energy and the forces at stake. The
fluctuation of the structures in solution could also be derived. In the case of complex 3-
D structures a continuous mechanical approach is enough to give a good estimation of their
persistence length. The importance of the electrostatic interactions was also highlighted as we
showed that without them oDNA structures could be totally huddled up.

The information obtained on the process of formation showed that the correlations with
nearby surrounding stapples previously formed is of primary importance. This coupling was
highlighted by working on the simplest oDNA structure possible, a template of 64 bp and two
staples of 32 bp each, that we named small origami. This is an important general rule that I will
try to remember: when trying to understand something, simplify the most. The stability of the
oDNA with the temperature could be summarised by: every crossovers decrease the stability of
the staple compared to its stability on the duplex form. By keeping the number of crossovers
constant and increasing the length of the staple we were able to construct a stabler structure.
Stabler structures could be of interest if one wants to work with oDNA at higher temperature
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than 20 ◦C . Recent progress have been made in the direction of using oDNA to target specific
cells with an aptamer system, and to deliver a cargo once these cells are reached [147] . As
the temperature is of 37 °C in human cells, having platforms that remain stable up to 40°C is
a necessary requirement to conceive devices for biological applications such as investigating a
cell behavior.

The last project of this thesis that was not presented in this manuscript because it was
only started lately concerns DNA logic gates. In this project we try to attach DNA logic gate
onto oDNA structures. The goals are to increase the rate of reactions by confining them on
a small area, and also to increase the complexity of the calculations possible by assembling
independent logic modules on oDNA structures, that would lately be combined to build more
elaborate combination of logical operation.
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Experimental attempt.

Figure B.1: Schematic representation of the path followed by the scaffold with the presence of
a reservoir

The structure that we wanted to create is illustrated in : Fig. B.1. This structure is
composed of three parts: an origami layer, a small reservoir, and a bridge. The reservoir is here
to modulate the size of the bridge. Indeed the choice of four strands in the red circle, imposes
a given part of the virus at this position and so a given size of the bridge. The maximum
possible size for the bridge is 700 bases. As calculated in 2.2.2 this ssDNA bridge should exert
a neglectable effect on the origami layer. However shorter bridges of size 240 bases (Lc=81nm)
should exert a force and bend the origami. Unfortunatly this did not work as expected. The
bridge seems to bind to nearby origamis (Fig. B.2). This is probably due to the fact that the
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staples which determine the size of the bridge are short (20 bases) and probably fold at lower
temperature than the other staples, so that the origamis are already formed when these staples
are able to bind. The persistence length of these structures being important the fluctuations are
probably small. So the probability to have the origami bent with a high curvature and at the
same time the staples coding for the size of the bridge in the vicinity is too small. Furthermore
the energy to bend the structure is of the order of 200 kT. This is higher than the energy of
folding of the four staples.

Figure B.2: AFM images of an origami structure with a supposed bridge of 240 bases. (Rigth)
Zoom on the structures. On some structures one can notice that some staples had been remove
of the origami.
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Thermodynamic values for the soDNA

The thermodynamic values were calculated by the fit of the curve dθ
dT

in the hypothesis of a
two states hybridisation. The incertitude on the values are given by the measure of different
concentration from 0.5µM to 2µM . Strands with their complementary (c), in the outer position
(o), in the inner position (i), when both strands are present (co) and a means with adaptor. For
all the strands δH and δS are experimental values. For the strands with their complementary
∆0 refers to the experimental value minus the theoretical. For the other case ∆0 refers to the
experimental one minus the theoretical with the complementary strand. The experiement of
the adaptator were realised only once and have no errror bar. The error indicated in the last
column corresponds to the mean square deviation between the fit of the log of the equilibrium
constant as a function of the temperature and the experiemental data, on the range were the
constant goes from 0.01 to 0.99.

Mix δH δS ∆H0 ∆S0 ∆G0 ∆T0 Err
B1 AT (c) −225.1± 7.4 −656.1± 23.2 −2.9± 7.4 −8.2± 23.2 −0.4 0.2± 0.6
B2 GC (c) −289.3± 0.0 −762.5± 0.0 −1.9± 0.0 2.3± 0.0 −2.6 3.5± 0.0
B1m (c) −238.5± 0.0 −651.6± 0.0 9.1± 0.0 27.0± 0.0 1.0 0.6± 0.0
B1 AT (o) −159.4± 11.1 −469.1± 35.2 62.8± 11.1 178.9± 35.2 9.1 −8.8± 0.2
B2 GC (o) −271.6± 2.8 −727.7± 9.6 15.9± 2.8 37.1± 9.6 4.7 −3.7± 0.4
B1m (o) −250.9± 14.0 −703.8± 40.4 −3.3± 14.0 −25.2± 40.4 4.3 −7.8± 0.1
B1 AT (i) −82.5± 4.0 −233.3± 11.8 139.6± 4.0 414.7± 11.8 15.3 −15.8± 0.8
B2 GC (i) −212.1± 35.0 −568.0± 100.3 75.4± 35.0 196.8± 100.3 16.3 −7.9± 0.3
B2m (i) −218.1± 18.5 −603.6± 53.7 69.3± 18.5 161.2± 53.7 20.9 −17.4± 0.4
B1 AT (co) −176.7± 2.6 −515.8± 7.8 45.5± 2.6 132.2± 7.8 5.9 −4.4± 0.0
B1 AT (co) −152.8± 16.2 −445.1± 50.3 69.3± 16.2 202.8± 50.3 8.5 −6.6± 0.1
B1a (i) -138.2 -408.6 84.0 238.3 11.8 -13.2 0.3
B1a (o) -151.6 -444.5 70.6 202.4 9.2 -8.7 0.2
B1a B3a (i) -135.2 -398.1 87.0 248.7 11.7 -12.7 0.2





Appendix D

Computing the probabilities from the
law of mass action.

In this section, we explain how to compute the probability p(Si(k, l), T ) by solving a set of
coupled equations which reflect the assumption that the reaction

Si(k, l) +Nα(Si) 
 Nα(Si)Si(k, l)

is governed by the law of mass action. For the sake of clarity, we consider the particular case
illustrated in Fig. D.1: a staple divided in two parts of equal length is inserted in the vicinity
of another staple that holds together a portion of the scaffold. We consider three equilibriums:

The simultaneous binding of the two parts of Si, with equilibrium constant:

K
Nα(Si)
Si(1,2) = exp

(
−∆GNN(Si(1, 2), T )− T∆Sbulge(2L)

kT

)
(D.1)

The binding of only one half Si(1, 1) of the staple, with equilibrium constant:

K
Nα(Si)
Si(1,1) = exp

(
−∆FNN(Si(1, 1), T )

kT

)
(D.2)

The binding of the other half Si(2, 2) of the staple:

K
Nα(Si)
Si(2,2) = exp

(
−∆FNN(Si(2, 2), T )

kT

)
(D.3)

More generally, for any set of equilibriums between Si and its neighborhood Nα(Si), the law
of mass action reads:

[SiNα(Si)]
[Nα(Si)][Si(l, p)]

= K
Nα(Si)
Si(l,p) = exp

(
−∆F (Si(l, p), T + dT )

k(T + dT )

)
(D.4)
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Figure D.1: Different possibilities for the staple Si to bind in the neighbourhood Nα(Si)

The concentration of free staple in solution is given by

C0

Exs−∑
β

∑
u,v,u≤v

p(Si(u, v)|Nβ(Si))p(Nβ(Si))
 (D.5)

Exs is the excess of staple concentration compared to the initial concentration of scaffold
C0, p(Si(l, p)|Nα(Si)) the conditional probability to observe Si(l, p), given the neighbour staples
Nα(Si) and p(Nα(Si)) the probability of having the neighborhood Nα at the previous temper-
ature step. As the excess is important, the concentration will variate weakly in the process of
formation. It is then simplified to C0Exs. This simplification is necessary to obtain a set of
uncoupled equation. The concentration of Nα free in solution is given by:

C0

p(Nα(Si))−
∑

u,v,u≤v
p(Si(u, v)|Nβ(Si))p(Nβ(Si))

 (D.6)

And the concentration of state Si(l, p) in Nα(Si) is given by

C0p(Si(l, p)|Nβ(Si))p(Nβ(Si)) (D.7)
The equilibrium constant gives:

K
Nα(Si)
Si(l,p) = p(Si(l, p)|Nα(Si))

ExsC0

p(Nα(Si)−
∑

u,v,u≤v
p(Si(u, v)|Nα(Si))p(Nα(Si))

 (D.8)
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This set of equations can be solved by noticing that the denominator in D.8 is independent
of Si(l, p). Thus, for any couple of configurations (Si(l, p), Si(u, v)),

p(Si(l, p)|Nα(Si))
p(Si(u, v)|Nα(Si))

=
K
Nα(Si)
Si(l,p)

K
Nα(Si)
Si(u,v)

(D.9)

Let yα =
∑
l,p,l≤p

p(Si(l, p)|Nα(Si)) and Sα =
∑
l,p,l≤p

K
Nα(Si)
Si(l,p) . Then, by summing over every l,p eq.

