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Abstract

Cosmology is a relatively young discipline. Originally a branch of astronomy, it is nowaday

the cross road where fundamental physics, particle physics and astrophysics meet. This

interdisciplinary character has contributed to an acceleration progress in the field. The

past two decades have witnessed a great leap forward in our understanding of the universe

as a whole and of the origin and evolution of the structures it contains. Some important

questions have been settled such as the precise value of the present day expansion rate H0

of the universe and the geometry of the spatial sections of the universe. Other questions,

such as when and how cosmic structures formed are on the way of being definitively

addressed. At the same time, new questions have been raised concerning the physical

nature of inflation and of dark energy, the mysterious causes of the accelerated expansion

of the universe. Many questions, however, still remain without any convincing answer.

Among them, what is dark matter? Why is it escaping detection ?

Undoubtedly, what makes cosmology so exciting and challenging is that it is becoming

a precise, data-driven field. Many independent cosmic probes seem to point toward a

coherent, coarse grained picture of the universe, usually called the concordance model

of cosmology. Over the next decade, a host of information from new telescopes and

satellites (LOFAR, SKA, Planck, LSST, BigBoss, EUCLID, LIGO, LISA) will be available

at all wavelengths. It is not improbable, therefore, that we will witness some unexpected

observational discoveries triggering new shifts in theoretical paradigms.

At the same time, cosmology is becoming an increasingly non-linear field. Thanks to

the increasing computing power, numerical simulations of astrophysical processes and of

cosmic structure formations will become ever more sophisticated and will provide us with

a better understanding of the dark matter physics and of also the physics of the dark ages.

Furthermore, the analytical approaches of fundamental physics will help to work out more

quantitative predictions about high energy phenomena in the early universe, or about the

skeleton of gravitation at both micro (quantum) and macro (cosmic) scales.

At present, despite formidable progress in data collection from both ground and space,

and despite the development of performant cosmic probes and of sophisticated error anal-

ysis schemes, observational constraints on fundamental cosmological quantities are still

rather loose. As a result of the imprecision on the amplitude on the dark matter and

dark energy densities or on the dark energy equation of state, we cannot yet discriminate

between the (many) competing theories proposed to interpret the observations. The over-

arching questions are is it necessary to refine the standard description of the universe by

adding new features, what can be said about them, and how they may be related to the

actual view of the uinverse. Cosmologists are therefore in a state of theoretical agnos-

ticism, or if one prefers, the standard model of cosmology is characterized by too many
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degrees of freedoms.

The main line of this thesis is that our best chances of finding and characterizing the

essential ingredients of a well grounded cosmological model is by enlarging the arsenal of

methods with which we can hunt for new physics. While it is of paramount importance to

continue to refine, de-bias and improve, the testing strategies that contributed to establish

the concordance model, it is also crucial to challenge, with new methods, all the sectors

of the current cosmological paradigm. This thesis, therefore, adresses the challenge of

developing new and performant cosmic probes that aim at optimizing the scientific output

of future large redshift surveys. The goal is twofold. From the theoretical side, I aim

at developing new testing strategies that are minimally (if not at all) affected by astro-

physical uncertainties or by not fully motivated phenomenological models. This will make

cosmological interpretations easier and safer. From the observational side, the goal is to

gauge the performances of the proposed strategies using current, state of the art, redshift

data, and to demonstrate their potential for the future large cosmological missions such

as BigBOSS and EUCLID.

A more detailed description of the content of my work is the following. In chapter I, after

reviewing the essential theoretical and observational bases of the concordance model of

cosmology, I introduce the theoretical background necessary to characterize the clustering

of matter on large cosmic scales. I introduce my notations and briefly overview the current

understanding of the hierarchical clustering of cosmic matter, both from a dynamical and a

statistical point of view. Then, I discuss the high-order statistical descriptors of the density

perturbation field, and, in particular, the quantities that will be extensively studied in this

thesis, i.e. the one- and two-point cumulants of the cosmic density fields. I finally conclude

by discussing the biasing issue, the puzzling problem of relating the spatial distributions

of dark matter and luminous baryons on large cosmic scales.

I present in Chapter 2 an original way for testing the reliability of a fundamental facet

of the Cosmological Principle, i.e. that we are not privileged observers of the universe. An

often explored approach for addressing some cosmological puzzles, in fact, is to question

the validity of the Cosmological Principle, i.e. the statement that the universe looks

homogeneous and isotropic to any comoving observers. The goal of my analysis is thus

to test the coherence of this founding assumption by identifying the scale above which

the universe appears isotropic to any comoving observers. I describe how I measured

the scale of every-where isotropy using luminous red galaxies from the Sloan Digital Sky

Survey. I finally show that the galaxy distribution can be considered as being everywhere

isotropic on scales larger than 150h−1Mpc. The content of this section is presented in

the paper ”The scale of cosmic Isotropy”, by Marinoni, Bel & Buzzi, 2012, JCAP,

arXiv:1205.3309

I present, in Chapter 3, an original way of estimating the root mean square of matter

fluctuations in spheres of radius R without any prior knowledge on the power spectrum

of matter fluctuations. To this purpose I first show that, if the bias between galaxies and
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matter can be described by a non-linear, local, transformation, then the 2-point reduced

cumulants of the galaxy density field (Cg,nm) conserve the same hierarchical properties

as the corresponding mass statistics Cnm. I use this result to show how one can recover

the biasing function by computing the one-point and two-point reduced cumulants of the

matter and galaxy density fields. Finally, I derive a formula that allows to estimate the real

space amplitude of the matter fluctuation (on a linear scale R) directly from redshift space

data. The robustness of the formalism as well as its performances are tested using two

different numerical simulations of the large scale structure of the universe (LasDamas and

Horizon). I show that it is possible to recover the rms amplitude of the matter fluctuations

hidden in the simulations. Some of the material presented in this chapter is published in

the paper ”Second-order matter fluctuations via higher order galaxy correlators” by Bel

& Marinoni 2012, MNRAS, 424, 971

I present, in Chapter 4, a simple (probably the simplest) cosmological test that one

can think of in order to fix the values of fundamental cosmological parameters. Simplicity

stems from the fact that this cosmic test, while exploiting the clustering properties of

galaxies, is specifically engineered to be independent of linear bias, of redshift distortions

and of the non-linear phenomenological modeling of the matter power spectrum. Moreover,

it does not require the calibration of any standard rod and it is free from any look-back

time (evolutionary) effects. This cosmic probe is constructed as the ratio η between the

one and two-point, second-order moments of the smoothed galaxy density field. I present

the cosmological constraints on the reduced matter density parameter Ωm obtained by

analyzing with this technique the luminous red galaxy sample of the Sloan Digital Sky

Survey. By taking a strong gaussian prior for H0 (from HST measurements) and for Ωbh
2

(from Big Bang nucleo-synthesis measurements) and a weak prior for the spectral index

ns, I constrain the value of Ωm with a relative precision of 11%. This result is even

more remarkable if one considers that it has been obtained without any CMB prior, and

without assuming neither the flatness of the universe nor the hypothesis that dark energy

is essentially the Einstein cosmological constant (that is without assuming that the dark

energy equation of state is w = −1). The material of this section is published in the

paper ”Determination of the abundance of cosmic matter via the cell count moments of

the galaxy distribution”, by Bel & Marinoni, 2012, submitted.



4



Contents

1 Introduction 9

1.1 A quick overview of the standard model of cosmology . . . . . . . . . . . . 9

1.1.1 Standard cosmological model . . . . . . . . . . . . . . . . . . . . . . 9

1.1.2 Observational bases of the standard cosmological model . . . . . . . 14

1.1.3 Beyond the standard model . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Dynamics of cosmic structures . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Solutions in the linear regime . . . . . . . . . . . . . . . . . . . . . . 24

1.2.2 Solutions in the weakly non-linear regime . . . . . . . . . . . . . . . 26

1.3 Statistics of cosmic structures . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3.1 One-point statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3.2 Generating functions . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.3.3 Multi-point statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.3.4 The 2-point autocorrelation function in Fourier space : the power

spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.3.5 Hierarchy of N -point autocorrelation functions . . . . . . . . . . . . 40

1.3.6 The continuum-discrete connection: sampling a stochastic field . . . 42

1.3.7 The continuum-discrete connection: statistics of smoothed fields . . 45

1.3.8 The correlation hierarchy of smoothed fields predicted by the WNLPT 46

1.3.9 The correlation amplitudes of smoothed fields predicted by the

WNLPT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.4 Galaxy Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

2 The scale of cosmic isotropy 55

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

2.2 The Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

2.3 Data: the SDSS DR7 sample . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.4 Analysis of SDSS data and Comparison to Theoretical Models . . . . . . . 65

2.4.1 Random catalogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

2.4.2 SDSS LRG sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

2.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5



6 CONTENTS

3 The rms of matter fluctuations 73

3.1 Mapping matter into galaxy: statistical relations . . . . . . . . . . . . . . . 74

3.1.1 The local, non-linear, galaxy biasing function . . . . . . . . . . . . . 74

3.1.2 N-point galaxy autocorrelation functions . . . . . . . . . . . . . . . . 75

3.1.3 The correlators of the galaxy density field . . . . . . . . . . . . . . . 76

3.1.4 Hierarchy of reduced galaxy correlators . . . . . . . . . . . . . . . . 77

3.2 Non-linear bias in real space . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3 Constructing the estimator of σm . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4 From real- to redshift-space . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 Applying the Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.5.1 Statistical estimators of the galaxy correlators . . . . . . . . . . . . 83

3.5.2 High order reduced correlators extracted from the Hori-

zon/LasDamas simulations . . . . . . . . . . . . . . . . . . . . . . . 87

3.5.3 Estimation of σR(z) . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.5.4 Estimation of the local value of σ8 . . . . . . . . . . . . . . . . . . . 92

3.5.5 Consistency tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.6 Accuracy test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4 A new cosmic probe: The clustering ratio of galaxies 103

4.1 The method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.2 Blind Analysis of numerical simulations . . . . . . . . . . . . . . . . . . . . 111

4.3 The clustering ratio test applied to SDSS DR7 sample. Cosmological con-

straints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 The clustering ratio test applied to the VIPERS sample . . . . . . . . . . . 116

4.4.1 Overview of VIPERS . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

4.4.2 Mask effects on galaxy sampling . . . . . . . . . . . . . . . . . . . . 117

4.4.3 Reconstructing the count probability PN . . . . . . . . . . . . . . . . 123

4.4.4 Preliminary results on VIPERS data . . . . . . . . . . . . . . . . . . 125

A Second order perturbation theory 139

B 2-point moments with respect to 2-point cumulants 153

C Reduced correlators and cumulants of the smoothed

matter field 155

D Moment generating function 161

E Generating function of factorial moments 163



CONTENTS 7

F Higher order galaxy 2-point cumulant moments 165



8 CONTENTS

Remerciements



Chapter 1

Introduction

1.1 A quick overview of the standard model of cosmology

In this introductory chapter I will briefly review our current understanding about the

structure of the cosmic space-time and the evolution of its matter and energy content. I

will introduce the essential elements of the standard theory which models the kinematical

and dynamical properties of the cosmic metric and I will discuss how perturbations of this

smooth background grow, evolve and eventually turn into the large-scale structures that

populate the universe. I will also present the observational evidences that support and

confirm theoretical predictions, and I will discuss the major challenging issues that the

model is facing at present.

1.1.1 Standard cosmological model

The description of the universe is built on two independent major assumptions:

• the distribution of cosmic matter and energy appears homogeneous and isotropic to a

class of fundamental cosmic observers, called comoving observers. These are defined

as those particular set of observers, freely falling within the cosmic gravitational field,

that move with the average velocity of matter in their respective neighborhoods.

According to this cosmological principle (CP), there are no privileged positions in

the universe.

• the general relativistic theory of gravitation (GR) still holds and applies on large

cosmic scale.

As a consequence, the universe is modeled as a 4D manifold (with three spatial and one

temporal dimensions), it is possible to define a universal time which ticks the same way for

every comoving observer, and the separation between 2 infinitesimally closed space-time

events is given by the Robertson & Walker (Robertson, 1929; Walker, 1936) line element

9
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ds2 = (cdt)2 − a(t)
{

dχ2 + S2
k(χ)

(

dθ2 + sin θdφ2
)}

, (1.1)

where c is the speed of light in vacuum, and t is the cosmic time. Note that spatial

points (or equivalently comoving matter particles) are labeled using spherical comoving

coordinates (χ, θ, φ): χ represents the radial geodesics while θ and φ are the two degrees

of freedom on sky. The spatial configurations compatible with the symmetries implied by

the PC are only 3 and they are labeled by the index k. A flat universe (k = 0), in which

case S0(χ) = χ, a positively(/negatively) curved universe (k = +1(/ − 1)), in which case

Sk(χ) = sin(χ)(/ sinh(χ)). Note, also, that comoving (i.e. time independent) distances are

transformed into physical distance by the scale factor a(t). That is, the physical separation

~r at the same cosmic instant t, between two space positions of comoving separation ~x at

the same cosmic instant t, is

~r = a~x.

By taking its time derivative we deduce that the relative velocity between comoving ob-

servers is

~V = ȧ~x,

where the dot indicates a derivative with respect to cosmic time. From the two expressions

above it is straightforward to deduce the Hubble (1929) law

~V = H~r,

where H ≡ ȧ
a is a time dependent parameter (Hubble parameter) which contains informa-

tion about the cosmic expansion rate. Two comoving observers separated by the spatial

distance |~r| have a relative velocity of H|~r|, and their kinematics (expansion/contraction)

depends on the sign of the parameter H (positive/negative). Since we cannot measure

cosmic separations via a ruler, distances are not cosmological observables and can only be

defined via theoretical models. Among the various possible operational definitions (Hogg,

1999) , of particular importance is the so called radial geodesic distance between two

comoving coordinates. In fact, it can be demonstrated that other different operational

definitions can be simply deduced from the knowledge of this fundamental one. The co-

moving separation χ is computed along the photon path that connects the emitter and

the receiver. By imposing that ds = 0 in 1.1, and by setting dθ = dφ = 0, one obtains

χ ≡ c

∫ tr

te

dt

a(t)
, (1.2)

where te and tr are the emission and reception time respectively. An immediate conse-

quence of this relation is that the wavelength of the traveling photon is stretched during

the propagation in an expanding universe. The cosmological shift in wavelength between

emission λe and reception λ0, parameterized via the redshift z ≡ (λr − λe)/λe, is in fact
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linked to the cosmic scale factor at the emission te and reception time t0 via the relation

a(t0)

a(t)
= 1 + z. (1.3)

where a0 is the scale factor today, a0 ≡ a(t0).

It has been shown by Slipher (1912) that galaxies appear to show a systematic redshift

(z > 0) while Hubble (1929) found that the galactic redshift correlates linearly with the

distance of the emitter z ∝ d. This last remarkable observation confirms a prediction of

equation 1.3. If t ∼ t0, i.e. for small separations between the source and the receiver,

d =
cz

H(t0)
. (1.4)

Within the standard model of cosmology, the redshift is therefore a proxy for distance.

We stress that since the Hubble constant H0 was poorly constrained in the past, with values

ranging in the interval (50, 100) km s−1Mpc−1, even in the era of ‘precision cosmology,

it is still common practice to express the value of this constant via the a-dimensional

Hubble parameter h, defined as H0 = 100h km s−1Mpc−1. As a consequence, cosmological

distances are expressed in units of h−1Mpc.

Since redshift, as opposite to photon travel time, is a directly measurable quantity,

equation 1.2 can be re-expressed in a more observationally friendly way as

a0χ ≡
c

H0

∫ z

0

dx

E(x)
, (1.5)

where, by definition, H0 ≡ H(t0) and where E(z) ≡ H(z)/H0 is called the evolution

parameter. The distance-redshift relation (equ. 1.5) shows that if we know the Hubble

rate H at all the intermediate redshift between t0 (today) and te we can infer the distance

to any specific extragalactic object. Despite it is possible to try to constrain the scaling of

H(z) directly via observations (Percival et al., 2010), it is standard practice to let theory

to predict how H evolves as a function of redshift. This second possibility follows from

assuming that the dynamics of the universe as a whole is ruled by gravity, and that the

strength of this field is correctly described by the Einstein’s field equations (hereafter EFE,

Einstein, 1915)

Rµν −
1

2
Rgµν − Λgµν =

8πG

c4
Tµν , (1.6)

where Rµν is the Ricci tensor, R is the Ricci scalar, gµν is the metric tensor, Λ is the

cosmological constant, G is Newton’s gravitational constant, and, finally, Tµν is the stress

energy tensor of the various cosmic species. The equations (1.1.1) are used to link the

space-time properties (LHS) to a given distribution of sources(RHS). Originally, the cos-

mological constant was introduced by Einstein in order to allow a static universe (H = 0)

to contain matter. This term, however, was dropped out from as soon as Hubble found
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convincing evidences about the expansion of the universe. Now days, this parameter has

found again its place in the EFE. It is the simplest ingredient that allows explaining the

fact that the late time expansion of the universe is accelerated.

By exploiting the CP and the EFE, and by assuming as well that the cosmic species

behave effectively as perfect fluids, Friedmann (1922) (originally) and Lemaitre (1931)

(independently) were able to show that the scale factor of the universe evolves according

to the following system of equations







(
ȧ

a

)2

+ k
c2

a2
=

8πG

3

∑

i

ρi

2
ä

a
+

(
ȧ

a

)2

+ k
c2

a2
= −8πG

∑

i

Pi

c2

, (1.7)

where ρi and Pi are respectively the mass density and pressure of the different cosmic

components (e.g. radiation, relativistic particles, cold matter...).

It is standard practice, to recast the first Friedmann equation into a more telling form

1 − Ωk(t) =
∑

i

Ωi(t). (1.8)

where Ωi ≡ 8πGρi/(3H
2) are the reduced density parameters associated to the specie

i and Ωk ≡ −kc2/(aH)2 is the effective reduced density associated to the curvature of

space. The meaning of this equation can then be easily spelled out: “let me know about

the energy content of the Universe, and I will tell you about its geometry”

Combining the first and second Friedmann & Lemaitre (FL) equations, and assum-

ing that different species do not interact nor exchange energy, one finds two more

equations, that is the relativistic analog of a continuity equation for each cosmic

component

ρ̇i + 3H(t)

(

1 +
Pi

ρic2

)

ρi = 0. (1.9)

and the acceleration or Raychaudhuri equation

ä

a
= −

4πG

3
(ρi + 3

Pi

c2
). (1.10)

By parameterizing the equation of state of a given fluid as wi ≡ Pi/(ρic
2), the differential

equation (1.9) can be solved to give the evolution of density as a function of the redshift

ρi(z) = ρi,0e
3
∫ z

0
(1+wi)d ln(1+z), (1.11)
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where ρi,0 refers to the present day density. If the equation of state parameter wi can be

assumed to be constant (as in the case of cold matter, relativistic particles or radiation)

then the time evolution of the reduced density parameters is simply

Ωi = Ωi,0 (1 + z)3(1+wi) . (1.12)

Since matter on cosmological scales can be safely considered as being collision-less,

wm = 0. On the other hand, a photon fluid has a non negligible pressure and it is

characterized by a constant equation of state wr = 1/3. Note that the cosmological

constant can be effectively interpreted as being the energy density associated to a specie

(the vacuum) with a peculiar equation of state, i.e. w = −1. To this purpose it is

enough to change place (from the LHS to the RHS) to the Λ term in eq. 1.1.1 and define

ρΛ ≡ Λc2/(8πG). This simple algebraic operation is however rich in physical consequences,

the implications of which will be soon addressed.

We are now in the position to write down the expected expansion rate of the universe

as function of its matter-energy content. This expression reads

H(z) = H0

√

Ωk,0(1 + z)2 + Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩΛ,0, (1.13)

and its is completely determined once the abundance of the different cosmic species Ωi

is known. Performant cosmological probes (that will be described in detail in the next

session) gives us precise information about the value of these fundamental cosmological

parameters and help us to draw important physical conclusions about the structure and

dynamics of the universe. In particular, current observations indicate that

• the present day value of the Hubble constant is positive and small (H0 = 73.8 ± 2.4

km/s/Mpc), that is the universe is expanding and fairly old (∼ 13.5 Gyrs).

• ordinary baryonic matter, i.e. massive standard model particles, is a minority (∼

1/6) of all forms of matter (Ωb = (0.021±0.001)h−2). This means that the dynamics

of the universe is essentially driven by dark matter, that is particles that interact with

the rest of the world only gravitationally. Although the first evidences about this

non-standard cosmic component date back to 1933 (Zwicky, 1933), this cosmological

component has yet to be directly detected in laboratory.

• matter is a minority of all the form of energy Ωm = 0.247 ± 0.026 (Komatsu et al.,

2011). This unexpected result is the consequence of recent observations indicating

that the expansion of the universe, instead of being decelerated, as expected if grav-

ity is sourced only by matter, is in fact accelerating. A negative equation of state

(and more precisely an equation of state parameter w < −1/3) is what is needed

to counteract gravitational attraction and force the universe to accelerate (see equa-

tion 1.10). We will simply call ‘dark energy’ any eventual physical component that is
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characterized by such a peculiar equation of state parameter. Note that the cosmo-

logical constant is a serious candidate to explain current (although low resolution)

observations. Most recent estimates indicate that ΩΛ = 0.716 ± 0.055 (Spergel et

al., 2007).

• the geometry of the universe is flat. Observations of the cosmic microwave back-

ground (CMB) indicate that the universe, though not eternal since it originated

from a singularity in the finite past, is spatially infinite. We now know that even if

we wait for an infinite time, we cannot observe the whole of the universe. In other

terms, the universe has a finite event horizon.

The ensemble of these facts constitutes what is called the concordance model of cosmol-

ogy. The adjective concordance emphasized that this picture is not the outcome of a single

cosmic probe, however precise might it be, but rather the coherent result of independent

and complementary exploration strategies.

1.1.2 Observational bases of the standard cosmological model

Nearly 40 years ago Cosmology turned into a ‘ respectable’ science because cosmologists

where able to measure the amplitude of Ωr via the discovery of the Cosmic Microwave

Background (CMB). Ten years ago, it turned into a ‘ precise’ science, because of the

effective possibility of using the universe as a giant laboratory where to constrain accurately

the value of H0, Ωm, and ΩΛ. Since the goal of this thesis is to present and apply new

techniques to constrain these parameters with even further precision, in this section I will

give a brief overview of some performant observational probes that helped us to establish

the concordance model.

Measuring H0 using the Hubble diagram of Cepheids and SNIa

Cepheids are pulsating stars whose absolute luminosity oscillates with a proper periodicity.

It has been found by Leavitt & Pickering (1912) that the pulsation period is related to the

intrinsic luminosity of the star. The process of finding characteristic observables (in this

case time intervals) with a functional dependence on an intrinsic property of an object

(in this case the absolute luminosity) is called standardization. Cepheids, in particular,

are standard candles: once the intrinsic luminosity (or in astronomical term the absolute

magnitude M) of an object is known, it is possible to estimate via the Period-Luminosity

diagram the distance of any other Cepheids by simply measuring the apparent magnitude

m via the relation

m − M = 5 log(dL) + 25.

This relation between apparent magnitudes and distances is called Hubble diagram.

The label L makes clear that this particular operational definition of distance rests on
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energetic arguments, and loses its elementary geometrical meaning if the property of space-

time, as it is the case in cosmology, are non trivial.

Nearby Cepheids were immediately recognized (see Hubble, 1929) as the ideal tool to fix

the amplitude of the present day value of the Hubble parameter H0 via the relation (1.4).

Cepheids however are not visible at large distances from Earth. To probe distant cosmic

regions a different kind of standard candles are used: the Supernovae Ia. A supernova is

the results of the explosion of a star. As a consequence it is a transient and extremely

bright celestial phenomenon. For instance, a type Ia supernova has a typical magnitude

M ∼ −19 which corresponds to the typical luminosity emited by all the stars trapped in

a spiral galaxy.

There are two types of supernovae, Type I and Type II. This classification identifies two

different explosion mechanisms. Type II supernovae are generated by the core-collapse of

white dwarf stars whose mass is larger than a given threshold, the Chandrasekhar’s mass

(∼ 1.4M⊙). Type Ia supernovae, on the contrary, are possible only in binary star systems,

in which a white dwarf accretes matter from the companion. The explosion, which takes

place even before the white dwarf reaches the Chandrasekhar’s mass, is typically brighter

than in Supernovae II.

Supernovae Ia explode when they have nearly the same mass and chemical composition,

a theoretical hypothesis which is well verified in objects with redshift lower then 0.1. They

should therefore be characterized by the same maximum luminosity. As a consequence they

can be used as standard candles, and because of their brightness, they allow measuring

distances of hosting galaxies up to redshifts as high as z = 2. Since the light emitted from

far away sources propagates in a curved and expanding background, the relation between

the luminosity distance and redshift is not as simple as that given by relation 1.4. A more

careful modeling of the energetic exchange between a source and a receiver is needed in

order to obtain an appropriate definition of the luminosity distance.

The flux φ measured by a detector represents the energy dE0 collected per unit surface

d2s0, and per unit exposure time dt0 at the observer position

φν0 =
dE0

d2s0dt0dν0
.

By considering how time intervals and energy transform between the source and the

receiver, one obtains that the previous relation can be recast in an Euclidean form

(φν0 = L/(4πd2
L) only if one defines the luminosity distance as

dL = (1 + z)a0Sk(χ).

In order to obtain an accurate measurement of the Hubble constant, Freedman et al.

(2001) used Cepheids to calibrate the luminosity of near supernovae Ia (hosted in galaxies

where Cepheids are visible). By collecting a large sample of Cepheids and supernovae
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Ia (with z < 0.1) using data from the Hubble Space Telescope (HST), they were able to

provide a measurement of H0 with a relative precision of 11% (H0 = 72±8 km s−1Mpc−1).

Today, the most accurate and precise estimate is H0 = 73.8 ± 2.4 km s−1Mpc−1 (Riess et

al., 2011) obtained by exploiting a total of 253 supernovae (calibrated using 600 Cepheids

located in 8 galaxies hosting type Ia supernovae).

Measuring Ωm using the baryon acoustic oscillations imprinted in the CMB

and in the large-scale distribution of galaxies

The hot Big Bang theory assumes that the early universe was dominated by radiation

and was sufficiently dense and hot to force free electrons and photons to couple via the

Thomson scattering mechanism. As a result the baryonic component was characterized by

a non-negligible pressure (w 6= 0). The antagonist effect of radiation pressure and gravity

caused baryon perturbation to oscillate, generating the so called baryon acoustic oscilla-

tions (BAO). The resulting acoustic waves could propagate in the primordial plasma only

up to the recombination epoch. At this epoch, indeed, the radiation density was diluted

enough to allow ionized atoms to recombine and photons to free-stream. Once the pressure

in the baryon fluid drops, the overdensity region, that is the sound wave, cannot propagate

anymore. The overdensity excess is frozen in the supporting medium (i.e. the large scale

distribution of baryonic matter). The comoving radius of this overdense spherical cell is

called the comoving sound horizon, because it corresponds to the comoving distance a

sound wave could travel from the end of inflation to the recombination epoch. This char-

acteristic scale imprinted in the CMB map and in the distribution of galaxies provides

a cosmic standard ruler. In principle, we can exploit it to fix the value of fundamental

cosmological parameters.

In all generality a sufficiently small redshift difference ∆z is related to a radial comoving

size s// (along the line of sight) via the relation

s// ≃
c

H
∆z.

On the other hand, an angular separation ∆θ can be related to a comoving transversal

size s⊥ (perpendicular to the line of sight) via

s⊥ ≃ ∆θa0Sk(χ),

where ∆θ is assumed to be small. The mapping between comoving size and observed

size of an object positioned at a given redshift is illustrated in figure (1.1). Since the

comoving sound horizon at the decoupling epoch (rs) can be measured with the CMB,

one can deduce the characteristic scale s// and s⊥ by using the previous equations. Since

r// = r⊥ = rs and since ∆z and ∆θ can be measured separately using the temperature

map of the CMB and the spatial distribution of galaxies, it follows that the amplitude of
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Figure 1.1: Using the BAO scale as a standard ruler. The thick cross represents the radial and
transversal comoving size of spherical shell centered at a redshift z.

H and a0Sk(χ) can be estimated at different epochs.

In practice, the over-dense spherical shell caused by BAO is detectable via the statistical

analysis of the large-scale distribution of galaxies. As a matter of fact, we expect to detect

an excess of probability of finding galaxies separated by a distance corresponding to the

BAO scale. In a general way, this excess probability (with respect to a random distribu-

tion) can be estimated using the two-point correlation function ξ(r). Since the clustering

of galaxies is driven by gravity, the overall shape of the two-point correlation function

can be predicted by modeling the evolution of density perturbations in a homogeneous

universe. This way, once a cosmological background is assumed, the overall shape of the

two-point function of the galaxy distribution can be compared to the theoretical predic-

tions of perturbation theory (or of N-body numerical experiments). Results obtained by

implementing this approach (Eisenstein et al., 2005) show that the BAO probe is mostly

sensitive to Ωmh2 and Ωbh
2. However by combining the BAO and the CMB probes one

can resolve degeneracies and put strong constraints on the cosmological parameters Ωm,

H0 and ΩΛ of a ΛCDM universe (Komatsu et al., 2011)

Measuring ΩΛ using the Hubble diagram of SN Ia

While local SNIa are useful to fix the present day value of the cosmic expansion rate, at

high redshift, they can be used to gain insight into other cosmological parameters, and

in particular they can give us information about the abundance and nature of the cosmic

components. At high redshift the Hubble diagram is in fact sensitive to all the fundamental
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Figure 1.2: Collection of supernovae data. left: The upper panel shows the distance modulus as a
function of redshift. Data from Riess et al. (1998) are compared to different theoretical predictions
corresponding to different cosmological models. The lower panel shows the residual between the
models and the measurements. right: One of the most recent collection of supernovae Ia data,
as well as the corresponding luminosity distance (solid line) corresponding to a flat universe with
ΩΛ = 0.7.

cosmological parameters that enters into the expression of the Hubble parameter (see

equation 1.13), and not only to its normalization H0. In particular the distance modulus

µ = m − M in the Hubble diagram is

µ = 25 + 5 log
(

(1 + z)a0Sk[χ~Ω(z)]
)

.

Once the redshift and the distance modulus of high z SNIa is known, one can then

use this relation to constrain the amplitude of relevant parameters such as Ωm, ΩΛ, and

test if the equation of state parameter wΛ is compatible with being equal to −1. Riess

et al. (1998) and Perlmutter et al. (1999) won the Nobel Prize in 2011 for the discovery

of the acceleration of the expansion of the universe. In particular, the Hubble diagram

of Riess et al. (1998), as well as a more recent version obtained with a larger set of data,

are displayed in figure (1.2) and compared to the predictions of different cosmological

models. These measurements, when combined with results from other probes (BAO and

CMB) clearly indicate that the best fitting model is a cosmology dominated by dark

energy. This is clearly seen in figure (1.3) where the joint constraints on the parameters

(Ωm,ΩΛ) are plotted. Data are best fitted by models characterized by a positive value of

the cosmological constant and a low (i.e. < 1) matter density. If one assumes that the

universe is flat (Ωk = 0) but relaxes the assumption that the dark energy component is

the cosmological constant, i.e. no prior is taken of w, then again data confirms that the

most likely explanation for the dark energy phenomenon is a cosmological constant.
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Figure 1.3: left: The concordance model of cosmology, joint constraint on the dark energy and
matter density parameters. The joint analysis of CMB, BAO and Supernovae data prefer a flat
universe with a dominant component of dark energy. right: The joint constraint on the matter
density parameter Ωm and the equation of state of dark energy when it is assumed that universe
is flat (Ωk = 0)

1.1.3 Beyond the standard model

Although supported by a large variety of independent observations, the concordance model

of cosmology appears to be poorly motivated from the point of view of fundamental physics.

From one side, nearly 1/5 of the energy of the universe is contributed by dark matter

particles for which we still lack any secure microscopic characterization and any direct

laboratory evidences. From the other side, the simple explanation of the late time cosmic

acceleration in terms of the Einstein’s cosmological constant Λ appears to be fundamentally

problematic.

The cosmological constant Λ appearing in the Einstein’s field equations is not, as we

would usually expect, a coupling constant. Moreover, its value almost coincides with the

amplitude of the dark matter density parameter. This is not expected at all since theory

predicts different time evolution histories for these two cosmological parameters.

