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Abstract

This is an increasing importance in survival analysis and reliability to select a suitable basic
model for further inquiries of the data. Little deviation in basic model can cause serious pro-
blems in final results. The presence of censoring and accelerated stresses make this task more
difficult. Chi-square type goodness of fit tests are most commonly used for model selection.
Many modifications in chi-square tests have been proposed by various researcher. The first aim
of the thesis is to present a goodness of fit test for wide rage of parametric models (shape-scale
families) commonly used in survival analysis, social sciences, engineering, public health and de-
mography, in presence of right censoring. We give the explicit forms of the quadratic form of
the test statistic (RRN test) for various models and apply the test on real data. We develop a
computer program in R-language for all models. A separate section is dedicated for the test in
demography. We focus on the Birnbaum-Saunders (BS) distribution for goodness of fit test for
parametric AFT-model and analysis of redundant system.

The other purpose of the thesis is to give the analysis of redundant system. To ensure high
reliability of the main components of the systems, standby units are used. The main component
is replaced by the standby unit automatically, if it fails. The standby unit can be in warm, hot,
or cold state. We give the procedure of one main and n − 1 standby units placed in hot state,
and give the detailed analysis of one main and one standby unit using BS parametric family.
We use Sedyakin’s physical principal and the approach of accelerated failure time model for
the analysis of redundant system. This approach is different from the traditional ones in the
literature but difficulties in calculations arise. We calculate the reliability of the system in terms
of distribution function (unreliability function) and asymptotic confidence interval.

Keywords : Accelerated failure time model, Birnbaum-Saunders distribution, Chi-Squared
type goodness of fit tests, Demography, Redundant system, RRN test, Survival analysis.
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Résumé de Thèse

Les méthodes de sélection de modèles deviennent de plus en plus importantes dans l’analyse
de survie et de fiabilité. De petites variations dans le choix du modèle de base peuvent entraîner
de grandes différences dans les résultats finaux. La présence de censure et de covariables rendent
encore plus difficile les calculs liés à ces choix. Les tests d’adéquation de type chi-deux sont les
plus couramment utilisés pour la sélection du modèle. Le premier objectif de la thèse est de
présenter un test d’ajustement pour les modèles paramétriques couramment utilisés en analyse
de survie, en sciences sociales, ingénierie, santé publique ou démographie, en présence de censure
à droite. De nombreuses modifications dans les tests du chi-deux ont été proposées par divers
chercheurs. La première modification pour les données censurées d’un test du chi-deux a été
proposée par Habib et Thomas (1986) sur la base des différences entre estimateur de Kaplan-
Meier F̂n(t) et estimateur du maximum de vraisemblance paramétrique de fonction de survie
F (t, θ̂n). Akritas (1988) a proposé une statistique du chi-deux basée sur l’idée de comparer
le nombre observé et attendu de défaillances dans chaque classe. Hjort (1990) a développé une
statistique de type chi-deux pour la validité d’un modèle paramétrique pour les données de durées
de vie basé sur le processus de risque cumulatif. Plusieurs autres modifications furent proposées
par les chercheurs (par example, Peña, 1992, Kim,1993, Nikulin et Solev, 1999, Bagdonavicius
et al., 2010a). Au Chapitre 2 nous étudirons ce test et nous donnerons les formes explicites de
la forme quadratique de la statistique de test (test de RRN) pour différents modèles avec des
applications du test sur des données réelles. Nous développons également un logiciel en langue
R pour ces modèles paramètriques. Dans ce chapitre, une section séparée est consacrée aux tests
dans le domaine de la démographie. Nous nous concentrons ensuite sur le modèle de Birnbaum-
Saunders (BS) pour le test d’ajustement pour les modèles AFT paramétriques (chapitre 3) et
en analyse de systèmes redondants en Chapitre 4.

L’autre contribution porte sur l’analyse de systèmes redondants composés d’un composant
en état actif hot et d’un autre composant en réserve dites tiède (ie en état warm). Les unités
réservées sont utilisées pour augmenter la fiabilité du système. En cas de panne du composant
principal, celui-ci est automatiquement remplacé par l’unité en veille. L’unité de réserve peut
être dans un état dit hot, warm, ou cold. Nous donnons une procédure générale avec une unité
principale et n − 1 unités fonctionnant dans un warm, puis donnons l’analyse détaillée d’une
unité en réserve en utilisant la famille paramétrique de Birnbaum-Saunders. Nous utilisons le
principe de Sedyakin (1966) et l’approche du modèle de vie accéléré (AFT) pour l’analyse de
systèmes redondants. Cette approche est différente des approches traditionnelles dans la littéra-
ture et elle pose des difficultés dans les calculs. Nous calculons la fiabilité du système en termes
de fonction de répartition et nous donnons l’intervalle de confiance asymptotique au Chapitre 4.

Mots clés : Analyse de survie, Démographie, Modèle de Birnbaum-Saunders, Modèles de



vie accélérés, Système Redondant, Test d’ajustement de type de chi-deux, Test de RRN.
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2.3.2 Choice of âj in shape and scale distribution families . . . . . . . 40

2.4 Application Of The RRN Test . . . . . . . . . . . . . . . . . . . . . . . . 40
2.4.1 Exponential Distribution . . . . . . . . . . . . . . . . . . . . . . 41
2.4.2 Weibull Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.4.3 Generalized Weibull Distribution . . . . . . . . . . . . . . . . . . 46
2.4.4 Exponentiated Weibull Distribution . . . . . . . . . . . . . . . . 50
2.4.5 Loglogistic Distribution . . . . . . . . . . . . . . . . . . . . . . . 53
2.4.6 Lognormal Distribution . . . . . . . . . . . . . . . . . . . . . . . 55
2.4.7 Birnbaum-Saunders Distribution . . . . . . . . . . . . . . . . . . 57
2.4.8 Power Of The Test . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Goodness-of-Fit Tests In Demography and Assurance . . . . . . . . . . . . . . . . 60
3.1 Gompertz-Makeham and Weibull Models in Demograpgy . . . . . . . . . 61
3.2 Test Statistic For The Table Of Mortality . . . . . . . . . . . . . . . . . . 62

3.2.1 Estimation Of Parameters In Composite Hypothesis . . . . . . 63
3.2.2 Example : Data Analysis From The Table Of Mortality . . . . . 64

3.3 Comparison of Gompertz, Weibull and Makeham Models . . . . . . . . . 66

3 AFT Regression Analysis With BS Distribution 71
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
2 AFT Model Parametrization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
3 Plans of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.1 First plan of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.2 Second plan of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.3 Third plan of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 77

x



Table of Contents

3.4 Fourth plan of experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4 Failure Time Regression Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.1 Shape-Scale families of distributions . . . . . . . . . . . . . . . . . . . . . 78
5 Birnbaum-Saunders AFT model . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1 Estimation Of Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . 80
5.2 Estimation Of Survival Function . . . . . . . . . . . . . . . . . . . . . . . 83
5.3 Asymptotic Confidence Interval For Survival Function . . . . . . . . . . . 83

6 Goodness-of-fit Test for Parametric AFT Models . . . . . . . . . . . . . . . . . . 85
6.1 Hypothesis, Data and Test construction . . . . . . . . . . . . . . . . . . . 85
6.2 Asymptotic Distribution of Z . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Test statistic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.4 Choice of random grouping intervals . . . . . . . . . . . . . . . . . . . . . 90
6.5 Application of the test for BS Distribution . . . . . . . . . . . . . . . . . 91

6.5.1 Example 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.2 Example 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4 Analysis of Redundant Systems 95
1 A Historical Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3 Redundant System With Warm Stand-By Unit . . . . . . . . . . . . . . . . . . 98
4 Accelerated Life Testing (ALT) In Reliability . . . . . . . . . . . . . . . . . . . . 99
5 Sedyakin’S Physical Principle In Reliability . . . . . . . . . . . . . . . . . . . . . 100
6 Sedyakin Model And Its Application In Redundant System . . . . . . . . . . . . 102
7 Generalization Of The Redundant System S(1,m− 1) . . . . . . . . . . . . . . . 104
8 Birnbaum-Saunders (BS) Family Of Life Distributions . . . . . . . . . . . . . . . 105
9 Goodness-of-fit Test For Hypotheses H∗0 . . . . . . . . . . . . . . . . . . . . . . . 106

9.1 Power of the tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
10 Estimation Of Distribution Function Of Redundant System S(1, 1) . . . . . . . 110

10.1 Asymptotic Confidence Interval For K2(t) . . . . . . . . . . . . . . . . . . 110
10.2 Noncensored (complete) data . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.2.1 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . 114
10.2.2 Birnbaum Saunders Distribution . . . . . . . . . . . . . . . . . . 114
10.2.3 Lognormal Distribution . . . . . . . . . . . . . . . . . . . . . . . 114

10.3 Censored data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
10.3.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

Conclusion and Perspectives 119

Bibliography 121



Table of Contents

Appendix 131
1 Publications During PhD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
2 Redundant System for Lognormal Distribution . . . . . . . . . . . . . . . . . . . 133
3 Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

3.1 Bronchopulmonary dysplasia (BPD)-data, Hosmer and Lemeshow (2008) 136
3.2 Time to breakdown at each of voltage levels (Nelson((1990))) . . . . . . . 137

xii



List of Figures

1 A Series-Parallel System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2 Effect of redundancy on Reliability function (simulated). . . . . . . . . . . . . . . . 8
3 The different states of standby unit (Fx(·) ≥ Fy(·) ≥ Fz(·)) . . . . . . . . . . . . . . . 8
4 The switching of three possible states of standby units to the hot state, t1 is switching

moment where standby unit replaces the main one. (a) From warm to hot state, (b)
from hot to hot state (no effect before and after as it is already working under the same
stress as that of hot), (c) from cold (off mode) to hot state (big difference of stresses
can cause interruption during switching). . . . . . . . . . . . . . . . . . . . . . . . 9

5 Two parallel stresses : x2 > x1 (left), and increasing step stress at two levels (right) . 9

1.1 The density, survival and hazard function of exponential model. . . . . . . . . 12
1.2 Hazard functions of gamma distribution (θ = 1). . . . . . . . . . . . . . . . . . 13
1.3 Hazard functions of Weibull distribution for θ = 1. . . . . . . . . . . . . . . . . 13
1.4 Hazard functions of lognormal distribution for θ = 10. . . . . . . . . . . . . . . 14
1.5 Hazard functions of loglogistic distribution for θ = 5. . . . . . . . . . . . . . . . 15
1.6 Hazard functions of exponentiated Weibull distribution (θ = 1). . . . . . . . . 16
1.7 Hazard functions of generalized Weibull distribution (θ = 1). . . . . . . . . . . 17
1.8 Hazard functions of BS distribution (β = 1). . . . . . . . . . . . . . . . . . . . 19
1.9 Hazard functions of inverse Gaussian distribution (θ = 1). . . . . . . . . . . . . 19
1.10 Hazard functions of Gompertz-Makeham distribution (ν = 1). . . . . . . . . . 20

2.1 Estimated powers of 3 tests against lognormal distribution as alternative. . . . 31
2.2 Estimated powers of 3 tests against loglogistic distribution as alternative. . . . 31
2.3 Estimated powers of 3 tests against exponentiated Weibull distribution as al-

ternative. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32



List of Figures

2.4 Estimated powers of 3 tests against generalized Weibull distribution as alter-
native. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Hazard plots for shape-scale families. . . . . . . . . . . . . . . . . . . . . . . . 41
2.6 The empirical survival function (Kaplan-Meier) and the fitted survival functions

(MLE). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
2.7 Model fitted for age between 5 and 84 years (log scale) . . . . . . . . . . . . . 65
2.8 Model fitted for age between 30 and 74 years (log scale) . . . . . . . . . . . . . 65
2.9 Model fitted for age between 50 and 79 years (log scale) . . . . . . . . . . . . . 66
2.10 The failure rate of electronic devices . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1 Survival curves with two different stresses. . . . . . . . . . . . . . . . . . . . . 72
3.2 Transfer functional of the survival curves. . . . . . . . . . . . . . . . . . . . . . 73

4.1 Distribution functions for two levels of stresses where y(·) > x(·). . . . . . . . . . . . 100
4.2 Increasing step-stress for the warm stand-by unit. . . . . . . . . . . . . . . . . . . 101
4.3 Cumulative distribution function (left) and survival function (right) of the system

under Sedyakin’s principal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.4 Pdf (left) and hazard function (right) for BS distribution for β = 1. . . . . . . . . . 106
4.5 Trajectories of the parametric estimators F̂1 and K̂2 (BS distribution). . . . . . . . . 112
4.6 Trajectories of the parametric estimators F̂1 and K̂2 (censored data). . . . . . 116

xiv



General Introduction

1 Introduction

The thesis consists of three parts. All models, methods and tests are equally applied in survi-
val analysis and in reliability. Some frequently used parametric models are explained in chapter
1. In the second chapter chi-squared type goodness-of-fit tests for several parametric models
which are being used in survival analysis and reliability are given for right censored data. For all
models elements of the quadratic form of the test are presented in a way that are easy to use for
the practitioners. Third chapter is based on the analysis of accelerated failure time (AFT) mo-
del when the base line survival function is Birnbaum-Saunders (BS) distribution which include
the estimation of parameters, survival function under normal stress and asymptotic confidence
interval for survival function. Also a goodness-of-fit test is given for BS-AFT model. In fourth
chapter statistical analysis of redundant systems with BS distribution is given with one opera-
ting unit and one standby unit operating in warm condition.

Here we give some introductory note on the contents of all chapters. Detailed methods and
application with examples are presented in the relevant chapters.

2 Censored Data

Censoring means that the observations are partially known i.e. at the time of evaluation or
at the end of the experiment the outcome or the event of interest does not occur on some indivi-
duals (time-to-event data) or some subject leave the study in-between with out any information
(lost to follow-up). One can observe only the failure time T if it does not exceed the censoring
time C. Censoring is very common in the experiment of health sciences and industry and it
created some technical problems like what assumptions are made about censoring mechanism

1



and whether censoring is independent of residual lifetime or not.

There are three types of censoring mechanisms depending on the relationship of the failure
time and the censoring time(s), including left-censoring, right-censoring, and interval-censoring.
An observation is left censored if the event of interest has already occurred when observation of
time begins. Right censoring occurs when a subject has not experienced the failure at the end
or has been lost to follow-up during the study. Interval-censoring occurs when the failure time
happens between two successive observation times.

In this document we consider right censored data. Right censoring mechanism can be of
various types. Let T be the failure time, C be a censoring time, and τ be some specified time for
the experiment. X = min(T,C) is a censored observation of T and δ = 1{T≤C} is an indicator
variable which indicates whether the event of interest is observed (δ = 1) or not (δ = 0). For
each subject i, we actually observe the pair (Xi, δi).

– If n subjects are observed at fixed study time τ then censoring is called Type I censoring.
For each subject we observe Xi = min(Ti, τ), δ = 1{Ti≤τ}.

– In Type II censoring the study is terminated until a specified number of failure, say r < n,
occurs. This type is often used in testing equipment life. For each subject we observe
Xi = min(Ti, T(r)) and δi = 1{Xi=Ti} where T(r) is the ordered failure time of rth subject.

– Let τ be the specified time of the study and units are entered in the study at different
time points (t1, · · · , tn). We observe Xi = min(Ti, τ − ti) and δi = 1{Ti≤τ−ti}. Here every
subject has different fixed-censoring time which is non-random. This is called progressive
right censoring.

– Censoring is called independent right censoring if the failure times T1, · · · , Tn and the
censoring times C1, · · · , Cn are mutually independent random variables.

Right censored data can also be described by the stochastic process as

(N1(t), Y1(t), t > 0), · · · , (Nn(t), Yn(t), t > 0), (1)

where Ni(t) = 1{Xi≤t,δi=1} is the process of failure, Yi(t) = 1{Xi≥t} is the process at risk, and

N(t) =
n∑
i=1

Ni(t) and Y (t) =
n∑
i=1

Yi(t).

3 Goodness-of-fit Test

Goodness-of-fit tests indicate whether or not it is reasonable to assume that a random sample
comes from a specific distribution. Statistical techniques often rely on observations having come
from a population that has a distribution of a specific form (e.g., normal, lognormal, Poisson,
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etc.). Standard control charts for continuous measurements, for instance, require that the data
come from a normal distribution. Accurate lifetime modeling requires specifying the correct dis-
tributional model. There may be historical or theoretical reasons to assume that a sample comes
from a particular population, as well. Past data may have consistently fit a known distribution,
for example, or theory may predict that the underlying population should be of a specific form.
The test requires that the data first be grouped. The actual number of observations in each
group is compared to the expected number of observations and the test statistic is calculated
as a function of this difference. The number of groups and how group membership is defined
will affect the power of the test (i.e., how sensitive it is to detecting departures from the null
hypothesis). Power will not only be affected by the number of groups and how they are defined,
but by the sample size and shape of the null and underlying (true) distributions.

Selection of a suitable model in all types of statistical analysis is of great importance. For this
purpose a lot of goodness-of-fit tests are proposed by the researchers. Chi-square type goodness-
of-fit tests are mostly used where the random sample X = (X1, · · · , Xn)T of size n is partitioned
into k-subintervals and ν = (ν1, · · · , νk)T is the vector of frequencies, where νj is frequency of

jth group and
k∑
j=1

νj = n. The tests are based on the following Pearson’s statistic

X2
n(θ) = XT

n (θ)Xn(θ) =
k∑
j=1

(νj − npj(θ))2

npj(θ) , θ = (θ1, · · · , θs)T ∈ Θ ⊂ Rs, (2)

where

Xn(θ) =
(
ν1 − np1(θ)√

np1(θ)
, · · · , νk − npk(θ)√

npk(θ)

)T
,

p(θ) = (p1(θ), · · · , pk(θ)) is the vector of probabilities and θ is a vector of parameters which
can be known (simple hypothesis) or unknown (composite hypothesis). In classical Pearson chi-
square statistic θ is supposed to be known but later the theory of the test developed and many
researchers put their contribution to develop the test by using different estimation methods and
interval selection procedures. Here we discuss this development in brief and in next chapter we
give some details on estimation methods and their properties.

The standard form of Pearson’s statistic (2) possesses a chi-squared distribution in limit
under the simple hypothesis H0 (when θ is known) with k − 1 degrees of freedom. If parame-
ter θ is unknown and replaced by

√
n-consistent estimate θ̃ based on grouped data that is by

the minimum chi-squared or grouped maximum likelihood estimates, then according to Fisher
(1928) the statistic X2

n(θ̃) still follow the chi-squared distribution but with k − s − 1 degrees
of freedom, where s is the number of estimated parameters. Further the problem arises when
θ is replaced by ungrouped ML estimator which is the commonly used method for parameter
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estimation. In 1954, Chernoff and Lehmann (1954) showed that when MLE θ̂n is used the limit
distribution of the Pearson’s statistic does not follow a chi-squared distribution and in general
it depends on the properties estimator θ∗. After that a lot of investigations have been done to
recommend the application of chi-square testing in different fields.

In 1973, Nikulin (1973a, 1973b) proposed a modification in the standard chi-squared Pear-
son’s test for continuous distributions also with shift and scale parameters. In 1974, Rao and
Robson (1974) obtained the same result for exponential family, and later this statistic was well
adapted by the researchers with the name as Rao-Robson-Nikulin (RRN) test, (see for example,
Drost (1988), Van der Vaart (1998), Voinov et al. (2009), Zhang (1999), Bagdonavicius et al.
(2010b)). This statistic can be written as

Y 2
n (θ̂n) = XT

n (θ̂)Σ−(θ̂)Xn(θ̂)

= X2
n(θ̂n) +XT

n (θ̂n)B(θ̂n)[I(θ̂n)− J(θ̂n)]−1BT (θ̂n)Xn(θ̂n), (3)

where θ̂n is the ML estimator of θ and the elements of the matrix B(θ) are

bjs(θ) = 1√
pj(θ)

∂pj(θ)
∂θk

, j = 1, 2, · · · , k > s,

and
nJ(θ) = nBT (θ)B(θ)

is the Fisher’s information matrix of the vector of frequencies ν and nI is the Fisher’s informa-
tion matrix of X . The statistic Y 2

n (θ̂n) asymptotically follows a chi-squared distribution with
k − 1 degrees of freedom.

Another modification by Dzhaparidze and Nikulin (1974) valid for any
√
n-consistent esti-

mator θ̃n of θ (based on ungrouped data) showed that the statistic

U2
n(θ̂n) = X2

n(θ̂n)−XT
n (θ̂n)B(θ̂n)J−1(θ̂n)BT (θ̂n)Xn(θ̂n),

in limit as n → ∞ follows a χ2
k−s−1, which coincides the Pearson-Fisher’s test for based on

grouped data (see Dzhaparidze and Nikulin (1992)). Voinov et al. (2009) showed that this test
is not powerful for equiprobable intervals but is rather powerful with alternative hypothesis and
with Neyman-Pearson classes (Greenwood and Nikulin, 1996).

From the literature one can see that a lot of research has been done on the modification
of Pearson’s chi-squared test. RRN-statistic is commonly used modified chi-squared test and
many articles has been published based on RRN-statistics (see for example Dzhaparidze and
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Nikulin (1982), Greenwood and Nikulin (1996), Mirvaliev (2001), Nikulin and Voinov (2006),
Voinov et al. (2012)). In addition, the statistic Y 2

n (θ̂n) has a particularly convenient form when
we construct a chi-square test with random cell boundaries for continuous distributions and for
censored data, which we commonly have in reliability and survival analysis.

In Chapter-2 the RRN-test is applied for right censored data used in reliability and survival
analysis for different parametric family and also in presence of covariates. For randomly censo-
red samples, first modification in chi-squared test was proposed by Habib and Thomas (1986)
based on the differences of Kaplan-Meier estimate F̂n(t) and parametric ML estimators of sur-
vival functions F (t, θ̂n). Akritas (1988) proposed a chi-squared statistic based on the idea of
comparing the observed and expected number of failures in each class. Hjort (1990) developed a
chi-squared type statistic to test the validity of the parametric model for life history data based
on the cumulative hazard process. Kim (1993) also proposed the chi-squared goodness-of-fit test
based on the product limit estimator. Also other researchers like Hollander and Peña (1992),
and Nikulin and Solev (1999) proposed modified chi-squared type tests for censored data. Bag-
donavicius et al. (2010a) suggested modified chi-squared tests for randomly censored data. This
tested is explained and applied on Arm-A head and neck cancer data in the next chapter 2.

4 Survival Analysis

Survival analysis also named as time-to-event analysis is a statistical method for data analy-
sis where the outcome variable of interest is the time to the occurrence of an event. This method
is applied in a number of applied fields, such as medicine, public health, epidemiology, enginee-
ring, and actuarial science. For example, time to event can be time to death, or time until the
recurrence of some disease in medical science and in social sciences, it can be marriage, divorce
etc. The survival analysis also contributed in the development of engineering systems by finding
the lifetime of some machine to increase the reliability of the system.

Most of the development in the analysis of survival data has been made in second half 20th

century. In 1950, Berkson and Gage (1950) proposed a non-parametric method to compute the
life table for analyzing survival data. Kaplan and Meier (1958) is another non-parametric method
for survival curve. But when we have covariates along with the survival times, non-parametric
methods are no more useful and we need semi-parametric and parametric regression methods.
The standard regression is not adaptable to the survival data due to the presence of censoring
and due the lack of normality for the survival time. Normally we have right censored and left
truncated data and we know how to compute nonparametric estimator for them. But there is
different method of estimation in interval censored data that is Turnbull estimator (Turnbull,
1976). Also Huber, Solov and Vonta (2006) studied the interval censored and truncated data.
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Cox (1972) extended the methods of the non-parametric estimates to regression type ar-
guments. He proposed a simple model and made no assumptions about the baseline hazard of
individuals and only assumed that the hazard functions of different individuals remained pro-
portional and constant over time. That’s why this is also called proportional hazard model.
Modifications in Cox PH model are made with time such as stratified Cox model (Kleinbaum
and Klein, 2005) or Cox model with time-dependent variables (Tsiatis, 2006).

Accelerated failure time model (AFT) is a good alternative to the PH model (Tsiatis, 2006)
for the analysis of survival time data or reliability data. In PH model we measure the direct
effect of the explanatory variables on the hazard function while in the AFT models we measure
that on the survival time. This provides us an easier interpretation of the results. AFT model
is widely used in engineering systems to improve the reliability and increase the quality of the
systems. Time-to-failure data under normal conditions of the systems or products is very time
consuming due to their normal life. Due to this reason accelerated life testing (ALT) has been
used to find the failure times in a short time by increasing the stress (temperature, pressure,
dose of medicine etc.) on particular product or system.

A comprehensive work on AFT models is done by Bagdonavicius and Nikulin (1994, 1995,
2002) where they explained the construction of AFT model, failure time regression analysis, ac-
celerated degradation models and gave the comparison of AFT model with various proportional
hazard models. Also ALT is described very well in the literature such as Meeker and Escobar
(1998), Lawless (2003), and Nelson (1990).

The Accelerated life testing of technical or bio-technical systems is an important practical
statistical method of estimation of the reliability and the quality improvement of new systems
without having to wait the operating life of an item. The ALT has been recognized as a necessary
activity to ensure the reliability of electronic products used in military, aerospace, automotive
and laptop computers. The accelerated testing of electronic products offers great potential to
improve the quality in quick time. It is evident that the extrapolating reliability or quality from
the ALT always carries the risk that the accelerated stresses do not properly excite the failure
mechanism which dominates at operating (normal) stresses.

In ALT the choice of a good regression model is more important than in survival analysis. For
example, in ALT units are tested under accelerated stresses which shorten the life. Using such
experiments the life under the usual stress is estimated using some regression model. The values
of the usual stress are often not in the range of the values of accelerated stresses, since the wide
separation between experimental and usual stresses is possible. So if the model is misspecified,

6



the estimators of survival under the usual stress may be very bad. In ALT we use the word stress
for the covariates.

In chapter-3 the parametric AFT model based on Birnbaum-Saunders distribution is presen-
ted along with different type of stresses used in ALT. The survival function under normal stress
and its confidence interval from BS-AFT model is estimated. A goodness-of-fit is given for this
model.

5 Redundant Systems

The number of extra or reserve components with the same function in a parallel structure is
called a redundancy. The use of extra components can enable a system to operate properly even in
the case of failure of some components. The system composed of redundancy is called a redundant
system. So in this way one can increase the reliability of the whole system, where reliability is a
statistical probability i.e. R(t) = 1−F (t). Redundancy exists in living organs also, for example,
in living organisms, vital organs and tissues (such as the liver, kidney, or pancreas) consist of
many cells performing one and the same specialized function (Gavrilov and Gavrilova, 2006).
There are different systems’ structures for redundancy. Series and parallel structures are the basis
for building more complicated structures (Figure-1). As the failure accumulated the redundancy

Figure 1 – A Series-Parallel System Structure

in the number of elements disappear. The number of extra components are determined by
the cost and reliability measures during design. The positive effect of a system’s redundancy is
damage tolerance, which decreases the risk of failure and increases life span. Also redundancy can
improve the monitoring system because the standby units are also monitoring the applications.
It is supposed that the system’s reliability increases with the number of redundant components
(see Figure 2).

Other system’s structure is standby or passive redundancy where a redundant unit is ac-
tivated only when main unit fails and the redundant unit keep the system working. Here it is
very important to determine the operating state of the standby unit i.e. hot, cold or warm. The
main unit is working in hot conditions. If standby unit is functioning in hot condition (same
as the main unit) then there is an equal probability of failure for both units. If it is placed at
cold stage then it will take time to come into a hot state (switching time) which may cause an
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Figure 2 – Effect of redundancy on Reliability function (simulated).

interruption in functioning of the system. One need to consider the reliability of the switching
mechanism that activates the standby units. It also requires switching time but less than that of
cold standby (see Figure 4). Reijns and Gemund (2007) showed that cold standby redundancy
provides a better mean time reliability than hot redundancy. In warm state, standby units ope-
rate under the less stress than the main unit. In Chapter-4 the switching mechanism is defined
by the Sedyakin’a principal (Sedyakin, 1966) and AFT model. Let x(·), y(·), z(·) be the three
levels of stresses for standby unit under hot, warm and cold states respectively. The functioning
states and effect of switching on reliability from lower stress to higher of the standby unit is
explained in Figure 3 and Figure 4 respectively. Different kinds of stress are used to calculate
the reliability of engineering system. Two commonly used stresses are shown in the Figure 5.

Figure 3 – The different states of standby unit (Fx(·) ≥ Fy(·) ≥ Fz(·))

Exponential family is commonly used by engineers to measure reliability characteristics where
one have a constant failure rate. Gnedenko, Belyaev and Solov’ev (1968), and Kozlov and Usha-
kov (1970) give a good mathematical base to study the redundant systems and estimation of
reliability characteristics. Recent research by Bagdonavicius, Masiulaityle, and Nikulin (2008a,
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Figure 4 – The switching of three possible states of standby units to the hot state, t1 is switching
moment where standby unit replaces the main one. (a) From warm to hot state, (b) from hot to hot
state (no effect before and after as it is already working under the same stress as that of hot), (c)
from cold (off mode) to hot state (big difference of stresses can cause interruption during switching).

