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Thermoelectric effect in colloidal dispersions 

 
Abstract 

 
In this work we study the motion induced in a colloidal dispersion by the 

thermoelectric or Seebeck effect. As its basic principle, the ions of the electrolyte 
solution start moving in a temperature gradient. In general, the velocity of one ion 

differs from another. As a result, one observes a charge separation and a macroscopic 
electric field. This thermoelectric field, in turn, acts upon the charged colloidal 

particle present in the solution. Thus thermophoresis of the particle comprises of an 

electrophoretic motion in the thermoelectric or Seebeck field. As an important result, 
we derive how the corresponding velocity of a colloidal particle depends upon the 

colloidal volume fraction or on molecular weight for polymers. In a second part, we 
study the thermoelectric effect due to a hot colloidal particle where a radial 

temperature gradient is produced by the particle itself. In this temperature gradient 

the same Seebeck effect takes place in the electrolyte solution. We find that the hot 
particle carries a significant amount of charge around it. Whereas the amount of 

surface charges present at the boundaries of the sample container in the one-
dimensional case is rather insignificant. Possible applications of this thermocharging 

phenomenon are also discussed. 

 

Keywords: thermoelectrophoresis, thermoelectric effect, Seebeck effect, thermal 

diffusion, charged colloids, thermocharge 
 

Effet thermoélectrique dans des dispersions colloïdales  

 
Résumé 

 
Cette thèse porte sur le mouvement de particules colloidales induit par l’effet 
thermoélectrique (ou effet Seebeck). Dans un électrolyte soumis à un gradient de 

température, les ions ont tendance à migrer à des vitesse qui différent d'une espèce à 
l'autre. On observe alors une accumulation de charge aux bords de l’échantillon. Ce 

déséquilibre induit un champ électrique qui agit sur les colloïdes chargés présents 

dans la solution. Cette contribution électrophorétique dans le champ de Seebeck 
s'additionne à la contribution directe de thermodiffusion. Comme résultat principal, 

nous obtenons la vitesse phorétique en fonction de la fraction volumique des 

particules et, dans le cas de polyélectrolytes, du poids moléculaire. Dans la seconde 

partie, nous étudions l’effet thermoélectrique pour une particule chauffée par 

absorption d’un faisceau laser. Le gradient de température est alors radial et l’effet 
Seebeck induit une charge nette dans le voisinage de la particule. Enfin, nous 

discutons les applications possibles de ce phénomène de thermocharge.  
 

Mots clé : thermo-électrophorèse, effet thermoélectrique, effet Seebeck, 
thermodiffusion, colloïdes chargés, thermocharge 
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Chapter 1

Introduction

Movement of particles suspended in a fluid is important in biotechnology andmicrofluidics.
Particles can be set in a motion by creating non-equilibrium situations using different
means [1]: one of the oldest and well known method is to drive a particle by applying an
external electric field (electrophoresis) [2]. Dielectric particles can be moved by applying a
non-uniform electric field (dielectrophoresis). Recent studies regarding other possibilities
deal with mechanisms like diffusiophoresis and thermophoresis. In case of diffusiophoresis,
non-equilibrium condition is created by applying a concentration gradient of molecules
dissolved in the fluid [3] whereas thermophoresis is the motion of particles in a temperature
gradient. The purpose of this thesis is to investigate the thermophoresis of colloids in an
electrolyte solution. Applied temperature gradient acts like an external force on the
particles and drives them to the cold or to the hot region. Associated drift velocity
is proportional to the thermal gradient present in the system and the proportionality
constant is known as the thermophoretic mobility.

Although thermophoresis has been known for more than a century, its underlying
physical mechanism was developed much later. Regarding thermophoresis of high poly-
mers, Giddings found that the mobility is independent of molecular weight [4]. Later
this was explained by Brochard and de Gennes by showing that thermophoresis is in-
sensitive to hydrodynamic interactions within the polymer chain [5]. For short polymers
and binary molecular mixtures, thermal diffusion depends upon several parameters like
molecular mass [6] or volume fraction of the components in the mixture. The underlying
thermodynamic forces arise mainly from dispersion forces and thermal fluctuations of the
small molecules. Mass effects are most relevant for light molecules [7]. This is illustrated
by the isotope effects observed in experiments on molecular liquids [8, 9] and by numerical
simulations [10, 11, 12].

In the present work we are mainly interested about the thermophoresis of charged
colloids and polyelectrolytes, where solute-solvent interaction arises from electric double
layer. For charged surfaces, the essential theory was given by Derjaguin who discussed the
origin of thermoosmotic flow due to temperature gradient [13, 14]. Later on, Ruckenstein
calculated the velocity of the charged particle in an electrolyte solution [15]. Still untill
recently, no general description was available regarding why and in which direction the
particle will move. Ruckenstein’s calculations show that the particle will always move
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2 CHAPTER 1. INTRODUCTION

towards the cold region whereas various experiments clearly show that the particle can
move in either direction. This was explained by introducing the thermoelectric or Seebeck
effect of the electrolyte solution [16, 17]. Electrophoresis of particle in Seebeck field of the
electrolyte solution gives additional contribution to particle velocity which was missing in
Ruckenstein’s calculation. Recent experimental studies have established the importance
of this electrolyte Seebeck effect and made it clear that very often the direction of motion
of the particle is determined by the electrophoresis in Seebeck field [16, 18].

In last decade, however, several detailed studies of colloidal thermophoresis have shown
surprising dependencies of the particle’s motion on salinity, colloidal volume fraction or
molecular weight for polymers or on temperature [19, 20]. As an important part of
this thesis, we will discuss the volume fraction dependence of colloidal motion and the
molecular weight dependence of polymer transport.

One another aspect will be to discuss the case of spatially varying temperature gra-
dient. Heating a single nanoparticle or micron size domain of an electrolyte solution
is by now a standard technique to create spatially varying temperature gradient and
perform thermophoretic experiments. Heating a half-metal coated particle (Janus par-
ticle) provides a temperature gradient along the particle’s surface which leads to self-
thermophoresis of the particle [21]. We will discuss about the important role played by
thermoelectric or Seebeck effect in these cases of spatially varying temperature gradients.

The thesis is organized in the following way: First, we discuss about the theoretical
description of thermophoresis available at present and the potholes of the theory (chapter
2). Then in chapter 3 we will discuss about one new collective effect, namely, colletive
thermoelectrophoresis which describes the dependencies of the transport velocity on col-
loidal volume fraction or molecular weight for polymers. Chapter 4 deals with the heating
of a colloidal particle in an electrolyte. Finally, in chapter 5, we discuss about the effects
of heating of a particular liquid spot in an electrolyte solution. Details of most of the
calculations have been presented in several appendices at the end of the thesis.



Chapter 2

Thermally driven motion of colloids

2.1 Introduction

Movement of colloidal particles in a temperature gradient is known as particle ther-

mophoresis, which is analogous to the thermodiffusion or Ludwig-Soret effect in the binary
liquid mixtures [22]. Although this effect was discovered more than a century ago, still
now its theoretical foundation is a matter of debate. Thermophoresis is just a special
class of motion which stems out due to the particle-solvent interfacial interaction and
in general known as phoretic motion. The basic difference between phoretic movement
with sedimentation or Brownian diffusion lies in the fact that the Brownian diffusion or
sedimentation are motions of the particle driven by external force (e.g. gravitational force
for sedimentation) whereas in the earlier case there is no such external force present. This
can be easily understood if we discuss the case of electrophoresis which is another class of
phoretic motion where instead of thermal gradient the non-equilbrium nature is provided
by an external electric field.

In a colloidal dispersion, there is a thin layer of counter-ions surrounding the colloid
particle which is known as electric double layer [1, 2, 23]. Its thickness is of the order
of Debye length (λ) and is usually very small compared to the particle radius. Now
although the particle and its double layer are separately charged but to the external
field they appear together as a neutral body and that’s why electric field does not exert
any force. What happens is the rearrangement of counter ions inside the double layer
and thus an interfacial motion resulting in a motion of the colloidal macroion. Likewise,
thermophoresis is also due to the inhomogeneity caused by the thermal gradient in the
interfacial layer. So instead of interacting directly, the external field interacts with the
particle indirectly through the interfacial layer. Due to this, the phoretic movement of a
particle depends largely on the way it interacts with surrounding fluid or more clearly on
the surface properties of the particle as well as on various solvent properties, and that’s
what makes it so interesting for applications in microfluidic devices.

In last few decades, developement of experimental techniques like thermogravitational
columns [24, 25], thermal field-flow fractionation, modern optical methods has helped a
lot to investigate and shed new light on thermodiffusion [26, 27]. Potential application
of thermodiffusion is diverse: it includes biological and medicinal applications like drug
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4 CHAPTER 2. THERMALLY DRIVEN MOTION OF COLLOIDS

determination [28], DNA trapping [29], stability of biomolecules in bloods and serum,
adsorption of small molecules to lipid membranes and many more. With its growing
interest from experimental point of view, it is therefore essential to investigate theoret-
ically also. Although far from a detailed microscopic description, analytical as well as
rich computational methods discovered in recent years have indeed provided valuable in-
puts. In this chapter, we intend to discuss the theoretical description available currently
for thermophoretic motion along with some experimental results which indicate strong
possibilities for further investigations.

2.2 Thermophoresis of charged colloids

In presence of a temperature gradient (∇T ), dispersed colloids move, on top of the Brown-
ian motion, with a drift velocity

u = −DT∇T, (2.1)

where DT is called the mobility. It is defined in such a way that DT > 0 corresponds to
the motion of solutes toward cold (known as thermophobic solute) whereas the opposite
happens for DT < 0 (thermophilic solute). The drift velocity u depends on surface
properties of the dispersed colloidal particle; its interaction with the solvent and on various
solvent parameters (permittivity, viscosity, salinity) [5, 15]. Typical values for DT are of
the order of a few µm2K−1s−1.

As pointed out earlier, thermophoresis is due to the response of the counter-ions
present in the diffuse layer surrounding the particle to the applied thermal gradient.
Derjaguin first discussed the origin of a thermo-osmotic flow inside the double layer in
a temperature gradient [13, 14]. In the absence of any external field, electric double
layer contains a unifrom distribution of the counter-ions to maintain the overall charge
neutrality in the interfacial region. Due to the presence of excess ions in the interfacial
region compared to the bulk, there is an excess pressure within the double layer region.
Each ion remains at a local thermodynamic equlibrium following the Poisson-Boltzman
relation which depends on the local temperature of that point. But when non-uniform
temperature is present, the symmetry of the double layer is broken. Temperature varies
along the particle surface and so do the number densities of the ions present. This leads
to a variation in the excess pressure within the double layer: pressure is higher at the cold
region and vice versa. As a result, fluid flows from the region of higher pressure to lower
pressure or from cold side to hot side. To match the fluid velocity beyond the double
layer with the hydrodynamic far field, particle moves in the opposite direction compared
to the fluid motion (Fig.2.1a) with the mobility

DT =
εζ2

3ηT
, (2.2)

where ε and η are the solvent permittivity and viscosity respectively and ζ is the surface
potential of the solute particle. Usually the surface potential is negative and takes the
value from −10mV to −100mV for common colloids. The expression for mobility given
in Eq. (2.2) was first calculated by Ruckenstein [15]. Important things to note about
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Figure 2.1: (a) Osmotic flow within the double layer in presence of a thermal gradient.
Number of ions present in the cold side is higher than that in the hot side; thus the
hydrostatic pressure is high in the cold side and this causes a flow of ions (green arrow) to
the hot region. As a result, the particle moves in a direction opposite to the temperature
gradient. (b) In the limit a >> λ, particle surface can be assumed to be flat. The velocity
of the ions within the diffuse layer increase as we go out from the particle surface and at
approximately one Debye length distance it reaches its maximum value.

Eq. (2.2) are: (i) mobility is independent of the size of the colloid particle and its
concentration in the solution and (ii) DT is always positive irrespective of the value
of the surface potential. A positive value of the mobility means that the particle will
always move towards the cold region. However experiments show that both of these
have contradictions! We will come to this later. For the moment, we will try to have
a different look about the things presented above. When we say that the counter-ions
are in local thermodynamic equilibrium at each point within the double layer and employ
Poisson-Boltzman distribution function, it is implied that the thickness of the double layer
is very small compared to the radius of the dispersed particle. In this limit the particle
surface becomes effectively flat for the ions present in the double layer and everything that
happens within the diffuse layer becomes insensitive to the size of the particle (Fig.2.1b).
Contrary to this, the diffusion coefficient for the Brownian motion of a particle depends
upon its size and is given by:

D =
kBT

6πηa
, (2.3)

where a is the radius.
A different picture arises for polymers. Polymers are large molecules (macromolecules)

composed of repeating structural units connected through chemical bonds. On an average,
each macromolecule has a volume ∼ R3, where R is called the gyration radius of the
molecule and depends upon the number of beads N present in each chain: R ∼ aN ν;
where a is the radius of each bead. The exponent ν = 1

2
for ideal polymers and takes the

value ν ≈ 3
5
for real cases [30].
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Figure 2.2: Molecular weight dependence of mobility DT for polystyrene in different
solvents. Reprinted with permission from [32].

While performing Brownian motion each monomer creates a velocity field v(r) ∼ 1/r in
the surrounding fluid where r is the distance from the center of the monomer. Due to this
velocity field, other beads in the polymer also get affected. To calculate the velocity of a
given bead we need to sum over the flow due to all other beads in the chain. Evaluation of
the response to the Langevin force and corresponding mean-square displacement enables
to find the diffusion co-efficient [30]

D =
kBT

6πηRh
(2.4)

with the hydrodynamic radius Rh ≈ 0.7R [31]. Compared to the diffusion co-efficient of a
single-bead of radius a, hydrodynamic interaction thus reduces the value by a factor a/Rh
and slows down the particle velocity. The most striking feature of Eq. (2.4) is that: D
depends upon the number of beads or monomers present in the polymer chain and thus
on the molecular weight Mw.

Contrary to this, in case of motion driven by interfacial or surface forces (eg. ther-
mophoresis), mobility or the velocity of a single polymer chain in weak electrolyte solution
is independent of the molecular weight Mw. For example, the data by Giddings and co-
workers [4] for polystyrene in different solvents shows clearly that the mobility remains
constant within a range of molecular weight from 20000 to 160000; see Figure (2.2). As an
explanation for this behavior, we should consider the fact that hydrodynamic interaction
between the beads within a chain has no effect on the thermophoretic movement of the
polymer chain [5, 34]. If we consider a single chain having N beads at positions rn; at any
moment each bead at position rn experiences the velocity field v(r) due to other beads at
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positions rm (m �= n) where v(r) ∼ 1/r3. Moreover, according to Eq. (2.1), in presence of
non-uniform temperature, each bead of a single chain has a velocity u. So, we can write
the velocity of nth monomer (Un) as:

Un = u+
∑

m�=n

v(rn − rm).

Due to very weak hydrodynamic interaction, the motion of a bead hardly gets affected

 

a) b) 

Figure 2.3: Velocity field in a frame attached to the polymer chains: (a) External force
driven motion (e.g. sedimentation or diffusion), hydrodynamic interaction between beads
takes place and as a result the chain occupies a volume ∼ 4

3
πR3. (b) In case of phoretic

motion only surface forces are present; there is no hydrodynamic interaction between the
beads and fluid passes through the chain almost without any perturbation. Reprinted
with permission from [34]. Copyright (2007) by the American Physical Society.

by the other beads. As a result, with respect to the thermal gradient, the orientation
of the beads are completely random and this leads to a zero orientational average of
the velocity field: 〈v(rn − rm)〉 = 0. Thus each monomer as well as the whole polymer
moves with a velocity u, which is independent of the length or molecular weight of the
chain. Consequently, the thermophoretic mobility of high polymers in dilute solutions
is also independent of N or Mw. Now for dilute electrolyte solutions, Debye length (λ)
can be hundreds of nanometers which is large compared to the size of one bead of a
polymer chain (a << λ). In this small particle limit, mobility can be calculated using
Debye-Hückel approximation [35] and is given by (truncating at leading order terms in a

λ
)

DT = − ζ2

3η

dε

dT
, (2.5)

where dε
dT

is the derivative of permittivity with respect to temperature. The ratio
(
T
ε

)
dε
dT

is very close to unity. For water, at room temperature it takes the value 1.4. In view of
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this, polymer mobility given by Eq. (2.5) very much resembles that for particles given
by Eq. (2.2). DT here is due to the dielectrophoretic force. In general, there are three
contributions to the mobility: dielectrophoretic contribution, the electrolyte Soret effect
and a charge term. However in the limit a << λ; the dielectrophoretic term

(
∼ ζ2/a2

)

dominates over the other two terms
(
∼ ζ2/λ2

)
.

2.3 Thermoelectric Effect

As mentioned in the discussion of Eq. (2.2); irrespective of the sign of surface poten-
tial ζ, thermophoretic mobility DT can only have positive values. That means, all the
solute particles will move toward the cold region. But this is not true in reality. Various
experiments show that DT can take positive as well as negative values. It can change
sign with the varying salt conentration [36], pH value [16] or even with the temperature
[37, 38]. For example, we discuss here the data measured by Putnam and Cahill for
polystyrene beads of 13nm radius in a CAPS buffered solution [16]. The high pH value
(∼ 10.5) of this buffered solution indicates its basic nature and corresponds to a hydroxyl
ion concentration of ∼ 12 mM/l. When we add excess salt (NaCl or LiCl) to this solution,
polystyrene beads become thermophilic (DT < 0) to thermophobic (DT > 0); see Figure
(2.4). Another experiment by Vigolo et al. reports a similar behavior [18]. They have
used a mixed electrolyte solution NaCl1−xOHx and have measured the Soret coefficient
(ST = DT/D) of a negatively charged particle as a funtion of the parameter x. As they
vary x from 0 to 1; the solution changes gradually from NaCl to a basic (NaOH) one and
the Soret coefficient changes sign at some value of x depending upon the ionic strength
of the solution; see Figure (2.5).