An alternative explanation of the cosmological constant comes from quantum physics.

It has been shown by Zel’dovich (1968) that a contribution of the vacuum energy to the

stress energy tensor induces an accelerated expansion identical to that resulting from the

cosmological constant. Quantum physics shows that the lowest energy level of a quantum

system is not null, and it gives a contribution to the stress energy tensor of the form

−V gµν where V is the potential associated to the vacuum energy and gµν is the metric

tensor. As the classical gravity description is supposed to break dawn at the Planck
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energy density level ρpl, we can reasonably conclude that the vacuum energy density ρV

is expected to be of the same order. On the other hand, the observational evidence about

the accelerated expansion of the universe indicates that ΩΛ ≡ (8πG/H2
0 )ρΛ is roughly of

order one. This means that the energy density associated to the cosmological constant

ρΛ is comparable with the critical density ρc,0 ≡ 3H2
0/(8πG) = 2.77 × 1011h2M⊙Mpc−3.

Since ρpl = 10123ρc,0, the theoretical expectation for the vacuum energy density exceeds

by 123 order of magnitudes the effective energy density required to explain the actual

accelerated expansion of the universe.

Although the cosmological constant offers a phenomenologically viable description of

the universe, these interpretational problems forced cosmologists to explore other possible

causes of the late time acceleration of the universe. A minimally coupled scalar field in

the primordial universe (e.g. Ratra & Peebles, 1988; Wetterich, 1988; Caldwell, Dave &

Steinhardt, 1998; Ferreira & Joyce, 1998a,b; Zlatev, Wang & Steinhardt, 1999), also called

quintessence, might be an appealing alternative to the cosmological constant scenario.

Contrary to the vacuum energy case, the scalar field φ is not stationary (φ̇ 6= 0). By

supposing that its dynamics is similar to that of a perfect fluid, we can effectively describe

quintessence as a field with density ρφ and a pressure Pφ given by

ρφc2 =
φ̇

2
+ V (φ)

and

Pφ =
φ̇

2
− V (φ),

where the potential V (φ) defines the scalar field. As a result, quintessence is characterized

by a time evolving, negative, equation of state wφ as soon as the scalar field is slowly

rolling, i.e. its kinetic energy is subdominant with respect to the potential energy. Since

the stress energy tensor is conserved (cfr. 1.9) the scalar field satisfy the Klein Gordon

equation

φ̈ + 3Hφ̇ +
∂V

∂φ
= 0. (1.14)

Interestingly, one can choose quintessence potentials so to avoid the coincidence problem

(tracker models). For such models, Zlatev, Wang & Steinhardt (1999) have shown that,

even if the energy density ρφ can vary by several order of magnitudes at the final stage

of inflation, the overall evolution of ρφ converges (in a relatively short time) toward a

constant asymptote.

More radical approaches consist in testing whether the Einstein Field Equations offers

a satisfactory description of gravity on large cosmic scales. Such studies explore the

viability of alternative gravitational laws or non minimal modifications of the Einstein’s

field equations. In this context, a class of hypothesis extensively analyzed are the so called
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f(R) models, constructed by substituting the Ricci scalar with a more general function

f(R) in the EFE. To recover the EFE on small, non cosmological scales, one requires that

f(R) goes as R/2 for small separations. Alternatively, massive gravity models are also

proposed as possible solutions to the dark energy problem. In such models, which result

from describing the full theory of gravity in more than 4 dimensions, the graviton has a

mass (and therefore the gravitational interaction is not not anymore scale free). An often

analyzed representative of this category is the DGP (Dvali, Gabadadze & Porrati, 2000)

model, which modifies the equation for cosmic acceleration (1.10) as follows

ä

a
= −

4πG

3
(ρi − 3

Pi

c2
) + H

c

rc
.

The characteristic scale rc (related to the mass of the graviton) mimics the action

of a cosmological constant. It should be noted, however, that as in the case of f(R)

models, even the dynamics predicted by this proposed modification of gravity could be

exactly mimicked by odescribing dark energy in terms of an opportunely chosen, minimally

coupled, scalar field.

As proposed by (Chevallier & Polarski, 2001; Linder, 2003), lacking definitive and con-

vincing evidence about the causes of the cosmic acceleration, it is convenient to parameter-

ize our ignorance about the dark energy phenomenon by assuming that any cosmological

models beyond the standard concordance model can be effectively described assuming that

the universe is filled by a uniform perfect fluid X with a generic, time-evolving equation

of state given by

w = wo + wa(1 − a/a0).

Generically, the specific evolutionary pattern from early (w = wo+wa) to late (w = wo)

time should be enough to allow discriminating between alternative dark energy scenarios

or at least constraining the free parameters of these proposed alternative theories. As a

result, the acceleration equation (1.10) will take the general form

ä

a
=

1

2
{−(1 + 3w)ΩX − Ωm} .

Using the CPL parameterization, the expansion rate is expressed as

H(z) = H0

√

Ωk,0(1 + z)2 + Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩX,0fX(z), (1.15)

where

fX(z) ≡ (1 + z)3(1+wo+wa)e−3wa
z

1+z .

Finally, note that the radiation density term is sourced not only by photons, but by

all the relativistic species present in the universe at a given epoch. The expression for the
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radiation density parameter, taking into account the existence of Neff species of massless

neutrinos, is Ωr,0 = Ωγ,0(1 + 0.2271Neff ), where Ωγ,0 is the present day photon density

parameter (Ωγ,0 = 2.469 × 10−5h−2).

1.2 Dynamics of cosmic structures

If we assume that cosmic space-time is filled with uniform fluids, we can treat a complex

structure such as the universe as a simple system characterized by only 2 degrees of

freedom: the scale factor a(t) and the spatial curvature k. However the universe that we

observe is far from displaying the uniformity postulated by the CP. The cosmos is highly

structured, showing an hierarchy of masses, of clustering scales and of... interpretational

problems. In the next session we will briefly present the theory that allows us to make

sense of this complexity. Since the goal of this thesis is to present new cosmological tests

based on the analysis of the inhomogeneous sections of the universe, in this section I take

the opportunity to introduce the formalism and the basics theoretical instruments that

are needed to understand the more technical chapters of this manuscript.

How is it possible to create the landscape of remarkable density contrasts that sur-

rounds us starting from a primordial universe which is highly symmetric? An old and

almost unchallenged theoretical idea is that large cosmic inhomogeneities (galaxies, clus-

ters super clusters) are the result of the gravitational amplification of tiny, primordial

density perturbations.

Cosmic microwave background measurements have shown that at the decoupling epoch

(zdec ∼ 1100, the epoch at which photons were released by the hot primordial plasma

and free-streamed towards us) the amplitude of baryonic density anisotropies δ = dρ/ρ

was nearly 10−5. The smallness of these departures from uniformity is due to the fact

that before decoupling, when radiation and matter where strongly interacting via Thom-

son scattering, perturbations in the baryonic component of the plasma could not grow.

This is because the gravitational attraction within primordial density inhomogeneities was

counteracted by the enormous pressure exerted by the hot primordial radiation field.

If we assume that only baryonic matter populate the universe, then standard theory is

unable to explain why we observe non linear structures, that is fluctuations with amplitude

δ > 1 in the present day universe. Simply, 13 Gyrs is not enough time for gravity to

amplify these primordial fluctuations by at least five order of magnitudes. This issue can

be bypassed by hypothesizing the existence of a dark matter component which does not

interact electromagnetically with photons. The dynamics of this exotic matter components

is therefore unaffected by the Thompson scattering, the mechanism that couples photons

and baryons. As a consequence dark matter fluctuations are not constrained to be small at

the decoupling epoch. After baryons are released, they start falling into the dark matter

gravitational potential wells and the baryon fluctuations quickly equalize in amplitude the

dark matter fluctuations (δB ∼ δDM ).
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With the introduction of dark matter, also two orthogonal paradigms were proposed in

order to explain the detailed mechanics of cosmic structure formation: the bottom-up and

the top-down scenarios. According to the first paradigm, large scale structures are formed

in a hierarchical way, i.e. the first structures to form in the universe are low mass objects

that are then assembled together by gravity into more massive and complex structures. In

the opposite scenario, also called the monolithic paradigm, the largest structures are the

former to form. They subsequently fragment into a variety of smaller mass objects. These

two scenarios makes explicit predictions about the nature of the dark matter particles.

The bottom-up scenario requires dark matter particle to be non relativistic at sufficiently

early time ( cold dark matter (CDM)), wheres in the top-dawn scenario, the dark matter

candidates are hot particles (HDM) with small mass (in the range 10−30 eV). Since power

spectrum of matter perturbations predicted by these two scenarios is different, one can

therefore discriminate between them by reconstructing this statistics for example using

large redshift surveys. Current observations, although not conclusive, seems to suggest

the better viability of CDM models.

I will now present the formalism that describes the gravitational amplification of matter

perturbations in an homogeneous expanding universe. Since the matter component is non-

relativistic and pressure-less (P ≪ ρc2 ), and since we are interested in perturbations on

scales much smaller then the Hubble horizon (λ ≪ c
H ), the Newtonian approximation

holds and the system describing their evolution (assuming an Eulerian point of view) is

(Jain & Bertschinger, 1994)
∂δ

∂τ
+ ~∇.[(1 + δ)~v] = 0 (1.16)

∂~v

∂τ
+ H~v + (~v.~∇)~v = −~∇φe (1.17)

∇2φe = 4πGρa2δ. (1.18)

where δ(~x) is the matter perturbation at position ~x, ~v is the field of 3-D velocity pertur-

bations (simply peculiar velocities), τ is the conformal time (dτ = dt/a(t)) and H is the

Hubble parameter in conformal time (H = aH). Exploiting the definition of the reduced

density parameter, 4πGρa2 = 3
2H

2Ωm , the last equation (1.18) can be rewritten as

∇2φe =
3

2
ΩmH2δ.

By applying the gradient operator to equation (1.17), and by combining the resulting

expression with equation (1.18) one obtains

∂~∇ · ~v

∂τ
+ H~∇ · ~v + ~∇ · [(~v · ~∇)~v] = −

3

2
ΩmH2δ,
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while the evolution of matter and velocity perturbations is described by

∂δ

∂τ
+ ~∇ · ~v = −~∇.(δ~v) (1.19)

and
∂~∇ · ~v

∂τ
+ H~∇ · ~v +

3

2
ΩmH2δ = −~∇.[(~v.~∇)~v], (1.20)

which is a non-linear system in the coupled unknowns δ and ~v.

1.2.1 Solutions in the linear regime

The linear solution of equations (1.19) and (1.20) is obtained by setting the LHS terms to

0 





∂δ

∂τ
+ θ = 0

∂θ

∂τ
+ Hθ +

3

2
ΩmH2δ = 0

,

where θ is defined as the divergence of the velocity field. Combining the above expressions,

one obtains the differential equation which rules the evolution of matter perturbation in

a generic cosmology (containing pressure-less matter)

∂2δ

∂τ2
+ H

∂δ

∂τ
−

3

2
ΩmH2δ = 0, (1.21)

or the equivalent expression (using cosmic time)

∂2δ

∂t2
+ 2H

∂δ

∂t
−

3

2
ΩmH2δ = 0. (1.22)

Since at linear order time and spatial dependences can be separated, i.e. the solution

can be written as δ(~x, t) = D(t)ǫ(~x) (Peebles, 1980), the growing mode D(t) evolves

according to the equation

d2D

dt2
+ 2H

dD

dt
−

3

2
ΩmH2D = 0. (1.23)

Solution to this equation have been studied since the 70’s. For instance Groth & Peebles

(1975) derived the analytical solution for an open universe, dominated by pressure-less

matter and without cosmological constant. They also investigated the effects induced by

including a contribution from relativistic species, finding an analytical solution for a flat

universe composed of dark matter and radiation. Anyway, radiation does not affect the

growth of structures after the decoupling epoch, and we will neglect its presence in what

follows.

Solving analytically the equation (1.23) is challenging but presents an obvious cosmo-

logical interest; the knowledge of the growth history of structures provides a very promis-

ing way of constraining the value of fundamental cosmological parameters (e.g. Wang &
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Steinhardt, 1998). Heath (1977) found an integral representation of equation (1.23) in

the general case of a pressure-less universe. He noticed that if radiation is neglected, the

acceleration equation can be expressed in the following form

d2H

dt2
+ 2H

dH

dt
−

3

2
ΩmH3 = 0. (1.24)

Therefore the expansion rate H(t) is a possible solution of equation (1.23). As the Hubble

parameter decreases with increasing cosmic time, this solution corresponds to the decay-

ing mode. As a consequence, any primordial perturbation will be suppressed by cosmic

expansion. However, one can find a growing solution,

D(z) ∝ H(z)

∫ ∞

z

(1 + z′)

H3(z′)
dz′, (1.25)

using the ‘variation of the constant’ method. Despite the simplicity of equation (1.25) it

is more convenient to use the growth rate f in order to characterize the linear growing

mode. By definition the growth rate is the logarithmic derivative of the growing mode f ≡
d lnD
d ln a . Itwas introduced first by (Peebles, 1980), then further investigated and analytically

justified by Fry (1985), Lahav et al. (1991), Lightman & Schechter (1990). As these

authors have shown that in many cosmological models the growth rate can be expressed

in term of the growth index γ

f ≃ Ωγ
m(z), (1.26)

where the growth index can be allowed to slowly vary with respect to cosmic time and

encodes a part of the cosmological dependency. Once the growth index is known the

growing mode can be calculated using

D(z) = A exp

{∫ z

0
Ωγ

m(z′)d ln(1 + z′)

}

.

If for a ΛCDM model there is no gain in using the approximation (1.26) to calculate the

growing mode, in contradiction it becomes very usefull when modifying the gravity model

or when taking into account a dark energy component with a time varying equation of

state. As a matter of example if one consider a dark energy model (w 6= −1) with a

constant equation of state, the accelaration equation (1.24) used to obtain the integral

representation (1.25) becomes

d2H

dt2
+ 2H

dH

dt
−

3

2
ΩmH3 =

3

2
(1 + 3w)(1 + w)ΩX)H3.

It shows that when w 6= −1 and w < −1/3 the Hubble rate is nolonger a solution of

the equation (1.23). Since in Appendix A of (Linder & Jenkins, 2003) they show that, in

general case, using definition (1.26) offers an accurate way of approximating the growth
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rate for a wide range of cosmological models, including modifications of gravity it turns

that the use of the growth index eases, indeed the calculation of the growing mode.

Moreover Linder & Jenkins (2003) have shown that adding constraint on the growth

index to the constraint of expansion history helps to distinguish between a SUGRA model

(massive gravity) and a quintessence model. Or, for instance, in Linder (2005) they pointed

out that it allows to discriminate between a minimaly coupled scalar field model and a

brane world gravity theory (DGP).

1.2.2 Solutions in the weakly non-linear regime

Although linear description allows extracting cosmological information about how inhomo-

geneities evolve on large cosmological scales, for a wide range of cosmological applications

, especially if we are interested in more local dynamical processes, it is necessary to go be-

yond. Moreover, the study of the density and velocity evolution in the weakly non-linear

regimes helps to refine our understanding of the hierarchical character of the structure

formation processes in the universe. In this section I describe the second order Eulerian

perturbation theory that stands as a founding pillar for the work I will present later in

this manuscript (see chapter 3). I will also contrast this formulation with the Lagrangian

approach and the spherical collapse approximation, that is alternative dynamical descrip-

tions commonly adopted when exploring the weakly non-linear domain.

As shown above, matter and velocity perturbations are non-linearly coupled via the fluid

equation (1.19) and the equation of motion (1.20). To proceed further, it is convenient to

express this system in Fourier space. The spatial Fourier transform ~fk of a vectorial field
~f which depends on position ~x is (in my notation convention)

~fk = F
[

~f(~x)
]

=
1

(2π)3

∫

~f(~x)ei~k·~xd3~x.

Accordingly, the inverse Fourier transform is given by

~f(~x) =

∫

~fke
−i~k·~xd3~k.

The continuity equation (1.19) in Fourier space is (see Appendix A)

∂δk

∂τ
+ θk = −

∫∫

α12θk1δk2δ
D(~k − ~k12)d

3~k1d
3~k2,

where δD is the Dirac distribution and α12 is a scalar combination of mode vectors ~k1 and
~k2

α12 = ~k12.
~k1

k1
2 ,

and where ~k12 = ~k1 +~k2. It is then convenient to define Θk = − θk

H , where H is the Hubble

parameter in conformal time (therefore H∂τ = ∂ ln(a)), so that in terms of these new
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variable

∂δk

∂ ln a
− Θk =

∫∫

α12Θk1δk2δ
D(~k − ~k12)d

3~k1d
3~k2. (1.27)

On the other hand, by applying the Fourier transform to the equation of motion (1.20)

one obtains

∂θk

∂τ
+ Hθk +

3

2
H2δk = −

∫∫

β12θk1θk2δ
D
(

~k − ~k12

)

d3~k1d
3~k2,

where

β12 ≡
~k12.~k2

k2
2

~k1.~k2

k1
2 .

so that

∂Θk

∂ ln a
+ (2 − ǫX − Ωm)

Θk

2
−

3

2
Ωmδk =

∫∫

β
(

~k1, ~k2

)

Θk1Θk2δ
D
(

~k − ~k12

)

d3~k1d
3~k2.

(1.28)

where ǫX ≡ (1 + 3w)ΩX .

Note that by re-introducing cosmic time as a variable, the dependence on cosmological

parameters appears explicitly on the LHS. In particular, for an Einstein-de Sitter universe,

the coefficients of the LHS are time-independent and it is possible to re-write the equations

(1.27) and (1.28) using the matrix formalism introduced by Crocce & Scoccimarro (2006)

(see Appendix A). In such an approach the kernels on the RHS of these equations are

brought into a symmetric form

{

∂δk

∂ ln a
− Θk =

∫∫
1

2
[α12Θk1δk2 + α21Θk2δk1 ]δ

D(~k − ~k12)d
3~k1d

3~k2

∂Θk

∂ ln a
+ (2 − ǫX − Ωm)

Θk

2
−

3

2
Ωmδk =

∫∫

βs
12Θk1Θk2δ

D
(

~k − ~k12

)

d3~k1d
3~k2

,

where βs
12 ≡ β12+β21

2 . A significant fraction of the non-linear contributions arise from the

mode coupling functions α12 and βs
12 that mix in a complicated way the Fourier modes.

A possible way of solving this system on non linear equations is to split the solution into

different contributions

δ(~x, t) =
∞∑

n=1

δ(n)(~x, t) (1.29)

θ(~x, t) =
∞∑

n=1

θ(n)(~x, t), . (1.30)

sort them in order of importance (i.e. X(n) ≫ X(n+1)) and hope that the system can, in
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principle, be solved order by order. This is indeed what happens in the case of an Einstein-

de Sitter universe (e.g. Moutarde, 1991; Goroff, 1986; Makino, 1992; Jain & Bertschinger,

1994; Bernardeau et al., 2002). Although this model does not correctly describe observa-

tions, it helps figuring out the way of proceeding when looking for the general solution.

It is useful to take the Fourier transform of the perturbative expansions (A.7) and (A.8)

and to look for separable solutions of the form (e.g. Bernardeau et al., 2002)

δk(t) =
∞∑

n=1

Dn(t)δ
(n)
k (1.31)

Θk(t) = −Hf
∞∑

n=1

En(t)θ
(n)
k , (1.32)

where the time dependency at each order (n) is encoded in the functions Dn and En that,

by definition, are scale independent. The factorized time dependent part of the divergence

of the velocity field (i.e. the term −Hf) imposes that, in linear regime, E1 = D1. By

substituting the expressions (1.31) and (1.32) into the non linear system one can obtain a

recursive system of differential equations (Bernardeau et al., 2002, see full calculation in

Appendix A or in)

dDn

d lnD1
δ
(n)
k − Enθ

(n)
k =

∫
d3~k1d

3~k2∆n(~k1,~k2)δD(~k−~k12) (1.33)

dEn

d lnD1
θ
(n)
k +[

3

2

Ωm

f2
−1]Enθ

(n)
k +

3

2

Ωm

f2
Dnδ

(n)
k =

∫
d3~k1d

3~k2Σn(~k1,~k2)δD(~k−~k12), (1.34)

where

∆n(~k1, ~k2) ≡
1

2

n−1∑

m=1

{

α12En−mDmθ
(n−m)
k1

δ
(m)
k2

+ α21EmDn−mθ
(n−m)
k2

δ
(m)
k1

}

,

and

Σn(~k1, ~k2) ≡ βs
12

n−1∑

m=1

En−mEmθ
(n−m)
k1

θ
(m)
k2

.

In equations (A.13) and (A.14) the time dependency of each order is expressed through the

linear growing mode D1 (fd lna = d lnD1). This change of variable t → D1 is motivated

on one hand by an analogy with the Einstein-de Sitter case and on the other hand by the

formal structure of the continuity equation. Indeed in the case of an Einstein-de Sitter

universe the system can be analytically solved when the time dependency is expressed

through the scale factor a(t), which, in this cosmological model, represents the linear

growing mode D1 of the perturbations. It is therefore tempting to consider D1 as the

privileged variable which allows simplifying the system. Moreover through this change of

variable the coefficients in the continuity equation becomes time-independent.
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As stressed by (Bernardeau et al., 2002), the temporal and spatial functions (eq. 1.31

end 1.32) can be separated only if the coefficients of LHS terms do not depend on time

which, considering eq. (A.14), happens only if f = Ω0.5
m . In such a case, it is as straight-

forward as in the Ωm = 1 case to solve the complete hierarchy of differential equations

with respect to D1. One obtains that Dn = Dn
1 and En = Dn. Interestingly this ansatz is

very close to the approximated expression that describes the time evolution of the growth

rate, that is f = Ω0.55
m (see eq. 17 of Linder, 2005).

The system of equation has been solved up to third order in the case of closed universe

without cosmological constant (Bouchet, 1992) and in the case of a flat universe with a

cosmological constant (Bouchet, 1995). Even if the ansatz of time and space separability

does not holds in these cosmological models, these authors showed that separable solutions

can still be found if a Lagrangian approach (as opposed to the Eulerian point of view

described here) is adopted (Zel’dovich, 1970; Buchert, 1989).

It can be shown that, even if the time dependency of the coefficients makes the resolu-

tion of the system somewhat complicated, order by order solutions (in the Eulerian space)

can still be found even when we drop the separability hypothesis. To second order one

obtains

dδ
(2)
k

d lnD1
− θ

(2)
k = D2

∫∫

d3~k1d
3~k2

δ
(1)
k1

δ
(1)
k2

2
{α12 + α21} δD(~k − ~k12) (1.35)

dθ
(2)
k

d ln D1
+ [

3

2

Ωm

f2
− 1]θ

(2)
k +

3

2

Ωm

f2
δ
(2)
k = D2

∫∫

d3~k1d
3~k2δ

(1)
k1

δ
(1)
k2

βs
12δ

D(~k − ~k12), (1.36)

where δ
(2)
k and θ

(2)
k exhibit a non trivial mixing of time and wave vectors. Several ways

exists to solve the second order perturbation system (eq. 1.35 and 1.36) (see a discussion

in appendix A) and they converge to the same representation of the second order solution

δ
(2)
k = D2

∫∫

F2

(

~k1, ~k2

)

δ
(1)
k1

δ
(1)
k2

δD
(

~k − ~k12

)

d3~k1d
3~k2, (1.37)

where

F2

(

~k1, ~k2

)

=

(
3ν2

4
−

1

2

)

+
1

2

~k1.~k2

k1k2

(
k2

k1
+

k1

k2

)

+

(
3

2
−

3ν2

4

)(~k1.~k2

k1k2

)2

, (1.38)

which is the second order perturbation theory kernel. All the cosmological dependency is

encoded in the ν2 coefficients that can be effectively calculated by using the spherical col-

lapse dynamics (Bernardeau, 1994a; Folsalba & Gaztañaga I, 1998; Gaztañaga & Folsalba

II, 1998; Folsalba & Gaztañaga III, 1998; Kamionkowski & Buchalter, 1999). An orthogo-

nal way of solving the system in the Eulerian space was proposed by Catelan et al. (1995).

Instead of solving the equations for the density and velocity perturbations (after elimi-
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nating the gravitational potential), they first solved the equations for the gravitational

potential and the velocity field and recovered the amplitude of density perturbations from

these solutions.

I also found a way to solve the second order equations in Eulerian space without using

the spherical model approximation, nor the intermediate solution for the gravitational

potential. To this purpose, I expanded on an idea proposed by Kamionkowski & Buchalter

(1999), but I developed it using a different formalism. Formalism and calculations are

presented in Appendix A. Here I show that, interestingly, this independent approach

allows demonstrating that the second order Kernel F2 has the form

F2

(

~k1, ~k2

)

= (1 − g) +
1

2

~k1.~k2

k1k2

(
k2

k1
+

k1

k2

)

+ g

(
~k1.~k2

k1k2

)2

, (1.39)

where g is the particular solution of the second order differential equation

d2g

d ln2 D1
+

3

2

(

2 +
Ωm

f2

)
dg

d ln D1
+

(

2 +
3

2

Ωm

f2

)

g = 1.

By identifying the terms appearing in equation (1.39) and in equation (1.38), one can

see that 3ν2 + 4g = 6 is the relation that allows mapping the results obtained using the

spherical collapse with the results obtained using the Eulerian approach from end to end.

I now briefly review the influence of specific background cosmological models on the

results obtained from second order perturbation theory. To this purpose I focus on the

term ν appearing in the second order PT kernel. Bernardeau & Brax (2011) showed that,

for a flat universe with a cosmological constant, ν2(Ωm) = 4/3 + (2/7)Ω
−1/143
m . Since,

ν2 ≡ ν2(Ωm = 1) = 34/21 in the Einstein-de Sitter case, it follows that the relative

difference between ν2(Ωm) and ν2 can be written as

ν2(Ωm)

ν2
− 1 =

6

34

(

Ω−1/143
m − 1

)

.

Since the relative variation is lower than 0.3% (for Ωm greater then 0.1) it is possible to

neglect any cosmological dependency of the Kernel and rewrite it as

F2

(

~k1, ~k2

)

=
5

7
+

1

2

~k1.~k2

k1k2

(
k2

k1
+

k1

k2

)

+
2

7

(
~k1.~k2

k1k2

)2

, (1.40)

This form is extremely useful because it allows to predict the value of fundamental

high order statistics of the matter density field as I will show in the next section. It is

also useful because, recently, (Bernardeau & Brax, 2011) generalized the second order

perturbation theory in order to take into account alternative gravitational theories and

gave the expression of the ν2 coefficients for such modified gravity (MG) models
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νMG
2 /νGR

2 − 1 = −
105

4641
(γ − 0.55)(1 − Ωm)Ω−0.45

m , (1.41)

where γ is the growth index in the considered MG model and 0.55 is the value of the growth

index in standard GR. Equation (1.41) predicts that the amplitude of the deviations is

lower than 0.5% for a DGP model (γ = 0.68) for a realistic matter density (Ωm = 0.3).

This weak sensitivity implies that the 2-PT kernel (1.40) can be safely adopted even when

considering modified gravity models.

1.3 Statistics of cosmic structures

In the previous section, I briefly reviewed the theory that allows extracting information

about the dynamics of matter fluctuations in Fourier space and in the weakly non-linear

regime. However, it is impossible, from an observational point of view, to follow the

evolution of a single perturbation across different cosmic epochs. To assess the soundness

of the theoretical predictions, that is to compare theoretical models and observations,

we need to resort to statistical methods. In this section, after having introduced some

general definitions and after having discussed some relevant properties and relations, I will

present some of the most useful statistics used to characterize the large scale distribution of

galaxies. In this context, I will pay particular attention to discuss a relatively unexplored

statistical tools, the high order multi-point cumulant moments of the galaxy density field.

Some central results obtained in this thesis, in fact, are based on applying these statistics

in a cosmological context.

1.3.1 One-point statistics

A discrete spatial distribution of points , such as the distribution of galaxies, can be usfully

analyzed using count-in-cell techniques. The number N of galaxies contained in a ran-

domly positioned cell in comoving space is a random variable with probability distribution

function PN . For instance, if galaxies were distributed randomly in the universe, i.e. with

the same probability of being found at a give position x, the number-count N follows a

Poisson law,

PN =
λN

o

N !
e−λo .

The shape of the distribution law is fully characterized by a single parameter, λo, that is

related to the cell size, to the size of the galaxy survey and to the total number of objects

contained in the survey. Since, however, galaxies cluster under the action of gravity, a

single parameter PDF is not able to capture all the non-linear information imprinted in

the spatial distribution. A PDF can also be described via its moments of order n

〈Nn〉 ≡
∞∑

N=0

NnPN ,
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where the moment of order one i N̄ is the mean number of objects. It is possible to

define other kind of moments with interesting mathematical and physical properties. For

example, the central moments of order n are defined as

mn = 〈(N − N̄)n〉,

so that m1 = 0. In addition, the central moment of order 2 is usually called the variance

and provides a quantification of the dispersion of the random variable N around its mean

value N̄ . Another useful definition is that of the factorial moments

fn = 〈(N)nf 〉 = 〈N(N − 1)(N − 2)...(N − n + 1)〉.

Note that, if the random variable N follows a Poisson law, then the factorial moments of

order n are given by λn
o . This simple property may be used to test whether a given spatial

distribution of points is random. An even more usufull way of statistically characterizing a

random variable are the cumulant moments kn. Although their formal representation is not

as trivial as the previously introduced kind of moments, they are extensively used. In fact,

they can be defined by expanding the moments in different connected parts which means

that the knowledge of the cumulant moment at a given order provides an independent

(which does not depend on lower order moments) statistical information. For example the

cumulant of order two is obtained by subtracting the square of the moment of order one

to the moment of order two. This way the information provided by k2 does not depend

on the first order moment (by definition k1 ≡ N̄). It leads to

k2 = 〈N2〉 − N̄2,

which reduces to the variance. Then at third order it follows

k3 = 〈N3〉 − 3k2N̄ − N̄3.

As a matter of exemple the cumulant moments of the Poisson distribution are equal at all

order to the parameter λo.

In the following, I introduce the formalism that, among other advantages, also allows

to compute these various moments in a fast and efficient way.

1.3.2 Generating functions

The probability generating function is a powerful mathematical tool that allows to generate,

in a simple and systematic way, the different types of moments introduced above. It is
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constructed via a Taylor expansion

G(λ) =
∞∑

N=0

1

N !

dNG(λ)

dλN

∣
∣
∣
∣
∣
λ=0

λN ,

where, by construction,
1

N !

dNG(λ)

dλN

∣
∣
∣
∣
∣
λ=0

≡ PN .

Note that

G(λ) =
∞∑

N=0

PNλN = 〈λN 〉. (1.42)

where we have exploited the fact that PN is a well normalized PDF.

In a similar way, the moment generating function M(t) is defined via the following

Taylor expansion

M(t) =
∞∑

n=0

dnM(t)

dtn

∣
∣
∣
∣
t=0

tn

n!
,

where, by definition,
dnM(t)

dtn

∣
∣
∣
∣
t=0

≡ 〈Nn〉.

Moments, therefore, naturally follows by simply taking successive derivatives of the char-

acteristic function. It is straightforward to show (see Appendix D for the details) that

M(t) = 〈eNt〉.

A change of variable in the equation (1.42) is enough to establish a relation between the

probability generating function and the moment generating function

M(t) = G(λ = et). (1.43)

The generating function of factorial moments F (t) is defined as

F (t) =
∞∑

n=0

1

n!

dnF (t)

dtn

∣
∣
∣
∣
t=0

tn,

where, by definition
dnF (t)

dtn

∣
∣
∣
∣
t=0

≡ 〈(N)nf 〉.

In Apendix (E) I show that it implies that

F (t) =
〈

(1 + t)N
〉

,

which can be expressed with respect to the probability generating function with a simple
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change of variable

F (t) = G(λ = 1 + t). (1.44)

Finally, the generating function of cumulant moments C(t) is defined as

C(t) ≡ ln(M(t)). (1.45)

so that cumulant moments be simply computed as

〈Nn〉c ≡
dnC(t)

dtn

∣
∣
∣
∣
t=0

.