D.8 one obtains:

1
C0Exs

yα
(1− yα) = Sα (D.10)

or:
yα = C0ExsSα

1 + C0ExsSα
(D.11)

yα can also be expressed as:

yα = p(Si(l, p)|Nα(Si))
K
Nα(Si)
Si(l,p)

Sα (D.12)

So the conditional probability p(Si(l, p)|Nα(Si) can be calculated. The total fraction of
configuration Si(l, p) folded at T + dT is then:

p(Si(l, p), T + dT ) =
∑
α

p(Si(l, p)|Nα(Si))p(Nα(Si)) =
∑
α

p(Nα(Si))
K
Nα(Si)
Si(l,p) yα

Sα

To summarise, the probability of a neighbourhood p(Nα(Si) is know before changing the
temperature. Once the temperature changed, given all the possible partial folding and all the
possible neighbourhood, thanks to the simplification of the concentration of free Si, the problem
is reduced to finding the proportion of the different partial folding in a given neighbourhood
p(Si(l, p)|Nα(Si) . Then the total probability of having a partial folding is obtained by summing
over all the neighbourhood Nα(Si)

D.1 Remarque on the small origami.
In the case of the small origami the experiments were not performed with an excess of staples.
The approximation to simplify the concentration of staples is no longer correct.

We used for the concentration of staple in the configuration Nα the form:

C0

Exs− ∑
u,v,u≤v

p(Si(u, v)|Nα(Si))p(Nα(Si))
 (D.13)
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The difference is that the sum over the different neighbourhoods of the staple is not done. This
form is correct for experiments with only one staple as there is only one neighbourhood. However
when two staples are present there is two possible neighbourhoods. For the AT case as GC is
already folded when AT fold this approximation is correct as there is only one neighbourhood
at a given time. For the B1m B2m case, this approximation is no longer correct, and the correct
result should be hopefully slightly different from our theoretical result.

Taking Eq. D.13 leads to slightly different equations. Instead of Eq. D.10 we have:

1
C0(Exs− yalpha)

yα
(1− yα) = Sα (D.14)

and:

yalpha = 1
2

(
E + 1 + 2

C0Salpha
−
√

(E + 1 + 2
C0Salpha

)2 − 4E
)

(D.15)
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Quenching intermediate states.

The model provides the hierarchical pathways that will fold (unfold) the origami during a cooling
(heating) experiment. Therefore, at any temperature steps, one may have a good picture of
the partially formed origami. Also, we predict the average folding of each staple at each T as
well as a detailed description of its environment. In order to check the predictive ability of
the model, it is of interest to compare the experimental structures with the calculated ones by
quenching origami structures at a given T during a cooling (heating) event.

To do so, at a given temperature when cooling or heating, 3 µL of solution (containing 1nM
of M13mp18 and an 10 fold excess of staple) were dropped on a mica surface, and after a short
waiting time (for the oDNA to attach on the surface) a drop of 100 µL of buffer was added to
quench the process. This drop by diluting the remaining staple in solution should quench the
reaction. Then the deposit was studied by liquid AFM using peak force mode at 20 °C. In the
following section we compare the experimental configuration to the expected theoretical one.

E.1 Study of the O1 origami
Thanks to the model it is possible to predict the mean configuration as a function of the
temperature. In Fig. E.1 the configuration of O1 at different temperatures are represented on
the annealing ( a and b) and melting curve (c and d). A red color means that the part of the
staple is folded at more than 50% and a green color means a probability of folding between
50% and 5%. The width of the colored line is also proportionnal to the percent of folding.

The mean space between strands has been set to 2.8 nm to respect the aspect ratio of the
shape in the Mg Buffer. Indeed this value is a mean value between the minimal center to center
distance between strands that is where the crossover are (1.8nm), and the maximun distance
which is between two crossovers (3.9 nm) because of the electrostatic repulsion.

The path of the virus creates two separated blocks for this oDNA. An observation of the
predicted structure is that the two blocs never attach one to the other even at low temperature.
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Figure E.1: Configuration at different temperature on the annealing curve: a) Cooling 52 °C;
b) Cooling 56 °C; c) Heating 56°C; d) Heating 59°C e) theoretical melting curves.

This is linked to the notion of distance in the model. The notion of distance in the model is
related to the notion of connectivity on the virus and not to the notion of physical distance.
Fig. E.2 illustrate this notion. When looking at the two point A and B on the virus path,
when no staple are folded the distance between A and B is dAB = AP1 +P2B. And an entropic
penalty is added to the folding energy of the staple whose crossover goes by A and B. However
when a staple fold at (Fig. E.2 right) the penalty is transformed to the penalty of a crossover as
the distance dAB = AP5 + P6B ≈ 0. For a staple connecting the two bases C and D the initial
distance is dCD = CP1 +P2P3 +P4D ≈ 600 b for O1 origami. Even when at the end all staples
are folded , the distance throug the path is dCD = CP5 + P6P7 + P8D ≈ 128 b. According
to the model the associated penalty is still important. However, experimentaly the structures
are going to be close when the left and right block will be formed, leading to a small distance
between C and D and accordingly a small entropic penalty. The attachment between two blocks
will probably be more close to a phenomenon of nucleation. So the connection between the two
block is an unknown in our model.

Figure E.2: Schematic representation of the notion of distance between two block compared
to the notion of distance within one block. left) Initially when no staple are folded. right) at
lower temperature when some staples are folded
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Fig. E.3b) is an AFM image of quenched configurations in the annealing process at 50°C and
Fig. E.3c) represents the expected configuration at this temperature. Several configurations
were zoomed on E.3a). From the experimental configurations it can be observed that blocks
smaller than the origami are first formed. Given the aspect ratio of the origami, the central
weakness is present in some of the zoomed configurations , as well as a weakness in the middle
of the oDNA but in the perpendicular direction.

Figure E.3: Cooling: a) Several configuration extracted at 50°C; b) whole AFM image c)
Expected configuration at 50°C

The same experiment was repeated at 52 °C (Fig. E.4). All the configurations seems to be
blurry. This is due to parts of the oDNA that are not folded and fluctuate in solution. This



138 Appendix E. Quenching intermediate states.

does not allow to reach a good resolution. All the zoomed configurations on the first line seems
to be formed correctly in three corners with one corner hardly formed. At this temperature the
expected configuration (Fig. E.4b)) is in agreement with the experimental data. Furthermore
as observed at the previous temperature a weak line is present horizontally. This is due to the
formation of no crossover between the two parts separated by the black line. Given the aspect
ratio of some configurations this weakness seems to be present in some configuration as the one
highlighted (Fig. E.4c).

Figure E.4: Cooling: a) Several configuration extracted at 52°C; b) Expected configuration at
52°C c) Best agreement
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Study of the melting process seems to prove that the configuration is less stable than ex-
pected (Fig. E.5). The expected configuration is (Fig. E.5c)) Only few of them are almost
complete configuration (Fig. E.5b The expected configuration at 63°C (Fig. E.5d) is repre-
sented for information. Indeed it seems than in all the configurations we can see at least a
small square which is the most stable part of this origami which is present experimentally and
theoretically.

Figure E.5: Heating 57°C: a) Several configuration extracted at 57°C; b) almost complete
configuration c) Expected configuration at 57°C; d) Expected configuration at 63°C

Figure E.6: Image at room tempera-
ture

Finally the study of the configuration at 20°C shows
that most of the oDNA are well formed (Fig. E.6).
Some configurations have a hole in the middle of one
block. This hole could corresponds to the last part
folding in the theoretical model.



140 Appendix E. Quenching intermediate states.

E.2 Study of the O4 Origami
The process of cooling was also studied at 50°C and 53 °C(Fig. E.8a)) for the O4 origami.

At 50°C most of the configuration are close to the final configuration . We can notice a clear
separation close to the middle of the several origamis (Fig. E.7). The expected configuration
(Fig. E.7 c) is almost completely folded, at the exception of the bottom part. The configurations
similar to the expected one were highlighted (Fig. E.7b). We also noticed several oDNA with an
horizontal separation. As this temperature this is not predicted by the model. However when
looking at a slightly higher temperature (53°C) the configuration exhibit several horizontal
weakness which could explain the experimental structures.