Figure 5 – Two parallel stresses : x2 > x1 (left), and increasing step stress at two levels (right)

2008b, 2009, 2010) is done for the statistical analysis of redundant systems S(1,m − 1) with
warm standby units for exponential, Weibull and loglogistic family of distributions. They succee-
ded to apply the techniques of accelerated trials for the analysis of redundant system. Saaidia,
Nikulin, and Tahir (2011) applied the same techniques with generalized Weibull model for the
analysis of redundant system. Also Nikulin, Saaidia, and Tahir (2011c) give some simulated re-
sults for several models with unimodal hazard rate function. Chapter-4 contains the procedure
of parameters’ estimation, distribution function and confidence interval of the redundant system
with one main unit and one standby unit operating in the warm conditions with Birnbaum-
Saunders distributions. Notice that aging is another factor affecting the reliability which is a
natural process with the age but this is not studied in the chapter of redundant systems.
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Chapter 1

Parametric Failure Time Models

1 Introduction

In this chapter, various parametric models that are commonly applied to survival analysis
and reliability are presented. Survival function for absolutely continuous random variable T of
failure time can be defined as

S(t) = P{T ≥ t}, t ≥ 0;

i.e. the probability of survival up to fixed time t.
The cumulative distribution function F (t) = 1−S(t) is the probability of failure before time

t and the probability density function is

f(t) = dF (t)
dt

= −S′(t).

Mostly failure time data is plotted in terms of hazard rate function which can be defined as

λ(t) = lim
h→0

P (t ≤ T < t+ h|T ≥ t)
h

= f(t)
S(t) , (1.1)

which means the risk of failure of the remaining subjects and the cumulative hazard function is

Λ(t) =
∫ t

0
λ(u)du = − lnS(t).

2 Exponential Distribution

If the survival time T has a constant hazard rate then it is exponentially distributed with the
following survival and hazard function

S(t, θ) = e−t/θ, λ(t, θ) = 1
θ
, θ > 0, t ≥ 0,
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Chapter 1. Parametric Failure Time Models

respectively. The hazard function is constant and is reciprocal of the mean. Also the exponential
distribution has a memoryless property because the instantaneous failure rate is independent of
time t. The hazard function, density function, and the survival function of the one parameter
exponential model is shown in Figure 1.1.

Figure 1.1 – The density, survival and hazard function of exponential model.

3 Gamma Distribution

Gamma distribution like Weibull distribution is also the generalization of the exponential
distribution and belongs to shape-scale distribution family with the survival function

S(t) = 1− 1
Γ(ν)

∫ t/θ

0
uν−1e−udu, t ≥ 0; θ, ν > 0,

and the hazard function

λ(t) =
1
θν t

ν−1e−t/θ

Γ(ν)−
∫ t/θ

0 uν−1e−udu
, t > 0 (1.2)

This distribution has a lot of applications in many field field (see Johnson et al., 1995). The
hazard function is monotone increasing from zero to 1/θ if ν > 1, and monotone decreasing
from ∞ to 1/θ if ν < 1 as t becomes large. If ν = 1, the gamma distribution reduces to
exponential distribution with constant hazard rate. Figure 1.2 shows the behavior of hazard
function of gamma distribution. This distribution is difficult to apply with censored data due to
the complexity of hazard function.

4 Weibull Distribution

Two parameter Weibull distribution is probably the most widely used for lifetimes especially
to model fatigue failures, ball bearing failures. The survival function and the hazard function
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1.4 Weibull Distribution

Figure 1.2 – Hazard functions of gamma distribution (θ = 1).

respectively is written as

S(t; θ, ν) = exp{−( t
θ

)ν}, λ(t, θ, ν) = ν

θν
tν−1, (θ, ν > 0); t ≥ 0.

ν is called the shape parameter and θ is the scale parameter. For ν = 1 this is equal to the
exponential distribution. Weibull distribution is capable of modeling decreasing failure rate
(DFR) (ν < 1), constant failure rate (CFR) (ν = 1) and increasing failure rate (IFR) (ν > 1)
behavior, shown in Figure 1.3. That why this is equally applied in demographic studies (Gavrilov
and Gavrilova, 2006).

Figure 1.3 – Hazard functions of Weibull distribution for θ = 1.
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Chapter 1. Parametric Failure Time Models

5 Lognormal Distribution

A random variable T is lognormally distributed if Y = log T is normally distributed and the
survival function and the hazard function can be written as

S(t) = 1− Φ(ln(t/θ)ν), λ(t) = νt−1 φ(ln(t/θ)ν)
1− Φ(ln(t/θ)ν) , (θ, ν > 0); t ≥ 0,

where φ and Φ are the pdf and cdf of the standard normal distribution. The hazard function
has

⋂
-shape (Figure 1.4). The computations for lognormal distribution is relatively complex

particularly with censoring. In this case one can use the loglogistic distribution which gives a
good approximation to the lognormal distribution.

Figure 1.4 – Hazard functions of lognormal distribution for θ = 10.

6 Loglogistic Distribution

The survivor and hazard functions are, respectively,

S(t) = 1
1 + ( tθ )ν

, and λ(t) = ν

θν
tν−1 1

1 + ( tθ )ν
, (θ, ν > 0); t ≥ 0.

The loglogistic distribution has the advantage over the lognormal distribution due to its simple
explicit form of hazard function. This distribution also has a

⋂
-shape hazard function. It is

monotone decreasing from ∞ if ν < 1. If ν > 1, the hazard function is similar to that of
lognormal i.e. it increases from zero to a maximum t = θ(ν − 1)1/ν and then decreases to zero.
This is show in Figure 1.5.

7 Exponentiated Weibull Distribution

Another interesting parametric family of distribution is the family of exponentiated Weilbull
distributions, induce by Efron (1988) and studied by Mudholkar, Srivastava and Kollia (1996).
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1.8 Generalized Weibull Distribution

Figure 1.5 – Hazard functions of loglogistic distribution for θ = 5.

The survival function from this family of distributions is given by formula

S(t, θ, ν, γ) = 1−
{

1− exp[−( t
θ

)ν ]
}1/γ

, t ≥ 0, θ, ν, γ > 0,

and the hazard function is

λ(t, θ, ν, γ) =
ν
{
1− exp[−( tθ )ν ]

}1/γ−1 exp[−( tθ )ν ]( tθ )ν−1

γθ
{

1−
(
1− exp[−( tθ )ν ]

)1/γ} (1.3)

The hazard function of exponentiated Weibull distributions has also nice properties as that of
generalized Weibull distributions (see Figure 1.6).

With ν > 1, ν ≥ γ the hazard rate is increasing from 0 to ∞.
With ν = 1, γ ≤ 1 the hazard rate is increasing from 0 to θ−1.
With 0 < ν < 1, ν < γ the hazard rate is decreasing from ∞ to 0.
With 0 < ν < 1, ν = γ the hazard rate is decreasing from θ−1 to 0.
With γ > ν > 1 the hazard rate is decreasing from ∞ to its minimal value c > 0 and then
increases to ∞, it is

⋃
−shaped. With γ < ν < 1 the hazard rate is increasing from 0 to its

maximal value c > 0 and then decreases to 0, it is
⋂
−shaped.

8 Generalized Weibull Distribution

Three parameter generalized Weibull distribution was proposed recently as an alternative
to exponentiated Weibull distribution by Bagdonavicious and Nikulin (2002) and its hazard
function can be monotone,

⋂
-shaped and

⋃
-shaped according to the values of its parameters.

All the moments of this distribution are finite. The survival function and hazard function,
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Figure 1.6 – Hazard functions of exponentiated Weibull distribution (θ = 1).

respectively can be written as

S(t, θ, ν, γ) = exp
{

1−
(

1 + ( t
θ

)ν
)1/γ

}
, t ≥ 0; θ, ν, γ > 0

and

λ(t, θ, ν, γ) = ν

γθν
tν−1

(
1 + ( t

θ
)ν
)1/γ−1

. (1.4)

This distribution is easy to use with censored data due to simple form of hazard rate function.
The hazard Rate has following properties and all are shown in the Figure 1.7 respectively :

If ν > 1, ν > γ, then the hazard rate increases from 0 to ∞.
If ν = 1, γ < 1, then the hazard rate increases from (γθ)−1 to ∞.
If 0 < ν < 1, ν < γ, then the hazard rate decreases from ∞ to 0.
If 0 < ν < 1, ν = γ, then the hazard rate decreases from ∞ to 1/θ.
If γ > ν > 1 , then the hazard rate increases from 0 to its maximum value and then decreases
to 0 i.e.

⋂
shape.

If 0 < γ < ν < 1, then the hazard rate decreases from ∞ to its minimum value and then
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1.9 Birnbaum-Saunders Distribution

increases to ∞ i.e.
⋃

shape.

Figure 1.7 – Hazard functions of generalized Weibull distribution (θ = 1).

9 Birnbaum-Saunders Distribution

The survival function of two-parameter fatigue life distribution known as Birnbaum-Saunders
distribution (Birnbaum and Saunders, 1969) can be written as

S(t;α, β) = 1− Φ
[

1
α

{(
t

β

) 1
2
−
(
β

t

) 1
2
}]

, 0 < t <∞, α, β > 0,

where α is the shape parameter, β is the scale parameter and Φ(x) is the standard normal
distribution function. The case where β = 1 is called the standard fatigue life distribution. The
hazard rate function can be written as

λ(t;α, β) =
1

2
√

2π αβ

{(
β
t

) 1
2 +

(
β
t

) 3
2
}

exp
[
− 1

2α2

(
t
β + β

t − 2
)]

1− Φ
[

1
α

{(
t
β

) 1
2 −

(
β
t

) 1
2
}] . (1.5)
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In recent year a lot of work is done the Birnbaum-Saunders(BS) distribution (see for example,
Balakrishnan et al. (2007, 2009), Kundu et al. (2008), Lemonte et al. (2007)). Desmond (1986)
worked on the relationship between Birnbaum-Saunders distribution and the family of inverse
Gaussian distributions. Also Volodin and Dzhungurova (2000) introduced a family of so called
crack distributions with the normal distribution, the inverse Gaussian distribution and the BS
distribution. BS distribution describes the total time that passes until some type of cumulative
damage produced by the development and growth of a dominant crack, surpasses a threshold,
and causes a failure. Fatigue failure is due to repeated applications of a common cyclic stress
pattern. Under the influence of this cyclic stress a dominant crack in the material grows until it
reaches a critical size w, at that point fatigue failure occurs. The crack extension in each cycle
are random variables and are statistically independent. Also the total extension of the crack is
approximately normally distributed. This is not only applied in reliability but in a variety of
fields. This distribution has unimodal density function and hazard rate function i.e.

⋂
-shaped

hazard function. It is positively skewed distribution. The mean, variance, coefficient of variation
(CV), skewness and kurtosis of the BS distribution are, respectively, given as

µ = β

2 (α2 + 2), σ2 = β2

4 (5α4 + 4α2), CV =
√

5α4 + 4α2

(α2 + 2) ,

µ3 = 16α2(11α2 + 6)
(5α2 + 4)3 , µ4 = 3 + 6α2(93α2 + 43)

(5α2 + 4)2 .

Note that the CV, skewness, and kurtosis are independent of the scale parameter, β. If T ∼
BS(α, β), then T−1 ∼ BS(α, β−1).

Not a lot of work has been published on the analysis of censored data for the BS distribution
which is common in reliability and survival analysis. Wang et al. (2006) give a comparison
between the BS and the Weibull models in a real data application with censoring. Also they
discussed the ML estimation of the parameters. Nikulin et al. (2011b) give a modifies chi-squared
goodness-of-fit test for BS distribution. More details can be found from Johnson et al. (1995).
The hazard function is shown in Figure 1.8.

10 Inverse Gaussian Distribution

The survival function of the unimodel inverse Gaussian distribution is

S(t) = Φ
(
−
√
ν

t

(
t

θ
− 1

))
− exp(2ν

θ
)Φ
(
−
√
ν

t

(
t

θ
+ 1

))
, θ, ν > 0; t > 0
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1.11 Gompertz-Makeham Distribution

Figure 1.8 – Hazard functions of BS distribution (β = 1).

and the hazard rate function is

λ(t)) =

(
ν

2πt3
) 1

2 exp{−ν(t−θ)2

2θ2t }

Φ
(
−
√

ν
t

(
t
θ − 1

))
− exp(2ν

θ )Φ
(
−
√

ν
t

(
t
θ + 1

)) , t > 0.

For all unimodel distribution like LN, LL, PGW, EW, the hazard rate increases from 0 to
its maximum value and then decreases to zero, but for IG distribution the hazard rate increases
from 0 to its maximum value and then decreases to ν/2θ2 (Figure 1.9). In, Voinov and Nikulin
(1993) one can find in table A6, the unbiased estimators of functions of parameters ν and θ of
the inverse Gaussian distribution.

Figure 1.9 – Hazard functions of inverse Gaussian distribution (θ = 1).

11 Gompertz-Makeham Distribution

Gompertz model (Gompertz, 1825) of aging is widely used in demography and other scientific
disciplines e.g. medical sciences, survival analysis, actuarial sciences and reliability. In Gompertz
Distribution mortality rate or hazard rate increases exponentially with age and can be formulated
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as
λ(t) = θeνt, θ, ν > 0; t > 0, (1.6)

where θ is known as the baseline mortality and ν is the age specific growth rate of the force of
mortality. The Gompertz law has been the main demographic model since its discovering to fit
the human mortality (see e.g. Gavrilov and Gavrilova (2001), Ricklefs and Scheuerlein (2002)).
William Makeham (1860) modified the Gompertz model considering some other causes of failure
independent of age by proposing the so called Gompertz-Makeham model as

λ(t) = γ + θeνt, γ, θ, ν > 0; t > 0. (1.7)

Here γ is a constant and non-aging component of failure rate and the second term θeνt is the
Gompertz function depending on age (aging factor). Failure rate is shown in Figure 1.10. In
chapter 2 one section is dedicated to the statistical inference of Gompertz-Makeham model with
the example from demography (life table) and also from reliability with censored data.

Figure 1.10 – Hazard functions of Gompertz-Makeham distribution (ν = 1).

12 Some Other Distribution

There are many other distributions that can be used to model the survival or reliability data
but here we attempted some commonly used distributions.

Extreme value distribution : The two parameter extreme value distribution refers to the
distribution of the logarithm of a Weibull random variable, and belongs to the location scale
family of distributions. The survival function and hazard function can be written as :

S(t) = e−e
t−µ
σ , λ(t) = 1

σ
e
t−µ
σ , −∞ < t < +∞, σ > 0.

With µ = 0 and σ = 1, it is called a smallest or standard extreme value distribution.
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Rayleigh distribution : This is another special case of the Weibull distribution when the shape
parameter is fixed at 2. The density function and hazard function is

f(t) = 2t
θ2 exp{−( t

θ
)2}, λ(t) = 2t

θ2 , t ≥ 0, σ > 0.

Rayleigh distribution can be used to model the magnitude of radial error (wind speed).

Pareto distribution : The Pareto distribution also known as the power law and is mostly
applied in actuarial science and life testing. Its survival function and density function is given
by

S(t) =
(
θ

t

)ν
, f(t) = νθν

tν+1 , θ, ν > 0, t ≥ θ.

The hazard function λ(t) = ν
t , t ≥ θ is a decreasing function.
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Chapter 2

Chi-squared Type Goodness-of-Fit Tests

1 Pearson Statistic and Modifications

1.1 Introduction

Chi-square goodness-of-fit test can be the first step in further data analysis. It is a useful
technique to see if the observed data are representative of a particular model or distribution. In
hypothesis testing formulation of null and alternative hypotheses is required but GoF test can be
proceeded only with the null hypothesis which tells that whether preselected model fits the data
or not. The famous chi-square Gof test has been used in almost all areas of research since its
discovery by Karl Pearson (1900). The limit distribution of Pearson statistic is chi-square only
when we have the simple hypothesis. But it would not be chi-squared if the unknown parameters
are to be estimated by a sample (Fisher, 1928) because the limit distribution depends on the
method of estimation of the parameters. However, if the parameters are estimated through the
minimum chi-square method or grouped maximum likelihood estimation method for grouped
data, the limit distribution will remain chi-squared but the degree of freedom is reduced by the
number of estimated parameters (Cramer, 1946). Moreover, for fixed grouping intervals Chernoff
and Lehmann (1954) and for random grouping intervals Roy (1956) showed that if the unknown
parameters are estimated by the maximum likelihood method the limit distribution is totally
changed (see also LeCam et al. (1983)). To overcome the problem of parameter estimation for
ungrouped data and the limit distribution of the statistic many modifications have been made
in classical Pearson chi-square test and a variety of procedures have been implemented in many
software applications. Nikulin (1973a, 1973b, 1973c) and Rao and Robson (1974) independently
proposed a modification in Pearson statistic. Their statistic is now commonly used as Rao-
Robson-Nikulin (RRN) statistic (Drost, 1988 ; Van der Vaart, 1998 ; Voinov et al., 2008) and the
test in the limit follow a chi-squared distribution. Nikulin used a consistent estimate obtained
from ungrouped data i.e. MLE. But in 1976 it was shown by Hsuan and Robson (1976) that
in case of moment-type estimates the resulting modified statistic would be different. Dzhapa-
ridze and Nikulin (1974) proposed a modification of Pearson’s statistic (DN test) which follow a
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chi-square distribution for any
√
n-consistent estimator of unknown parameter from ungrouped

data. Other important modification in chi-square goodness-of-fit test was proposed by Mirva-
liev (2001). In this chapter RRN-test is focussed on censored data following Habib and Thomas
(1986, Hjort (1990), Van der Vaart (1998), Bagdonavicius and Nikulin (2011) and Bagdonavicius
et al. (2010a).

GoF test is commonly used in survival analysis and reliability and it is more critical in
accelerated failure time (AFT) models where a small deviation in selecting the adequate model
can totally change the final decision. Bagdonavicius et al. (2010a) extended the idea of RRN-test
to the censored data. The details of the test for censored data are given in section 2. Although
Gof test can be applied for both discrete and continuous distributions but here only continuous
distributions are considered.

1.2 Pearson Statistic

Let X = (X1, · · · , Xn)T be a random sample and suppose we want to test H0 that the i.i.d.
random variables X1, · · · , Xn follow the same distribution, i.e.

P{Xi ≤ x} = F (x,θ), θ = (θ1, · · · , θs)T ∈ Θ ⊂ Rs, (2.1)

where θ is the vector of parameters of dimension s of some distribution function F .
Let −∞ = a0 < a1 < · · · < ak−1 < ak =∞ (k>s+1) be the boundary points of the groping

intervals I1, I2, · · · , Ik in (−∞,∞), and ν = (ν1, · · · , νk)T is the vector of frequencies

νj =
n∑
i=1

1{Xi∈Ij}, j = 1, · · · , k

which lies in each of the successive intervals

(a0, a1), [a0, a1), · · · , [ak−1, ak),

and the probability with respect to F (x,θ) is

pj(θ) = P{Xi ∈ Ij |H0} =
∫
Ij

dF (x;θ) =
∫
Ij

f(x;θ)dx = Pθ(aj−1 ≤ Xi ≤ aj).

It is clear that νT1k = n, (k > s+ 1) and

p = p(θ) = (p1(θ), · · · , pk(θ))T .

Under H0 the statistic ν follows the multinomial distribution Mk(n,p(θ)), i.e.

24



2.1 Pearson Statistic and Modifications

P{ν1 = m1, · · · , νk = mk} = n!
m1!, · · · ,mk!

(p1(θ))m1 , · · · , (pk(θ))mk ,

0 < pj < 1, 0 ≤ mi ≤ n, and m1 + · · ·+mk = n. We can write Eν = np and covariance matrix
as

Σ = E(ν − np)(ν − np)T = n(P− ppT ),

where P is the diagonal matrix with the diagonal elements p1, · · · , pk. The rank of Σ is k − 1.
For each θ ∈ Θ we have the random vector

Xn(θ) =
(
ν1 − np1(θ)√

np1(θ)
, · · · , ν1 − npk(θ)√

npk(θ)

)T
,

and the Pearson random variable

X2
n(θ) = XT

n (θ)Xn(θ) =
k∑
j=1

(νj − npj(θ))2

npj(θ) .

If θ0 is the true value of the population parameter θ under H0, then we reject H0 if

lim
n→∞

P{X2
n(θ0) ≤ x|H0} = P(χ2

k−1 ≤ x}.

As in practical cases θ is unknown, so we need to estimate it using the data. In this situation
the limit distribution of the test statistic X2

n(θ∗) depends on the asymptotic properties of the
estimator θ∗.

Two commonly used methods to construct a sequence {θ∗n} of estimators of θ from grouped
data are the minimum chi-squared method - {θ̃n} and the multinomial maximum likelihood
method - {˜̃θn}, and for ungrouped data the method of moments - {θ̄n} and maximum likelihood
estimation method - {θ̂n} can be used. The ML method is considered as a particular case of
method of moment (Greenwood and Nikulin, 1996). Under general conditions

{θ∗n}
p→ θ, as n→∞,

and the random vectors
√
n(θ∗n − θ) ≈ AN(0s,Varθ).

1.2.1 Minimum Chi-Squared Method

We supposed that θ̃n is an estimate of θ which gives the minimum value of the random
variable X2

n(θ), i.e.
X2
n(θ̃n) = min

θ∈Θ
X2
n(θ),⇐⇒ θ̃n = argminX2

n(θ).
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This is called the minimum chi-squared method of estimating θ and θ̃n is the minimum chi-
squared estimator.

We suppose the following conditions of Cramer (1946),

1. 0 < pi(θ) < 1,
k∑
i=1

pi(θ) = 1, ∀ i = 1, · · · , k and θ ∈ Θ, (k > s+ 1).

2. ∂2pj(θ)
∂θl∂θl′

are continuous functions on Θ.

3. The rank of the Fisher information matrix

J(θ) = B(θ)TB(θ)

is s, where

B(θ) =
[

1√
pi(θ)

∂pi(θ)
∂θj

]
k×s

.

and nJ(θ) = nB(θ)TB(θ) is the Fisher information matrix of the stochastic vector ν.

Theorem 1.1 Fisher (1928) showed that if the regularity conditions of Cramer hold then

lim
n→∞

P{X2
n(θ̃n) ≤ x|H0} = P{χ2

k−s−1 ≤ x}.

1.2.2 Multinomial Maximum Likelihood Estimation

Cramer (1946) showed that the result of Fisher remains valid if instead of θ̃n we choose
multinomial maximum likelihood estimator ˜̃θn which return the maximum value of the likelihood
function of the multinomial distribution Mk(n,p(˜̃θn)), i.e.

l(˜̃θn) = sup
θ∈Θ

l(θ), ˜̃
θn = arg max l(θ),

where
l(θ) = n!

ν1! · · · νk!
(p1(θ))ν1 · · · (pk(θ))νk ,

is the likelihood function of the statistic ν = (ν1, · · · , νk)T .
Cramer has shown that the estimator of Fisher θ̃n and the multinomial maximum likelihood
estimator ˜̃θn are asymptotically equivalent and hence ∀x > 0

lim
n→∞

P{X2
n(˜̃θn) ≤ x|H0} = P(χ2

k−s−1 ≤ x).

We see that the estimator ˜̃θn is obtained from the grouped data, and if the distribution F (x,θ)
is continuous then the statistic ν = (ν1, · · · , νk)T is not the sufficient statistic and hence the
estimator ˜̃θn may not be the best estimator.
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1.2.3 Method of Moments

A common way of fitting a parametric family to data is to use estimates of the parameters
that yield moments of the fitted density that match the sample moments. The second and
higher moments used in this method of estimation are usually taken as the central moments. In
some distributions, the method of moment estimates are the same as the maximum likelihood
estimates. Hsuan and Robson (1976) provided the test statistic explicitly for the exponential
family of distributions when method of moment estimates coincide with MLEs which confirms
the Nikulin’s result Voinov and Pya (2004). We supposed the followiing regularity conditions :

1. The MMEs are
√
n-consistent ;

2. The s× s matrix

Kij(θ) =
∫
xi
∂f(x,θ)
∂θj

dx, i, j = 1, · · · , s, (2.2)

is singular ;

3. The population moments ms(θ) = EθX
j
1 , j = 1, · · · , s, exist.

Under the above regularity conditions, Hsuan and Robson (1976) showed that if we replace θ
by
√
n-consistent estimator θ̄ in Pearson statistic, then

lim
n→∞

P{X2
n(θ̄n) ≤ x|H0} = P

{
k−1∑
i=1

λi(θ)χ2
i ≤ x

}
,

where χ2
i are the independent random variables with follow a chi-square distribution with one

degree of freedom, and λi(θ) are non zero eigen vectors of the matrix

Σ(θ) = Ik − qqT +BK−1V [K−1]TBT − C[K−1]TBT −BK−1CT , rankΣ(θ) = k − 1,

where K is as in equation (2.2), and

C = C(θ) =
[

1√
pi(θ)

{∫
Ii

xif(x, θ)dx− pi(θ)mj(θ)
}]

r×s
,

V = V (θ) = [mij −mimj ]r×s.

1.2.4 Maximum Likelihood Estimator

Let XX = (X1, · · · , Xn)T be a random sample and suppose we want to test the hypothesis

H0 : P{Xi ≤ x} = F (x,θ), x ∈ R1, θ = (θ1, · · · , θs)T ∈ Θ ⊂ Rs,
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where θ is unknown which need to be estimated and F is the given distribution function. The
likelihood function of the sample XX = (X1, · · · , Xn)T is

Ln(θ) =
n∏
i=1

f(Xi,θ), θ ∈ Θ.

For the family {f(x, θ)} we assume that for n → ∞ the LeCam (1956) conditions of the local
asymptotic normality (L.A.N.) and of the asymptotic differentiability of the likelihood function
Ln(θ) in point θ are satisfied (Dzhaparidze and Nikulin, 1995) :

1. Ln(θ + 1√
n
h)− Ln(θ) = 1√

n
hTΛn(θ)− 1

2h
T I−1(θ)h+ op(1), h ∈ Rs,

2. L( 1√
n

Λn(θ))→ Ns(0s, I−1(θ)),

3. for any
√
n-consistent sequence of estimators {θ∗n} of the parameter θ

1√
n

(Λn(θ∗n)− Λn(θ)) =
√
nI(θ)(θ∗n − θ) + o(1s),

where Λn(θ)) = grad lnLn(θ) is the vector-informant of the sample XX, 1s = (1, · · · , 1)T is
the unit vector in Rs, 0s is the zero vector in Rs, and

I(θ) = 1
n

EθΛn(θ)ΛTn (θ)

is the Fisher information matrix, corresponding to the observation Xi.

ML estimator θ̂n = θ̂n(X1, · · · , Xn) is based on the individual data that maximize the
likelihood function

L(θ) =
n∏
i=1

f(Xi,θ) : L(θ̂n) = sup
θ∈Θ

L(θ).

Under the assumed regularity conditions on {F (X,θ)}, we know the asymptotic behavior of the
sequence {θ̂n}, and hence we can write

√
n(θ̂n − θ) ≈ AN(0s, I−1(θ)), as n→∞.

Theorem 1.2 By using these properties of ML estimator Chernoff and Lehmann (1954) showed
that

lim
n→∞

P{X2
n(θ̂n) ≤ x|H0} = P{χ2

k−s−1 + λ1(θ)ξ2
1 + · · ·+ λs(θ)ξ2

s ≤ x}, (2.3)

where ξ1, · · · , ξs, χ2
k−s−1 are the independent random variables, ξi ∼ N(0, 1), and 0 < λi(θ) < 1

are the roots of the equation,
|(1− λ)I(θ)− J(θ)| = 0,

where I(θ) is the Fisher information matrix of the observation Xi and nJ(θ) is the Fisher
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information matrix of the the vector of frequencies ν.

It is clear from (2.3) that the limit distribution of X2
n(θ̂n) is stochastically larger than χ2

k−s−1.

1.3 A Modified Pearson’s Statistic (Y 2
n )- RRN

RRN statistic Y 2
n is a modified chi-square test for complete data based on the differences

between two estimators of the probabilities in each interval. One estimator is based on the
empirical distribution function and the other one is on the ML estimators of unknown para-
meters of the tested model from ungrouped data (See Nikulin, 1973b ; Rao and Robson, 1974 ;
Drost,1988,1989 ; LeCam et al., 1983 ; Van der Vaart, 1998 ; Voinov et al., 2007).

From the theorem 1.2 of Chernoff and Lehmann we find that in general it is impossible to
use the Pearson’s statistic to test the composite hypothesis, when we use ML estimators θ̂n or
their equivalents. But we can still construct a chi-squared test for the composite hypothesis. We
denote by G(θ) the covariance matrix of the vector Xn(θ) = 1√

n
(ν −np(θn)) and one can show

that (Dzhaparidge and Nikulin, 1974,1995 ; Greenwood and Nikulin, 1996)

(
Xn(θ̂n)
√
n(θ̂n − θ)

)
∼ AN

0k+s,

∥∥∥∥∥∥ G(θ) 0k×s
0s×k I−1(θ)

∥∥∥∥∥∥
 , (2.4)

and under H0

Xn(θ̂n) ∼ AN(0k,G(θ)),

where
G(θ) = Ek − qqT −BI−1BT,

q = q(θ) = (
√
p1(θ), · · · ,

√
p1(θ))T , B = B(θ) = [bij ]r×s,

bij = 1√
pi(θ)

∂pi(θ)
∂θj

.

Ek is the unit matrix of rank k. G(θ) is a singular and one can show that its rank is k − 1
(Nikulin, 1973c ; Moore and Spruill, 1975).