As an example, let’s consider the Poisson distribution. Its probability generating func-

tion is

G(λ) = eλo(λ−1)

from which we can immediately deduce that the moment generation function is M(t) =

exp {λo(e
t − 1)}, the cumulant moment generating function C(t) = λ(et − 1) and the

factorial moment generating function F (t) = eλot. On one hand, from M(t) we can

deduce that the expectation of the variable N is equal to λo. On on the other hand, the

peculiar analytical expression of the generating function of cumulant moments shows that,

at any order, the cumulant moments are always equal to the 〈N̄ 〉. Finally, by calculating

the derivatives of F (t), one can verifies that fn = N̄n.

1.3.3 Multi-point statistics

Since our final goal is to contrast observations against theory, we need to relate the formal-

ism that describes discrete statistics (galaxies) with that describing continuous processes

(i.e. the cosmic field of matter). In this section, I review some relevant properties of

the continuous stochastic fields. Since the value a stochastic field assumes at a particular

spatial position is not, in general, independent from the values at other locations, a rig-

orous description of the cosmic matter field requires a multi-point approach. I therefore

show how the formalism presented above can be generalized to describe correlations in the

stochastic field.

Be λ(x) the intensity function describing the overall mass distribution in the universe,

i.e. a stochastic field representing the density of matter at a given position x (e.g. Martinez

& Saar, 2002) . We consider λ(x) as a particular (homogeneous and isotropic) realization

drawn from an ensemble E and indicate with F [λ(x)] its probability density functional

(PdF).

Since the intensity field is positively defined, F [λ(x)] is by definition non Gaussian. Its

complete characterization requires the knowledge of the entire (formally infinite) hierarchy

of the K-point expectation values
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〈λ( ~x1)λ( ~x2)λ( ~x3)....λ( ~xN )〉 =

〈
N∏

i=1

λ(~xi)

〉

.

Note that, in the limiting case ( ~x1= ~x2= ~x3=....= ~xN) we recover the one-point moment of

order N . In an analogous way, the K-point connected expectation value of the intensity

field is

〈λ( ~x1)λ( ~x2)λ( ~x3)....λ( ~xN )〉c =

〈
N∏

i=1

λR(~xi)

〉

c

.

Given the extensive use I will do in this thesis of this last quantity, in the following I

describe its properties in a somewhat more detailed way.

The cluster expansion technique

The N -point cumulant moments (i.e. the N -point connected expectation value) of the

intensity field Λ, can be illustrated via the use of the cluster expansion technique. This

tool is based on the fact that the expectation value taken at N positions contains lower

order information which is stacked in the expectation values of n < N points. The cluster

expansion technique allows singling out the non independent (i.e. the connected) moments

for any set of N points. This can be seen as an ordering of the information contained in

the moments, so that the connected expectation values are irreducible, i.e. not anymore

dependent on lower order information. As an example, I am going to treat the cases

N = 2 and N = 3. In order to identify the connected parts of the 2-point moment

〈λ( ~x1)λ( ~x2)〉, one can remark that if the distance between two points increases to infinity,

then the values taken by the random field λ, at position ~x1 and ~x2, are independent. Thus

〈λ( ~x1)λ( ~x2)〉 = 〈λ( ~x1)〉c〈λ( ~x2)〉c represents the lower order contribution. The connected

expectation value, instead, represents the remaining contribution. More formally

〈λ( ~x1)λ( ~x2)〉 = 〈λ( ~x1)〉c〈λ( ~x2)〉c + 〈λ( ~x1)λ( ~x2)〉c,

where, by definition, 〈λ〉c ≡ 〈λ〉. For N = 3 we can identify three kinds of configurations

• the tree points are infinitely separated 〈λ( ~x1)〉〈λ( ~x2)〉〈λ( ~x3)〉

• only one point is infinitely separated from the others 〈λ( ~x1)〉〈λ( ~x2)λ( ~x3)〉c (plus two

permutations)

• the connected part of the three points 〈λ( ~x1)λ( ~x2)λ( ~x3)〉c

This classification leads to
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〈λ( ~x1)λ( ~x2)λ( ~x3)〉 = 〈λ( ~x1)〉〈λ( ~x2)〉〈λ( ~x3)〉 + 〈λ( ~x1)〉〈λ( ~x2)λ( ~x3)〉c

+〈λ( ~x2)〉〈λ( ~x1)λ( ~x3)〉c + 〈λ( ~x3)〉〈λ( ~x1)λ( ~x2)〉c

+〈λ( ~x1)λ( ~x2)λ( ~x3)〉c

.

or, in an equivalent way, to

〈λ( ~x1)λ( ~x2)λ( ~x3)〉c = 〈λ( ~x1)λ( ~x2)λ( ~x3)〉 − 〈λ( ~x2)〉〈λ( ~x1)λ( ~x3)〉c

−〈λ( ~x3)〉〈λ( ~x1)λ( ~x2)〉c − 〈λ( ~x1)〉〈λ( ~x2)λ( ~x3)〉c

−〈λ( ~x1)〉〈λ( ~x2)〉〈λ( ~x3)〉

,

This last expression clarifies that the cumulant moments are obtained by subtracting lower

order independent contributions. Although this technique helps us to grasp the physical

meaning of cumulants, it does not help to compute them in a fast and efficient way. To

accomplish this task, it is more convenient to make use, as for the 1-point statistics, the

generating function formalism.

Joint K-point cumulant moments of the continuous fluctuation field

Since the probability that a continuous stochastic variable assume a given specific value

is null, it is no longer possible to define the probability generating function. However, we

can still define the cumulant moments and the factorial moments of the stochastic field

λ(~x). In the discrete case the generating functions of all kind of moments can be deduced

from the probability generating function, in the continuous case the generating functions

of cumulants moments and factorial moments can be derived form the moment generating

function Mλ[J ]

〈λ(x1) ... λ(xK)〉 =
δKMλ[J ]

δJ(x1) ... δJ(xK )

∣
∣
∣
J(x1)=...=J(xK)=0

(1.46)

where

Mλ[J ] =

∫

Dλ(x)F [λ(x)]ei
∫

dxJ(x)λ(x) =
〈

ei
∫

dxJ(x)λ(x)
〉

is the K-point moment generating functional, and where Dλ(x) represents a suitable

measure introduced in E such that the total probability turns out to be normalized to 1

(Matarrese, Lucchin & Bonometto, 1986).

The cosmological principle guarantees the existence of a non-zero value for the expected

value of the λ field. It is thus convenient to characterize inhomogeneities in the matter

distribution in terms of the local dimensionless density contrast

δ(x) ≡
λ(x)

〈λ(x)〉
− 1. (1.47)
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In the following, we assume that the ensemble average over E is equivalent to averaging a

particular realization over different spatial positions. If this operation is applied on a fair

sample, 〈δ(x)〉 = 0. As a consequence, if the intensity function λ(~x) represents the matter

density, 〈λ〉 = ρ̄.

An useful tool for probing the large-scale cosmological structure, because of their rela-

tively simple connection to both theory and observations, are the joint K-point cumulant

moments of order n = (n1, n2.....nK) of the cosmic over density field

κn1,...,nK
(x1, ...,xK) ≡ 〈δn1(x1) ... δnK (xK)〉c, (1.48)

and, in particular, the irreducible K-point auto-correlation functions

κ1,...,1(x1, ...,xK) ≡ 〈δ(x1) ... δ(xK )〉c. (1.49)

generally denoted as ξK and shortly called correlation functions. By definition, the gener-

ating functional of the K-point cumulant moment of the over density field is the logarithm

of the moment generating functional

C[J ] ≡ lnMδ[J ]. (1.50)

The advantage of computing connected averages instead of statistical averages

(µn1,...,nK
≡ 〈δn1(x1) ... δnK (xK)〉) is that cumulants are zero if the random variables

representing the value of the stochastic field at different space positions are statistically

independent. Conversely, a cumulant is not zero if and only if the random variables in it are

statistically “connected”. A specific consequence of this properties is that κn1,...,nK
→ 0

as any subset of positions xi are displaced to infinite separation. Finally, cumulants can

be explicitly represented in terms of only the lower order moments, that is as a function

of µm1...mK
(x1, ...,xK) with 0 ≤ mi ≤ ni. This follows from taking successive functional

derivatives of the generating functional C[J ]

κn1,...,nK
=

δNC[J ]

δJn1(x1) ... δJnK (xk)

∣
∣
∣
J(x1)=...=J(xK)=0

(1.51)

where N =
∑K

i=1 ni. The result can be formally written as (Meeron, 1957)

κn1,...,nK
= −

∏

j

νj !
N∑

l=1

∑

γi,mij

(
∑

γi − 1)!( − 1)
∑

γi

l∏

i=1

1

γi!

{

〈
∏K

j=1 δnij (xj)〉
∏

j nij!

}γi

. (1.52)

In this last equation, γi and mij are non-negative integers satisfying the set of equations

l∑

i=1

γimij = nj
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and bookkeeping all the possible decompositions

(δn1(x1) ... δnK (xK)) →
l∏

i=1

(δmi1(x1) ... δmiK (xK))γi .

In this study we are interested in the joint cumulant moments taken at two different

locations x1 and x2 up to the order N = n1 + n2 = 7. For these statistics, from now on

simply called correlators and indicated as κnm, eq. 1.52 gives

κ11 = µ11 (1.53)

κ12 = µ12

κ13 = µ13 − 3µ11µ2

κ22 = µ22 − 2µ11
2 − µ2

2

κ14 = µ14 − 6µ12µ2 − 4µ11µ3

κ23 = µ23 − 6µ12µ11 − µ3µ2 − 3µ12µ2

κ15 = µ15 − 5µ11µ4 − 10µ12µ3 − 10µ13µ2 + 30µ11µ2
2

κ24 = µ24 − 4µ12µ3 − 8µ13µ11 − 6µ22µ2 − 6µ12
2 + 6µ2

3 + 24µ11
2µ2 − µ4µ2

κ33 = µ33 − 6µ13µ2 − µ3
2 − 9µ12

2 + 12µ11
3 − 9µ22µ11 + 18µ11µ2

2

κ16 = µ16 − 6µ11µ5 − 20µ13µ3 − 15µ12µ4 − 15µ14µ2 + 120µ11µ2µ3 + 90µ12µ2
2

κ25 = µ25 + 40µ11
2µ3 − 10µ14µ11 − 5µ12µ4 − 20µ13µ12 + 30µ12µ2

2 − 10µ22µ3

−10µ23µ2 − µ5µ2 + 120µ3µ2
2 + 20µ11µ2µ12

κ34 = µ34 − 4µ13µ3 − 12µ13µ12 − 18µ22µ12 − 3µ14µ2 + 24µ11µ2µ3 + 36µ12µ2
2

−6µ23µ2 + 6µ3µ2
2 + 72µ11

2µ12 − 12µ23µ11 − µ3µ4 + 72µ11µ2µ12

where I have used the fact that 〈δ〉 = 0 and where I used the reduced notations κnm =

〈δn
R(~x1)δ

m
R (~x2)〉c and µnm = 〈δn

R(~x1)δ
m
R (~x2)〉. In the 1-point limiting case one recovers

the expressions of the cumulant moments κN given by Fry (1984b) (cfr. eq. 17). Note,

also, that correlators are symmetric with respect to exchanging the indexes. Technically,

I computed the above relations between high order 2-point cumulants and moments by

using

κnm =
δn+m ln{M[J ]}

δJn(x1)δJ
m(x2)

∣
∣
∣
J(x1)=J(x2)=0

. (1.54)

and by taking successive derivatives with the software Mathematica. I also inverted equa-

tions (1.53). In Appendix B I provide the expressions of the 2-point moments as a function

of the 2 point cumulant moments up to order 7.
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1.3.4 The 2-point autocorrelation function in Fourier space : the power

spectrum

A very useful way of dealing with the correlator of order (1, 1), i.e. the 2-point autocor-

relation function ξ, is to work out its Fourier space analog, i.e. the power spectrum If I

Fourier transform the fluctuation field at a position ~x1

δk1 =

∫

δ(~x)e−i ~k1·~xd3~x

it follows that it is possible to express the 2-point correlation function in Fourier space as

〈δk1δk2〉 = δD(~k1 + ~k2)
1

(2π)3

∫

ξ(~r)ei~k2·~rd3~r.

It is then natural to define the power spectrum P (~k) as the Fourier transform of the

2-point correlation function which leads to

〈δk1δk2〉 = δD(~k1 + ~k2)P (~k).

As a result, once the spectral decomposition P (k) is known, the second order statistics

such as 2-point correlation function or the variance of the matter field (~r = 0) can be both

predicted.

Assuming that primordial fluctuations (resulting from quantum fluctuations amplified

by inflation) are distributed according to a multivariate Gaussian distribution, the Wick’s

theorem (e.g. Bernardeau, 2008) guarantees that the full hierarchy of N -point correlation

functions are completely specified once the power spectrum is known. The main issue is

therefore to know the initial power spectrum of the perturbations.

At the end of inflation the primordial power spectrum which is predicted by most of the

inflationary models is of the type Po(k) = Akns with scalar spectral index ns ∼ 1. Note

that, in particular case ns = 1 Po(k) is called scale free primordial power spectrum (Har-

rison, 1970; Zel’dovich, 1970) because it corresponds to the spectral index for which the

associated gravitational potential is scale independent. Observationally the spectral index

is well constrained by the CMB data. In particular according to WMAP measurements

ns = 0.96 ± 0.014.

The shape of this primordial power spectrum, is subsequently modified because of the

specific way in which matter perturbations grow in an expanding universe. During the

inflationary epoch, the size of the horizon is constant, and density perturbations, whose size

grows as the scale factor of the universe, exit the horizon. If they re-enter before the epoch

of equivalence, the epoch at which the radiation and matter density of the universe are

identical, the amplitude of the dark matter perturbations cannot grow until the equivalence

epoch is reached. Dark matter perturbations stagnates, in a radiation dominated universe.

Since fluctuations characterized by a larger wavelength enter the horizon later than smaller
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one, large perturbations re-entering into the horizon after the radiation epoch are not

affected by this characteristic freezing: only dark matter perturbations on small scales are

suppressed. The growth dynamics characterizing the baryonic component is quite different.

The tight coupling between electrons and photons besides preventing fluctuations from

growing, force standard matter to oscillate up to the epoch of decoupling.

The physics responsible for the modifications of the primordial power spectrum between

the end of inflation and the decoupling epoch can be simply encapsulated in a transfer

function of matter and baryons T (k). This function maps the primordial fluctuations into

the initial one

δk,i = δk,oT (k),

where k = ||~k||. It follows that the linear power spectrum PL can be deduced from the

primordial power spectrum Po as

PL(k) = Po(k)T 2(k).

In the following of this thesis, I will assume that linear perturbations are described by

the linear (dimensionless) power spectrum

∆2
L = 4πAkns+3T 2(k), (1.55)

where A is the normalization factor of the primordial power spectrum, ns the primordial

spectral index and T 2(k) the transfer function (Bardeen et al., 1986; Efstathiou, Bond &

White, 1992; Eisenstein & Hu, 1998).

1.3.5 Hierarchy of N-point autocorrelation functions

The Hierarchical ansatz is a theoretical model for the N -point correlation function (e.g.

Fry (1984a,b)). According to this hypothesis, the N -point correlation function can be

expressed as a sum over products of the (lower order) 2-point correlation functions

ξN (x1, ...,xN ) =
tN∑

N−trees

k=1

QN,k

∑

labeling

∏

edges

ξij, (1.56)

where tN is the number of possible topologies that connect the N points, QN,k are the

reduced amplitudes, i.e. a set of constants associated to the chosen topology, and where

the product is made over all the possible way of connecting the N points once a topology

is considered. For convenience, one defines ξij ≡ ξ2(xi,xj). Note, also, that topologies or

graphs connecting the N points have no cycles (not closed graphs). As a consequence the

number of product is N −1. Although the HA hypothesis has been shown to describe in a

poor way the clustering of matter, it still remains a valuable pedagogical tool that allows
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me to introduce some fundamental relations whose validity is confirmed by a coherent use

of non-linear perturbation theory.

In figure (4), taken from Fry (1984b), the possible topologies up to order 7, for N = 3

are listed. Since it exists only one possible graph that connect the 3 points, we define

Q3 ≡ Q3,1 which is usually called the reduced amplitude of the 3-point correlation function.

In this specific case, the expression (1.56) reduces to

ξ3(x1,x2,x3) = Q3 {ξ12ξ23 + ξ12ξ13 + ξ13ξ23} . (1.57)

Note that, in the specific case in which the labels are identical, we can define the

reduced 1−point cumulant moment S3 (hereafter simply the reduced skewness) as

〈δ3〉c = S3〈δ
2〉2c , (1.58)

where S3 ≡ 3Q3. In a similar way, by taking a less restrictive limiting case (i.e. by

identifying the labels 2 and 3), equation (1.57) naturally defines the reduced 2−point

cumulant moment C12 (hereafter simply correlator of order (1, 2))

〈δ(x1)δ
2(x2)〉c = C12〈δ

2〉c〈δ(x1)δ(x2)〉c

{

1 +
η

2

}

, (1.59)

where C12 ≡ 2Q3 and η ≡ 〈δ(x1)δ(x2)〉c
〈δ2〉c

. Note that, when no smoothing is applied to the

density contrast of matter, the variance of the fluctuations 〈δ2〉c goes, by definition, to

infinity. Therefore, η → 0 and it can be neglected in equation (1.59).

By considering the same limiting cases that lead to equations (1.58) and (1.59) and by

repeatedly applying them to higher order correlation functions, we can define both the

reduced cumulant of order N

κN = SNκN−1
2 (1.60)

and the reduced correlators of order n + m = N

κnm = Cnmκ11κ
n+m−2
2 . (1.61)

In the following I show the great interest of using the correlators in order to characterize

the non Gaussian multi-point fields. First, assuming that Q3 is a constant, and given the

relations

C12(r) = 2Q3, (1.62)

S3 = 3Q3. (1.63)

we can deduce a simple relation between third order statistics
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S3 =
3

2
C12. (1.64)

and see that the reduced amplitude can be measured either with the cumulant or the

correlator. Now, at fourth order, equation (1.56) can be reduced to the three following

limiting cases (x2 = x3 = x4), (x1 = x3 and x2 = x4) and finally (x1 = x2 = x3 = x4).

We therefore obtain that







C13 = 6Q4,1 + 3Q4,2

C22 = 4Q4,1

S4 = 12Q4,1 + 4Q4,2

. (1.65)

By combining equations (1.65) we can establish the link between 1-point and 2-point

statistics at order four

S4 = C22 +
4

3
C13.

Equations (1.65) show that the complete hierarchy at fourth order involves two possible

topologies characterized by Q4,1 and Q4,2, while the third equation emphasizes that these

two quantities are strongly degenerated, and the simple knowledge of the 4th order cumu-

lant is not enough to capture all the information stacked in the 4th order 2−point statistics

(as it was the case at third order (see equation 1.64)).

1.3.6 The continuum-discrete connection: sampling a stochastic field

A discrete distribution can be thought as resulting from the sampling of an underlying

intensity function λ(~x). Let’s interpret the intensity function as the probability density

of finding a given object in an elementary volume d3~x. The (continuous) probability of

finding objects in a cell of finite volume v is

Λ(~x) =

∫

v(~x)
λ(~x′)d3~x′, (1.66)

where v(~x) represents the volume of a cell positioned at position ~x. This quantity (Λ)

can be naturally interpreted as the parent continuos field which is discretely sampled

by galaxies. More formally, P [N |Λ] represents the conditional probability of finding N

discrete objects in a cell centered at position x where the underlying continuous field

assumes the value Λ(x). It is, generally assumed, in what is called the “fair sample model

of the universe” that such sampling is well described by the local Poisson process (LPP, see

Layser, 1956). Indeed, this model assumes that counting galaxies in cells is like counting

rare events. Therefore, the probability of finding N galaxies in a cell is given by the

integral relation

PN =

∫ ∞

0
P [N |Λ]P (Λ)dΛ, (1.67)
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where P [N |Λ] = ΛN

N ! e
−Λ. From the above expressions it follows that N̄ ≡ Λ̄, i.e. the

moment of order one of the discrete field is equivalent to the equal order moment of the

continuous field.

Equation (2.6) can be used to obtain information on the stochastic field Λ once we know

the discrete counting probability PN . The standard way to characterize the stochastic field

Λ is by establishing a mapping between the moments of the continuous field (〈Λ〉) and

the moments of the underlying discrete galaxy field (〈N〉). This is equivalent to find the

corrections that minimize the sampling noise and restore the original continuous signal.

These relations can be obtained using the generating function technique, and this task is

particularly easy if we assume a LPP. While the corrections for Poisson sampling noise

are well known in the case of 1-point statistics, establishing these relations in the case of

multi-point statistics is less immediate. Szapudi et al. (1995) for example worked out this

mapping in the case of two-point moments. Here I briefly summarize how they obtained

their results.

The probability generating function of a discrete random variable N is G(λ) = 〈λN 〉

where, by definition, dG
dλ

∣
∣
∣
λ=0

= N !PN . By changing variable λ = 1+ t we obtain the facto-

rial moment generating function F (t). For two points statistics, the probability generating

function is

G(λ1, λ2) = 〈λN1
1 λN2

2 〉 . (1.68)

On the other hand, one can generalize the expression (2.6) to obtain

PN1,N2 =

∫ +∞

0

∫ +∞

0
P [N1|Λ1, N2|Λ2]P [Λ1,Λ2] d [Λ1] d [Λ2] , (1.69)

By assuming the LPP, and that the sampling does not introduce correlations, we have

P [N1|Λ1, N2|Λ2] =
Λ

N1
1

N1!
e−Λ1

Λ
N2
2

N2! e
−Λ2 which we can substitute in (1.69)

PN1,N2 =

∫ +∞

0

∫ +∞

0

ΛN1
1

N1!
e−Λ1

ΛN2
2

N2!
e−Λ2P [Λ1,Λ2] d [Λ1] d [Λ2] .

and by multiplying each side of the previous expressions by λN1
1 and λN2

2 and by summing

over N1 and N2 we obtain

G(λ1, λ2) =

∫ +∞

0

∫ +∞

0
P [Λ1,Λ2]

∞∑

N1,N2

(λ1Λ1)
N1

N1!
e−Λ1

(λ2Λ2)
N2

N2!
e−Λ2d [Λ1] d [Λ2]

=

∫ +∞

0

∫ +∞

0
P [Λ1,Λ2] e

(λ1−1)Λ1+(λ2−1)Λ2d [Λ1] d [Λ2]

G(1 + t1, 1 + t2) = M(et1 , et2). (1.70)
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It is therefore convenient to define the factorial generating function for 2-point statistics

as F (t1, t2) ≡ G(1 + t1, 1 + t2). From this definition, we obtain that

F (t1, t2) =
∞∑

N1,N2

PN1,N2(1 + t1)
N1(1 + t2)

N2

=
∞∑

N1,N2

PN1,N2

∞∑

n,m

N1(N1 − 1)...(N1 − n + 1)N2(N2 − 1)...(N2 − n + 1)
tn1
n!

tm2
m!

=
∞∑

n,m

tn1 tm2
n!m!

∞∑

N1,N2

PN1,N2(N1)
n
f (N2)

m
f

=
∞∑

n=0

∞∑

m=0

tn1 tm2
n!m!

〈(N1)
n
f (N2)

m
f 〉

,

(1.71)

Noting that the definition of the factorial generating function for 2-point statistics is

F (t1, t2) =
∞∑

n=0

∞∑

m=0

tn1 tm2
n!m!

dn+mF

dtndtm

∣
∣
∣
∣
∣
t1=0,t2=0

, (1.72)

and since the 2-point factorial moments of order n,m are defined as fn,m ≡
dn+mF
dtndtm

∣
∣
∣
t1=0,t2=0

, we obtain that

fn,m = 〈(N1)
n
f (N2)

m
f 〉 . (1.73)

From the relation (1.70) linking the factorial generating function to the moment generating

function, we can deduce that the 2-point moments of the stochastic field Λ(~x) can be

estimated by computing the 2-point factorial moments (eq. 1.73) of the discrete random

variable N , that is

〈Λn
1Λm

2 〉 = 〈N1(N1−1)...(N1 −n+1)N2(N2−1)...(N2 −m+1)〉 ≡ 〈(N1)
n
f (N2)

m
f 〉 . (1.74)

This result generalizes the relation

〈Λn〉 = 〈N(N − 1)...(N − n + 1)〉 ≡ 〈(N)nf 〉. (1.75)

that holds in the case of 1-point statistics. If the sampling process does not satisfy the

LPP approximation, the relation between the continuous and discrete moments will be in

general different.
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1.3.7 The continuum-discrete connection: statistics of smoothed fields

In order to ease the comparison with an intrinsically discrete process such as the distri-

bution of galaxies, as well as to facilitate the incorporation of the biasing scheme (e.g. eq.

1.93) into the study of matter fluctuations, it is useful to smooth the mass distribution on

a spatial scale R. This is done by convolving the over density field δ with a (normalized)

window function of size R.

δR(x) =

∫

δ(x′)W

[
| x − x′ |

R

]

d3x′. (1.76)

Smoothing and averaging are non commutative operations. As a consequence, while

the relations given in eq. 1.53 retains their validity when applied to filtered fields, the

amplitudes of the smoothed dynamical variables become, instead, scale dependent.

Consider, for example, the lowest-order non-zero, 1− and 2−point cumulant moments

of a smoothed density field, that is the variance of the mass fluctuations on a scale R

σ2
R = κ2,R = 〈δ2

R(x)〉c, (1.77)

and the covariance of the smoothed mass over density field

ξR(r) = κ11,R = 〈δR(x)δR(x + r)〉c. (1.78)

Suppose, further, that mass fluctuations are small (|δ| ≪ 1). The problem is to work

out theoretical predictions for the evolution of these relevant cosmological quantities. It

is easy to show, using the Newtonian approximation, and the fact that smoothing in real

space is equivalent to multiplication in Fourier space

δR,k = ŴTH(kR)δk,

that

σ2
R(z) = σ2

8(0)D
2(z)FR, (1.79)

and

ξR(r, z) = σ8(0)
2D2(z)GR(r). (1.80)

The normalization of these equations is conventionally fixed at a scale r8 = 8h−1Mpc,

D(t) represents the linear growing mode, while the effects of filtering are incorporated in

the functions

FR =

∫+∞
0 ∆2

L(k)Ŵ 2(kR)d ln k
∫+∞
0 ∆2

L(k)Ŵ 2(kr8)d ln k
(1.81)
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and

GR(r) =

∫+∞
0 ∆2

L(k)Ŵ 2(kR)
sin(kr)

kr d ln k
∫ +∞
0 ∆2

L(k)Ŵ 2(kr8)d ln k
(1.82)

where Ŵ is the Fourier transform of the window function. For a spherical Top-Hat filtering

function WTH defined as







WTH

[
|~x−~x′|

R

]

= 4R3

3π if |~x − ~x′| ≤ R

WTH

[
|~x−~x′|

R

]

= 0 if |~x − ~x′| > R
,

where R si the radius of the corresponding sphere and called smoothing radius. Note that

the window function is normalised such that
∫

WTH(|~x − ~x′|/R)d3~x ≡ 1 for any position

~x′. Its corresponding Fourier transform is given by

Ŵ (kR) =
3

(kR)3
{sin(kR) − kR cos(kR).} (1.83)

In Figure 1.4 I show the scaling of the smoothed 2-point correlation function (as a

function of both R and r) at two different cosmic epochs. There is an overall qualitative

resemblance between the r dependence of the 2-point correlation function ξ(r) and the

R dependence of its smoothed version ξR(r). More interestingly, the characteristic non-

monotonic scaling induced by the baryon acoustic oscillations (BAO) that are frozen in

the large scale matter distribution survives to the smoothing procedure and stands out

also in the second order correlator as soon as r approaches ∼ 100h−1Mpc.

Using linear theory, therefore, it is possible to relate the second order statistics of

matter fluctuations with some characteristic parameters of the primordial universe such

as the spectral index ns, the normalization factor A, or the cosmological parameters of

the transfer function (essentially, the physical matter densities Ωmh2 and Ωbh
2 (Eisenstein

& Hu, 1998). However, while the knowledge of the power spectrum can characterize the

fluctuations at decoupling (when fluctuations are Gaussian), the matter perturbation at

late epochs (that is at low redshift) cannot be fully characterized in terms of the correlation

function. If we want to understand how the non-linear action of gravity shaped the present

day large-scale structure, we must then analyze the whole hierarchy of moments of the

mass field.

1.3.8 The correlation hierarchy of smoothed fields predicted by the

WNLPT

In this section, I review how the WNLPT allows to obtain, in a coherent and rigorous

way, the correlation hierarchy (that I derived above using the HA). To this purpose, I

will follow the original analysis proposed by Bernardeau (1992) and then generalized to

the smoothed matter field in Bernardeau (1994a). Note that the later approach provides

a natural way to include the effects of filtering, therefore it allows me to generalize the
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Figure 1.4: Left: the 2-point correlation function of the smoothed mass density field ξR is shown
as a function of the smoothing scale R. We plot ξR for different values of the correlation length
r = nR i.e. n = 0 (black solid lines), n = 3 (red dashed lines), and n = 4 (blue dot-dashed lines)
and at two different redshifts: z = 0 (thick lines) and z = 1 (thin lines). We adopt the linear
power spectrum model of Eisenstein & Hu (1998) and we assume the following set of cosmological
parameters: Ωm = 0.26, ΩΛ = 0.74, H0 = 72 km s−1 Mpc−1, σ8(0) = 0.79, Ωb = 0.044 and
the spectral index ns = 0.96. Note that, for n = 0, ξR(0) = σ2

R, while for a correlation length
that goes to infinity the correlation function of the smoothed density field tends to zero. The
characteristic bump induced by the baryon acoustic oscillations becomes clearly visible as soon
as n is large enough. Right: the 2-point correlation function ξR(r) is shown as a function of the
correlation length r for fields smoothed on different scales, that is R = 1, 10, 25 and 50h−1Mpc.
As the smoothing scale R tends to zero, one recovers the 2-point correlation function of matter
particles, while as the filtering scale becomes larger, the BAO peak is progressively suppressed.
Note also that for r → 0, the value of ξR(r) saturates to the variance of the field on the given scale
R. On the opposite sense (r → ∞) all the curves converge to the value of the 2-point correlation
function of matter particles.
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notion of reduced cumulants and correlators to smoothed fields.

Here I show how one can deal with the third order hierarchy of one-point statistics,

whereas in Appendix (C) I present the third order two-point hierarchy. In section 1.2.2 I

described how to calculate the second order (Fourier) contribution to the density contrast

(eq. 1.37) when the matter field is not smoothed. In Appendix (C) I show that if the

density contrast field is filtered on a given scale R, then the second order contribution

predicted by the WNLPT can be written in real space as

δ
(2)
R (~x) =

∫∫

F2 (~q1, ~q2) δ(1)(~q1)δ
(1)(~q2)Ŵ [|~q1 + ~q2|R]ei(~q1+~q2)·~xd3~q1d

3~q2, (1.84)

where Ŵ is the Fourier transform of the filtering function defined in (1.83). This expression

can be generalised at order n (Bernardeau, 1994b)

δ
(2)
R (~x) =

∫∫

Fn (~q1, ..., ~qn) δ(1)(~q1)...δ
(1)(~qn)Ŵ [|~q1 + ... + ~qn|R]ei(~q1+...+~qn)·~xd3~q1...d

3~qn,

(1.85)

thus the smoothed density contrast is obtained using the series

δR(~x) =
∞∑

n=1

Dn(t)δ
(2)
R (~x)

︸ ︷︷ ︸

≡δn(~x)

. (1.86)

From eq. 1.86, one can express the one-point moment of order N

〈δN
R 〉 = 〈(δ1 + δ2 + ... + δn + ...)N 〉.

By taking N = 3, we can express the cumulant moment of order 3 (〈δ3〉c = 〈δ3〉) and

obtain

〈δ3
R〉 = 〈δ3

1〉c + 3〈δ2
1δ2〉 + ...,

where terms have been sorted by order of magnitude. Note that, since the initial condition

are assumed to be Gaussian, the first term is equal to zero

〈δ3
R〉 ≃ 3〈δ2

1δ2〉.