Figure E.7: Cooling 50°C a) AFM image °C b) Zoom on structure close to the final origami c)
theoretical structure at 50 °C d) Zoom on structure partially formed. e) Theoretical structure
at 53°C

The same experiment was repeated at 53°C. Several partial origamis were observable and
several long and thin part are visible in agreement with the expected configuration at 53 °C
(Fig. E.7e). The only almost complete origami was zoomed on and compared to the expected
configuration at 51°C (Fig. E.8b). One can notice on this well formed configuration it is
possible to reach a molecular resolution, whereas surrounding configurations that are a mix
between ssDNA and dsDNA parts are blurry.
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Figure E.8: Cooling 53°C a) AFM image; b) only configuration almost completely formed at
53 °C (compared to the configuration at 51°C)
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The heating process was also studied. At 49 °C in agreement with the theoretical model(Fig.
E.9b) most of the configuration are well formed (Fig. E.9c). Several configuration seemed to
have a triangular shape (Fig. E.9d). The prediction of the model at higher temperature (Fig.
E.9e) could partially explained the observed shape.

Figure E.9: Heating 49°C; a) AFM image; b) Theoretical configuration at this temperature. c)
Zoom on several configuration; d) Triangular shaped configuration; e) Configuration at 57°C
and 59°C that could explain the triangular shapes

At 57°C most of the configuration observed were about half the size of the regular O4
origami but still well formed Fig. E.10 a). All the configurations with a size close to the size
of the final origami were extracted E.10c). The configuration expected at this temperature is
Fig. E.10 b). So the predicted structure is most stable than expected.

At this temperature the model does not propose explanation for configurations close to half
of the origami.

We then imaged the solution at 20 degrees (Fig. E.11 a, b c)). Most of the origami have a
shape close to the expected one. However several small pieces can be observed. Some of them
seem to be attached to the origami (Fig E.11b)), and some seem to be cutted in two pieces (Fig
E.11c))
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Figure E.10: Heating 57°C: a) Most frequent configuration b) AFM image c) Cooling con-
figuration at 54°C; d) Heating configuration at 57°C e) Configuration possibly matching the
predicted one

Figure E.11: Images of the O4 Origami in solution at 20°C
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When looking at the process of formation it is possible to understand why small pieces were
formed (Fig. E.12). In the process of formation some independent blocs are folded, once again
in the sense that there are no crossover between them (Fig E.12 b and c)). In that case, as the
path of the virus forms a bridge over the oDNA, one of the bloc could be flipped (Fig. E.12d).
Then the probability to fold the missing peace and to flip back the flipped part is probably low.
This shows the limits of the model that does not take into account a spatial representation of
the origami.

Figure E.12: a) annealing curve. b) Expected configuration at 50 °C. c) Expected configuration
at 53°C. d) Schematic representation of a process leading to smaller independent parts
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Calculation of the absorbance

As the experimental melting curves are followed by UV absorbance, it is necessary to calculate
the absorbance of the partially folded origami at a given temperature.

The probability to find partSi,j of staple Si folded is given by the sum of the probabilities
of each configuration Si(k, l) that contains partSi,j:

p(partSi,j, T ) =
∑

l,p,l≤j≤p
p(Si(l, p), T ) (F.1)

And so the fraction of bases folded for the staple Si is:

xSi(T ) = 1∑N
k=0 |Si(k, k)|

N∑
k=0

p(partSi,k, T )|Si(k, k)| (F.2)

where N + 1 is the number of parts of staple Si.
The absorbance associated to any staple is:

AbsSi(T ) =
(
Abs0(Si) + Abs0(S̄i)

)
(1− hSixSi(T )) (F.3)

where Abs0(Si) is the absorbance of Si and Abs0(S̄i) the absorbance of its complementary
staple, calculated according to [101]. We used the following relation for the hypocromicity
h(Si):

hSi = 0.287(1− fgc(Si)) + 0.15fgc(Si) (F.4)

where fgc(Si) is the fraction of GC content in the staple Si. This formula has been slightly
modified from [101] to improve the fit against the experimental data for the small origamis.
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Temperature and salt corrections,
calibration and results on small
origamis

G.1 Temperature corrections
The computation of the nearest-neighbour contribution ∆GNN = ∆HNN − T∆SNN includes
corrections to take into account temperature and salt variations.

Besides the nearest-neighbour contributions (∆H0
N ,∆S0

N) [27], we have also included tem-
perature dependent corrections:

∆HNN(Si(l, p)) = ∆H0
N(

p∑
k=l

seqAi,k) + Cp(l, p)(T − Tref )

∆SNN(Si(l, p)) = ∆S0
N(

p∑
k=l

seqAi,k) + Cp(l, p) ln( T

Tref
)

where Cp(l, p) = Cp
∑p
k=l |Si(k, k)| with Cp = −42cal/mol/K/bases and Tref = 53◦C ac-

cording to [99].

G.2 Salt correction
The parameters of the NN model [27] are given for standard salt concentrations ([Na]=1M,
[Mg]=0). Different salt conditions can be taken into account using the correcting terms in
[100]. These corrections apply when Mg is dominant. We assume that for each attachment of
the staple Si on the configuration Si(l, p) (of length |Si(l, p)|), the relation

1
Tm(Mg,Na,C, Si(l, p))

= 1
Tm(0, Na, C, Si(l, p))

+ f(Mg,Na, fGC , |Si(l, p)|)
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Figure G.1: (dotted line = experiment, solid line = theoretical) Comparison between the model
and the melting experiments for four different dsDNA

between the melting temperatures Tm at different concentrations of Mg and Na holds (fGC is
the fraction of GC content of Si(k, l)).

The melting temperature corresponding to the point where ∆G(Tm) = 0:

Tm(0, Na, C, Si(l, p)) = ∆HNN(Si(l, p))
∆SNN(Si(l, p)) +Rln(CT/4) (G.1)

it can be deduced that the salt corrections are taken into account by an entropic correction
given by:

SC(Mg,Na) = f(Mg,Na, fGC , |Si(l, p)|)∆H (G.2)

where ∆H is the sum of all the contributions previously cited (nearest-neighbour, tem-
perature corrections, topological contributions). In this paper, we modified the function
f(Mg,Na, fGC , |Si(l, p)|) as given in [100] by a small additive term to take into account low
AT content strands.

For this, we compared the predictions of [100] with the experimental results obtained with
the small origamis. In [100], the authors calibrated their model against 17 different dsDNA,
involving a wide range of salt concentrations, and obtained a mean deviation −1.7 ± 0.7 ◦C .
We deal here with a more restricted range of salt concentrations, it is therefore expected that
the model [100] can be improved. We used a correction to the f function of [100] for the low
fractions fGC of GC content, to obtain a mean deviation of −0.4±0.3. The corrected f function
reads:

fnew = f + (fgc − 0.5)0.00008 if fgc < 0.5.

It gives the following results for the strands involved in the differents small origamis (Fig
G.1)
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Manip Supplementary

H.1 Effect of the salt concentration

Figure H.1: Melting curves of the origami O1 for different concentrations in magnesium. V
means M13mp18 strand alone, S means mix of the 200 staple strands alone, and V+S both
mixed. 0p5 = 6.2 mM Mg, 1 = 12.5 mM Mg and 1p5 = 18.7 mM Mg. The M13mp18
concentration is 1.4 nM. The staples are in a 15 fold excess (by staple).
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H.2 Effect of the excess on O1
Comparison of the annealing-melting curve for a 5 and 10 fold excess of staple with respect to
the M13mp18 phage whose concentration is 1nM. The buffer is a TAE buffer with Mg (18.25
mM).

For an excess of 10 the maximum is at 54.2 and for an excess of 5 it is at 52.7. The width of
this peaks is approximatly the same For the heating process the shift is smaller: around 0.4-0.5
degrees ( Fig: H.3)

Figure H.2: Annealing: To compare the curve, the curve of the 10 fold excess has been shifted
by -1.5 degrees. RWE10 means O1 with an excess of 10 and RWE5 means O1 with an excess
of 5

Figure H.3: Comparaison of the cooling curve for a 5 and a 10 times excess
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H.3 Manip with origami O4 at slower rate.
Comparison of two temperature gradient (0.4 and 0.1 degree by minutes) (Fig. H.4) The
concentration are: M13mp18 = 1 nM and a 10 times excess of staples. The buffer is a TAE
buffer with [Mg] = 18 mM. The difference is more important for the cooling part (Fig. H.4)
than for the heating part (Fig. H.5) that seems to be identical at both rates.