This change of sign of the mobility was first explained by Putnam and Cahill [16]. As
suggested by them, this is due to the Seebeck or thermoelectric effect of the electrolyte
solution. Although the Seebeck or thermoelectric effect is very well known phenomenon
in case of metals, it is comparatively less known for fluids. When we apply a temperature
gradient to a uniform electrolyte solution, the ions start moving (due to their temperature
dependent solvation energy) and create a current. Depending on their ionic heat of trans-
port or dimensionless Soret coefficient the current for different ions could be different. As
a result, the ions move along or opposite to the direction of the temperature gradient.
This motion of the ions break the uniformity of the solution and charge separation occurs.
After some time, positive and negative charges appear at two different boundaries creating
an electric field known as thermoelectric or Seebeck field. This field, in turn, acts on the
ions and drives them. This process continues untill the diffusion current is cancelled by
the thermal and electric field driven current. In this steady-state, a macroscopic electric
field is present in the system. Thus to sum up, the Soret effect of the ions of the electrolyte
solution results in a salinity gradient and eventually a macroscopic thermoelectric field.
The direction and magnitude of this electric field depends upon the Soret coefficient of
the ions present in the solution.

Under the application of a generalised force like temperature gradient or electric field
or concentration gradient, there is a flow of heat or charges or mass in a complex fluid.
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Figure 2.4: Variation of the mobility DT as a function of the salinity for ploystyrene
beads of radius a=13 nm in CAPS buffered and Citric acid buffered NaCl solution (Fig.
a) and LiCl solution (Fig. b). pH of the solutions were kept fixed; for Cytric acid buffered
solution pH≈ 10.5 and for CAPS buffered solution pH≈ 3.3. Reprinted (adapted) with
permission from [16]. Copyright (2005) American Chemical Society.

According to the first principle followed in non-equilibrium thermodynamics, as long as
the applied generalised force is weak, the flux-force relation remains linear [22]. For
example, Fick’s law of mass diffusion, Fourier’s law of heat conduction or Ohm’s law for
electrical conduction, all of them obey this linear relation. But more strikingly, this linear
relation also holds true for cross effects like Soret effect where a temperature gradient
results in a mass diffusion. Now let us consider a non-uniform electrolyte solution with
ions having charge qi = zie and densities ni (index i denotes different species present
in the solution). If we apply a temperature gradient ∇T to this system, the ions start
moving and a current is established in the system. Under the linearised condition stated
above the current for each species of the solution can be written as [17, 32]

Ji = −Di

(
∇ni + 2niαi

∇T

T
− ni

qiE

kBT

)
, (2.6)
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Figure 2.5: Variation of the Soret coefficient of SDS micelles as a function of the electrolyte
composition for a complex electrolyte NaCl1−xOHx. As we vary x from 0 to 1, the solution
becomes NaCl to NaOH one and as reported ST changes sign at some value of x depending
upon the ionic strength of the solution. Reprinted (adapted) with permission from [18].
Copyright (2010) American Chemical Society.

where the first term in the right hand side corresponds to the Fick’s law of diffusion with
the Einstein coefficient Di, second term describes the thermal diffusion with the reduced
Soret parameters αi and the last term represents the electrophoresis of the ions in presence
of the macroscopic Seebeck field E, which is yet to be determined. The numbers αi are
called the reduced Soret coefficients and describe the drift of the ions in presence of the
temperature gradient. The values for the most common ions have been determined by
Agar from thermopotential measurements of electrolyte solutions [39]; our notation and
Agar’s “heat of transport” Q∗

± are related through α± = Q∗
±/2kBT . Typical values range

from α ≈ 0 for Li+ to α ≈ 3 for OH−; those of the most common ions are given in Table
2.1. Following reference [17], for the convenience in future calculations, we define three
quantities: salinity (n0), the reduced Soret coefficient (α) and a dimensionless coefficient
(δα) as

n0 =
1

2

∑

i

ni,

α =
∑

i

αi
ni
n0

(weighted average of αi),

δα =
∑

i

ziαi
ni
n0

(weighted average of ziαi).

For a binary electrolyte this simplifies to α = α+ + α− and δα = α+ − α−.
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thermoelectric field
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Figure 2.6: Seebeck field arising in a binary electrolyte solution in presence of a tempera-
ture gradient ∇T . Positive and negative ions appear at the opposite boundaries to form
a charge layer which is about a few Debye length thick (not to scale). In the bulk solution
charge density is zero and there is a constant electric field E. The above picture describes
the situation for a solution having δα > 0 and the situation depicted in the lower picture
happens for a solution having δα < 0.
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Table 2.1: Reduced Soret coefficient α± of several salt ions at room temperature. The
values of the heat of transport Q∗

± are taken from Ref. [39]. The parameters α± are
calculated from α± = Q∗

±/2kBT .
Ion H+ Li+ K+ Na+ OH− Cl−

Q∗
i (kJ/Mol) 13.3 0.53 2.59 3.46 17.2 0.53

αi 2.7 0.1 0.5 0.7 3.4 0.1

Now we will proceed further to calculate the macroscopic thermoelectric field in a
stationary or steady state where currents due to each species becomes individually zero
and also the charge density in the bulk solution vanishes due to the huge electrostatic
energy. This means, in this situation

Ji = 0 or
∑

i

Ji = 0; (2.7)

and also ∑

i

qini = 0. (2.8)

We arrive at this steady state when the diffusion current (∝ ∇n) is cancelled by the
thermal (∝ ∇T ) and electric field driven current (∝ E). The condition of charge neutrality
is applied in the bulk of the solution; near the boundaries there is an accumulation of
charge. But typically the thickness of this charged layer is very small (of the order of
Debye length) compared to the dimension of the system. Applying the conditions given
by Eqs. (2.7) and (2.8) to Eq. (2.6) we obtain the steady-state electric field as

E = δα
kB∇T

e
, (2.9)

with the reduced Soret parameter δα defined above. Depending upon the sign of δα,
thermoelectric field can be in either direction. For example, δα = 0.6 (> 0) for NaCl
whereas it takes the value −2.7 (< 0) for NaOH. That’s why the Seebeck field is toward
the hot region for NaCl solution whereas it’s in the opposite direction (towards cold region)
for NaOH solution. It is important to understand that the thermoelectric field E is not
an externally applied field; it is generated inside the system due to the charge separation
caused by the thermal gradient. The potential difference between the two boundaries of
the sample container is called the thermopotential and is related to the electric field by
E = −ψ∇T

T
[32]. Thus the thermopotential reads as

ψ = −δα
kBT

e
, (2.10)

with a constant. Now under the action of this bulk eletric field the ions move due to
electrophoresis; velocity of this movement can be written using the usual Helmholtz-
Smoluchowski electrophoretic mobility εζ/η as

u = −εζψ

η

∇T

T
, (2.11)
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where ε is the permittivity, ζ is the surface potential or zeta potential and η is the viscosity.
Eq. (2.11) along with Eqs.(2.1) and (2.2) give the final expression for the mobility

DT =
εζ

ηT

(
ζ

3
+ ψ

)
. (2.12)

Clearly this mobility depends upon two different mechanisms: the first term which is
proportional to the square of the zeta potential is similar to the Ruckenstein’s term
discussed earlier and the second term which is proportional to the surface potential as
well as the thermopotential represents the electrophoresis in the macroscopic field E or
potential difference ψ. For most of the colloids, ζ is usually negative but irrespective of the
sign of the surface potential the first term is always positive whereas the thermopotential
for mostly used electrolytes can have both signs and it has the same order of magnitude
as the surface potential. Thus the second term in Eq.(2.12) can take both the signs and
can invert the sign of the mobility. The condition for this sign inversion can be easily
found: for a negatively charged colloid (ζ < 0), the mobility changes its sign if ψ > 1

3
ζ.

This Seebeck effect in fluids has its quite analogus counterpart in case of solids where
the temperature difference between two sides of a metal junction creates a voltage dif-
ference across the junction. In case of solids, the thermopower or Seebeck coefficient is
defined as S = −∆ψ

∆T
; where ∆ψ is the potential difference between the two ends and ∆T is

the temperature difference. Similarly we define the Seebeck coefficient for the electrolyte
solution as

S = −ψ

T
= δα

kB
e
. (2.13)

Although higher values for Seebeck coefficient are observed in some metal oxides, for com-
mon metals its value is much less: a few µVK−1 whereas the value of Seebeck coefficient
for most of the common electrolyte is much larger, of the order of hundreds of µVK−1

[40]. Values of Seebeck coefficient for some standard electrolytes are listed in Table (2.2).

Table 2.2: Thermopotential and Seebeck coefficient for different electrolytes at room
temperature

δα ψ (mV) S (µVK−1)
NaCl 0.6 −16 50
NaOH −2.7 70 −210
HCl 2.6 −68 205
KCl 0.4 −10 30

Seebeck effect of charge carriers in solids is a reversible effect and the reverse effect
is known as Peltier effect where heat is either absorbed or generated as current passes
through a metal junction. Similarly the reverse effect in case of fluids is known as Dufour
effect where a thermal gradient develops when concentration gradient is applied to an
originally isothermal fluid mixture.

Now let us go back to the experiments by Putnam and Cahill on variation of the
mobility with salinity discussed earlier. Figure (2.7) shows the fit for the data points
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Figure 2.7: Thermophoretic mobility as a function of salinity for polystyrene beads of
radius 13nm. Data points taken from figures 4(a) and (b) of [16]. There are two sets of
data points: in one case the added salt is NaCl (indicated by circles) and for the other LiCl
was added (indicated by squares). The pH of the solutions were kept fixed (pH= 10.5)
using CAPS buffer. The solid lines indicate the fits using the Eq. (2.12) and assuming a
constant charge density σ = −0.12nm−2. Reprinted with permission from [17]. Copyright
(2008) by the American Physical Society.

using Eq. (2.12) [17] and the parameter δα defined as

δα =
nNaOHδαNaOH + nsaltδαsalt

nNaOH + nsalt
.

The points represent the mobility data for polystyrene (PS) beads of 13nm radius in CAPS
buffered electrolytes. Two different electrolytes were used: NaCl and LiCl. Now they used
NaOH as conjugate base with the CAPS buffer (cyclohexylamino-propanesulfonic acid-
NaOH). So at low salinities the solution is NaOH solution. From Table (2.2), we know
that for NaOH, the reduced Soret coefficient δα is negative (δα = −2.7). Thus the ther-
moelectric field will act in a direction opposite to the temperature gradient and drive the
negatively charged polystyrene beads to the warm region. As a result, DT is negative for
low salinities. When we increase the added salt concentration, relative strength of NaOH
decreases and the salt strength increases gradually diminishing the effect of NaOH. At
sufficiently large salinity DT changes sign and becomes positive. However the thermoelec-
tric effect for NaCl or LiCl is much weaker than that for NaOH (δαLiCl,δαNaCl ≪ δαNaOH).
Thus for higher salt concentrations mobility is effectively determined by the first term or
the double layer term in Eq. (2.12).
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2.4 Overview of recent experimental findings

So far we have discussed about the dependence of mobility on salinity but have not shed
any light on its dependence upon the colloidal concentration. This is because of the
fact that most of the thermophoretic experiments are done using dilute solutions where
the number of added salt-ions are much larger than the number of colloidal macroions
present. In case of such dilute solutions the exisitng theory predicts the thermophoretic
mobility DT and the diffusion coefficient D to be independent of colloidal volume fraction
or molecular weight for polymers. And quite obviously, the same holds true for the Soret
coefficient ST = DT/D. Various experiments in the recent past, however, contradict this
general belief and the single-particle or single-chain behavior seems to be inadequate in
these cases. In this section, we will mostly discuss about these experimental findings. For
convenience, we will discuss the experiments with particles and polymers separately.

Figure 2.8: Variation of the thermophoretic mobility DT of polyethylene glycol with
the chain length N . The datapoints are taken from [6]. Upper solid lines represent
the variation of DT with N for a constant viscosity and the lower curve represent the
variation due to change in viscosity resulting from inter-chain interaction. Reprinted with
permission from [32].

2.4.1 Experiments on polymers

In case of dilute polymer solutions, the distance between two polymer chains is usually
large enough compared to the gyration radius of each chain. Thus there is hardly any
overlap between neighbouring chains and one chain remains unaffected by the presence
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of the other chains. Due to this decoupled state of the chains in a dilute solution, ther-
mophoretic mobility is independent of the molecular weight of the chain. However, for
relatively high polymer densities, the interchain interaction becomes relevant and a reduc-
tion in the mobility is observed. As an example, Figure (2.8) shows the data reported by
Chan et al for polyethylene glycol in aqueous solution [6]. In this experiment, when the
chain length N is varied at a constant ethyleneoxide concentration of 0.2M/l, a decrease
in the mobility for long chains (N > 20) is observed. This decrease is possibly due to the
change in viscosity due to increasing chain length [32].

Although this argument can be relevant for solutions which are not dilute or semi-
dilute but certainly does not hold true for dilute cases. However in several experiments
a variation of the mobility is observed for dilute solutions. For example, let us consider
Duhr and Braun’s experiment on DNA [19]. They have measured the thermophoretic mo-
bility for DNA in a 1 mM/l Tris [tris(hydroxymethyl)aminomethane] buffer. Keeping the
base pair concentration fixed at 50 µM/l, when they increased the number of base pairs
from 50 to 48 502, a significant decrease in the mobility (by a factor of 5) was observed.
The data clearly shows that there is a considerable amount of decrease in the mobility
for very short chain length (∼ 102). For such a short chain length, the solution remains
sufficiently dilute to fall below the overlap concentration and interaction between nearby
chains can not play a role. Thus the variation of DT due to change in viscosity can be
ruled out here.

Figure 2.9: Thermodiffusion coefficient DT as a function of the DNA chain length.
Measurements were done with DNA in a 1 mMl−1 Tris buffer keeping the overall DNA
content fixed at 50 µMl−1. Data points clearly shows a considerable amount of decrease
in the mobility not only at higher lengths but also for relatively smaller chain lengths
(∼ 102). Reprinted from [19]. Copyright (2006) National Academy of Sciences, U.S.A.

Similar kind of behavior has been observed by Iacopini et al during their experiments
on sodium polystyrene sulfonate (NaPSS) [38]. Figure (2.10) shows their data for ther-
mophoretic mobility (DT ) and the Soret coefficient (ST ) of NaPSS in a 100 mMl−1 NaCl
solution for varying temperature and molecular weight. Important point to note about
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their experiment is that, they kept the volume fraction of NaPSS constant (2 gl−1). Now
from Figure (2.10a) it can be seen that at any particular temperature DT decreases with
the increasing molecular weight. For example at room temperature T=30◦C when they
vary molecular weight from Mw = 15400 to 74000, the mobility is reduced to a value two-
third of its initial value. The same behavior is observed for the span of temperature from
∼ 15◦C to ∼ 35◦C. Figure (2.10b) shows the variation of the Soret coefficient; in this case
instead of decreasing ST increases with increasing molecular weight. These behaviors can-
not be explained by the fact of increasing viscosity due to interaction between two chains
at higher concentrations. And more interestingly, the Soret coefficient ST (= DT/D) does
not depend upon the viscosity at all! So a change in viscosity can not change ST . Thus
these experiments certainly indicate towards some discrepancy in the existing theories.

(a) (b)

Figure 2.10: (a) Variation of thermophoretic mobility DT as a function of temperature
and molecular weight. At a particular temperature DT decreases with the increasing
molecular weight. Measurements were performed with 2 gl−1 of NaPSS in a 100 mMl−1

NaCl solution by Iacopini et al. [38]. (b) Soret coefficient (ST ) as a function of temperature
and molecular weight for the same system of NaPSS in NaCl. The circles represent data
for molecular weightMw = 15 200, triangles forMw = 32 900 and the squares forMw = 74
000. Data indiates clearly that ST increases with increasing molecular weight. Reprinted
from [38], with permission from Elsevier.

2.4.2 Experiments with colloidal particles

Well, polyelectrolytes are indeed complicated soft matter systems both structurally and
from the point of view of physical properties. One can try to think of several effects taking
place in these systems. It is therefore reasonable to investigate and discuss comparatively
simple systems: to say dispersion of colloidal hard spheres. Being simple, these are one
of the best studied soft systems also.
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Figure 2.11: (Left) Soret coefficient (ST ) data as a function of volume fraction of silica
beads in an aqueous solution of negatively charged dye sulpho-rhodamine B measured by
Ghofraniha et al. [41]. In the inset, the data shows the variation of diffusion coefficient
(Dc) with volume fraction (φ). As the data shows both ST and Dc varies with φ in the
range 0 < φ < 0.1 and after that both of them becomes constant. (Right) Thermophoretic
mobility as a function of volume fraction. It is clear from the data presented that DT also
varies very strongly with φ in the range 0 < φ < 0.1 and after that attains a constant value.
Reprinted (adapted) with permission from [41]. Copyright (2009) American Chemical
Society.

As mentioned earlier, in dilute systems all the transport coefficients i.e. thermophoretic
mobility DT , diffusion coefficient D and the Soret coefficient ST are expected to be inde-
pendent of colloidal volume fraction. However, several experiments on colloidal particle
suspension reveal different behavior where the transport coefficients vary with the colloidal
volume fraction. This dependence was explained by considering cooperative diffusion [20].
When the suspensions are not extremely dilute, the interaction of particles take place and
affect the particle motion. Interaction between particles can be of different types: po-
tential interaction (e.g. electrostatic repulsion) or hydrodynamic interaction. In case of
potential interaction, the dependence of the transport coefficient on various parameters
is expressed in terms of virial expansions for various functional forms of the interaction
potential. For electrostatic interaction, the diffusion coefficient can be expressed as a
function of the colloidal volume fraction by the following relation (upto linear order) [23]:

D = D0 (1 + 2Bφ) ,

where D0 is the usual Einstein diffusion coefficient given by Eq. (2.3) for extremely dilute
solution, and the factor in the parenthesis is related to the modification for higher concen-
trations. The coefficient B is called the virial coefficient and depends upon the interaction
potential. Another kind of interaction, which is called hydrodynamic interaction is related
to the fact that migration of a particle generates a velocity field in the surrounding fluid
which affects the motion of nearby particles. Due to the short range nature of the hydro-
dynamic interaction, it is of little significance in the behavior of the transport coefficient.
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But the effect of electrostatic interaction has been confirmed in various experiments by
Piazza, Ning and other workers [20, 18, 42, 43].