Calculation presented in appendix (C) shows that

〈δ3
R〉 =

(
34

7
+ γR

)

〈δ2
R〉

2, (1.87)

where γR ≡
d ln σ2

R

d lnR . Note that if the field is not smoothed (γR = 0) this result verify

the hierarchical ansatz (〈δ3〉 ∝ 〈δ2〉2). However, if the density field is smoothed, the

hierarchical ansatz is no longer a good approximation because of the presence of the
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logarithmic derivative of the variance, i.e. of a scale-dependent term. Anyway, it is

still convenient to describe the N -point correlation function using the hierarchical ansatz

formalism, that is, to assume that the reduced amplitudes are not constants and vary with

respect to the considered topology. This way we can still define the reduced cumulant SN,R

and the correlators Cnm,R. Anyway As a result, the correlators must exhibit a dependency

on both the smoothing radius R and the correlation length r.

1.3.9 The correlation amplitudes of smoothed fields predicted by the

WNLPT

For a top-hat filter, δR(x) is just the volume average of the density contrast over a sphere

of radius R. Note that the smoothed correlators of order N = (n,m) retain some of the

information contained in the N th order correlation function. As a matter of fact,

κnm,R =
1

V n+m
R

∫

VR(x1)
dy1...dyn

∫

VR(x2)
dyn+1...dyn+mξn+m(y1, ...,yn+m) (1.88)

where we assumed a top-hat filter of volume VR. From a physical point of view κnm,R is

the average of the correlation function of order n+m over two distinct volumes separated

by |x1 − x2|.

Computing the amplitude of the smoothed reduced cumulants and correlators at the

next order (i.e. S3,R and C12,R) requires results from the weakly non-linear perturbation

theory. If the primordial mass field is Gaussian and fluctuations with wavelength << R

are suppressed using a top-hat filter, then the third order reduced moment, which is often

referred to as the skewness of the density field, is (Juszkiewicz, Bouchet & Colombi , 1993;

Bernardeau, 1994b)

S3,R =
34

7
+ γR (1.89)

while, in the LS limit, that is for separations r >> R, the reduced correlator of the same

order is (Bernardeau, 1996)

C12,R(r) =
68

21
+

1

3
γR +

1

3
βR(r). (1.90)

The complete calculation of the correlator C12,R is detailed in appendix (C). As stressed

before, the effect of filtering is to introduce additional, scale-dependent, coefficients

γR ≡
d log σ2

R

d log R
(1.91)

βR(r) ≡
d log ξR(r)

d log R
, (1.92)

such that the reduced moment S3,R effectively depends on the local slope of the linear

power spectrum of density fluctuations (decreasing with the slope of the power spectrum),
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while the reduced correlator C12,R acquires a specific and characteristic non-local depen-

dence. In the following we parameterize the distance between the centers of independent

smoothing spheres as r = nR, where n is a generic real parameter (usually taken, without

loss of generality, to be an integer). According to the analysis of Bernardeau (1996), the

LS regime is fairly well recovered as soon as n ≥ 3. Interestingly, since WNLPT results

hold for large R, such a small n defines a separation scale r that is already accessible using

current redshift surveys such as the Sloan Digital Sky Survey.

The βR contribution in eq. (1.92) is usually neglected (Bernardeau, 1996) since, in

the LS limit, ξR(r) is simply the 2-point correlation function of the un-filtered field, a

function that effectively vanishes for large separations. This is a critical simplification

and the domain of its validity deserves more in-depth analysis. By assuming a power-law

spectrum of effective index ne = −1.2 (i.e. γR = −(ne + 3) = −1.8), we obtain that,

on all scales R, the amplitude of βR(nR) becomes negligible (≤ 0.08) as soon as n ≥ 3

. Anyway this rapid convergence to zero is a peculiar characteristic of a scale-free power

spectrum. If we consider a more realistic power spectrum (cfr. eq. 1.55) on scales that are

accessible to both semi-linear theory and current large scale data (i.e. 10 < R < 30h−1

Mpc, and n ∼ 3), the amplitude of the βR contribution is still significant and varies

non monotonically as a function of the length scales r on which the cell correlation is

estimated. This is illustrated in Figure 1.5 where we contrast the scaling of βR(nR) and

γR for different vales of R and n. The systematic error in the estimation of C12 that

is induced by neglecting the βR-term on relevant cosmological scales, is larger than the

error with which this statistics can already be estimated from current data (see Figure 3.3

in chapter CM). For example, the amplitude of βR, for characteristic values n = 3 and

R = 10(/25)h−1Mpc, is ∼ 15(/30)% that of γR. Interestingly, one can see that, as for

γR, also the value of βR(r) does not depend on cosmic time, at least at linear order. This

redshift-independence follows immediately from eqs. (1.80) and (1.92).

Notice, finally, that WNLPT theory results are expected to hold in the correlation

length range in which C12 can be unambiguously defined, that is up to the scale where the

correlator k11 crosses zero. This requirement sets an upper limit to the effective correlation

scale n that can be investigated using predictions of WNLPT. In this large scale context,

also notice that non-linear effects contributing to the baryon acoustic peak in the the 2-

point correlation function, would modify predictions obtained on the basis of the simple

linear model of eq. (1.79). For these reasons we limit the present analysis to correlation

scales nR ≤ 100h−1 Mpc.

1.4 Galaxy Bias

The relative simplicity with which fundamental predictions about amplitude and scaling

of relevant clustering statistics can be obtained from first principles, must not make us

overlook the fundamental difficulty that hampers large scale structure studies. This is
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Figure 1.5: Left : the logarithmic derivative of ξR(r) with respect to R (cfr. eq. 1.92) is shown
as a function of the smoothing scale R for different values of the correlation length r = nR (i.e.
for n = 0 solid line, n = 3 short-dashed line, n = 4 dot-dashed line and n = ∞ long-dashed
line). We have assumed the linear power spectrum model of Eisenstein & Hu (1998) and the same
parameters value listed in the caption of Figure 1. The non-monotonic scaling of βR(nR) at a
scale R∼ 25h−1Mpc is induced by the baryon acoustic oscillations. Note that, in the linear regime,
βR(r) does not depend on the cosmic epoch, i.e. it is a redshift independent quantity. Right :
the scaling of the reduced correlator of order 3 is shown as function of the smoothing scale R for
different values of the correlation length r = nR. Note that for n = 0 the correlator reduces to
the skewness S3,R and that for n = ∞ the expression of C12,R(nR) reduces to the one adopted by
Bernardeau (1996).
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the fact that the perfect, continuous fluid in terms of which we model the large scale

distribution of matter cannot be directly ‘observed’. As an example, let’s imagine that

we are able to locate in the universe all existing galaxies (which is far from being true!)

and that we know with an infinite precision their masses. Without any knowledge of

how luminous galaxies trace the underlying continuous distribution of matter, even this

ultimate galaxy sample would be of little use. Galaxies are intrinsically biased tracer of

the matter content of the universe, and the problem of unveiling how mass and galaxy

fields map into each others is the so called cosmological biasing issue. If not properly

addressed, biasing might bias the theoretical inferences that we draw from data.

There are essentially two different approaches to deal with the biasing issue. One

approach focuses on the local physics responsible for the formation of galaxies within

dark matter haloes. Once this physics is known, the biasing scheme can be determined

and measurements can be compared to theoretical predictions. An alternative approach

consists in parameterizing our ignorance about biasing via some parameters (the bias

coefficients), and treat them as nuisance parameters in the analysis.

We now discuss in more detail this second way of tackling the biasing issue. An opera-

tional definition of bias, that is useful for investigating the hierarchical clustering of matter,

is conventionally given in terms of continuous density fields, provided that the galaxy dis-

tribution is smoothed on scales R large enough compared to those where non-gravitational

physics operates. One can thus expand the dimensionless density fluctuations of galaxies

δg,R(x) at position x in Taylor series of the underlying mass over density δR at the same

point

δg,R(x) =
N∑

i=0

bi

i!
δi
R(x) (1.93)

where bi are the bias coefficients. It has been shown that, in this large scale limit, such a

local transformation preserves the hierarchical properties of 1-point matter statistics (Fry

& Gaztañaga, 1993).

The problem of interfacing theory (mass) with observations (light) stems from the fact

that the equations that give access to the value of fundamental gravitational quantities

(such as the rms of linear matter fluctuations on a given scale R (σR =
√

〈δ2
R〉) or the

growth rate of linear perturbations f = d ln δ/ ln a, where a is the cosmic scale factor) are

also the very same equations that allow us to extract the value of the bias parameters bi.

Since the relevant physical and cosmological quantities are generally degenerate with the

bias parameters, it is not immediately obvious how to fix their values. Because of this, the

traditional approach consists in assuming that gravitational and cosmological parameters

are independently known and to fix the amplitude of the bias coefficients bi (e.g. Lahav et

al., 2002).

The viability of the opposite route, that is investigating the coherence of the physical
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model given an a-priori knowledge of the bias function, has been systematically explored

only recently. Zhang et al. (2007) and Song & Percival (2009), for example, have pro-

posed to assess the soundness of GR by constructing statistical indicators that are in

principle insensitive to the linear biasing parameter, i.e. the lower order term in equa-

tion (1.93). Guzzo et al. (2008), on the contrary, tested GR by comparing the observed

and predicted growth rate of matter fluctuations using data from deep redshift surveys.

To fulfill their goal they adopted the value of the linear biasing parameter provided by

independent observations, such as the level of anisotropy in the Cosmic Microwave Back-

ground (Komatsu et al., 2011) or the mean number density of galaxy clusters (Borgani et

al., 2001; Schuecker et al., 2003). Both these strategies suffer from the fact that there are

now convincing evidences about the non-linear character of the bias function (Marinoni et

al., 2005; Gaztañaga et al., 2005; Marinoni et al., 2008; Kovac et al., 2009). This testing

scheme is also far from being economic, requiring data from multiple and independent

probes of the large scale structure, redshift surveys, imaging surveys, CMB observations.

An orthogonal, more general approach, aims at extracting from redshift surveys both

the value of σR and the bias parameters bi. Several authors have shown that, if the initial

perturbations are Gaussian and if the shape of third order statistics such as the reduced

skewness S3 (Gaztañaga, 1994; Gaztañaga & Frieman, 1994), the bispectrum (Fry, 1994;

Scoccimarro, 1998; Feldman et al., 2001; Verde et al., 2002) or the 3-point correlation

function (Gaztañaga et al., 2005; Gaztañaga & Scoccimarro, 2005; Pan & Szapudi, 2005)

is correctly described by results of the weakly non-linear perturbation theory, then one

can fix the amplitude of bi up to order 2 in a way that is independent from the overall

amplitude of clustering (e.g. σ8) and depends only on the shape of the linear power

spectrum.



54 CHAPTER 1. INTRODUCTION



Chapter 2

The scale of cosmic isotropy

2.1 Introduction

The cosmological principle (CP), the assertion that the cosmic mass distribution appears

homogeneous and isotropic, that is uniform, to a family of typical observers that move

with the same average velocity of the surrounding matter (fundamental or comoving ob-

servers) has far reaching consequences in cosmology (Wienberg, 1972). It entails that

the geometry of space-time is highly symmetric and completely described by the simple

Robertson & Walker metric (Robertson, 1929; Walker, 1936). Furthermore, it implies that

space expands at a rate that is set by the equations of Friedman & Lemaitre (Friedmann,

1922; Lemaitre, 1931).

The very first surveys of the three-dimensional distribution of optical galaxies showed

that the topology of the large-scale structure is very complex and irregular (Geller &

Huchra, 1989; Gionannelli & Haynes, 1991). Because of this departure from exact unifor-

mity, the CP is regarded as a coarse-grained model of the universe, a statistical description

of the mass distribution that applies only on sufficiently large scales where the finest details

of the galaxy clustering pattern become irrelevant.

More recently, two-dimensional observations of the Cosmic Microwave Background

(CMB) (Bennett et al., 1994) have shown that the universe is extremely isotropic about

us (to roughly 1 part in 105), confirming earlier claims based on the analysis of the spatial

distribution of local (z ∼ 1) sources (e.g. (Gregory & Condon, 1991)). What is challeng-

ing is to show that the universe is isotropic also about distant observers. As difficult as

it may seem, it is important to attack the problem. Indeed, while isotropy at a specific

position does not imply cosmic homogeneity (and viceversa), isotropy about every funda-

mental observer does imply overall homogeneity (Ehlers, 1993). Lacking direct evidence

for everywhere isotropy, the case for the CP rests more on philosophical rather than on

empirical evidences; it is enough to postulate that we are not privileged observers (the

so called Copernican principle) to deduce that if the universe appear isotropic about our

position, it must also appear isotropic to observers in other galaxies (Ellis, 1976).

55
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The tremendous explanatory power of the standard model of cosmology cannot be ad-

vocated as an indirect demonstration of the CP, since they are not the only solutions of the

Einstein equations which are able to fit cosmological observations. In particular, many

authors have speculated that some effects of the accelerated expansion of the universe

(Riess et al., 1998; Perlmutter et al., 1999; Bernardis et al., 2000; Eisenstein et al., 2005;

Marinoni & Buzzi, 2010), which remains fundamentally unexplained in terms of micro-

scopic physics, could be mimicked by allowing CP violations (see a review in Célérier,

2007). This intriguing possibility has motivated recent attempts of rooting the CP on

a more solid basis. Interestingly, there are some encouraging proposals in this direction

which are based on the analysis of the large-scale maps of CMB anisotropies (Goodman,

1995; Caldwell & Stebbins, 2008; Jia & Zhang, 2008; Zhang & Stebbins, 2011), of galaxies

(Clarkson, Bassett & Lu, 2008; Uzan, Clarkson & Ellis, 2008; Romano, 2007; Bolejko &

Wyithe, 2009) and of supernovae (Clifton, Ferreira & Land, 2008).

Even if we postulate the CP, the picture is not complete unless we identify the averaging

scale that is implicit in this assumption, i.e. the scale on which the FLRW model provides

an effective, coarse-grained description of the universe (Stoeger, Maartens & Ellis, 1995).

It is generically asserted that the CP holds on domains that are large enough to encompass

the biggest gravitational structures of the universe. Yet, few studies have attempted to

narrow in on the length value above which clumpiness gives way to uniformity (Wu, Lahav

& Rees, 1999).

Past efforts were mostly based on the analysis of the two-point correlation properties

of galaxy samples (Davis, 1997; Guzzo, 1997). This approach, however, suffers from severe

theoretical drawbacks. Since the average number density of the sample is needed as input,

the method presupposes the premise to be tested, i.e. a constant density distribution of

matter (Pietronero, Montuori & Sylos-Labini, 2007). Moreover, it does not provide an

unambiguous definition of the cross-over scale (Gaite et al., 1999). As a consequence,

the inferred homogeneity length-scales depend on the size of the analyzed sample and

range from values as low as 30h−1Mpc up to 200h−1Mpc (Borgani, 1995; Cappi et al.,

1998; Amendola & Palladino, 1999; Bharadwaj et al., 1999; Martinez et al., 2001; Pan &

Coles, 2001). More recently, orthogonal techniques have been explored which are based on

the count-in-cells analysis of observations confined to a spatial hyper-surface of constant

time (e.g. Bagla, Yadav & Seshadri, 2005). These methods are insensitive to light cone

effects, i.e. possible biases arising from comparing galaxy fluctuations at different cosmic

epochs, and seem to indicate a transition to homogeneity at a scale of 70−1Mpc (Hogg,

2005; Yadav et al., 2005) but see Sylos-Labini (2009a,b) for an opposite conclusion. In

particular, the counting method advocated by Scrimgeour et al. (2012) allows to estimate

the homogeneity scale independently from the sample size.

It is widely believed that, since we cannot point telescopes from any other place but

the solar system, it is not possible to establish if also distant observers see an isotropic

universe. While this argument is certainly true for apparent 2D quantities such as, for
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example, the CMB temperature (but see Goodman, 1995), we show here that it does not

apply to 3D maps of the spatial distribution of galaxies. Specifically, we quantify the

typical dimension above which independent observers see an isotropic ’bath’ of galaxies.

Besides establishing an operational definition of the isotropy scale, our approach also

provides an overall consistency test of a fundamental facet of the CP, i.e. that we are not

privileged observers of the universe.

2.2 The Method

I identify paths of external length irradiating from a given arbitrary target galaxy to every

other nth closest neighbours (see Fig. 2.1). The amplitude of the angle t between these

directions and the observer line-of-sight (los) to the target is computed by assuming that

the local properties of a homogeneous and isotropic universe are described in terms of the

infinitesimal Robertson & Walker (Robertson, 1929; Walker, 1936) line element

Figure 2.1: Upper: We determine the geodesic connections between a given target galaxy A and
all the surrounding galaxies that lie inside a sphere of radius R centred on A. The target galaxy
A and its nth closest neighbour subtend an angle ∆θ at the observer position O. The tilting angle
t measures the inclination of the geodesic separation χAn between A and n with respect to the
observer line-of-sight (dashed line). If the CP holds on the scale R we expect this ‘spaghetti to
be isotropically oriented about any given target. In other terms we expect the los angle t to be
isotropically distributed, i.e. its PDF is ϕ(t) = (sin t)/2. Lower: the distribution of sin2t as a
function of the geodesic separation χAn in a sphere of radius R = 300h−1Mpc randomly positioned
in the LRG SDSS sample. The dotted line represents the theoretically expected average (µ = 2/3),
while the solid line represents the IGI value, that is the average of the plotted points. The shaded
area represents the 1σ uncertainty of the IGI value.

ds2 = (cdt)2 − a2(t)[dχ2 + Σ2
k(χ)(dθ2 + sin2 θdφ2)]
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where, c is the light speed, k is the scalar spatial curvature, χ is the radial geodesic

comoving distance, a(t) is the cosmic expansion factor, and where, using the Kronecker

symbol, Sk(χ) = δk,1 sin χ+ δk,0χ+ δk,−1 sinhχ. The spatial part of the metric is invariant

under a quasi-translation transformation of its coordinates (Wienberg, 1972). We can

translate the reference frame from the terrestrial observer O to the target A and express

the coordinates ~xn/A of its nth neighbor as

~xn/A = ~xn/O − ~xA/O

{
[

1 − kx2
n/O

]1/2
+

+
[

1 − (1 − kx2
A/O)1/2

] ~xn/O · ~xA/O

x2
A/O

}

. (2.1)

By orienting the axes in such a way to minimize the number of non-zero components (I

choose ~xn/A = (Sk(χAn) , 0, 0), ~xn/O = (Sk(χn) sin ∆θ , 0, Sk(χn) cos ∆θ) and ~xA/O =

(0 , 0, −Sk(χA))), and by exploiting the identity

C2
k(χ) + kS2

k(χ) = 1 (2.2)

we obtain

S2
k(χAn) = S2

k(χn) sin2 ∆θ + (2.3)

+
[

Sk(χn)Ck(χA) cos ∆θ − Sk(χA)Ck(χn)
]2

.

Further, by repeatedly applying this relation to the 3 edges of the triangle (Ŝ, T̂ , ∆̂θ)

shown in Fig. 2.1, and by isolating, after some algebra, identical terms in the resulting

expressions one obtains the generalized law of sinus

sin ∆θ

Sk(χAn)
=

sin T

Sk(χn)
=

sin S

Sk(χA)
. (2.4)

Since t = π − T , it finally follows from eqs (2.3) and (2.4) that

sin2 t =
1

1 +
[

Ck(χA) cot ∆θ − Sk(χA)
Sk(χn)

Ck(χn)
sin ∆θ

]2 . (2.5)

If the CP holds, the los angle t has a comoving space Probability Distribution Function

(PDF) of a characteristic type (ϕ(t) = (sin t)/2), namely, it is a random variable isotrop-

ically distributed with respect to any fundamental observer. Therefore, the expectation

value µ = 〈sin2 t〉 is cosmology independent and equal to 2/3. I define the indicator of
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galaxy isotropy (IGI) as the estimator mR constructed by averaging equation (2.5) over n

galaxies inside a sphere of comoving radius R that is centred around any given observer in

the universe. On scales R where the CP applies, we expect the measure of mR to converge

to the predicted value µ = 2/3.

The testing protocol is as follows: I assume that the CP holds and I implement standard

statistical inference methods to try to falsify it and reject its validity. In detail, I assume the

existence of a length-scale R above which the empirical IGI estimates (mR) are statistically

identical to the theoretical prediction (µ). I thus formulate a null hypothesis h0 according

to which the two quantities are not different. I quantify the goodness of the agreement by

means of χ2 statistics, and, following standard convention, I fix the rejection threshold of

h0, i.e. the risk of reaching the wrong conclusion, at the 5% level. This means that the

hypothesis that the universe is isotropic above a scale R cannot be rejected by data if the

probability P of obtaining a worse (larger) χ2 value is greater than 5%. On the contrary,

an eventual failure in identifying the scale of isotropy would unambiguously point at the

incoherence of the FLRW model.

Homogeneity and isotropy are properties that characterize the large-scale distribution of

matter on a 3D spatial hyper-surface at a given instant of time. Since light propagates at a

finite speed, the most distant regions of the 3D volume directly accessible to observations

are also the furthest in time. As a consequence, the number density of galaxies, an

observable that is modulated by local physical processes with their own specific time-

scales, is expected to vary as a function of distance. This is a known issue that hampers

most of the tests of the CP (Heavens, Jimenez & Maartens, 2011). In the following we

show that, by focusing our attention on the angular distribution of galaxies, instead of

their number density fluctuations, we can tackle the past light cone issue.

If the CP holds true, as I assume here, the galaxy spatial number density ρs(r) within

spherical shells of width ∆r centered on the terrestrial observer must be independent

from the distance r. Note that shell-homogeneity, that is ρs = const, does not imply

homogeneity, i.e. invariance under general spatial translations, while the opposite is true.

More importantly, the radial constancy of ρs does not imply everywhere isotropy (isotropy

about arbitrary comoving observers) that is the fundamental facet of the CP that we

want to test. As a matter of fact, the distribution of galaxies that surrounds us can be

characterized by a constant ρs and yet be anisotropic. I therefore remove past-light cone

artifacts, by imposing that the comoving number density of galaxies be strictly constant

within concentric shells centered on us. In practice, I analyze a volume limited catalog of

galaxies, that is a sample of objects brigther than a given minimum absolute luminosity,

and I additionally remove, with a random rejection process, any residual radial gradient

in the distribution of galaxies. As I show in the following, this technique preserves the

clustering properties of the galaxy distribution, and does not falsely impose homogeneity

where there is none.

The fair sample model of the universe (Layzer 1956), assumes that the galaxy distribu-
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RA (deg)

Figure 2.2: The IGI value measured by different observers, labeled by their right ascension
coordinate, is plotted. Each estimate is performed within non-overlapping spheres of
comoving radius R (shown in the inset) randomly thrown in the volume covered by the
SDSS galaxy survey. Errors are computed as the standard deviation of the mean, and
well trace the theoretically expected figure σ =

√

4/(45n). The average IGI value (mR =
〈sin2 t〉) is 0.678 ± 0.005, 0.672 ± 0.006, and 0.660 ± 0.007 from left to right. The solid
line shows the expectation value predicted under the assumption that the CP holds (i.e.
µ = 2/3). On small scales data scatters widely, while on scales where the CP is expected
to hold, data fit the theoretical prediction. A goodness of fit statistical analysis yields
χ2/dof = (2.1, 1.12, 0.65) from the the smaller to the larger scale.

tion is a discrete stochastic process resulting from the Poissonian sampling of an underlying

continuous matter density field Λ(x). Accordingly, a galaxy sample that traces an under-

lying continuous field of PDF Q(Λ) can be modeled as a discrete stochastic process in

which the probability of counting N galaxies within a given arbitrary cell is

PN =

∫

P (N |Λ)Q(Λ)dΛ, (2.6)

where the conditional sampling probability is

P (N |Λ) =
Λ−N

N !
e−Λ. (2.7)

In the ideal universe described by the FLRW model, the continuous matter fluid Λ(x)

satisfies exactly the CP and its PDF is the Dirac delta Q(Λ) = δD(Λ − Λ0). Equations

(2.6) and (2.7) therefore imply that PN follows a Poissonian statistic, that is the spatial

distribution of galaxies is random.

I now demonstrate that a spatially random sample of size K cannot be generated

by randomly sampling, with probability p, a parent population of size N whose spatial

distribution is clustered, that is inhomogeneus. Let the sampling process be described by

K = Φ(x1) + Φ(x2) + ..... + Φ(xN ), (2.8)
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where Φ is a random variable (taking on the values 0 or 1) distributed according to the

Bernoulli probability law (that is pΦ(1 − p)1−Φ, where p is the probability that Φ = 1 in

a single trial), and where N is a non-negative integer-valued random variable distributed

according to the Poisson distribution of average counts N̄ .

The probability generating function (PGF) of PN is

G(z) ≡
∞∑

i=0

Piz
i, (2.9)

and its expression in the case of the Bernoulli and Poisson processes is

GΦ(z) = (1 − p) + pz (2.10)

and

GN (z) = e(z−1)N̄ , (2.11)

respectively.

It can be shown (Kendall & Stuart, 1983) that the PGF of the sum of independent,

identically distributed random variables Φ, i.e. the PGF of the random variable K in

equation (2.8) is

GK(z) = GN (GΦ(z)). (2.12)

Let’s assume that GK is the PGF of a Poissonian distribution with average parameter

n̄. By taking the derivative of eq. (2.12) we obtain

n̄e
[ (GΦ+p−1)

p
−1]n̄

=
dGN

dGΦ
p (2.13)

which, upon integration gives

GN (u) = e
(u−1) n̄

p + C. (2.14)

The value of the arbitrary constant C can be set to 0 using the additional condition

GN (1) = 1 (see eq. (2.9)). Therefore, a spatially random distribution cannot be the result

of the random sampling of a non-Poissonian distribution. Reciprocally, one can show that

a random sampling of a Poisson parent distribution, results in a subsample of elements

with Poisson distribution.

I now show that also the N -point moments of the continuous mass distribution Λ(x)

are not modified by a random sampling process. Given the counts Ni ≡ N(xi) in a cell

at position xi, the N point PGF is immediately obtained by generalizing the expression

given in eq. (2.9)
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G(z1, z2, ...., zn) =
∑

N1

∑

N2

...
∑

Nn

PN1,N2,...NnzN1
1 zN2

2 ....zNn
n , (2.15)

where

PN1,N2,...,Nn =

∫

P (N1|Λ1)....P (Nn|Λn))Q(Λ1)...Q(Λn)dΛ1.....dΛn, (2.16)

and where Λi ≡ Λ(xi). If the sampling is random, the N -point PGF is given by

G(z1, z2, ...., zn) = 〈eΛ1(z1−1)eΛ2(z2−1)......eΛn(zn−1)〉. (2.17)

The moment generating function associated to the discrete, N -point, counts

N1, N2, ...., Nn follows immediately by substituting zi → ezi in the argument of the PGF

(Szapudi, Szalay & Boschán, 1992)

M(z1, z2, ...., zn) = 〈eΛ1(ez1−1)eΛ2(ez2−1), ...., eΛn(ezn−1)〉. (2.18)

The N -point moment of the galaxy distribution, is calculated as the functional deriva-

tive of the moment generating function (see section 1.3.3)

〈N(x1)N(x2).....N(xn)〉 ≡
δnM

δz1δz2....δzn

∣
∣
∣
z1=z2=......=zn=0

. (2.19)

By substituting eq. (2.18) into the previous one, we see that the N -point galaxy moment

is equivalent to the corresponding statistics computed for the underlying continuous matter

field, i.e.

〈N(x1)N(x2).....N(xn)〉 = 〈Λ(x1)Λ(x2).....Λ(xn)〉. (2.20)

As a result, the whole hierarchy of N-point galaxy correlation functions computed from

a random (discrete) sample trace with fidelity the N -point correlation function of matter.

Again, an inhomogeneous spatial distribution cannot be turned into a homogeneous one

by a random sampling process.

2.3 Data: the SDSS DR7 sample

I apply the method to the seventh release of the Sloan Digital Sky Survey (Abazajian et

al., 2009) which is comprised of ∼ 930, 000 galaxies over a field of view of 9380 deg2. Our

analysis is limited to luminous red galaxies (LRG, Eisenstein et al., 2001) distributed in

the North Galactic contiguous area defined by 120 < RA < 240, 7 < DEC < 56 (see figure

2.3). A sample with a nearly constant density of galaxies is obtained by volume limiting

the SDSS dr7 catalog in the redshift range 0.22 < z < 0.5. This sample extends on a

comoving radial size ∆r ∼ 700h−1Mpc (in what follows, I consider a cosmological model

characterized by the reduced density of matter Ωm = 0.27 and dark energy ΩΛ = 0.73,
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and I assume that the value of the Hubble constant is H0 = 72 km s−1Mpc−1.) The upper

redshift limit is fixed by the requirement of measuring the IGI with approximately the

same average precision of nearly 1% over all the interval 100 < R < 200Mpc.

The strict equality ρs(r) = const is then imposed by interpolating the observed number

density ρs of objects in spherical shells centered on us (and with thickness a hundred times

smaller than the effective depth of the sample), and by randomly rejecting galaxies using a

Monte Carlo process with selection function φ(r) = min(ρs)/ρs(r). The final LRG sample

contains a total of ∼ 6500 objects, has a mean number density ρ = 6.14 · 10−6h3Mpc−3

and covers an effective field of view of 4860 deg2.

As stressed before an angular window and a radial coverage define the survey geometry.

As shown in figure (2.1), the extragalactic observer A have to probe if he is seeing an

isotropic distribution of galaxies around him. Thus it is crucial to make sure that this

virtual observer won’t be able to see any boundaries of the survey which could lead to

artificial anisotropies inducing a break down in the testing process. The easiest way of

proceeding is to generate a random distribution of points (which materializes the potential

observers) within the boundaries of the survey. Then I must verify if each observer is

positioned (with respect to any boundary) at a larger distance than the tested scale. As

one may guess, this way of proceeding is computationally expensive and since I had to

deal with placing spheres into a survey in most of my thesis work, I indeed optimized this

process. Basically, the idea is to predict in advance where to place observers in order to

avoid any boundary effect. It is straightforward and intuitive to do so in a flat Euclidean

space. On the contrary, in curved space this operation is less trivial.

The first step is to define the distance between two points A and B in curved spaces.

The most general (i.e. valid for both flat and curved spaces) expression (eq. 2.3) of the

normalized comoving distance χAB between two objects A and B subtending an angle γ

at the observer position O (assumed to be the origin of the coordinate system) is

S2
k(χAB) = C2

k(χA)S2
k(χB) + S2

k(χA)C2
k(χB) + kS2

k(χA)S2
k(χB) sin2 γ

−2C2
k(χA)C2

k(χB)S2
k(χA)S2

k(χB) cos γ,
(2.21)

where C2
k(χ) + kS2

k(χ) = 1 for any value of k. The expression (2.21) can be written in a

more synthetic way as

C2
k(χAB) = {Ck(χA)Ck(χB) + kSk(χA)Sk(χB) cos θ}2 . (2.22)

Now the position of a point (galaxy) M can be defined in terms of the radial comov-

ing distance χ, the right ascension α and the declination δ. It is possible to map this

equatorial coordinate system into the standard Cartesian one by applying the following

transformations
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Sk(x) = Sk(χ) cos δ cos α

Sk(y) = Sk(χ) cos δ sin α

Sk(z) = Sk(χ) sin δ

, (2.23)

where (x, y, z) are the Cartesian coordinates of the point M . The relation between the

angle γ and the equatorial angular coordinates of the galaxies A and B is

cos γ = cos δA cos δB cos(αA − αB) + sin δA sin δB , (2.24)

a relation showing that the separation angle does not depend on the absolute position in

right ascension of A or B.

