Thèse soutenue

Extension et validation de l’outil Geant4 dans le cadre du projet Geant4-DNA pour la prédiction des dommages biologiques radio-induits à l’échelle cellulaire

FR
Auteur / Autrice : Ngoc Hoang Tran
Direction : Sébastien IncertiChristophe Champion
Type : Thèse de doctorat
Discipline(s) : Physique nucléaire
Date : Soutenance le 24/09/2012
Etablissement(s) : Bordeaux 1
Ecole(s) doctorale(s) : École doctorale des sciences physiques et de l’ingénieur (Talence, Gironde)
Partenaire(s) de recherche : Laboratoire : Centre d'études nucléaires Bordeaux Gradignan
Jury : Président / Présidente : Philippe Moretto
Examinateurs / Examinatrices : Barbara Mascialino
Rapporteurs / Rapporteuses : Marie-Claude Bordage, Jocelyn Hanseen

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

L’étude des effets biologiques des radiations ionisantes à l’échelle de la cellule individuelle et en particulier sur l’ADN du noyau cellulaire reste un enjeu majeur de la radiobiologie actuelle. L’objectif principal des recherches actuelles est de déterminer quels peuvent être les effets biologiques délétères des radiations ionisantes pour la santé humaine, en particulier dans le domaine des faibles doses de radiation. Afin d’étudier précisément la réponse des cellules aux radiations ionisantes, de nombreuses études expérimentales des effets des radiations ionisantes sur les cellules, tissus et organismes biologiques aux basses énergies ont accumulées de grandes quantités de données de qualité sur la réponse de cellules aux radiations. Il existe également de nombreux modèles semi-empiriques de survie cellulaire qui incorporent des paramètres biologiques et physiques. En parallèle, des stochastiques basées sur la technique « Monte Carlo » pour modéliser les processus élémentaires en physique, chimie et biologie sont en cours de développement. L’outil Geant4 développé dès 1993 (CERN et KEK) en utilisant des techniques informatiques de dernière génération (C++) permet à l’utilisateur de construire une simulation complète grâce à de nombreuses fonctionnalités : formes géométriques, matériaux, particules élémentaires, processus physiques électromagnétiques et hadroniques, visualisation, analyse de données, interactivité et extensibilité… Cependant, Geant4 présente un certain nombre de limitations pour la simulation des effets biologiques des radiations ionisants à l’échelle subcellulaire : les modèles standard ne prennent pas compte le technique « pas-à-pas », les modèles physique sont limités à basse énergie, il n’a pas des descriptions des cibles moléculaires et Geant4 n’est pas capable de simuler les étapes physico-chimique et chimique nécessaire pour déterminer l’oxydation des bases et les éventuelles cassures d’ADN.Dans ce contexte, le projet Geant4-DNA propose d’étendre Geant4 afin de modéliser les interactions des radiations ionisantes à l’échelle de la cellule biologique et la molécule d’ADN et aux basses énergies. Au cours du travail de thèse, j’ai tout d’abord validé les modèles physiques en comparant les résultats de simulation à une grande collection de données expérimentales disponibles dans la littérature. L’accord entre les valeurs de sections efficaces totales et différentielles et les mesures expérimentales a été quantifié à l’aide du test statistique Kolmogorov-Smirnov. J’ai par la suite amélioré les classes des processus de diffusion élastique des électrons et travailler sur les calculs théoriques du modèle de diffusion élastique des protons et des alphas dans l’eau liquide auparavant inexistant dans Geant4-DNA. J’ai effectué une combinaison des processus multi-échelles des modèles de Geant4-DNA (à l’échelle microscopique) avec les modèles électromagnétiques disponibles dans l’outil Geant4 (les processus d’interaction des photons et autres modèles de Geant4). A la fin de mon travail, j’ai participé à l’estimation des performances de Geant4-DNA pour la dosimétrie dans des géométries de petite taille (jusqu’à l’échelle du nanomètre) dans l’eau liquide à l’aide des distributions « Dose Point Kernel ». J’ai ensuite calculé les fréquences de dépôts d’énergie dans des petits cylindres de dimensions nanométriques correspondant à des cibles biologiques et des modèles de noyau cellulaire humain simplifié pour l’estimation des cassures directes simple et double. Mon travail de thèse a fournit les premiers résultats de Geant4-DNA pour la prédiction de cassure de brin d’ADN combinant physique et géométries à l’échelle de l’ADN. Enfin, nous avons développé des classes de processus et modèles basés sur l’approche CTMC-COB (Classical Trajetory Monte Carlo avec critère d’Over Barrier) spécifique aux bases de la molécule d’ADN et à l’eau liquide.