Figure H.4: Cooling the origamis with differents gradients. (left) O4 origami. (right) O4
origami with the four staples of the reservoir modified to constrain the bridge to a size of 200
bases

Figure H.5: Heating the origamis with different gradients (left) O4 origami. (right) O4 origami
with the four staples of the reservoir modified to constrain the bridge to a size of 200 bases
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H.4 Manip on one half of the strand.
A melting experiment was performed on a origami where only half of the staple were mixed.
The concentration are: M13mp18 = 1 nM and a 10 times excess of staples. The buffer is a TAE
buffer with [Mg] = 18 mM. The selection of the staple was done such as no adjacent staple was
selected. (One staple on two was removed) “One half” corresponds to the first half and “half
comp” corresponds to the complementary origami (with the other half).

Figure H.6: Absorbance curves

(Fig H.6) shows that the absorbance decrease around 40 degrees when heating. This phe-
nomenon is similar to the one observed with the virus alone in appendix H.1 for a salt concen-
tration. It could mean that the origami did not formed at all. The derivative were extracted
(Fig. H.7).

Figure H.7: (left)Heating;(right) Cooling
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H.5 Manip with a ratio 1 for 1
O4 origami was formed, then purified of the staple excess. It was then heated in the UV spectro.
After being heated the annealing and melting curves were recorded (Fig H.8)

Figure H.8: Absorbance origami excess 1:1

Once again a weird thing happen around 40 degrees. It is almost impossible to extrac
datas from the cooling curve because of the poor baseline (low concentration in object and
evaporation. . . )

Figure H.9: (left) Heating origami excess 1:1 comparaison with normal origami (right) com-
paraison with one half of strands

When compared to the regular melting curve only the first peak is observed (Fig H.9)(left).
When compared to the experiment where only one half of the staple was mixed (Fig. H.9(right)
one can see than around 40 degrees there is a similarity of behaviour
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Treatments of absorbance curves

Herein we detail the different steps of the treatment of the UV experiments in this thesis, from
the raw absorbance to the normalised θ.

I.1 Generality
First one has to substract the absorbance at 310 nm to remove any particularity due to the
cuvet and to the buffer (AbsDNA260 − AbsDNA310 ) For regular dna construct 260 nm is the
length of maximal absorption and at 310nm it do not absorb.

The second step is to substract the buffer signal (AbsBuffer260 − AbsBuffer310), because the
buffer evolve with temperature. This step is not always done because the effect is small.

Most of the times the absorbance curves have some noise. This one is suppressed by con-
voluating the curves according to the formula:

Absconvol(T ) = Abs(T − Tstep) + 2Abs(T ) + Abs(T + Tstep)
4 (I.1)

For most of the curves this formula is applied once or twice. For curves with low absorbance
of small Tstep it is applied 3 or 4 times.

I.2 Detail on the treatment of the curves for oDNA ex-
periments.

Here all the steps of the treatment of an oDNA experiment are explained. Usually one experi-
ment consists in doing several cycles of temperature on different samples. One cuvet contains
the buffer, the second contains the phage (M13mp18) alone, the third cuvet contains the staples
alone, and the fourth the mix phage plus staples.
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Figure I.1: Phage alone at 1 nM for one temperature cycle: heating at s = 0.33°/min , cooling
s = -0.33°/min

Figure I.2: Staple alone at two different excess. left a 5 fold excess, right a 10 fold excess

The absorbance of the phage alone show a small transition around 45 degrees (Fig: I.1) For
the staples alone (Fig I.2) there is no clear transition
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Figure I.3: Phage plus Staple at two excess of staple 5 and 10

The curves with positive s or slope are heating curves, and respectively the other are folding
curves (Fig: I.1). For the mix phage plus staples one can see than there is an hysteresis between
the cooling and the heating. It is difficult to compare the curve for the origami with an excess
of five and an excess of ten (Fig I.3). Indeed the signal due to the excess of staples have an
important contribution to the curve and we will have to remove it.

The usual way to study melting curves is to evaluate

θ(T ) = (L0(T )− Abs(T ))/(L0(T )− L1(T )) (I.2)

or
α(T ) = (Abs(T )− L0(T ))/(L1(T )− L0(T )) (I.3)

with L0(T ) the baseline at low temperature and L1(T ) the baseline at high temperature
and Abs(T ) the experimental absorbance. For a simple experiment on a dsDNA α corresponds
to the fraction of base pair unfolded. So at low temperature α equal 0 and at high temperature
it is equal to 1. To estimate this quantity one has to choose a baseline for the curve.

The choice of the baseline can greatly change the aspect of the α(T ) curves. For example
one can see to different curves α(T ) for two different choices of baseline on the same experiment.
(Fig I.4 and Fig I.5) However the choice of the baseline is less visible on the derivative of α.
(Fig I.6 and Fig I.7) The derivative of α is important because the maximun corresponds to the
melting temperature for a simple experiment on a dsDNA.
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Figure I.4: Phage plus Staple at two excess of staple 5 (blue = melting, green = annealing)
and 10 (red=melting and cyan annealing)

Figure I.5: Same experiment than Fig I.4 but with a different choice of baselines
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Figure I.6: Derivative of Fig. I.4

Figure I.7: Derivative of Fig. I.4. We can see that these curves are very similar to the ones of
Fig. I.6
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Those experiments are realised with an excess of staples. It is interesting to substract this
excess of staples in the hypothesis that the excess of staples can be considered as non interacting.

For the origami with a 10 time excess of staples, at high temperature the sum of the
absorbance of the cuvets staples alone + phage alone is close to the one of the oDNA mix. (
Abs(oDNA mix) =1.1 and Abs(oDNA mix - staple alone - phage alone) = 0.01) The absorbance
that corresponds to the hybridisation of the staples with the phage is given by: Abs(oDNA)
= Abs(oDNA mix) - 0.9 Abs(staples alone). In Fig I.8 the original curve (Abs(oDNA mix)) is
shown in blue and the subtracted one (Abs(oDNA)) in green. (the maximum of the curve has
been set to zero for comparaison). We can notice that for the melting part of the subtracted
curve (Fig I.8 (left green)) the low temperature absorbance is constant, showing that the oDNA
is stable. Once this step done, one has to choose the high and low baseline.

Figure I.8: Comparaison Absorbance with and without substraction (superposated at high
temperature). Left: Cooling, Right: Heating

The baseline at high temperature (L1(T)) can be chosen with the same slope for the an-
nealing and melting curves (Fig: I.9). At low temperature the baselines seem to be differents.
However, as we shown previously, the choice of the baseline has not much influence on the
derivative of α.
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Figure I.9: Choice of the baseline for the absorbance Abs(oDNA)

In Fig I.10 left) (resp right) we compare the normalised absorbance for the annealing (resp
melting) curve with (green curve) and without (blue curve) subtracting the excess of staple.

Figure I.10: Comparaison Normalised absorbance with (Abs(oDNA) = green) and without
substraction (Abs(oDNA mix) = blue). Left: Cooling, Right: Heating

We then show the influence of subtracting the excess on the derivative of those curves. On
can see than subtracting the excess of staples amplify the derivative of alpha (Fig: I.11).
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Figure I.11: Comparaison Derivative of the normalised absorbance with (Abs(oDNA) = green)
and without substraction (Abs(oDNA mix) = blue). Left: Cooling, Right: Heating

We then checked the reproductibility of the experiments by doing two cycles of annealing-
melting experiment on the same samples. Given (Fig: I.12) it seems that the reproductibility
of the experiment is good. However when cooling (Fig: I.12 left) , at high temperature the
behavior of the two curves are slightly differents.