As stressed before, using the distance formula (2.22 or 2.21) it is possible to predict

the region of the space unaffected by boundary issues. A boundary can be defined as a

surface of constant right ascension αo, constant declination δo or constant radial comoving

distance χo. Thus, to avoid any boundary effects, I define the distance between any

previously cited surface and a generic point M as the distance between this point and a

virtual point lying on the boundary surface. This particular virtual point must be chosen

as the closest to M . From expression (2.22) I deduce that

kS2
k(χAB) = 1 − {Ck(χA)Ck(χB) + kSk(χA)Sk(χB) cos θ}2 , (2.25)

and therefore I conclude that minimizing the distance χ is equivalent to finding the max-

imum/minimum of the right hand side of equation (2.25) which is equivalent as finding

the maximum/minimum of

fδ(χ,α) ≡ Ck(χM )Ck(χ) + kSk(χM )Sk(χ) {cos δM cos δo cos(αM − α) + sin δM sin δo} ,

(2.26)

in the case of a boundary surface defined by δ = δo. This procedure can be generalized

for the two other boundaries as

fα(χ, δ) ≡ Ck(χM )Ck(χ) + kSk(χM )Sk(χ) {cos δM cos δ cos(αM − αo) + sin δM sin δ} ,

(2.27)

fχ(α, δ) ≡ cos δM cos δ cos(α − αM ) + sin δM sin δ. (2.28)

in the cases of boundary surfaces defined by α = αo and by χ = χo respectively. After

some algebra, the distance in curved spaces between any boundary surface point and a

point with coordinates (χ,α,δ) can be expressed as
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Sk(χδo) = Sk(χ) sin |δ − δo|

Sk(χαo) = Sk(χ)| cos δ sin(α − αo)|

χχo = |χ − χo|

, (2.29)

where χδo, χαo and χχo are the comoving distances involving respectively a declination

surface, a right ascension surface and a shell surface. The equation (2.29) can therefore

be used to calculate the effective boundaries by imposing that for any observer







χδo ≥ R′

χαo ≥ R′

χχo ≥ R′

,

where R′ is the reduced comoving radius of the considered sphere (R′ = R/ao). By taking

the limiting case k = 0 I recover the more intuitive formulas that hold in a flat universe.

2.4 Analysis of SDSS data and Comparison to Theoretical

Models

For meaningful error interpretation, it is imperative to acquire independent estimations

of the observable mR. Consequently, I do not apply the scheme to every galaxy in the

sample, i.e. I do not carve spheres of comoving radius R around each ‘extraterrestrial’

observer to determine whether they see the same degree of isotropy. Instead, I only select

as observers, those target galaxies that are at the center of non-overlapping spheres. As

an example, given the geometry of the largest contiguous volume in the SDSS survey, I

can place a maximum number N = 107, 30, 9, 4, 3 of independent observers, exploring the

isotropic distribution of galaxies on length-scales R = 100, 150, 200, 250 and 300h−1Mpc

respectively. Each of these observers are geodesically connected, on average, to n =

26, 87, 206, 401, 695 galaxies respectively.

2.4.1 Random catalogs

Before analyzing real data, I have first applied the method to synthetic samples simulating

spatially random (statistically uniform) galaxy distributions. The point here is to detect

the minimum radius R below which our technique is noise-limited and the scale of every-

where isotropy cannot be resolved. Using Montecarlo techniques, I have generated various

uniform mock catalogues with galaxy number densities in the range 10−4 −10−6h3Mpc−3.

We have found that, as expected, when the scale R is larger than the mean inter-particle

separation λ = ρ−1/3, the distribution of the t angle statistically converges towards an

isotropic PDF. Quantitatively, as soon as R > 1.5λ, that is when on average ∼ 4 · (1.5)3

galaxies are geodesically connected to the observer, the risk of reaching the wrong con-
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clusion in rejecting the isotropy hypothesis h0 becomes larger than 5%. In particular, the

everywhere isotropy of a random (uniform Poissonian) distribution of galaxies with the

same density of the LRG sample investigated in this study can be unambiguously detected

on scales larger than ∼ 85h−1 Mpc.

I now explain how I generated a random distribution of points in curved spaces. One

can immediately note that if a uniform distribution of points in curved spaces is generated

using spherical coordinates, then only the radial distribution is affected by curvature.

Indeed the curvature has no effect on the projection along the line of sight (i.e. the

angular distribution). As discussed above, a light cone is defined by its boundaries in

right ascension (αmin, αmax), in declination (δmin, δmax) and in radial comoving distance

(aoχmin, aoχmax). Thus the effective solid angle Ω is given by

Ω = (αmax − αmin)(sin δmax − sin δmin). (2.30)

And the total comoving volume can be expressed as

VT =
Ω

4
a3

o {Vk(2χmax) − Vk(2χmin)} , (2.31)

where k is the curvature (−1, 0 or 1), and Vk is defined as

Vk(x) ≡ k [x − Sk(x)] +
x3

3
δK(k),

where δK stands for the Kronecker function, 1 if k = 0 otherwise 0. It is therefore possible

to predict the total number of points NT in order to obtain a random sample of a given

number density ρo

NT = ρoVT . (2.32)

Since the total number of points is known, I am now interested in finding the probability

density function P [(aoχ)] of radial comoving distances in a curved space uniformly popu-

lated. It corresponds to express the probability of finding a given number Ns of points in

a shell of thickness d(aoχ) and limited by a solid angle Ω. Thus uniformity of the random

positions imposes that

P [(aoχ)] d(aoχ) =
Ns

NT
. (2.33)

Since the volume of a shell is dVs = Ωa3
oS

2
k(χ)d(χ), the expected number Ns of points in

the corresponding shell can be expressed as Ns = ρodVs. Using equations (2.31), (2.32)

and (2.34) it is therefore possible to express the density probability of the radial distances

as
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P [(aoχ)] d(aoχ) =
4

a0

S2
k(χ)

Vk(2χmax) − Vk(2χmin)
d(aoχ). (2.34)

The comoving distances of a random distribution must be distributed according to the

probability density P [(aoχ)]. However, in practice, it is covenient to obtain the distri-

bution of radial comoving distances from a uniform random generator. Be ξ a uniformly

distributed variable between 0 and 1. In order to express the radial distance with re-

spect to ξ one can use the conservation of probabilities P [(aoχ)] d(aoχ) = P [ξ] dξ and by

integrating, it follows

4

∫ χ

χmin

S2
k(x)

Vk(2χmax) − Vk(2χmin)
dx =

∫ ξ

0
dξ′.

I can thus express (aoχ) as

(aoχ) =
ao

2
V −1

k [ξ {Vk(2χmax) − Vk(2χmin)} + Vk(2χmin)] , (2.35)

where V −1
k is the reciprocal function (i.e. V −1

k [Vk(x)] ≡ x) of Vk which is defined for any

k. Although it can be analytically expressed in the case of k = 0, in the cases k = ±1 it

is necessary to solve it numerically. This can be computationally expensive if the number

of point is very large.

The right ascensions α and declinations δ of the random points are generated as fol-

lows. Paying attention to the conservation of the solid angle under rotation of the right

ascensions it is obvious that α must be uniformly distributed (i.e. drawn from a uniform

distribution) between αmin and αmax.

It follows that the right ascencion of randomly distributed points can be drawn from a

uniform distribution ξ as

α = (αmax − αmin)ξ + αmin. (2.36)

From the expression of the solid angle Ω (eq. 2.30) it is obvious that a shift in declination

does not conserve the solid angle. However, we notice that a translation of the sine of

the declination leaves the solid angle unchanged. Thus in order to randomly distribute

point in declination, it is the sine of the declination which must be drawn from a uniform

distribution

δ = arcsin[ξ(sin δmax − sin δmin) + sin δmin]. (2.37)

From equations (2.35), (2.36) and (2.37) I generated random distributions of points in

different cosmological models.
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Figure 2.3: Effective angular field extracted from the SDSS northern region, the solid rectangle
represents the angular cut we applied in order to simplify the boundaries of the survey.

Figure 2.4: Blue diamonds show the density profile of the SDSS LRG sample whereas the magenta
triangles show a possible Montecarlo realization of the LRG sample with a constant density profile.
The dotted line represents the value ρ = 6.14 × 10−6h3Mpc−3.

2.4.2 SDSS LRG sample

I have then analyzed the luminous red galaxy (LRG) sample extracted from the SDSS

dr-7. I first retrieved the whole SDSS DR7 catalog (containing blue and LRGs galaxies)

(Strauss et al., 2002) from the SDSS website. I then selected the LRG sample by applying

the selection criteria in magnitude and color detailed in section 2 of Eisenstein et al. (2001).

I also applied an angular selection (i.e. a cut in Right Ascension and DEClination) in order

to select a contiguous volume

120◦ ≤ RA ≤ 240◦

7◦ ≤ DEC ≤ 56◦.

Figure (2.3) shows the effective angular cut applied in the northern part of the SDSS

survey. The complete sample, referred to as SDSS LRG in figure (2.4), contains 70750

galaxies its radial density profile is provided in figure (2.4).

The IGI value estimated by distant observers on a scale R = 100, 150, and 200h−1Mpc

is graphically shown in Figure 2.2. It is interesting to note that, for any displayed scale R,

the distribution of the average IGI values (〈mR〉) peaks at µ = 2/3, while the variance of

the distribution decreases as a function of R. The stability of the central value of the dis-

tribution shows whether isotropy is present on average, whereas the scatter shows whether
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Figure 2.5: Upper: the observed PDF of the los angle t (histogram) is compared to the isotropic
prediction (ϕ(t) = (sin t)/2) on a scale R = 150h−1Mpc. The ratio between model deviations and
data errors is also plotted (together with the lines indicating 1σ and 2σ deviations). Lower: The
confidence with which the hypothesis h0 cannot be rejected on a given scale, i.e. probability that
the assumption of everywhere isotropy is compatible with observations. This is computed as the
median of the probability P inferred from 1000 re-samplings of the SDSS LRG sample that are shell
homogeneous. Errorbars represents the first and third quartile of the distribution of P. The blue
line shows the average expectation extracted from the analysis of 50 mocks catalogs simulating the
sample. The red envelope shows the confidence threshold bracketing 1σ fluctuations around the
average expectation.

isotropy is present for all observers.In accordance with standard theoretical expectations,

as the R-scale increases, all the observers are equally likely to observe isotropy, i.e. they

loose their specificity and progressively become the ’typical’ observer of the universe. The

left panel of Figure (2.5) confirms that the galaxy pattern observed from different positions

in the universes approaches an isotropic distribution.

The precise scale of transition to isotropy Riso is quantitatively determined as follows.

First, by randomly rejecting galaxies from the main LRG sample, we have constructed 1000

subsamples that satisfies to the requirement ρs = const (see figure 2.4). This bootstrapping

process, allows us to estimate the central moments and the dispersion of the P statistics.

I have then positioned the centers of the maximum number of non-overlapping spheres of

radius R that fit inside the survey volume. In particular, I require that the position of the

extraterrestrial observers change randomly from sample to sample. For each length-scale

R probed, I have finally computed the risk of erroneously rejecting the null hypothesis as

the median of P over the 1000 realizations. The right panel of Fig 2.5. shows that the

median risk is larger than 5% for scales larger than 150h−1 Mpc. Despite the observed

spread in the P -values for large R, essentially due to the low density of the LRG sample,

a statistically significant sharp transition towards isotropy at a scale Riso ∼ 150h−1 is

unambiguously detected. Notwithstanding, a larger sample might also definitively exclude

the hypothesis that the transition happens at a scale as low as 120h−1Mpc. In fact, the

evidence with which such a low Riso is currently excluded is not yet conclusive.

My conclusions are, within error bars, independent from the density cut I artificially

impose to guarantee shell homogeneity. I have verified that samples that are everywhere
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isotropic on a scale R continue to be everywhere isotropic on that scale if the density

threshold imposed by the requirements of shell homogeneity is enhanced. This conclusion

follows from the analysis of subsamples obtained by volume-limiting the SDSS catalogue

at a lower redshift zmax. Interestingly, and in the opposite sense, if the sample is isotropic

on a scale R then it continues to be isotropic on that scale, also even when its density is

artificially lowered (by randomly rejecting galaxy members). The isotropic length proves

robust up until the investigated scale R becomes smaller than ∼ 1.5 times the mean

inter-particle separation. Below that threshold, as the analysis of random samples already

suggested, the predictive power of our indicator breaks down.

I have compared the measurements to predictions of N -body simulations of the large-

scale structure of the universe. To this end, I have analyzed with the same technique 50

independent mock catalogs simulating the distribution of LRG galaxies in an SDSS-like

survey. They were constructed by the LasDamas project (McBride et al., 2009) using Λ

cold dark matter simulations (with characteristic parameters ΛCDM) simulations (ΩM =

0.25,ΩΛ = 0.75, h = 0.7, σ8 = 0.8, ns = 1).

Fig. 2.5 quantifies the confidence level with which the hypothesis h0 cannot be rejected

on a scale R, and compares it to what is expected in the mock catalogs. Not only is a

sharp transition towards isotropy at a scale R ∼ 150h−1 detected in real SDSS data, it is

observed in synthetic galaxy catalogs too. This excellent agreement implies that the scale

of isotropy R ∼ 150h−1 is a length that characterizes not only luminous galaxies, i.e. the

visible component of the universe, but also of the most massive dark matter halos. The sig-

nificance of this conclusion is best understood by considering that the everywhere isotropy

inferred from real data alone, does not give insight into the corresponding arrangement of

the underlying mass component.

2.5 Conclusions

An acritical acceptance of the Copernican principle might result in what Haynes (1996)

called the ”Verrazzano bias”. As in the case of this explorer who, off the coast of the

outer banks of North Carolina, mistakenly believed that he had discovered the Pacific

Ocean, it is dangerous to draw definite cosmological conclusions on the basis of limited

data collected from a special spatial position.

In this Chapter I have presented a new geometrical tool that allows us to assess whether

or not, from the view point of a distant galaxy, the large-scale structure of the universe

appear almost identical to its aspect from earth. Virtually all of the previous attempts

to identify the coarse graining scale above which the visible distribution of matter comply

with the requirements of the CP have focused on the analysis of the so called homogeneity

scale. I have addressed this same issue from a different angle. I propose to identify this

fundamental length with the scale of everywhere isotropy Riso, the scale above which the

distribution of galaxies appears isotropic to every comoving observer, that we define as
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the smallest scale at which the probability of wrongly rejecting the CP is smaller than 5%.

By analyzing state-of-the-art data, I have found that the galaxy distribution, as traced

by luminous red galaxies, appears isotropic to every comoving observer in the universe

once the averaging scale is larger than Riso ∼ 150h−1 Mpc. This figure is in excellent

agreement with predictions of the spatial clustering of galaxies in ΛCDM simulations.

The advantage of the method is that it is insensitive to the shape of the radial selection

function of the redshift sample analyzed, i.e. to the effective number of objects that sample

the underlying clustering of galaxies as a function of redshift. As a matter of fact, it is

straightforward to subtract look-back time issues once the focus is shifted from counting

objects (the standard methodology of the homogeneity tests) to measuring angles (as

implemented by our strategy).

Since the matter distribution converges continuously towards homogeneity/isotropy, it

is in fact quite arbitrary to decide which criterion must be adopted to single out an exact

scale of transition. In this work I adopt the point of view that the most natural way to

test the CP is to assign a probability to the hypothesis that this model is wrong. The

goal is to frame the analysis of its coherence within the domain of probability theory, as

the intrinsically statistical nature of this cosmological statement explicitly demands. This

helps elucidating the meaning of such generic sentences as “....the CP holds on a scales

larger than XXX Mpc” and will ease the quantitative comparison of the results obtained

with different and independent methods.

Deeper redshift surveys of the universe (such as, for example, BOSS or EUCLID)

are currently ongoing and expected to be soon completed. It would be interesting to

understand if the scale of everywhere isotropy does scale as a function of cosmic time as

predicted by numerical simulations of the gravitational clustering in the universe. This will

confirm that the CP is not some temporary assertion about the present day appearance

of the universe but a fundamental property of matter distribution at all cosmic epochs.

Even more importantly, it will help us to shed light on the physics behind the large-scale

uniformity of the universe by answering the question: where does this scale come from?
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Chapter 3

The rms of matter fluctuations

According to a widely accepted paradigm, cosmic structures grew from tiny dark matter

density fluctuations present in the otherwise homogeneous and rapidly expanding early

universe. The standard version of the model incorporates the assumption that these pri-

mordial and Gaussian distributed fluctuations are amplified by gravity eventually turning

into the rich structure that surrounds us today. This picture in which gravity, as described

by general relativity, is the engine driving cosmic growth is generally referred to as the

gravitational instability paradigm (GIP). However plausible it may seem, it is important

to test its validity.

In the local universe the GIP paradigm has been shown to make sense of a vast amount

of independent observations on different spatial scales, from galaxies to superclusters of

galaxies (e.g. Peacock et al., 2001; Tegmark et al., 2006; Reyes et al., 2010). Deep galaxy

surveys now allow us to test whether the predictions of this assumption are also valid at

earlier epochs (Guzzo et al., 2008; Blake et al., 2011). In particular, they allow us to asses

weather GR is the correct theory describing the action of gravity on large cosmological

scales (e.g. Jain & Zhang, 2008; Uzan, 2009; Acquaviva & Gawiser, 2010).

Indeed, modifications to GR have been proposed as alternatives to explain observa-

tions showing that the universe is undergoing accelerated expansion (Dvali, Gabadadze

& Porrati, 2000; Capozziello, Cardone & Troisi, 2005; Amendola, Polarski & Tsujikawa,

2007; Buzzi, Marinoni & Colafrancesco, 2008). Non standard gravitational models have

also been invoked as an alternative to dark matter (Milgrom, 1983; Bekenstein, 2004) or

to its standard physical characterization (Piazza & Marinoni, 2003; Bertacca et al., 2008).

Since these modified gravity theories are specifically tuned to explain the uniform cosmic

expansion history, a possible way to test their reliability is to analyze the inhomogeneous

section of the universe, i.e. cosmological perturbations of matter (Linder, 2005; Zhang et

al., 2007).

The central achievement of this section is therefore to detail the computational scheme

that allows extracting both the amplitude and redshift scaling of the rms of matter fluc-

tuation (σR) in real space, using as data, the three dimensional positions of galaxies. This

73
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is a non-trivial task, compounded by our poor knowledge of the biasing mechanism, that

is of how the global matter distribution is traced by its luminous subcomponent. To ad-

dress this issue I exploit the information encoded in the reduced 2-point correlator C12

(see section 1.3.9). Following an original suggestion of Szapudi (1998), I work out the

explicit expressions for the bias coefficients up to order 4 as a function of C12 and of the

reduced 1-point cumulant Si (up to order 5). Using these results I construct the central

formula of this section (cfr. eq. (3.22)), i.e. an estimator of σR that is independent from

any assumption about the linear power spectrum of matter. As a result, by contrasting

the redshift evolution of σR with predictions of perturbation theory at linear order I can

place constraints on the reliability of the GIP paradigm and in particular on the viability

of general relativity on large cosmological scales. This formalism relies upon theoretical

assumptions and approximations that I have tested using N-body simulations of luminous

red galaxies (Horizon simulations and LasDamas simulations). In this way I can assess

the overall coherence of the method and the impact of potential systematics.

3.1 Mapping matter into galaxy: statistical relations

I will begin by discussing the transformation laws that allows us to establish a connection

between matter statistics (predicted by theory) and the galaxy statistics (extracted from

a redshift survey).

3.1.1 The local, non-linear, galaxy biasing function

Smoothing is not the only process that leaves an imprint on the value of cumulant mo-

ments. Their amplitude and shape is also altered if galaxies, instead of massive particles,

are used to trace the overall matter distributions. Fry & Gaztañaga (1993) computed the

effects of biasing on 1-point (smoothed) cumulant moments up to order 5. In this section,

I generalize their results by deriving the expressions of the smoothed 2-point cumulant

moments of the galaxy overdensity field up to the same order. These are new observ-

ables that can be used to test predictions of the GIP in the weakly non-linear regime, to

give insight into the gravity induced large-scale bias, and also to distinguish models with

Gaussian initial conditions from their non-Gaussian alternatives.

As stressed in the introduction of this thesis, I assume that bias between galaxy fluctua-

tions and matter fluctuations is described by a local non-linear mapping (Fry & Gaztañaga,

1993). Since the biasing function can be expanded in Taylor series, it can be written in a

formal way as

δg,R =
∞∑

i=0

bi

i!
δi
R. (3.1)

Here δR is the matter fluctuation smoothed on scale R and δg,R is the galaxy fluctua-

tion smoothed on the same scale. Note that the zero order basing coefficient b0 is not
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an arbitrary parameter. Its value, instead, depends on the order at which the Taylor

series is effectively truncated, and it is computed by requiring that the average of galaxy

fluctuations be, by definition, null. Thus, by averaging bias function (eq. 3.1) I obtain

b0 = −
N∑

i=2

bi

i!
〈δi

R〉.

By substituting b0 in 3.1 I obtain

δg,R = b1δR +
N∑

i=2

bi

i!
∆i, (3.2)

where ∆i = δi
R − 〈δi

R〉.

In the following I will first express the galaxy N-point autocorrelation functions of the

galaxy density field as a function of the corresponding statistics for the matter density

field. These results follows from applying the cluster expansion technique (see section

1.3.3). I will then discuss how I used these results to establish the relation between the

correlators of mass and galaxies.

3.1.2 N-point galaxy autocorrelation functions

The cluster expansion is the technique that I used to obtain the N -point autocorrelation

functions of galaxies as a function of the N -point correlation functions of the matter field.

Since from now on we only consider smoothed statistics, I simplify my notation by omitting

any explicit reference to the smoothing scale R. The R−dependence of relevant statis-

tical quantities will be re-emphasized when necessary. Consider the N -point, smoothed,

correlation functions of matter up to order 5

ξij = κ11(xi,xj) (3.3)

ζijk = κ111(xi,xj ,xk)

ηijkl = κ1111(xi,xj ,xk,xl)

ωijklm = κ11111(xi,xj ,xk,xl,xm).

At leading order, the corresponding statistics describing the distribution of galaxies, la-

beled with the suffix g are,

ξ12,g = b1
2 ξ12 (3.4)

ζ123,g = b1
3 ζ123 + b1

3c2(ξ13ξ23 + 2 perm) (3.5)

η1234,g = b1
4 η1234 + b1

4[c2(ξ23ζ124 + 11 perm) + c3(ξ14ξ24ξ34 + 3 perm)
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+c2
2(ξ13ξ24ξ34 + 11 perm)]

ω12345,g = b1
5 ω12345 + b1

5[c2 (ξ15η2345 + 19 perm + ζ125ζ345 + 14 perm)

+c3 (ζ135ξ25ξ45 + 29 perm) + c4 (ξ14ξ24ξ34ξ45 + 4 perm)

+c2
2 (ζ135ξ24ξ25 + 119 perm) + c2c3 (ξ14ξ25ξ34ξ24 + 59 perm)

+c2
3 (ξ13ξ24ξ45ξ15 + 59 perm) ].

Equation (3.4) reduces to the commonly used definition of the linear bias. Additionally,

equation (3.5) can be combined to equation (3.4) in order to express the third order

reduced amplitude of galaxies with respect to the linear bias, to the second order bias

parameter and to the third order reduced amplitude of matter

Q3,g = b−1
1 {Q3 + c2}.

Moreover, an original contribution of this thesis is the expression of the four and five

points correlation functions of galaxy fluctuations as a function of matter statistics. The

utility of these expressions will be made explicit in the following, where we use them to

investigate the hierarchical properties of matter fluctuations.

3.1.3 The correlators of the galaxy density field

The mapping between correlators of mass (i.e. the two point cumulant moments (κnm) of

order (nm)) and the galaxy correlators (κnm,g) at the leading order, follows immediately by

taking the 2-point limiting case of the expressions obtained in the previous section. Listed

below are the results up to order n + m = 4 ( including also non-leading contributions)

κ11,g = b2
1κ11 + b2

1(c3 + C12c2)κ11 κ2 + 1/2 b2
1c

2
2κ

2
11 (3.6)

κ12,g = b3
1(C12 + 2 c2)κ11 κ2 + b3

1c2κ
2
11 + b3

1(5/2 c3C12 + 2 c2
2C12 + 3 c3c2 + c4

+1/2 c2C22 + c2
2S3 + c3S3 + c2C13)κ11 κ2

2 + b3
1(c

3
2 + 1/2 c4 + 3 c2

2C12

+2 c3c2 + c3C12)κ
2
11κ2 + b3

1c3c2κ
3
11

κ13,g = b1
4(6 c2

2 + C13 + 3 c2S3 + 3 c3 + 6 c2C12)κ11 κ2
2 + b1

4(3C12c2

+6 c2
2)κ11

2κ2 + b1
4c3κ11

3 + b1
4(3/2 c2C14 + 9/2C12c3S3

+12 c2
2c3 + 6 c2

3S3 + 45/2 c2c3C12 + 9 c2c4 + 3/2 c3S4 + 9/2 c4S3

+3/2 c5 + 15/2 c3
2 + 3 c2

2S4 + 3 c2
2C22 + 15/2 c2

2C12S3

+9/2 c4C12 + 6 c2
2C13 + 45/2 c3S3c2 + 5 c3C13 + 6 c2

3C12

+1/2 c2C23)κ11 κ2
3 + b1

4(9/2 c2
2C12

2 + 6 c2
2C13 + 3/2 c3C22

+39/2 c2c3C12 + 3/2 c4C12 + 9/2 c3S3c2 + 3 c2
4 + 18 c2

3C12 + 3/2 c3C12
2

+15/2 c2c4 + 18 c2
2c3 + 6 c2

3S3)κ11
2κ2

2 + b1
4(9/2 c3

2 + 1/2 c5
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+3/2 c4C12 + 9 c2c3C12 + 6 c2
2c3)κ11

3κ2 + 3/2 b1
4c2c4κ11

4

where ci ≡ bi/b1 for i ≥ 2. In Appendix (F) I list the expressions for the galaxy correlators

up to fifth order. For x1 = x2, one recovers the expressions of Fry & Gaztañaga (1993)

(cfr. their eq. 9).1

3.1.4 Hierarchy of reduced galaxy correlators

The leading term in eq. (3.6) reduces, in the 1-point limiting case, to

κ2,g = b2
1κ2. (3.7)

I find that, to leading order in the product κ11κ2 the remaining results, κnm,g for n+m ≥ 3,

preserve the hierarchical properties of matter correlators, i.e. knm,g = Cnm,gκ11,gκ
n+m−2
2,g ,

with amplitudes Cnm,g given by

C12,g = b−1
1 (C12 + 2 c2)

C13,g = b−2
1 (C13 + 3 c2(S3 + 2C12) + 3 c3 + 6 c2

2)

C22,g = b−2
1 (C22 + 4 c2C12 + 4 c2

2) (3.8)

C14,g = b−3
1 (C14 + 4 c2(S4 + 3C13) + 12 (c3 + 3 c2

2)(S3 + C12) + 12 c2C12S3

+4 c4 + 36 c3c2 + 24 c3
2)

C23,g = b−3
1 (C23 + 2 c2(C13 + 3C22) + 3 (c3 + c2S3)C12 + 6 c2

2(S3 + 3C12)

+6 c3c2 + 12 c3
2).

These relations show that in order to draw any conclusions from the galaxy distribution

about matter correlations of order N , properties of biasing must be specified completely to

order N−1. Note, also, that the equations (3.8) have been obtained in the large separation

approximation and fail as soon as |x1 − x2| < R. As a consequence, in the 1-point limit

they do not converge to the results of Fry & Gaztañaga (1993) on the amplitude of the

reduced cumulants, that is

S3,g = b−1
1 (S3 + 3 c2)

S4,g = b−2
1

(

S4 + 12 c2S3 + 4 c3 + 12 c2
2
)

(3.9)

1Actually I found two misprints in their eq. (9). The term 210c
3
2S3 is actually 210c

2
3S3 and 180c

2
2S4

should read 180c
3
2S4. Anyway such terms were subsequently neglected in that analysis, leaving the author’s

conclusions unaltered.
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S5,g = b−3
1

(

S5 + 20 c2S4 + 15 c2S3
2 + (30 c3 + 120 c2

2)S3 + 5 c4 + 60 c2c3 + 60 c2
3
)

.

Interestingly, it is possible to design a sanity test to verify whether these calculations

are correct. In section 1.3.5 I showed that if an non-smoothed field is considered, and if

the validity of the HA is assumed, then at third order S3 = 3/2C12, and, at fourth order,

S4 = C22 + 4
3C13. These properties must hold also for the galaxy field because equations

(3.8) and (3.9) show that the non-linear local bias conserves the HA. As a consequence, we

should obtain Sg,3 = 3/2Cg,12 and Sg,4 = Cg,22 + 4
3Cg,13 if the expressions (3.8) have been

correctly derived. This is effectively what we deduced from the above set of equations.

Interrestingly, the hierarchical scaling is not the only matter property which survives

to the local non-linear biasing transformation of eq. 1.93. I also find that

C22,g = C12,gC12,g

C23,g = C12,gC13,g (3.10)

that is the reduced galaxy correlators Cnm,g, conserve the factorization property of the

matter density field (cfr. eq. 1.73).

3.2 Non-linear bias in real space

The most common methods for estimating the amplitude of the non-linear bias coefficients

bi relies on fitting a theoretical model to higher order statistical observables, such as the

3-point correlation function (e.g. Gaztañaga & Scoccimarro, 2005), the bispectrum (e.g.

Verde et al., 2002), or the galaxy probability distribution function (e.g. Marinoni et al.,

2005).

Here the approach I take is orthogonal. I explicitly derive analytical relations directly

expressing the non-linear bias coefficients bi as a function of high order observables. To

this end I cannot simply invert the set of equations 3.8 (or 3.9), since the N th galaxy

reduced correlator (or moment) are a function of N + 1 bias coefficients (Szapudi, 1998).

I add, instead, the expression of the 3rd order reduced correlator C12,g to the system of

equations (3.9) and solve the resulting set for the biasing coefficients. I obtain

b1 =
3C12 − 2S3

3C12,g − 2S3,g
(3.11)

b2 =
(C12S3,g − S3C12,g)(3C12 − 2S3)

(3C12,g − 2S3,g)
2 (3.12)
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b3 = (9S4,gC
2
12 − 12S4,gC12S3 + 4S4,gS

2
3 − 12S3S3,gC12C12,g + 24S3S

2
3,gC12

−24S2
3S3,gC12,g + 24S2

3C2
12,g − 9S4C

2
12,g + 12S4C12,gS3,g − 4S4S

2
3,g − 12S2

3,gC
2
12)

×(3C12 − 2S3)(3C12,g − 2S3,g)
−3/4

b4 = (−60S3
3S4,gC12,g − 108S5,gC12

2S3 − 120S4S3,g
3S3 − 600S3,g

3S3C
2
12

+495S4S3C
3
12,g − 600S3,g

2S3
3C12,g − 270S3,gS4,gC

3
12 + 72S5,gC12S

2
3

+108S5C
2
12,gS3,g + 1200S3,gS

3
3C2

12,g + 600S3
3,gS

2
3C12 − 40S4S

3
3,gC12

+120S3,gS4,gS
3
3 − 72S5C12,gS

2
3,g − 90S4S3,gC12C

2
12,g + 120S4S

2
3,gC12C12,g

−930S4S3,gS3C
2
12,g + 580S4S

2
3,gS3C12,g + 630S3,gS4,gC

2
12S3 − 480S3,gS4,gC12S3

2

+180S2
3,gS3C

2
12C12,g − 600S2

3,gS
2
3C12C12,g + 270S3,gS

2
3C12C

2
12,g

−135S3S4,gC
2
12C12,g + 180S2

3S4,gC12C12,g + 54S5,gC
3
12 − 16S5,gS

3
3 − 54S5C

3
12,g

+16S5S
3
3,g + 240S3

3,gC
3
12 − 690S3

3C3
12,g)(3C12 − 2S3)(3C12,g − 2S3,g)

−4/10.

Note that linear combination of S3 and C12 which appears in the expression of b1 would

be exactly equal to zero in the no smoothing case. We see, again, that the smoothing

process does not conserve the perfect hierarchy of a stochastic field, in the sense that the

hierarchical amplitudes (i.e. the reduced correlators and moments) cannot be constant if

the field is smoothed.

This set of equations allows to investigate the eventual non-linear character of the bias-

ing function up to of order 4 by exploiting information encoded in the reduced correlators

up to order 3 and the reduced moments up to order ≤ 5. Note that, if I set βR(r) = 0 in

eq. (1.90), then my expressions for b1 and b2 (cfr. should eqs. (3.11) and (3.12)) reduce

to equations (4) and (5) originally derived by Szapudi (1998). As stressed by this author,

in this formalism biasing coefficients are not anymore simple parameters to be estimated

(by maximizing, for example, the likelihood of observables that are sensitive to them such

as the reduced skewness S3 (Gaztañaga, 1994; Gaztañaga & Frieman, 1994), the bispec-

trum (Fry, 1994; Scoccimarro, 1998; Feldman et al., 2001; Verde et al., 2002), the 3-point

correlation function (Gaztañaga & Scoccimarro, 2005; Pan & Szapudi, 2005) or the full

probability distribution function of the density fluctuations Marinoni et al. (2005, 2008),

but they become themselves estimators.