Nikulin (1973a, 1973b, 1973c, 1974) proposed the following test statistic to test the composite
hypothesis

Y 2
n = Y 2

n (θ̂n) = XT
n (θ̂n)G−(θ̂n)Xn(θ̂n), (2.5)

where G−(θ) is generalized inverse matrix of G(θ). Also he showed that this statistic follow the
chi-square distribution with k − 1 degrees of freedom. So one can write for any fixed x > 0

lim
n→∞

P{Y 2
n (θ̂n) ≤ x|H0} = P(χ2

k−1 ≤ x).
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The same work is shown by Rao and Robson (1974) and now this statistic is known as RRN
(Rao-Robson-Nikulin) statistic.

1.4 Some Other Modifications

Another modification by Dzhaparidze and Nikulin (1974) valid for any
√
n-consistent esti-

mator θ̃n of θ (based on ungrouped data) showed that the statistic

U2
n(θ̂n) = X2

n(θ̂n)−XT
n (θ̂n)B(θ̂n)J−1(θ̂n)BT (θ̂n)Xn(θ̂n),

in limit follows a χ2
k−s−1, which coincides the Pearson-Fisher’s test for grouped data (see Dz-

haparidze and Nikulin (1992)). Voinov et al. (2009) showed that this test is not powerful for
equiprobable intervals but is rather powerful with alternative hypothesis and with Neyman-
Pearson classes (Greenwood and Nikulin, 1996).

Hsuan and Robson (1976) provided the test statistic explicitly for the exponential family of
distributions when MMEs coincide with MLEs which confirms the Nikulin’s result Voinov and
Pya (2004). Mirvaliev (2001) generalized the test based on method of moments estimate (MME)
(θ̄) and Voinov et al. (2012) named this general test as Hsuan-Robson-Mirvaliev (HRM) statistic
which can be written as

Y 2
n (θ̄n) = X2

n(θ̄n) +R2
n(θ̄n)−Q2

n(θ̄n).

The above statistic in limit has χ2
k−1 distribution under some regularity conditions. McCulloch

(1985) showed that the statistic Y 2
n (θ̂n)− U2

n(θ̂n) is asymptotically independent of the DN test
U2
n(θ̂n) that is

lim
n→∞

P
(
Y 2
n (θ̂n)− U2

n(θ̂n) ≤ x|H0
)

= P(χ2
2 ≤ x),

and the power of U2
n(θ̂n) is negligible compared to that of Y 2

n (θ̂n) − U2
n(θ̂n). For details of the

modifications and results see, Voinov et al. (2012). Here we show the same results for the power of
the tests with equiprobable intervals by the Monte-Carlo simulations (Tahir and Saaidia (2012)).

1.4.1 Power Estimation : Simulation

We investigate the power of Y 2
n (θ̂n), U2

n(θ̂n) and Y 2
n (θ̂n)−U2

n(θ̂n) tests for the BS distribution
as null hypothesis against famous alternative lognormal, loglogistic, exponentiated Weibull and
generalized Weibull distributions. These distributions are generally used in reliability when the
hazard rate function is unimodal (i.e. ∩-shaped). The test is repeated 2000 times with equipro-
bable intervals k by taking a sample size n = 200 with significance level α = 0.05. The results
are shown in Figures 2.1-2.4.
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Figure 2.1 – Estimated powers of 3 tests against lognormal distribution as alternative.

Figure 2.2 – Estimated powers of 3 tests against loglogistic distribution as alternative.

It is clear that the DN U2
n(θ̂n) test for equiprobable intervals possesses low power for all

alternative distributions. In contrast the Y 2
n (θ̂n) and Y 2

n (θ̂n)−U2
n(θ̂n) tests are the most powerful

for all alternatives considered and for varying number of intervals k. Note that the case r >
40 needs further investigation because the expected intervals probabilities become small and
the limit distribution of the above tests will not follows the chi-squared distribution. With
equiprobable intervals it is recommended to take k > 2 as for k = 2 it will be more interesting to
do the same study with the class of Neyman-Pearson and evaluate the power of these proposed
tests.
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Figure 2.3 – Estimated powers of 3 tests against exponentiated Weibull distribution as alternative.

Figure 2.4 – Estimated powers of 3 tests against generalized Weibull distribution as alternative.

2 Goodness-of-Fit Test For Right Censored Data

In this section, following Bagdonavicius and Nikulin (2011), Bagdonavicius et al. (2010a),
Bagdonavicius et al. (2010c), construction of a chi-squared test for testing composite parametric
hypotheses for right censored data is explained. The modified chi-squared test for composite hy-
pothesis for complete samples was first considered by Nikulin (1973a, 1973b), Rao and Robson
(1974), and Dzhaparidze and Nikulin (1974). Several goodness-of-fit tests have been suggested
by the statisticians for censored data. Habib and Thomas (1986), and Hollander and Pena (1992)
developed a Pearson-type chi-squared statistic based on the differences of Kaplan-Meier estimate
F̂n(t) and parametric ML estimators of survival functions F (t, θ̂n). Akritas (1988) proposed a
chi-squared statistic based on the idea of comparing the observed and expected number of fai-
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lures in each class. Hjort (1990) developed a chi-squared type statistic to test the validity of the
parametric model for life history data based on the cumulative hazard process. Kim (1993) also
proposed the chi-squred goodness-of-fit test based on the product limit estimator.

Bagdonavicius et al. (2010a) extended the same idea of RRN statistic for complete data to
censored data. They estimated end points of intervals aj as the random data functions based
on the idea to divide the interval [0, t] into k subintervals with equal expected numbers of fai-
lures ej (not necessarily integers). The test is based on the vector Z = (Z1, · · · , Zk)T , where
Zj = 1√

n
(Uj−ej), j = 1, · · · , k, i.e. the differences between the number of observed and expected

failures in the intervals I1, · · · , Ik. Zhang (1999) proposed a chi-squared type statistic for the
logistic regression model by adapting the goodness-of fit test of Nikulin-Rao-Robson-Moore.

The maximum likelihood estimation method is almost the best method in the case of censo-
red samples, whose asymptotic properties are well known. For testing a composite parametric
hypothesis RRN statistic is well adapted for censored data and for application of M L estima-
tors. We apply the test for the validity of exponential, Weibull, generalized Weibull, lognormal,
loglogistic, and Birnbaum-Saunders distributions for different sets of data.

2.1 Composite Parametric Hypothesis

Let us consider the composite hypothesis

H0 : F (x) ∈ F0 = {F0(x,θ), x ∈ R1,θ = (θ1, · · · , θs)T ∈ Θ ⊂ Rs} ⊂ F, (2.6)

which means that the failure times T has the cdf F that belongs to the parametric family F0 and
θ is an unknown m-dimensional parameter and F0 is a differentiable completely specified cdf
with the support (0,∞). The class F contains all absolutely continuous cumulative distribution
functions with the support (0,∞). We suppose also that τ is the time of studies.

2.2 ML Estimator And Its Properties

Suppose that

(X1, δ1), . . . , (Xn, δn), Xi = Ti ∧ Ci, δi = 1{Ti≤Ci}, (2.7)

is a right censored sample. T1, · · · , Tn are the failure times which are absolutely continuous
i.i.d. random variables and Ci are the censoring times. We supposed that Ci are independent
of Ti. The probability density function of the failure time T1 belongs to a parametric family
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{f(·,θ), θ ∈ Θ ⊂ Rm}. Denote by

S(t,θ) = Pθ{T1 > t}, and Λ(t,θ) = −lnS(t,θ) =
∫ t

0
λ(u,θ)du, θ ∈ Θ,

the survival function and the cumulative hazard function, respectively.

Denote by Ḡi the survival function of the censoring time Ci. For any t > 0 the value Ḡi(t)
is probability for the i-th object not be censored to time t. Let us consider the distribution
of the random vector (Xi, δi) in the case of random censoring with absolutely continuous cen-
soring times Ci with the probability density function gi(t). We suppose that we observe the
so-called non-informative censoring mechanism, it means that the survival function Ḡi and the
density function gi(t) do not depend on the parameter θ. So in this case we obtain the following
expressions for the likelihood function L(θ), {θ ∈ Θ} :

L(θ) =
n∏
i=1

f δi(Xi,θ)S1−δi(Xi,θ) Ḡδi(Xi) g1−δi
i (Xi).

Since the problem is to estimate the parameter θ, we can skip the multipliers which do not
depend on this parameter. So under non-informative censoring the likelihood function can be
presented as :

L(θ) =
n∏
i=1

f δi(Xi,θ)S1−δi(Xi,θ), {θ ∈ Θ}.

Using the relation f(t,θ) = λ(t,θ)S(t,θ) the likelihood function can be written as

L(θ) =
n∏
i=1

λδi(Xi,θ)S(Xi,θ), {θ ∈ Θ}. (2.8)

The estimator θ̂, maximizing the likelihood function L(θ), is called maximum likelihood estima-
tor.

The loglikelihood function

`(θ) =
n∑
i=1

δi lnλ(Xi,θ) +
n∑
i=1

lnS(Xi,θ), {θ ∈ Θ}, (2.9)

is maximized at the same point as the likelihood function. If λ(u,θ) is sufficiently smooth
function of the parameter θ then the ML estimator satisfies the equation :

˙̀(θ̂) = 0; (2.10)
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2.2 Goodness-of-Fit Test For Right Censored Data

where ˙̀ is the score vector and the Fisher’s information matrix is

I(θ) = −Eθ ῭(θ). (2.11)

The censored sample (2.7) may be written in the form of counting process

(N1(t), Y1(t), t ≥ 0), · · · , (Nn(t), Yn(t), t ≥ 0),

where
Ni(t) = 1{Xi≤t,δi=1}, Yi(t) = 1{Xi≥t}

N(t) =
n∑
i=1

Ni(t) and Y (t) =
n∑
i=1

Yi(t). (2.12)

Using these processes we obtain two useful relations :

∫ ∞
0

lnλ(u,θ)dNi(u) =
{

lnλ(Xi,θ), δi = 1,
0, δi = 0.

= δi lnλ(Xi,θ)

and ∫ ∞
0

Yi(u)λ(u)du =
∫ Xi

0
λ(u)du = − lnS(Xi, θ).

From these relations we can write the loglikelihood function `(θ) and the score vector ˙̀(θ) of the
sample (2.7) in terms of stochastic processes Ni and Yi under non-informative random censoring.

`(θ) =
n∑
i=1

∫ ∞
0
{lnλ(u,θ)dNi(u)− Yi(u)λ(u,θ)du}, (2.13)

from where it follows that

˙̀(θ) =
n∑
i=1

∫ ∞
0

∂

∂θ
lnλ(u,θ) {dNi(u)− Yi(u)λ(u,θ)du}, (2.14)

and the Fisher’s information matrix is

I(θ) = −Eθ ῭(θ) = Eθ
n∑
i=1

∫ ∞
0

∂

∂θ
lnλ(u,θ) ( ∂

∂θ
lnλ(u,θ))Tλ(u,θ)Yi(u)du. (2.15)

By tradition, accepted in survival analysis and reliability, we suppose that the processes Ni

and Yi are observed at finite time τ > 0. It means that at time τ observation of all objects is
censored, so in the place of censoring time Ci, censoring time Ci ∧ τ are used. We denote them
once more by Ci. The process N(t) shows for any t > 0 the number of observed failures in the
interval [0, τ ] and the process Y (t) shows the number of objects which are at risk (not failed,
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Chapter 2. Chi-squared Type Goodness-of-Fit Tests

not truncated and not censored) just prior the time t, t < τ , where τ is the maximum time of
the study.
Consistency and asymptotic normality of the ML estimators θ̂ hold under the following sufficient
conditions (Hjort, 1990).

Conditions A :

1. There exists a neighborhood Θ0 of θ0 such that for all n and θ ∈ Θ0, and almost all
t ∈ [0, τ ], the partial derivatives of λ(t,θ) of the first, second, and the third order with
respect to θ exist and are continuous in θ for θ ∈ Θ0. Moreover, they are bounded in
[0, τ ] × Θ0 and the log-likelihood function (2.9) may be differentiated three times with
respect to θ ∈ Θ0 by interchanging the order of integration and differentiation.

2. λ(t,θ) is bounded away from zero in [0, τ ]×Θ0.

3. There exists a positive deterministic function y(t) such that

sup
t∈[0,τ ]

|Y (t)/n− y(t)| P→ 0.

4. The matrix i(θ0) = limn→∞ I(θ0)/n (the limit exists under the conditions 1-3) is positive
definite.

Let θ0 be the true value of θ. The asymptotic properties of ML estimators and the score vector
under conditions A) are :

1. θ̂ d→ θ0,

2.
√
n(θ̂ − θ0) = i−1(θ0) 1√

n
˙̀(θ0) +Op(1),

3. − 1
n

῭(θ̂) P→ i(θ0),

4.
√
n(θ̂ − θ0) P→ Ns(0, i−1(θ0)),

5. 1√
n

˙̀(θ) d→ Ns(0, i(θ0)),

2.3 Construction Of The Test Statistic For Right Censored Data

Here a chi-squared test for testing composite parametric hypotheses (2.6) is explained.
Suppose that the processes Ni, Yi are observed at finite time τ . Then divide the interval [0, τ ]
into k > s smaller intervals

Ij = (aj−1, aj ], a0 = 0, ak = τ,

and let denote by
Uj = N(aj)−N(aj−1) =

∑
i:Xi∈Ij

δi
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2.2 Goodness-of-Fit Test For Right Censored Data

the number of observed failures in the j-th interval, j = 1, 2, ..., k.

We need to estimate the "expected" number of failures in the interval Ij under the hypothesis
H0. Taking into account the equality

EN(t) = E
∫ t

0
λ(u,θ0)Y (u)du,

we can "expect" to observe
ej =

∫ aj

aj−1
λ(u, θ̂)Y (u)du (2.16)

failures ; here θ̂ is the MLE of the parameter θ. Following Bagdonavicius et al. (2010a) we shall
construct the RRN type statistic based on the vector

Z = (Z1, ..., Zk)T , Zj = 1√
n

(Uj − ej), j = 1, ..., k. (2.17)

To investigate the properties of the statistic Z one can use the properties of the stochastic
process

Hn(t) = 1√
n

(
N(t)−

∫ t

0
λ(u, θ̂)Y (u)du

)
,

in the interval [0, τ ], given in the next lemma.

Lemma 1 Under conditions A) the following convergence holds :

Hn
d→ V on D[0, τ ];

where V is zero mean Gaussian martingale such that for all 0 ≤ s ≤ t

Cov (V (s), V (t)) = A(s)−CT (s)i−1(θ0)C(t);

where
A(t) =

∫ t

0
λ(u,θ0)y(u)du, C(t) =

∫ t

0

∂

∂θ
lnλ(u,θ0)λ(u,θ0)y(u)du,

and d→ means week convergence in the space D[0, τ ] of cadlag functions with Skorokhod metric.

Set for i = 1, ..., s ; j, j′ = 1, ..., k

Vj = V (aj)− V (aj−1), vjj′ = Cov (Vj , Vj′),

Aj = A(aj)−A(aj−1), Cj = (C1j , ..., Csj)T = C(aj)−C(aj−1),

V = [vjj′ ]k×k, C = [Cij ]s×k,
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Chapter 2. Chi-squared Type Goodness-of-Fit Tests

and denote by A the k × k diagonal matrix with diagonal elements A1, ..., Ak.

It is easy to verify, see Bagdonavicius and Nikulin (2011), that under conditions A)

Z
d→ Y ∼ Nk(0,V ) as n→∞,

where
V = A−CT i−1(θ0)C.

Remark : Set the matrix
G = i−CA−1CT .

If G is non-degenerate then a generalized inverse of the matrix V is

V − = A−1 +A−1CTG−1CA−1.

We need to inverse only diagonal k × k matrix A and m×m matrix G, (usually m = 1, m = 2
or m = 3).

Theorem 2.1 Under conditions A) the following estimators of Aj, Cj, i(θ0) and V are consistent
(see Bagdonavicius et al., 2010a) :

Âj = Uj/n, Ĉj = 1
n

∫ aj

aj−1

∂

∂θ
lnλ(u, θ̂)dN(t),

and
î = 1

n

∫ τ

0

(
∂

∂θ
lnλ(u; θ̂)

)(
∂

∂θ
lnλ(u; θ̂)

)T
dN(u), V̂ = Â− ĈT

î
−1
Ĉ.

The statistic î = − 1
n

῭(θ̂) is also a consistent estimator of i(θ0) but it is recommended to use
the above estimator to ensure that both components of the following RRN test statistic are
non-negative for any n

Y 2
n = ZT V̂

−
Z,

where V̂ − is the special general inverse of the matrix V̂ as

V̂
− = Â

−1 + Â−1
Ĉ
T
Ĝ
−
ĈÂ

−1
, Ĝ = î− ĈÂ−1

Ĉ
T
.

So the test statistic can be written in the form

Y 2
n = ZT Â

−1
Z +ZT Â

−1
Ĉ
T
Ĝ
−
ĈÂ

−1
Z =

k∑
j=1

(Uj − ej)2

Uj
+Q,
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2.2 Goodness-of-Fit Test For Right Censored Data

where
Q = W T Ĝ

−
W , W = ĈÂ

−1
Z = (W1, ...,Ws)T ,

Ĝ = [ĝll′ ]s×s, ĝll′ = îll′ −
k∑
j=1

ĈljĈl′jÂ
−1
j , Wl =

k∑
j=1

ĈljÂ
−1
j Zj ,

îll′ = 1
n

n∑
i=1

δi
∂ lnλ(Xi; θ̂)

∂θl

∂ lnλ(Xi; θ̂)
∂θl′

, Ĉ lj = 1
n

∑
i:Xi∈Ij

δi
∂

∂θ
lnλ(Xi, θ̂),

Âj = Uj/n, Uj =
∑

i:Xi∈Ij
δi, Zj = 1√

n
(Uj − ej),

i = 1, · · · , n, j = 1, · · · , k, l, l′ = 1, · · · , s.
Denote by ĝll′ the elements of Ĝ−. The quadratic form Q can be written as follows :

Q =
m∑
l=1

m∑
l′=1

Wlg
ll′Wl′ .

UnderH0 the limit distribution of the statistic Y 2
n is chi-square with r = rank(V −) = Tr(V −V )

degrees of freedom. If G is non-degenerate then r = k.

Statistical inference for the hypothesis H0 : The hypothesis is rejected with approximate
significance level α if Y 2

n > χ2
α(r).

2.3.1 Choice of random grouping intervals âj

Set

bi = (n− i)Λ(X(i), θ̂) +
i∑
l=1

Λ(X(l), θ̂),

where X(i) is the ith element in the ordered statistics (X(1), · · · , X(n)).
If i is the smallest natural number verifying Ej ∈ [bi−1, bi], j = 1, · · · , k − 1 then

(n− i+ 1)Λ(aj , θ̂) +
i−1∑
l=1

Λ(X(l), θ̂) = Ej

where aj are the end points of the intervals and can be estimated as

âj = Λ−1
(

[Ej −
i−1∑
l=1

Λ(X(l), θ̂)]/(n− i+ 1), θ̂
)
, âk = max(X(n), τ) (2.18)

where Λ−1 is the inverse of cumulative hazard function Λ. We have 0 < â1 < â2, · · · , âk = τ .
With this choice of intervals

ej = Ek/k
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for any j, where Ek =
n∑
i=1

Λ(Xi, θ̂). Usually in real application we fix k. Bagdonavicius et

al. (2010a) and Greenwood and Nikulin (1996) give some recommendations for the choice of
intervals. If there is no alternative hypothesis, the number of intervals k can be taken such as
n/k > 5.
By random change of time theorem (Billingsley, 1968)

(Hn(â1), · · · , Hn(â1))T d→ (V (a1), · · · , V (a1))T ,

which means that replacing aj by âj in the expression of the statistic Y 2
n , the limit distribution

of the statistic remain chi-square with r degrees of freedom as in the case of fixed aj .

In classical way of selecting equiprobable intervals we fix k and take 0 < P1 < ... < Pk < 1 in
such a way that Pj = j/(k + 1), j = 1, ..., k. For example, taking k = 9 we have P1 = 0.1, P2 =
0.2, ..., P9 = 0.9 and we make the intervals from the following cut-points

aj = F−1(Pj , θ̂) = inf{t : Fτ (t, θ̂) ≥ P}.

2.3.2 Choice of âj in shape and scale distribution families

Set

bi = (n− i)Λ0(Y(i)) +
i∑
l=1

Λ0(Y(l)), Y(i) = (
X(i)

θ̂
)ν̂ ;

where Λ0 is the cumulative hazard function. If i is the smallest natural number verifying Ej ∈
[bi−1, bi], j = 1, · · · , k − 1 then

âj = θ̂

{
Λ−1

0

(
[Ej −

i−1∑
l=1

Λ0(Y(l))]/(n− i+ 1),θ
)}

, âk = max(X(n), τ)

where Λ−1
0 is the inverse of cumulative hazard function Λ0.

For such choices of intervals we have ej = Ek/k for any j, where Ek =
∑n
i=1 Λ0(Yi).

2.4 Application Of The RRN Test

Here we apply the RRN test and give the elements of the quadratic form of different parame-
tric models such as exponential, Weibull, generalized Weibull, exponentiated Weibull, loglogistic,
lognormal, and Birnbaum-Saunders. Also we apply the test on the original data of arm A head
and neck cancer. R-statistical programming language is used to apply the goodness of fit tests
for all models.

Arm-A head and neck cancer data
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2.2 Goodness-of-Fit Test For Right Censored Data

The data for arm A of head and beck cancer study was conducted by northern California
oncology group. The survival times in days for the patients (n = 51) were as below (δ =

n∑
i
δi =

42).

7, 34, 42, 63, 64, 74*, 83, 84, 91, 108, 112, 129, 133, 133, 139, 140,
140, 146, 149, 154, 157, 160, 160, 165, 173, 176, 185*, 218, 225, 241,
248, 273, 277, 279*, 297, 319*, 405, 417, 420, 440, 523*, 523, 583, 594,

1101, 1116*, 1146, 1226*, 1349*, 1412*, 1417
*censoring

First this data was used by Efron (1988) for logistic distribution. Mudholkar et al. (1996)
and Nikulin and Haghighi (2006) reanalysed the same data and give the acceptable fit (chi-
square type test) to the exponentiated Weibull and generalized Weibull distribution families
respectively. We use the data after transforming the survival times in months (1 month=30.438
days). The hazard functions using this data for the shape-scale families are shown in Figure 2.5.

Figure 2.5 – Hazard plots for shape-scale families.

Now following the theory in previous section-2, we consider several examples widely used in
reliability and survival analysis.

2.4.1 Exponential Distribution

The exponential distribution is primarily used in reliability applications to model the data
with a constant failure rate. Suppose the hypothesis that the distribution of failure times in
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exponential i.e.
H0 : F (t) = 1− eλt, t ≥ 0, λ > 0.

Let
S(t, θ) = eλt, λ(t, θ) = λ,

be the survival and the hazard function respectively.
Set Sn =

∑n
i=1Xi, we have

λ̂ = δ/Sn, Uj =
∑

i:Xi∈Ij
δi, Ĉj = Uj

nλ̂
,

î = δ

nλ̂2
, Ĝ = ĝ11 = δ

nλ̂2
−

k∑
j=1

U2
j

n2λ̂2
n

Uj
= 0.

It means G is degenerated and we can not find the general inverse of Ĝ, so we find the general
inverse of V̂ directly.

Under the exponential distribution the elements of the matrix V̂ are

v̂jj = Âj − Ĉ2
j î
−1 = Uj

n
−
U2
j

nδ
,

and for j 6= j′

v̂jj′ = −Ĉj î−1Ĉj′ = −UjUj
′

nδ
.

Set

π̂j = Uj
δ
,

k∑
j=1

π̂j = 1, π̂ = (π̂1, · · · , π̂k)T .

Denote byD the diagonal matrix with the diagonal elements π̂. The matrix V̂ and its generalized
inverse V̂ − have the form

V̂ = δ

n
(D̂ − π̂π̂T ), V̂

− = n

δ
(D̂−1 + 11T),

by using the equalities

1T D̂ = π̂T , 1T π̂ = π̂T1 = 1, D̂1 = π̂, π̂T D̂
−1 = 1T ,

we obtain
V̂ V̂

−
V̂ = V̂ .
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2.2 Goodness-of-Fit Test For Right Censored Data

This we can show as

V̂
−
V̂ = 1

Â
(D̂−1 + 11T )Â(D̂ − π̂π̂T ) = E− 1π̂T ,

V̂ V̂
−
V̂ = Â(D̂ − π̂π̂T )(E− 1π̂T )

= Â(D̂ − D̂1π̂T − π̂π̂T − π̂π̂T1π̂T )

= Â(D̂ − π̂π̂T ) = V̂ .

So the quadratic form can be written as

Y 2
n = ZT V̂

−
Z = n

δ
ZT D̂

−1
Z + n

δ
(ZT1)2

=
k∑
j=1

(Uj − ej)2

Uj
+ 1
δ

[
k∑
j=1

(Uj − ej)]2.

The limit distribution of the statistic Y 2
n is chi square with Tr(V −V ) = k−1 degrees of freedom

because

Âj
P→ Aj > 0, δ/n

P→ A =
k∑
j=1

Aj ∈ (0, 1), π̂j
P→ Aj/A = πj , D̂

P→D,

so
V −V = 1

A
(D−1 + 11T )A(D − ππT ) = E− 1πT ,

T r(E− 1πT ) = k −
k∑
j=1

πj = k − 1.

Note that
k∑
j=1

ej = λ̂

∫ τ

0
Y (u)d(u) = λ̂

n∑
i=1

Xi = λ̂Sn = δ =
k∑
j=1

Uj .

So
1
δ

[
k∑
j=1

(Uj − ej)]2 = 0.

Choice of âj : Set

S0 = 0, Si = (n− i)X(i) +
i∑
l=1

X(l), i = 1, · · · , n.

The formula (2.18) implies that the limits of the intervals Ij are chosen as : if i is the smallest
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natural number verifying the inequalities Si−1 ≤ j
kSn ≤ Si, then

âj =
(
j

k
Sn −

i−1∑
l=1

X(l)

)
/(n− i+ 1), j = 1, · · · , k − 1, âk = X(n).

Under this choice of intervals we have ej = δ/k for any j.

Chi-squared test for the exponential distribution : the null hypothesis is rejected with ap-
proximate significance level α if

Y 2
n =

k∑
j=1

(Uj − ej)2

Uj
> χ2

α(k − 1).

2.4.2 Weibull Distribution

Weibull distribution is most commonly used distribution in reliability to model the failure
times due its flexible parameters. The failure rate can be decreasing, constant or increasing
depending upon the values of parameters. Modeling the monotone hazard rates, Weibull distri-
bution can be the initial choice due to its positively and negatively skewed density shapes.

Suppose that under H0 the failure times follow the weibull distribution with

S(t; θ, ν) = exp{−( ti
θ

)ν}, λ(t, θ, ν) = ν

θν
tν−1
i , Λ(t, θ, ν) = ( ti

θ
)ν ,

(θ, ν > 0); t ≥ 0,
the survival function, the hazard function and the cumulative hazard function respectively.
The Log likelihood function is

`(θ, ν) =
n∑
i=1
{δi[(ν − 1) lnXi − ν ln θ + ln ν]− (Xi

θ
)ν}.

Denote by θ̂ and ν̂ the maximum likelihood estimator of the parameters θ and ν.
The matrix G is degenerate and has rank 1. So we need only ĝ22 to find Ĝ−. We have

î22 = 1
nν̂2

n∑
i=1

δi (1 + ln Yi)2 .

Choice of âj : Set

Yi = (Xi

θ̂
)ν̂ , bi = (n− i)Y(i)) +

i∑
l=1

Y(l), i = 1, · · · , n.
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If i is the smallest natural number verifying the inequalities

bi−1 ≤
j

k
bn ≤ bi

then

âj = θ̂

{
[ j
k
bn −

i−1∑
l=1

Y(l)]/(n− i+ 1)
}1/ν̂

,

j = 1, · · · , k − 1, âk = max(X(n), τ).

For such choice of intervals we have ej = δ/k for any j.
The test statistic is

Y 2
n =

k∑
j=1

(Uj − ej)2

Uj
+Q.

Since matrix G is degenerate so we have

Q = W2
ĝ22

, ĝ22 = î22 −
k∑
j=1

Ĉ2
2jÂ
−1
j , W2 =

k∑
j=1

Ĉ2jÂ
−1
j Zj ,

Ĉ2j = 1
nν̂

∑
i:Xi∈Ij

δi{1 + ln Yi},

Âj = Uj/n, Uj =
∑

i:Xi∈Ij
δi, Zj = 1√

n
(Uj − ej),

The zero hypothesis is rejected with an approximate significance level α if Y 2
n > χ2

α(k − 1).

The maximum likelihood estimators of Weibull distribution by taking the survival times in
months are ; θ̂ = 14.0242, ν̂ = 0.9297 . We take 5 intervals i.e. k=5. Further results to calculate
the Y 2 are shown below :

j 1 2 3 4 5
âj 2.0873 4.8731 10.3402 21.9896 46.5537
Uj 4 13 15 7 3
ej 8.4 8.4 8.4 8.4 8.4

î22 = 0.807105, ĝ22 = 0.091314, W2 = −0.703186.