So far so good, but the story doesn’t end here. Situation becomes complicated while
considering one recent experiment by Ghofraniha et al. on silica beads in an aqueous
solution of negatively charged sulpho-rhodamine B [41]. What they observed in their
experiments are striking: all the three transport coefficients D, DT and ST seem to vary
with the volume fraction of silica beads. If we consider the electrostatic interaction here,
then the variation of the diffusion coefficient and the Soret coefficient should cancel each
other, ruling out the possibility of change in mobility due to the change in volume fraction.
But the right panel of Figure (2.11) clearly shows that DT also varies very strongly with
the increasing volume fraction upto a certain value (φ ≃ 0.1) and above that all the three
coefficients become constant.

Figure 2.12: Soret coefficient (ST ) of polystyrene beads with different sizes as a function
of the ionic strength of two salts NaCl and CsCl. Data taken from the reference [83].
As shown by these plots, ST increases initially for lower salinities (< 2 × 10−3) and
starts decreasing for relatively higher salinities (> 2 × 10−3). Reprinted from [83], with
permission from Elsevier.

Untill now, we have mostly discussed about the experimental studies of variation of
the mobility or Soret coefficient with relative colloidal concentration. Let’s now discuss
about their dependence on the salinity. Eq. (2.12) tells us that thermophoretic mobility
DT depends upon the added salt-ion concentration through the zeta potential. The same
is true for ST (= DT/D) as the diffusion coefficient D is independent of the salinity.
Thus the behavior of DT or ST with varying salintiy will be determined by the way
zeta potential varies with the salinity. In this connection, here we will discuss a very
recent experiment by Eslahian and Maskos [83]. In their experiment, they have measured
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the Soret coefficient for polystyrene beads in NaCl and CsCl solutions, varying the salt
concentration from 5 × 10−2 mMl−1 to 10 mMl−1. The obtained data can be seen in
Figure (2.12) and it shows that initially the Soret coefficient increases with increasing
salinity and above some value of the salinity (∼ 1 mMl−1) it starts decreasing. From the
corresponding zeta potential values, the decrease in ST for higher ionic strenghts can be
explained but this gives no clue about the increase for lower ionic concentrations. This
certainly indicates that the mobility does not depend upon the salt-ion concentration only
through the surface potential but also in some other ways; there may even be some other
interaction mechanism which has been ignored till now.

2.5 Conclusion

In summary, we can say that recent experiments on thrmophoresis indicate surprising
dependencies of thermophoretic mobility on various parameters. Several data showing
the same behavior make it clear that these experimental findings are not exceptions but
there must be some other mechanism which is the root cause of the volume fraction
or molecular weight dependence of the thermophoretic mobility. In the remaining part
of this thesis we will discuss about a new collective phenomenon (emerging from the
thermoelectric response of salt ions as well as the suspended colloid) which can explain
these experimental results.

One other aspect will be to discuss the Seebeck effect in different geometries. So far,
most of the theories have been developed for one-dimensional geometry where the tem-
perature gradient and consequently, the thermoelectric field are both constant in space.
But from experimental point of view, it is very common to generate spatially varying
temperature gradients by heating a colloidal particle or a particular liquid spot using
laser. Discussing the thermoelectric effect and the nature of the thermoelectric field for
these spatially varying thermal gradients will be of particular interest.



Chapter 3

Collective thermoelectrophoresis

3.1 Introduction

Self and cooperative diffusion

Diffusive transport in dispersed systems is usually described by two different diffusion
coefficients: the self diffusion coefficient (Ds) or tracer diffusion coefficient and the coop-
erative diffusion coefficient Dc [23]. They actually correspond to two different measuring
techniques for the diffusion coefficient. Ds describes diffusion of one particular particle
relative to the surrounding particles whereas Dc describes the motion of a collection of
particles in a density gradient. While measuring self diffusion coefficient we tag one parti-
cle and track its trajectory for a period of time (Fig. 3.1a). Calculating the mean-square
displacement we calculate the self diffusion coefficient for a particular particle (say ith)
using

Di
s =

1

6

d 〈r2i 〉
dt

, (3.1)

where 〈r2i 〉 is the mean square displacement. Situation is different for cooperative or
gradient diffusion. In the presence of a density gradient, the diffusion of all the particles
toward low concentration creates a flux of particles. This corresponds to a net current
(Jc) which we can write using Fick’s law

Jc = −Dc∇n,

where Dc is called the cooperative diffusion coefficient and ∇n is the concentration gra-
dient of the particles. For an infinitely dilute suspension, both Ds and Dc equal the usual
Stokes-Einstein diffusion coefficient D0. But for semi-dilute or concentrated systems, they
depend upon the volume fraction of the particles and differ from D0 as the interactions
between different particles start taking place and modify their individual random walk
movement. Mainly two different kinds of interactions exist between such dispersed parti-
cles; namely, the hydrodynamic interaction and particle-particle interaction.

Particle-particle interaction can be of different types: it can be electrostatic or excluded
volume interaction, which is repulsive in nature. In a colloid-polymer mixture, there exists
attractive depletion force also. Due to these interactions, the force or interaction potential

21



22 CHAPTER 3. COLLECTIVE THERMOELECTROPHORESIS

(a)

(b)

t=t0 t=t0+δt

Figure 3.1: (a) Self-diffusion coefficient of a single particle (marked by red colour in
the picture) in the homogeneous environment of the surrounding spheres; there is no
concentration gradient of the particles are present. (b) Cooperative or gradient diffusion
of particles: at t = t0, the number density of particles is more in the central region of the
container. As a result the osmotic pressure is also high in this region and to reduce the
pressure, particles start diffusing in the outward direction from the central region.

between two dispersed particles changes and results in a modification of the Einstein
co-efficient for Brownian motion. Hydrodynamic interactions have different origin. It
can be easily understood if we consider the gradient diffusion; see Figure (3.1b). At
t = t0, the osmotic pressure is very high in the central region where the number density
of the particles is higher than the surroundings. Due to this, particles try to move in
the outward direction (to a region where osmotic pressure is low). But the volume of
the container being fixed, fluid flows in the opposite direction to occupy the place left by
the particles. As a result, the particles have to move against this backflow of fluid. This
hindrance offered to the particle motion by the backflow of fluid constitutes the main
part of the hydrodynamic interaction. It also includes the velocity field experienced by
the neighbouring particles due to the motion of one particle.

Both of these interactions affect the diffusive motion or sedimentation of dispersed
particles but usually they appear with different weights and thus Ds and Dc differ from
each other. While discussing thermophoresis, we talk about the gradient or cooperative
diffusion coefficient mainly as we consider the diffusion of particles in presence of a finite
density gradient. By taking into consideration the hydrodynamic and particle-particle
interaction, corresponding expression for the cooperative diffusion coefficient reads upto
linear order as (note that from now onwards we call the gradient diffusion coefficient D
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instead of Dc)
D = D0 [1 + (2B + K2)n] , (3.2)

where D0 = kBT/6πηa is the diffusion coefficient for a dilute system, n is the number
density of dispersed particles, B is the virial coefficient representing the particle-particle
interaction and K2 describes the contribution emerging from the hydrodynamic interac-
tion.

Cooperative diffusion has been studied extensively for sedimentation process of dis-
persed colloids and diffusion phenomenon. But the scenario is different for the phoretic
motion of colloid particles or macromolecules which is mainly driven by interfacial forces.
For external force driven motions like sedimentation or Brownian motion, hydrodynamic
flow field around a particle varies as 1/r, where r is the distance from the center of
the given particle. Whereas, for external force free motion like thermophoresis, it de-
cays more rapidly, with the cube of the inverse distance. Due to this flow pattern, they
don’t drag the surrounding fluid and correspondingly, there is no backflow. Moreover,
the short-range behavior of this flow field implies that the neighboring beads don’t get
affected by the motion of one particle. Thus the term K2 in Eq. (3.2) has negligible
contribution in case of phoretic transports. Electrostatic pair interaction can’t modify
the thermophoretic mobility. However it can modify the Soret coefficient (ST = DT/D)
as it depends upon the diffusion coefficient D. In fact, its importance in the variation
of the Soret coefficient has been shown in an experiment by Piazza and Guarino [20],
where the change in salinity modifies the diffusion coefficient D and this, in turn, affects
the Soret coefficient. Thus themophoretic mobility DT of a colloidal particle or polyelec-
trolyte is quite independent of these interaction processes and remain unaffected. As a
consequence, their transport velocity is independent of concentration [46]; for the same
reason, free-solution electrophoresis of polyelectrolytes does not depend on the molecular
weight [47, 48]. Similar results have been obtained for thermal diffusion of high polymers
[4, 5, 26, 34].

Recent experiments on thermophoresis in charged colloids, however, address a rather
different picture and indicate that the single-particle description fails in several instances:
Contrary to expectation, the transport velocity due to a temperature gradient,

u = −DT∇T, (3.3)

was found to depend on the volume fraction of particle dispersions and on the chain length
N of macromolecular solutions: (i) Data on sodium polystyrene sulfonate (NaPSS) [38]
and single-stranded DNA [19] at constant polymer content but variable N , reveal that
the mobility DT becomes smaller for larger molecules; e.g., in the range from 50 to 48000
base pairs, that of DNA decreases by a factor of 5. These findings are obtained at low
dilution where the molecular mean distance is much larger than the gyration radius. (ii)
Regarding particle suspensions, experiments on 70-nanometer silica beads [41] and 26-nm
latex spheres [16] in a weak electrolyte, show that at a volume fraction of 2%, DT is
significantly reduced with respect to the zero-dilution value.

In this chapter, we will show that these experimental findings arise from an interaction
mechanism that has been overlooked so far, i.e. the collective thermoelectric response of
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the composite system. By treating the salt ions and the dispersed colloids on an equal
footing, we find that both the thermoelectric field and the mobility DT vary with the
colloidal concentration. Depending on the electrolyte strength and the valency of the
macroions, collective effects may occur at low dilution, that is, for particle dispersion
with negligible pair potential and polymer solutions where neighbor chains don’t overlap.

3.2 Collective thermoelectrophoresis

3.2.1 Where does it originate from?

Thermally driven motion of charged colloids is very sensitive to the solvent composition.
From previous works (discussed in the last chapter), it emerges that two rather different
mechanisms contribute to the velocity [16, 17],

u = −µT∇T + µE. (3.4)

The first term arises from the local particle-solvent interactions in a non-uniform tem-
perature. As first pointed out by Ruckenstein [15], the temperature gradient deforms the
electric double layer and induces a pressure gradient opposite to ∇T . The resulting ther-
moosmotic surface flow toward higher T drives the particle to the cold side; the overall pic-
ture is similar to electroosmotic effects in an electric field [32]. The coefficient µT ∝ εζ2/ηT
depends on the ζ-potential, and the solvent permittivity ε and viscosity η; different pref-
actors occur in the limits of small and large particles [15, 29, 32, 35, 49, 50, 51, 52, 53].
This form agrees rather well with the observed salinity dependence [20], yet fails in view
of the strong variation with T reported for various systems [38, 19], thus suggesting the
existence of an additional, so far poorly understood contribution to µT .

The second term in Eq. (3.4) accounts for the Seebeck effect of the charged solution or,
in other words, for electrophoresis in the thermoelectric field E with the mobility µ = εζ/η.
We have discussed the origin of this thermoelectric field in the previous chapter. In short,
due to their temperature dependent solvation forces, soluted ions migrate along or opposite
to the thermal gradient. As a consequence, surface charges develop at the cold and warm
boundaries of the vessel and give rise to a macroscopic electric field E = −ψ∇T/T ;
see Figure (3.2). The thermopotential parameter ψ is related to the Seebeck coefficient
S = −ψ/T ; for electrolytes S attains values of several 100µV/K, which is by one to two
orders of magnitude larger than in common metals [40].

In the present chapter, we will mainly deal with this second term in (3.4). While
discussing the origin of the thermoelectric field, we only consider the salt-ions. But apart
from these salt-ions, colloidal macroions are also present in the system. So far all the
theories have negleted the contribution of these macroions as their concentration is small
compared to the salt-ion concentration. Here we will show that this assumption is not
justified always. Even if their concentration is very low, they are not negligible. In fact,
they take an active part along with the small ions of the salt and the thermoelectric field
E is determined by the combined effect of all of them.
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3.2.2 Current equations

We consider a dispersion of negatively charged particles or macromolecules of valency
−Z and concentration n, in a monovalent electrolyte solution of ionic strength n0 with a
constant temperature gradient ∇T . Under the application of this temperature gradient,
the ions of the electrolyte solution as well as the colloidal macroions start moving and
create currents.According to the general formulation of non-linear thermodynamcis these
currents of solute and mobile ions are linear functions of generalized forces [22]; the latter
can be expressed through thermal and concentration gradients. The current of colloidal
macroions is given by

J = −D∇n + nu, (3.5)

where the first term on the right-hand side accounts for normal diffusion and the second
one for transport with the drift velocity (3.4). Similarly, the mobile ion currents

J± = −D±

(
∇n± + 2n±α±

∇T

T
∓ n±

eE

kBT

)
(3.6)

comprise normal diffusion with coefficients D±, thermal diffusion with the reduced Soret
parameters α±, and electrophoresis with the Hückel mobility for monovalent ions . In (3.5)
and (3.6) we have added an electric field term; it is important to note that E is not an
external field but arises from the kinetics of the mobile charges and is proportional to the
applied temperature gradient. A similar phenomenon occurs in a non-uniform electrolyte,
where the electric field is proportional to the salinity gradient and to the difference of the
ionic diffusion coefficients D± [1, 54].

The numbers α± describe the drift of positive and negative salt ions in a temperature
gradient. Typical values for them vary between 0 to 3 and for most of the common ions
they are given in Table 2.1. It is important to mention that the quantities J , J±, E and
all the gradients are normally vectors. Due to 1-dimensional geometry considered here,
they have only one component finite, other components being equal to zero. That’s why
we have treated them as scalar quantities.

3.2.3 The steady state

Eqs. (3.5) and (3.6) provide the currents as functions of the generalized thermodynamic
forces, that is, of the concentration and temperature gradients [22]. We are interested in
the steady state characterized by

J± = 0 = J. (3.7)

For later use we give a resulting relation for the electric field. Inserting the drift velocity
(3.4) and superposing the three Eqs. (3.7) such that the concentration gradients result
in the gradient of the charge density, ∇ρ = e∇(n+ − n− − Zn), and collecting terms
proportional to E and ∇T , one has

E = e
2n+α+ − 2n−α− − ZnTµT/D

εκ2
∇T

T
+
∇ρ

εκ2
, (3.8)
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with the shorthand notation

κ2 =
e2(n+ + n− + ZnTµT/D)

εkBT
.

In order to determine the four unknowns ∇n±, ∇n, E, the three Eqs. (3.7) need to
be completed by a fourth condition; it is provided by Gauss law

∇E = ρ/ε (3.9)

which relates E and the charge density ρ = e(n+ − n− − Zn), and thus closes the above
set of equations.

3.2.4 Small-gradient approximation

The above Eqs. (3.7) and (3.9) are non-linear in the concentrations and thus cannot be
solved as they stand. The salt and colloid concentrations vary very little through the
sample; the relative changes δn/n and δn±/n± between the hot and cold boundaries are
proportional to the reduced temperature difference δT/T . Since in experiment, the ratio
δT/T is much smaller than unity, we may safely replace the concentrations n and n± in
the coefficients of (3.8) with constants n̄ and n̄±; the latter are defined as the colloidal
and salt concentrations at ∇T = 0.

Formally, this small-gradient approximations corresponds to neglecting terms that are
quadratic in the small quantities ∇n±, ∇n, E, and ∇T . This approximation has been
used, more or less explicitly, in previous works on the thermoelectric effect [39, 55] and
in recent applications in colloidal thermophoresis [16, 17, 18]. Moreover, various works
on the osmotic flow driven by externally imposed gradients of charged solutes resorts to
the same approximation, albeit with the salinity change ∇n0 instead of the temperature
gradient [1, 3, 54].

3.2.5 Bulk thermoelectric field

The above relations (3.7)-(3.9) describe both the bulk properties of a macroscopic sample
and boundary effects such as the surface charges that develop at the hot and cold bound-
aries; see Figure 3.2. The thickness of the surface layer is given by the Debye length and
thus in the range between one and hundred nanometers. This is much smaller than the
sample size. Thus we discard surface effects and discuss the bulk behavior only; a full
evaluation including surface effects is given in Appendix B.

In a macroscopic sample the net charge density vanishes because of the huge electro-
static energy. With

ρbulk = 0,

Gauss’ law (3.9) imposes a constant electric field; its explicit expression is readily obtained
from (3.8)

E = −ψ
∇T

T
, (3.10)
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Figure 3.2: (a) Thermoelectric effect in a colloidal suspension of charged particles in salt
solution. In the example presented, the Soret parameters are such that negative and
positive ions accumulate at the cold and warm boundaries, respectively. Vertical dashed
lines indicate the thickness of the surface layers of about one Debye length λ. This
schematic view exaggerates the surface layers, which are much thinner in real systems.
(b) Spatial variation of the net charge density ρ, the thermoelectric field E, and the
thermopotential U ; dashed lines indicate the zero of the ordinate. Note the non-zero
surface charges at the cold and hot boundaries. In the present chapter we have discussed
the bulk behavior only, where ρ = 0 and where E is constant.
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with the shorthand notation for the coefficient of ∇T/T

ψ = −e
2n̄+α+ − 2n̄−α− − Zn̄TµT/D

εκ̄2

and κ̄2 = e2(n̄+ + n̄− + Zn̄TµT/D)/εkBT . Note that we have used the small-gradient
approximation and replaced the colloidal and ion concentrations with their mean values.