In what follows, I will focus on the linear biasing parameter b1 only. In my formalism,

this quantity is explicitly expressed in terms of the amplitude of third-order statistics

(i.e. the reduced cumulants and correlators) and it is independent from the amplitude of

second-order statistics such as the rms of matter fluctuations. Notwithstanding, b1 seems

to depend on the shape of the power spectrum of the matter density fluctuations via the

terms γR and βR(r) appearing in eq. (1.90). I will demonstrate in the next section that

the inclusion of the correction term βR(r) in the analysis has the additional advantage of

making the linear bias coefficient b1 effectively independent from any assumption about
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second order statistics, i.e. independent not only from the amplitude but also from the

shape of the linear matter power spectrum. This fully third-order dependency of the linear

biasing parameter estimator b1 allows me to construct an estimator of the variance σR of

the matter density fluctuations smoothed on the scale R.

3.3 Constructing the estimator of σm

Now that all the ingredients are collected, I detail how we construct the estimator of the

linear matter density fluctuations σR. From eq. (1.89), (1.90), (3.7) and (3.11) we obtain

σR =
τg,R(r)

βR(r) − γR
σg,R (3.13)

where

τg,R(r) = 3C12,g,R(r) − 2S3,g,R (3.14)

and where the suffix g indicates that the relevant quantities are evaluated using data. For

clarity, the scale dependence of third order statistics is explicitly highlighted. Apparently,

the right hand side of the previous equations depends on the overall shape of the a-priori

unknown matter power spectrum. In reality, the terms βR(r) − γR can be consistently

estimated from observations without any additional theoretical assumption. To show this,

I define

αR(r) ≡
d log ηR(r)

d log R
(3.15)

where

ηR(r) ≡
ξR(r)

σ2
R

. (3.16)

As far as matter particles are considered, the previous definitions imply that αR(r) =

βR(r)−γR. By combining the expression for ξg,R given by eq. 3.6 with its 1-point limiting

case i.e.

σ2
g,R(z) = b2

1σ
2
R(z)

{

1 +
(

1/2c2
2 + S3,Rc2 + c3

)

σ2
R(z)

}

, (3.17)

and using the fact that, on scales where WNLPT applies, σ2
R ≪ 1, we obtain

ηg,R(r) ∼ ηR(r) −
{

(S3,R − C12,R)c2 + 1/2c2
2
}

ξR(r) + 1/2c2
2ηR(r)ξR(r), (3.18)

where ηg,R(r) = ξg,R(r)/σ2
g,R and where the terms on the RHS have been sorted by order of

magnitude. Finally, in the LS limit (ξR(r) negligible with respect to ηR(r)) the previous
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equations reduces to ηg,R(r) ∼ ηR(r). The level of accuracy of this approximation is

presented in Figure 3.1 where I show that, on a typical scale (R ∼ 16h−1 Mpc), the

imprecision is less than 0.5% at any cosmic epoch investigated (0 < z < 0.6). Since

αg,R(r) = αR(r), we obtain

σR =
τg,R(r)

αg,R(r)
σg,R (3.19)

where αg,R(r) = d log ηg,R(r)/d log R.

Count in cells techniques provide an estimate of the terms on the RHS of eq. 3.19. In

this regard, a central point worth stressing concerns the continuum-discrete connection.

Biasing is not the only obstacle hampering the retrieval of matter properties from the

analysis of galaxy catalogs. The formalism needs also to correct for the fact that the

galaxy distribution is an intrinsically discrete process (Szapudi & Szalay, 1993). These

issues will be thoroughly addressed in section 3.5.1 where I present the strategy that we

have adopted in order to minimize the sampling noise.

3.4 From real- to redshift-space

Matter perturbations induce a peculiar velocity field ~v on top of the Hubble flow. As a

result, cosmic objects such as typical galaxies are not anymore ‘comoving’ and their redshift

is not an unbiased estimator of the ratio between the scale factor of the universe today and

the scale factor at the time at which the received photons were emitted. Peculiar velocities,

and in particular their line-of sight component u, alter systematically the cosmological

redshift zc. The observed redshift zo is

zo = zc +
u

c
(1 + zc), (3.20)

where c is the vacuum speed of light. The effects of peculiar velocity perturbations,

called redshift distortions, are thoroughly reviewed by Hamilton (1998). In the following,

observables constructed by using the observed redshift zo are referred to as ‘redshift space’

observables, while those re-constructed in order to erase peculiar velocity effects, are called

‘real space’ observables.

All the theoretical results presented in the previous sections have been obtained in real-

space. Therefore, the feasibility of extracting the value of mass fluctuations σR via eq.

(3.19) rests upon the possibility of expressing real space variables (b−1
1 = τg,R/αg,R, and

σg,R) in terms of redshift space observables. On the large (linear) cosmic scales where our

formalism applies, the Kaiser model (e.g. Kaiser, 1987) effectively describes the mapping

between real and redshift space expressions of second order statistics. The transformation

is given by
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σz
g,R =

[

1 +
2

3

f

b1
+

1

5

(
f

b1

)2
]1/2

σg,R, (3.21)

where the suffix z labels measurements in redshift (as opposed to configuration) space,

and where f is the logarithmic derivative of the linear growth factor D(a) with respect

to the scale factor a. Much easier is the transformation rule for αg,R: since the model

correction for redshift distortions at second order is the same for 1- and 2-point statistics

such correction vanishes in the expression of ηg,R so that in linear regime it is unaffected

by redshift distortions, that is αz
g,R = αg,R.

Assessing the impact of peculiar motions on third order statistics is less straightforward.

Up to now all the formulas were derived analytically from theory. To address this last issue

we now use numerical simulations. By running some tests using a suite of simulated galaxy

catalogs (these catalogs will be described in section 3.5.2) I conclude that the amplitude

of S3,g and C12,g are systematically (and non-negligibly) higher in z-space and that the

relative overestimation systematically increases as a function of the order of the statistics

considered (see Figures 3.3 and 3.4). Notwithstanding, from the theoretical side, the

expressions of third order statistics (S3,R = S3 + γR and C12 = (2S3)/3+ γR/3+ βR(r)/3)

imply that the linear combination 3C12,R − 2S3,R should be much more insensitive to

redshift distortions. Note, in particular, that both γR and βR(r) are unaffected by linear

motions. However convincing it might seem, this guess applies only to matter particles.

In order to draw definitive conclusions about the impact of peculiar motions on τg,R, I

have used N-body galaxy simulations. Guided by synthetic catalogs I demonstrate that the

biased galaxy statistics τg,R is effectively unaffected by redshift distortions. This conclusion

is graphically presented in Figure 3.1 where I show that the relative error introduced by

reconstructing the statistics using observed redshifts, instead of the cosmological ones, is

progressively smaller as R increases, and it is globally <∼ 2%.

By incorporating these results into the formalism we finally obtain

σ̂R = σz
g,R

[(
αz

g,R

τ z
g,R

)2

+
2

3

αz
g,R

τ z
g,R

f +
1

5
f2

]−1/2

(3.22)

an estimator that is manifestly independent from any assumption about the amplitude and

shape of the linear matter power spectrum. Also, this formula is independent from any

assumption about the value of the Hubble constant H0. Only an a-priori gravitational

model must be assumed to correct for redshift space distortions in the local universe,

that is to evaluate the growth rate function f(z). This introduces an additional strong

dependence on the cosmological parameters ΩM and ΩΛ on top of the marginal one that

is forced upon when we compute metric distances in order to estimate σz
g,R, αz

g,R(r) and

τ z
g,R. More quantitatively, when the input cosmological parameters are chosen in the

parameter plane delimited by 0 ≤ ΩM ≤ 1 and 0 ≤ ΩΛ ≤ 1 , the maximum relative
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variation of the estimates with respect to their fiducial value in the ΛCDM cosmological

model are max|df/f | ∼ 0.6, max|dτ/τ | ∼ 0.2, max|dα/α| = 0.3, and max|dσ/σ| = 0.15.

The weak cosmological dependence of τ z
g,R follows from the fact that neither the reduced

cumulants nor the reduced correlators of mass are effectively sensitive to the background

cosmology. We expect them to be essentially unaffected also by sensible modifications of

the gravitational theory (Gaztañaga & Lobo (2001), Multamaki et al. (2003), but see for

example Freese & Lewis (2002) or Lue, Scoccimarro & Starkman (2001) for more radical

scenarios where this expectation is not met). I have also noted that the denser in matter

is the cosmological model the more overestimated are the values of both of αz
g,R and τ z

g,R.

Since also the amplitude of the cosmological dependence is nearly the same, we expect the

ratio αz
g,R/τ z

g,R, i.e. the linear bias parameter, to be nearly insensitive to the underlying

cosmological model. I have quantitatively verified this statement in Figure (3.11) of section

3.5.5. In conclusion, the estimator in eq. (3.22) is sensitive to cosmology mainly through

the growth rate function f(z) and, to some degree, through σz
g,R.

Once the cosmological background is known via independent techniques (e.g Astier et

al. (2006); Komatsu et al. (2011); Marinoni & Buzzi (2010))) the strategy I have outlined

offers the possibility to estimate in a direct way the amplitude and time evolution of matter

fluctuations. The formalism could also be implemented, in a reverse direction, to probe the

coherence of the gravitational instability paradigm. Any eventual discrepancy resulting

from the comparison of the measurements (cfr. eq. (3.22)) with theoretical predictions

(cfr. eq. (1.79)) provides evidence that either the assumed set of cosmological parameters

are wrong, either the assumed power spectrum of matter fluctuations is poorly described

by linear theory, either the time dependence of the linear growing mode D(t) is deduced

in the context of an improper gravitational model.

3.5 Applying the Method

The practical implementation of the method, including successful tests of its robustness,

is discussed in this section. I first present a strategy to estimate the correlators of order

(n,m) of discrete 3D density fields such as those sampled by galaxy redshift surveys. I

then show that, by applying the test formalism to N -body simulations of the large scale

structure of the universe, I am able to recover the amplitude and scaling of the linear

matter fluctuations σR(z). A strategy to test the coherence of the results and to validate

our conclusions is also designed, applied and discussed.

3.5.1 Statistical estimators of the galaxy correlators

The galaxy distribution is a discrete, 3-dimensional stochastic process. The random vari-

able N models the number of galaxies within typical cells (of constant comoving size)

that ideally tesselate the universe or, less emphatically, a given redshift survey. Notwith-
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Figure 3.1: Left: the relative error arising from estimating the η-function using galaxies instead
of matter. The inaccuracy δη = ηz

g,R/ηR − 1 is evaluated at different epochs and is determined
by assuming R = 16h−1Mpc and r = 3R. Simulated data are extracted from the mock catalogs
described in section §6.2 . Error bars are 1σ standard deviation and represent the best accuracy
attainable with the available suite of simulations. Right: relative difference between the real- and
redshift-space estimation of τg,R ≡ 3C12,g(r) − 2S3,g. The inaccuracy δτ = τz

g,R(r)/τg,R(r) − 1 is
plotted as a function of the smoothing scale R and is computed at a separation r = 3R. The dotted
line represents the case in which computing the τ statistics using observed redshifts is equivalent
to using cosmological redshifts. Real- and redshift-space simulated data are extracted from the
mock catalogs described in section §6.2. Error bars represent 1σ standard deviation.

standing, a variable that is more directly linked to theoretical predictions of cosmological

perturbation theory is the adimensional galaxy excess

δN ≡
N

N̄
− 1, (3.23)

where N̄ is the mean number of galaxies contained in the cells.

To estimate 1-point moments of the galaxy overdensity field (µn,g = 〈δn
N 〉), I fill the

survey volume with the maximum number (Nt) of non-overlapping spheres of radius R

(whose center is called seed) and we compute

µ̂n,g =
1

Nt

Nt∑

i=1

δn
N,i, (3.24)

where δN,i is the adimensional counts excess in the i-th sphere.

As far as 2-point statistics are concerned, I add a motif around each previously posi-

tioned spheres. The center of each new sphere is separated from the seed by the length

r = nR and the pattern is designed in such a way to maximize the number of quasi non-

overlapping spheres at the given distance r (the maximum allowed overlapping between

contiguous spheres is 2% in volume.) The moments µnm,g = 〈δn
N,iδ

m
N,j〉, that is the average

of the excess counts over all the i and j spherical cells at separation r, are estimated as

µ̂nm,g =
1

2NtNmot







Nt∑

i=1

δn
N,i

Nmot∑

j=1

δm
N,j +

Nt∑

i=1

δm
N,i

Nmot∑

j=1

δn
N,j






, (3.25)
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where Nmot is the number of spheres at distance r from a given seed, and where I have

assumed that the stochastic process is stationary. The expression of the 1- and 2-point

cumulant moments knm,g follow immediately from eq. (1.53).

Since galaxies counts are a discrete sampling of the underlying continuous stochastic

field λg(x) (see Chapter 1) it is necessary to correct our estimators for discreteness effects.

In other terms, the quantity of effective physical interest that we want to estimate is

δg,R(x) ≡ Λg(x)/Λ̄g − 1 where Λg(x) =
∫

V (x) λ(x′)d3x′ is the continuous limit of the

discrete counts N in the volume V. To this purpose, following standard practice in the

field, I model the sampling as a local Poisson process (LPP, Layser (1956)) and I map

moments of the discrete variable N into moments of its continuous limit by using

〈Λn
g 〉 = 〈N(N − 1)...(N − n + 1)〉 = 〈(N)nf 〉, (3.26)

in the case of 1-point statistics, and its generalization

〈Λn
g (x1)Λ

m
g (x2)〉 = 〈(N1)

n
f (N2)

m
f 〉, (3.27)

for the 2-point case. As a result, the estimators of knm,g = 〈δn
g,R(~x)δm

g,R(~x + ~r)〉c corrected

for shot noise effects are (see also Angulo et al. (2008))

k̂2,g = µ̂2,g − N̄−1 (3.28)

k̂11,g = µ̂11,g

k̂3,g = µ̂3,g − 3N̄−1µ̂2,g + 2N̄−2

k̂12,g = µ̂12,g − N̄−1µ̂11,g

k̂4,g = µ̂4,g − 3µ̂2
2,g − 6N̄−1µ̂3,g + 11N̄−2µ̂2,g − 6N̄−3

k̂13,g = µ̂13,g − 3µ̂2,gµ̂11,g + 2N̄−2µ̂11,g − 3N̄−1µ̂12,g

k̂22,g = µ̂22,g − 2µ̂2
11,g − µ̂2

2,g + N̄−2µ̂11,g − 2N̄−1µ̂12,g

k̂5,g = µ̂5,g − 10µ̂2,gµ̂3,g − 10N̄−1{µ̂4,g − 3µ̂2
2,g} + 35N̄−2µ̂3,g − 50N̄−3µ̂2,g + 24N̄−4

k̂14,g = µ̂14,g − 6µ̂12,gµ̂2,g − 4µ̂11,gµ̂3,g − 6N̄−1{µ̂13,g − 3µ̂11,gµ̂2,g} + 11N̄−2µ̂12,g

−6N̄−3µ̂11,g

k̂23,g = µ̂23,g − 6µ̂11,gµ̂12,g − 3µ̂2,gµ̂12,g − µ̂2,gµ̂3,g − 3N̄−1{µ̂22,g − 2µ̂2
11,g − µ̂2

2,g}

−N̄−1{µ̂13,g − 3µ̂11,gµ̂2,g} + 5N̄−2µ̂12,g − 2N̄−3µ̂11,g

where we have set µ̂0i,g = µ̂i0,g ≡ µ̂i,g and k̂0i,g = k̂i0,g ≡ k̂i,g.
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Figure 3.2: Left: the correlator of order (1, 1) of the smoothed galaxy overdensity field at the
average redshift z = 0.34 is shown as a function of the smoothing radius R, and for different values
of the correlation length (n = {0, 3, 4}). In the degenerate case n = 0 we recover the variance
of the galaxy fluctuation field. Right: the redshift evolution of ξg,R(nR) at a given smoothing
scale (R = 17h−1Mpc) is shown for different values of the correlation length (n = {0, 3, 4}). The
statistics are computed in both real (solid symbols) and redshift space (unfilled symbols). Each
point is the average of the results obtained from 8 independent full-sky LRG catalogs. Errorbars
are estimated as the standard error of the mean.

Figure 3.3: Left: the reduced correlator of order (1, 2) of the smoothed galaxy overdensity field at
the average redshift z = 0.34 is shown as a function of the smoothing radius R, and for different
values of the correlation length (n = 0 (upper panel) n = 3 (central panel) and n = 4 (lower
panel)). In the degenerate case n = 0 we recover the reduced skewness of the galaxy fluctuation
field. Right: the redshift evolution of C12,g,R(nR) at a given smoothing scale (R = 17h−1Mpc)
is shown for different values of the correlation length (n = {0, 3, 4}). The statistics are computed
in both real (solid symbols) and redshift space (unfilled symbols). Each point is the average of
the results obtained from 8 independent full-sky LRG catalogs. Errorbars are estimated as the
standard error of the mean.
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Figure 3.4: Tthe reduced galaxy correlators of order 4 (C13,g,R and C22,g,R) and of order 5
(C23,g,R) at the average redshift z = 0.34 and at the correlation separation r = 3R are shown as
a function of the smoothing radius R. The statistics are computed in both real (solid symbols)
and redshift space (unfilled symbols). Each point is the average of the results obtained from 8
independent LRG catalogs. Errorbars are estimated as the standard error of the mean.

3.5.2 High order reduced correlators extracted from the Hori-

zon/LasDamas simulations

I use N-body simulations of Luminous Red Galaxies (LRG) of the Sloan Digital Sky

Survey (SDSS) to validate the method, to test its end-to-end coherence and to spot the

presence of eventual systematics. I have run the whole pipeline on two different numerical

experiments, namely Horizon (Kim et al., 2009; Dubinski et al., 2004; Kim & Park, 2006)

and LasDamas (McBride et al., 2009). Ideally, this way, the analysis is the least dependent

upon the specific simulation strategy and technique.

Horizon simulation

This is a large simulation (41203 particles in cubical box) in which LRG galaxies are

selected by finding the most massive gravitationally bound, cold dark matter halos. It

is characterized by the following set of cosmological assumptions (Ωm = 0.26, ΩΛ =

0.74, w0 = −1, wa = 0, H0 = 72km/s/Mpc, Ωb = 0.044, ns = 0.96, σ8 = 0.79).

I have analyzed 8 nearly independent, full-sky light cones extending over the interval

0.15 < z < 0.55, each covering a volume of 13 h−3Gpc3 and containing nearly 3.8 · 106

LRG galaxies. A mass threshold decreasing with redshift was chosen so to force Horizon’s

comoving number density profile to be constant with redshift and reproduce the density

profile observed in the SDSS LRG sample. As a consequence, the simulated sample can be
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considered with good approximation as being volume limited. The mean comoving number

density is n̄ = 3.0×10−4 h3Mpc−3 and the mean inter-galaxy separation is l ∼ 19 h−1Mpc.

As an example, the average number of LRG galaxies (N̄) inside a spherical cell of radius

R = (10, 15, 20, 25)h−1Mpc is approximately 1, 5, 10 and 20.

In the left panel of Figure 3.2 I show the correlation function of the smoothed galaxy

overdensity field ξg,R = 〈δg,R(x)δg,R(x + r)〉c for different values of the correlation length

(r = nR) in both real and redshift spaces. Note that in the degenerate case n = 0 we

recover the variance of the galaxy density fluctuations on a scale R. If the cell separation

increases, the amplitude of the galaxy correlators of order 2 decreases. Their R-scaling is

nearly similar to the slope of the analogous statistics computed for the matter density field

(see Figure 1.5) with a slope of ∼ −2.25 at R = 10h−1Mpc and ∼ −3.4 at R = 20h−1Mpc

for the correlation configuration n = 3). Note also the neat appearance of the characteristic

baryon acoustic peak at the scale R ∼ 25h−1Mpc when the correlation length is computed

for n = 4. I interpret these results as a qualitative indication of the fact that, at least on

the scales explored by my analysis, the linear biasing parameter is well approximated in

terms of a scale-free parameter.

On the right panel of Figure 3.2 I show the redshift dependence of the ξg,R for a given

arbitrary smoothing scale (in this case R = 17h−1Mpc). The constant amplitude of this

statistic, together with the fact that the corresponding matter statistics decreases by no

more than ∼ 0.05 in amplitude over the same redshift interval (0.15 < z < 0.55, see Figure

3.8), provide evidences that linear biasing was nearly ∼ 15% stronger at the early epoch

z = 0.55.

In Figure 3.3 I show the scaling of the 1- and 2-point reduced galaxy cumulant moments

of order 3, namely S3,g,R and C12,g,R(r). The slight and systematic decrease of S3,g,R as

a function of scales, much less pronounced than that of S3,R (see Figure 1.5), is not

compatible with biasing being described by a single constant parameter b1. Since, we have

already argued that b1 is scale independent, this implies that the biasing function is non

linear and the next order biasing coefficient b2 must show some scale dependency.

LasDamas simulations

This is a suite of large simulations (12803 particles in a box of 2400h−1Mpc). Among

them I choose those simulating the LRG sample of the SDSS (refered to as Oriana). LRG

galaxies are simulated as follows: first the most massive gravitationally bound, cold dark

matter halos are identified in the matter simulation, then they are populated with ar-

tificial galaxies according to an HOD (Halo occupation distribution) statistics modeled

to reproduce SDSS observations. The simulation is characterized by the following set of

cosmological parameters (Ωm = 0.25, ΩΛ = 0.75, w0 = −1, wa = 0, H0 = 70km/s/Mpc,

Ωb = 0.04, ns = 1, σ8 = 0.8) which are close to the cosmological parameters of Hori-

zon simulations. The major difference with respect to the Horizon simulation resides in
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Figure 3.5: The redshift evolution of second order statistics in LasDamas simulations. The filled
symbols show the variance (n = 0) and the smoothed 2-point correlation (n 6= 0) in real-space
whereas the empty symbols show the same quantities estimated in redshift-space.

the setting of initial conditions. LasDamas initial conditions are imposed using a 2LPT

code, tested by Crocce, Pueblas & Scoccimarro (2006), which is based on second-order

Lagrangian perturbation theory. Horizon’s initial conditions are set using the Zel’dovich

approximation (which apparently might induce transient effects (Crocce, Pueblas & Scoc-

cimarro, 2006) in the clustering of matter). The initial power spectrum of the LasDamas

simulations is obtained from CMBfast (Seljak & Zaldarriaga, 1996) and the Oriana simu-

lation, in particular, is started at an initial redshift of z = 49.

In figure (3.5) I show the second order statistics which are constant with respect to

the redshift. Figure (3.6) confirms what we already found using the Horizon simulations,

that is the statistical quantity τg,R is not affected by redshift distortions. This confirms

that the approximation τ z
g,R = τg,R can be safely adopted, at least in ΛCDM cosmological

models.

Extracting the reduced correlators and moments from the simulations

The analysis of both the Horizon and LasDamas simulations shows that the reduced

C12,g,R(r = nR) captures interesting information about the clustering of galaxies (at least

on scales R where this indicator is not too noisy). For both the correlation configurations

n = 3 and n = 4 this requirement limits the region of interest to the scales R ≤ 25h−1Mpc.

Despite the fact that measurements on different scales are correlated, it appears that both

these statistics are fairly independent from R. We remark that in the LS limit the value

of C12,g,R is also independent from the correlation scale r. As a consequence, eq. (3.19)
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Figure 3.6: Left: Comparison between τg,R estimated in real space (filled symbols) and in redshift
space (empty symbols) as a function of the scale R (at the mean redshift z = 0.34 and for a
correlation length r = 3R) using the LasDAmas simulations. Right: Relative difference between
the estimates of τg,R estimated in real and redshift space.

is best evaluated by adopting the smallest possible value of n, i.e. the one that minimizes

the amplitude of the errorbars.

The analysis shows that both the amplitude of S3,g,R and C12,g,R(r) are nearly redshift

independent, i.e. mostly independent from the cosmic epoch at which these statistics are

computed. This property holds in both real and redshift spaces and mirrors the analogous

behavior, predicted by theory, for the reduced cumulant moment of the matter field (see

eqs. (1.89) and (1.90).) Because of this we can conclude that, at least up to redshift

z ∼ 0.55, even the next order biasing coefficient, i.e. b2, is weakly sensitive to time in the

Horizon ans LasDamas simulations.

The WNLPT predicts that reduced moments and correlators of the matter field should

display hierarchical properties in real space. Figure 3.3 shows that the scaling predicted by

eq. (1.87) in section 1.3.8 still holds in redshift space, a results originally found by Lahav

et al. 1993 and Hivon et al. 1995 who showed that it holds even on smaller scales than

those analyzed here, i.e. on domains where non-linear effects become important. In an

analogous way, Figure (3.3) shows that the mapping between real and redshift space also

preserves the hierarchical properties of the reduced correlator C12,g. This property is not

a characteristic of low orders statistics only. In Figure 3.4 I present the estimates of the

galaxy reduced correlators up to order 5 in both real and redshift space. Observations in

the local universe have shown that the reduced cumulants SN,g,R of the smoothed galaxy

field in redshift space display hierarchical clustering properties up to order N = 6 (e.g.

Baugh et al. 2004). This plot shows that also the reduced correlators Cnm,g,R extracted

form the Horizon and LasDamas simulation preserve the hierarchical scaling up to order

5 in redshift space.

Finally, Figure 3.4 graphically displays the validity of the factorization property that
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I have found in eq. (3.11), i.e. that not all galaxy reduced correlators contain original

information. We stress that even if the factorization property C22,g = C2
12,g was shown

to hold analytically only in real space, simulations now show that it holds also in redshift

distorted space.

I conclude by commenting on the precision of the estimates. The relative error in

the estimation of the reduced correlators increases, as expected, with the order of the

statistics. Moreover, 2-point statistics are recovered with larger uncertainty than the 1-

point statistics of the same order since they are estimated using a smaller number of

independent cells. Specifically we find that, the larger the correlation scale, the stronger

the sensitivity of the estimates to finite volume effects. On the typical scale R = 20h−1Mpc

the relative error with which C12,g, C13,g, C14,g, C22,g and C23,g are recovered is 4, 5, 10, 15

and 33% respectively. This can be compared to the precision with which the equal-order

reduced moments SN have been estimated on the same scale, that is 0.7, 2 and 10%, for

the order 3, 4 and 5 respectively.

3.5.3 Estimation of σR(z)

In this section I test the efficiency of the estimator given in eq. (3.22). Three major

potential issues, if not properly addressed, may affect its reliability. First, it is imperative

to test whether we can safely apply WNLPT results in the LS approximation to compute

the reduced correlators Cnm,R(r) in the limit in which the cell separation is as low as r ∼

3R, as the analysis of Bernardeau (1996) suggests. Second, I want to verify that peculiar

velocity corrections as well as redshift-space observations do not introduce unexpected

biases into the real-space observables. Finally, I want to test if the local Poisson model

fairly corrects for the sampling noise in the low counts regime.

To fulfill these goals, I apply the estimator given in eq. (3.22) to the simulated LRG

catalogs and gauge the precision with which we can retrieve the real-space amplitude and

scaling of σR, that is both the local normalization and evolution of the linear matter

perturbations embedded in the ΛCDM simulations.

The following argument help to select the range of scales R that are best suited for

applying the formalism to the simulated catalogs. I expect that the estimator given in

eq. (3.22) will work neatly on sufficiently large scales R (where the WNLPT and the

linear modeling of redshift distortions both apply) and on sufficiently large correlation

lengths r = nR (where the LS approximation applies). On the smallest scale where the

method can be theoretically applied, i.e. R = 10h−1Mpc, the amplitude of σR, which

is of order ∼ 0.4 at the average redshift of the sample, is completely dominated by shot

noise which is of the order ∼ 1. The signal becomes dominant with respect to discrete

sampling corrections as soon as R is greater than ∼ 15h−1Mpc. Moreover, below this last

scale, a small, but statistically significant imprecision arises in assuming τg,R = τ z
g,R, as

shown in Figure 3.1. On the opposite end, the largest scale R accessible is set by the
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geometry of the survey and the requirement of sampling the correlation length r = nR

with sufficient statistical power. I find that the relative error in my estimate of C12,g,R(r)

becomes larger than ∼ 10% (see Figure 3.3) for scales R > 22h−1Mpc when n = 3 and for

scales R > 18h−1Mpc when n = 4.

In Figure 3.7 I plot the estimates of σR based on LRG mock catalogs. I recover the rms

of the linear matter fluctuation field on two smoothing scales (R = 17 and 20h−1Mpc)

and for three different correlation lengths (n = 2, n = 3 and n = 4). By contrasting

my measurements against the theoretical predictions obtained by inserting into eq. (1.79)

the parameters used in the Horizon simulations, I find that my reconstruction scheme fails

when the correlation length is as low as n = 2. This was expected since Bernardeau (1996)

already showed that the LS approximation does not hold on such small correlation scales.

Effectively, when I probe larger scales (n = 3), the reconstruction becomes significantly

more accurate (central panel of Figure 3.7), with the estimates of σR at the average

redshift of the catalog (z = 0.34) being affected by a relative error of 13% and 15% on

the scales R = 17 and 20h−1Mpc respectively. For n = 4 errorbars become too large

for the estimates to be also precise. Additionally, we remark that my estimates seem to

slightly overestimate the value of σR on both the scale analyzed. This is also confirmed

by the analysis of an independent mock catalog, i.e. the Las Damas simulation (McBride

et al., 2009). As stressed in section 1.3.9, this is due to the increasing inaccuracy in the

theoretical prediction of the amplitude of the reduced correlators C12,R on correlation

lengths that approaches the scale where ξR crosses zero.

I re-emphasize that these estimates are totally independent from any assumption about

shape and normalization of the power spectrum of linear matter fluctuations. They are also

independent from the amplitude of the present day normalization of the Hubble parameter

H0. My estimates, however, do depend on the set of cosmological parameters (ΩM ,ΩΛ)

that I have used to assign galaxies to cells (i.e. to smooth the galaxy distribution), and to

subtract the effect of redshift space distortions (i.e. to evaluate the growth rate function

f).

3.5.4 Estimation of the local value of σ8

As I have already discussed, the scale R = 8h−1Mpc falls outside the range of applicability

of the test. Nonetheless, I can extract information about the value of σ8 at redshift z ∼ 0

(σ8(0)) from measurements of σR on larger scales. I do this by fitting eq. (1.79) to data.

The price to pay is that the recovered value will depend on the adopted power spectrum

model and on the set of parameters on which the power spectrum itself depends, i.e. the

reduced Hubble constant h, the primordial spectral index ns, and the reduced density of

baryons (Ωb). This approach, however offer some advantage: if the relevant cosmological

parameters Ωm, ΩΛ and h are considered known from independent probes, then I can

extract information about the purely gravitational sector of the theory.
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The way my proceed is as follows: I assume standard gravity as described by GR, I

frame my analysis in the linear regime, i.e. I adopt the phenomenological description of the

matter power spectrum given by Eisenstein & Hu (1998), as well as the time evolutionary

model for σR given in eq. (1.79), and I look for the the best fitting parameter ns, Ωb and

σ8(0) that minimize the statistical distance between my measurements (cfr. eq. (3.22))

and theoretical predictions (cfr. eq. (1.79)). The outcome of this approach is displayed in

Figure 3.9.

If I assume that ns and Ωb are fixed to the simulation’s values (ns = 0.96,Ωb = 0.044),

I obtain σ8(0) = 0.79 ± 0.08. This best fitting value is in perfect agreement with the

simulated one (σ8 = 0.79). Results obtained by performing a joint two-parameter analysis

(after fixing the third parameter to the simulated value) are shown in Figure 3.9. The

left and central panel of this figure reveal that σ8(0) is only marginally degenerate with

respect to both ns and Ωb, a fact that highlights the fundamental inefficiency of our probe

in constraining the values of both these parameters. This conclusion is reinforced in the

right panel of the same figure, which displays a strong degeneracy between ns and Ωb

together with a loosely constrained confidence region in the corresponding parameters

plane. Luckily, this means that the uncertainties with which both these parameters are

estimated using more sensitive probes, do not critically affect the precision with which our

method constrain the amplitude of σ8(0).