The value of test statistic is

Y 2 = X2 +Q = 19.3717 + 5.4150 = 24.7867,
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and
pv = P{χ2

4 > 24.7867} = 0.000056.

So from the result we reject the hypothesis and conclude that the head and neck cancer data
doesn’t follow the weibull distribution.

Remark : If we take the classical way of selecting equiprobable intervals (âj) then we have :

j 1 2 3 4 5
âj 2.7937 6.8090 12.7655 23.3984 46.5537
Uj 7 18 7 7 3
ej 10.8031 9.6099 7.2415 6.5775 7.7680

î22 = 1.67699, ĝ22 = 0.97414, W2 = −0.75799.

The value of test statistic is

Y 2 = X2 +Q = 13.5888 + 0.5898 = 14.1786,

and
pv = P{χ2

4 > 14.1786} = 0.0067.

So from the result we reject the hypothesis and conclude the same inference as above but the
new method strongly reject the hypothesis as one can see from the p-value.

2.4.3 Generalized Weibull Distribution

This distribution is the extension of Weibull distribution and contains four shapes of the
hazard function and is used in the reliability and survival analysis.

Suppose under H0 the distribution of failure times is Generalized Weibull. Then

S(t, θ, ν, γ) = exp
{

1−
(

1 + ( t
θ

)ν
)1/γ

}
, t ≥ 0, (θ, ν, γ > 0),

λ(t, θ, ν, γ) = ν

γθν
tν−1

(
1 + ( t

θ
)ν
)1/γ−1

,

be the survival function and the hazard function respectively.

The log-likelihood function is

` =
n∑
i=1

δi

{
ln ν − ln γ − ν ln θ + (ν − 1) lnXi + ( 1

γ
− 1) ln(1 + Yi)

}
+ n−

n∑
i=1

(1 + Yi)1/γ .
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where Yi = (Xiθ )ν .
The RRN statistic is

Y 2
n =

k∑
j=1

(Uj − ej)2

Uj
+Q,

where

Uj =
∑

i:Xi∈Ij
δi, Q =

3∑
l=1

3∑
l′=1

Wlg
−1
ll′ Wl′ , l, l′ = 1, 2, 3.

Wl =
k∑
j=1

ĈijÂ
−1
j Zj , ĝll′ = îll′ −

k∑
j=1

ĈijĈi′jÂ
−1
j , [ĝll′ ]3×3 = [ĝll′ ]−1

3×3,

Âj = Uj/n, Ĉlj = 1
n

∑
i:Xi∈Ij

δi
∂

∂θ
lnλ(Xi; θ̂),

Ĉ1j = − ν̂
nθ̂

∑
i:Xi∈Ij

δi
{

1 + ( 1
γ̂ − 1) Yi

1+Yi

}
,

Ĉ2j = 1
nν̂

∑
i:Xi∈Ij

δi
{

1 + ln Yi + ( 1
γ̂ − 1)Yi lnYi

1+Yi

}
,

Ĉ3j = − 1
nγ̂

∑
i:Xi∈Ij

δi
{

1 + 1
γ̂ ln(1 + Yi)

}
.

The elements of the symmetric matrix î = [̂ill′ ]3×3 are

î11 = ν̂2

nθ̂2

n∑
i=1

δi

{
1 + ( 1

γ̂
− 1) Yi

1 + Yi

}2
,

î22 = 1
nν̂2

n∑
i=1

δi

{
1 + ln Yi + ( 1

γ̂
− 1)Yi lnYi

1 + Yi

}2
,

î33 = 1
nγ̂2

n∑
i=1

δi

{
1 + 1

γ̂
ln(1 + Yi)

}2
,

î12 = − 1
nθ̂

n∑
i=1

δi

{
1 + ( 1

γ̂
− 1) Yi

1 + Yi

}{
1 + ln Yi + ( 1

γ̂
− 1)Yi lnYi

1 + Yi

}
,

î13 = ν̂

nθ̂γ̂

n∑
i=1

δi

{
1 + ( 1

γ̂
− 1) Yi

1 + Yi

}{
1 + 1

γ̂
ln(1 + Yi)

}
,

î23 = − 1
nγ̂ν̂

n∑
i=1

δi

{
1 + ln Yi + ( 1

γ̂
− 1)Yi lnYi

1 + Yi

}{
1 + 1

γ̂
ln(1 + Yi)

}
.

Choice of âj : Set

bi = (n− i)Λ0(Y(i)) +
i∑
l=1

Λ0(Y(l)),
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where
Λ0(t) = (1 + t)1/γ − 1.

If i is the smallest natural number verifying Ej ∈ [bi−1, bi], j = 1, · · · , k − 1, then

âj = θ̂

{
Λ−1

0

(
[Ej −

i−1∑
l=1

Λ0(Y(l))]/(n− i+ 1)
)}1/ν̂

, âk = max(X(n), τ),

where
Λ−1

0 (t) = (1 + t)γ − 1.

For such choices of intervals we have ej = Ek/k for any j, where

Ek =
n∑
i=1

Λ0(Yi).

By putting γ = 1 we can deduce the elements of the estimator î = [̂ill′ ]2×2 and Ĉj for the
Weibull distribution.

Chi-squared test for the hypothesis H0 : The hypothesis is rejected with approximate signi-
ficance level α, if Y 2

n > χ2
α(k), where k is the number of classes.

The maximum likelihood estimators of generalized Weibull distribution by taking into ac-
count the survival times in months are :

θ̂ = 2.5458, ν̂ = 2.1887, γ̂ = 4.9946.

Here γ̂ = 4.9946 which is much greater than 1 and it justifies the rejection of Weibull distributoin
because for Weibull distribution γ = 1 in generalized Weibull distribution.

We take 5 intervals i.e. k=5. Further results to calculate the Y 2 are shown below

j 1 2 3 4 5
âj 2.7900 4.7846 8.3689 16.3947 46.5536
Uj 7 9 13 7 6
ej 8.2184 8.2184 8.2184 8.2184 8.2184

ĝ3×3 =


0.0127094 −0.0041379 −0.0011513
−0.0041379 0.0405083 −0.0077945
−0.0011513 −0.0077945 0.0031218

 .

Wl = (−0.022203 0.134012 0.005736)T
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Here the matrix G is not degenerated. The value of test statistic is

Y 2 = X2 +Q = 3.0710 + 1.1424 = 4.2134,

and
pv = P{χ2

5 > 4.2134} = 0.5191.

So from the result we have no reason to reject the null hypothesis and conclude that the data
follow the generalized Weibull distribution.

Remark :
Equiprobable intervals

j 1 2 3 4 5
âj 3.2743 6.1343 11.0292 22.6327 46.5536
Uj 8 17 7 7 3
ej 10.3304 9.8179 8.0722 7.4611 5.4106

ĝ3×3 =


0.0131205 −0.0023642 −0.0011198
−0.0023642 0.0465760 −0.0076510
−0.0011198 −0.0076510 0.0029554

 ,

Wl = (−0.011408 0.175988 0.024349)T .

The value of test statistic is

Y 2 = X2 +Q = 5.8447 + 2.5072 = 8.3519,

and
pv = P{χ2

5 > 8.3519} = 0.1379.

So from the result we have no reason to reject the hypothesis that the head and neck cancer
data follow the generalized Weibull distribution. It means that we have same inference as in the
case of random grouping intervals but from p− value we can see that the new method is more
likely to accept the hypothesis.

Remark on testing γ = 1 :
Weibull distribution is a special case of generalized Weibull distribution when γ = 1, but for

Weibull distribution the matrix G is degenerated and consequently the limit distribution of the
statistic Y 2

n is chi-square distribution with k − 1 degrees of freedom. We can get the elements
of the quadratic form of Weibull distribution directly from the formulas of generalized Weibull
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distribution by putting γ = 1.

Q = W 2
2

ĝ22
, W 2

2 =
k∑
j=1

Ĉ2jÂ
−1
j Zj , ĝ22 = î22 −

k∑
j=1

Ĉ2
2jÂ
−1
j ,

î22 = 1
nν̂2

n∑
i=1

δi {1 + ln Yi}2 , Ĉ2j = 1
nν̂

∑
i:Xi∈Ij

δi {1 + ln Yi} .

In general we don’t know that some data follow Weibull or generalized Weibull distribution, if we
want to fit one from these two. One way is to get the idea about the model by plotting the hazard
function. The other way is that we can use the likelihood ratio test for testing γ = 1 in case
of selecting the model between these two distributions. If we do not reject the null hypothesis
γ = 1, it means the data may follow the Weibull distribution, otherwise it is better to go for the
generalized Weibull distribution.

For example, we apply the likelihood ratio test on the head and neck cancer data and the
value of test statistic is

LR = −2[LLw − LLgw] = −2[−153.46 + 148.82] = 9.28.

As the critical significance level for 1 degree of freedom is χ2(1) = 3.84, so we can reject the
null hypothesis that the data follow the Weibull distribution. In the same way we can use the
likelihood ratio test for exponential and Weibull distributions, as exponential is also a case of
Weibull distribution when ν = 1.

2.4.4 Exponentiated Weibull Distribution

This distribution is also an extension of the Weibull distribution. We suppose that the failure
times follow the exponentiated Weibull distribution under H0 with the survival function

S(t, θ, ν, γ) = 1−
{

1− exp[−( t
θ

)ν ]
}1/γ

, t ≥ 0, θ, ν, γ > 0,

and the hazard function

λ(t, θ, ν, γ) =
ν
{
1− exp[−( tθ )ν ]

}1/γ−1 exp[−( tθ )ν ]( tθ )ν−1

γθ
{

1−
(
1− exp[−( tθ )ν ]

)1/γ} .

The parameters can be estimated by maximizing the following log-likelihood function

` = lnL =
n∑
i=1

δi ln f(Xi, θ, ν, γ) +
n∑
i=1

(1− δi) lnS(X, θ, ν, γ)
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=
n∑
i=1

δi

{
ln ν − ln γ − ν ln θ + (ν − 1) lnXi − Yi + ( 1

γ
− 1) ln(1− e−Yi)

}

+
n∑
i=1

(1− δi) ln[1− (1− e−Yi)
1
γ ],

where Yi = (Xiθ )ν .
The elements of the estimators for Ĉj and for the Fisher information matrix îls can be calculated
as

Ĉj = 1
n

∑
i:Xi∈Ij

δi
∂

∂θ
lnλ(Xi; θ̂), Ĉj = (Ĉ1j , Ĉ2j , Ĉ3j)T ,

Ĉ1j = − ν̂

nθ̂

∑
i:Xi∈Ij

δi

{
1− Ŷi + ( 1

γ̂
− 1) Ŷie

−Ŷi

1− e−Ŷi
+ 1
γ̂

Ŷie
−Ŷi(1− e−Ŷi)1/γ̂−1

1− (1− e−Ŷi)1/γ̂

}
,

Ĉ2j = 1
nν̂

∑
i:Xi∈Ij

δi

{
1 + ln Ŷi − Ŷi ln Ŷi + ( 1

γ̂
− 1) Ŷie

−Ŷi ln Ŷi
1− e−Ŷi

+ Ŷie
−Ŷi ln Ŷi(1− e−Ŷi)1/γ̂−1

γ̂[1− (1− e−Ŷi)1/γ̂ ]

}
,

Ĉ3j = − 1
nγ̂

∑
i:Xi∈Ij

δi

{
1 + 1

γ̂
ln(1− e−Ŷi)[1 + (1− e−Ŷi)1/γ̂

1− (1− e−Ŷi)1/γ̂
]
}
,

where Ŷi =
(
Xi
θ̂

)ν̂
. The information matrix is

îls = 1
n

n∑
i=1

δi
∂

∂θl
lnλ(X, θ̂) ∂

∂θs
lnλ(X, θ̂), l, s = 1, 2, 3,

where

î11 = ν̂2

nθ̂2

n∑
i=1

δi

1− Ŷi + ( 1
γ̂
− 1) Ŷie

−Ŷi

1− e−Ŷi
+ Ŷie

−Ŷi(1− e−Ŷi)
1
γ̂
−1

γ̂{1− (1− e−Ŷi)
1
γ̂ }

2

,

î22 = 1
nν̂2

n∑
i=1

δi

1 + ln Ŷi − Ŷi ln Ŷi + ( 1
γ̂
− 1) Ŷie

−Ŷi ln Ŷi
1− e−Ŷi

+ Ŷie
−Ŷi ln Ŷi(1− e−Ŷi)

1
γ̂
−1

γ̂{1− (1− e−Ŷi)
1
γ̂ }

2

,

î33 = 1
nγ̂2

n∑
i=1

δi

1 + 1
γ̂

ln(1− e−Ŷi) + (1− e−Ŷi)
1
γ̂ ln(1− e−Ŷi)

γ̂{1− (1− e−Ŷi)
1
γ̂ }

2

,

î12 = − 1
nθ̂

n∑
i=1

δi

1− Ŷi + ( 1
γ̂
− 1) Ŷie

−Ŷi

1− e−Ŷi
+ Ŷie

−Ŷi(1− e−Ŷi)
1
γ̂
−1

γ̂{1− (1− e−Ŷi)
1
γ̂ }

×
1 + ln Ŷi − Ŷi ln Ŷi + ( 1

γ̂
− 1) Ŷie

−Ŷi ln Ŷi
1− e−Ŷi

+ Ŷie
−Ŷi ln Ŷi(1− e−Ŷi)

1
γ̂
−1

γ̂{1− (1− e−Ŷi)
1
γ̂ }

 ,
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î13 = ν̂

nθ̂γ̂

n∑
i=1

δi

1− Ŷi + ( 1
γ̂
− 1) Ŷie

−Ŷi

1− e−Ŷi
+ Ŷie

−Ŷi(1− e−Ŷi)
1
γ̂
−1

γ̂{1− (1− e−Ŷi)
1
γ̂ }

×
1 + 1

γ̂
ln(1− e−Ŷi) + (1− e−Ŷi)

1
γ̂ ln(1− e−Ŷi)

γ̂{1− (1− e−Ŷi)
1
γ̂ }

 ,
î23 = − 1

nν̂γ̂

n∑
i=1

δi

1 + 1
γ̂

ln(1− e−Ŷi) + (1− e−Ŷi)
1
γ̂ ln(1− e−Ŷi)

γ̂{1− (1− e−Ŷi)
1
γ̂ }

×
1 + ln Ŷi − Ŷi ln Ŷi + ( 1

γ̂
− 1) Ŷie

−Ŷi ln Ŷi
1− e−Ŷi

+ Ŷie
−Ŷi ln Ŷi(1− e−Ŷi)

1
γ̂
−1

γ̂{1− (1− e−Ŷi)
1
γ̂ }

 ,
Choice of âj :

Set

bi = (n− i)Λ0(Y(i)) +
i∑
l=1

Λ0(Y(l)),

where
Λ0(t) = − ln[1− (1− e−t)

1
γ ].

If i is the smallest natural number verifying Ej ∈ [bi−1, bi], j = 1, · · · , k − 1 then

âj = θ̂

{
Λ−1

0

(
[Ej −

i−1∑
l=1

Λ0(Y(l))]/(n− i+ 1)
)}1/ν̂

, âk = max(X(n), τ),

where
Λ−1

0 (t) = − ln[1− (1− e−t)γ ].

For such choices of intervals we have ej = Ek/k for any j, where

Ek =
n∑
i=1

Λ0(Yi).

From the above calculations we can find the elements for RRN test of Weibull distribution by
putting γ = 1.

We return to our example with :

θ̂ = 0.14405, ν̂ = 0.29435, γ̂ = 0.05545.

Here also γ̂ = 0.05545 is much smaller than 1, which justifies the rejection of Weibull distribution.
We take 5 intervals i.e. k=5. Further results to calculate the Y 2 are shown below
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j 1 2 3 4 5
âj 2.5818 4.6728 8.3907 16.4711 46.5536
Uj 5 11 13 7 6
ej 8.3936 8.3936 8.3936 8.3936 8.3936

Fisher information matrix is

î3×3 =


33.2772 −60.3813 −101.2478
−60.3813 133.8186 140.5539
−101.2478 140.5539 387.1453

 .

Wl = (−0.082478 0.0341998 0.479222)T .

The value of test statistic is

Y 2 = X2 +Q = 5.7854 + 0.0000 = 5.7854,

and
pv = P{χ2

5 > 4.2134} = 0.3277.

So from the result we have no reason to reject the hypothesis that the data follow exponentiated
Weibull distribution. We can test γ = 1 (Weibull distribution) in the same way as in the case of
generalized Weibull distribution.

2.4.5 Loglogistic Distribution

Loglogistic distribution is one the models having unimodal hazard rate function. It is conve-
nient to apply due to its simple algebraic expressions than the lognormal distribution.

Suppose that under H0 the failure times follow the loglogistic distribution with

S(t; θ, ν) = 1
1 + ( tθ )ν

, λ(t, θ, ν) = ν

θν
tν−1 1

1 + ( tθ )ν
,

Λ(t, θ, ν) = ln[1 + ( t
θ

)ν ], (θ, ν > 0); t ≥ 0,

the survival function, the hazard function and the cumulative hazard function respectively.
The Log likelihood function is

` =
n∑
i=1

δi{ln ν − ν ln θ + (ν − 1) lnXi − ln(1 + (Xi

θ
)ν)} −

n∑
i=1

ln(1 + (Xi

θ
)ν).

Denote by θ̂ and ν̂ the maximum likelihood estimator of the parameters θ and ν.
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The elements of the estimator î = [̂ill′ ]2×2 are

î11 = ν̂2

nθ̂2

n∑
i=1

δi
(1 + Yi)2 , î12 = − 1

nθ̂

n∑
i=1

δi
1 + Yi + lnYi

(1 + Yi)2 ,

î22 = 1
nν̂2

n∑
i=1

δi

(
1 + lnYi

1 + Yi

)2
.

Choice of âj : Set

Yi = ( ti
θ̂

)ν̂ , bi = (n− i) ln(1 + Y(i)) +
i∑
l=1

ln(1 + Y(l)), Ej = j

k
bn.

If i is the smallest natural number verifying the inequalities

bi−1 ≤ Ej ≤ bi,

then

âj = θ̂

[
exp

{
[Ej −

i−1∑
l=1

ln(1 + Y(l))]/(n− i+ 1)
}
− 1

]1/ν̂

,

j = 1, · · · , k − 1, âk = max(X(n), τ),

and with this interval we have ej = bk/n for any j.
The other elements of the test statistic are

Ĉ1j = − ν̂

nθ̂

∑
i:Xi∈Ij

( δi
1 + Yi

), Ĉ2j = 1
nν̂

∑
i:Xi∈Ij

δi{1 + lnYi
1 + Yi

},

Âj = Uj/n, Uj =
∑

i:Xi∈Ij
δi, Zj = 1√

n
(Uj − ej).

The zero hypothesis is rejected with an approximate significance level α if Y 2
n > χ2

α(k).

The maximum likelihood estimators of loglogistic distribution by taking the survival times
in months are ;

θ̂ = 7.8303, ν̂ = 1.5265.

Taking k=5, further results to calculate the Y 2
n are shown below :

j 1 2 3 4 5
âj 2.7627 5.0426 8.8026 16.3783 46.5537
Uj 7 11 11 7 6
ej 8.4 8.4 8.4 8.4 8.4
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ĝ2×2 =
(

0.019187 0.014895
0.014895 0.167373

)
,

and
Wl = (−0.035557 0.010180)T .

The matrix G is non-degenerate. The value of test statistic is

Y 2 = X2 +Q = 2.7491 + 0.0751 = 2.8242,

and
pv = P{χ2

5 > 2.8242} = 0.7271.

So from the result we have no reason to reject the hypothesis that the head and neck cancer
data follow the loglogistic distribution.

2.4.6 Lognormal Distribution

Lognormal distribution is commonly used to model the failure times. Many properties of this
distribution follow directly from the properties of normal distribution.

Suppose the distribution of the failure times is lognormal and under H0

S(t; θ, ν) = 1− Φ(ln(t/θ)ν), λ(t, θ, ν) = νt−1 φ(ln(t/θ)ν)
1− Φ(ln(t/θ)ν) ,

be the survival function and the hazard function respectively, where φ and Φ are the pdf and
cdf of the standard normal distribution respectively, θ and ν are unknown scalar parameters.
The log likelihood function is

`(θ, ν) =
n∑
i=1

δi{ln ν − lnXi + ln φ(Vi)
1− Φ(Vi)

}+ ln[1− Φ(Vi)],

where Vi = ln(Xi/θ)ν , φ is the pdf of the standard normal distribution. The estimator î = [̂ils]2×2

has the form :

î11 = ν̂2

nθ̂2

n∑
i=1

δig
2
1(Yi), î12 = − 1

nθ̂

n∑
i=1

δig1(Yi)[1 + g1(Yi) lnYi],

î22 = 1
nν̂2

n∑
i=1

δi[1 + g1(Yi) lnYi]2,

where
Yi = (Xi/θ)ν , g1(T ) = φ(ln t)

1− Φ(ln t) − ln t.
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Choice of âj : Set

bi = (n− i)Λ0(Yi) +
i∑
l=1

Λ0(Y(l)),

where
Λ0(t) = − ln[1− Φ(ln t)].

If i is the smallest natural number verifying the inequalities bi−1 ≤ Ej ≤ bi, then for j =
1, · · · , k − 1

âj = θ̂

{
Λ−1

0

(
[Ej −

i−1∑
l=1

Λ0(Y(l))]/(n− i+ 1)
)}1/ν̂

, âk = max(X(n), τ),

where
Λ−1

0 (t) = exp{Φ−1(1− e−t)}.

For such choices of intervals we have ej = Ek/k for any j, where

Ek =
n∑
i=1

Λ0(Yi).

The other elements for the test statistic are

Ĉ1j = − ν̂

nθ̂

∑
i:Xi∈Ij

δig1(Yi), Ĉ2j = 1
nν̂

∑
i:Xi∈Ij

δi{1 + g1(Yi) lnYi},

Âj = Uj/n, Uj =
∑

i:Xi∈Ij
δi, Zj = 1√

n
(Uj − ej).

The zero hypothesis is rejected with an approximate significance level α if Y 2
n > χ2

α(k).

The maximum likelihood estimators of lognormal distribution by taking the survival times
in months are :

θ̂ = 8.2135, ν̂ = 0.8495.

The results to calculate the Y 2 with k=5 are shown below :

j 1 2 3 4 5
âj 2.5521 4.6866 8.5134 16.8011 46.5537
Uj 5 11 13 7 6
ej 8.4 8.4 8.4 8.4 8.4

Ĝ = ĝ2×2 =
(

0.000434 0.022043
0.022043 1.148915

)
,
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Wl = (−0.022228 1.252508)T .

The matrix G is non-degenerate. The value of test statistic is

Y 2 = X2 +Q = 5.7989 + 1.6605 = 7.4594,

and
pv = P{χ2

5 > 7.4594} = 0.1887.

So from the result we have no reason to reject the hypothesis that the head and neck cancer
data follow the lognormal distribution.

2.4.7 Birnbaum-Saunders Distribution

An argument of fatigue or cumulative damage justifies the use of the Birnbaum-Saunders
(BS) distribution. The Birnbaum-Saunders distribution (fatigue life distribution) is used com-
monly in reliability applications to model failure times.

Suppose that under H0 the failure times Ti follow the two-parameter Birnbaum-Saunders
distribution with cumulative distribution function

F (t;α, β) = Φ
[

1
α

{(
t

β

) 1
2
−
(
β

t

) 1
2
}]

, 0 < t <∞, α, β > 0,

where α is the shape parameter, β is the scale parameter and Φ(x) is the standard normal
distribution function. The probability density function can be written as

f(t;α, β) = 1
2
√

2π αβ

{(
β

t

) 1
2

+
(
β

t

) 3
2
}

exp
[
− 1

2α2

(
t

β
+ β

t
− 2

)]
,

0 < t <∞, α, β > 0.

The loglikelihood function is

` =
n∑
i=1

δi

[
ln
( 1

2
√

2π

)
− lnα− ln β + ln

{(
β

Xi

) 1
2

+
(
β

Xi

) 3
2
}
− 1

2α2

(
Xi

β
+ β

Xi
− 2

)]

+
n∑
i=1

(1− δi) ln
(

1− Φ
[

1
α

{(
Xi

β

) 1
2
−
(
β

Xi

) 1
2
}])

.

We can estimate the elements of Fisher information matrix as

îll′ = 1
n

n∑
i=1

δi
∂ lnλ(Xi; θ̂)

∂θl

∂ lnλ(Xi; θ̂)
∂θl′

,
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where

î11 = 1
nα̂2

n∑
i=1

δi

[
−1 + (A(Xi))2 − A(Xi)ϕ(A(Xi))

1− Φ(A(Xi))

]2
,

î22 = 1
nβ̂2

n∑
i=1

δi

−1 + 1
2

1 + 3 β̂
Xi

1 + β̂
Xi

+ 1
2A(Xi)B(Xi)−

1
2
B(Xi)ϕ(A(Xi))
1− Φ(A(Xi))

2

,

î12 = 1
nα̂β̂

n∑
i=1

δi

[
−1 + (A(Xi))2 − A(Xi)ϕ(A(Xi))

1− Φ(A(Xi))

]
×−1 + 1

2

1 + 3 β̂
Xi

1 + β̂
Xi

+ 1
2A(Xi)B(Xi)−

1
2
B(Xi)ϕ(A(Xi))
1− Φ(A(Xi))

 .
where

A(Xi) = 1
α

{(
Xi

β

) 1
2
−
(
β

Xi

) 1
2
}
, B(Xi) = 1

α

{(
Xi

β

) 1
2

+
(
β

Xi

) 1
2
}
,

ϕ and Φ are the density function and cumulative distribution function of the standard normal
distribution. The elements of matrix Ĉ are

Ĉ1j = 1
nα̂

∑
i:Xi∈Ij

δi

[
−1 + (A(Xi))2 − A(Xi)ϕ(A(Xi))

1− Φ(A(Xi))

]
,

Ĉ2j = 1
nβ̂

∑
i:Xi∈Ij

δi

−1 + 1
2

1 + 3 β̂
Xi

1 + β̂
Xi

+ 1
2A(Xi)B(Xi)−

1
2
B(Xi)ϕ(A(Xi))
1− Φ(A(Xi))

 .
Remark : Bagdonavicius et al. (2010a) give the explicit formula to estimate aj for the shape-
scale families of distributions in the form of inverse hazard function. As there is no explicit form
of the inverse hazard function of Birnbaum-Saunders distribution, so we estimate intervals by
iterative method.

The maximum likelihood estimators of Birnbaum-Saunders distribution by taking into ac-
count the survival times in months are ; α̂ = 1.4390, β̂ = 7.6851. We take 5 intervals i.e. k=5.
Further results to calculate the Y 2 are shown below :

j 1 2 3 4 5
âj 2.0371 3.8279 7.1816 15.8970 46.5537
Uj 3 7 16 10 6
ej 8.55876 8.55876 8.55876 8.55876 8.55876

Ĝ =
(

1.21220 −0.06967
−0.06967 0.01340

)
.

Wl = (−3.68787 0.30150)T
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The value of test statistic is

Y 2 = X2 +Q = 15.4067 + 12.0731 = 27.4798,

and
pv = P{χ2

5 > 27.4798} = 0.000046.

So from the result we can say that Birnbaum-Saunders distribution does not fits the head and
neck cancer data.

In Figure 2.6 the empirical survival function i.e. Kaplan Meier curve for head and neck cancer
data is compared with fitted survival functions based on ML estimators for various shape-scale
models.

Figure 2.6 – The empirical survival function (Kaplan-Meier) and the fitted survival functions (MLE).

2.4.8 Power Of The Test

Here power of the RRN test is calculated for different percentage of censoring. We take the
same values of parameters for simulations as estimated from the head and neck cancer data
for different models. In table 2.1 the power of test is shown for loglogistic distribution taking
generalized Weibull as alternative, and in table 2.2 for Birnbaum-Saunders distribution against
generalized Weibull distribution. From table 2.2 one can see that Birnbaum-Saunders is found
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to be more powerful which is expected as BS distribution does not fits the data and also power
increases with the increase in sample size and decreases with the increase in censoring percentage.

n
Censoring (%) 50 100 150 200 300 500

10 16.52 21.95 24.67 30.76 33.97 36.05
20 18.70 22.20 26.10 25.88 28.23 23.30
30 21.40 28.21 36.36 30.69 23.10 23.50

Table 2.1 – Power of RRN (Loglogistic Vs GW)

Censoring n
Model (%) 50 100 150 200 300 500

10 32.20 44.80 57.50 64.80 74.60 89.90
GW 20 26.18 40.40 46.30 53.00 62.40 71.40

30 26.30 35.50 42.00 48.40 54.60 57.63

Table 2.2 – Power of RRN (BS Vs GW)

3 Goodness-of-Fit Tests In Demography and Assurance

In demography, Gompertz and Makeham models have significant role in modeling and in
analysis of mortality and ageing. Till the end of 20th century, researchers have used the tables
of mortalities (also called life tables) for demographic analysis but in the end of 20th century
due to the development in statistical methods of survival analysis and reliability one can treat
the individuals data even with the information of censoring. The Gompertz, Makeham, and
Weibull models are compared with respect to the goodness-of-fit to the table of mortality and
to the individuals data in the presence of censoring. For data from the table of mortality, the
test statistic considered by Gerville-Reache and Nikulin (2000) is used. For censored individual
data the chi-squared type test proposed by Bagdonavicius et al. (2010a) is used. The choice of
random grouping intervals is made to overcome the problem of very small expected number of
events for some interval. This can happen in demography because the number of deaths at early
age is very small.