Figure I.12: Reproductibility of the experiment two temperature cycles for the same sample for
Abs(oDNA) Left: Cooling, Right: Heating; blue = first cycle, green = second cycle
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Strands used in the differents
structures

J.1 Small Origami
For the first small origami with B1 outer and B2 inner: The staples are given from 5to 3:

B0 TAATAATAATATAATTGGCGGCCGGGGCCGGCCGGCGCGGCGGCCGGCATTAATATAATATAAT

B1 ATTATATTATATTAATAATTATATTATTATTA

B2 GCCGGCCCCGGCCGCCGCCGGCCGCCGCGCCG

B1 TAATAATAATATAATTATTAATATAATATAAT

B2 CGGCGCGGCGGCCGGCGGCGGCCGGGGCCGGC

When B1 is in the ‘inner’ position the sequence of the scaffold is:

C1231 CGGCGCGGCGGCCGGCATTAATATAATATAATTAATAATAATATAATTGGCGGCCGGGGCCGGC

For the B1m B2m structure:

B0 TTCCCTTCCTTTCTCGCCACGTTCGCCGGCTTTCCCCGTCAAGCTCTAAATCGGGGGCTCCCTT

B1m AAGGGAGCCCCCGATTCGAGAAAGGAAGGGAA

B2m AAGCCGGCGAACGTGGTAGAGCTTGACGGGGA

B1m TTCCCTTCCTTTCTCGAATCGGGGGCTCCCTT

B2m TCCCCGTCAAGCTCTACCACGTTCGCCGGCTT

J.2 Origami O1 and O2
O1 is the same Origami used by Rothemund [1]. The staples list can be found in SI [2]
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Figure J.1: Origami 02, it was furnished by Thao Tran from Jean-louis Mergny laboratory
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J.3 Origami O3
Same staple than in O1. The staple connected from O1 are listed here

177p175 TTTCATGAAAATTGTGTCGAAATCTGTACAGACCAGGCGCTTAATCATTGTGAATTACAGGTAG

174p176 TTTCAACTATAGGCTGGCTGACCTTGTATCATCGCCTGATGGAAGTTTCCATTAAACATAACCG

165p163 AGAAAAGCAACATTAAATGTGAGCATCTGCCAGTTTGAGGGAAAGGGGGATGTGCTAGAGGATC

162p164 CAGCTGGCGGACGACGACAGTATCGTAGCCAGCTTTCATCCCCAAAAACAGGAAGACCGGAGAG

34p32 AGCGCCAACCATTTGGGAATTAGATTATTAGCGTTTGCCACCTCAGAGCCGCCACCGATACAGG

55p57 CACCAGAGTTCGGTCATAGCCCCCGCCAGCAAAATCACCAAATAGAAAATTCATATATAACGGA

46p44 ACAGAAATCTTTGAATACCAAGTTCCTTGCTTCTGTAAATCATAGGTCTGAGAGACGATAAATA

67p69 TAACCTCCATATGTGAGTGAATAAACAAAATCGCGCAGAGATATCAAAATTATTTGACATTATC
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Figure J.2: Schem of Origami 4 without (a) and with the path of the scaffold

J.4 Origami O4
The staples are given from 5to 3. 3 is represented by a small ball in (Fig. J.2)
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1 GAAGGGAAGACTCCAACGTCAAAGACTATTAA

2 TGGTAATAAGTCGAGAAAG

3 GACGGGGATCAGGGCGATGGCCCATTGAGTGT

4 CGTCATACCCTTGAGTAACAGTGCTAGAGCTT

5 GAACCCTACCAAATCAAGTTTTTTCTTATAAA

6 AGCGCAGTTGCCCCCTGCCTATTTCTAAATCG

7 GGTAGTGAAGCGGGCCGTAAAGCACGGAACCT

8 AATAAAGTGAAACCGGCAAAATCCGGGGTCGA

9 ACCATCACAAGGGAGCCCCCGATTCCGTATAA

10 CAGGCGAAATAGCCCGAGATAGGGCTACGTGA

11 ACCGTCTAAAGCCGGCGAACGTGGTTTAACGG

12 TGCAGCAATTTGGAACAAGAGTCCGGCGAAAA

13 AGAACGTGTTCACCGCCTGGCCCTCAACAGCT

14 TGTTCCAGGCGGTCCACGCTGGTTAGGGTGGT

15 TCAAAAGAAATCCTGTTTGATGGTCGCGGGGA

16 TGAGATTTGTTGAATCGGCCAACGGGTTCCGA

17 AGTCGGGATTGCGTATTGGGCGCCTGCCCCAG

18 ATTAATTGTCACCAGTGAGACGGGGAGAGAGT

19 GATTGCCCTGCCTAATGAGTGAGCAGTGTAAA

20 TTTTCTTTCGTTGCGCTCACTGCCAATTCCAC

21 GAGGCGGTAACCTGTCGTGCCAGCCTGTTTCC

22 AATGGTCATAAGACATGGTCATAGTGCATTAA

23 AGAGGATCATTGTTATCCGCTCACCGCTTTCC

24 GTGCCAAGCGAGCCGGAAGCATAATAACTCAC

25 GCCTGGGGCACGACGTTGTAAAACCCAGGGTT

26 ACAACATACTTGCATGCCTGCAGGGATGTGCT

27 TGTGTGAACCCGGGTACCGAGCTCCTCTTCGC

28 CGAAAGATAGGTATCGGTGCGGGCGAATTCGT

29 CGCCATTCCAGCTGGCGAAAGGGGTCGACTCT

30 TTCTGGTGATTAAGTTGGGTAACGGACGGCCA

31 TTCCCAGTCTCCAGCCAGCTTTCCCCTCAGGAAGATCGCA

32 GCAAGGCGCCGGAAACCAGGCAAACTGCCAGT

33 TATTACGCAGGCTGCGCAACTGTTTTGGTGTA

34 TTGACCGTAATGGGATAGGTCACGGGGAAGGG

35 GATGGGCGCATCGTAACCGTGCATGCGCCATT

36 TTGAGGGGACGACGACAGTATCGGGGCACCGC

37 TAATGTGTTCAAAAGGGTGAGAAAACGGCGGA

38 CCGTCGGATTCTCCGTGGGAACAAGGCCGGAG

39 AACCCTCAATCACCATCAATATGAGTAACAAC

40 TTCATCAACATTAAATGTGAGCGATATTCAAC

41 CTTTATTTCTGATAAATTAATGCCAGCCAGCT

42 ATAATTCGCGTCTGGCCTTCCTGTGGAGAGGG

43 TTATGACCTTTGAGAGATCTACAACATCAAAA

44 TCATTTTTTAACCAATAGGAACGCAGGCTATC

45 AGCATAAAGCCTGAGAGTCTGGAGAAATCAGC

46 TAAAATTCGCATTAAATTTTTGTTCAAACAAG

47 AGAATTAGTGAACGGTAATCGTAATATTTTGT

48 AAATATTTAAATTGTAAACGTTAAAACTAGCA

49 TTAACATCATATGTACCCCGGTTGGTATAAGC

50 CAAAAACAGGAAGATTATAATCAG

51 AAAAGCCCTCAATTCTACTAATAGAGCTGAAA

52 TGTCAATCCAATAAATCATACAGGACCTGTTT

53 AGAATCGACAAAATTAAGCAATAAGACCATTA

54 AGGTCATTGCTAAATCGGTTGTACTTCCCAAT

55 TAGCTATTCTGTAATACTTTTGCGTGTCTGGA

56 CGTTCTAGCAACGCAAGGATAAAACAACATGT

57 ACAGTCAATATATTTTAAATGCAAAGAGCTTA

58 CCTTTTGATTTTTGCGGATGGCTTTGCCTGAG

59 CAGGTCAGATATAATGCTGTAGCTATTTTTAG

60 TCAAAGCGTGCAACTAAAGTACGGGGAGAAGC

61 AAGACTTCTCCATATAACAGTTGACAAAAACA

62 GATTGCATCGAGTAGATTTAGTTTAGCCTCAG

63 TTACCCTGTCGCAAATGGTCAATACAAGGCAA

64 ACGAGAATTTTCATTTGGGGCGCGTAGTAGCA

65 AGGTGGCACAAATGCTTTAAACAGTTCATTGA

66 AGCTATATGACCATAAATCAAAAATAGCGTCC

67 GATACATTACTATTATAGTCAGAAAGAGGGGG

68 TCTGCGAACAAAAAGATTAAGAGGTAGCGAGA

69 AGTTTCATAAATATCGCGTTTTAACCTCGTTT

70 TTTAAATAAACCAGACCGGAAGCAACGAGGCA

71 ATTGCTGAGATTAGAGAGTACCTTACTAATGC

72 ATTCATCAAGGAATACCACATTCATAATTGCT

73 ACTAACGGAACGCCAAAAGGAATTAACTCCAA

74 GTTGGGAAGCAACACTATCATAACTTCGAGCT

75 TTTAAGAAACGATAAAAACCAAAAAAGCCCGA

76 AACTTTAACAAAAGAAGTTTTGCCGCAAAGCG

77 GTAGTAAAAAATGTTTAGACTGGATCAGGTCT

78 AAGGCTTGGGAATCGTCATAAATATTCAGAAA

79 ATCCCCCTAACAAAGCTGCTCATTTTACCCAA

80 AATACTGCCCCTGACGAGAAACACCAAGAGTA

81 TAATAGTATTGGGCTTGAGATGGTCAGACCAG

82 GGCTTTTGTCATTGTGAATTACCTCCAACTTT

83 ACCAGACGCTGGCTCATTATACCAGCAGACGG

84 TAGTAAGAGAAAAATCTACGTTAAACCTGCTC
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85 AGATACATAACAACATTATTACAGTCATCGCC