Despite my analysis was performed by slicing the survey volume in independent redshift

shells, the limited redshift interval explored allows me to fix only the local amplitude of

the linear matter fluctuation field. In a future work I will show that by implementing the

method with deeper mock catalogs simulating the region of space that will be surveyed

spectroscopically by surveys like BigBOSS and EUCLID, one can further aim at constrain-

ing the time evolution of σR. Data on a larger redshift interval will allow to constrain

not only σ8(0), but also the growth index γ in terms of which the growth rate is usually

parameterized (f = Ωγ
m(z) Peebles (1980)). This will allow to reject possible alternative

description of gravity, or, in turn the standard model of gravitation itself.

3.5.5 Consistency tests

I have shown that, by using simulations, it is pretty straightforward to assess whether

the proposed measuring strategy is able to recover the underlying value of σR. What

if, instead, a real redshift survey is considered? Are there specific physical criteria or

statistical indicators that guarantee us that the recovered value of σR is the true one?

In other terms I want to shift our attention from the precision of the estimates to their

accuracy. Apart from the unbiasedness of the WNLPT results in the LS limit, my test

strategy strongly relies on assuming that the correct set of cosmological parameters (ΩM ,

ΩΛ) has been used in the analysis. As a consequence, any imprecision in the measurements

of the reduced cosmic densities translates into a biased estimate of σR. In this section, we
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Figure 3.7: Upper plot corresponds to measurements from Horizon and lower corresponds to
LasDamas. For both, the real-space rms of the matter fluctuation field is shown as a function of
redshift. Black filled points represent estimates obtained by implementing eq. (3.22) to the LRG
mock catalogs. Solid lines show the theoretical prediction obtained by inserting all the physical
and cosmological parameters of the Horizon simulation into eq. (1.79). Count in cell as well as
cell correlation analysis have been performed by assuming spherical cells of radius R separated by
correlation lenght r = nR. We present results obtained for n = 2 (left panels), n = 3 (central
panels) and n = 4 (right panels) using two typical cell sizes R = 17(/14)h−1 Mpc (upper panels)
and R = 20(/16)h−1Mpc (lower panels). Each point is the average of the results obtained from
eight independent full-sky LRG catalogs containing nearly 3.8 million galaxies each. Errorbars are
estimated as the standard error of the mean. At the mean redshift of the catalogs (z = 0.34) we
also display the average estimate of σR obtained in the whole survey volume (unfilled blue points).
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Figure 3.8: The real space rms of the linear matter density fluctuations on a scale R is shown as
a function of redshift. Left panel shows the value of σR extracted from Horizon whereas the right
panel shows the one from LasDamas. In both panels the solid curve represents the best fitting
theoretical model for the linear scaling of σR (cfr. eq. (1.79) obtained after fixing the amplitude
of Ωb, ns and h to the values of the simulations. The corresponding best fitting value of σ8(0) is
shown in the inset together with its standard deviation.

Figure 3.9: The likelihood contours obtained from the joint estimation of (σ8(0), ns), (σ8(0), Ωb)
and (Ωb, ns). The analysis have been performed calculating reduced correlators on a scale R =
17h−1Mpc and at the correlation lenght n = 3. Isocontours of differently colored region corresponds
to Lmin + 2.30 and Lmin + 4.61 where L is proportional to the log of the likelihood of the data
and it is here assumed to be affine to the χ2 statistic.. On each panel the filled points represent
the fiducial value of the Horizon simulation.

design a diagnostic scheme to test the coherence of our results and, at the same time, the

soundness of the adopted values for ΩM and ΩΛ.

In the approach developed in this thesis, the linear biasing parameter in real space is

directly estimated from redshift space observables of intrinsic third-order nature using the

estimator

b1,R =
αz

g,R

τ z
g,R

. (3.29)

As discussed in Section 3.4, this estimator has the remarkable property of being approxi-

mately independent from cosmology.

Now let’s define two new estimators of the real space linear biasing parameter as b̊1,R =

σg,R/σR and b̃1,R =
√

ξg,R/ξR, where now I exploit, as it is usual, second order statistics.
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Both σg,R and ξg,R are quantities not directly measurable, nonetheless we can recast

the expressions of the real space linear biasing parameters in terms of redshift space

observables. By adopting the Kaiser model for linear motions we obtain

b̊1,R = −
f

3
+

√
√
√
√

(

σz
g,R

σR

)2

−
4

45
f2 (3.30)

b̃1,R = −
f

3
+

√

ξz
g,R

ξR
−

4

45
f2. (3.31)

Before proceeding further, note that in this thesis I have assumed that the Kaiser linear

modeling of redshift space distortions applies on the scales we are interested in. I can now

verify this statement by using the LRG synthetic catalogs. To this purpose, and without

loss of generality, be b̃1,R the value of the real-space linear bias parameter estimated from

the mock catalogs as
√

ξg,R/ξR. Let’s refer to this estimate as to the true value of the

linear-bias parameter and let’s label it as bth
1 . In figure 3.10 I compare these measurements

against the estimates of the real-space linear bias inferred using eq. (3.31) in three different

redshift intervals and for various smoothing scales R. One can see that for n = 3, the

estimator (3.31) fairly recovers the real-space value of the linear bias parameter. This

result lends support to the hypothesis that, at least in the Horizon simulations, and over

the range of R scales where we trust the correlator’s theory, the distortions induced by

large scale peculiar motions are accurately described by the Kaiser model.

Physically, we expect that, whatever is the chosen scale R, if σ8(0) has been consistently

determined, then eqs. (3.29), (3.30) and (3.31) all give the same numerical result. Since the

linear biasing estimators given in eqs. (3.30) and (3.31) depends on the chosen background

cosmology, the correct set of cosmological parameters is thus the very one that makes all

the three different linear biasing definitions converge to the same numerical value on all the

scale R. In the following Chapter I show how this observation can be exploited to guess

the background cosmology. In this Chapter, I use this property to gauge the consistency

of my measurements of σR, that is to verify that all the different estimators of the linear

biasing parameters match only when the analysis is carried out in the proper cosmological

background.

In Figure 3.11 I perform this test and show what pathological features do show up when

the analysis relies on an improperly chose set of values (ΩM ,ΩΛ). The algorithm goes as

follows: I estimate σR on a given arbitrary scale R (here we chose R = 16h−1Mpc), and

in four different cosmologies (indicated in each panel of Figure 3.11). I then deduce the

value of σ8(0) in each of these four scenarios. In doing this, I implicitly assume that the

specific cosmology adopted in order to measure σR=16 is the correct one and that, as a

consequence, the value of σ8(0) inferred using any other scale R is identically the same. I

then plug in this value of σ8(0) into eqs. eqs. (3.30) and (3.31) and compare the results
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Figure 3.10: Black triangles show the R dependency of the real-space linear bias parameter
b̃1,R estimated from redshift-space mock catalogs using eq. (3.31). Measurements are performed
using the correlation length n = 3 and in three different redshift bins. These measurements are
compared to the real-s[ace linear bias parameter bth

1 extracted from real-space mock catalogs using
the estimator

√
ξg,R/ξR (dotted line). The shaded area represents the region of 1-σ uncertainty.

with those obtained via the estimator b1,R, i.e. we contrast them against a measurement

of the linear biasing parameter that is weakly sensitive to cosmology.

If I analyze the LRG mock catalogs by assuming the simulated set of cosmological

parameters (ΩM = 0.26,ΩΛ = 0.74, see upper left panel of Figure 3.11) then the estimates

of b̊1,R, b̃1,R and b1,R are consistent between themselves on all the scales R. On the

contrary, if I process data by incorrectly assuming a low density (open) background model

(upper right panel in Figure 3.11), the different estimations of the linear biasing parameter

are not anymore in agreement, even if the estimated value of σ8(0) has not changed

(note that the linear power spectrum at present epoch is independent from the amplitude

of the cosmological constant and thus insensitive to its variation). In particular, b̊1,R

identically coincides, by definition, with the measure obtained using my estimator b1,R only

for R = 16h−1Mpc , but the estimates deviate on all the other scales. This discrepancy is

due to the fact that, in a “wrong” cosmology, the extrapolated value of σ8(0) may not be

independent from the scale R on which σR is measured. Or said differently, the equation

b̊1,R(σ8(0)) = b1,R might not have a unique solution σ8(0) for all the scales R.

The effect previously discussed is mostly the consequence of adopting the wrong ampli-

tude for the cosmological constant. It is, however, less pronounced than the discrepancy

between the measurements of b̊1,R and b̃1,R that arises when the value of Ωm is poorly

guessed. The effects of a wrong choice of the matter density parameter are presented in

the lower panels of Figure 3.11. The observed large inconsistency arises essentially from
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Figure 3.11: Comparison between the values of the linear bias parameter on various scales R for
the Horizon simulation. Measurements are obtained using 3 different estimators (cfr. eqs. (3.29),
(3.30), and (3.31)) and by analyzing the same redshift data in 4 different cosmological backgrounds

as specified in the panels. b̊1,R and b̃1,R are estimated on the basis of the best fitting value of σ8(0)
indicated in each panel. This last value has been obtained from measurements of σR on a scale
R = 16h−1Mpc and by assuming, arbitrarily, that the linear power spectrum parameters are
subject to the following constraints: h = 0.72 and Ωb/Ωm = 0.17 for all the cosmological models.
Note that in the lower panel, b̃1,R data are missing on a scales R = (19, 20)h−1Mpc. This is due

to the fact that the argument of
√

ξg,R/ξR is negative, i.e. in these extreme cosmological models,
the predicted correlation function of the matter density field becomes negative on scales where
the corresponding galaxy statistic is still positive. The horizontal dotted line shows the average
of the measurements obtained with our estimators b1,R in the true cosmological model (i.e. the
ΛCDM model of the Horizon simulation) and it is reproduced identically in all the panels. This
line graphically helps to highlight the relative insensitivity of our estimator b1,R to the choice of
the parameters (ΩM , ΩΛ). Note how different estimates converge to the same value only when the
analysis is performed in the true cosmological model.

the fact that the zero order spherical Bessel function appearing inside the integral in eq.

(4.3) filters in different portions of the signal (i.e. of ∆2
L) if the characteristic parameters

of the linear power spectrum are changed. In other terms, if we consider eq. (4.3) and

spuriously overestimate Ωm, the predicted suppression of power on a scales r is larger than

the variation actually seen in the data.

We remark that the estimator of the linear biasing parameter, relying on third-order

statistical indicators, is affected by errorbars that are larger than those associated to the

classical estimators b̊1,R and b̃1,R. This imprecision is largely compensated by the fact that

my estimator does not depend on any assumption about the nature of the dark matter

(i.e. the specific form of the matter power spectrum) and it is almost insensitive also to

its abundance (ΩM ). Therefore, by contrasting different estimations of the linear biasing

parameter, that is using the diagnostic diagram of Figure 3.11, we can deduce if the scaling

of σR was inferred in the appropriate cosmological model.
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3.6 Accuracy test

The whole strategy to extract the rms of the matter fluctuation from redshift survey data,

ultimately relies on the accuracy with which WNLPT predicts the amplitude of the reduced

moment S3,R and of the reduced correlator C12,R. While the accuracy of theoretical

predictions for S3,R has been extensively tested (see Bernardeau et al., 2002, for a review),

how well the amplitude of C12,R is reconstructed is not entirely clear, and different claims

exists in the literature. (Bernardeau, 1996) found a good agreement between different

theoretical ways of computing the reduced 2-point cumulants of order (1, 2) once the

LS condition is satisfied (see figure 3 in Bernardeau, 1996, or explicit calculation in

appendix C). An opposite conclusion is reached by Gaztañaga, Fosalba & Croft (2002),

who compared theoretical predictions against a different set of simulations.

In order to address this issue bypassing the systematic effects induced by halo biasing,

it is necessary to estimate C12,R directly from matter particle simulations. Thanks to

the courtesy of Enrique Gaztañaga I was given the access to the Marenostrum Institute

de Ciències de l’Espai Simulations (hereafter MICE simulations). In particular, to the

specific simulation with the best resolution: 40963 dark matter particles of typical masse

2.927 × 1010h−1M⊙ contained in a simulation box of 30723h−3Mpc3. This numerical

experiment was run using the following set of cosmological parameters







Ωm = 0.25

ΩΛ = 0.75

wo = −1

wa = 0

h = 70

ns = 0.95

σ8(0) = 0.7

.

I had access to two comoving boxes representing the simulation output at z = 0.5 and

z = 1.5. In order to handle the large number of matter particles, I randomly sampled the

particles contained in each box with the sampling probability of one over seven hundred. I

also analyzed a light cone (stretching up to reshift 1.4) to test for any evolutionary effects

into the WNLPT predictions. In Figure (3.12) I show the C12,R statistics as predicted from

theory (i.e. WNLPT) and as recovered from simulated data for various correlation ratios

n = 2, 3, 4 (where and n = r/R) and at two different redshifts. These results confirm that,

when the correlation length r is small (n = 2), the approximated results from WNLPT do

not match the fully non-linear results from numerical experiments. However, as soon as

n = 3, as predicted by Bernardeau (1996), we find substantial agreement between theory

and numerical data. Anyway, there seems to be a residual systematic discrepancy of about

5% at redshift 0.5 which could mean that the choice n = 3 still poorly represent the LSL

condition. This interpretation is supported by the fact that not only the agreement is
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Figure 3.12: C12,R(nR) from MICE simulation (diamonds with error bars) compared to WNLPT
prediction (dashed blue line). The intermediate panel shows the relative error of the measurement,
obtained by dividing the error on the estimation of C12,R(nR) (here simply indicated as σx by the
measured value of C12,R (here simply indicated as x). Error bars on the estimations have been
obtained by 64 Jackknife resampling of the complete volume. The lower panel shows the relative
deviations between mesurements (x) and theoretical prediction (xth) (the green area represents the
region where deviations are less that ±5%. The left, central and right panels show results obtained
assuming n = 2, n = 3, and n = 4 respecively.

better for n = 4, but also that, for a fixed value of n, the agreement is tighter at high

redshift, where non-linear effects are expected to be smaller. A different interpretation of

the small residual effect could be that particles in the simulations are still too massive to

represent in a fair and unbiased way the continuous perfect fluid of matter. In this case,

finite size effects would be responsible for the observed residual shift.

3.7 Conclusions

A key goal that seems to fall within the technical reach of future cosmological experiments

is to rule out (or in) eventual infrared modifications of the standard theory of gravity, as

possibly manifested by the unexpected growth of cosmic mass in the weakly non-linear,

low-curvature, high-redshift regimes. To fulfill this task, it is mandatory to devise sensible

observables of the large scale structure of the universe. In this spirit, this paper focuses on

the potential of clustering indicators that have been rarely explored in literature , that is

the high-order reduced correlators Cnm of the 3D mass overdensity field (bu see Szapudi,

Szalay & Boschán, 1992; Szapudi et al., 1995, for pioneeristic 2D analyses).

To fully exploit the richness of information contained in this 2-point statistics, whose

amplitude is analytically predicted by the weakly non-linear perturbation theory in the

large separation limit approximation, I have derived the expressions of the reduced cor-

relators of the smoothed galaxy density field (Cnm,g) up to order 5. I have found that

they preserve both the hierarchical scaling and the factorization properties of the reduced

correlators of matter.

Building upon these results I have worked out the explicit expressions for the bias

coefficients up to order 4 and a new estimator to measure the rms of the linear matter
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fluctuations on a scale R directly from galaxy redshift surveys. The central results of

this Chapter, namely the estimator given in eq. (3.22), was tested using artificial galaxy

catalogs and shown to recover fairly well the ’hidden’ simulated value of σR.

Despite the fact that very large survey volume are needed to make the estimation of

these observables accurate enough for cosmological purposes, the merit of this approach

are evident: a) linear biasing is not a parameter that one needs to marginalize over,

but a physical parameter that can be estimated in a totally independently way from any

assumption about the structure of the linear power spectrum and the value of cosmological

parameters. b) the real space linear biasing parameter can be measured directly using

redshift space observables. c) The scaling of σR can be inferred directly without imposing

any a-priori constraint on the eventual non-linear and scale dependent nature of the bias

function. d) The correlator formalism allows also for a self-consistent test of the coherence

of the results obtained concerning the scaling of σR, a step further in the direction of

making cosmological results not only precise but also accurate.

In this Chapter I have analyzed local simulations with the aim of testing principles and

theoretical ingredients on which the proposed strategy relies. Work is already in progress

to apply the formalism to the SDSS-dr7 data and to extract the local value of linear

matter fluctuations on sensible scales R. The good news is that the next decade holds

even greater prospects for growth of the red-shifts data base. Therefore, we also plan

to implement the algorithm to mock catalogs simulating future large 3D surveys such as

BigBOSS and EUCLID and forecast up to what order and precision the bias coefficients bi

can be estimated, as well as, the figure of merit achievable on σ8 and on the gravitational

growth index γ.

From the theoretical side, valuable insights are expected from a reverse engineering

on the proposed test. For example, I show in the next Chapter that if the gravitational

model is a-priori known then the formalism offers the possibility of narrowing in on the

value of fundamental cosmological parameters such as Ωm and ΩΛ. Also further work is

needed to understand how higher order real-space biasing parameters can be effectively

retrieved from redshift space reduced correlators. Finally, interesting possibilities will

open up if WNLPT predictions could be extended into the small separation limit where

much more statistical power is locked.
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Chapter 4

A new cosmic probe: The

clustering ratio of galaxies

In this chapter I consider the abundance of dark matter in the universe. This a problem of

great observational and interpretative difficulty, but owing to its bearing on fundamental

physics, is one of great theoretical significance.

Considerable effort is currently devoted to devising new and sharpening known methods

for determining the space density and nature of these elusive particles. So important is

the goal that a pioneeristic space mission (EUCLID) will soon be launched to map the

large scale distribution of dark matter.

The standard technique to explore the dark sector of the universe, and the workhorse

of the EUCLID mission, exploits the baryon acoustic oscillations imprinted in the 3-

dimensional distribution of galaxies (BAO probe). I here demonstrate that accurate and

precise cosmological information can be extracted from the cell count analysis of the

3D spatial clustering of galaxies once the second-order ratio between one- and two-point

moments of the smoothed galaxy density distribution is analyzed.

This new approach is, probably, the simplest ever method that allows to constrain

the amount of dark matter via the distribution of luminous galaxies. Despite its simple

engineering, it allows to explore with higher resolution the same cosmological parameter

space to which the BAO technique gives access.

This probe does not require the calibration of any standard rod, the modeling of the

galaxy biasing or redshift distortions and the knowledge of the sample selection function.

Its accuracy and precision of this new cosmic probe are demonstrated by an end-to-end

analysis of cosmological simulations and by direct implementation to real data.

Using the spectroscopic Sloan Digital Sky Survey (SDSS) data release 7 (DR7) galaxy

sample, no cosmic microwave background (CMB) information, no hypotheses on the cur-

vature of the universe (Ωk) nor on the constant value of the dark energy equation of state

(w), we estimate the abundance of matter (Ωm) with a relative error of 11% (at 68% c.l.).

I also present cosmological constraints obtained by applying this probe to high redshift

103
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data from the VIMOS public extragalactic redshift survey (VIPERS). The method may

be instrumental in searching for evidences of new physics beyond the standard model of

cosmology and in planning future missions such as BigBOSS or EUCLID.

4.1 The method

The challenge of determining the value of the constitutive parameters of the Friedmann

equations can be addressed through the development of performant cosmic probes, sophis-

ticated error analysis schemes, and formidable observational programs from both ground

and space (Amendola et al., 2012). The Wilkinson microwave anisotropy probe (WMAP),

for example, fix with impressive accuracy the parameters of a ‘power-law ΛCDM’ model

(Larson et al., 2011). This is a cosmological model characterized by a flat geometry, a

positive dark energy component ΩX with w = −1, and by primordial perturbations that

are scalar, Gaussian and adiabatic (Weinberg, 2008). Notwithstanding, other astrophysi-

cal probes are needed if we are to constrain deviations from this minimal model (Frieman

at al., 2008). Different approaches, being sensitive to different sets of nuisance parameters

and to different subsets of the full cosmological parameter set, provides consistency checks,

lift parameter degeneracies, enable stronger constraints and, in the end, a safer theoretical

interpretation.

I characterize the inhomogeneous distribution of galaxies in terms of the local dimen-

sionless density contrast δg(x) ≡ ρg(x)/〈ρg(x)〉 − 1, where ρg(x) is the comoving density

of galaxies in configuration space, and where its average is computed over the whole

galaxy sample. Since the galaxy distribution is a stochastic point process, a spherical

top-hat filter W of radius R is applied to generate a continuous, coarse-grained observ-

able δg,R(x) =
∫

δ(y)W (|x − y|/R)dy. The 1-point κ20,g,R = 〈δ2
g,R(x)〉c and the 2-point

κ11,g,R(r) = 〈δg,R(x)δg,R(x + r)〉c cumulant moments are the lowest-order non-zero con-

nected moments of the probability distribution functional (PDF) of the field δg,R(x) (Sza-

pudi, Szalay & Boschán, 1992; Bernardeau, 1996; Bel & Marinoni, 2012). If the PDF is

stationary and isotropic, the quantity κ11,g,R(r)/κ20,g,R reduces to the ratio between the

correlation function and the variance of the filtered field

ηg,R(r,p) =
ξg,R(r,p)

σ2
g,R(p)

, (4.1)

where I have explicitly emphasized the dependence of the observable on the set (p) of

cosmological parameters. This the case because the LHS term of eq. (4.1) can be estimated

from data only once a comoving distance-redshift conversion model is supplied.

It is straightforward to predict the expected value of the second order galaxy cluster-

ing ratio ηg,R. On sufficiently large cosmic scales R, matter fluctuations are small and

described by the linear (dimensionless) power spectrum ∆2
L = 4πAkns+3T 2(k), where A

is a normalization factor, ns is the primordial spectral index, and T 2(k) is the transfer
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function (Eisenstein & Hu, 1998). Accordingly, the amplitudes of the second-order statis-

tics for mass evolve as a function of redshift (z) and scale as σ2
R(z) = σ2

8(z = 0)D2(z)FR,

and ξR(r, z) = σ8(z = 0)2D2(z)GR(r). Both these equations are normalized at the scale

r8 = 8h−1Mpc, D(t) represents the linear growing mode (Weinberg, 2008), while the

effects of filtering are incorporated in the functions

FR =

∫+∞
0 ∆2

L(k)Ŵ 2(kR)d ln k
∫+∞
0 ∆2

L(k)Ŵ 2(kr8)d ln k
(4.2)

GR(r) =

∫+∞
0 ∆2

L(k)Ŵ 2(kR)
sin(kr)

kr d ln k
∫ +∞
0 ∆2

L(k)Ŵ 2(kr8)d ln k
(4.3)

where Ŵ is the Fourier transform of the window function.

By analogy, I define the mass clustering ratio ηR(r) ≡ ξR(r)/σ2
R, which is explicitly

given by

ηR(r) =
GR(r)

FR
. (4.4)

As long as a linear matter power spectrum is assumed, ηR(r) is stable across cosmic time,

i.e. it does not evolve as a function of redshift. Moreover, it is insensitive to the ampli-

tude of the matter power spectrum normalization parameter A. Interestingly, it is also

unaffected by redshift distortions, and, therefore, independent of their specific modeling,

that is the ratio ηR(r) between second-order statistics has identical amplitude in both

configuration- and real-space. If the only net effect of peculiar velocity is the enhance-

ment of the amplitudes of the density ripples in Fourier space, without any change in their

phases or frequencies, then redshift distortions equally contributes to the numerator and

denominator of eq. (4.4). For any given R and r, hence, the ratio ηR(r) behaves as a

cosmic ‘standard of clustering’.

The relationship between the mass and galaxy clustering ratios in configuration space

follows immediately once we specify how well the overall matter distribution is traced by

its luminous subcomponent on a given scale R. By adopting an arbitrary local non-linear

biasing scheme, namely δg,R(x) =
∑N

i=0(bi/i!)δ
i
R(x), and in the limit σ2

g,R << 1, I obtain

(see previous Chapter)

ηg,R(r) = ηR(r), (4.5)

an identity that is independent of the specific value of the bias amplitudes bi. In figure

(4.1) I show how the observable ηg,R(nR) extracted from 160 LasDamas mock catalogs

simulating the space distribution of SDSS galaxies (the Oriana lighcones), compares to

both the linear and non-linear theoretical predictions for ηR(nR). The comparison shows

that the agreement between theory and data is extremely good on a wide range of scales,

from nminRmin = 24 up to nmaxRmax = 120 h−1Mpc. In particular, on scales R >

10h−1Mpc and r = 3R, the approximation (4.5) is good to better than 0.5%, and to better
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than 0.1% on scales larger than 15h−1Mpc (for the same correlation length r = 3R).

As for a classical Alcock and Paczynski test (Alcock & Paczynski, 1979), the equivalence

expressed by eq. (4.5) holds true if and only if the LHS and RHS are both estimated in

the correct cosmology. This is the principle that I exploit to constrain the value of key

cosmological parameters. In this respect, we note that the RHS of eq. (4.5) is directly

sensitive to the shape (ns) of the primordial power spectrum of density fluctuations, as

well as to the parameters determining the size of the horizon scale at matter-radiation

equality (the present-day extrapolated value of the matter (Ωmh2) and baryon (Ωbh
2)

density parameters. The possible contribution of massive neutrinos is neglected in this

analysis.) By contrast, the LHS term of eq. (4.5) probes the structure of the comoving

distance-redshift relation, and it is in principle sensitive to the amount of matter Ωm

and, to ΩX and w which characterize a wide range of dark energy models. Note that as

long as we compute distances in units of h−1Mpc (h = H0/100), the LHS is effectively

independent from the value of the hubble parameter H0.

An additional merit of eq. (4.5) is the neat distinction in the physics that is brought

about by its two terms. The LHS is a geometric probe since it is fully specified once the

homogeneous expansion rate history of the universe is known. The nature of the RHS,

instead, is fundamentally dynamical, since eq. (4.4) can be computed only when a spe-

cific gravitational theory is provided. As a result, if the expansion rate of the universe

is known from independent evidences, one can directly test whether the assumed gravita-

tional paradigm correctly describe the formation of correlated structures in the universe.

Such a strategy, being independent from the specific modeling of redshift space distortions,

nicely complements other traditional approaches exploiting this last effect.

I estimate σ2
g,R and ξg,R(r) and correct measurements for shot noise effects according

to the method detailed in chapter 2 of this manuscript. Here, I describe how we evaluate

P (p|ηg,R), the likelihood of the unknown set of parameters p = (Ωm,ΩX , w,H0,Ωbh
2, ns),

given the actual value of the observable ηg,R. Note that the analysis does not require the

specification of further model parameters other than those quoted above.

The posterior likelihood P (p|ηg,R) is

P (p|ηg,R) =
L(ηg,R|p)π(p)

p(ηg,R)

and its value can be estimated once the likelihood of the data L as well as any even-

tual a-priori information about the probability distribution function of the parameters p

are known. To proceed, I further assume that the random variable ηg,R is distributed

as a Gaussian. Data confirms that this is a fair hypothesis, as I show in figure (4.5).

Notwithstanding, the likelihood of the estimator is recovered from mock catalogs charac-

terized by a smoothly decreasing density profile (see right panel of figure 4.7). I also tested

this assumption by using 40 mock catalogs with a density profile that mimics that of the

SDSS DR7 sample. Results are presented in figure (4.6) and confirm the hypothesis that
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Figure 4.1: Solid lines show the non-linear theoretical prediction for the clustering ration
ηR(nR). Predictions are obtained using the non-linear prescription of Smith et al. (2003)
(conventionally called halofit), whereas dot dashed lines display the linear theoretical pre-
diction obtained according to equation (4.4). The different colors correspond the chosen
value of the ratio between the correlation length r and the smoothing radius R (n = r/R):
black, blue, red and orange correspond to n = (2, 3, 4, 6) respectively. The galaxy cluster-
ing ratio ηg,R(nR) extracted from the LasDamas simulations are displayed using triangles,
squares, X and filled diamonds ( for n = (2, 3, 4, 6) respectively).
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Figure 4.2: Left panel: two-dimensional confidence limits on Ωm and ΩΛ from a ‘blind’ analysis
of the τCDM HVP simulation Jenkins et al. (2001). This synthetic catalog of clusters of galax-
ies covers one octant of sky, extends over the redshift interval 0.1 < z < 0.43, is comprised of
1, 000, 000 massive halos with an average space density of 6 × 10−4h3Mpc−3, and the input cos-
mological parameters are pi = (1, 0, −1, 21, 0, 1). Contours are plotted for L/Lmin < 2.3, 6.17
corresponding to 68 and 95 per cent confidence intervals for a multivariate Gaussian distribu-
tion with 2 degrees of freedom. The relevant one-dimensional marginalized constraint is shown
in the inset. The clustering ratio ηg,R(r,p) is estimated using R = 14h−1Mpc and r = 3R.
For the best fitting cosmology we measure ηg,R(r,pbest) = 0.0294 ± 0.0017 where the error is
evaluated via 30 jackknife resampling of the data, excluding each time a sky area of 36 × 19.5
deg2. Dirac delta priors are taken of Ωbh

2, H0 and ns, that are centered on the simulated val-
ues. Right panel: same as before, but now contours represent the joint likelihood analysis of
40 independent ΛCDM mock catalogs simulating the SDSS LRG sample. Each of these simula-
tions covers 120 × 45 deg2, extends over the redshift interval 0.16 < z < 0.43, is comprised of
∼ 60000 galaxies with an average space density of ∼ 8.9 × 10−5h3Mpc−3 and the input cosmolog-
ical parameters are pi = (0.25, 0.75, −1, 70, 0.0196, 1). For the best fitting cosmology we find
ηg,R(r,pbest) = 0.0573± 0.0010, where the error, computed as the standard deviation of the mean
of 40 measurements, includes the contribution from cosmic variance.
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Figure 4.3: Upper panels: The galaxy clustering ratio ηg,R(r) is plotted as a function of ΩΛ

(left), Ωm (center) and w (right) together with its aproximation (4.7) (dotted blue line) and it is
compared to the predicted scaling of the mass clustering ratio ηR(r) (solid black line). The true
cosmological model is the one for which both the values coincides, i.e. the LHS and RHS terms
of eq. (4.5) are identical. The observable is computed using the SDSS DR7 sample and assuming
R = 14h−1Mpc and r = 3R. We find ηg,R(r,pbest) = 0.0452, and its associated error ση = 0.0035
is computed from 30 jackknife resampling of the data, excluding, each time, a sky area of 12 × 14
deg2. This error is in good agreement (< 10% difference) with the standard deviation displayed by
the 40 SDSS-like simulations LasDamas. Lower panels: two-dimensional marginalized constraints
on a curved XCDM model in which both ΩX and w are allowed to vary. Gaussian priors are taken
of Ωbh

2 = 0.0213 ± 0.0010, of H0 = 73.8 ± 2.4 and of ns = 0.96 ± 0.014 from BBN Pettini et
al. (2008), HST Riess et al. (2011) and WMAP7 Larson et al. (2011) determinations respectively.
Contours are plotted for L/Lmin < 2.3, 6.17.
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Figure 4.4: Two-dimensional marginalized constraints on Ωm and H0 obtained by fitting data with
a curved XCDM model. Contours are plotted for L/Lmin < 2.3, 6.17 respectively green and orange
area whereas solid and dotted line corresponds to same contours obtained using aproximation (4.7).
Gaussian priors are taken of Ωbh

2 = 0.0213±0.0010 and ns = 0.96±0.014 from BBN and WMAP
determinations respectively.

Figure 4.5: Upper panels: The blue histogram shows the distribution of the clustering ratio ηg,R

obtained from 160 mock catalogs simulating the SDSS LRG sample. Each panel presents results
obtained by using a sdifferent moothing radius R (whose value is shown in the inset), whereas the
correlation length is r = 3R. The solid line displays the best fitting Gaussian model. Lower panels:
I show the relative deviation between the Gaussian model and the actual distribution of the data.
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the measurements of the clustering ratio are distributed according to a Gaussian law, even

when a realistic radial distribution of galaxies is simulated. For the sake of completeness, I

show in figure (4.6) that also the variance and the correlator of order (1, 1) of the smoothed

galaxy density have a Gaussian PDF.

Since the observable ηg,R is with excellent approximation Gaussian, the most likely set

(pbest) is the one that minimizes the logarithmic posterior L = − log P

L =
N∑

log ση,i +
χ2

2
− log π + B, (4.6)

where χ2 =
∑N σ−2

η,i (ηg,R − ηR)2, where N is the number of estimates of ηg,R, ση,i is the

error on the observable, and where B is a normalization constant that can be fixed by

requiring
∫

Pdp = 1. Since eq. (4.5) is free from look-back time effects, the analysis does

not require slicing the sample in arbitrary redshift bins; only one estimation (N = 1) of

eq. (4.1) is needed across the whole sample volume.