In reliability and demography model selection for some specific data is vital for further
analysis and decision making. Testing the two-parameter Gompertz distribution (Gompertz,
1825) to model the rate of mortality has been used for a long time, where the rate of mortality
increases with the age. Gompertz-Makehammodel (WilliamMakeham, 1860) with one additional
parameter covers the mortality independent of age. The researchers have used the life and
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mortality tables to find the force of mortality. Gerville-Reache and Nikulin (2000) gave a chi-
square type goodness-of-fit test for Makeham model using the table of mortality (grouped data).
In section 3 we briefly discuss their proposed statistic and also we compare Makeham model
with Gompertz and Weibull models for different age groups. But now with the advanced data
collection techniques, one can have the individual’s information (ungrouped data) also with
censoring mechanism. Gompertz and Makeham models are frequently used in demography but
in reliability Weibull model is considered the alternative for Gompertz model (Juckett and
Rosenberg, 1993).

Most researchers compare Gompertz model with the Weibull model due to its flexible pa-
rameters (Gavrilov and Gavrilova, 2001). Logistic distribution can be another alternative for
Gompertz (Wilson, 1994). The Gompertz function is a better choice for all causes of mortality
and combined disease categories while the Weibull model has been shown to be a better choice
over Gompertz model for a specific cause of mortality (Juckett and Rosenberg, 1993). Nikulin
et al. (2011a) presented several models in demography but here we consider the Gompertz-
Makeham and Weibull models for censored data and the following results are published by
Gerville-Rache, Nikulin and Tahir 2012.

3.1 Gompertz-Makeham and Weibull Models in Demograpgy

Gompertz model of aging is widely used in demography and other scientific disciplines
e.g. medical sciences, survival analysis, actuarial sciences and reliability. Gompertz (1825) gave
the first mathematical model to explain the exponential increase in mortality rate with age.
He explained that the law of geometric progression pervades in mortality after a certain age.
Gompertz mortality rate can be presented as

µx = θeνx, (θ, ν) > 0, x > 0, (2.19)

where θ is known as the baseline mortality and ν is the age specific growth rate of the force of
mortality.

Mortality rate µx in demographic notation is equivalent to the failure rate µ(x) in reliability
or hazard rate λ(x) in survival analysis. The Gompertz law has been the main demographic
model since its discovering to fit the human mortality (see for example Gavrilov and Gavrilova,
2001 ; Ricklefs and Scheuerlein, 2002).

Since Gompertz model gives the rate of mortality only related to age and does not take
into account the other factors independent of age, other researchers tried to modify this model
to fulfill the requirement of real data. William Makeham (1860) modified the Gompertz model
considering some other causes of death independent of age by proposing the so called Gompertz-
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Makeham law of mortality as

µx = γ + θeνx, where (γ, θ, ν) > 0 x > 0. (2.20)

Here the first term γ (Makeham parameter) is a constant and non-aging component of failure
rate (e.g. accidents, independent of age) and the second term θeνt is the Gompertz function
depending on age (aging factor).

The Weibull distribution is one of the most widely used distributions in survival analysis
and reliability due to the characteristics of its shape parameter ν. The mortality rate or hazard
function is

µx = ν

θν
xν−1, for x ≥ 0 (θ, ν) > 0. (2.21)

The hazard function of the Weibull distribution can be decreasing, constant or increasing
according to the value of its shape parameter i.e. three Weibull models can make a bathtub shape,
but now there are some models like the generalized Weibull model which can have bathtub
shape (Bagdonavicius and Nikulin, 2002). The Weibull law is more commonly applicable for
technical devices while the Gompertz law is more common for biological systems (Gavrilov &
Gavrilova, 1991). When the Gompertz law fails to follow some biological failure mechanism, the
best alternative is Weibull law due to its basis on reliability theory. If the probability of failure
at the start of the system is almost zero, the failure rate increases with the power function with
age i.e. Weibull law and if the system has defects at the beginning, the failure rate increases
exponentially with age i.e. Gompertz law. So, to apply the Weibull law in demography, the
biological population should be independent of initial deaths. Logistic distribution is considered
as the other alternative for Gompertz distribution (Vanfleteren et al., 1998).

3.2 Test Statistic For The Table Of Mortality

Consider x = 0 as the origin of time for an individual of age x, and Tx is a random
variable for its residual life from this origin. The probability of death is

tqx = P{0 < Tx ≤ t}, t > 0, x > 0.

So the annual rate of mortality for the people having age x can be defined as

qx = P{0 < Tx ≤ 1}, x > 0.

A relation between the rate of mortality and the instantaneous rate of mortality µx is

qx = 1− exp
(
−
∫ x+1

x
µydy

)
, x > 0.
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The theoretical annual rate of mortality in the case of Gompertz model can be written as

qx = 1− exp
(
−θ
ν
eνx(eν − 1)

)
, θ, ν > 0. (2.22)

In the same way we can find the theoretical annual rate of mortality for Makeham, Weibull and
other parametric models.

We observe the n persons independent of mortality and we regroup them in the same age,
say ω groups, where ω is the maximum age in years. The group Gx contains `x persons of age x
(x = 0, · · · , ω − 1) and qx is the probability of death of each individual in the year. Let denote
by Dx the number of deaths in the group Gx.
Using the data Dx and `x from the table of mortality, we can obtain the empirical annual rate
of mortality observed at age x, such that

Qx = Dx

`x
,

which follows the binomial law with parameters `x and qx. According to the central limit
theorem if minx(`x) → ∞ when n → ∞, then Q = (Q0, · · · , Qω−1)′ ∼as Nω(q, P ), where
q = (q0, · · · , qω−1)′ and P is the diagonal matrix of the elements qx(1−qx)

`x
for x = 0, 1, · · · , ω− 1.

So we can write that
(Dx − `xqx)2

`xqx(1− qx) ∼
as χ2

1.

As it is shown in Gerville-Reache and Nikulin (2000),

X2
ω =

ω−1∑
x=0

(Dx − `xqx)2

`xqx(1− qx) ∼
as χ2

ω.

One can use this statistic for testing simple hypotheses, as one uses the classical Pearson statistic
for testing simple hypotheses (see Greenwood and Nikulin, 1996).

3.2.1 Estimation Of Parameters In Composite Hypothesis

Let consider the composite hypothesis

H0 : qx = qx(θ), θ = (θ1, · · · , θs)′ ∈ Θ ⊆ Rs, s < ω.

We estimate the parameters by the maximum likelihood method using the data from the table
of mortality. We have the random variable Dx which follows the binomial law with parameters
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`x and qx. The likelihood function is

L(θ) =
ω−1∏
x=0

(
`x
Dx

)
[qx(θ)]Dx [1− qx(θ)]`x−Dx .

We take the estimator θ̂ that maximizes the likelihood function, i.e. θ̂ = argmaxL(θ).
One can find the maximum likelihood estimator θ̂ for θ by solving the following score vector

∂ lnL
∂θi

= 0,∀ i = 1, · · · , s.

Let consider the statistic

X2
ω(θ̂) =

ω−1∑
x=0

(Dx − `xqx(θ̂))2

`xqx(θ̂)(1− qx(θ̂))
∼as χ2

ω−s.

Gerville-Reache and Nikulin (2000) showed that under the hypothesis H0, X2
ω(θ̂) asymptotically

follows a chi-square statistic with ω−s degrees of freedom, where s is the number of parameters
to be estimated, from where it follows that we may use this statistic for testing H0. One can see
that the statistic X2

ω(θ̂) is different from the classical Pearson statistic.

3.2.2 Example : Data Analysis From The Table Of Mortality

The data in Table 2.3 is from INSEE Aquitaine-France and give the number of deaths Dx

in 1990 for each 5-year age group, where `x is the number of habitants for each age group on
January 1st 1990. This data is used for the validity of three models i.e. Gompertz, Makeham,

age `x Dx age `x Dx

5-9 75498 14 45-49 64575 195
10-14 77284 16 50-54 57974 247
15-19 90337 45 55-59 61871 384
20-24 102544 91 60-64 62473 622
25-29 91339 92 65-69 61122 958
30-34 90769 128 70-74 36425 944
35-39 93324 156 75-79 37124 1341
40-44 96692 226 80-84 29541 2020

Table 2.3 – Table of Mortality (INSEE, Gironde 1990)

and Weibull. The rate of mortality for these three models is adjusted with maximum likelihood
estimators and then the value of chi-square is calculated. In case of the adjustment between 5
and 84 years of age, the annual rate of mortality follows neither the Gompertz and Makeham
nor the Weibull model. But when the adjustment is made for the age groups between 30 and 74
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years, the Makeham model is accepted. The Gompertz model also becomes valid with Makeham
when the annual rate of mortality is adjusted for the age between 50 and 79 years. It means
that Gompertz model is validated in the older age and it coincides with the theory regarding
Gompertz model as discussed in the previous section. The Weibull model gets close but still it
does not fit the data significantly. The calculated values of the test statistic with corresponding
p-values are shown in table 2.3 and the fitted models are presented in figures 2.7-2.9.

Table 2.4 – Results from the table of mortality

Gompertz Makeham Weibull
Age Groups X2

ω(θ̂) p-value X2
ω(θ̂) p-value X2

ω(θ̂) p-value
5-84 214.19 ≈ 0 99.98 ≈ 0 2363.98 ≈ 0
30-74 45.62 ≈ 0 3.70 0.72 158.93 ≈ 0
50-79 9.01 0.11 8.48 0.08 25.44735 0.0001

Figure 2.7 – Model fitted for age between 5 and 84 years (log scale)

Figure 2.8 – Model fitted for age between 30 and 74 years (log scale)
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Figure 2.9 – Model fitted for age between 50 and 79 years (log scale)

3.3 Comparison of Gompertz, Weibull and Makeham Models

Here we use the same test as proposed in section 2 for individual right censored data in
demography. Let consider the hypothesis that under H0 the distribution of the failure times is
Gompertz with hazard function and cumulative hazard function given by ;

µx = θeνx, Λx = θ

ν
(eνx − 1) x > 0, (θ, ν) > 0.

The loglikelihood function is

`(θ, ν) =
n∑
i=1

{
δi[ln θ + νXi]−

θ

ν
(eνXi − 1)

}
.

Let denote by θ̂ and ν̂ the ML estimators of θ and ν.

Since the matrix G is found to be degenerated, the quadratic form can be written as :

Q = W 2
2

ĝ22
,

where

ĝ22 = î22 −
k∑
j=1

Ĉ2
2jÂ
−1
j , î22 = 1

n

n∑
i=1

δiX
2
i , Ĉ2j = 1

n

∑
i:Xi∈Ij

δiXi,

Âj = Uj
n
, W2 =

k∑
j=1

Ĉ2jÂ
−1
j Zj , Zj = 1√

n
(Uj − ej).

Choice of âj : Set

bi = (n− i) θ̂
ν̂

(eν̂X(i) − 1) + θ̂

ν̂

i∑
l=1

(eν̂X(l) − 1), i = 1, · · · , n.
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If i is the smallest natural number satisfying the inequalities

bi−1 ≤ Ej ≤ bi, Ej = j

k
bn,

then for j = 1, · · · , k − 1

âj = 1
ν̂

ln
{

1 + ν̂

θ̂

(
j

k
bn −

θ̂

ν̂

i−1∑
l=1

(eν̂X(l) − 1)
)
/(n− i+ 1)

}
, âk = max(X(n), τ).

For such choices of intervals we have ej = Ek/k for any j.

Example : This data is taken from the book of Bagdonavicius et al. (2010a). n = 120
electronic devices were observed for time τ = 5.54 (years). The number of failures is δ =113 :

1.7440 1.9172 2.1461 2.3079 2.3753 2.3858 2.4147 2.5404 2.6205 2.6471
2.8370 2.8373 2.8766 2.9888 3.0720 3.1586 3.1730 3.2132 3.2323 3.3492
3.3507 3.3514 3.3625 3.3802 3.3855 3.4012 3.4382 3.4438 3.4684 3.5019
3.5110 3.5297 3.5363 3.5587 3.5846 3.5992 3.654 3.6574 3.6674 3.7062
3.7157 3.7288 3.7502 3.7823 3.8848 3.8902 3.9113 3.9468 3.9551 3.9728
3.9787 3.9903 4.0078 4.0646 4.1301 4.1427 4.2300 4.2312 4.2525 4.2581
4.2885 4.2919 4.2970 4.3666 4.3918 4.4365 4.4919 4.4932 4.5388 4.5826
4.5992 4.6001 4.6324 4.6400 4.7164 4.7300 4.7881 4.7969 4.8009 4.8351
4.8406 4.8532 4.8619 4.8635 4.8679 4.8858 4.8928 4.9466 4.9846 5.0008
5.0144 5.0517 5.0898 5.0929 5.0951 5.1023 5.1219 5.1223 5.1710 5.1766
5.1816 5.2441 5.2546 5.3353 5.4291 5.4360 5.4633 5.4842 5.4860 5.4903
5.5199 5.5232 5.5335.

Suppose the failure times have a Gompertz distribution. The maximum likelihood estimators
of Gompertz model are ; θ̂ = 0.0051, ν̂ = 1.1586. We take 10 intervals i.e. k=10. Further results
to calculate Y 2

n are shown below :

j 1 2 3 4 5 6 7 8 9 10
âj 2.70 3.33 3.74 4.07 4.34 4.57 4.78 5.00 5.25 5.54
Uj 10 9 23 12 9 6 7 13 13 11
ej 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3

î22 = 16.7779, ĝ22 = 0.0141, W2 = −0.3737.

The matrix G is degenerate, so r = k − 1 = 9. The value of test statistic is

Y 2
n = X2 +Q = 15.1130 + 9.8867 = 24.9997,
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and
pv = P{χ2

9 > 24.9997} = 0.0053.

So from the result we can say that failure times don’t follow Gompertz distribution.

Figure 2.10 – The failure rate of electronic devices

Suppose that the failure times follow a Weibull model. The maximum likelihood estimators
of Weibull model are ; θ̂ = 4.6078, ν̂ = 4.9554 . We take 10 intervals i.e. k = 10. Further results
to calculate Y 2

n are shown below :

j 1 2 3 4 5 6 7 8 9 10
âj 2.89 3.36 3.70 3.98 4.24 4.47 4.68 4.90 5.16 5.54
Uj 13 9 17 12 7 8 8 13 11 15
ej 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3

î22 = 0.0618, ĝ22 = 0.0027, W2 = −0.0545.

The matrix G is degenerate, so r = k − 1 = 9. The value of test statistic is

Y 2
n = X2 +Q = 9.2692 + 1.0845 = 10.3536,

and
pv = P{χ2

9 > 10.3536} = 0.3226.

So from the result we have no reason to reject that the failure times follow the Weibull distri-
bution. In the same way we can apply the test for Makeham model.

Here Weibull model gives the better fit which is expected since the data refer to technical
devices and according to Gavrilov and Gavrilova (2001) technical deceives fail according to the
Weibull law. Also from Figure 2.10 one can observe the behavior of Gompertz model, according
to which in later times the failure rate increases very fast. The hazard plot for Makeham model

68



2.3 Goodness-of-Fit Tests In Demography and Assurance

coincides with the Gompertz because the estimated value of Makeham parameter (non-aging
component) γ is negligibly small for this data.

The hazard function and the cumulative hazard function of Makeham model is given as

µx = γ + θeνx, Λx = γx+ θ

ν
(eνx − 1).

The loglikelihood function is

`(θ, ν) =
n∑
i=1

{
δi[ln(γ + θeνx)]− γx− θ

ν
(eνx − 1)

}
.

The information matrix î and the vector Ĉj are

î11 = 1
n

n∑
i=1

δi

( 1
γ + θeνx

)2
, î12 = 1

n

n∑
i=1

δi
eνx

(γ + θeνx)2 ,

î13 = 1
n

n∑
i=1

δi
xθeνx

(γ + θeνx)2 , î23 = 1
n

n∑
i=1

δi
xθe2νx

(γ + θeνx)2 ,

î22 = 1
n

n∑
i=1

δi

(
eνx

γ + θeνx

)2
, î33 = 1

n

n∑
i=1

δi

(
xθeνx

γ + θeνx

)2
,

Ĉ1j = 1
n

∑
i:Xi∈Ij

δi

( 1
γ + θeνx

)
, Ĉ2j = 1

n

∑
i:Xi∈Ij

δi

(
eνx

γ + θeνx

)
,

Ĉ3j = 1
n

∑
i:Xi∈Ij

δi

(
xθeνx

γ + θeνx

)
.

The MLE for Makeham distribution are :

γ = 6.2022× 10−08, θ = 0.0051, ν = 1.1586.

The end points of the intervals with observed and expected frequencies are

j 1 2 3 4 5 6 7 8 9 10
âj 2.70 3.33 3.74 4.07 4.34 4.57 4.78 4.99 5.24 5.54
Uj 10 9 23 12 9 6 7 13 13 11
ej 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3 11.3

î3×3 =


24.7020 557.3764 8.7870
557.3764 35891.5809 757.3056
8.7870 757.3056 16.7779

 ,
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Wl = (−0.2191 − 0.0075 − 0.3739)T .

The value of test statistic is

Y 2
n = X2 +Q = 15.1131 + 29.9280 = 45.0411,

and
pv = P{χ2

9 > 45.0411} = 2.1379× 10−6.

So we can say that the Makeham model does not fits the data. One can see that due to the
quadratic form Q the hypothesis is rejected otherwise it is accepted.
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Chapter 3

AFT Regression Analysis With BS
Distribution

1 Introduction

In ALT, Accelerated Failure Time model is commonly used (Bagdonavicius and Nikulin,
2002). The objective of this theory is to know the influence of the stresses (covariates) on the life
duration of the items. Our purpose is to estimate the reliability under specified values of interest
of these variables. The AFT model allows us to control the degradation process and to search
the optimal condition for the products or systems. This model allows to foresee the product or
system reliability under normal conditions or standard stress. Accelerated experiments occurred
under higher stress than usual stress or standard stress.

Types of stress :
– Constant stress : the stress remains constant during the time, and each item is tested at
a constant stress level,

– Step-stress : these are the mostly used time varying stresses in ALT i.e. the units are tested
under lower initial stress and if they do not fail in specified time, the stress is increased.
If they do not fall in the next specified time, the stress is increased again and so on.

– Progressive stress : this type of stress increases continuously with time.
– Cyclic stress : some products repeatedly undergo a cyclic stress loading with amplitude.
– Random stress : the products are tested under a variable continuous in time stress.
AFT model is called parametric when baseline survival function belongs to the parametric

families of distributions such as Weibull, log-normal or generalized Weibull, inverse Gaussian,
and Birnbaum-Saunders. AFT model is semi-parametric when the survival function is unknown
and is non-parametric when the survival function and life-stress relationship are unknown. Here
we consider the parametric AFT when the base line survival function belongs to Birnbaum-
Saunders distribution. We estimate the parameters, give all the elements of information matrix,
and calculate the confidence interval for the survival function of the AFT model. One can find
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sufficient information on ALT method from literature (see for example, Singpurwalla (1971),
Meeker and Escobar (1998), Bagdonavicius and Nikulin (2002), Lawless (2003), Nelson (2004),
Huber-Carol et al. (2008)).

Let consider E is a set of all possible admissible m-dimensional time dependent stresses or
covariates

E = {x(·) = (x0(·), x1(·), · · · , xm(·))T x : [0 ,∞[∈ Rm}

We write x instead of x(·) if the stress is constant and we denote by E1 ⊂ E the set of all
constant stresses and x0 ∈ E0 ⊂ E be the usual stress (standard or normal). We suppose that
the failure time Tx(·) under stress x(·) is a positive random variable with survival function

Sx(·)(t) = P{Tx(·) > t} , t > 0, x(·) ∈ E

Let denote by

λx(·)(t) =
fx(·)(t)
Sx(·)(t)

= −
S
′

x(·)(t)
Sx(·)(t)

, and Λx(·)(t) = − lnSx(·)(t)

the hazard function and cumulative hazard function respectively.

Definition 1 A stress x2(·) is accelerated with respect x1(·), that is x2(·) > x1(·) if Sx1(·)(t) ≥
Sx2(·)(t) (see Figure 3.1).

Figure 3.1 – Survival curves with two different stresses.

Let fx(·)(t) be a used S0-resource under stress x(·) until the moment t (failure time) and is
expressed as

fx(·)(t) = S−1
0 (Sx(·)(t)), and S−1

0 (t) = inf {s : S0(s) ≥ p},
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where S0 is the survival function at normal stress. So we can write for all x(·) ∈ E

S0(fx(·)(t)) = Sx(·)(t) , t > 0,

which means that the survival probability at t under stress x(·) is the same as that of at the
moment fx(·)(t) under the normal stress. This transfer functional is explained in Figure 3.2.

Figure 3.2 – Transfer functional of the survival curves.

Definition 2 The AFT model is defined on E, if the survival function under the stress x(·) ∈ E
is :

Sx(·)(t) = S0

 t∫
0

r(x(u))du

 , x(·) ∈ E. (3.1)

If x(τ) = x is constant, then the model (3.1) becomes :

Sx(·)(t) = S0(r(x)t), x ∈ E1. (3.2)

The function r can be chosen from the certain class of functions. Often the AFT model is
parameterized as

r(x) = e−β
T z,

where β = (βo, β1, · · · , βm) ∈ Rm+1 is the vector of unknown parameters, and

z = (zo, z1, · · · , zm) = (ψ0(x), · · · , ψm(x))T

is a vector of known stress functions ψi, where ψ0(t) = 1.
So the parametric AFT model on E is

Sx(.)(t) = S0

 t∫
0

exp {−βTx(τ)}dτ

 , x(·) ∈ E, (3.3)
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Chapter 3. AFT Regression Analysis With BS Distribution

and on the set of stresses E1 i.e. constant in time

Sx(.)(t) = S0(e−βT xt), x ∈ E1, (3.4)

and the logarithm of the failure time Tx under x maybe written as

ln(Tx) = βTx+ ε,

where the survival function of ε does not depend on x and is S(t) = S0(ln t). Often S0 belongs
to a specified shape-scale class of survival functions :

S0(t) = G0

(
( t
θ

)ν
)
,

where
G0(t) = e−t, (1 + t)−1, 1− Φ(ln t),

belongs to the Weibull, loglogistic, lognormal distributions, respectively. Φ is the distribution
function of the standard normal distribution. If the model (3.2) holds on E0, then for all x1, x2 ∈
E0 :

Sx2(t) = Sx1(ρ(x1, x2)t)

where ρ(x1, x2) = r(x2)/r(x1) shows the degree of scale variation. It is evident that ρ(x, x) = 1.
If we suppose that this stress x ∈ E0 is one-dimensional, the rate of scale variation is thus
expressed (Viertl-1988) by :

δ(x) = lim
∆x→0

ρ(x, x+ ∆x)− ρ(x, x)
∆x = [log r(x)]′ . (3.5)

So for all x ∈ E0

r(x) = r(x0) exp


x∫

x0

δ(v)dv

,
where x0 is a fixed stress. One can remark that the random variable

R =
Tx(·)∫
0

e−β
T x(s)ds,

is a parameter free with the survival function S0(t).
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3.2 AFT Model Parametrization

2 AFT Model Parametrization

Suppose that δ(x) is proportional to specified function u(x)

δ(x) = αu(x)

In one dimensional stress case

r(x) = exp {−β0 − β1ψ1(x)}

where β0, β1 are unknown parameters and ψ is a given function of x which can be parameterized
in many ways such as :

– r(x) = e−β0−β1x, ψ(x) = x, this is the log-linear model.
– r(x) = e−β0−β1 lnx, ψ(x) = ln(x), this is the power-rule model.
– r(x) = e−β0−β1/x, ψ(x) = 1/x, this is the Arrhenius model.

The above three models are the particular cases of the

δ(x) = αxγ

where γ is unknown, and we can write in terms of r(x) as

r(x) =
{
e−β0−β1(xε−1)/ε, if ε 6= 0;
e−β0−β1 log(x), if ε = 0.

If δ(x) = 1/x+ α/x2 then

r(x) = e−β0−β1 log(x)−β2/x = α1xe
−β2/x

where β1 = −1 and it is the Eyring model, applied when the explanatory variable x is the
temperature.

If the explanatory variable or stress x = (x1, ..., xm) is constant and m-dimensional and if
there is no interaction between them, then the model can be generalized as :

r(x) = exp {−β0 −
m∑
i=1

ni∑
j=1

βijzij(xi)}, (3.6)

where zij(xi) are known functions and βij are unknown parameters.
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3 Plans of Experiments

As mentioned in the previous section that the purpose of accelerated life testing is to find
the reliability of the components under usual stress from the data obtained by using the higher
stresses that is the accelerated stresses. So for using higher stresses several plans of experiments
can be found in the literature (see for example, Bagdonavicius et al. (2002) and Nelson (2004)).

3.1 First plan of Experiments

Let denote by x(0) = (x00, x01, · · · , x0m), where x00 = 1 is the usual stress. Generally one-
dimensional stress (m = 1), or two-dimensional stress (m = 2) are used for ALT experiments.
Let x1, · · · , xk be constant over time accelerated stresses :

x0 < x1 < · · · < xk,

here xi = (xi0, xi1, · · · , xim)T , xi0 = 1. The usual stress x0 is not used during experiments.
According to this plan of experiments k groups of units are tested. The ith group of ni units
,
∑k
i=1 ni = n, is tested under the stress xi. The data can be complete or independently right

censored.

3.2 Second plan of experiments

In second plan of experiments the step-stress are used where n units are tested in such a
way that at first they have to undergo at low stress and if they do not fail in predetermined
time then the stress is increased. If they do not fail at the increased stress in the given time the
stress is increase again and so on. The step-stress can be formulated as

x(ω) =



x1, 0 ≤ ω < t1,

x2, t1 ≤ ω < t2,
...
xk, tk−1 ≤ ω < tk = +∞,

(3.7)

where xj = (xj0, xj1, · · · , xjm)T ∈ Em, xj0 = 1. The function r(x) should be parameterized, and
the survival function under any stress x(·) of the plan (3.7) can be written as for i = 1, · · · , k

Sx(·)(t) = S0

1{i>1}

i−1∑
j=1

e−β
T xj (tj − ti−1) + e−β

T xi(t− ti−1)

 , t ∈ [ti−1, ti[.
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3.3 Third plan of experiments

In this plan of experiment two groups of units are tested. The first group of n1 units is tested
under a constant accelerated stress x1 and the second group of n2 units are tested under a step
stress x2 ; stress x1 until the moment t1 then under the usual stress x0 until the moment t2 i.e.

x2(ω) =
{
x1, 0 ≤ ω ≤ t1,
x0, t1 < ω ≤ t2.

(3.8)

Units use much of their resources until the moment t1 under the accelerated stress x1, so after
the switch-up failures occur in the interval [t1, t2] even the usual or normal stress. The survival
function in AFT model is

Sx1(u) = Sx0(ru),

where r = r(x1)/r(x0), and

Sx2(·)(u) =
{
Sx0(ru), 0 ≤ u ≤ t1
Sx0(ru)(rt1 + u− t1), t1 < u ≤ t2,

(3.9)

or
Sx2(·)(t) = Sx0(r(u ∧ t1) + (u− t1) ∨ 0), (3.10)

where a ∧ b = min(a, b) and a ∨ b = max(a, b).

3.4 Fourth plan of experiments

This plan of experiment is used when the failure-time distribution is exponential. For this
plan k groups of units are observed. The i− th group of ni units is tested under one-dimensional
constant stress x(i) until the ri − th failure (ri ≤ ni) (type II censoring). The failure moment of
i− th group are Ti1 ≤ · · · ≤ Tiri , where i = 1, · · · , k.

Note : In this thesis, only the first two plans of experiments are considered for parameter
estimation and confidence interval calculation. In first plan the constant stress xj is used all
time of the experiment for the jth group of units while in the second plan the constant stress
xj is used in the interval [tj−1, tj) for all units.

4 Failure Time Regression Analysis

Suppose that n units are observed. The ith unit is tested under the stress

x(i)(·) = (x(i)
0 (·), x(i)

1 (·), · · · , x(i)
m (·))T ,
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Chapter 3. AFT Regression Analysis With BS Distribution

and consider that

(X1, δ1, x1), . . . , (Xn, δn, xn), Xi = Ti ∧ Ci, δi = 1{Ti≤Ci}, (3.11)

is a right censored failure time regression sample. T1, · · · , Tn are the failure times which are ab-
solutely continuous i.i.d. random variables, Ci are the censoring times, and xi = (1, xi1, · · · , xim)
is a vector of covariates.

The purpose of the section is to give the analysis (i.e. estimation of parameters, confidence
interval for survival or reliability function, and goodness-of-fit test) of accelerated failure time
regression data when the base line survival function belongs to the Birnbaum-Saunders distribu-
tions family. First some general calculations are given for the shape-Scale distributions (Weibull,
loglogistic and lognormal).

4.1 Shape-Scale families of distributions

Consider the AFT model

Sx(·)(t) = S0

 t∫
0

exp {−βTx(u)}du

 , (3.12)

where S0 belongs to the a specified shape-scale parametric class of distributions, i.e.

S0(t) = G0{(
t

η
)ν}, η, ν > 0.