Although it is not always mentioned explicitly, the argument of zero bulk charge
density has been used in previous works on the Seebeck effect of electrolytes [39, 55] and,
more generally, for colloidal transport in non-equilibrium situations involving thermal or
chemical gradients [1, 3, 16, 17, 18, 54].

3.2.6 Zero-dilution limit

We briefly discuss the case of a very dilute suspension where the colloidal charges are
negligible for the electrostatic properties. Putting n → 0 in the electric field (3.10) we
have ψ0 = − (α+ − α−) kBT/e and

E0 = (α+ − α−)
kB∇T

e
.

This expression is exactly similar to the thermoelectric field given by Eq. (2.9) in chapter
2. Note that the parameter κ−1 reduces to the usual exprerssion of the Debye screening
length.

Inserting the thermoelectric field E in the drift velocity (3.4) and comparing with (3.3)
defines the thermophoretic mobility

D0
T = µT +

εζψ0
ηT

. (3.11)

Not surprisingly it is independent of the colloidal concentration. The parameter ψ0 and the
macroscopic thermopotential U = ψ0δT/T between the hot and cold vessel boundaries,
are given by the steady state of the electrolyte solution. With the numbers of Table
2.1, one finds the values ψ0 = −15 mV and +70 mV for NaCl and NaOH solutions,
respectively. Thus one expects D0

T to change its sign upon replacing one salt by the
other. This is confirmed by a very recent study on sodium dodecylsulfate (SDS) micelles,
where the electrolyte composition NaCl1−xOHx was varied at constant ionic strength [18];
increasing the relative hydroxide content x from 0 to 1 resulted in a linear variation of
the Soret coefficient ST and a change of sign at x ≈ 1

2
.

3.3 Collective effects on the electric field E

Having all the necessary tools in hand, now we will proceed to derive the main result of
this chapter, that is, the dependence of E and DT on the colloidal concentration and, in
the case of polyelectrolytes, on its molecular weight. As two important parameters we
define the ratio of the colloidal charge density and the salinity,
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φ =
Zn̄

n0
, (3.12)

and the ratio of colloidal electrophoretic mobility µ and diffusion coefficient D,

ξ =
kBT

e

|µ|
D

. (3.13)

To avoid any confusion, it is important to note that in chapter 2 we defined φ as a volume
fraction. But in this chapter it stands for the charge ratio, not a volume fraction. In the
following we assume a negative surface potential. For typical colloidal suspensions, the
charge ratio is smaller than unity, φ ∼ 0.1, whereas the parameter ξ may exceed 102.

Rewriting the coefficient ψ in (3.10) in terms of the dimensionless quantities φ and ξ,
we have

ψ = −2(1 + φ)α+ − 2α− − φTµT/D

2 + φ + φξ

kBT

e
. (3.14)

Equation (3.14) shows how the thermoelectric field arises from the competition of the
Soret motion of the mobile ions and the colloidal solute. In the low-dilution limit φ→ 0
the first term in the numerator reduces to (α+ − α−) which corresponds to the response
of the electrolyte solution discussed in previous works [16, 17, 18].

The φ-dependent term in the numerator becomes relevant where φ ∼ D/TµT and, in
particular, may change the sign of ψ and thus of the thermoelectric field. With typical
values TµT ∼ 10−9 m/s2 one has D/TµT = 10−3 for micron-size particles (and poly-
electrolytes of a gyration radius.of 1 µm), and D/TµT = 10−1 for 10-nanometer beads.
This means that, at typical colloidal densities, the thermoelectric field is essentially deter-
mined by the macroions. The denominator in (3.14) results in an overall decrease when
augmenting the colloidal concentration.

3.4 Collective effects on the mobility DT

Now we determine the steady-state thermophoretic mobility. Plugging the value of the
electric field E given in (3.10) into the drift velocity (3.4) and comparing with (3.3), we
get

DT =
D0
T

1 + φ
2+φ

ξ
. (3.15)

where D0
T is defined by Eq. (3.11) albeit with a modified parameter

ψ0 = −(1 + φ)α+ − α−
1 + φ/2

kBT

e
. (3.16)

According to (3.11), the sign of DT is determined by the competition of the bare mobility
µT and the Seebeck term proportional to ζψ0. Since φ < 1 in most cases, the numerator
of (3.15) is rather similar to the dilute case discussed below (3.11).

A much more striking variation arises from the denominator of (3.15). For typical
values of the charge ratio φ ∼ 0.1, collective effects set in where 1

2
φξ ∼ 1, in other words
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where ξ is of the order of 20. For high polymers (N = 103...106) and colloidal particles in
the range from ten nanometers to a micron, the parameter ξ takes values between 10 and
103. This simple estimate suggests collective effects to occur in many systems. A detailed
comparison with experiment is given in the following section.

In the limit of zero dilution φ → 0 one readily recovers the expression (3.11). The
opposite case of a saltfree system leads to

DT =
D0
T

1 + ξ
, (φ→∞)

with ψ0 determined by the counterions only. In view of the large values of ξ mentioned
above, one expects a strong reduction of the mobility in the salt free case.

3.5 Comparison with experiment

We discuss Eq. (3.15) in view of recent experiments on colloidal suspensions. At relevant
values of the charge ratio (φ ∼ 0.1) the numerator hardly differs from that of the dilute
case. Thus in the following we focus on the reduction of DT due to the denominator.

3.5.1 Polyelectrolytes

We start with experimental findings on polyelectrolytes at constant volume fraction but
variable molecular weight. In their study of 2 g/l of NaPSS in a 100 mM/l NaCl solution,
Iacopini et al. found a significant variation with the chain length [38]: Fig. (3.3) shows
the data measured at 30◦ C for molecules of 74, 160, and 360 repeat units, with an overall
decrease of the mobility by 40 percent. The same factor has been found in the temperature
range from 15 to 35◦ C.

The solid line represents collective effects arising from the denominator of Eq. (3.15).
It has been calculated with the double-layer term in the small-bead limit, assuming the
monomer to be small as compared to the Debye length (R < λ) [51, 52, 35],

µT = − dε

dT

ζ2

3η
,

and with the Hückel-limit electrophoretic mobility µ = 2
3
εζ/η. Inserting the diffusion

coefficient D = kBT/6πηR and the Bjerrum length ℓB = e2/4πεkBT in (3.13), we have

ξ =
e|ζ|
kBT

R

ℓB
. (3.17)

The theoretical curve of Fig. (3.3) is calculated with the parameters ζ = −27 meV, nN =
10 mM/l, and φ = 0.1. Its variation arises only from the gyration radius R = ℓN 1−ν

K N ν;
we have used the usual exponent ν = 3

5
, the size of a monomer ℓ = 0.4 nm, and the

number of monomers per segment NK = 10. The dashed line indicates the mobility in
the short-chain limit. The theoretical expression (3.15) provides a good description of the
reduction of DT with increasing chain length.



3.5. COMPARISON WITH EXPERIMENT 31

2

4

6

8

100 200 300 400

D
T
(µ

m
2 /K

.s
)

Chain Length N

NaPSS

Figure 3.3: Variation of DT with the chain length N of a polyelectrolyte at fixed volume
fraction. The data on 2 g/l NaPSS in a 100 mM/l NaCl solution at 30◦ C are taken from
Iacopini et al. [38]. The solid line is calculated from Eq. (3.15) with the parameters as
given in the main text. The dependence on N arises from the gyration radius R.

As a second example, DNA in 1 mM/l Tris buffer shows a similar behavior; its mobility
decreases by a factor of 5 over the range from N =50 to 48500 base pairs per molecule
[19]. The overall DNA content was kept constant, Nn = 50µM/l, with a charge ratio
φ = 0.05. Eqs. (3.15) and (3.17) provide a good fit to these data, albeit with a somewhat
too small exponent ν ≈ 0.4; see Figure (3.4). In view of this discrepancy one should keep
in mind the rather complex electrostatic properties of polyelectrolytes.

The reduction observed for both NaPSS and DNA cannot be explained by hydrody-
namic effects. Interchain interactions are of little significance because of the low dilution.
Indeed, the effective volume fraction of the polymer coils hardly attains a few percent,
nR3 ∼ 10−2; thus nearby chains don’t overlap and leave both the viscosity and the dif-
fusion coefficient unchanged. Regarding hydrodynamic interactions of beads of the same
molecule, it is known that they enhance the electrophoretic mobility in (3.4) and (3.11)
with increasing chain length. Yet this effect occurs for short polyelectrolytes and saturates
for chains longer than the size of the screening cloud [57]; for the examples studied here,
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Figure 3.4: Variation of the thermophoretic mobility with length of DNA in 1mM/l Tris
buffer solution. Throughout the experiment DNA content was kept constant at 50µM/l.
Data-points taken from [19]. The solid line represents the fit for these data using the
expression given by Eq. (3.15).

it would enhance DT in the range N < 40. We conclude that hydrodynamic effects may
be ruled out as an explanation for the reduction shown in Figures (3.3) and (3.4). Finally
we discuss electrostatic single-particle effects. The electrophoretic mobility in saltfree so-
lution has been found to decrease slightly at higher concentration, because of the increase
of the overall ionic strength and the shorter screening length [58, 59]. In the present case,
however, the weight fraction of the polyelectrolyte is constant, and so is the overall charge
density. Thus the electrostatic properties of the solution are the same for different chain
lengths.
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3.5.2 Colloidal particles

Now we discuss the concentration dependent mobility DT that has been reported for
dispersions of solid particles in weak electrolytes. Ghofraniha et al. studied silica particles
(R = 35 nm) in a 30 µM/l solution of the negatively charged dye sulpho-rhodamine B
[41]. The data shown in Fig. (3.5) reveal a significant decrease with the colloidal volume
fraction; at 3% DT is reduced to less than half of the zero-dilution value. The negative
sign of the measured DT indicates that the thermoelectric contribution εψ0ζ/ηT to (3.11)
overtakes the Ruckenstein term [17]

µT =
εζ2

3ηT
.

The negative surface potential ζ implies that the thermopotential parameter of the sulpho-
rhodamine solution is positive, ψ0 > 0.

The curves in Fig. (3.5) are calculated from (3.13) and (3.15) with ψ0 = 10 mV, which
is comparable to common salts and weaker than the values of NaOH and tetraethylam-
monium [16, 18]. The rather small DT suggests that the particles are weakly charged; we
use Z = 30 and ζ = −10 meV. The dashed line gives the mobility D0

T in the zero-dilution
limit, whereas the solid lines are given by (3.15).

In addition to the explicit concentration dependence in terms of the parameter φ, one
has to take into account that, even at moderate colloidal volume fraction, the Einstein
coefficient D is not constant. Indeed, cooperative diffusion of charged particles arises
from the electrostatic pair potential Φ(r) and, to a lesser extent, from hydrodynamic
interactions [23]. To linear order in the concentration, the virial expansion for the Einstein
coefficient reads as

D = D0(1 + 2nB), (3.18)

with the parameter

B =
1

2

∫
dV
(
1− e−Φ/kBT

)
.

For hard spheres the virial coefficient is given by the particle volume, B = 4V with
V = 4

3
πR3. The electrostatic pair potential results in an effective interaction volume

V = 4
3
π(R + χ

2
λ)3, where λ is the Debye length and χ a numerical factor [20, 56, 18]; for

small and highly charged particles in a weak electrolyte, the repulsive forces may enhance
the virial coefficient by one or two orders of magnitude. On the other hand, hydrodynamic
interactions contribute a negative term B/V ∼ −6.5 and reduce the Einstein coeffient
accordingly [23]. Our discussion of the data of Ref. [41] is restricted to volume fractions
up to 3%; at higher concentration the measured D saturates and the linear approximation
ceases to be valid. In units of the particle volume V , the measured virial coefficient reads
B/V = 20 [41]; the best fit of the mobility data is obtained with B/V = 14. This value is
much larger than that of hard spheres and thus indicates the importance of electrostatic
repulsion. The concentration of mobile charge carriers n0 = 30µM/l leads to a screening
length of about 50 nm. With χ ∼ 2 in the above expression for the effective volume, one
finds a virial coefficient close to the measured value. As an illustration of the effect of
collective diffusion on DT , we plot Eq. (3.15) for these three values: Though the variation
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Figure 3.5: Volume fraction dependence of DT of a dispersion of 70-nm silica beads in a
solution of 30µM/l sulpho-rhodamine B. The data are from Ghofraniha et al. [41]; the
fit curves are obtained from (3.15) and (3.18), with different values of the reduced virial
coefficient B/V , where V = 4

3
πR3 is the particle volume.

of DT with B is not neglegible, it is significantly weaker than that of the thermoelectric
effect.

As a second experiment we mention data by Putnam and Cahill on latex beads of
radius R = 13 nm in an electrolyte solution of 2mM/l ionic strength [16]; varying the
volume fractions from 0.7 to 2.2 wt%, these authors observed a reduction of DT by about
10 percent. With a valency of Z ∼ 50 one finds that, at the highest particle concentration
n = 4µM/l, the charge ratio φ does not exceed 10 percent.

Finally we address the concentration dependence observed by Guarino and Piazza for
the Soret coefficient ST = DT/D of SDS micelles [20]. Its decrease with the SDS content,
is well described by collective diffusion according to (3.18). In a very recent measurement,
Vigolo et al. vary the electrolyte composition NaCl1−xOHx and thus the thermal diffusion
parameter of the anion in (3.16), α− = (1 − x)αCl + xαOH [18]. The observed linear
dependence of ST on x confirms the crucial role of the thermopotential. Unfortunately
there are no mobility data for micelles; thus at present it is not possible to determine
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whether their DT is subject to collective effects similar to those of polyelectrolytes and
solid beads.

3.6 Salinity dependence of DT

If we look at Eq. (3.15), the mobility DT depends upon the colloidal concentration
through the parameter φ. Now apart from depending upon the colloidal concentration
(n̄), φ depends upon the salinity also (consider Eq. 3.12). So it is equally interesting to
see whether Eq. (3.15) can explain the salinity dependence of the mobility or not. Apart
from the charge ratio φ , there is also one parameter in Eq. (3.15) which depends upon
the salinity: that is the zeta potential ζ. It is important to mention here that both D0

T

and ξ depend upon ζ. So the salinity dependence of the mobility comes from two different
contributions: (i) through the zeta potential and (ii) through the charge ratio φ.

In a recent experiment, Eslahian and Maskos have measured the Soret coefficient of
polystyrene beads of different sizes in a NaCl solution by changing the salt-concentration
of NaCl [83]. In Figure (3.6b), we have plotted their data for the Soret coefficient with
increasing salt-ion concentration (denoted by black circles). Corresponding zeta potential
values were also measured which we have plotted in Figure (3.6a). What their data
shows is that at low salinities, the Soret coefficient increases with increasing salt-ion
concentration, reaches a maximum value at n0 ∼ 5× 10−3M/l and beyond that decreases
with increasing salinity. Corresponding zeta potential values can’t explain this behavior
of ST completely. As shown in Figure (3.6a), ζ remains almost constant upto n0 ∼
5 × 10−3M/l and then decreases sharply. If we consider only the variation due to ζ
potential, ST should remain constant for lower concentrations and then decrease at higher
salinities (n0 > 5×10−3M/l). Therefore, the initial increase of ST with increasing salinity
clearly indicates some other effect. We tried to check whether this can be explained by the
collective thermoelectrophoretic effect. In Figure (3.6b), the red line shows the variation
of ST due to only collective effect and it is clear that it fits very well the data for lower
salinities. With increasing n0, φ decreases and this in turn increases the Soret coefficient.
In Figure (3.6b), the red line corresponds to the variation of ST due to only collective
effect and the blue squares indicate the variation of ST due to the change in zeta potential
(in the absence of collective effect). If we consider these two effect together, we get the
exactly same variation indicated by the measured data [black circles in Figure (3.6b)].

What is striking with this data is that the collective effect starts taking place at the
salt concentration n0 ∼ 5 × 10−3M/l and at this point, the product φξ ≃ 0.05 which is
much less than 1. This indicates the importance of collective effect at a relatively very
low colloidal concentration. One may still think whether electrostatic interaction is at
the origin of the observed increase of ST . Indeed electrostatic interaction gives rise to the
Soret coefficient with increasing salt-ion concentration. But for this experiment, with the
concentration of polystyrene and salinity used, we found that 2Bn << 1 in Eq. (3.18).
This indicates that the effect of electrostatic interaction is much weaker and can’t increase
the Soret coefficient significantly.
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Figure 3.6: (a) Variational of the ζ potential with salinity n0. With increasing salt
concentration zeta potential remains constant initially and then decreaes sharply. (b)
Soret coefficient as a function of the salt-ion concentration. Black circles indicate the
experimentally measured data, blue squares represent the variation due to the change in
zeta potential and the red line correspond to the variation due to collective effect. This
line is plotted using Eq. (3.15) for a constant ζ = −40mV.
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3.7 Summary and conclusion

In summary, charged colloids in a non-uniform temperature show collective transport be-
havior mediated by the Seebeck effect of both colloidal and salt ions. For large particles
and macromolecules, cooperative effects set in at rather low concentration, where hydro-
dynamic interactions are absent and where the charge ratio φ is much smaller than unity.
The criterion for the onset of collective behavior, φξ ∼ 1 in (3.15), involves the ratio
of the electrophoretic mobility and the Einstein coefficient; by contrast, the criterion for
cooperative diffusion, Bn ∼ 1, depends on the pair potential of the solute particles. The
discussed examples suggest that the collective thermoelectric effect is generic for colloids
at ordinary concentrations. This issue could be relevant for microfluidic applications of
thermophoresis.