86 CCAAGCGCACAACGGAGATTTGTAGTAGAAAG

87 AAAACACTTGTGTCGAAATCCGCGTAAAACGA

88 AACCTAAATTAGCCGGAACGAGGCGTCAGGAC

89 GGTAAAATAAGGGAACCGAACTGATATGCGAT

90 AGACTTTTACAGATGAACGGTGTATTAATTTC

91 GTAGCAACGCTGGCTGACCTTCATCAGAACGA

92 CCTCAGCAAAGAACCGGATATTCACAGTGAAT

93 ATCAACGTAGGCCGCTTTTGCGGGGCTTGCAGGGAGTTAA

94 ATCTTGACGCGAAAGACAGCATCGCCCACGCA

95 GCGCATAGGGCTACAGAGGCTTTGGATAGTTG

96 GAAAGAGGTCATGAGGAAGTTTCCTTCGAGGT

97 TCAATCATACGTAATGCCACTACGAGCCTTTA

98 CATGTTACACGAAAGAGGCAAAAGTTGAAAAT

99 TGATAAATCATCTTTGACCCCCAGCTAAAGGA

100 ACAGTTTCGAATAGAAAGGAACAACGATTATA

101 TTTCTGTATAATAATTTTTTCACGAATACACT

102 TTTGTCGTAAAAGGCTCCAAAAGGAAGGCACC

103 CAGCCCTCGGTTTATCAGCTTGCTATTAAACG

104 TACAAACTTAAACAGCTTGATACCAGGACTAA

105 CCATGTACATGACAACAACCATCGGAACGAGG

106 TCATTTTCATATTCGGTCGCTGAGATCGTCAC

107 TAACCGATAGGGATAGCAAGCCCATCAGAACC

108 CGCCGACACGTAACACTGAGTTTCGTTTAGTA

109 GAATTTCTACAACGCCTGTAGCATGCCCGGAA

110 ATTGTATCATAGTTAGCGTAACGATAAGTGCC

111 CTCCAAAACTTTCCAGACGTTAGTGATTAGCG

112 ATTGCGAATGGGATTTTGCTAAACAAGAGGCT

113 ACAAATAAGAAACATGAAAGTATTAACTTTCA

114 GCAGGTCATCAAGAGAAGGATTAGAAATGAAT

115 AGAGCCGCCTCAGTACCAGGCGGATCTAAAGT

116 CCACCCTCGGTTGATATAAGTATATCCACAGA

117 CGCCACCCTCACCGTACTCAGGAGGTCACCAG

118 AGAGCCACCTCAGAACCGCCACCCATAGGAAC

119 GCCATCTTCAGAGCCACCAGATAACAGAACCC

120 GCCACCCTTTCATAATCAAAATCATTTTCGGT

121 CCGCCACCCACCGGAACCGCCTCCTAGCGTCA

122 TAGGTGTATCAGAACCGCCACCCTGTAATCAG

123 GTCGAGAGAGAGCCGCCACCAGAAACGTCACC

124 GGGTTTTGCGCCAGCATTGACAGGCAGTAGCA

125 GAGACTCCGACGATTGGCCTTGATAGCCATTT

126 ATTATTCTATCCTCATTAAAGCCAATTAAAGG

127 ACAGTTAACTCTGAATTTACCGTTGGAGGGAA

128 GGTCAGTGATGGCTTTTGATGATAAAAGACAA

129 TTACCAGCGCCCAGGAGTGTAC

130 TTATTTTGCATTCAACCGATTGAGCCAGTAAG

131 TAAAAGAATTGACGGAAATTATTCGAATGGAA

132 GTAGAAAACACCGTCACCGACTTGATTCACAA

133 AAGACTCCGAGCCAGCAAAATCACAGGTTGAG

134 ATAACGGAATTAGCAAGGCCGGAACCACCACC

135 AGTTACCACATCGATAGCAGCACCCAGAGCCA

136 TTTTTAAGGAATCAAGTTTGCCTTCTCAGAGC

137 ATGAAATACGCGTTTTCATCGGCACCGGAACC

138 TGAGTTAACCTTATTAGCGACCGCTTAACTTT

139 CATAGCCCGCCCAATAATAAGAGCGCTAATAT

140 GACTGTAGGCAATAGCTATCTTACACACCCTG

141 TAGCGACAAAAAGTAAGCAGATAGAGGGAAGC

142 AATGAAACGAAGGAAACCGAGGAAAGCAGCCT

143 CCATTACCATACCCAAAAGAACTGACGATTTT

144 GGGAATTATTATTACGCAGTATGTAGCCATAT

145 TGAATTATTACATACATAAAGGTGCCAGAGCC

146 GGTAAATAACGCAAAGACACCACGCCTGAATC

147 AAGGGCGATCACAATCAATAGAAAAGTTGCTA

148 AAATCAAGATTATTCATATGGT

149 CGAACCTCCCAGCTACAATTTTATGAATAAGT

150 ATCCGGTAGCTAACGAGCGTCTTTGCAACATA

151 CCAATAGCCAGTTACAAAATAAACTAGCAAAC

152 TTTTATTTCCAATCCAAATAAGAAGCATGATT

153 AGTACCGCCGTCAAAAATGAAAATACGCAATA

154 TCCTTATCAGAATAACATAAAAACCCGAACAA

155 CATGTAGACGGGAGAATTAACTGACGAAGCCC

156 AAGAAAAACAGAGGGTAATTGAGCAAGAAACA

157 GCCTGTTTTAACCCACAAGCAGCAGCCAGAAT

158 CAGAGAGAATCAACAATAGATAAGTAAACAAC

159 AACAAAGTTAATATCCCATCCTAAAAGGTAAA

160 GCATTAGAAACCAATCAATAATCGGCCAGTAA

161 TTACAGAGATTCCAAGAACGGGTACCAACATG

162 TTGTTTAAACTCATCGAGAACAAGGGCTTAAT

163 TATTTATCTCATCGTAGGAATCATCTTACCAG

164 TAATTTGCAAGCAAATCAGATATAGCCTGTTT

165 TTACCAACTTCTAAGAACGCGAGGAATAAACA

166 TTTTGCACCCGACTTGCGGGAGGTCCGACCGT

167 GGTTTGAAATATTTGAAGCCTT

168 TTTTAGTTTAAGGCGTTAAATAAGCGTTTTAG
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169 ACAAAGAAATAATTACTAGAAAAAGAAGGCTT

170 TATGTAAAATGCGTTATACAAATTTACCGCGC

171 TAACCTCCCAACGCTCAACAGTAGCAAGCCGT

172 ATCAAAATGCCATATTTAACAACGTTAAACCA

173 TTAAGACGGCAGAGGCATTTTCGAGCTGTCTT

174 TAGAATCCTATAAAGTACCGACAATTTACGAG

175 CTGTAAATGTCCAGACGACGACAATCCTGAAC

176 AAATCAATCTAATGCAGAATGAACCTTGCCGC

177 ATGTTCAGATATGTGAGTGAATAAGAATTACC

178 GTAATTCTCGTCGCTATTAATTAAAACAAAAT

179 TAAGAGAATTGAAAACATAGCGATGCAAAAGA

180 TAATTTAGCTGAGAAGAGTCAATAGCAGAGGC

181 TGAGAATCCATAGGTCTGAGAGACTGATTGCT

182 TATAAAGCGGCTTAGGTTGGGTTATTTACATC

183 AGTATCATTGCTGATGCAAATCCATAACGTCA

184 CCGGAATCCGCGAGAAAACTTTTTAGAAATAA

185 GTGATAAAAATTTCATCTTCTGACCCTACCAT

186 AAGGGTTAGAACTAAATTTAAT

187 ATCCTGATTATTTGCACGTAAAACCAAATATA

188 TGATTATCCGTAGATTTTCAGGTTATCGCAAG

189 CACCAGAATACAGTAACAGTACCTTATAACTA

190 AGTAACATCAATAACGGATTCGCCTACCTTTT

191 TTTGCCCGCAAGTTACAAAATCGCGTGAATTT

192 TTACAAACCATTTCAATTACCTGAAGCTTAGA

193 TAATACATAAACAAACATCAAGAATTTTCCCT

194 CTAACAACTTTAACAATTTCATTTCCTTGCTT

195 GAGGAAGGTGGAAACAGTACTGGTAATATCAT

196 TTTTTTAATTATCTAAAATATCTTTAGGAGCA

197 TAATTACATAATAGATTAGAGCCGTCAATAGA

198 AGATGATGTTGAGGATTTAGAAGTATTAGACT

199 GAATTATTAATTCGACAACTCGTATTAAATCC

200 TTGAATACAACGTTATTAATTTTAAAAGTTTG

201 GGGAGAAATATCATTTTGCGGAACAAAGAAAC

202 GATGAATAGGAGCGGAATTATCATCATATTCC

203 AGAAATTGAGATGATGGCAATTCATCAATATA

204 ATCAAAATTGTTTGGATTATACTTCTGAATAATGG

205 TCAACAGTTGAAAGGAATT

206 AACCCTCAATCCAGTTGGCAAA

207 TAAAGCATCACCTCAAATATCA

208 CCACGCTGAGAAATGAAAAATC

209 GGCGGTCAGTACTGCAACAGTG

210 CGAACCACCAGAACAGAGGTGA
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Figure J.3: Schem of Origami 5 without (a) and with the path of the scaffold