For example, if

G0(t) = e−t, G0(t) = (1 + t)−1, G0(t) = 1− Φ(ln t),

then we get the class of distributions of Weibull, loglogistic, lognormal distributions, respectively.
Φ is the distribution function of the standard normal distribution. The parameter η maybe
included in the coefficient β0, we suppose that :

S0(t, σ) = G0(t
1
σ ), σ = 1

ν
.

The model (3.12) can be written in the form :

Si(t, β, σ) = G0


 t∫

0

e−β
T x(i)(u)du


1
σ

 .
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3.5 Birnbaum-Saunders AFT model

If x(i) is constant then

Si(t) = G

(
ln t− βTx(i)

σ
du

)
,

where
G(u) = G0(eu), u ∈ R.

Set
g(u) = −G′(u), h(u) = g(u)

G(u)

For Weibull distribution

G(u) = e−e
u
, g(u) = eue−e

u
, h(u) = eu, (ln h(u))′ = 1.

In the same way one can write the formulas for loglogistic and lognormal distributions. So the
likelihood function for shape-scale families for constant x(i) can be written as

L(β, σ) =
n∏
i=1

{
1
σXi

h

(
lnXi − βTx(i)

σ

)}δi
G

(
lnXi − βTx(i)

σ

)
.

Bagdonavicius and Nikulin (2002) gave the parameter estimation and all the reliability characte-
ristics of these models. Also they calculated the reliability characteristics along with asymptotic
confidence intervals for generalized Weibull distribution which can have a

⋂
-shape and

⋃
-shape

(for certain parameters) form of the hazard function, which is very common for reliability data.
Saaidia et al. (2010) calculated the reliability characteristics of the AFT model using inverse
Gaussian distribution with the asymptotic confidence intervals of the survival or reliability func-
tion.

In the next section parameter estimation and the asymptotic confidence interval of the
AFT model are given when the base line survival function belongs to the Birnbaum-Saunders
distribution.

5 Birnbaum-Saunders AFT model

Birnbaum-Saunders is a life distribution model based on cycles of stress causing degrada-
tion or crack growth. This distribution is reasonable alternative to Weibull, lognormal, inverse
Gaussian, etc. Due to its theoretical argument of fatigue life distribution it is commonly used by
the engineers in the reliability studies of the fatigue process. Here we use this model for the fai-
lure time regression analysis in accelerated life testing. Details are given in section 9 of chapter 1.
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Suppose that the baseline survival function of the AFT belongs to the BS family as

S0(t) = 1− Φ
[

1
a

{(
t

b

) 1
2
−
(
b

t

) 1
2
}]

, 0 < t <∞, a, b > 0,

here Φ is the standard normal distribution function.
Under the AFT model the survival function Sx(i)(·) can be written as

Si(t;β, a, b) = 1− Φ

1
a


(∫ t

0 e
−βT x(i)(u)du

b

) 1
2

−
(

b∫ t
0 e
−βT x(i)(u)du

) 1
2


 ,

and for constant stresses x(i)

Si(t;β, a, b) = 1− Φ

1
a


(
te−β

T x(i)

b

) 1
2

−
(

b

te−βT x
(i)

) 1
2


 .

5.1 Estimation Of Parameters

For the parameter estimation in the BS-AFT model we consider the first plan of experiments
and suppose that ti be the maximum time of experiment for ith group of size ni under the ac-
celerated stress xi, (i = 1, · · · , k). β = (β0, β1, · · · , βm)T is the vector of regression parameters.
The life time of the jth component or unit from the ith group is Tij , such that Xij = Tij ∧ ti
and δij = 1{Tij<ti} is the indicator variable for censoring.

The likelihood function for the AFT model under the constant stress xi ∈ E0 can be written
as

L =
k∏
i=1

ni∏
j=1

(e−βT x(i))δij
(
f0(e−βT x(i)

Xij)
)δij (

S0(e−βT x(i)
Xij)

)1−δij
.

For BS-AFT model the log likelihood function is

`(β, a, b) =
k∑
i=1

ni∑
j=1

δijβ
Tx(i) +

k∑
i=1

ni∑
j=1

δij

[
− ln a− ln b+ ln

{(
b

Xie−β
T x(i)

) 1
2

+
(

b

Xie−β
T x(i)

) 3
2
}

− 1
2a2

(
Xie

−βT x(i)

b
+ b

Xie−β
T x(i) − 2

)]
+

k∑
i=1

ni∑
j=1

(1− δij) ln

1− Φ

1
a


(
Xie

−βT x(i)

b

) 1
2

−
(

b

Xie−β
T x(i)

) 1
2


 .
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3.5 Birnbaum-Saunders AFT model

We put Kij = Xije
−βT x(i) , the loglikelihood function becomes

`(β, a, b) =
k∑
i=1

ni∑
j=1

δijβ
Tx(i) +

k∑
i=1

ni∑
j=1

δij

− ln a− ln b+ ln


(

b

Kij

) 1
2

+
(

b

Kij

) 3
2


− 1
2a2

(
Kij

b
+ b

Kij
− 2

)]
+

k∑
i=1

ni∑
j=1

(1− δij) ln

1− Φ

1
a


(
Kij

b

) 1
2
−
(

b

Kij

) 1
2

 . (3.13)

Parameters are estimated by putting the partial derivatives with respect to βl, (l = 0, 1, · · · ,m),
a and b equal to zero. The score vector Ul(β, a, b), (l = 0, 1, · · · ,m+ 2) is written as

Ul(β, a, b) = ∂`(β, a, b)
∂βl

=
k∑
i=1

ni∑
j=1

δijxil +
k∑
i=1

ni∑
j=1

δij
xil
2

1 + 3
(

b
Kij

)
1 +

(
b
Kij

) +AijBij

+

1
2

k∑
i=1

ni∑
j=1

(1− δij)
[
xilBijϕ(Aij)
1− Φ(Aij)

]
, l = 0, 1, · · · ,m,

Um+1(β, a, b) = ∂`(β, a, b)
∂a

= 1
a

k∑
i=1

ni∑
j=1

δij
[
A2
ij − 1

]
+ 1
a

k∑
i=1

ni∑
j=1

(1− δij)
[
Aijϕ(Aij)
1− Φ(Aij)

]
,

Um+2(β, a, b) = ∂`(β, a, b)
∂b

= 1
b

k∑
i=1

ni∑
j=1

δij

−1 + 1
2

1 + 3 b
Kij

1 + b
Kij

+ 1
2AijBij

+

1
2b

k∑
i=1

ni∑
j=1

(1− δij)
[
Bijϕ(Aij)
1− Φ(Aij)

]
,

where

Aij = 1
a


(
Kij

b

) 1
2
−
(

b

Kij

) 1
2
 , Bij = 1

a


(
Kij

b

) 1
2

+
(

b

Kij

) 1
2
 .

The elements of the Fisher information matrix I(β, a, b) = Ils(β, a, b) are given as

Ils = −∂
2`(β, a, b)
∂βlβs

= − 1
a2

k∑
i=1

ni∑
j=1

δijxilxis

[
1
B2
ij

−
a2A2

ij

2 − 1
]

−1
4

k∑
i=1

ni∑
j=1

(1− δij)xilxisϕ(Aij)

(1− Φ(Aij))Aij
[
B2
ij − 1

]
−B2

ijϕ(Aij)
(1− Φ(Aij))2

 ,
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Il,m+1 = −∂
2`(β, a, b)
∂βl∂a

= 1
a

k∑
i=1

ni∑
j=1

δijxilAijBij −

1
2a

k∑
i=1

ni∑
j=1

(1− δij)xilBijϕ(Aij)

(1− Φ(Aij))
[
A2
ij − 1

]
−Aijϕ(Aij)

(1− Φ(Aij))2

 ,

Il,m+2 = −∂
2`(β, a, b)
∂βl∂b

= − 1
a2b

k∑
i=1

ni∑
j=1

δijxil

[
1
B2
ij

−
a2A2

ij

2 − 1
]

− 1
4b

k∑
i=1

ni∑
j=1

(1− δij)xilϕ(Aij)

(1− Φ(Aij))Aij
[
B2
ij − 1

]
−B2

ijϕ(Aij)
(1− Φ(Aij))2

 ,

Im+1,m+1 = −∂
2`(β, a, b)
∂a2 = − 1

a2

k∑
i=1

ni∑
j=1

δij
[
1− 3A2

ij

]
−

1
a2

k∑
i=1

ni∑
j=1

(1− δij)Aijϕ(Aij)

(1− Φ(Aij))
[
A2
ij − 2

]
−Aijϕ(Aij)

(1− Φ(Aij))2

 ,

Im+1,m+2 = −∂
2`(β, a, b)
∂a∂b

= 1
ab

k∑
i=1

ni∑
j=1

δijAijBij −

1
2ab

k∑
i=1

ni∑
j=1

(1− δij)Bijϕ(Aij)

(1− Φ(Aij))
[
A2
ij − 1

]
−Aijϕ(Aij)

(1− Φ(Aij))2

 ,

Im+2,m+2 = −∂
2`(β, a, b)
∂b2

= − 1
b2

k∑
i=1

ni∑
j=1

δij

1−
Kij
b + 2 + 3b

Kij

2a2B2
ij

− Kij

a2b

−
1

4b2
k∑
i=1

ni∑
j=1

(1− δij)ϕ(Aij)

(1− Φ(Aij))
[
−2Bij −Aij +AijB

2
ij

]
−B2

ijϕ(Aij)
(1− Φ(Aij))2

 ,
where ϕ(t), Φ(t) are respectively the pdf and the cdf of the standard normal distribution and
the following expression are used for simplification

Kij = Xije
−βT x(i)

,

Aij = 1
a


(
Kij

b

) 1
2
−
(

b

Kij

) 1
2
 , Bij = 1

a


(
Kij

b

) 1
2

+
(

b

Kij

) 1
2
 .
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The asymptotic distribution of (β̂, â, b̂)T when ni are large is approximately normally distributed
that is

(β̂, â, b̂)T ≈ N((β, a, b)T ,Σ(β, a, b)), (3.14)

and the covariance matrix Σ(β, a, b) can be estimated by I−1(β̂, â, b̂) = I ls(β̂, â, b̂)(m+3)×(m+3)

(Greenwood and Nikulin, 1996).

5.2 Estimation Of Survival Function

If β̂, â, b̂ are the ML estimator then the estimator of survival function under constant acce-
lerated stress x ∈ E0 is

Ŝx(t) = 1− Φ

1
â


(
te−β̂

T x

b̂

) 1
2

−
(

b̂

te−β̂T x

) 1
2


 .

And the estimated survival function under the normal or usual stress when x = x(0) can be
written as

Ŝ(0)
x (t) = 1− Φ

1
â


(
te−β̂

T x(0)

b̂

) 1
2

−
(

b̂

te−β̂T x
(0)

) 1
2




5.3 Asymptotic Confidence Interval For Survival Function

By using the properties of ML estimators (3.14), under the usual stress an approximate
(1− α)-percent confidence interval for the survival function S(0)

x (t) is

(
1 + 1− Ŝx(0)(t)

Ŝx(0)(t)
e
±σ̂Q

x(0)ω1−α2

)−1

,

where ωα is the α-quantile of the normal distribution and

σ̂2
Q
x(0)

=
JTg (θ̂)I−1(θ̂)Jg(θ̂)

(Ŝx(0)(t))
2(1− Ŝx(0)(t))

2 ,

where
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JTg (θ̂)I−1(θ̂)Jg(θ̂) =
(
∂S

∂β0
, · · · , ∂S

∂βm
,
∂S

∂a
,
∂S

∂b

)


I00 · · · I0(m+2)

...
Ii0 · · · Ii(m+2)

...
I(m+2)0 · · · I(m+2)(m+2)





∂S
∂β0
...
∂S
∂βm
∂S
∂a
∂S
∂b



=
(
∂S

∂β0
, · · · , ∂S

∂βm
,
∂S

∂a
,
∂S

∂b

)


m+2∑
j=0

I0j ∂S
∂βj

m+2∑
j=0

I1j ∂S
∂βj

...
m+2∑
j=0

I(m+2)j ∂S
∂βj


=

m+2∑
k=0

m+2∑
j=0

∂S

∂βk
Ikj

∂S

∂βj
.

Or it can be written in simple form as

σ̂2
Q
x(0)

= 1
(Ŝx(0)(t))

2(1− Ŝx(0)(t))
2

m+2∑
k=0

m+2∑
j=0

ak(t; β̂, â, b̂)Ikj(β̂, â, b̂)aj(t; β̂, â, b̂), (3.15)

where ak(β̂, â, b̂) and aj(β̂, â, b̂) are the partial derivatives of the survival function with respect
to the parameters and for BS-AFT model such as

ak(t; β̂, â, b̂) = 1
2xkBtϕ(At), quadk = 0, 1, · · · ,m,

am+1(t; β̂, â, b̂) = 1
a
Atϕ(At), am+2(t; β̂, â, b̂) = 1

2bBtϕ(At),

with

At = 1
a


(
te−β

T x(0)

b

) 1
2

−
(

b

te−βT x
(0)

) 1
2

 ,

Bt = 1
a


(
te−β

T x(0)

b

) 1
2

+
(

b

te−βT x
(0)

) 1
2

 ,
and Ikj(β̂, â, b̂) are the elements of the matrix I−1(β̂, â, b̂). The Fisher information matrix
Ikj(β, a, b) is estimated by

I(β̂, â, b̂) = −∂2`(β̂,â,b̂)
∂θi∂θj

, θ = (β0, β1, · · · , βm, a, b)T .
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6 Goodness-of-fit Test for Parametric AFT Models

Due to the complexity of estimation in parametric models, for a long time people used non-
parametric and semiparametric approch to calculate the reliability measures. But now with a
lot of development in computer softwares, it is more convenient to use the parametric models in
reliabilty studies. Several parametric models have successfully served as population models for
failure times arising from a wide range of failure mechanisms. Exponential, Weibull, and lognor-
mal are mostly used due to their presence in many softwares. The estimation of parameters and
other reliability measure from some complicated model is a difficult task and especially with
covariates in the presence of censoring.

A modified chi-squared type test for parametric AFT model (RRN) based on the Pearson sta-
tistic is given in this section proposed by Bagdonavicius and Nikulin (2011). They proposed the
goodness of fit test for different parametric accelerate failure time models (AFT). Here goodness-
of fit test is given for concrete Birnbaum-Saunders AFT model. Elements of the quadratic form
of the test are calculated. ML estimation method is used for the parameter estimation due to
its flexible properties. Random grouping intervals is considered. We estimated all the elements
of the test and develop a program on R-software.

6.1 Hypothesis, Data and Test construction

Let consider the hypothesis of parametric AFT model on E as in 4.1 :

H0 : S(t|z) = S0(
∫ t

0
eβz(u)du; γ),

where z(t) = (1, z1(t), ..., zm(t))T is a vector of possibly time dependent covariates, β = (β0, ..., βm)T

is a vector of unknown regression parameters, the function S0 does not depend on zi and belongs
to a specified class of survival functions :

S0(t, γ), γ = (γ1, ..., γq)T ∈ G ⊂ Rq, θ = (βT , γT )T .

If explanatory variables are constant over time then the parametric AFT model has the form

S(t|z) = S0(eβzt; γ).

The logarithm of the failure times T under z may be written as

lnT = βT z + ε, z ∈ E1,
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where the survival function of ε does not depend on z and is S(t) = S0(ln(t)). If ε is normally
distributed then the AFT model is the standard multiple linear regression model. For AFT
model suppose we have following censored sample

(X1, δ1, z1), . . . , (Xn, δn, zn),

where
Xi = Ti ∧ Ci, δi = 1{Ti≤Ci}, zi(t) = (1, zi1(t), ..., zim(t))T ,

where Ti is the failure time, Ci the censoring time, and zi is the vector of covariates.
Set

Ni(t) = 1{Xi≤t,δi=1}, Yi(t) = 1{Xi≥t}, N(t) =
n∑
i=1

Ni(t), Y (t) =
n∑
i=1

Yi(t).

Suppose that the processes Ni, Yi, zi are observed at finite time τ and censoring is non-
informative. The compensators of the counting processes Ni with respect to the history of the
observed processes are

∫ t
0 Yiλidu.

Let divide the interval into k > m+q+1 = s classes such that Ij = (aj−1, aj ], a0 = 0, ak = τ,

and let denote by
Uj = N(aj)−N(aj−1) =

∑
i:Xi∈Ij

δi,

the number of observed failures in the jth interval, j = 1, 2, ..., k. To estimate the "expected"
number of failures in the interval Ij under the hypothesis H0, consider the equality

ENi(t) = E
∫ t

0
λi(u, θ)Yi(u)du,

we can "expect" to observe

ej =
n∑
i=1

∫
Ij

λi(u, θ̂)Yi(u)du (3.16)

failures ; here θ = (βT , γT )T and λi(t, θ) is the hazard function of Ti under zi. and θ̂ is the ML
estimator of the parameter θ under H0.
So the test statistic is based on the vector

Z = (Z1, · · · , Zk)T , Zj = 1√
n

(Uj − ej), j = 1, · · · , k. (3.17)

Following we consider the asymptotic properties of Z.
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6.2 Asymptotic Distribution of Z

Properties of the statistic Z can be investigated through the stochastic process

Hn(t) = 1√
n

N(t)−
n∑
i=1

t∫
0

λi(u, θ̂)Yi(u)du

 .
The properties of ML estimators are summed up in conditions 1 as :

Conditions 1

θ̂
P→ θ0; 1√

n
˙̀(θ0) d→ Nm(0, i(θ0)); −1

n
῭(θ0) P→ i(θ0);

and
√
n(θ̂ − θ0) = i−1(θ0) 1√

n
˙̀(θ0) +OP (1),

where

˙̀(θ) =
n∑
i=1

+∞∫
0

∂

∂θ
ln (λx(i)(·)(u, θ))dMi(u)

and i(θ0) = limn→∞ I(θ0)/n. Notice that here θ = (βT , γT )T .

Set
S(0)(t, θ) =

n∑
i=1

Yi(t)λi(t, θ), S(1)(t, θ) =
n∑
i=1

Yi(t)
∂ lnλi(t, θ)

∂θ
λi(t, θ),

S(2)(t, θ) =
n∑
i=1

Yi(t)
∂2 lnλi(t, θ)

∂θ2 λi(t, θ).

Conditions 2 There exist a neighborhood Θ of θ0 and continuous bounded on Θ×[0, τ ] functions

s(0)(t, θ), s(1)(t, θ) = ∂s(0)(t, θ)
∂θ

, s(2)(t, θ) = ∂2s(0)(t, θ)
∂θ2 ,

such that for j=0,1,2

sup
t∈[0,τ ],θ∈Θ

‖ 1
n
S(j)(t, θ)− s(j)(t, θ)‖ P→ 0 as n→∞.

The conditions 2 imply that uniformly for t ∈ [0, τ ]

1
n

n∑
i=1

t∫
0

Yi(u)λi(u, θo)du
P→ A(t) ; 1

n

n∑
i=1

t∫
0

Yi(u)∂λi(u, θo)
∂θ

du
P→ C(t),

where A and C are finite functions.
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Lemma 2 Under conditions 1 and 2 the following convergence holds :

Hn
d→ V on D[0, τ ]

where D[0, τ ] is space of cadlag functions with Skorokhod metric, V is zero mean Gaussian
martingale such that ∀ 0 ≤ u ≤ v ≤ T

cov(V (u), V (v)) = A(u)− CT (u)i−1(θo)C(v).

For i = 0, · · · ,m+ q ; j, j′ = 1, · · · , k, set :

Vj = V (aj)− V (aj−1); σjj′ = cov(Vj , Vj′),

Aj = A(aj)−A(aj−1); Cij = Ci(aj)− Ci(aj−1); Cj = (C0j , C1j , · · · , Cm+q, j)T ,

Σ = [σjj′ ]k×k; C = [Cij ]s×k,

and A is a k × k diagonal matrix with diagonal elements A1, A2, · · · , Ak.

Theorem 6.1 Under conditions 1 and 2

Z
d→ Y ∼ Nk(0,Σ) as n→∞,

where
Σ = A− CT i−1(θ0)C.

Remark : Set the matrix
G = i− CA−1CT .

If G is non-degenerate then the generalized inverse of the matrix V is

Σ− = A−1 +A−1CTG−1CA−1.

We need to inverse only diagonal k × k matrix A and s× s matrix G.

Theorem 6.2 Under the conditions 1 and 2 the following estimators are consistent Aj, Cj,
i(θo) and Σ :

Âj = Uj
n

; Ĉj = 1
n

n∑
i=1

∫
Ij

∂

∂θ
lnλi(u, θ̂)dNi(u),

î = 1
n

n∑
i=1

τ∫
0

∂ lnλi(u, θ̂)
∂θ

(
∂ lnλi(u, θ̂)

∂θ

)T
dNi(u),

Σ̂ = Â− ĈT i−1Ĉ.
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Note : The proofs of the theorems and lemma are given recently in Bagdonavicius and Nikulin
(2011). Using these results we shall express the test statistic of chi-squared type for testing H0.

6.3 Test statistic

The test statistic is according to the idea of chi-squared test. From theorems 6.1 and 6.2 the
test for hypothesis H0 can be based on the statistic

Y 2
n = ZT Σ̂−Z

where
Σ̂− = Â−1 + Â−1ĈT Ĝ−ĈÂ−1, Ĝ = î− ĈÂ−1ĈT

The test statistic can be written in the following form

Y 2
n =

k∑
j=1

(Uj − ej)2

Uj
+Q,

where
Q = W T Ĝ−W, W = ĈÂ−1Z = (W0,W1, ...,Wm+q)T , Ĝ = [ĝll′ ]s×s,

ĝll′ = îll′ −
k∑
j=1

ĈljĈl′jÂ
−1
j , Wl =

k∑
j=1

ĈljÂ
−1
j Zj ,

Ĉlj = 1
n

∑
i:Xi∈Ij

δi
∂

∂θ
lnλ(Xi, θ̂), Âj = Uj/n, Zj = 1√

n
(Uj − ej),

îll′ = 1
n

n∑
i=1

δi
∂ lnλ(Xi; θ̂)

∂θl

∂ lnλ(Xi; θ̂)
∂θl′

, Uj =
∑

i:Xi∈Ij
δi, (3.18)

i = 1, · · · , n, j = 1, · · · , k, l, l′ = 0, 1, · · · ,m+ q.

The limit distribution of the statistic Y 2
n is chi-square with

r = rank(Σ−) = Tr(Σ−Σ)

degrees of freedom. If G is non-degenerate then r = k.
Statistical inference for the hypothesis H0 : The hypothesis is rejected with approximate

significance level α if Y 2
n > χ2

α(r).
This is a good success in the application of chi-square type tests to solve the complicated

problems. But the problem to develop a software is still there because for testing esch model
one has to make a computer program for all the elements of the test.
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6.4 Choice of random grouping intervals

It is recommended to take intervals as random data functions. The idea is to divide the
interval [0, t] into k intervals with equal expected numbers of failures (which are not necessary
integers) to avoid small number or no failures in several first and last intervals.

Define

Ek =
n∑
i=1

∫ τ

0
λi(u, θ̂)Yi(u)du =

n∑
i=1

Λi(Xi, θ̂), Ej = j

k
Ek, j = 1, · · · , k.

âj verify the following equalities to have equal number of expected failure in all intervals

g(âj) = Ej , g(a) =
n∑
i=1

∫ a

0
λi(u, θ̂)Yi(u)du.

Denote by the X(1) ≤ · · · ≤ X(n) the ordered sample from Xi, · · · , Xn. The function

g(a) =
n∑
i=1

Λi(Xi ∧ a, θ̂)

=
n∑
i=1

[
n∑
l=i

Λ(l)(a, θ̂) +
i−1∑
l=1

Λ(l)(X(l), θ̂)
]

1[X(i−1),X(i)](a)

is continuous and increasing on [0, τ ] ; here X(0) = 0,
0∑
l=1

cl = 0. Set

bi =
n∑

l=i+1
Λ(l)(X(i), θ̂) +

i∑
l=1

Λ(l)(X(l), θ̂).

If Ej ∈ [bi−1, bi] then âj is the unique solution of the equation

n∑
l=i

Λ(l)(âj , θ̂) +
i−1∑
l=1

Λ(l)(X(l), θ̂) = Ej (3.19)

We have 0 < â1 < â2, · · · , âk = τ . With this choice of intervals

ej = Ek/k

for any j.
Now we consider an example.
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6.5 Application of the test for BS Distribution

The parameter θ = (βT , a, b)T can be estimated by maximizing the loglikelihood function
(3.13). The hazard function for AFT models with constant stress can be written as

λi(t, θ) = e−β
T x(i)

λ0
(
e−β

T x(i)
t, θ
)
.

We can write the hazard function for AFT model with BS distribution as

λi(t, θ) = e−β
T x(i)


1

2
√

2πab

{(
b
Ki

)1/2
+
(
b
Ki

)3/2
}

exp
{
− 1

2a2

(
Ki
b + b

Ki
− 2

)}
1− Φ

{
1
a

[(
Ki
b

)1/2
−
(
b
Ki

)1/2
]}

 ,

here θ = (βT , a, b)T and Ki = Xie
−βT x(i) .

The parameters can be estimated by maximizing the the following loglikelihood function

`(β, a, b) =
n∑
i=1

δiβ
Tx(i) +

n∑
i=1

δi

[
− ln a− ln b+ ln

{(
b

Ki

) 1
2

+
(
b

Ki

) 3
2
}

− 1
2a2

(
Ki

b
+ b

Ki
− 2

)]
+

n∑
i=1

(1− δi) ln
(

1− Φ
[

1
a

{(
Ki

b

) 1
2
−
(
b

Ki

) 1
2
}])

. (3.20)

The expression for the elements of the matrix î = [̂ils](m+3)×(m+3) and Ĉlj elements for the test
are calculated by using the formula (3.18) and given as

îls = 1
n

n∑
i=1

δi

xil + xil
2

1 + 3
(
b
Ki

)
1 +

(
b
Ki

) +AiBi

− 1
2

(
xilBiϕ(Ai)
1− Φ(Ai)

)×
xis + xis

2

1 + 3
(
b
Ki

)
1 +

(
b
Ki

) +AiBi

− 1
2

(
xisBiϕ(Ai)
1− Φ(Ai)

) , l, s = 0, 1, · · · ,m,

where Ai = 1
a

{(
Ki
b

) 1
2 −

(
b
Ki

) 1
2
}
, Bi = 1

a

{(
Ki
b

) 1
2 +

(
b
Ki

) 1
2
}
,

îl,m+1 = 1
n

n∑
i=1

δi

xil + xil
2

1 + 3
(
b
Ki

)
1 +

(
b
Ki

) +AiBi

− 1
2

(
xilBiϕ(Ai)
1− Φ(Ai)

)×
[1
a

(
A2
i − 1

)
− 1
a

(
Aiϕ(Ai)

1− Φ(Ai)

)]
,
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îl,m+2 = 1
n

n∑
i=1

δi

xil + xil
2

1 + 3
(
b
Ki

)
1 +

(
b
Ki

) +AiBi

− 1
2

(
xilBiϕ(Ai)
1− Φ(Ai)

)×
[

1
b

(
−1 + 1

2

(
1 + 3 b

Ki

1 + b
Ki

)
+ 1

2AiBi

)
− 1

2b

(
Biϕ(Ai)

1− Φ(Ai)

)]
,

îm+1,m+1 = 1
n

n∑
i=1

δi

[1
a

(
A2
i − 1

)
− 1
a

(
Aiϕ(Ai)

1− Φ(Ai)

)]2
,

îm+1,m+2 = 1
n

n∑
i=1

δi

[1
a

(
A2
i − 1

)
− 1
a

(
Aiϕ(Ai)

1− Φ(Ai)

)]
×

[
1
b

(
−1 + 1

2

(
1 + 3 b

Ki

1 + b
Ki

)
+ 1

2AiBi

)
− 1

2b

(
Biϕ(Ai)

1− Φ(Ai)

)]
,

îm+2,m+2 = 1
n

n∑
i=1

δi

[
1
b

(
−1 + 1

2

(
1 + 3 b

Ki

1 + b
Ki

)
+ 1

2AiBi

)
− 1

2b

(
Biϕ(Ai)

1− Φ(Ai)

)]2

,

and

Ĉlj = 1
n

∑
i:Xi∈Ij

δi

xil + xil
2

1 + 3
(
b
Ki

)
1 +

(
b
Ki

) +AiBi

− 1
2

(
xilBiϕ(Ai)
1− Φ(Ai)

) ,
Ĉm+1,j = 1

n

∑
i:Xi∈Ij

δi

[1
a

(
A2
i − 1

)
− 1
a

(
Aiϕ(Ai)

1− Φ(Ai)

)]
,

Ĉm+2,j = 1
n

∑
i:Xi∈Ij

δi

[
1
b

(
−1 + 1

2

(
1 + 3 b

Ki

1 + b
Ki

)
+ 1

2AiBi

)
− 1

2b

(
Biϕ(Ai)

1− Φ(Ai)

)]
.

Since the inverse of the cumulative hazard function of the BS distribution can not be written in
an explicit form, so we can estimate the end points of the random intervals by numerical method
using the equation (3.19).