If we consider the thermoelectric field given in Eq. (3.14), both its magnitude and sign
can be tuned by chosing the appropriate electrolyte and adjusting the charge ratio. With
a thermal gradient of less than one Kelvin per micron, E may attain values of 100 V/m.
Thus the thermoelectric effect could be used for applying electric fields in microfluidic
devices. Local laser heating would permit to realize almost any desired spatiotemporal
electric-field pattern.
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Chapter 4

Thermocharging colloid particles

4.1 Introduction

Selective transport and controlled pattern formation are of fundamental interest in mi-
crofluidics and biotechnology [44]. Particle focussing devices [3, 61, 62] and macromole-
cular traps [19, 63, 64] have been designed by applying chemical or thermal gradients.
In “active colloids” there is no external symmetry breaking field: Thermodynamic forces
arise from an embarked chemical reactor [65, 66] or from non-uniform laser heating of
Janus particles [21]. In both cases the colloid self-propels in an anisotropic environment
that is created by the concentration or temperature variation along its surface. The in-
terplay of self-propulsion and Brownian motion leads to a complex diffusion behavior
[65, 66, 21, 67].

Locally modifying material properties by heating a single nanoparticle or molecule
in a focussed laser beam is by now a standard technique. The temperature dependent
refractive index was used for the photothermal detection of a single non-fluorescent chro-
mophore [68]. Heating an isotropic nanoparticle induces a radial temperature profile in
the surrounding fluid and, because of the viscosity change, an enhancement of the Einstein
coefficient [69]. The non-uniform laser absorption of half-metal coated particles leads to
a temperature variation along its surface; the resulting self-propulsion adds a ballistic
velocity component and thus increases the effective mean-square displacement [21].

In this chapter, however we will discuss about a novel actuation mechanism for colloids,
which is based on the Seebeck effect of the electrolyte solution: Laser heating of a nonionic
particle accumulates in it’s vicinity a net charge Q, which is proportional to the excess
temperature at the particle surface. The corresponding long-range thermoelectric field
provides a tool for controlled interaction with nearby beads or with additional molecular
solutes. Moreover, the presence of the charge Q around the particle can be used for
selective transport of the colloids. At first, we will discuss briefly the case of a constant
temperature gradient which we have mentioned in chapter 2. Then we will discuss how
one can create thermocharge around a particle, derive its expression and the electric field
associated with this charge. At the end of the chapter, we will discuss a few possible
applications of this phenomenon which include aggregation or depletion of a molecular
solute in the vicinity of a hot particle, colloidal separation through velocity differentiation
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etc.

4.2 Seebeck effect in a 1-D system

Here we briefly summarise the basic principle of Seebeck effect in an one dimensional sys-
tem where the temperature gradient is constant. If the temperature of the hot boundary
is T2 and that of the cold boundary is T1, then the resulting temperature gradint present
in the system is given by

∇T =
T2 − T1

L
,

where L is the length of the system. The response of a salt solution to this constant
thermal gradient ∇T is illustrated in the upper panel of Figure (4.1). Because of their
temperature dependent solvation energy, positive and negative salt ions migrate along the
gradient. In general one of the species moves more rapidly, resulting in a thermopotential
between the cold and hot boundaries of the sample [70] and a macroscopic electric field

E = S∇T,

which is proportional to the thermal gradient and to the Seebeck coefficient S [39, 71]. The
bulk solution is neutral; yet opposite charges accumulate at the boundaries and screen
the electric field in a layer of one Debye length. In the last years it has become clear
that colloidal motion in a temperature gradient is to a large extent determined by the
Seebeck effect of the electrolyte solution [16]: The field E and thus the colloidal velocity
depend strongly on the salt composition and are particularly sensitive to the presence of
molecular ions containing hydrogen [17, 32, 72]; this thermo-electrophoretic driving has
been confirmed for SDS micelles in a NaCl1−xOHx solution, where a change of sign of the
drift velocity has been observed upon varying the parameter x [18].

4.3 Seebeck effect in a 3-D system

Now we consider the Seebeck effect in the vicinity of a heated particle, as shown in the
lower panel of Figure (4.1). The qualitative features are readily obtained by wrapping
the hot boundary of the one-dimensional case (upper panel) onto a sphere of radius a. Its
excess temperature δT results in a radial temperature gradient. Under this temperature
gradient, the ions of the salt solution move which gives rise to a charge separation. One
kind of charge is present in excess near the hot region i.e. near the hot particle surface and
the counter ions go to the cold region (the wall of the container). This charge separation
corresponds to a thermoelectric field which is given by E = S∇T at distances well beyond
the Debye length. Its complete expression, in particular close to the particle surface, is
obtained from the stationary electro-osmotic equations for the ion currents.
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Figure 4.1: Upper panel: Seebeck effect in an electrolyte solution that is cooled at the
left side and heated at the right. We show the case of a positive Seebeck coefficient S,
where cations and anions accumulate at the cold and hot boundaries, respectively. The
thermoelectric field E is constant in the bulk and vanishes at the boundaries [72]. The
corresponding surface charges are confined in a layer of about one Debye length (dashed
lines). Lower panel: Seebeck effect in the vicinity of a hot particle with excess temperature
δT . Due to the radial temperature gradient, a net charge Q accumulates within one Debye
length from the particle surface. The charge density and the radial electric field are shown
in Figure (4.3) below. The counterions are at the vessel boundary.
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4.3.1 Mobile ion currents and steady state

In case of a colloid particle dispersed in a monovalent electrolyte solution of ionic strength
n0, the currents for positive and negative ions are given by

J± = −D±

(
∇n± ∓ n±

eE

kBT
+ 2n±α±

∇T

T

)
, (4.1)

which comprise normal diffusion with coefficients D±, electrophoresis in the electric field
E with the Hückel mobility for monovalent ions, and thermal diffusion with reduced
Soret parameters α±. The latter are reduced values of the ionic entropy of transfer
S∗± = 2α±kB, introduced by Eastman as a measure for the electromotive force of an
electrolyte thermocouple [70]. We emphasize that J±,∇n±,∇T , E are vector quantities.
Because of the spherical symmetry considered here, only their radial components are
finite. In the following these quantities are taken as radial vectors.

The mobile ion currents break the uniformity of the electrolyte solution. In a while,
the diffusion current cancels the thermal current and we achieve a steady-state where
both the diffusion current and thermal current remain finite but the total current due to
each kind of ion becomes zero. Thus in this steady-state we have

J± = 0.

We will discuss the behavior of all parameters (like electric field or the charge density) in
this steady-state. The relation between electric field E and the charge density ρ given by
Gauss’ law (divE=ρ/ε) also remain valid in this stationary state.

4.3.2 Equation satisfied by the electric field

In order to obtain an equation for the field E and the charge density ρ = e (n+ − n−) ,
we evaluate the quantity

eJ+
D+

− eJ−
D− = ∇ρ + 2e (n+α+ − n−α−)

∇T

T
− (n+ + n−)

e2E

kBT
= 0. (4.2)

It turns out convenient to define the thermally induced deviation of the salinity from its
mean value n0,

δn =
n+ + n−

2
− n0.

Then the prefactor of ∇T in Eq. (4.2) reads

n+α+ − n−α− = n0(α+ − α−) + δn(α+ − α−) +
ρ

e

α+ + α−
2

. (4.3)

Throughout this chapter we assume that ion densities n± deviate only weakly from their
mean value n0, that is

δn≪ n0, ρ/e≪ n0.
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Discarding small contributions in (4.3) we have n+α+−n−α− = n0(α+−α−) and similarly
n+ + n− = 2n0 in the last term of Eq. (4.2).Using these, Eq. (4.2) simplifies to

∇ρ + 2en0(α+ − α−)
∇T

T
− 2n0

e2E

kBT
= 0. (4.4)

We keep the gradient of the charge density since small ρ does not imply that ∇ρ is
small too. Indeed, we will see that close to the boundaries, ∇ρ is by much larger than
the neglected terms ρ∇T/T and eδn∇T/T , more precisely by the ratio a/ℓB of particle
radius and Bjerrum length.

Equation (4.4) has two unknowns present in it: electric field E and the charge density
ρ. This relation between the charge density and the thermoelectric field E is closed by
the second equation provided by Gauss’ law

divE = ρ/ε. (4.5)

Eliminating the charge density we obtain the inhomogeneous second-order differential
equation for the thermoelectric field

∇2E − 1

λ2
E +

S

λ2
∇T

T
= 0. (4.6)

where λ2 = εkBT/2e
2n0 is the usual Debye length and S = (α+−α−)kB/e is the Seebeck

coefficient.

4.3.3 Temperature profile

To solve Eq. (4.6), we need to know the temperature gradient, which causes the inho-
mogenity to this equation. The temperature profile can be found by solving the heat flux
equation

∇2T =

·

T

αT
− q

κT
,

where q is the heating power, κT is the thermal conductivity, αT is called the thermal

diffusivity and
·

T denotes the time derivative of the temperature. Now in the steady-
state, temperature remains constant and its time derivative becomes zero. This can be
understood if we compare the time scale for heat diffusion and the diffusion of mobile ions.
Charecteristic time scale for heat diffusion (τheat) and the time scale for ionic diffusion
(τ ion) is given by

τheat ∼
a2

αT

and

τ ion ∼
a2

Di

respectively. Here Di is the diffusion coefficient for different ions. Usually heat diffuses
much faster than the ions and αT is of the order of 10−6 m2/s whereas Di is of the order
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Figure 4.2: Temperature profile as a function of the distance from the particle center for
T0 = 300K, a = 1µm and δT = 10K. (Inset) Temperature gradient as a function of the
distance from the center for same values of a and δT .

of 10−9 m2/s [88]. Thus τheat << τ ion and temperature attains a stationary state more
quickly and remains constant when the ionic diffusion takes place. In this state, heat flux
equation simplifies to

∇2T = −q/κT . (4.7)

When we heat a particle by using focused laser beam, there is no direct heating present
for the region outside the particle and the heating power outside the heated particle is
zero. With q = 0, the solution of Eq. (4.7) is given by

T = T0 +
δTa

r
,

where T0 is the temperature as r → ∞, δT is the excess temperature at the particle
surface, r is the distance from the particle center and a is the radius of the particle.
Taking the gradient we get

∇T = −δTa

r2
. (4.8)

We have plotted the temperature profile and the temperature gradient as a function of
the distance from the particle center in Figure (4.2).

4.3.4 Thermoelectric field

Using the expression for ∇T given by Eq. (4.8), we can write Eq. (4.6) in the following
way

∇2E − 1

λ2
E − S

λ2
δT

T

a

r2
= 0. (4.9)
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It is important to note that ∇2E is the vector Laplacian, that is, the gradient of the
divergence not the divergence of a gradient. The complete expression for this operator is
quite complicated [87]. Since the radial component E is a function of r only, the Laplacian
simplifies to

∇2E =
d2E

dr2
+

1

r

dE

dr
− E

r2
.

The usual electrostatic boundary conditions require that the thermoelectric field vanishes
at large distances and at the particle surface, E → 0 for r → ∞ and E = 0 for r = a.
(We recall that we consider an uncharged particle.) Then the above differential equation
is solved by

E = S∇T

(
1− r + λ

a + λ
e(a−r)/λ

)
, (4.10)

where S = (α+ − α−)kB/e is the Seebeck coefficient and the temperature gradient is
given by ∇T = −δTa/r2. One can readily verify that E is solution of (4.9) satisfying the
boundary conditions. The above linearization approximation implies that quanities such
as the Debye and Bjerrum lengths are constant. At distances well beyond (a + λ) the
exponential factor vanishes; the remaining long-range contribution E = S∇T varies with
the inverse square of the distance r.

.

4.3.5 Thermocharge of a hot colloid

From Gauss’ law ρ = εdivE, one obtains the charge density

ρ = −2n0e
2 S

kB

δT

T

a

r

λ

a + λ
e(a−r)/λ

Inserting the Bjerrum length ℓB and the definition of the Seebek co-efficient S, we can
write it as

ρ = −eδα
a

ℓB

δT

T

e(a−r)/λ

4π(a + λ)λr
. (4.11)

It is easy to verify the validity of the approximations made in (4.4) and that the gradient
∇ρ is much larger than the neglected terms. In particular one finds that the maximum
value of the charge density, which occurs at r = a, is of the order ρ/e ∼ (δT/T )λ/(a+λ)n0.
The reduced excess temperature δT/T is typically of the order of ten percent, and λ/(a+λ)
is significantly smaller than unity. Thus the thermocharging does not significantly alter
the salt ion densities, ρ/e ≪ n0. This validates the linearization of the differential Eq.
(4.4).

It turns out convenient to express ρ through the total thermocharge

Q =
∫
dV ρ = 4π

∞∫

a

drr2ρ.

Integration gives

Q = −e(α+ − α−)
a

ℓB

δT

T
, (4.12)
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Figure 4.3: Thermoelectric field E and charge density ρ as a function of the distance r
from the particle centre for different values of the Debye length λ and fixed particle size
a = 1µm [60]. We have used the parameters α+−α− = −10 and δT = 30 K. The dashed
line gives the bulk law E = S∇T .
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Table 4.1: Seebeck coefficient S for NaCl, HCl and NaOH in aqueous solution [39, 73],
and for tetrabutylammonium nitrate (TBAN) in water (w) and dodecanol (d) [74]. For
comparison, S of most simple metals is of the order of a few µV/K. The Seebeck coefficient
is related to Eastman’s ionic entropy of transfer S∗± = 2kBα± through S = (kB/e)(α+−α−)
[32]. Experimental values for S∗± of various ions are given in Refs. [39, 70, 71, 73, 74].
Salt/solvent NaCl/w NaOH/w HCl/w TBAN/w TBAN/d
S (mV/K) 0.05 −0.22 0.21 1.0 7.2
α+ − α− 0.6 −2.7 2.6 12 86

which is the net thermocharge carried by an otherwise non-ionic particle. Important
point to note is that, Q depends on the radius of the particle in units of the Bjerrum
length ℓB = 7 Å, the ratio of excess and absolute temperature, and the reduced Seebeck
parameter α+ − α− . Inserting this expression in (4.11) we have

ρ =
Qe(a−r)/λ

4π(a + λ)λr
. (4.13)

which is concentrated within about one Debye length from the particle surface. Figure
(4.3) illustrates the variation of E and ρ with distance for different values of λ; the former
is long-range whereas the latter decays exponentially.

We can also find the thermocharge directly from the electric field and the integral form
of Gauss’ law. For large r, the second term present in the Eq. (4.10) becomes negligible
due to the presence of the exponentially decreasing factor. The first term goes like 1/r2

and confirms the presence of a net charge Q near the particle surface. Comparing this
with the usual expression for the electric field at a distance r due to a charge Q we can
readily obtain the amount of thermocharge as given in Eq. (4.12) above.

In physical terms the charge Q arises from the difference in thermo-osmotic pressure of
positive and negative ions, which in turn is related to their entropy of transfer 2α±kB. For
α+ > α− the anions show thermal diffusion toward higher temperature, thus accumulating
a negative charge at the particle surface. The corresponding cations are located at the
vessel boundary. Numerical values for the Seebeck coefficient of several electrolytes are
given in Table 4.1. For small ions the numbers α± are of the order of unity; higher values
occur for molecules containing hydrogen. For a 100 nm-bead in NaOH or HCl solution
with δT = 30 K, one finds that Q corresponds to about 40 elementary charges; much
higher values occur for protonated salts in water or alcohol solution.

4.3.6 Thermoelectric response time

As an overall feature, it is important to estimate the thermoelectric response time. As
discussed in section (4.3.3) heat diffuses much faster than the ions, heat diffusivity αT
(∼ 10−6 m2/s) being much higher than the diffusivity of ions Di ( ∼ 10−9m2/s). Because
of the fast equilibration of heat flow and temperature, thermocharging occurs on the time
scale of thermal diffusion of salt ions over one Debye length. With the above mentioned
parameters, one finds a relaxation time of the order of microseconds. Whereas the thermal
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diffusion coefficient for colloidal particles is usually of the order of 10−12m2/Ks.Thus
colloids move much slower than the mobile ions and on the scale of colloidal motion,
thermocharging is an almost instantaneous process.

4.4 Applications

Now as we have already derived the expressions for thermoelectric field and the net ther-
mocharge, in the next part of this chapter we will discuss how the thermocharge allows to
actuate colloidal motility and interactions, and how the thermoelectric field can be used
for locally controlling an additional charged molecular solute.

4.4.1 Colloid-colloid interaction

We start with the electric force between two hot particles at a distance R. Assuming
R≫ λ, the force experienced by one particle carrying thermocharge Q in the presence of
the electric field E due to other hot particle is

F =
Q2

4πεR2
. (4.14)

Due to this repulsive force F , in an electrolyte with finite Seebeck coefficient, heating dis-
perses colloidal aggregates and strongly affects collective effects due to thermophoretic
or hydrodynamic interactions [75]. So far we have considered non-ionic colloids. A
particle carrying a proper charge Qp gives rise to an additional electric field Ep =
Qpe

−(r−a)/λ/(4πελr). Depending on the sign of Q and Qp, the superposition E + Ep
shows a complex spatial variation.It is important to understtand that unlike Ep, E is not
screened.

4.4.2 Thermo-electrophoresis

Thermocharging provides a unique tool for creating a radial electric field in an electrolyte
solution. For a micron-size bead with an excess temperature δT = 30 K, the field E may
attain 104 V/m in its immediate vicinity, and a few V/m at a distance of 100 microns.
The electrophoretic velocity of a molecular solute with zeta potential ζ,

u =
2

3

εζ

η
E, (4.15)

varies between 10 µm/s and 10 nm/s. Depending on the sign of the zeta potential ζ and
of the Seebeck coefficient, molecular ions are attracted or repelled by the thermocharge.
As illustrated in Figure (4.4a), this can be used for accumulating or depleting a molecular
solute in the vicinity of the particle.