J.5 Origami O5
The staples are given from 5to 3. 3 is represented by a small ball in (Fig. J.3)
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1 ACAGTGCCACGCTATACGTGGCACAGACAATATTTTTGAACAACAGGAAAAACG

2 CTCATGGAAATACCTACATTTTGACGCTCAATCGTCTGAAGAACCCTTCTGACC

3 TGAACCTCAAATAAGGGACATTCTGGCCAACAGAGATAATGGATTATTTACA

4 TTGGCAGATTCACCAGTCACACG

5 ACCAGTAATAAATCAAACCCTC

6 TGAAAGCGTAAGAGAGAGCCAGCAGCAAATGAAAAATCTAAGGAATTGAGGAAG

7 GAAAGGAAGGGAACAAACTATCGGCCTTGCTGGTAATATCCAGAACAATATTACCGCCAGCCATTGTGGCTATTAGTCT

8 TTAATGCGCGAACTAAAACAGAGGTGAGGCGGTCAGTATTTAGAGCCGTCAA

9 TATTAGACTTTACAATACCGAACGAACCACCAGCAGAAGATGATAGCCCTAAAA

10 CATCGCCATTAAATGGTGGTTCCGAAATCGGCAAAATCCCGCCCCAGCAGGCGA

11 TTATCATTTTGCGTCTTTAGGAGCACTAACAACTAATAGATAACACCGCCTGCA

12 TCCTGATTATCAGGTCAGTTGGCAAATCAACAGTTGAAAAGCATCACCTTGC

13 AATCAATATCTGATGATGGCAA

14 GTTATCTAAAATAGAACAAAGAAACCACCAGAAGGAGCGGTGAATAATGGAAGG

15 TAGATAATACATTCTTTGCCCGAACGTTATTAATTTTAAGAAATAAAGAAAT

16 ATGAATATACAGTAAACAATTCGACAACTCGTATTAAATCTGAGGATTTAGAAG

17 AAATCGCGCAGAGATATCAAAATTATTTGCACGTAAAACAAAGTTTGAGTAACA

18 GAAACAAACATCAATCCTGATTGTTTGGATTATACTTCAATTATCATCATAT

19 TTCATCAATATAAGAAAACAAA

20 GTTAGAACCTACCGCGAATTATTCATTTCAATTACCTGAGTTTAATGGAAACAG

21 TGCGTAGATTTTCAATAACGGATTCGCCTGATTGCTTTGTAAATCGTCGCTA

22 AAAACATAGCGATAACAGTACCTTTTACATCGGGAGAAACAGGTTTAACGTCAG

23 CTTTTTAACCTCCATATGTGAGTGAATAACCTTGCTTCTGAATACCAAGTTACA

24 AAATCCAATCGCTTAACAATTTCATTTGAATTACCTTTCAAAAGAAGATGAT

25 ATTAATTACATAAGACAAAGAA

26 TACATAAATCAATGGCTTAGGTTGGGTTATATAACTATATCATCTTCTGACCTA

27 TTAATTAATTTTCCAATAGTGAATTTATCAAAATCATAGCGTTAAATAAGAA

28 CATTAAATTTTTGAGCTTAGATTAAGACGCTGAGAAGAGTCCTTAGAATCCTTG

29 ATCGCCATATTTAGAAATACCGACCGTGTGATAAATAAGGGTCTGAGAGACTAC

30 AGTAATAAGAGATTTTTCAAATATATTTTAGTTAATTTGTAAATGCTGATGC

31 CGCGAGAAAACATATAAAGTAC

32 AATTTAATGGTTTACAACGCCAACATGTAATTTAGGCAGAATAAACAACATGTT

33 TAAACACCGGAATCAGTATAAAGCCAACGCTCAACAGTAGTCCTGAACAAGA

34 GCATGTAGAAACCTATCATATGCGTTATACAAATTCTTACCATAATTACTAGAA

35 AAAGCCTGTTTAGAAGGCCGGAGACAGTCAAATCACCATCTGTAGGTAAAGATT

36 GAGAACAAGCAAGACGCGCCTGTTTATCAACAATAGATAAGGGCTTAATTGAGA

37 AGCAAGCAAATCAAAGTAATTCTGTCCAGACGACGACAGGCATTTTCGAGCC

38 CGACAAAAGGTAGATATAGAAG

39 CAGCTAATGCAGACCGTTTTTATTTTCATCGTAGGAATCAGAACCTCCCGACTT

40 AAAATAATATCCCCATTCCAAGAACGGGTATTAAACCAATTTGCACCCAGCT

41 CTAACGAGCGTCTAATCAATAATCGGCTGTCTTTCCTTATATCCTAATTTACGA

42 CGATTTTTTGTTTAAGCCTTAAATCAAGATTAGTTGCTATGTACCGCACTCATC
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43 CATAAAAACAGGATTCTAAGAACGCGAGGCGTTTTAGCTTACCGCGCCCAAT