6.5.1 Example 1

The BPD Data set from chapter 2 of Hosmer and Lemeshow (2008) is used for the goodness
of fit test. The data contains n = 78 subjects and with four variables (id, surfact,ondays,censor).
Surfact is a covariate in the the application of the test statistic. The data is given in Appendix 3.1.
The results of the test are given below :
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The values of ML estimators are :

β̂0 = 4.9969, β̂1 = −0.2001, âbs = 1.2661, b̂bs = 0.8108.

With k = 8, the random intervals and other estimates are given in the following table.

j 1 2 3 4 5 6 7 8
âj 27.16 43.98 64.92 97.80 149.18 220.85 346.79 733.00
Uj 6 5 15 14 8 6 8 11
ej 9.30 9.30 9.30 9.30 9.30 9.30 9.30 9.30
C1j -0.04833 0.0689 0.2508 0.2430 0.1400 0.1018 0.1305 0.1696
C2j 0.0125 0.0438 0.1521 0.0873 0.0873 0.0504 0.0816 0.0155
C3j 0.2354 0.0124 -0.0700 -0.1046 -0.0851 -0.0787 -0.1177 -0.1790
C4j -0.2493 -0.0732 -0.1650 -0.1430 -0.0803 -0.0642 -0.0921 -0.1386

The Fisher’s information matrix is

î4×4 =


1.7690446 0.6868031 −1.4546406 −0.4236595
0.6868031 0.6868031 −0.3479777 −0.4618151
−1.4546406 −0.3479777 2.1312279 −0.8386943
−0.4236595 −0.4618151 −0.8386943 1.9582996

 .

We calculate

W = (W1,W2,W3,W4)T = (0.6170,−0.0933,−1.3528, 1.1656)T

Notice that in the case of BS-distribution the matrix Ĝ is found to be degenerated. So the rank
of the matrix Σ is k − 1, and we have

X2
n = 11.7744, Q = 3.2343, Y 2

n = 15.0087, pv = 0.0359.

So from the above result we can say that the hypothesis is rejected.

6.5.2 Example 2

This data is taken from Lawless (2003) which gives failure times of 76 electric insulating fluid
tested at voltage ranging from 26 to 38 kilovolts (kV). This experiment was run long enough to
observe the failures of all items. The data is given in Appendix 3.2. The main purpose of the
study was to investigate the distribution of time to breakdown for the insulating fluid and to
relate this to the voltage level.
Lawless (2003) suggest Weibull AFT-power rule model. Lawless used parametric methods based
on loglikelihood ratios to verify separately Weibull, AFT and power rule assumptions of the
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model. All tests did not contradict the Weibull AFT-power rule model. Bagdonavicius et al.
(2012) used this data for exponential-AFT and Weibull-AFT models. The data rejected for the
exponential AFT but did not reject for the Weibull AFT model. Let us use this data for the
BS-AFT model.
The values of ML estimators are :

β̂0 = 53.7138, β̂1 = −13.8958, âbs = 2.0726, b̂bs = 0.0377.

We choose k = 8, the elements of the test statistic are calculated as below.

j 1 2 3 4 5 6 7 8
âj 0.532 1.450 3.417 8.103 18.289 40.967 116.415 2323.700
Uj 7 12 10 12 7 9 10 9
ej 10.51 10.51 10.51 10.51 10.51 10.51 10.51 10.51

The Fisher information matrix is

î4×4 =


2.0879419 7.316385 −0.7999923 −15.123080
7.3163849 25.656078 −2.7819900 −53.174564
−0.7999923 −2.781990 0.6746561 −3.649846
−15.1230799 −53.174564 −3.6498462 544.176774

 .

Notice that for this data the matrix Ĝ is also found to be degenerated. So the rank of the
matrix Σ is k − 1, and we have

X2
n = 4.4633, Q = 37.7796, Y 2

n = 42.2429, pv = 4.6688−7.

The hypothesis of the BS-AFT model for this data is rejected. One can see that without quadratic
form the hypothesis can not be rejected.
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Chapter 4

Analysis of Redundant Systems

1 A Historical Review

Redundancy is one of the common ways to increase the systems’ realisability where extra
units are attached in the system with the main functioning unit. The extra units or compo-
nents are called standby units or redundant units. Standby redundancy can be reparable or
unreparable. In our work we study the system with unreparable redundancy. Before going to
further analysis of the redundant systems it is important to specify the operating state or type
of standby units. In literature three states of the standby units are mentioned which are :

– Hot or active redundancy : the standby units are subject to the the same operating rule
as the main unit, they can fail before the main one that is equal failing probabilities,

– Cold or inactive redundancy : the standby units are placed in off mode (idol), they cannot
fail until take the function of main one,

– Warm or partially operating redundancy : the standby units are placed in partially ope-
rating state, can fail before replacing the main unit but with smaller probability than the
main one.

Suppose that a system compose of one main unit and n− 1 standby units and let denote by

T1, T2, · · · , Tn

the random functioning time of the main and standby units. Then for hot standby system the
total operation time can be written as

τ1 = max(T1, T2, · · · , Tn),

and for the cold standby system

τ2 = T1 + T2 + · · ·+ Tn.
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Its is obvious that
τ1 ≤ τ2.

On the base of this result we can conclude that a cold redundancy is more suitable than the hot
redundancy subject to the condition that the switching does not cause any damage. Moreover
people in the field of reliability used simple methods for this purpose. For example Gnedenko, Be-
lyaev and Solovyev (1968), and Kozlov and Ushakov (1970) give the simple formula to calculate
the reliability function R(t) or unreliability function (distribution function) F (t) = 1−R(t). For
hot standby system when the failure are all independent of each other, the distribution function
can be written as

F (1)
n (t) = q1(t)qn(t) · · · qn(t) =

n∏
i=1

(1− pi(t)),

where pi(t), i = 1, · · · , n is the reliability or failure-free operation of the ith unit and qi(t) is its
unreliability, and for cold standby system the distribution function is

F (2)
n (t) ≈ q1(t)qn(t) · · · qn(t)/n!.

From the ratio
F

(1)
n (t)
F

(2)
n (t)

≈ n!,

it is clear that when we shift to a cold standby redundancy, the distribution function decreases
to 1/n! its preceding value.

In practice it is not convenient to apply hot standby because it does not improve the reliabi-
lity upto desired level due to high failure probability of standby units. Also it is not suitable to
use the cold standby due to switching time which can cause the interruption in functioning of
the system. In such situation it is better to use the warm or partially operating standby units.

Suppose that we have one main unit and m − 1 standby units. Let denote by p
(n)
k (t) the

reliability of the mth unit in warm stat and denote by p(0)
k (t∗, t) the conditional reliability of

the mth unit operating in hot state in the interval (t∗, t) under the assumption that it has not
failed in the interval (0, t∗) when it was in nonoperating state. t∗ is the moment when the unit
is absorbed into the system. We denote t∗1, t∗2, · · · , t∗k the random operating times of the basic
and standby units. Let F1(t) and Fm(t) are the distribution functions of the basic unit and the
whole standby system with the main and (m− 1)st standby unit. And Fn(t) is the distribution
function or of the standby group. The life length of the standby unit depends on the preceding
times say t∗i . We can write the distribution or unreliability function for two consecutive functions
Fk(t) and Fk+1(t).
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4.2 Introduction

Fk(t) = P{Tk < t} = P{Tk−1 < t, Tk < t} =
∫ t

0
P{t∗ < Tk−1 < t∗ + dt∗, t∗k < t}

=
∫ t

0
P{t∗k < t|Tk−1 = t∗}dFk−1t

∗ =
∫ t

0
[1−P{t∗k > t|Tk−1 = t∗}]dFk−1t

∗

=
∫ t

0
[1− p(n)

k (t∗)p(0)
k (t∗, t)]dFk−1t

∗ (4.1)

This recursion formula presented by Gnedenko, Belyaev and Solovyev (1968) to find the unrelia-
bility function of the standby system. The function p(n)

k is unknown and can be parameterized
by some parametric family of distributions. The same approach was used by some other author
like Kozlov and Ushakov (1970). It is very common to see application of exponential and Weibull
distribution in reliability studies due to their simple forms.

The researcher used the different mathematical and statistical techniques to improve the
systems reliability but without using accelerated stress. Due to the excessive use of accelerated
life testing in industry and the use of resources by the warm standby units till the failure of
main unit which requires a transfer functional, opens a new horizon of research for reliability
analysts. Also the censoring mechanism make the things more complicated. Recently Bagdona-
vicius, Masiulaityle, and Nikulin (2008a, 2008b, 2009, 2010) study all these phenomenons in a
series of paper on the statistical analysis of redundant systems. They calculated the reliability
characteristics in terms of distribution function or unreliability functions. They generalized their
approach to m standby units and also in case of censoring. In this work we extend their work
with some modifications and apply the techniques for Birnbaum-Saunders family of distributions
which is well studied model in fatigue failure data in industry.

2 Introduction

Recently the series of papers on the redundant system was published by Bagdonavicius,
Masiulaityle, and Nikulin (2008a, 2008b, 2009, 2010) where they studies the reliability of the
system with exponential, Weibull and loglogistic models. Here we give the reliability of redun-
dant system based on parametric Birnbaum-Saunders family of distributions and we develop a
software for the redundant system. Redundancy which means the duplication of critical compo-
nents of a system is a common and useful approach to increase the reliability of the system. The
redundant systems contain more than one subcomponents and all must fail before the system
fails. The functioning component or unit is called the operating component or main unit and
the other subcomponents are called stand-by units. If the main unit fails then the first stand-by
unit is commuted automatically and if this unit fails the second stand-by unit is commuted and
so on. So the redundant system fails only if all units fails. A system with two, three or many
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replications of each element is respectively termed as dual modular redundant, triple modular
redundant, and multi-modular redundant. Redundant system with one main unit and m − 1
stand-by units is denoted by S(1,m−1), m ≥ 2. Redundant system is different from the backup
system in a way that with redundant system data is continuously passed from the primary to
secondary component while backup systems may loos data and may take many hours to become
operational. Redundancy increases the cost and complexity of the system design and sometimes
it is the unique way to provide high reliability to modern electrical, biotechnical and mechanical
systems. Many low-risk industries do not need redundancy in order to be successful. However,
in high-risk industries such as aerospace and nuclear, where the cost of failure is high enough,
the redundancy becomes essential to have the high reliability.

Here we consider a system S(1, 1) with one main unit operating in hot conditions and one
stand-by unit operating in warm conditions. In the terminology of accelerated life testing main
unit is working under accelerated stress with respect to stand by unit. We suppose that the
switching on from the warm to hot state does not do any damage to the unit and the switching
time is stochastic. The model with fluent switching, important for practice, is considered. On
the base of this supposition Bagdonavicius et al. (2008b) proposed the test for general fluent
switching hypothesis H0 and for particular fluent switching hypothesis H∗0 . The hypothesis H0

is formulated exactly using Sedyakin’s reliability principle (Sedyakin, 1966) and the hypothesis
H∗0 is formulated using AFT model for the reliability of redundant systems. Sedyakin’s model
explains that after the failure of main unit the stand-by unit follow the same reliability curve as
that of the main unit. Following precedent results of Bagdonavicius et al. (2008b) we study the
asymptotic properties of the test statistics. After testing, we construct parametric estimators of
the cumulative distribution functionK2(t) of redundant system, using censored reliability data of
components under different stresses. Then confidence intervals for the commutative distribution
function of redundant system S(1, 1) are constructed under the assumption that the distribution
of failure times of both units follow the Birnbaum-Saunders family.

3 Redundant System With Warm Stand-By Unit

Redundancy is mostly used technique to increase the reliability of the technical systems. We
consider the redundant system with one main and one stand-by unit in parallel and we denote
the system by S(1, 1). For configuring the redundant system the functioning state of the stand-by
unit is very important according to the criticality of the system. In the last century several people
study the system with hot and cold stand-by units but recently there are many papers where
the intermediate warm conditions are used for stand-by units. If the stand-by unit is working
in hot conditions as the main unit, the failing probability of stand-by unit is equal to the main
unit i.e. 0.5, because both are functioning under the same stress. And if the stand-by unit is in
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cold state, it requires commuting time to come in hot conditions after the failure of main unit
which can interrupt the system’s continuity and also can cause the increase in failure rate due to
the sudden change in stress that is due to the burn-in period (failure in early life). So the warm
reserving can be the better choice where the stand-by unit is functioning under lower stress than
the main one. In this way the probability of failure of the stand-by unit is smaller than that of
the main unit and commuting is fluent but we don’t discuss here the problem of the choice of
optimality of the warm state which depends on the practical problem. Recently a lot of work
has been done for statistical analysis of redundant system by Bagdonavicius, Masiulaityle, and
Nikulin (2008a, 2008b, 2009, 2010) and with warm stand-by units. They used many parametric
models such as exponential, Weibull, lognormal, loglogistic, generalized Weibull, and inverse
Gaussian for determining the reliability of redundant system (see also Nikulin et al. (2011c)).
Here we follow their results and use the famous Birnbaum-Saunders (BS) family of distributions
as the distribution of failure times (see Nikulin and Tahir, 2011).

4 Accelerated Life Testing (ALT) In Reliability

Failure times data of high reliable units may take many years for reliability analysis. One
way of obtaining quick reliability information is to use accelerated life testing (ALT) method,
where higher level of experimental factors, stresses or covariates ( temperature, voltage or speed
) are applied on the units to increase the number of failures in less time (Bagdonavicius and
Nikulin (2002), Meeker and Escobar (1998)).

In ALT, it is supposed that a stress (or explanatory variable) is a deterministic time function,
may be multidimensional :

x(·) = (x1(·), . . . , xm(·))T : [0,∞[→ Rm, (4.2)

which is a vector of covariates itself or a realization of a stochastic process X(·). This process is
also called the covariate process, X(·) = (X1(·), ..., Xm(·))T . We denote E a set of all possible
(admissible) stresses, and by E1 a set of all constant over time covariates, E1 ⊂ E. By tradition
if x(·) is constant in time, we write x instead of x(·).

There are many types of stresses (e.g. step stresses, continuous cyclic stress, cyclic stress
of type switch-on-switch-off, degradation stress) but step stresses are commonly used in ALT
where the units are placed initially at low stress and if they do not fail till certain moment then
stress is increased continuously in steps. Step-stress can be increasing or decreasing. For our
problem it is interesting to introduce the next class of step-stresses. We denote E2 ⊂ E a set of
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step-stresses of the form

x(t) = x11{0≤t<t1} + x21{t1≤t}, x1, x2 ∈ E1. (4.3)

Let Tx(·) be the failure time under the stress x(·) and

Sx(·)(t) = P{Tx(·) > t}, Fx(·)(t) = P{Tx(·) ≤ t}, fx(·)(t) = −S′x(·)(t),

λx(·)(t) = lim
h→0

1
h
P{Tx(·) ∈ [t, t+ h)|Tx(·) ≥ t} = −

S′x(·)(t)
Sx(·)(t)

,

be the survival function, cumulative distribution function, probability density function, and
hazard function respectively.

Let x(·), y(·) ∈ E be the two stresses. A stress y(·) is accelerated with respect to the stress
x(·) if Sy(·)(t) ≤ Sy(·)(t), or equivalently we can write (also shown in Figure 4.1)

Fy(·)(t) ≥ Fx(·)(t), t ≥ 0.

Figure 4.1 – Distribution functions for two levels of stresses where y(·) > x(·).

If the data are censored then we have to consider the influence of x(·) on the distribution of
censoring time C, i.e. we write C = Cx(·), and we observe

Xx(·) = min(Tx(·), Cx(·)).

5 Sedyakin’S Physical Principle In Reliability

Accelerated stresses are used to reduce the time on test. So a transfer functional is needed to
interpolate the accelerated failure times to the failure times under usual stress (Bagdonavicius
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(1978), Bagdonavicius and Nikulin (1997)). The physical principle in reliability proposed by N.
Sedyakin (1966) states that for two identical populations of units functioning under different
stresses x1 6= x2, two moments t1 and t∗1 are equivalent if the probabilities of survival are equal
until these moments, i.e.

Sx1(t∗1) = Sx2(t1), t∗1 = g(t1), where g(t) = S−1
x1 (Sx2(t)). (4.4)

This principle gives an interesting way to prolong any class of survival functions {Sx(·), x ∈ E1}
indexed by constant in time stresses to a class of survival functions indexed by step-stresses, for
example from E2 given by (4.2). Figure 4.2 shows the increasing step-stress. x1 and x2 are the

Figure 4.2 – Increasing step-stress for the warm stand-by unit.

stresses corresponding to warm and hot conditions respectively. We suppose that stress x2 is
accelerated with respect to stress x1. The moment t1 is random in our case.

According to Sedyakin we may consider the model on E2 for all s ≥ 0

λx(·)(t1 + s) = λx2(t∗1 + s). (4.5)

In terms of the survival function Sx(·)(t), x(·) ∈ E2 that satisfies the same rule of time-shift

Sx(·) =
{
Sx1(t), 0 ≤ t < t1,

Sx2(t− t1 + t∗1), t ≥ t1,
(4.6)

where t∗1 is determined by the equation (4.4). The model given by (4.5) and (4.6) is called the
Sedyakin model on E2.
The generalized Sedyakin (GS) model on a set of stresses E can be written by supposing that
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the hazard rate λx(·)(t) at any moment t is a function of the value of the stress at this moment
and of the probability of survival until this moment.

λx(·)(t) = h(x(t), Sx(·)(t)), x(·) ∈ E,

where h is a positive function. Note that the AFT model verifies this rule.

Figure 4.3 – Cumulative distribution function (left) and survival function (right) of the system
under Sedyakin’s principal.

6 Sedyakin Model And Its Application In Redundant System

Let denote by T1, F1 and f1 the failure time, the cumulative distribution function and the
probability density function of the main unit. Suppose the failure time of the stand-by unit be
T2. If it is working in hot condition its distribution function is also F1. In warm conditions the
distribution function of T2 is F2 and the p.d.f. is f2. After the failure of main unit the stand-by
unit is switched to hot conditions and its distribution function is different from F1 and F2. The
system fails if both units fail i.e. the failure time of the system is T = max(T1, T2). Let the
conditional density function of T2 given that the main unit fails at moment y is denoted by

f
(y)
2 (x) = fT2|T1=y(x)

and let denote by K2 and k2 the distribution function and the density function of the system’s
failure time T . The cumulative distribution function K2 can be written as
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K2(t) = P(T ≤ t) = P(T1 ≤ t, T2 ≤ t) =
∫ t

0
P(T2 ≤ t | T1 = y)dF1(y)

=
∫ t

0

{∫ y

0
f2(x)dx+

∫ t

y
f

(y)
2 (x)dx

}
f1(y)dy. (4.7)

When the stand-by unit is in cold state then

f2(x) = 0 if x ≤ y, and f
(y)
2 (x) = f1(x− y) if x > y,

so from equation (4.7), it follows that

K2(t) =
∫ t

0

{∫ t

y
f1(x− y)dx

}
f1(y)dy =

∫ t

0
F1(t− y)dF1(y).

When the stand-by unit is in hot state then

f
(y)
2 (x) = f2(x) = f1(x),

so using equation (4.7) we can write

K2(t) =
∫ t

0

{∫ y

0
f2(x)dx+

∫ t

y
f2(x)dx

}
f1(y)dy

=
∫ t

0

{∫ t

0
f2(x)dx

}
dF1(y) =

∫ t

0

{∫ t

0
f1(x)dx

}
dF1(y) = [F1(t)]2.

When the stand-by unit is in warm conditions the following hypothesis is assumed :

H0 : f (y)
2 (x) = f1(x+ g(y)− y), ∀ x ≥ y ≥ 0, (4.8)

where g(y) is the moment which in hot conditions corresponds to the moment y in warm condi-
tions in the sense that

F1(g(y)) = P(T1 ≤ g(y)) = P(T2 ≤ y) = F2(y),

so
g(y) = F−1

1 (F2(y)).

Conditionally (given T1 = y) the hypothesis (4.8) corresponds to the Sedyakin’s model. In the
situation considered here the switch off moments are random. The equation (4.7) implies that
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under hypothesis H0 the distribution function of of the system S(1, 1) is

K2(t) =
∫ t

0
{F2(y) +

∫ t

y
f1(x+ g(y)− y)dx}f1(y)dy

=
∫ t

0
{F2(y) + F1(t+ g(y)− y)dx− F1(g(y))}f1(y)dy

=
∫ t

0
F1(t+ g(y)− y)dF1(y). (4.9)

In particular, if we suppose that the distribution of the units functioning in warm and hot
conditions differ only in scale, i.e.

F2(t) = F1(rt),

for some unknown r > 0, then g(y) = ry. This make the sense of AFT model. In such case the
following hypothesis is to be verified :

H∗0 : f (y)
2 (x) = f1(x+ ry − y), ∀ x ≥ y ≥ 0, (4.10)

and we can write the cumulative distribution function of the system as

K2(t) =
∫ t

0
F1(t+ ry − y)dF1(y). (4.11)

The hypothesis H∗0 can also be considered as the generalization of the accelerated failure time
(AFT) model to the case of stress with random switch-on (Bagdonavicius, 1978). In this text
we suppose that the cumulative distribution function of failure times for both units belongs to
the Birnbaum-Saunders family. So we need to estimate the parameters of the models and other
reliability characteristics, for example, distribution function of the system from the data which
can be noncensored or censored. But before going to the estimation problem, it is necessary to
test the model given by the hypotheses H∗0 in equation (4.10).

7 Generalization Of The Redundant System S(1, m− 1)

Following we consider redundant systems with one main unit andm−1, m ≥ 2, standby units
operating in warm conditions, i.e. under lower stress than the main one. We denote S(1,m− 1)
for such systems.

Let denote by T1, F1 and f1 the failure time, the c.d.f. and the probability density function
of the main unit. The failure times of the standby units denote by T2, . . . , Tm, the c.d.f. of Ti is
F2 and the p.d.f. is f2, i = 2, . . . ,m. If a stand-by unit is switched to hot conditions, its c.d.f. is
different from F1 and F2.
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The failure time of the system S(1,m− 1) is

T (m) = T1 ∨ T2 ∨ · · · ∨ Tm.

Denote by Kj and kj the c.d.f. and the p.d.f. of T (j), respectively, (j = 2, . . . ,m), K1 = F1,
k1 = f1. The c.d.f Kj can be written in terms of the c.d.f. Kj−1 and F1 :

Kj(t) = P(T (j) ≤ t) = P(T (j−1) ≤ t, Tj ≤ t) =
∫ t

0
P(Tj ≤ t|T (j−1) = y)dKj−1(y).

The fluent switch on hypothesis H0, formulated by Bagdonavičius et al. (2008), states that

fTj |T (j−1)=y(t) =
{
f2(t) if t ≤ y,
f1(t+ g(y)− y) if t > y,

where
g(y) = F−1

1 (F2(y))

is the so-called transfer functional, (Bagdonavicius and Nikulin (2002)).

This model implies that

Kj(t) =
∫ t

0
F1(t+ g(y)− y)dKj−1(y), K1(t) = F1(t), (4.12)

from where it follows that the distribution function Km of the system with m−1 stand-by units
is defined recurrently using the formula (4.12). It is often in practice that the c.d.f. of units
functioning in hot and warm conditions belong to the same parametric families of distribution.
Here we do the accent on the family of BS-distribution.

8 Birnbaum-Saunders (BS) Family Of Life Distributions

The family of Birnbaum-Saunders (BS) distributions is widely used for failure time data
especially when the failures are due to crack. This family was proposed by Birnbaum and Saun-
ders (1969) with two parameters, named as shape and scale parameters. Fatigue failure is due to
repeated applications of a common cyclic stress pattern. The PDF and hazard function of this
distribution is unimodal and is very popular in modeling fatigue failures in industry as an al-
ternative to other unimodal distributions such as the lognormal and inverse Gaussian. Desmond
(1986) worked on the relationship between Birnbaum-Saunders distribution and the family of
inverse Gaussian distributions. The hazard functions for both of these distributions are very
similar (for details see chapter 1 section 9).
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Figure 4.4 – Pdf (left) and hazard function (right) for BS distribution for β = 1.

The cumulative distribution function of two-parameter Birnbaum-Saunders distribution is

F (t;α, β) = Φ
[

1
α

{(
t

β

) 1
2
−
(
β

t

) 1
2
}]

, 0 < t <∞, α, β > 0, (4.13)

where α is the shape parameter, β is the scale parameter and Φ(x) is the standard normal
distribution function. The probability density function can be written as

f(t;α, β) = 1
2
√

2π αβ

{(
β

t

) 1
2

+
(
β

t

) 3
2
}

exp
[
− 1

2α2

(
t

β
+ β

t
− 2

)]
, t > 0, α, β > 0.

A lot of work has been done on the Birnbaum-Saunders distribution and its application in the
failure time data but not a lot of work is done on its uses in the redundant system for to
enhance the reliability (Balakrishnan et al. (2007, 2009), Johnson et al. (1995), Kundu et al.
(2008), Lemonte et al. (2007), Volodin & Dzhungurova, (2000)).

9 Goodness-of-fit Test For Hypotheses H∗0

For testing the hypotheses we suppose the following plan of experiment for data :

a) the failure times T11, · · · , T1n1 of n1 units tested in hot conditions,

b) the failure times T21, · · · , T2n2 of n2 units tested in warm conditions,

c) the failure times T1, · · · , Tn of n redundant systems (with warm standby units).

The test is based on the difference of two estimators of the cumulative distribution function
F (·) of the system failure time T. The first estimator is the nonparametric estimator based on
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the empirical distribution function obtained from the data T1, · · · , Tn

F̂ (1)(t) = 1
n

n∑
i=1

1{Ti≤t}, t ≥ 0,

using the data from the third sample. The second estimator, by using the data T11, · · · , T1n1

and T21, · · · , T2n2 and is based on the

F̂ (2)(t) =
∫ t

0
F̂1(t+ ĝ(y)− y)dF̂1(y),

where (if we test the hypothesis H0)

ĝ(y) = F̂−1
1 (F̂2(y)), F̂j(t) = 1

nj

nj∑
i=1

1{Tji≤t}, F̂−1
1 (y) = inf{s : F̂1(s) ≥ t},

and (if we test the hypothesis H∗0 ), then

F̂ (2)(t) =
∫ t

0
F̂1(t+ r̂y − y)dF̂1(y),

where

r̂ = µ̂1
µ̂2
, µ̂j = 1

nj

nj∑
i=1

Tji, j = 1, 2,

where µ̂1 and µ̂2 are the means of two empirical distributions based on the first and second
samples respectively.
The test is based on the statistic

X =
√
n

∫ ∞
0

[F̂ (1)(t)− F̂ (2)(t)]dt (4.14)

It is natural generalization of Student’s type t-test for comparing the means of two populations.
Indeed, the mean failure time of the system with distribution function F is

µ =
∫ ∞

0
[1− F (s)]ds,

so the statistic (4.14) is the normed difference of two estimators (the second being not the
empirical mean) of the mean µ. Student’s type t-test is based on the difference of empirical
means of two populations. To find the asymptotic distribution of the statistic (4.14), we consider
the following theorem.

Theorem 9.1 Bagdonavičius, Masiulaityle, and Nikulin (2008b) : Suppose that ni/n → li ∈
(0, 1), n→∞ and the densities fi(x), i = 1, 2 are continuous and positive on (0,∞). Then under
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H∗0 the statistic X converges in distribution to the normal law N(0, σ2), where

σ2 = V ar(Ti) + 1
l1
V ar(H(T1i)) + c2r2

l22
V ar(T2i),

where

H(x) = x[c+ r − 1− F1(x/r)− rF2(x)] + rE(1{T1i≤x/r}T1i) + rE(1{T2i≤x}T2i),

c = 1
µ2

∫ ∞
0

y[1− F2(y)]dF1(y).

The test statistic is

Yn = X

σ̂
, (4.15)

where σ̂ is a consistent estimator of σ and is estimated as

σ̂2 = 1
n

n∑
i=1

(Ti − µ̂)2 + n

n2
1

n1∑
i=1

[Ĥ(T1i)− ˆ̄H]2 + ĉ2r̂2n

n2
2

n2∑
i=1

(T2i − µ̂2)2,

where
µ̂ = 1

n

n∑
i=1

Ti, ĉ = 1
µ̂2

∫ ∞
0

y[1− F̂2(y)]dF̂1(y) = 1
µ̂2

n1∑
i=1

T1i[1− F̂2(T1i)],

Ĥ(x) = x[ĉ+ r̂ − 1− F̂1(x/r̂)− r̂F̂2(x)] + r̂

n1

n1∑
i=1

1{T1i≤x/r̂}T1i + r̂

n2

n2∑
i=1

1{T2i≤x}T2i,

ˆ̄H = 1
n

n1∑
i=1

Ĥ(T1i).

The distribution of the statistic Yn is approximated by the standard normal distribution and
the hypothesis H∗0 is rejected with approximative significance value α if |Yn| > zα/2, where zα/2
is the upper-(α/2) critical value of the standard normal distribution.

Remark : If switching from warm to hot conditions does not damage units in the system
S(1, 1) then it is natural that this is true for the system S(1,m − 1), m > 2. So it is sufficient
to use goodness-of-fit tests for the hypotheses H0 and H∗0 when only one stand-by unit is used.
Now we check the power of the test with the alternative. Bagdonavičius et al. (2008b) proved
the similar results for nonparametric case.