More complex patterns are realized by superposing E with the screened field Ep of
a proper charge. In addition to thermo-electrophoresis (4.15), the radial temperature
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profile results in thermal diffusion of the solute molecules, due to both double-layer and
dispersion forces [32, 76]. Finally we mention that the thermoelectric field E of Janus
particles comprises a strongly anisotropic short-range component.

4.4.3 Selective transport

Sorting molecular or colloidal solutes by size is of interest for various applications. The
sedimentation potential being rather ineffective for submicron particles, common methods
are based on electrophoresis or on motion driven by thermodynamic forces. Since the
free-solution mobilities are in general independent of size and molecular weight, velocity
differentiation is achieved only after adding a molecular solute as in gel electrophoresis
[48, 77], or by spatial flow or field modulation [78, 79, 80].

However, thermocharging in the presence of an applied electric field Eext, provides an
efficient means for separating particles by size. The force density ρEext exerted by the
external field on the charged fluid results in a drift velocity uext of the particle; from the
stationary Stokes equation one finds (Appendix D)

uext =
QEext

6πη(a + λ)
. (4.16)

Contrary to the Helmholtz-Smoluchowski mobility, this depends explicitly on the particle
radius a. In view of the thermocharge (4.12), the most interesting dependencies arise
from the excess temperature δT . Assuming a constant volume absorption coefficient β,
one finds that the excess temperature varies with the square of the radius,

δT =
a2βI

3κT
, (4.17)

where I is the laser intensity and κT the thermal conductivity of the solvent.
According to (4.17) the excess temperture increases with the square of the bead size;

thus the drift velocity uext varies with the particle surface in the Hückel limit (a > λ) and
with its volume in the case a < λ, as illustrated in Figure (4.4b). As an estimate of the
order of magnitude, heating the beads by δT = 30 K and applying a field Eext ∼ 104 V/m
results in a velocity of about 10 µm/s. The above argument holds true for non-spherical
solute particles, albeit with different geometrical factors. The excess temperature of metal-
coated polystyrene beads is linear in the radius. For polymers the charge Q is proportional
to the chain length or number N of monomers, whereas the friction coefficient varies with
the gyration radius R ∝ Nν, resulting in a velocity u ∝ N1−ν. In aqueous solution most
colloids carry a proper charge with surface potential ζp, resulting in an additional velocity
up = (εζp/η)Eext. Still, the thermocharge leads to a significant dispersion of the total
velocity uext + up.

Last of all, one possible application could be the separation of carbon nanotubes by
their wrapping structure [79, 81]. The electronic and optical properties of single-wall
nanotubes depend crucially on their “chiral vector” (n,m) that describes the orientation
of the graphene structure with respect to the tube axis. Depending on the values of these
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Figure 4.4: Pattern formation and selective transport due to thermocharging. a) The
thermoelectric field of a hot particle induces electrophoretic motion (4.15) of a charged
molecular solute. Depending on the sign of the electrolyte Seebeck coefficient S and the
molecular zeta potential ζ, the colloidal thermocharge results in depletion or accumulation
of the solute. b) In an external electric field Eext heated particles of radius a1 and a2
differ in their excess temperature (4.17) and thus acquire a size-dependent velocity (4.16).
c) Because of their different optical absorption properties, metallic and semiconducting
carbon nanotubes differ in their thermocharge and in their response to an electric field.
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indices, one has metallic or semiconducting nanotubes with a characteristic bandstructure
and a particular optical spectrum. The excess temperature δT = aβ̄I/κT of a nanotube
depends on the absorption per unit area β̄ of its graphene sheet, and so does the drift
velocity uext. As illustrated in Figure (4.4c), by chosing an appropriate laser wave length,
one could selectively heat nanotubes with a given chiral vector and separate them through
thermocharged induced electrophoresis.
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Chapter 5

Heating a liquid spot

5.1 Introduction

Modern optical techniques have made it easy to investigate and study thermophoresis in
colloidal suspensions. Heating a particular liquid spot by focussed laser beam is a stan-
dard technique to create temperature gradient within an electrolyte solution and probe
thermophoretic experiments [19, 29, 63, 84, 85, 86]. In general, thermophoresis deplets
particles from a heated liquid spot along the temperature gradient. In an experiment,
Braun and Libchaber have shown that DNA can be trapped near a heated liquid spot
inside a thin chamber by using the simultaneous effects of thermophoresis and convection
flows; leading to a huge increase of the local DNA concentration [84]. Jiang et al. has
reported the trapping of a colloid particle in an electrolyte by modifying the temperature
gradient and the added polymer concentration [63]. A DNA trap was realized through a
thermal barrier in a microchannel [29].

The underlying thermal forces depend on the applied temperature gradient through
various mechanisms that are not always easily separated [32, 76]. The common physi-
cal picture relies on local effects such as thermoosmosis around solute particles [15], or
Marangoni forces along fluid interfaces [89]. Yet in recent years it has become clear that,
for charged systems in an electrolyte solution, the thermoelectric or Seebeck effect provides
a nonlocal driving force that presents surprising properties. Here in this chapter, we will
discuss about the effect of thermoelectric response of the electrolyte on thermophoresis
due to heating a specific liquid spot.

Suppose we have an electrolyte solution in a container and we are heating a small
region of this solution by a focused laser beam (Figure 5.1c & 5.1d). Now due to this
increase of local temperature, there will be a temperature gradient in the surrounding
liquid which is not constant in space. As a consequence of this temperature gradient, the
mobile ions of the electrolyte solution will start moving. In general the transport velocity
for different ions differ from each other in magnitude and in some cases in direction also.
Due to such motion of mobile ions, there is a separation of charge and we hope to observe
charges inside and near the heated spot and near the boundary of the vessel. Now in this
chapter we will show that this is indeed the case and we get charges inside the heated
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Figure 5.1: (a) Usual experimental setup for heating a particular liquid spot confined
in a thin channel by laser heating. The height of the chamber remains very small (of
the order of a few tens of micrometer) and thus the temperature gradient is essentially
observed in a 2-D surface (X-Y plane in the picture; see Figure (b)). (c) the case we
consider here: the chamber has finite width and thus the temperature gradient is formed
in all direction. Due to the heating of a spherical region, temperature gradient also has a
spherical symmetry. (d) 2-D cross section of the geometry described in Figure (c).

spot. Moreover this corresponds to a radial electric field (E) which is very close to the
macroscopic Seebeck field except at the boundary of the heated spot. When we heat a
given spot of liquid in a thin chamber, the problem is essentially 2-dimensional; due to
very small thickness of the chamber used in the experiments (Figure 5.1a & 5.1b). But,
here we will not impose the condition of small thickness of the chamber and consider the
problem in a 3-dimensional space.

5.2 Mobile ion currents

We consider a monovalent electrolyte solution of ionic strength n0. According to the
general formulation of non-linear thermodynamics the currents of mobile ions are linear
functions of generalized forces which can be expressed through the thermal and concen-
tration gradients (as discussed in section 2.3). Ultimately the mobile ion currents are
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given by

J± = −D±

(
∇n± + 2n±α±

∇T

T0
∓ n±

eE

kBT0

)
(5.1)

where the first term corresponds to normal diffusion with Einstein coefficients D±, second
term accounts for thermal diffusion with the reduced Soret parameters α±, and the last
term describes the electrophoresis in the electric field E with the Hückel mobility for
monovalent ions. Important point to be noted in Eq. (5.1) is that the electric field E
present is not an external electric field but arises due to the charge separation occuring
in the electrolyte solution. The reduced Soret parameters α± are related to Agar’s "heat
of transport" Q∗

± through the relation α± = Q∗
±/2kBT . From definition it is clear that

α’s are dimensionless number and their values were measured by Agar. For most of the
common ions α varies from 0 to 3 and are listed in Table 2.1.

5.3 The Steady-state

Due to the non-uniform temperature the ions move and form the currents given by Eqs.
(5.1). In a while, although being finite independently, the diffusion current (∝∇n) equi-
libriates the thermal current (∝∇T ) and we observe a steady state where current due to
each ionic species becomes individually zero and the fundamental relation between charge
density and the electric field remains valid. So this steady state can be described by the
following set of equations:

J± = 0, (5.2)

and
∇ ·E =

ρ

ε
(Gauss’ law). (5.3)

We will calculate all the parameters (i.e. electric field, potential and charge density) in
this steady state using these three conditions given by equations (5.2) and (5.3). There
are three unknown quantities in this problem which are ∇n± and E and we have three
equations given by two Eqs. in (5.2) and one in (5.3). Thus these three equations form a
complete set of equations and possible to solve for finding out the three variables.

5.4 Equation satisfied by the electric field

In the steady-state (J± = 0), condition (5.2) gives us two equations. Subtracting one
from the other and using the gradient of charge density ∇ρ instead of e∇ (n+ − n−) we
get

∇ρ + 2en0δα
∇T

T0
− 2n0

e2E

kBT0
= 0, (5.4)

where n0 is the salinity and δα is the weighted average of α’s. For a binary electrolyte
solution n0 = n+ = n− and δα = (α+ − α−) . Rearranging the terms of this equation, we
obtain an expression for the electric field E as:

E = λ2
∇ρ

ε
+ S∇T,
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where λ =
(
εkBT
2n0e2

)1/2
is the usual Debye length and S = δαkB

e
is the Seebeck coefficient.

This shows that the electric field has two contributions in it : one is proportional to the
gradient of the charge density which gives the homogeneous solution for the electric field
and the other one proportional to the temperature gradient causes an inhomogeneity.
Instead of the charge density, the homogeneous term can be expressed in terms of the
electric field by using Gauss’ law. By doing so, we get a resulting equation for the electric
field:

∇
2
E− 1

λ2
E+

S

λ2
∇T = 0 (5.5)

Important point to note in this equation is that the Laplacian
(
∇
2
)
present is not a scalar

Laplacian, it is a vector Laplacian and acts on a vector quantity (the electric field E).
It is the gradient of a divergence instead of the divergence of a gradient. The complete
expression for this operator is quite complicated [87]. But due to the spherical symmetry
of the problem, only the radial component for all the vector quantities are finite; other
components equal to zero. Thus for the Laplacian also we need only the radial component
which is given by

∇2
r =

(
d2

dr2
+

2

r

d

dr
− 2

r2

)
.

In the rest part of this chapter, we will consider all the vectors as radial vectors and
denote them by normal indices instead of bold ones. Thus, for this radially symmetric
system, Eq. (5.5) takes the form

∇2
rE −

1

λ2
E+

S

λ2
∇T = 0. (5.6)

To solve Eq. (5.6) explicitly, we need to know the temperature gradient, which causes
the inhomogeneity to this equation. The temperature profile can be found by solving the
heat flux equation

∇2T =

·

T

αT
− q

κT
,

where q is the heating power, κT is the thermal conductivity, αT is called the thermal

diffusivity and
·

T denotes the time derivative of the temperature. As already discussed in
section (4.3.3), in general heat diffuses much faster than the ions; typical diffusivities being
of the order of 10−6 m2/s for heat diffusion and 10−9 m2/s for ionic diffusion [88]. This
can be well understood if we compare the time scale for heat diffusion and the diffusion
of mobile ions. Charecteristic time scale for heat diffusion (τ heat) and the time scale for
ionic diffusion (τ ion) is given by

τheat ∼
a2

αT
and

τ ion ∼
a2

Di

respectively. Here Di is the diffusion coefficient for different ions or ionic diffusivity. As
αT >> Di, τ heat << τ ion. On the basis of this time scale separation, we can consider that
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the temperature attains a stationary state sufficiently quickly to remain at a constant
value when the ionic diffusion takes place. Therefore, in this state, the time derivative of
temperature becomes zero and the heat flux equation simplifies to

∇2T = −q/κT . (5.7)

We get different solutions for Eq. (5.6) depending upon the nature of the temperature
profile. In the following we consider two types of temperature profile: (i) caused by the
square shaped laser heating and (ii) caused by Gaussian laser heating. (One other type
of heating profile will be discussed in Appendix F)

5.5 Square heating profile

In this section, we consider a square heating profile given by

q(r) = q0Θ(r − a) ,

where Θ(r − a) is called a Heaviside step function and defined as

Θ(r − a) = 1 (r < a)

= 0 (r > a).

Thus q(r) is constant (= q0) inside the heated spot and outside the spot there is no heating
(q = 0); see Figure (5.2). With this form for the heating profile and using the boundary
conditions that both temperature and its gradient are continuous at the boundary of the
heated spot, the solution for Eq. (5.7) reads as

Tin = T0 +
3

2
δT − δT

2

r2

a2
(0 < r < a) , (5.8a)

Tout = T0 + δT
a

r
(a < r <∞), (5.8b)

where r is the distance from the centre of the spot, a is the dimension of the region
being heated and δT is the increase in the temperature of the heated spot at r = a. The
resulting temperature profile is shown in Figure (5.2); it decreases with r2 inside the spot
and outside it falls with 1/r. In case of an experiment, δT usually remains of the order
of unity. Thus the increase of the temperature of the spot is very small compared to its
ambient temperature (T0) which usually is the normal room temperature. The constant
heating power q0 is related to the increase in temperature by the relation

q0 =
6κT δT

a2
.

Taking the gradient of Eqs. (5.8a) and (5.8b), we get

∇Tin = −δT
r

a2
(0 < r < a) , (5.9)

∇Tout = −δT
a

r2
(a < r <∞), (5.10)

with δT , a and r defined above.
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Figure 5.2: (Left) Heating profile: constant heating inside the spot (r < 1µm) and
outside the spot (r > 1µm) there is no heating. (Right) Temperature profile throughout
the electrolyte solution. At the centre of the spot (r = 0) the temperature is T0 + 3

2
δT ;

at the boundary of the spot it equals T0 + δT and then it decreases as ∼ 1/r with the
increasing r to become T = T0 as r→∞.

5.5.1 Potential and the thermoelectric field

We can solve Eq. (5.6) to find out E, the resulting electric field has two parts E =
Eh + Einh, where Eh is the solution of the homogeneous equation ∇2Eh − 1

λ2
Eh=0 and

Einh = S∇T . This is justified as ∇2T is either constant or zero throughout the entire
space. Now it would be much more easier to find the homogeneous solution if we start from
the equation satisfied by the potential which is related to the eletric field by the relation
Eh = −∇φh. Potential satisfies the usual Debye-Huckel equation ∇2φh − 1

λ2
φh = 0, with

the Laplacian present is a scalar Laplacian and has the form ∇2 ≡
(
d2

dr2
+ 2

r
d
dr

)
.

The general solution for φh looks like:

φh(r) = A1
e−r/λ

r
+ A2

er/λ

r
(0 < r < a),

and

φh(r) = A3
e−r/λ

r
(a < r <∞),

where we have discarded the exponentially increasing term outside the spot, otherwise it
will blow up as r → ∞. The corresponding homogeneous electric fields can be found by
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using the relation E = −∇φ and this gives

Eh = A1

(
1

r2
+

1

λr

)
e−r/λ −A2

(
1

r2
− 1

λr

)
er/λ (0 < r < a),

and

Eh = A3

(
1

r2
+

1

λr

)
e−r/λ (a < r <∞).

This, along with Einh = S∇T gives the complete expression for the electric field both
inside and outside the heated spot:

Ein(r) = A1

(
1

r2
+

1

λr

)
e−r/λ −A2

(
1

r2
− 1

λr

)
er/λ − SδT

r

a2
(0 < r < a),

and

Eout(r) = A3

(
1

r2
+

1

λr

)
e−r/λ − SδT

r

a2
(a < r <∞).

The three constants A1, A2 and A3 can be found out using the three boundary conditions:

Ein(0) = 0, (5.11)

Ein(a) = Eout(a), (5.12)

and due to the continuity in charge density

∇ · Ein |r=a= ∇ · Eout |r=a . (5.13)

Condition (5.11) gives A2 = −A1. Using the other two conditions we arrive at the final
result:

Ein(r) = S∇Tin

(
1− 3e−a/λ

a + λ

r
i1(r/λ)

)
(r < a), (5.14)

and

Eout(r) = S∇Tout

(
1− 3e−r/λ

r + λ

a
i1(a/λ)

)
(r > a), (5.15)

where
i1(x) = cosh(x)/x− sinh(x)/x2

is a modified spherical Bessel function of the first kind. Expressions for ∇Tin and ∇Tout
given by Eqs. (5.9) and (5.10) ensure that the electric field inside the liquid spot goes
to zero linearly with r. For large distances, the second term in the expression for Eout

vanishes exponentially and the field becomes proportional to 1/r2.
We have plotted the electric field inside as well as outside the spot for a = 1µm,

λ = 0.1µm, S = 0.05mV/K and δT = 10K in Figure (5.3). Electric field is zero at
the center of the spot and goes to zero as we approach r → ∞. It turns out that the
homogeneous part of the electric field is very small compared to the inhomogeeneous
part originating from the temperature gradient and it hardly modifies the macroscopic
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Figure 5.3: Electric field as a function of the reduced distance (r/a) from the spot for
λ = 0.1µm. The field is continuous at the boundary of the heated region and becomes
zero at r = 0 as well as at r →∞.

Seebeck field. To compare the homogeneous and the inhomogeneous part of the electric
field, we have plotted the total electric field Etot (containing both the homogeneous and
the inhomogeneous part) and the inhomogeneous electric field only in the same plot for
two different values of λ (=100nm and 30nm); see Figure (5.4). It is clear from the plots
that except very close to the boundary of the heated spot homogeneous electric field is
very small and consequently the electric field remains similar to the macroscopic Seebeck
field.

5.5.2 Charge density ρ and total charge Q

As we know the electric field, we can now find the charge density ρ using the relation
ρ = εdivE where the del operator has the form ∇ ≡

(
d
dr

+ 2
r

)
and ε is the permittivity.