44 GCTTATCCGGTGAAGCGCATTA

45 GCGGGAGGTTTTGAACGTCAAAAATGAAAATAGCAGCCTTAGGGTAATTGAGCG

46 ACAATTTTATCCTAATAAACAGCCATATTATTTATCCCACAATAATAAGAGC

47 CTTACCGAAGCCCTTCCAGAGCCTAATTTGCCAGTTACAAGAATCTTACCAACG

48 ACGGAATACCCAAGATAACCCACAAGAATTGAGTTAAGCCATCCAAATAAGAAA

49 AGCAAACGTAGATAACTGAACACCCTGAACAAAGTCAGTACAGAGAGAATAA

50 GACGGGAGAATAAATACATACA

51 CTAATATCAGAGAAAGAACTGGCATGATTAAGACTCCTTAACGGAATAAGTTTA

52 AAGAAACAATGAAAACAAAGTTACCAGAAGGAAACCGAGGCCAAAGACAAAA

53 GCATAGTAAGAGCTTTTTAAGAAAAGTAAGCAGATAGCCGATAGCAATAGCTAT

54 AGCAAAATCACCAAATAGAAAATTCATATGGTTTACCAGCGAAACGCAATAATA

55 GAAACCATCGATACATATAAAAGAAACGCAAAGACACCTTACGCAGTATGTT

56 TAAAGGTGGCAAGCAGCACCGT

57 TTTTGTCACAATCGTAGCACCATTACCATTAGCAAGGCCGAGACTGTAGCGCGT

58 GGGCGACATTCAATATCACCGTCACCGACTTGAGCCATTTGCCATCTTTTCA

59 CCACCGGAACCGCGACGGAAATTATTCATTAAAGGTGAATCCGATTGAGGGAGG

60 GAAGGTAAATATTCATTCAGTGAATAAGGCTTGCCCTGACTACCCAAATCAACG

61 ACCACCACCAGAGTTCGGTCATAGCCCCCTTATTAGCGTTTGGGAATTAGAGCC

62 TTGGCCTTGATAACAGAATCAAGTTTGCCTTTAGCGTCGAAACGTCACCAAT

63 AATCAGTAGCGTTCACAAACAA

64 TTTCATCGGCATTCCGCCGCCAGCATTGACAGGAGGTTGATCTGAATTTACCGT

65 TAATCAAAATCACCGCCACCCTCAGAGCCACCACCCTCAGTACTGGTAATAA

66 ACAGTGCCCGTATCTCCCTCAGAGCCGCCACCCTCAGAACCGGAACCAGAGCCA

67 AGACTCCTCAAGAATACATGGCTTTTGATGATACAGGAGTGAGCCGCCACCAGA

68 ATAAGTGCCGTCTTAAAGCCAGAATGGAAAGCGCAGTCGGCAGGTCAGACGA

69 ATAAATCCTCAGAGAGGGTTGA

70 TCCAGTAAGCGTCGAAGGATTAGGATTAGCGGGGTTTTGCAGGAGGTTTAGTAC

71 GTTTTAACGGGGTGGAACCTATTATTCTGAAACATGAAAAGAGCCACCACCC

72 GGAACCCATGTACAAACAGTTAATGCCCCCTGCCTATTTCCAGTGCCTTGAGTA

73 CGCCACCCTCAGAACCGCCACCCTCAGAACCGCCACCCTCGTATTAAGAGGCTG

74 TATAAGTATAGCCCGGAATAGGTGTATCACCGTACTCTCAGTACCAGGCGG

75 TCATTTTCAGGGATAGCAAGCCCAATA

76 GCTTGCTTTCGAGCGTAACACTGAGTTTCGTCACCAGTACAAACTACAACGCCT

77 GTAGCATTCCACAAAAAGGCTCCAAAAGGAGCCTTTAATTATAGTTGCGCCGAC

78 AAATCTCCAAAAGACAGCCCTCATAGTTAGCGTAACGATCTAAAGTTTTGTC

79 GTCTTTCCAGACGAACAACTAAAGGAATTGCGAATAATAAGGTCGCTGAGGCTT

80 AGAATAGAAAGGTTAGTAAATGAATTTTCTGTATGGGATTTTGCTAAAC

81 AACTTTCAACACAGCAGCGAAA

82 CGGCTACAGAGGGGCCGCTTTTGCGGGATCGTCACCCTGTTTCAGCGGAGTG

83 AACGGGTAAAATATCGCCCACGCATAACCGATATATTCTTTTTTCACGTTGA

84 GCAAAAGAATACAGTGAATTTCTTAAACAGCTTGATACCGGTATCGGTTTATCA
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85 AATGACAACAACCACGTAATGCCACTACGAAGGCACCAACGATTATACCAAGCG

86 GCAGGGAGTTAAACTTTGAGGACTAAAGACTTTTTCATGAAAATTGTGTCGAAA

87 GACAGCATCGGCAGACGGTCAA

88 TTTGAAAGAGGACCATGTTACTTAGCCGGAACGAGGCGAACGAGGGTAGCAA

89 CTTCATCAAGAGAACGGAGATTTGTATCATCGCCTGATGGAAGTTTCCATTA

90 TAACAAAGCTGCTCTAAAACACTCATCTTTGACCCCCAGCCTAAAACGAAAGAG

91 CGAAACAAAGTACTAATCTTGACAAGAACCGGATATTCATGAGAAACACCAGAA

92 TCCGCGACCTGCTCAGATGAACGGTGTACAGACCAGGCGCTTAATCATTGTGAA

93 TCATAAGGGAATCAGGACGTTG

94 CGAACTAACGGATTTTAAGAACTGGCTCATTATACCAGCCGAACTGACCAAC

95 AGGAATACCACAGGGCTTGAGATGGTTTAATTTCAACTATAGGCTGGCTGAC

96 CGAGTAGTAAATTTTCAACTAATGCAGATACATAACGCCAACGACGATAAAAAC

97 TTACCTTATGCGAACAACATTATTACAGGTAGAAAGATTCAGGGGGTAATAGTA

98 GGAAGAAAAATTCATAAATATT

99 AACAGTTCAGAAGGATAGCGTCCAATACTGCGGAATCGCTACGTTAATAAAA

100 ACTATTATAGTCGGCTTTTGCAAAAGAAGTTTTGCCAGATCAGTTGAGATTT

101 CGAAAGACTTCAAAACACTATCATAACCCTCGTTTACCAGAAAGGAATTACGAG

102 CAAAATAGCGAGAAGAAGCAAAGCGGATTGCATCAAAAAGGCGAACCAGACCGG

103 AAATGTTTAGACTAACGAGAATGACCATAAATCAAAAATCATTGCTCCTTTTGA

104 CATTGAATCCCTGAATATAATG

105 GCAACTAAAGTATTGCGGATGGCTTAGAGCTTAATTGCCCTCAAATGCTTTA

106 ATTCTGCGAACGCAGGTCAGGATTAGAGAGTACCTTTAAGGTCTTTACCCTG

107 CAATAACCTGTTTATATCGCGTTTTAATTCGAGCTTCAAAATTAAGAGGAAGCC

108 AAGCAAACTCCAAAGTAGATTTAGTTTGACCATTAGATACTGAAAAGGTGGCAT

109 TAAGAGGTCATTTCGGTGTCTGGAAGTTTCATTCCATATACATACAGGCAAGGC

110 CTGTAGCTCAAAAAGCTAAATC

111 TGTAATACTTTTAATTAAGCAATAAAGCCTCAGAGCATCATGTTTTAAATAT

112 AGAACCCTCATAAGTAGTAGCATTAACATCCAATAAATACAGTTGATTCCCA

113 CAAAAGGGTGAGAAGCTATATTTTCATTTGGGGCGCGAGCATTTCGCAAATGGT

114 CAATTCTACTAATTATTTTAAATGCAATGCCTGAGTAATGAATATGATATTCAA

115 AAAGAATTAGCAAGCGGGAGAAGCCTTTATTTCAACGCAATTTTTGAGAGATCT

116 GGTTGTACCAAACAAGAGAATC

117 ATGTCAATCATAGGTCATTGCCTGAGAGTCTGGAGCAAAAACATTATGACCC

118 GATTGTATAAGCTAAATTAATGCCGGAGAGGGTAGCTAGGATAAAAATTTTT

119 CCGTTCTAGCTGAAAATATTTAAATTGTAAACGTTAATATGGAACGCCATCAAA

120 ACAAAGGCTATCATGTACCCCGGTTGATAATCAGAAAAGCAACATTAAATGTGA

121 GATGAACGGTAGCGGATTGACC

122 AGATGGGCGCATCGTCGGATTCTCCGTGGGAACAAACGATCGTAAAACTAGC

123 TCGGCCTCAGGATGGCCTTCCTGTAGCCAGCTTTCATCCCCAAAAACAGGAA

124 CGGAAACCAGGCATTAAATCAGCTCATTTTTTAACCAATATTTGTTAAAATTCG

125 AATAATTCGCGTCAGATCGCACTCCAGCCAGCTTTCCGGCAACTGTTGGGAAGG

126 GCGAGTAACAACCCGTAACCGTGCATCTGCCAGTTTGAGGGAAAGGGGGATGTG
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127 GTAATGGGATAAGTCACGACGT

128 TTGCATGCCTGCAAGTTGGGTAACGCCAGGGTTTTCCCGGTCACGTTGGTGT

129 GTAATCATGGTCGCCTCTTCGCTATTACGCCAGCTGGCGGACGACGACAGTA

130 CACACAACATACGAAGCGCCATTCGCCATTCAGGCTGCGCACCGCTTCTGGTGC

131 GCGATCGGTGCGGATAGCTGTTTCCTGTGTGAAATTGTTAGGGTGCCTAATGAG

132 CTGCAAGGCGATTAGGTCGACTCTAGAGGATCCCCGGGTACTTTCCAGTCGGGA

133 TGTAAAACGACGCGGGGAGAGG

134 GGTTTTTCTTTTAGCTGCATTAATGAATCGGCCAACGCGGCCAGTGCCAAGC

135 GGCCCTGAGAGAATTAATTGCGTTGCGCTCACTGCCCGCCGAGCTCGAATTC

136 AAATCCTGTTTGAAGCCGGAAGCATAAAGTGTAAAGCCTGTCCGCTCACAATTC

137 TGAGCTAACTCACGTTGCAGCAAGCGGTCCACGCTGGTTTTTATAAATCAAAAG

138 AACCTGTCGTGCCCACCAGTGAGACGGGCAACAGCTGATTACAAGAGTCCACTA

139 CGGTTTGCGTAGTCTATCAGGG

140 CCCAAATCAAGTACTCCAACGTCAAAGGGCGAAAAACCTTGGGCGCCAGGGT

141 TAAAGGGAGCCCAGGGTTGAGTGTTGTTCCAGTTTGGAGCCCTTCACCGCCT

142 AATAGCCCGAGATCCGATTTAGAGCTTGACGGGGAAAGCCGGCGAACGTGGCGA

143 TTAAAGAACGTGGTTTTTGGGGTCGAGGTGCCGTAAAGCACTAAATCGGAACCC

144 CGATGGCCCACTACGTGAACCATCA



Appendix K

Raman spectra of different molecules

All the abscissa are given in cm−1. The ordinate is given in number of photon hit.

Figure K.1: tampon TAE (Tris acetate EDTA)
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Figure K.2: tampon TBE (Tris borate EDTA)

Figure K.3: tampon BSPP
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Figure K.4: PEG

Figure K.5: Rhodamine 6G 100 µM (Mq)
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