9.1 Power of the tests

Now we want to investigate the power of the above goodness-of-fit tests when the distribution
of the units in warm and hot conditions is Birnbaum-Saunders. Let us consider the following
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alternative hypothesis H̃∗0 :

f
(y)
2 (x) = f1[x+ F−1

1 (F2(y) + p(1− F2(y))− y], 0 < p < 1.

It means that at the switching time y the c.d.f. of the standby unit has a jump of size p(1−F2(y)).
Set

gp(y) = F−1
1 (F2(y) + p[1− F2(y)])).

Under the alternative hypothesis the c.d.f. of the standby system is

F (t) =
∫ t

0
F1(t+ gp(y)− y)dF1(y)

= F1(t)−
∫ t

0
S1(t+ gp(y)− y)dF1(y). (4.16)

Now we apply this approach to the case when the elements of the system belongs to the BS
distribution, that is

T1i ∼ BS(α1, β1), T2j ∼ BS(α2, β2).

Under the hypothesis H0 the function g can be written as

g(t) = β1

{
α1Φ−1 (F2(t)) /2 +

√
(α1Φ−1(F2(t))/2)2 + 1

}2

We consider α1 = α2, then the hypothesis H0 coincides with the hypothesis H∗0 . In this case
g(t) = rt and we get r = β1/β2.

Under the alternative hypothesis H̃∗0 with BS distribution we can write

gp(y) = β1

{
α1Φ−1 (F2(y) + p[1− F2(y)]) /2 +

√
(α1Φ−1(F2(y) + p[1− F2(y)])/2)2 + 1

}2
,(4.17)

where F2(y) is the cumulative distribution function of BS distribution with parameters α2 and β2.
The distribution function of the redundant system under alternative hypothesis can be written
as

F (t) = 1
2
√

2παβ

∫ t

0
Φ

 1
α

( t+ gp(y)− y
β

)1/2
−
(

β

t+ gp(y)− y

)1/2
×{(

β

y

)1/2
+
(
β

y

)3/2}
exp

{
− 1

2α2

(
y

β
+ β

y
− 2

)}
dy, (4.18)

where gp(y) is given as in equation (4.17).

109



Chapter 4. Analysis of Redundant Systems

10 Estimation Of Distribution Function Of Redundant System
S(1, 1)

Bagdonavičius, Masiulaityle, and Nikulin (2008b, 2009, 2010) studied asymptotic properties
of point and interval estimators of reliability characteristics of redundant system for uncensored
and censored data based on various parametric models like exponential, Weibull, and loglogistic.
They also give the nonparametric estimation of the cumulative distribution function but here we
study only the parametric estimation. We use their results to apply on the BS family of life dis-
tributions. Separate plans of experiments for data are considered for complete and censored data.

From equation (4.11) using the Birnbaum-Saunders family of distributions, the cumulative
distribution function K2(t) of the system system S(1, 1) is estimated by

K̂2(t) = 1
2
√

2πα̂β̂

∫ t

0
Φ

 1
α̂

( t+ r̂y − y
β̂

)1/2

−
(

β̂

t+ r̂y − y

)1/2
×

(
β̂

y

)1/2

+
(
β̂

y

)3/2
 exp

{
− 1

2α̂2

(
y

β̂
+ β̂

y
− 2

)}
dy, (4.19)

where α̂, β̂, r̂ are the maximum likelihood estimators.

10.1 Asymptotic Confidence Interval For K2(t)

Denote by In(γ) = −E῭(γ) the Fisher information matrix and suppose that 1
nIn(γ) →

i(γ). Under classical assumptions on the family of distributions f1(t, θ) the maximum likelihood
estimator γ∗ is asymptotically normal :

√
n(γ∗ − γ) d→ Y = (Y1, Y

T
2 )T ∼ Nk+1(0, i−1(γ)).

Y1 is one dimensional, Y2 is k-dimensional. Using the delta method we get :

√
n(K̂2(t)−K2(t)) D→W2(t) = Y TC2(t; γ),

where
C2(t, γ) = (C21(t, γ), C22(t, γ), C23(t, γ))T ,

C21(t, γ) =
∫ t

0

∂F1
∂r

(t+ ry − y;α, β)dF1(y;α, β),

C22(t, γ) =
∫ t

0

∂F1
∂α

(t+ ry − y;α, β)dF1(y, α, β) + F1(t+ ry − y;α, β)d(∂F1
∂α

(y;α, β)),
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C23(t, γ) =
∫ t

0

∂F1
∂β

(t+ ry − y;α, β)dF1(y, α, β) + F1(t+ ry − y;α, β)d(∂F1
∂β

(y;α, β)).

The random variable W2(t) is linear function of Y . If j ≥ 2 then

√
n(K̂j(t)−Kj(t))

D→Wj(t).

So the variance

V ar(Wj(t)) = V ar(Cj(t, γ)TY ) = CTj (t, γ)i−1(γ)Cj(t, γ)

is estimated by nCTj (t, γ̂)I−1(γ̂)Cj(t, γ̂), and variance σ2
K̂j(t)

of the estimator K̂j(t) is estimated
by

σ̂2
K̂2(t) = CT2 (t, γ̂)I−1(γ̂1)C2(t, γ̂),

and the matrix I(γ̂) is replaced by −῭(γ̂). So the asymptotic (1−α) confidence interval for Kj(t)
is

K̂j(t)± σ̂K̂j(t)z1−α/2. (4.20)

And one can write the asymptotic confidence interval (K2(t),K2(t)) for K2(t), where

K2(t) =

1 + 1− K̂2(t)
K̂2(t)

exp

 σ̂K̂2
z1−α/2√

K̂2(t)(1− K̂2(t))


−1

,

K2(t) =

1 + 1− K̂2(t)
K̂2(t)

exp

− σ̂K̂2
z1−α/2√

K̂2(t)(1− K̂2(t))


−1

,

10.2 Noncensored (complete) data

Suppose that the hypothesis H∗0 is true and we have following data,

a) the failure times T11, · · · , T1n1 of n1 units tested in hot conditions,

b) the failure times T21, · · · , T2n2 obtained by testing of n2 units in warm conditions,

and in hot conditions the cumulative distribution function F1(t;θ) is absolutely continuous and
belongs to the parametric Birnbaum-Saunders family, here θT = (α, β). Set γ = (r,θT )T . The
maximum likelihood estimator γ̂ = (r̂, θ̂T )T of the parameter γ maximizes following loglikelihood
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function

`(γ) = −n ln(αβ) + n

α2 −
1

2α2β

n1∑
i=1

T1i −
β

2α2

n1∑
i=1

T−1
1i −

r

2α2β

n2∑
j=1

T2j −
β

2rα2

n2∑
j=1

T−1
2j

+n2 ln r +
n1∑
i=1

ln
{(

β

T1i

)1/2
+
(
β

T1i

)3/2}
+

n2∑
j=1

ln


(

β

rT2j

)1/2

+
(

β

rT2j

)3/2
 ,

where n = n1 +n2. Parameters can be estimated by solving `(γ) = 0. The plot of the trajectories
of F̂1 and K̂2 is shown in Figure 4.5.

Figure 4.5 – Trajectories of the parametric estimators F̂1 and K̂2 (BS distribution).

Fisher information matrix can be estimated from the second derivatives of the loglikelihood
function i.e.

I(γ) = −E ῭(γ),

and it may be replaced by −῭(γ̂). The second partial derivatives of loglikelihood function are

∂2`

∂β2 = n

β2 −
1

2β2α2

n1∑
i=1

T1i
β + 2 + 3

(
β
T1i

)
B2
i

− 1
2β2α2

n2∑
j=1

rT2j
β + 2 + 3

(
β

rT2j

)
A2
j

−

1
α2β3

 n1∑
i=1

T1i + r
n2∑
j=1

T2j

 ,

∂2`

∂r2 = −n2
r2 + 1

2r2α2

n2∑
j=1

rT2j
β + 6 + 3 β

rT2j

A2
j

− 1
α2r2

n2∑
j=1

β

rT2j
,
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∂2`

∂α2 = n

α2 −
3
α2

 n1∑
i=1

A2
i +

n2∑
j=1

B2
j

 , ∂2`

∂α∂β
= − 1

αβ

 n1∑
i=1

AiBi +
n2∑
j=1

AjBj

 ,

∂2`

∂β∂r
= − 1

βα2r

n2∑
j=1

1
A2
j

+ 1
2α2βr

n2∑
j=1

(
α2A2

j − 2
)
,

∂2`

∂α∂r
= 1
rα

n2∑
j=1

AjBj ,

where

Ai = 1
α

{(
T1i
β

) 1
2
−
(
β

T1i

) 1
2
}
, Bi = 1

α

{(
T1i
β

) 1
2

+
(
β

T1i

) 1
2
}
,

Bj = 1
α


(
rT2j
β

) 1
2
−
(

β

rT2j

) 1
2
 , Aj = 1

α


(
rT2j
β

) 1
2

+
(

β

rT2j

) 1
2
 .

And the elements of the vector C2(t, γ) for BS distribution are

C21(t, γ) = 1
2αβ

∫ t

0
y

{(
β

t+ ry − y

) 1
2

+
(

β

t+ ry − y

) 3
2
}
ϕ (A(t+ ry − y)) f1(y;α, β)dy,

C22(t, γ) =
∫ t

0

(
∂

∂α
F1(t+ ry − y;α, β)f1(y, α, β) + F1(t+ ry − y;α, β)

∣∣∣∣ ∂∂αF1(y;α, β)
∣∣∣∣′
y

)
dy,

C23(t, γ) =
∫ t

0

(
∂

∂β
F1(t+ ry − y;α, β)f1(y, α, β) + F1(t+ ry − y;α, β)

∣∣∣∣ ∂∂βF1(y;α, β)
∣∣∣∣′
y

)
dy,

where

∂

∂α
F1(t) = − 1

α
A(t)ϕ(A(t)), ∂

∂β
F1(t) = − 1

2βB(t)ϕ(A(t)),

A(t) = 1
α

{(
t

β

) 1
2
−
(
β

t

) 1
2
}
, B(t) = 1

α

{(
t

β

) 1
2

+
(
β

t

) 1
2
}
,

∣∣∣∣ ∂∂αF1(y;α, β)
∣∣∣∣′
y

= − 1
2α2β

{(
β

y

) 1
2

+
(
β

y

) 3
2
}
ϕ(A(y))[1−A2(y)],

∣∣∣∣ ∂∂βF1(y;α, β)
∣∣∣∣′
y

= − 1
4αβ2ϕ(A(y))

({(
β

y

) 1
2
−
(
β

y

) 3
2
}
−B(y)A(y)

{(
β

y

) 1
2

+
(
β

y

) 3
2
})

,

and f1(y) is the pdf of the BS distribution.
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10.2.1 Simulation Study

In this section some simulated results are given for confidence intervals with Birnbaum-
Saunders distribution and Lognormal distribution. The mathematical formulas for Lognormal
distribution are given in Appendix 2.

10.2.2 Birnbaum Saunders Distribution

Let us consider the case of complete sample of size n1 = n2 = 100. The experiment is
repeated 2000 times. We find by simulation the confidence levels of intervals using formulas with
1− α = 0.9. We simulated failure times T1i and T2j from Birnbaum-Saunders distribution with
the parameters :

T1i ∼ BS(α1, β1), T2j ∼ BS(α2, β2)

α1 = α2 = 2, β1 = 2, β2 = 4.

For various values of t the proportions of confidence interval (C.L.) realizations covering the
true value of the distribution function K2(t) are given in table 4.1.

t 10 20 50 70 100
K2(t) 0.6428 0.8374 0.9813 0.9953 0.9994

Confidence level (%) 80.35 75.23 69.33 57.20 45.89

Table 4.1 – Confidence level for the c.d.f. of the redundant system (BS distribution).

10.2.3 Lognormal Distribution

Let us consider the case of complete sample of size n1 = n2 = 100. Each sample is repeated
5000 times. We find by simulation the confidence levels of intervals using formulas with 1−α =
0.9. We simulated failure times T1i and T2j from Log-normal distribution with the parameters :

T1i ∼ LN(m1, σ1), T2j ∼ LN(m2, σ2)

m1 = 1, m2 = −0.3862944, σ1 = σ2 = 1.5.

For various values of t the proportions of confidence interval (C.L. ) realizations covering the
true value of the distribution function K2(t) are given in table 4.2.

The simulation studies for inverse Gaussian and generalized Weibull distributions are publi-
shed in Nikulin et al. (2011c).
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t 10 50 100 200 300
K2(t) 0.7119 0.9556 0.9855 0.9961 0.9983

Confidence level (%) 82.25 88.87 83.55 86.60 89.04

Table 4.2 – Confidence level for the c.d.f. of the redundant system (Log-normal distribution).

10.3 Censored data

The cumulative distribution function of the redundant system for censored data can be obtain
by using the same formula (4.19), although the estimation of parameters and information matrix
can be calculated from the following way.

Suppose that we have following censored data :

a) right censored sample
(X11, δ11), . . . , (X1n1 , δ1n1),

of size n1, where
X1i = T1i ∧ C1i, δ1i = 1{T1i≤C1i},

T1i are the failure time of units tested in hot conditions, C1i are the censored times ;

b) right censored sample
(X21, δ21), . . . , (X2n1 , δ2n1),

of size n2, where
X2i = T2j ∧ C2j , δ2j = 1{T2j≤C2j},

T2j are the failure time of units tested in warm conditions, C2j are the censored times.

Let denote
m1 =

n1∑
i=1

δ1i, m2 =
n2∑
j=1

δ2j , and m = m1 +m2.

By using the data from above plan of experiment, the maximum likelihood estimator γ̂ =
(r̂, θ̂T )T of the parameter γ = (r,θT )T = (r, α, β)T can be estimated from the following loglike-
lihood function

`(γ) =
n1∑
i=1

δ1i ln f1(X1i;θ) +
n1∑
i=1

(1− δ1i) lnS1(X1i;θ) +m2 ln r

+
n2∑
j=1

δ2j ln f1(rX2j ;θ) +
n2∑
j=1

(1− δ2j) lnS1(rX2j ;θ). (4.21)
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The loglikelihood function in terms of Birnbaum-Saunders distribution can be written as

`(γ) = −m(lnα+ ln β) +m2 ln r

+
n1∑
i=1

δ1i ln
{(

β

X1i

) 1
2

+
(
β

X1i

) 3
2
}

+
n2∑
j=1

δ2j ln


(

β

rX2j

) 1
2

+
(

β

rX2j

) 3
2


− 1
2α2

 n1∑
i=1

δ1i

(
X1i
β

+ β

X1i
− 2

)
+

n2∑
j=1

δ2j

(
rX2j
β

+ β

rX2j
− 2

)
+

n1∑
i=1

(1− δ1i) lnS1(X1i;α, β) +
n2∑
j=1

(1− δ2j) lnS1(rX2j ;α, β).

Maximum likelihood estimator γ̂ can be find by equating the score vector to zero, i.e. ˙̀(γ) = 0.
The estimated values of F̂1 and K̂2 with censored data are plotted in Figure 4.6.

Figure 4.6 – Trajectories of the parametric estimators F̂1 and K̂2 (censored data).

The Fisher’s information matrix is

I(γ) = −E ῭(γ),

and it may be estimated by −῭(γ̂). The second partial derivatives are

∂2`

∂r2 = −m2
r2 + 1

2r2α2

n2∑
j=1

δ2j

rX2j
β + 6 + 3( β

rX2j
)

A2
j

− β

α2r2

n2∑
j=1

δ2j
1

rX2j
+

1
4r2

n2∑
j=1

(1− δ2j)ϕ(Bj)
[1− Φ(Bj)]

[
1
α

{(
rX2j
β

) 1
2 + 3

(
β

rX2j

) 1
2
}

+A2
jBj

]
−A2

jϕ(Bj)

(1− Φ(Bj))2 ,
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∂2`

∂α2 = m

α2 −
3
α2

 n1∑
i=1

δ1iA
2
i +

n2∑
j=1

δ2jB
2
j

+

1
α2

n1∑
i=1

(1− δ1i)
Aiϕ(Ai)

[
(1− Φ(Ai))

[
A2
i − 2

]
−Aiϕ(Ai)

]
[1− Φ(Ai)]2

+ 1
α2

n2∑
j=1

(1− δ2j)
Bjϕ(Bj)

[
(1− Φ(Bj))(B2

j − 2)−Bjϕ(Bj)
]

[1− Φ(Bj)]2
,

∂2`

∂β2 = m

β2 −
1

2β2α2

n1∑
i=1

δ1i

X1i
β + 2 + 3( β

X1i
)

B2
i

− 1
2β2α2

n2∑
j=1

δ2j

rX2j
β + 2 + 3( β

rX2j
)

A2
j

− 1
α2β3

 n1∑
i=1

δ1iX1i + r
n2∑
j=1

δ2jX2j

−
1

4β2

n1∑
i=1

(1− δ1i)ϕ(Ai)
(1− Φ(Ai))

[
1
α

{
3
(
X1i
β

) 1
2 +

(
β
X1i

) 1
2
}
−B2

iAi

]
+B2

i ϕ(Ai)

(1− Φ(Ai))2 −

1
4β2

n2∑
j=1

(1− δ2j)ϕ(Bj)
(1− Φ(Bj))

[
1
α

{
3
(
rX2j
β

) 1
2 +

(
β

rX2j

) 1
2
}
−A2

jBj

]
+A2

jϕ(Bj)

(1− Φ(Bj))2 ,

∂2`

∂β∂r
= − 1

rα2β

n2∑
j=1

δ2j
1
A2
j

+ 1
2rα2β

n2∑
j=1

δ2j
(
α2A2

j − 2
)

+

1
4βr

n2∑
j=1

(1− δ2j)ϕ(Bj)
(1− Φ(Bj))Bj(9 + 2α2B2

j ) +A2
jϕ(Bj)

(1− Φ(Bj))2 ,

∂2`

∂α∂β
= − 1

αβ

 n1∑
i=1

δ1iAiBi +
n2∑
j=1

δ2jAjBj

+

1
2αβ

n2∑
j=1

(1− δ1i)Biϕ(Ai)
(1− Φ(Ai))(A2

i − 1)− ϕ(Ai)Ai
(1− Φ(Ai))2 +

1
2αβ

n2∑
j=1

(1− δ2j)Ajϕ(Bj)
(1− Φ(Bj))(B2

j − 1)− ϕ(Bj)Bj
[1− Φ(Bj)]2

,

∂2`

∂α∂r
= 1

rα

n2∑
j=1

δ2jAjBj + 1
2rα

n2∑
j=1

(1− δ2j)ϕ(Bj)Aj
(1− Φ(Bj))(1−B2

j ) +Bjϕ(Bj)
(1− Φ(Bj))2 ,
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where

Ai = 1
α

{(
X1i
β

) 1
2
−
(
β

X1i

) 1
2
}
, Bi = 1

α

{(
X1i
β

) 1
2

+
(
β

X1i

) 1
2
}
,

Bj = 1
α


(
rX2j
β

) 1
2
−
(

β

rX2j

) 1
2
 , Aj = 1

α


(
rX2j
β

) 1
2

+
(

β

rX2j

) 1
2
 .

The estimator of the variance σ̂2
K̂2(t) of the estimator K̂2(t) is

σ̂2
K̂2(t) = CT2 (t; r̂, α̂, β̂)(−῭(r̂, α̂, β̂))−1C2(t; r̂, α̂, β̂), (4.22)

where C2(t; γ) = (C21, C22, C23)T is given in previous section. The asymptotic (1−α) confidence
interval for K2(t) is calculated from 4.20.

Remark : we can generalize this with multiple standby units based on BS family of life
distribution to increase the reliability. But increase in the number of units increase the cost of
system and complications in the calculations. So, the number of stand-by units depend on the
optimality of the particular under-study system from the industry. The study of the optimality
is the perspective of our work.

10.3.1 Simulation

Let us consider the right censored sample of size n1 = n2 = 100, with 15 percent random
censoring. The experiment is repeated 2000 times. We find by simulation the confidence levels of
intervals using formulas with 1−α = 0.9. We simulated censoring times from uniform distribution
and failure times T1i and T2j from BS distribution with the parameters :

T1i ∼ BS(α1, β1), T2j ∼ BS(α2, β2)

α1 = α2 = 2, β1 = 3, β2 = 6.

For various values of t the proportions of confidence interval (C.L.) realizations covering the
true value of the distribution function K2(t) are given as

t 10 20 50 70 100
K2(t) 0.6428 0.8374 0.9813 0.9953 0.9994

Confidence level (%) 50.44 44.00 41.03 36.72 29.55

Table 4.3 – Confidence level for the c.d.f. of the redundant system (censored data).
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Chi-square type goodness-of-fit test using RRN statistic is applied to various parametric
models and explicit forms of the elements of quadratic forms are presented. The calculation is
still a problem. As the future work a R-package can be developed for RRN test for the selec-
tion of suitable parametric model. Presence of covariates can also be treated i.e. test for the
parametric AFT model for various parametric families. In this thesis we explained the test for
Birnbaum-Saunders AFT model.

Tests for general fluent switching hypothesis formulated using Sedyakin’s reliability principle
and for particular fluent switching hypothesis formulated using accelerated failure time model
are explained. Parametric estimators of the cumulative distribution function K̂2 of redundant
system S(1, 1) using reliability data of components tested under different stresses are calculated.
Estimation of K̂3, · · · , K̂m for redundant system and simulation work can be interesting to do
in further research.

Asymptotic confidence intervals for cumulative distribution function of redundant system
are constructed. Parametric estimators of the system are investigated by simulation using fi-
nite samples. We studied the redundant system for most commonly used models in reliability
analysis like exponential, Weibull, loglogistic, lognormal, inverse Gaussian, generalized Weibull,
and Birnbaum-Saunders distributions. A R-package can be developed for reliability analysis of
redundant system for all these models.
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2 Redundant System for Lognormal Distribution

Suppose that the distribution of failure times in hot and warm conditions is log-normal, i.e.

S1(t) = 1− F1(t) = 1− Φ
( ln t−m

σ

)
.

In the figure 2, we represent the trajectories of the parametric estimators F̂1, K̂2, K̂3 and
K̂4 for the log-normal distribution.

The loglikelihood function

`(r,m, σ) = −n
(

ln σ + m2

2σ2

)
+ n2 ln r

σ2

(
m− ln r

2

)
+
(
m

σ2 − 1
) n1∑
i=1

ln(T1i)+

(
m

σ2 −
ln r
σ2 − 1

) n2∑
j=1

ln(T2j)−
1

2σ2

n1∑
i=1

ln2(T1i)−
1

2σ2

n2∑
j=1

ln2(T2j),

where n = n1 + n2.

The score functions are

∂`

∂r
= n2
rσ2 (m− ln r)− 1

rσ2

n2∑
j=1

ln(T2j),

∂`

∂m
= −nm

σ2 + n2 ln r
σ2 + 1

σ2

n1∑
i=1

ln(T1i) + 1
σ2

n2∑
j=1

ln(T2j),

∂`

∂σ
= −n

(
1
σ
− m2

σ3

)
− n2 ln r

σ3 (2m− ln r)− 2m
σ3

n1∑
i=1

ln(T1i)+

2
σ3 (−m+ ln r)

n2∑
j=1

ln(T2j) + 1
σ3

n1∑
i=1

ln2(T1i) + 1
σ3

n2∑
j=1

ln2(T2j).

To find the estimator γ̂ one can solve the system formed by equalizing the score functions to
zero.

Second partial derivatives of the loglikelihood function are

∂2`

∂r2 = − n2
r2σ2 (m+ ln r + 1) + 1

r2σ2

n2∑
j=1

ln(T2j);
∂2`

∂r∂m
= n2
rσ2 ;

∂2`

∂r∂σ
= 2n2
rσ3 (−m+ ln r) + 2

rσ3

n2∑
j=1

ln(T2j);
∂2`

∂m2 = − n

σ2 ;
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∂2`

∂m∂σ
= 2nm

σ3 − 2n2
ln r
σ3 −

2
σ3

n1∑
i=1

ln(T1i)−
2
σ3

n2∑
j=1

ln(T2j);

∂2`

∂σ2 = −n
(
− 1
σ2 + 3m2

σ4

)
+ 3n2

σ4

(
2m ln r − ln2 r

)
+ 6m
σ4

n1∑
i=1

ln(T1i)+

6
σ4 (m− ln r)

n2∑
j=1

ln(T2j)−
3
σ4

n1∑
i=1

ln2(T1i)−
3
σ4

n2∑
j=1

ln2(T2j).

So the Fisher’s information matrix is

I(γ) =


n2
r2σ2 − n2

rσ2 0
− n2
rσ2

n
σ2 0

0 0 2n
σ2

 .
The inverse of the Fisher’s information matrix is

I−1(γ) =


nr2σ2

n1n2
rσ2

n1
0

rσ2

n1
σ2

n1
0

0 0 σ2

2n

 .
Taking j = 2, the c.d.f. K2(t) is estimated by

K̂2(t) = 1√
2πσ̂

∫ t

0

1
y

Φ
( ln(t+ r̂y − y)− m̂

σ̂

)
exp

{
− ln y − m̂

2σ̂2

}
dy.

C2(t, γ) = (C21(t, γ),C22(t, γ),C23(t, γ))T ,

C21(t, γ) =
∫ t

0

∂F1
∂r

(t+ ry − y,m, σ)dF1(y,m, σ),

C22(t, γ) =
∫ t

0

∂F1
∂m

(t+ ry − y,m, σ)dF1(y,m, σ) + F1(t+ ry − y,m, σ)d(∂F1
∂m

(y,m, σ)),

C23(t, γ) =
∫ t

0

∂F1
∂σ

(t+ ry − y,m, σ)dF1(y, µ, λ) + F1(t+ ry − y,m, σ)d(∂F1
∂σ

(y,m, σ)).

The partial derivatives are

∂F1
∂r

(t+ ry − y,m, σ) = y

σ(t+ ry − y)ϕ
( ln(t+ ry − y)−m

σ

)
,
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∂F1
∂m

(t+ ry − y;m,σ) = − 1
σ
ϕ

( ln(t+ ry − y)−m
σ

)
,

∂F1
∂σ

(t+ ry − y;m,σ) = − ln(t+ ry − y)−m
σ2 ϕ

( ln(t+ ry − y)−m
σ

)
,

we can write also

C21(t, γ) = 1√
2π

∫ t

0

1
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2σ2
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ϕ
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where ϕ(.) is the density function of the standard normal distribution.
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Appendix

3 Data Sets

3.1 Bronchopulmonary dysplasia (BPD)-data, Hosmer and Lemeshow (2008)

id surfact ondays censor id surfact ondays censor id surfact ondays censor
1 0 59 1 27 0 553 1 53 1 30 1
2 0 514 1 28 0 76 1 54 1 45 1
3 0 313 1 29 0 134 1 55 1 23 1
4 0 631 1 30 0 116 1 56 1 54 1
5 0 107 1 31 0 83 1 57 1 63 1
6 0 71 1 32 0 33 1 58 1 14 1
7 0 583 1 33 0 317 1 59 1 96 1
8 0 91 1 34 0 600 1 60 1 103 1
9 0 66 1 35 0 362 1 61 1 71 1
10 0 95 1 36 0 333 1 62 1 71 1
11 0 13 1 37 0 68 1 63 1 64 1
12 0 5 1 38 0 217 1 64 1 253 1
13 0 85 1 39 0 733 0 65 1 54 1
14 0 619 0 40 0 546 1 66 1 236 1
15 0 580 1 41 0 546 1 67 1 51 1
16 0 196 1 42 0 56 1 68 1 134 1
17 0 475 1 43 0 48 1 69 1 31 1
18 0 32 1 44 1 43 1 70 1 274 0
19 0 161 1 45 1 250 1 71 1 204 1
20 0 193 0 46 1 110 1 72 1 118 1
21 0 59 1 47 1 249 1 73 1 424 1
22 0 62 1 48 1 181 1 74 1 56 1
23 0 95 1 49 1 70 1 75 1 310 0
24 0 63 1 50 1 197 1 76 1 108 1
25 0 26 1 51 1 306 1 77 1 51 1
26 0 16 1 52 1 53 1 78 1 70 1

Variables in the data set are :

Variable Description Codes/Values
id Study ID 1 - 78
surfact Surfactant use 0 = No, 1 = Yes
ondays Days in Oxygen Days
censor Censoring Indicator 1 = Off Oxygen, 0 = Still on Oxygen at Study End
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3 Data Sets

3.2 Time to breakdown at each of voltage levels (Nelson((1990)))

Voltage Level (νi) ni Breakdown Time Ti
26 3 5.79, 1579.52, 2323.7
28 5 68.85, 426.07, 110.29, 108.29, 1067.6
30 11 17.05, 22.66, 21.01, 175.88, 139.07, 144.12, 20.46,

43.40, 194.90, 47.30, 7.74
32 15 0.40, 82.85, 9.88, 89.29, 215.10, 2.75, 0.79, 15.93, 3.91,

0.27, 0.69, 100.58, 27.80, 13.95, 53.24
34 19 0.96, 4.15, 0.19, 0.78, 8.01, 31.75, 7.35, 6.50, 8.27,

33.91, 32.52, 3.16, 4.85, 2.78, 4.67, 1.31, 12.06, 36.71,
72.89

36 15 1.97, 0.59, 2.58, 1.69, 2.71, 25.50, 0.35, 0.99, 3.99, 3.67,
2.07, 0.96, 5.35, 2.90, 13.77

38 8 0.47, 0.73, 1.40, 0.74, 0.39, 1.13, 0.09, 2.38
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