Taking the gradient of Eqs. (5.14) and (5.15), we get
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Figure 5.4: Comparison of the total electric field and its inhomogeneous part for a = 1µm
and two different values of λ = 30nm and 100nm. Plots show that the total electric
field and the inhomogeneous part are almost equal everywhere except at the boundary
of the spot and that too is very small. So the homogeneous electric field is of very little
importance and the total field depends largely on the temperature gradients.
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ρin
ε

=
3εSδT

a2

[
a + λ

r
sinh

( r
λ

)
e−a/λ − 1

]
, (5.16)

and
ρout
ε

= −3εSδT

λ
i1(a/λ)

e−r/λ

r
. (5.17)

We have plotted the charge density as a function of the distance from the center of the
spot. It is clear that we observe a finite charge density inside the heated spot (r < 1µm)
and outside the spot it becomes zero very rapidly. Total charge confined in the spot can
be calculated by integrating the charge density:

Q = 4π

a∫

0

r2ρindr + 4π

∞∫

a

r2ρoutdr.

Using the expressions for ρin and ρout from Eqs. (5.16) and (5.17) respectively, we obtain

Q = −3

2
eδα

a

ℓB

δT

T
,

where ℓB = e2/4πεkBT is the Bjerrum length and at room temperature it equals to 7 Å.

5.6 Gaussian heating profile

Now we consider the case of a Gaussian heating profile; see Figure (5.6). For a Gaussian
heating profile, the heating power q is given by

q = q0 exp
−r2/a2 .

Using this, the solution of the heat flux Eq. (5.7) gives the temperature profile as

T (r) = T0 +
δTa

r
erf
(r
a

)
, (5.18)

where r is the distance from the centre of the spot, a is the dimension of the region
being heated and erf

(
r
a

)
is known as the Gauss Error functions (for more details on Error

function see Appendix A), T0 is the temperature at distances far away from the heated
spot (r → ∞). The heating profile and the resulting temperature profile is shown in
Figure (5.6). Heating is maximum at r = 0 and it equals to q0. Maximum heating power
is related to the excess temperature δT by the relation

q0 =
4κT δT√

πa2
,

where is the κT thermal conductivity and a is the radius of the heating spot.
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Figure 5.5: Charge density ρ (divided by the permittivity) as a function of the reduced
distance (r/a) from the spot for various values of the Debye length. Now usually Debye
length is very small in case of an experiment and the plot shows that for small Debye
length we get significant amount of charge inside the spot and outside the spot the charge
is esentially zero.
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Figure 5.6: (a) Plot shows the nature of the Gaussian heating profile (not to scale). (b)
Temperature profile throughout the solution for a Gaussian heating q ∼ exp(−r2/a2) for
a = 1µm. The plots show that the temperature is a long-range function whereas the
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5.6.1 Potential and the electric field

We need to solve Eq. (5.6) in order to get the electric field. However, we can simplify
the solution if we start from the equation satisfied by the potential which is related to
the eletric field by the relation E = −∇φ. Using this and the integral

∫ r
∞

(∇T ) dr =
T (r)− T (∞) = T − T0 ,we have a resulting equation for the potential by integrating the
previous equation

∇2φ− 1

λ2
φ− SδT

λ2
a

r
erf
(r
a

)
= 0. (5.19)

Solution of this equation is given by (for the detailed derivation see Apendix E)

φ(r) = −SδT
a

r
erf
(r
a

)
+ SδT

a

2r
ea

2/4λ2
∑

±

∓e±r/λ erf c
( a

2λ
± r

a

)
, (5.20)

with the complementary error function

erf c(x) = 1− erf(x).

Corresponding electric field is readily obtaind by using the relation E = −∇φ:

E = −SδT
a

r2

[

erf
(r
a

)
− 1

2
ea

2/4λ2
∑

±

( r
λ
∓ 1
)
e±r/λ erf c

( a

2λ
± r

a

)]

. (5.21)

Now the properties of the error function enables us to investigate both the electric
field and the potential in two particular limits: large a/λ ratio and small a/λ ratio. Now
in case of experiments, the size of the heated spot is usually several microns, whereas



5.6. GAUSSIAN HEATING PROFILE 65

the Debye length takes values between 1 and 100 nanometers. So from practical point
of view, the only interesting limit is where a >> λ. Then a powers series expansion for
erf(x) provides useful approximation. Below we discuss about this case.
Large a/λ ratio:
For large x, error function erf(x) can be expanded in the following way (see Appendix

A for details):

erf(x) = 1− e−x
2

√
πx

(
1− 1

2x2
− · · ·

)
(for large x)

For a >> λ, we can always expand erf
(
a
2λ
± r

a

)
using this expression. If we do this we

get much simple expressions for both the electric field and the potential (which is valid
for any r) as (see Appendix E):

φ(r) = −SδT
a

r
erf
(r
a

)
, (5.22)

and

E(r) = −SδT
a

r2
erf
(r
a

)
+

2SδT√
π

e−r
2/a2

r
. (5.23)

Equations (5.22) and (5.23) represent the potential and the electric field respectively at
any distance in the large a/λ ratio. To compare we have plotted the actual expressions for
potential and the electric field given by Eqs. (5.20) and (5.21) and simplified expresions
[Eqs. (5.22) & (5.23)] in the same plot for different values of a/λ ratio (see Figure 5.8 and
Figure 5.7). For high a/λ ratio (=100), the two lines coinciding with each other shows
the validity of our approximation (Figure 5.8). Whereas in Figure (5.7), for small a/λ
ratios (= 0.3, 1, 3, 10), the curves differ in the region of small r showing the importance
of the terms we have neglected to arrive at the simplified expressions [Eqs. (5.22) &
(5.23)]. Important point to note about Eqs. (5.22) and (5.23) is that both of them are
independent of the Debye length λ. That means when the dimension of the the heated
region is large compared to the Debye length, the potential or the electric field generated
becomes independent of the concentration of the electrolyte solution.
What happens at large distances?

Now the interesting thing is to see how the potential and the electric field behave
for large r. For large r (r >> a), erf

(
r
a

)
becomes equal to 1 and the exponential term

decreases rapidly. So the potential and the electric field can be written as:

φ(r) = −SδT
a

r
, (5.24)

and

E(r) = −SδT
a

r2
, (5.25)

which are exactly similar to the macroscopic Seebeck field and corresponding electric
potential. Important point to note is that the erf(r) becomes 1 approximately at r = 2
(see Appendix A). So at nearly r = 2a, Eqs. (5.22) and (5.23) correspond to Eqs. (5.24)
and (5.25). This can be seen in Figure (5.9), where we have plotted the potential and the
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Figure 5.7: (a) Plot shows the potential as a function of the reduced distance r/a according
to Eqs. (5.20) and (5.22) for λ/a = 3, 1, 0.3, 0.1 and 0. The dashed line indicates the
potential for λ/a = 0. It is clear that as we increase the λ/a value the curves start
deviating from the value for λ/a = 0 which is essentially represented by Eq. (5.22). This
shows the importance of the neglected terms in small a/λ ratio. (b) Electric field as a
function of the reduced distance according to Eqs. (5.21) and (5.23). Here also the curves
for different λ/a ratio differ from the curve corresponding to λ/a = 0. As we decrease λ/a
ratio or equivalently increase a/λ ratio, this difference becomes smaller. All the curves
have been drawn using the parameters S = 0.05mV/K and δT = 10K.
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Figure 5.8: (a) Plot shows the potential as a function of the reduced distance (r/a)
according to Eqs. (5.20) [red line] and (5.22) [blue dashed line] for λ = 0.01µm. The
two curves fall exactly on each other and validates the approximation made to arrive at
Eq.(5.22) from Eq.(5.20). (b) Electric field as a function of distance according to Eqs.
(5.21) [red line] and (5.23) [blue dashed line]. Here also the two curves give exactly same
result.
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Figure 5.9: (a) Electric potential as a function of the reduced distance r/a according to
Eq. (5.22) [solid line] and Eq. (5.24) [dashed line] for a/λ = 100, S = 0.05mV/K and
δT = 10K. (b) Electric field as a function of the reduced distance according to Eq. (5.23)
[solid line] and Eq. (5.25) [dashed line] using the same parameters. From the plot it is
clear that for large r, both electric field and potential corresponde to the macroscopic
Seebeck field and potential given by Eqs. (5.25) and (5.24). But for small r, the electric
field decreases and goes to zero at r = 0.
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Figure 5.10: Charge density (ρ) as a function of the reduced distance (r/a) from the
center of the spot. This gives an idea about how the charge density varies with the
distance but the numbers don’t correspond to the actual value of the charge density as it
misses an overall multiplicative factor of permittivity (ε). We have used δT = 10K and
S = 0.05mV/K.

electric field for a = 1µm and λ = 0.01µm. Thus a/λ = 100 here. Other parameters used
for this plot are: S = 0.05mV/K and δT = 10K. The electric field satisfies the boundary
conditions also: it becomes zero at r = 0 as well as for r→∞.

5.6.2 Charge density and the total charge

Taking the divergence of Eq. (5.21), we get the general expression for the charge density
as

ρ =
SδTa

2λ2r2
ea

2/4λ2
∑

±

±e±r/λ erf c
( a

2λ
± r

a

)
.

Expanding the error function in the limit a >> λ, we arrive at the final expression for
the charge density as (Appendix E):

ρ(r) = −4εSδT√
πa2

e−r
2/a2. (5.26)

Charge density decays exponentially and becomes zero at a distance very close to the
radius of the spot (Figure 5.10). Total charge (Q) accumulated within and very close to
the heated region can be calculate by integrating the charge density and this gives

Q = −4πaSδT = −eδα
a

ℓB

δT

T
, (5.27)
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where we have used the definition of Bjerrum length ℓB = e2/4πεkBT and expressed the
Seebeck coefficient in terms of the reduced Soret parameters (δα = α+ − α−). The net
charge accumulated is proportional to the ratio of excess and absolute temperature, radius
of the heated spot and δα. It is easy to see that for positive δα values, negative charge
appears at the heated spot which is expected from the discussions in Chapter 2. The
opposite case happens for δα < 0; positive charges appear at the spot. Corresponding
counter-ions go to the sample container and due to the large geometry of the container,
the counter-ion density becomes effectively zero.

5.7 Summary and conclusion

In summary, in this chapter we have discussed the role of thermoelectric effect in case of
heating a particular liquid spot. We have considered two different types of laser heating
profile: one is a square heating profile and the other one is a Gaussian heating profile. In
both the cases, we saw the evidence of an accumulation of charges inside the heated spot.
This is due to the charge separation taking place due to the motion of the mobile ions
in the temperature gradient. Moreover this charge accumulation correponds to a long
range electric field which varies as 1/r2 for large distances and equals to the macroscopic
Seebeck field. But the most important point is that this charge is proportional to the
excess temperature and dimension of the spot and to the reduced Seebeck coefficient of
the electrolyte solution. This latter parameter opens up the possibility of changing the
type of charge being accumulated in the spot by changing the salt. Correspondingly, the
direction of the electric field will also be changed.



Appendix A

Error Function

Error functions are defined as the integral of a Gaussian function:

erf (x) =
2√
π

x∫

0

e−t
2

dt. (A.1)

The complementary error function, denoted by erf c, is related to the error function in
the following way:

erf c (x) = 1− erf (x) (A.2)

=
2√
π

∞∫

x

e−t
2

dt.

From definition it is clear that this is an odd function, erf (−x) = − erf (x). We have
plotted the error function erf (x) in Figure (A.1) from r = −4 to 4 and most important
property which can be seen from this plot is that the function becomes constant and takes
the value of ±1 for large x in either direction.

In general, error function can be expanded in terms of a Maclaurin series:

erf(x) =
2√
π

∞∑

n=0

(−1)nx2n+1

n!(2n + 1)

=
2√
π

(
x− x3

3
+

x5

10
− x7

42
+ · · ··

)

For x << 1, it can be expanded as:

erf(x) =
2√
π
e−x

2

[
x +

2x3

1 · 3 +
4x5

1 · 3 · 5 + · · ·
]

(A.3)
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erf(x)
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x

Figure A.1: Error function erf(x) as a function of x; it shows that for large x, erf(x)
becomes constant and takes the value ±1 depending upon the sign or x.

In the other limit x >> 1,

erf (x) =
2√
π

r∫

0

e−t
2

dt

=
2√
π




∞∫

0

e−t
2

dt−
∞∫

x

e−t
2

dt





= 1− 2√
π

∞∫

x

e−t
2

dt

Using integration by parts, we get

∞∫

x

e−t
2

dt =
e−x

2

2x
− e−x

2

4x3
− · · ·

Thus in the limit x >> 1,

erf (x) = 1− e−x
2

√
πx

(
1− 1

2x2
− · · ·

)
. (A.4)

The derivative of an error function can be easily derived from it definition:

d

dx
erf (x) =

2√
π
e−x

2

. (A.5)



Appendix B

Thermoelectric field in 1D systems

The thermoelectric field (3.10) in chapter 3 has been derived by using the charge neutrality
of the bulk of a macroscopic sample. Here we give a derivation based on the steady state,
Gauss’ law, and the electrostatic boundary conditions. Resorting to the small-gradient
approximation, we replace the coefficients in (3.8) by their mean values and thus have

E = −ψ
∇T

T
+
∇ρ

ε κ̄2
.

With Gauss’s law (3.9), one has a set of differential equations with a constant inhomo-
geneity −(ψ/T )∇T . The resulting thermoelectric field E = Einh + Eh consists of two
contributions. The inhomogeneous term Einh = −(ψ/T )∇T occurs for zero charge den-
sity and accounts for the macroscopic Seebeck effect. The second one Eh is related to
surface charges at the cold and hot boundaries of the sample. The equation for the surface
layers are closed by Gauss’ law and the resulting homogeneous equation ∇2Eh = κ̄2Eh is
solved by the exponential function,

Eh = A+e
κ̄z + A−e

−κ̄z,

where z is the coordinate in the direction of the temperature gradient. Its range is
−1
2
L ≤ z ≤ 1

2
L with the sample size L.

The electrostatic boundary conditions require that the electric field vanishes at z =
±1
2
L. Putting E = 0 and solving for the coefficients of Eh, one readily finds A± =

−1
2
Einh/ cosh(κ̄L/2) and the thermoelectric field

E = −ψ

T
∇T

(
1− cosh(κ̄z)

cosh(κ̄L/2)

)
.

Corresponding charge density can be calculated using the relation

ρ = ε (divE) .

Both E and the charge density ρ are illustrated in Figure (B.1) below. The field vanishes
at the boundaries and reaches its constant bulk value (3.10) within a few screening lengths
κ̄−1. The parameter κ̄−1 takes values in the range between 1 and 100 nanometers and
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thermoelectric field E

charge density ρ

Figure B.1: Thermoelectric field and the corresponding charge density for an one dimen-
sional systam with constant temperature gradient. The dashed lines indicate the zero of
the ordinates.

thus is much smaller than the size of sample L. Even in microfluidic devices, κ̄L is in
general larger than 103.

In real systems a more complex picture may emerge from the surface roughness of the
boundaries, the solute size, and surface charges of other origin. Note that such additional
effects do not affect the bulk electric field (3.10) and thus are irrelevant for the results
discussed in this chapter.



Appendix C

Thermoelectric field due to a hot

particle

In order to find out the electric field E, we have to solve Eq. (4.6) which reads as

∇2E − 1

λ2
E +

S

λ2
∇T = 0. (C.1)

We will solve this equation in two different methods, which are: (i) using Green’s function
and (ii) direct solution using vector Laplacian.

C.1 Method 1: Green function

We can solve Eq. (C.1) directly, but the associated Green function will be a bit com-
plicated as ∇T ∼ 1

r2
. It can be simplified if we start from the equation satisfied by the

potential which is related to the eletric field by the relation E = −∇φ. Using this and
the integral

∫ r
∞

(∇T ) dr = T (r) − T (∞) = T − T0 ,we have a resulting equation for the
potential by integrating the previous equation

∇2φ− 1

λ2
φ− S

λ2
(T − T0) = 0.

Here the Laplacian present is a scalar Laplacian and has the form ∇2 ≡
(
d2

dr2
+ 2

r
d
dr

)
. The

last term present in the left side of this equation is like a source term, which contains the
source of inhomogeneity through the temperature present in it. For simplifying further
calculations, we will call this as g(r). Inserting the expression for (T − T0) and using the
definition of the Debye length λ, we get g(r) = − S

λ2
aδT
r
. Using this, we have

∇2φ− 1

λ2
φ + g(r) = 0.

The general solution for this equation is

φ = A
e−r/λ

r
+

λ

2r
e−r/λI1(r) +

λ

2r
er/λI2(r)
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with I1(r) =
∫ r
a
er

′/λr′g(r′)dr′ and I2(r) =
∫∞
r

e−r
′/λr′g(r′)dr′ and the constant A which

is to be determined using the boundary condition: Electric field E = 0 at the particle
surface i.e. at r = a. While writing down this solution, we have discarded the term
proportional to er/λ to satisfy the boundary condition E → 0 as r →∞. We obtain these
two boundary conditions by using the Gauss’ law, as there is no charge inside the particle
and the total charge in the system is also zero. But for using the boundary condition of
zero field at the particle surface to find out A we have to calulate the electric field first.
Remembering that the electric field E = −∇φ, we have

E = A

(
1

r2
+

1

λr

)
e−r/λ +

(
λ

2r2
+

1

2r

)
e−r/λI1(r) +

(
λ

2r2
− 1

2r

)
er/λI2(r)

with I1(r) and I2(r) defined as above. Using the boundary condition of zero electric field
at the particle surface and remembering that g(r) = − S

λ2
aδT
r

to find out the integrals
I1(r) and I2(r), we find

A =
SδTa

2

λ− a

λ + a
ea/λ.

Plugging back this value of A in the expression for electric field and arranging the terms
present, we have finally

E = S∇T

[
1− r + λ

a + λ
e(a−r)/λ

]
.

C.2 Method 2: Direct solution with vector Laplacian

The solution of Eq. (C.1) can be written as E = Eh +Einh, where Eh is the homogeneous
solution and Einh is the inhomogeneous part. More clearly Eh is the solution of the
equation

∇2Eh −
1

λ2
Eh = 0, (C.2)

and
Einh = S∇T. (C.3)

We can write this as there is no source of heating outside the particle or technically∇2T =
0 everywhere outside the particle. This is easy to check. If we just put E = Eh + Einh in
the left hand side of Eq. (C.1), it gives

∇2 (Eh + Einh)−
1

λ2
(Eh + Einh) +

S

λ2
∇T

= ∇2Eh −
1

λ2
Eh +∇2Einh −

1

λ2
Einh +

S

λ2
∇T

= 0,

where we have used Eqs. (C.2) and (C.3) and the fact that ∇2T = 0. This simplifies the
whole procedure. Now we have to find Eh and if we add Einh to this, we get the complete
solution. The solution of Eq. (C.2) is given by

Eh =
A (r + λ) e−r/λ

λr2
,
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where we have discarded the exponentially increasing term to ensure the boundary con-
dition of zero electric field as r → ∞. Adding Einh = S∇T to this Eh we get the total
electric field as

E =
A (r + λ) e−r/λ

λr2
− S

aδT

r2
.

The constant A can be found by using the boundary condition of zero electric field at the
particle surface i.e. E = 0 at r = a. By doing this, we arrive at the final expression for
the electric fileld as

E = S∇T

[
1− r + λ

a + λ
e(a−r)/λ

]
.
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Appendix D

Velocity of a thermocharged particle

in external field

Here we derive the expression for the thermo-electrophoretic velocity given in equation
(4.16) of chapter 4. An applied external field Eext = eEext along the unit vector e, exerts
on the charge density ρ the force per unit volume ρEext. Then the Stokes equation for
the velocity field v of the surrounding fluid reads as

η∇2
v =∇P − ρEext,

where η is the viscosity and P the pressure.
The fluid velocity is given by the formal solution of Stokes’ equation,

v(r) =

∫
dV ′

G(r− r′) · Eextρ(r
′), (D.1)

in terms of the Green function or Oseen tensor [82]

G(r) =
1

8πηr

(
1 +

rr

r2

)
.

The particle velocity is given by v(r) evaluated at its surface, u = v|r=a, which is a
constant independent of the orientation of r.

The charge density being isotropic, the integral can the performed analytically. Choos-
ing the z-axis along the external field and the particle velocity, the Oseen tensor in the
integrand simplifies to the scalarG(r−r′) = 1/6πη|r−r′|. Because of the spherical symme-
try of ρ(r′) = ρ(r′), only the isotropic contribution of G contributes, G(r−r′)→ 1/6πηr>,
where r> = max(r, r′); since v(r) is evaluated at the particle surface, one has r> = r′,
resulting in

u =
1

6πη

∫
dV ′ρ(r

′)

r′
Eext =

QEext

6πη(a + λ)
. (D.2)

This is the result given in equation (4.16). It is important to note that we have not
accounted for the deformation of the applied field due to the permittivity jump at the
water-particle interface.
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Appendix E

Thermoelectric field of a hot liquid

spot

E.1 Potential

Eq. (5.19) gives the differential equation satisfied by the potential as

∇2φ− 1

λ2
φ− SδT

λ2
a

r
erf
(r
a

)
= 0,

and its general solution is given by

φ(r) = −SδT
a

r
erf
(r
a

)
+ C1

e−r/λ

r
+ C2

er/λ

r
− SδT

a

2r
ea

2/4λ2
[
e−r/λ erf

( a

2λ
− r

a

)

−er/λ erf
( a

2λ
+

r

a

)]
. (E.1)

For a >> λ, erf
(
a
2λ

+ r
a

)
= 1, so we can write equation (E.1) as

φ(r) = −SδT
a

r
erf
(r
a

)
+ C1

e−r/λ

r
+ C2

er/λ

r
− SδT

a

2r
ea

2/4λ2
[
e−r/λ erf

( a

2λ
− r

a

)
− er/λ

]
.

Now the potential must be finite at large distances. So as r → ∞, the exponentially
increasing terms must cancel each other and this gives

C2 = −SδT
a

2
ea

2/4λ2 .

Similarly for small r, the exponentially decreasing terms cancel out each other and this
gives

C1 = SδT
a

2
ea

2/4λ2 .

Putting these values for C1 and C2 in equation (E.1), we get the expression given in (5.20)

φ(r) = −SδT
a

r
erf
(r
a

)
− SδT

a

2r
ea

2/4λ2
[
e−r/λ

{
erf
( a

2λ
− r

a

)
− 1
}

−er/λ
{
erf
( a

2λ
+

r

a

)
− 1
}]

. (E.2)
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For a >> λ, we can expand the error functions present in (E.2) using Eq. (A.4) in the
following way:

erf
( a

2λ
− r

a

)
= 1− e−(

a

2λ
− r

a
)
2

√
π
(
a
2λ
− r

a

) (E.3)

erf
( a

2λ
+

r

a

)
= 1− e−(

a

2λ
+ r

a
)
2

√
π
(
a
2λ

+ r
a

) (E.4)

Putting these, the second term of Eq. (E.2) can be written as

−SδT
a

2r
ea

2/4λ2
[
e−r/λ

{
erf
( a

2λ
− r

a

)
− 1
}
− er/λ

{
erf
( a

2λ
+

r

a

)
− 1
}]

= −SδT
a

2r

[

− 1(
a
2λ
− r

a

) +
1(

a
2λ

+ r
a

)

]
e−r

2/a2

√
π

= 0 (for a >> λ).

Thus Eq. (E.2) reduces to

φ(r) = −SδT
a

r
erf
(r
a

)
(a >> λ) .

E.2 Electric field

The general expression for the electric field given in Eq. (5.21) is:

E(r) = −SδT
a

r2
erf
(r
a

)
− SδT

a

2r2
ea

2/4λ2
[(

1− r

λ

)
er/λ −

(
1 +

r

λ

)
e−r/λ

+
(
1 +

r

λ

)
e−r/λ erf

( a

2λ
− r

a

)
−
(
1− r

λ

)
er/λ erf

( a

2λ
+

r

a

)]
(E.5)

For a >> λ, we expand the error functions using Eqs. (E.3) and (E.4) and can write
(
1− r

λ

)
er/λ

[
1− erf

( a

2λ
+

r

a

)]
+
(
1 +

r

λ

)
e−r/λ

[
erf
( a

2λ
− r

a

)
− 1
]

=

[ (
1− r

λ

)
(
a
2λ

+ r
a

) −
(
1 + r

λ

)
(
a
2λ
− r

a

)

]
e−a

2/4λ2−r2/a2

√
π

= −4r

a

e−a
2/4λ2−r2/a2

√
π

(for a >> λ).

Putting this in Eq. (E.5), we arrive at the expression for electric field given in Eq. (5.23).

E.3 Charge density and the total charge

Taking the divergence of Eq. (E.5) we get the general expression for charge density as

ρ(r) =
SδTε

2λ2
a

r
ea

2/4λ2
[
−e−r/λ

{
1− erf

( a

2λ
− r

a

)}
+ er/λ

{
1− erf

( a

2λ
+

r

a

)}]
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Again expanding the terms in the third bracket by using Eqs. (E.3) and (E.4), we can
write

ρ(r) =
SδTε

2λ2
a

r
ea

2/4λ2
[
−e−r/λ

{
1− erf

( a

2λ
− r

a

)}
+ er/λ

{
1− erf

( a

2λ
+

r

a

)}]

= −SδTε
a

2r

[
1(

a
2λ
− r

a

) − 1(
a
2λ

+ r
a

)

]
e−r

2/a2

√
π

= −SδTε
a

2r

e−r
2/a2

√
π

[
2r
a

a2

4λ2
− r2

a2

]

= −4εSδT
e−r

2/a2

a2
√
π

,

which is given in Eq. (5.26) and valid in the limit a >> λ. Total charge contained in the
heated region is obtained by integrating the charge density

Q = 4π
∞∫

0

r2ρ(r)dr = −4πaSδT.

Using the definition of S = δαkB
e
and the Bjerrum length ℓB = e2/4πεkBT , we obtain the

total charge in the unit of Bjerrum length which is given in Eq. (5.27).
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Appendix F

Hot liquid spot: another

temperature profile

F.1 Temperature profile

In chapter 5 we disucssed two kinds of temperature profile: one was square heating profile
and another one was Gaussian heating profile. Here we discuss a very simple form for
the temperature profile which is valid both inside and outside the spot. We say that the
temperature profile looks like

T = T0 +
aδT

(a + r)
(0 < r <∞) , (F.1)

where r is the distance from the centre of the spot, a is the dimension of the region
being heated, T0 is the temperature as r → ∞ and δT is the difference of temperature
between two given point in the space. At the center of the spot the temperature is given
by T = T0 + δT . Taking the gradient, we have

∇T = − aδT

(a + r)2
. (F.2)

So (T − T0) ∼ 1
(a+r)

(Fig. F.1) & ∇T ∼ 1
(a+r)2

. Now in case of an experiment, T0 is
usually the room temperature ∼ 300 K whereas δT ranges from 10−15 K and thus δT ≪
T0.

F.2 Equation satisfied by the electric field and the

potential

To obtain the electric field we have to solve the same differential equation given by Eq.
(5.5) with the temperature gradient given by Eq. (F.2). The equation satisfied by the
electric field is:

∇
2
E− 1

λ2
E+

2n0(δα)e

ε

∇T

T0
= 0. (F.3)
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r

T

a0

T0

T0+dT

~1/(a+r)

r

T

a0

T0

T0+dT

~1/(a+r)

Figure F.1: Temperature profile throughout the solution. At the centre of the spot (r = 0)
the temperature is T0 + δT and it decreases as ∼ 1/r with the increasing r to become T0
as r →∞

Important point to note in this equation is that the Laplacian
(
∇
2
)
present in this equation

is not a scalar Laplacian, it is a vector Laplacian. It is the gradient of a divergence instead
of the divergence of a gradient. In a 3-dimensional geometry having spherical symmetry
the vector Laplacian has the form

∇
2 =

(
d2

dr2
+

2

r

d

dr
− 2

r2

)
.

We can solve Eq. (F.3) to find out E, but for this the associated Green function is
complicated as

∇T ∼ 1

(a + r)2
.

We can simplify the solution if we start from the equation satisfied by the potential which
is related to the eletric field by the relation E = −∇φ. Using this and the integral

∫ r

∞

(∇T ) dr = T (r)− T (∞) = T − T0,

we have a resulting equation for the potential by integrating Eq. (F.3)

∇
2φ− 1

λ2
φ− 2n0(δα)e

ε

T − T0
T0

= 0. (F.4)
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Here the Laplacian present is a scalar Laplacian and has the form

∇
2 ≡

(
d2

dr2
+

2

r

d

dr

)
.

The last term present in the left side of Eq. (F.4) is like a source term, which contains the
source of inhomogeneity through the temperature present in it. For simplifying further
calculations, we will call this term as g(r). Inserting the expression for T and using the
definition of the Debye length λ, we get g(r) = −δαkBδT

e
a
λ2

1
(a+r)

. Using this, we have

∇
2φ− 1

λ2
φ + g(r) = 0 (F.5)

F.3 Potential and the thermoelectric field

Solution of the above Eq. (F.5) gives the potential in the region 0 < r <∞. The general
solution for this equation is

φ = A
e−r/λ

r
+

λ

2r
e−r/λI1(r) +

λ

2r
er/λI2(r)

with

I1(r) =

∫ r

0

er
′/λr′g(r′)dr′,

I2(r) =

∫ ∞

r

e−r
′/λr′g(r′)dr′,

and the constant A which is to be determined using the boundary condition E = 0 at
the centre of the heated spot i.e. at r = 0. While writing down this solution, we have
discarded the term proportional to er/λ to satisfy the boundary condition E → 0 as
r→∞. We obtain these boundary conditions by using the Gauss’ law, as there is no net
charge inside the system, only a charge separation occurs. But for using the boundary
condition of zero field at the centre of the spot to find out A we have to calulate the
electric field first. Remembering that the electric field E = −∇φ, we have

E = A

(
1

r2
+

1

λr

)
e−r/λ +

(
λ

2r2
+

1

2r

)
e−r/λI1(r) +

(
λ

2r2
− 1

2r

)
er/λI2(r)

with I1(r) and I2(r) defined as above. Important point to note is that E is the radial part
of the electric field E and in this problem we only have the radial component present in E(
E = E

ˆ
r
)
, the other two components being equal to zero.Using the boundary condition of

zero electric field at the particle surface and remembering that g(r) = −(δα)kBδT
e

a
λ2

1
(a+r)

to find out the integrals I1(r) and I2(r), we find

A = δα
kBδT

2e
a
[
1 +

a

λ
ea/λ Ei

(
−a

λ

)]
,



88 APPENDIX F. HOT LIQUID SPOT: ANOTHER TEMPERATURE PROFILE

where Ei function represents the usual exponential integral which is defined as

Ei (x) = −
∫ ∞

−x

e−t

t
dt (for all non-zero values of x)

or equivalently
∫ x
−∞

et

t
dt. Plugging back this value of A in the expression for electric field

and arranging the terms present, we have finally

E = E0
a2

r2
[
1−E1(r)e

−r/λ + E2(r)
]
, (F.6)

with

E0 = −δα
kBδT

ea
, (F.7)

E1(r) = 1 +
r

λ
+

a

2λ

(
1 +

r

λ

){
ea/λ Ei

(
−a

λ

)
− e−a/λ Ei

(a
λ

)}
(F.8)

and

E2(r) =
a

2λ

(
1− r

λ

)
e(a+r)/λ Ei

(
−a + r

λ

)
− a

2λ

(
1 +

r

λ

)
e−(a+r)/λ Ei

(
a + r

λ

)
. (F.9)

Here E0 has a dimension of the electric field and it is the maximum electric field we
can obtain for this system with a given dimension of the heated spot and temperature
difference as λ → 0. For example, if we heat a spot of radius a = 1µm by δT = 10K in
an electrolyte solution having δα ≈ 1, E0 is approximately given by 900V/m. In Figure
(F.2) we have plotted E

E0
as a function of r, the distance from the centre of the particle

for various values of λ. In each cases a and λ are kept constant. This shows that as we
decrease λ, we obtain higher and higher electric field near the particle surface and for
λ→ 0 we have E = E0 at r = a.

F.4 Total charge

Let us briefly discuss something about Eq. (F.6) representing the electric field E. There
are three terms present in this expression. For large r, the second term essentially becomes
negligible due to the presence of the exponentially decreasing factor. Now for large values
of x, the exponential integral Ei(x) and Ei(−x) can be approximated well by the following
functions:

Ei(x) ∼ ex log

(
1 +

1

x

)
,

and

Ei(−x) ∼ −e−x log

(
1 +

1

x

)
.

Using these forms, we get, for large r, E2(r) ∼ O
(

1
a+r

)
. So for large r, the third term

vanishes sufficiently rapidly compared to the first term present in Eq. (F.6) and we can
neglect this term also. Thus for large r, first term goes like 1/r2. Due to the presence
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Figure F.2: Temperature T , E/E0 and ρ/ρ0 as a function of the distance from the particle
centre (r) for a fixed particle radius a = 1µm. In the left panel we have used λ = 0.1µm
and in the right panel λ = 10µm.

of this, for large r the electric field is proportional to 1/r2 which confirms the presence
of a net charge near the heated spot. Comparing the first term with Q

4πεr2
(which is the

electric field at a distance r due a charge Q present at the origin) we get the total charge
within the spot as

Qtot = eδα
a

ℓB

δT

T0
, (F.10)

where ℓB = e2/4πεkBT is the Bjerrum length. At room-temperature (T ≈ 300K), Bjer-
rum length ℓB equals to 0.7nm. From eq. (F.10) it is clear that Qtot is independent of λ.
So for large r, the electric field will also be independent of the value of λ.

F.5 Charge density ρ and the total charge

As we know the electric field, we can now calculate the charge density ρ using the relation
ρ = ε (divE) where the gradient operator has the form ∇ ≡

(
d
dr

+ 2
r

)
. Taking the gradient

of Eq.(F.6), we get

ρ = ρ0
a

r
[ρ1(r) + ρ2(r)] , (F.11)
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where

ρ0 = −2en0δα
δT

T0
, (F.12)

ρ1(r) =
[
1 +

a

2λ
ea/λ Ei

(
−a

λ

)
− a

2λ
e−a/λ Ei

(a
λ

)]
e−r/λ (F.13)

and

ρ2(r) = − a

a + r
− a

2λ
e(a+r)/λ Ei

(
−a + r

λ

)
+

a

2λ
e−(a+r)/λ Ei

(
a + r

λ

)
. (F.14)

Here ρ0 has the dimension of the charge density and it is the maximum charge density we
have as we approach the centre of the spot (i.e. r→ 0). So ρ(r→ 0) = ρ0. It is clear that
the charge density decreases exponentially as we go far from the spot and it beomes zero
for large distances. This result is quite expected because we are dealing with an infinte
dimensional geometry. But the total charge produced at the particle surface and at the
boundary of the container is finite. Now if we have a finite amount of charge in a surface
of infinte radius, the charge density must be zero. In Fig. (F.2) we have plotted ρ

ρ0
versus

r (distance from the particle centre) for different values of λ. For each cases as r → 0 ,
ρ→ ρ0.

We can also calculate the total charge by integrating the charge density over a sphere
of infinite radius (0 < r <∞)

Qtot = lim
R→∞

∫ R

0

ρd3r = 4π lim
R→∞

∫ R

0

r2ρdr

and this gives Qtot = eδα a
ℓB

δT
T0

which is exactly similar to that obtained in Eq. (F.10).

F.6 Summary and conclusion

In this case also we obtain the same behaviors for the electric field and charge density at
large distances and clearly see the evidence of accumulation of a net charge Q inside the
heated region. Still there is a problem with this particular choice of the heating profile.
If we use this temperature profile then ∇2T diverges at the origin of the heated spot
(r = 0), so does the heating power of the laser. That’s why it’s not a good choice for the
temperature profile although it gives essentially the same behavior for all the quantities
at large ditances.
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