For each comoving distance-redshift model we have recalculated the observable ηg. As

a consequence, the posterior L does not vary smoothly between different models because

the number of galaxies counted in any given cell varies from model to model. However,

since the computation of the observable ηg,R takes a limited amount of time, shot-noise

is the price we have decided to pay in order to obtain an unbiased likelihood surface.

Moreover, we have chosen not to combine constraints from our measurements with the

full WMAP likelihood.

4.2 Blind Analysis of numerical simulations

Demonstration of my method under realistic operating conditions is an essential step

on the road to real data application. I assess its performances via a ‘blind’ analysis

of mock catalogs that are characterized by widely different sets of expansion rate and

power spectrum parameters, mass tracers and radial selection functions. These are the

τCDM Hubble Volume Project (HVP) simulation (Jenkins et al., 2001) and the LasDamas

simulation (McBride et al., 2009). Clusters mock data (HVP) allow me to check for

the presence of insidious algorithmic biases that could arise when training a method to

‘recognize’ only a fiducial ΛCDM cosmology via a single class of biased tracer of the matter

clustering pattern, namely galaxies.

The HVP simulation contains 1 billion dark matter particles with mass 2×1012h−1M⊙

evolved in a universe containing only dark matter (Ωm = 1 and Ωk = 0). The simulation

starts at redshift 29 and is characterized by a pure dark matter power spectrum with

shape parameter Γ = Ωmh = 0.21 even if the whole simulation is run by choosing h = 0.5.

By this choice, the τCDM model of HVP simulation mimics the power spectrum of a

ΛCDM model without baryons and with reduced matter density parameter Ωm = 0.3 and
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Figure 4.6: Same as in figure (4.5), but for measurements extracted from 40 LasDamas mock
catalogs with the same radial distribution of the LRGs in the SDSS DR7 sample. Besides showing
the PDF of the clustering ration (upper panels) , I also show the distribution of the measurements
of the correlation function (central panels) and of the variance (lower panels) of the density field
smoothed on a scale R (shown in the insets).
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Figure 4.7: Radial density profile of simulations and data used for the clustering ratio test. The
left panel shows the redshift scaling of the spatial density of halos in the τCDM HVP light-cone.
The right panel shows the density profile of the original Oriana light-cone extracted from the
LasDamas simulations (blue diamonds), of the LRG sample in the SDSS DR7 data (black squares)
and of the LasDamas subsample that has the same radial density distribution of real data (magenta
triangles).

a reduced Hubble constant h = 0.7. This tuning of the shape parameter was somewhat

physically motivated by assuming the presence of a τ neutrino in the early universe (Bond

& Efstathiou, 1991; Efstathiou, Bond & White, 1992). The density profile of the τCDM

HVP simulation is given in right panel of figure (4.7).

The left panel of Fig. 4.2 shows that the input value Ωm = 1 is statistically retrieved

and that, as for other clustering probes such as for example the baryon acoustic oscillation

technique (Percival et al., 2010; Gaztañaga & Cabre, 2009), the method is fundamentally

insensitive to the abundance and nature of dark energy. By a joint analysis of 40 ΛCDM

mock catalogs that incorporate all the observing selections of the SDSS luminous red

galaxies (LRG) survey, i.e. the Oriana output of the LasDamas simulations, I have verified

that the specific SDSS observing biases do not spoil our cosmological inferences. Figure

(4.7) compares the radial density profile of the Oriana light cone with the one of the SDSS

DR7. One can notice that the density profile of Oriana is quite different from the one

observed in SDSS. In order to reproduce the SDSS density profile, we removed randomly

objects from the original Oriana light cones to obtain the 40 mock (referred to as ΛCDM

LasDamas), to which we applied the clustering ratio test.

The encouraging outcome of this analysis is presented in Fig. 4.2, and shows that data

in a volume 40 times larger than that probed by the SDSS LRG sample (still only ∼ 1/4

of the volume that will be explored by future surveys such as EUCLID (Laureijs et al.,

2011)) can constrain Ωm precisely (∼ 4%) and accurately (the input value is recovered).
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4.3 The clustering ratio test applied to SDSS DR7 sample.

Cosmological constraints

Turning to real data, the geometry of the SDSS DR7 subsample Abazajian et al. (2009)

is dictated by the need of sampling the galaxy distribution with cells of radius R as well

as of correlating cell counts on scales r. The inferior limit on R is set by a theoretical

constraint. Although not mandatory, the analysis is performed in the linear domain, so

to avoid any phenomenological description of the matter power spectrum. The choice

of R, is additionally conditioned by the practical requirement of minimizing the shot

noise contribution in each cell, i.e. R > (4πρ/3)−1/3. In this work I adopt the scale

R = 14h−1Mpc. The inferior limit r = 3R in the correlation scale, instead, is set to

guarantee optimal accuracy in the approximation (4.5). At the opposite end, the larger the

values of R and r, and the less informative are the inferred cosmological predictions. The

sample that complies with these constraints covers the redshift interval 0.15 < z < 0.43,

a contiguous sky area of 120 × 45 deg2, is comprised of 62, 652 LRG galaxies, and has a

mean density of 9.2 × 10−5h3Mpc−3.

Without fixing neither the curvature of the universe (flat prior 0 < |Ωk| < 1) nor the

quality of the dark energy component (flat prior −1/2 < w < −3/2), but taking (strong)

Gaussian priors of Ωbh
2, H0 and ns from big bang nucleosynthesis (BBN, Pettini et

al., 2008), Hubble Space Telescope (HST, Riess et al., 2011),and Wilkinson microwave

anisotropy probe (WMAP Larson et al., 2011) respectively, data constrain the overall

matter abundance with a precision of 7% (see Fig. 4.3, for the sake of completeness, by

choosing a smoothing scale of 18/22h−1Mpc I obtain 0.270+0.037
−0.027/0.255 ± 0.038.) This

figure improves by a factor of two the estimate (Ωm = 0.259 ± 0.039 Eisenstein et al.,

2005) obtained by analyzing, with the same priors, the large scale clustering (LSC) of

the SDSS DR5 sample (which contains 25% less galaxies than DR7). It also improves by

∼ 20% the constraint (Ωm = 0.24+0.025
−0.024) obtained by combining LSC results from the DR7

sample with the full likelihood of the WMAP5 data (Dunkley et al., 2009) and a strong

HST prior (Riess et al., 2009). The relative precision achieved with my method compares

with that (ΩM = 0.294 ± 0.023) obtained by Sanchez et al. (2012) by combining the LSC

likelihood from the dr9 sample (containing 5 times more LRG than the DR7 catalog) with

the full likelihhod of CMB data (WMAP7, Larson et al., 2011). Interestingly, the best

fitting value of Ωm still remains within the quoted 68% c.l. even when we relax some

of the strong priors. With a (weak) flat prior on ns (in the interval [0.9, 1.1]) we obtain

Ωm = 0.271+0.030
−0.031, while if I additionaly weaken the prior on Ωbh

2 (flat in the interval

[0, 0.03]) we obtain Ωm = 0.255 ± 0.040. Although the best fitting value of Ωm is weakly

sensitive to changes in Ωbh
2 and ns, Fig. 4.4 shows that Ωm degenerates with H0 when the

HST prior is removed. If I relax also the strong prior on H0 (by assuming a flat prior in

the interval [40, 100]km/s/Mpc), we find Ωm = 0.22+0.14
−0.04. The stability of the best fitting

central value Ωm is of even more interest especially if contrasted to CMB results showing
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that it is the combination Ωmh2 which is mostly insensitive to the strong prior on the

curvature of the universe.

The cosmological information extracted from a cosmic probe is usually efficiently en-

capsulated in the covariance matrix. Among many advantages, this formalism allows to

combine results obtained from a specific method with those obtained from independent

probes. The matrix formalism, however, provides us with likelihood contours that poorly

reproduce the likelihood contours that I obtained by applying the η test to SDSS data.

This is due to the strong, ‘non-gaussian’ degeneracy between the matter density parameter

Ωm and the reduced Hubble constant h (see figure 4.4). I have therefore devised a different

approach in order to ease the combination of my results with those obtained using other

cosmological probes.

I simply worked out an empirical formula which returns the measured value of the ηg,R

in any given cosmology. The clustering ratio ηg,R(r) reconstructed from the SDSS data

on a scale R = 14 and for r = 3R can be effectively approximated via the fitting formula

ηfit
g,14(r) = 0.00712 − 0.0788x + 0.0981x2 − 0.0538x3, (4.7)

where x = 1 − fΩ/fo and the functions fΩ and fo are given by

fΩ = 3wΩX − Ωk+
{

wΩX(14 + 3w) +
Ω2

k

2 − 3wΩXΩk − 11
3 Ωk

}

z̄+
{

wΩX [1 − 9
2(1 + w)w] − 5

2Ωk +
Ω2

k

2

}

z̄2

2

fo = wo

{

3 + (14 + 3wo)z̄ + [1 − 9
2(1 + wo)wo

z̄2

2 ]
}

, (4.8)

where wo = −3/2, z̄ = 0.29 and Ωk = 1 − Ωm − ΩX .

Figure (4.4) shows how well the “non-Gaussian” degeneracy between h and Ωm is

reproduced by inserting this fitting formula in the equation 4.6 and by assuming ση = 0.004

in the likelihood analysis (that is a constant value in all cosmologies). The remarkable

agreement between the likelihood surface recovered using real data ηg,R and using the

fitting formula ηfit
g,R is also displayed in the upper panel of figure (4.3). However, assuming

a constant, cosmology-independent value for ση is a somewhat rough approximation which

causes a slight over-estimation of the area enclosed by the likelihood contours.

The advantage of probing cosmology via the ratio of second-order, one- and two-point

moments of the δR distribution is that only a minimum amount of cosmological hypotheses,

and no astrophysical nuisance parameters at all, condition the results. Of great interest is

the flexibility of the method, which can still be improved along several directions. Owing to

its scale-free nature, the precision of the technique could be further improved by adopting a

non-linear power spectrum in eqs. (4.2) and (4.3), and by smoothing the over-density field

on an even smaller scales R than that adopted throughout this analysis. The only caveat

being that mass fluctuations δR in configuration and real spaces be simply proportional.
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Alternatively, the method could be applied also to large photometric redshift surveys. In

this case, predictions of eq. (4.4) must be statistically corrected to account for the line-

of-sight distortions introduced when estimating low-resolution distances from photometry.

Finally, this probe enlarges the arsenal of methods with which the next generation of

redshift surveys such as BigBOSS (Schlegel et al., 2011) and EUCLID (Laureijs et al.,

2011) will hunt for new physics by challenging all sectors of the cosmological model.

4.4 The clustering ratio test applied to the VIPERS sample

In this section I present some preliminary results obtained by implementing the clustering

ratio test to the VImos Public Extra galactic Redshift Survey (VIPERS). I do not limit

myself to present how I applied the test to a deep sample of galaxies. I also digress on how

I corrected for the various observational selection effects that affect the VIPERS sample,

and in particular for the uneven angular sampling of this survey. The correction method

that I will present, in fact, can be implemented in various other applications which involve

the cell-count analysis. I begin with a short overview of VIPERS, that allows me to discuss

the main difficulties inherent to the application of the cell-counts in this redshift survey

and then, I will detail my strategy to de-bias the cell-counts statistics.

4.4.1 Overview of VIPERS

VIPERS is a deep (up to redshift 1.5) spectroscopic survey. Figure (4.9) displays how the

redshift distribution and the angular aperture compare with the SDSS survey. Its angular

aperture on the sky is shown in figure (4.8), which shows that the surveys is comprised

of two disjoint fields of view selected in the W1 and W4 fields of the Canada France

Hawaii Telescope Legacy Survey (CFHTLS). The total area covered by VIPERS is about

24 square degrees. Spectra of VIPERS galaxies are the result of nearly 440.5 hours of

observation at the very large telescope (VLT).

The location of the two fields of view of VIPERS has been chosen in order to take

advantage of the large amount of photometric data already collected by the CFHTLS.

The spectroscopic targets of VIPERS have been, indeed, preliminarily selected according

to photometric criteria. On one hand, objects photometrically identified as stars are

immediately removed, and on the other hand galaxies are targeted according to a color-

color selection which minimizes the chance of observing a galaxy at a lower redshift then

0.4. By adopting this strategy, the efficiency of the survey is maximized. In fact, it is not

necessary to waste time observing low redshift galaxies, of which the SDSS survey already

provide a comprehensive census (see figure 4.9).

Spectra are collected in a very efficient way. With a single telescope pointing, one can

target nearly 300 galaxies using the four VIMOS quadrants (Q1 to Q4). To obtain spectra

of these objects, whose magnitude is IAB < 22.5, an exposition time of 1h is sufficient. A
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Figure 4.8: Position on the sky of the two VIPERS fields W1 and W4.

graphical illustration of one telescope pointing is displayed in figure (4.10), where one can

notice that the four quadrants do not cover a contiguous area. As a consequence some

gaps remain (all targets are missing in the gap region). Moreover, the position of the

slits (which diffract the light coming from the targets) is optimized by the SPOC (Slit

Positioning Optimization Code, see Bottini et al., 2005) algorithm which maximizes the

number of observed objects given the position of potential targets. Non negligible and

insidious bias arise from such systematic selection effects (gaps + SPOC).

It is therefore of paramount importance to reconstruct the ‘true’ probability (PN ) of

finding N galaxies in random spheres of an arbitrary radius R starting from the observed

distribution which is affected by all the VIPERS systematics. Note that correcting the

probability distribution is equivalent to correct the complete hierarchy of one-point mo-

ments. In figure (4.11) I display the two fields W1 and W4 of VIPERS, they clearly exhibit

rectangular patterns due to gap effects, namely the masked region.

We have seen (chapter 1) that a discrete distribution results from the sampling of a

continuous stochastic field. Under very general conditions the sampling process is well

described in terms of Poissonian selection. However, if the sampling does not satisfy the

local Poisson process approximation, the way of correcting the observed moments for shot

noise change. Thus it is necessary to investigate if the VIPERS target selection strategy

can be described as Poisson sampling.

4.4.2 Mask effects on galaxy sampling

If the regular pattern with which slits can be disposed on a Vimos mask only modifies the

conditional sampling probability P [N |Λ] in equation (2.6), then the first step is to model

the new sampling function. The modeling of the sampling function, although carried out

using data in the W1 and W4 fields, must be independent of the field which is sampled.

Therefore I analyzed the effects of maskig using using only random distributions, more

precisely 50 mock catalogs simulating a random distribution of objects in each field W1
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Figure 4.9: Comparison between SDSS (yellow) and VIPERS (black)

Figure 4.10: VIMOS CCD which can collect 325 spectra with a single telescope pointing. Sizes are
in arc-minutes. The presence of empty gaps between the four quadrants (solid yellow rectangles)
is clearly visible.
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Figure 4.11: Projection on the sky of the version 3.0 of VIPERS data collected in both the W1
(upper panel) and W4 (lower panel) fields. The rectangular pattern induced by gaps is clearly
visible in the angular distribution of galaxies (blue points). The solid rectangle represents the
effective field of view that we have analyzed with the clustering ratio test.

and W4. By definition, when counts-in-cells is applied on an uniform distribution of points

it is possible to show that in the limiting case when the size of the survey is much larger

then the size of a cell, the predicted counting probability follows a Poisson law

PN =
N̄N

N !
e−N̄ ,

where N̄ is the expected mean number of points in a randomly chosen cell. When no mask

is applied on the random mock catalogs (i.e. the local Poisson process can be applied) it is

possible to show that the underlying stochastic field associated to an uniform distribution

is a Dirac distribution shifted by the quantity Λ̄ (for a Poisson sampling Λ̄ ≡ N̄)

N̄N

N !
e−N̄ =

∫ ∞

0

ΛN

N !
e−ΛδD(Λ − Λ̄)dΛ.

Then, after applying the VIPERS masks on these random distributions, i.e. implementing

the VIPERS sampling function, the above expression takes the form

PN =

∫ ∞

0
Pmask[N |Λ]δD(Λ − Λ̄)dΛ,

which obviously reduces to

Pmask[N |Λ̄] = PN , (4.9)

where PN is the counting probability of the random distribution after applying masks.

Equation (4.9) shows that a random distribution, offers the possibility to measure directly
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the sampling function of the masks. Figure (4.12) shows the effect of masks on sampling

for both W1 and W4 fields. It is clear that the two fields are not characterized by the

same sampling. As a matter of fact in the W1 field we find an excess of low counts that is

an observed PN which is strongly left-skewed. This would suggest the necessity of a non

trivial modeling of the sampling function. However the simpler is the model the simpler is

the way of finding the correction to apply on the moments. The asymmetric distribution

of probability arises because of the strong impact of large gaps (that is bad quadrants, or

missing quadrants). To avoid modeling such specific features, it is possible to include in

the counting analysis only those spheres for which the fraction of volume included in the

unmasked area is greater than a given threshold wth. Figure (4.12) shows the measured

sampling functions extracted from the W1 and W4 fields using only cell counts in spheres

for which wth is larger then a given threshold. I also show how the observed distribution of

counts is modeled by two theoretical distribution laws: the Poisson law and the negative

Binomial distribution. This last distribution

PNegBin
N ≡

N̄N

N !(r + N̄)N

(

1 +
N̄

r

)−r
Γ(N + r)

Γ(r)
, (4.10)

being characterized by 2 parameters, presents a larger number of degrees of freedom, and

therefore a higher flexibility, with respect to the simple Poisson law. Note that the value

of the r parameter depends on the expected variance σ2
N and mean number N̄ , thus

r ≡
N̄2

σ2
N − N̄

.

An additional interesting property of the negative binomial law is that when the r param-

eter goes to infinity the distribution becomes exactly a Poisson distribution

Lim

r → ∞
PNegBin

N = PPoisson
N ≡

N̄N

N !
e−N̄ . (4.11)

Using a negative binomial, I can quantify deviations from a perfect Poisson sampling

by means of the r parameter. From figure (4.12) I conclude that the counts probability

distribution resulting from selecting cells with wth = 60% is somewhat better modeled in

term of a Negative Binomial.

The next step is to ensure that the value of the r parameter which was fixed using

random simulations depends effectively only on the geometry of the mask and not on

the properties of the random sample used in the analysis and in particular on the mean

number of objects in cells Λ̄. The easiest way to proceed, is to divide the spatial density of

the random mock catalogs by a factor of 2 and 4 (i.e. change the value of Λ̄) and explore

how this change affects the value of r. The results are shown in figure (4.13) where I plot

the distributions for W1 and W4. The best fitting values of the r parameter are reported
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Figure 4.12: Upper panels concern R = 8h−1Mpc while lower panels concern R = 5h−1Mpc, on
the left I describe W1 whereas on the right results are shown for W4. Each panel concerning a
given field and a given radius is decomposed in 4 quadrants which show the measured sampling con-
ditional probability P [N |Λ̄] (black histogram), the Poisson modeling (blue solid line) and the Neg-
ative Binomial modeling (green dashed line) for different values of the of the threshold wth imposed
on the volume fraction of the spheres to select it. Each individual quadrant is composed of two
parts, the upper part shows the measured and modeled probability distributions whereas the lower
part corresponds to the relative difference between the Poisson and Negative Binomial modeling
with respect to the effective measurement of the conditional probability. ∆P ≡ P [N |Λ̄]/Pmodel

N −1
is represented with green diamonds for Poisson modeling and with blue triangles for Negative Bi-
nomial. Error bars in measurements are obtained from 50 random distributions which mimic the
masked W1 and W4 fields.
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Figure 4.13: The count probability in spheres R = 8h−1Mpc (upper panels) and R = 5h−1Mpc
(lower panels). The color and drawing conventions are the same as in figure (4.12) but all mea-
surements have been done by removing the cells with more then 40% of their volume falling in
a gap (i.e. wth = 60%). Left panels show measurements and modeling using data from random
catalog (P2) containing half of the objects of the original catalog. The right panels show the same
measurements extracted from a catalog (P4) containing a quarter of the object of the original
random catalog. Note also that the best fitting parameter r are reported within each individual
panel.

in each plot. The P2 and P4 panels correspond to random catalogs with 2 and 4 times

less objects then the original random distributions. These plots show that the value of r

depends on Λ̄. Moreover, he lower the value of Λ̄, the larger the value of the best fitting

r. This means that decreasing the mean number of objects in the original sample (i.e.

that unaffected by masks) improves the chances that the sampling function is effectively

Poissonian. Since the mean number density of galaxies in the VIPERS catalogs is nearly

4 times lower than that characterizing the original random samples (that is similar to

the spatial density of objects in the P4 catalog), it is possible to model the VIPERS

sampling function in terms of the classical local Poisson process. As a result, the shot

noise correction scheme for the 1−point moments given by equation (1.75) can still be

safely applied.

The remaining problem is to infer the moment of the underlying continuous field Λ

knowing that the VIPERS observing strategy allows us to measure the redshift for only

a fraction (nearly 40% ) of the whole population of galaxies with magnitude IAB < 22.5.

Let N be the random variable characterizing counts in a (parent) population which is not

affected by mask sampling or spectroscopic sampling rate and be M the random variable

actually observed in a sample. The parameter α ≡ M̄
N̄

represents the fraction of data to

which the survey give us access. As I have shown in the chapter (1), the cumulant moments

of the density contrast (〈δn〉c) must be invariant under the sampling. This means that,
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concerning the parent population we can write

〈Λn〉

Λ̄n
=

〈(N)nf 〉

N̄n
,

where, by definition, N̄ ≡ Λ̄. Concerning the sample, we have

〈Λn〉

Λ̄n
=

〈(M)nf 〉

M̄n
.

which, finally, leads to the formula

〈Λn〉 =
〈(M)nf 〉

αn
, (4.12)

which allows us to estimate true moments of the continuous stochastic field Λ from the

factorial moments of a sample extracted from the parent population.

4.4.3 Reconstructing the count probability PN

Now that we know the shape of the VIPERS sampling function P [N |Λ] as well as the

moments 〈Λn〉 we must figure out how to compute P (Λ) so that, by applying equation

2.6 (see section 1.3.6), we can recover the value of the ‘true’ count probability distribution

PN . There are different strategies that allow reconstructing a probability density function

given its moments. An often adopted approach, consists in using the Edgeworth expansion

technique. One assumes a Gaussian distribution and tunes it in order to modify its

moments order by order. I tried this first possibility but results were not encouraging.

The fact is that the Gaussian distribution offers a poor approximation of the distribution

P (Λ) that we want to reconstruct. In practice, since the observed PN is similar to a

geometric distribution, the underlying probability density function is roughly given by a

Gamma distribution. Because of this I decided to use a Gamma expansion technique,

whose virtues have been tested by Gaztañaga, Fosalba & Elizalde (2000). In what follows,

however, I exploit results obtained by Mustapha & Dimitrakopoulos (2010).

As suggested by its name, the Gamma expansion method relies on a Gamma distribu-

tion φG with general expression

φG(x) =
θ−k

Γ(k)
xk−1e−

x
θ , (4.13)

where θ and k are two real parameters. Their value can be set by requiring that the

mean x̄ and the variance σ2
x (of the PDF that we want to reconstruct) are equal to the

mean and variance of the Gamma distribution, thus θ = σ2
x/x̄ and k = x̄2/σ2

x. From the

definition (4.13) it follows that k must be greater then 1 to allow the Gamma function

Γ to be defined. When k is an integer the Gamma function is related to factorial by

Γ(k) = (k−1)!. It means that the distribution must satisfy x̄2 ≥ σ2
x; if not, the parameter



124CHAPTER 4. A NEW COSMIC PROBE: THE CLUSTERING RATIO OF GALAXIES

k must be set to 1 and the Gamma distribution reduces to an exponential distribution.

Let P (Λ) be the probability density that we want to reconstruct. Then the Gamma

expansion at order n can be written as

P (Λ) ≃ P k−1
n (Λ) ≡

n∑

i=0

ciL
(k−1)
i (θΛ)φG(θΛ), (4.14)

where L
(k−1)
i are the generalized Laguerre polynomials which are defined as

L(k−1)
n (z) ≡

n∑

i=0

(

n

i

)

Γ(k + n)

Γ(k + i)
(−1)i

zi

n!
.

Due to their remarkable orthogonal properties, they can be used to tune the moments of

the Gamma functions. Indeed, each coefficient cn in the expression (4.14) can be calculated

cn =
n∑

i=0

(

n

i

)

Γ(k)

Γ(k + i)
(−1)i

µi

θi
, (4.15)

where by definition µi ≡ 〈Λi〉. Note also that by definition c0 ≡ 1 and that c1 and c2 are

forced to be 0 when we make the mean Λ̄ and variance σ2
Λ equal to the mean and variance

of the Gamma distribution (by calculating the corresponding values of the parameters k

and θ). Since, as stressed above, a k value lower then 1 can occur, in this case (and this

is the case for R = 5h−1Mpc) it is necessary to set k = 1, a choice that force c2 to be

different from 0.

As the probability density function P (Λ) has now an analytical expression which de-

pends on the moments we estimate, it is possible to apply the Poisson process to this

distribution and calculate the reconstructed PN . Using expression (2.6) we have

PN =

∫ ∞

0
P (Λ)

ΛN

N !
e−ΛdΛ. (4.16)

I verified this scheme to recover the correct value of the count probability PN using three

different mock catalogs simulating the VIPERS survey. These are the reference catalog, the

cut catalog and the observed catalog. The reference catalogs are light cones (with peculiar

velocities included) extracted from the Millennium simulation by implementing the same

apparent magnitude cut of VIPERS (i.e. reject object with IAB ≥ 22.5). The cut samples

are obtained by applying the VIPERS color selection to objects in the parent catalog. The

observed sample was extracted by running the SPOC algorithm in each VIPERS quadrants

in order to obtain a catalog simulating the same VIPERS target selection strategy. In order

to be as realistic as possible, I simulated the spectroscopic errors estimated from VIPERS

spectral measurements and applied realistic mask obscuring areas of the survey with poor

photometric quality. These final (and realistic) mock catalogs are called test3b .

Figure (4.14) shows a comparison between the recovered PN from a test3b catalog and
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Figure 4.14: Upper: black histogram shows the count probability PN of the reference catalog, the
red histogram shows the PN extracted from test3b catalog, solid blue line with diamonds shows
the result of the Gamma expansion (GE) applied on the reference catalog and the solid magenta
line with triangles shows GE applied on the test3b corrected catalog, for the considered radius
R = 5h−1Mpc (left) and R = 8h−1Mpc (right). Lower: Relative difference between the count
probabilities PN reconstructed via the GE applied to the reference and to the test3b catalogs.

the true PN extracted from the reference catalog. In order to test the accuracy of the

reconstructing scheme, I also applied the Gamma expansion to the reference PN . This

comparison is shown in figure (4.14). The relative difference between the true PN and the

reconstructed PN are in good enough agreement (i.e. they differ by less then 10%). In

principle, however, the agreement should be bette. In fact, in this preliminary application,

I neglected to take into account the radial selection function (i.e. the fact that the spatial

density of galaxies decreases as a function of redshift). To test this hypothesis I created a

volume limited catalogs (i.e. a sample with a constant density profile) extracted from the

reference and test3b catalogs and I rerun the correction procedure. Results are presented

in figure (4.15). Although error bars are larger, data show that the relative difference

between the true and the reconstructed PN show a lower dispersion around the zero value.

4.4.4 Preliminary results on VIPERS data

In this section I present preliminary results obtained by implementing the clustering ratio

test with VIPERS data. First, I need to choose the parameters R and r so that the large

separation limit is verified. I therefore set n = r/R = 3. It means that the size of the cell

motifs with which I tessellate the survey volume is about 5R (R+ r+R is the total size of

a motif). As the maximum aperture in declination of VIPERS data is about one degree,

the clustering ratio analysis is carried out by smoothing the galaxy density field using

a Top-Hat window of radius R = 5h−1Mpc. This scale corresponds nearly to the mean

inter-galaxy separation in the VIPERS sample. Since the analysis requires computing the
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Figure 4.15: Same as in figure (4.14) but applied on volume limited samples extracted from the
reference and test2 catalog.

η observable in a large number of cosmological models which satisfy the conditions

0 ≤ Ωm ≤ 1

0 ≤ ΩΛ ≤ 1

The size of the cell motif force us to restrict the analysis to redshifts greater than 0.65.

The upper bound is fixed to z = 1.2 in order to minimize shot noise effects. Note also

that at such small scales (i.e R = 5h−1Mpc) the linear power spectrum does not offer

a sufficiently accurate description of the matter fluctuation field. As a result, I use here

the non linear prescriptions from Smith et al. (2003) in order to predict the value of the

clustering ratio in each tested cosmologies.

In this preliminary analysis I consider as free fitting parameters only the matter density

Ωm and the dark energy density ΩΛ (assuming w = −1). I indeed take Dirac priors of

the other cosmological parameters (that is h = 0.738, Ωbh
2 = 0.021 and ns = 0.96) even

if I do not put any restriction on the spatial curvature of the universe. The encouraging

outcome of this analysis are presented in figure (4.16). The left panel confirms that even

at high redshift the clustering ratio is weakly sensitive to the value of the cosmological

constant in both W1 and W4 fields. The one-dimensional posterior distribution of the

matter density parameter, that I obtained by marginalizing the likelihood over the dark

energy density parameter (ΩΛ), is shown in the right panel of figure 4.16). By taking the

contour level corresponding to L = Lmin + 1 we find that Ωm = 0.27+0.09
−0.05. This is to our

knowledge the most precise (27%) determination of the present day value of Ωm inferred

using the galaxy distribution at redshift z = 1.

Even if the smoothing scale adopted to perform the test (5h−1Mpc) is rather small in

comparison to that (R = 14h−1Mpc) used for filtering the galaxy distribution of the SDSS
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Figure 4.16: right : Two-dimensional constraints on a curved universe with a cosmological con-
stant. Dirac priors are taken of Ωbh

2 = 0.021, of Ho = 73.8 and of ns = 0.96. Contours are plotted
for L/Lmin < 2.3, 6.17 respectively dashed and dotted line for the clustering ratio test applied on
W1 (blue) and W4 (red) independently. Then the green shaded are and the orange area show the
L/Lmin < 2.3, 6.17 contours levels when combining W1 and W4. The black diamond materialises
the coordinates of the point which maximizes the likelihood probability. right : One-dimensional
marginalised (on ΩΛ) posterior distribution of the matter density parameter. The corresponding
one-dimensional marginalised constraint (L = Lmin + 1) is Ωm = 0.27+0.09

−0.05.
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DR7 survey, the resulting constraints on Ωm inferred at these two widely different cosmic

epochs are in good agreement. These results show that the clustering ratio test can be

applied also in the non-linear regimes. Indeed, it will be interesting to test its robustness

and accuracy on such scales using N -body simulations.



Conclusions and perspectives

The most significant contribution of my PHD work has been devising and implementing

competitive cosmological probes that exploit the power of a relatively unexplored statisti-

cal quantity, that is the high order, 2−point cumulant moments of the galaxy density field.

As a part of this research program I’ve had the opportunity of deepening my understanding

of the dynamical and statical properties of matter perturbations in the weakly non-linear

regime. I have acquired a solid expertise in developing routines that perform intensive

data computations, and I have been exposed to the challenge of developing theoretical

instruments to de-biasing data from observational systematics.

By applying the methods that I contributed to develop to available SDSS data, I have

obtained interesting observational constraints on some fundamental cosmological param-

eters. However, the future research perspectives that will be opened by this preliminary

analysis are of even more interest. As a matter of fact, from the theoretical side, work

must still be done in order to fully understand robustness and limitations of the weakly

non-liner perturbation theory. In particular to tackle the issue of estimating the amplitude

of the reduced correlators of order (n,m) and assessing the impact of redshift distortions

on these high order 2−point statistics. From the numerical side, we are confronted with

the problem of speeding up the computing time required by these algorithms. Not only

in order to process in a fast and efficient way high resolution matter particle simulations,

but also to prepare the analysis of the large mass of redshift survey data that will soon be

available. From the observational side, finally, we have the unique possibility of applying

these measuring strategy to deeper and larger redshift samples, and therefore obtaining

even more stringent and less degenerate constraints on relevant cosmological parameters.

In this perspective, I’m already implementing the tests presented in this manuscript to

VIPERS data, and I look forward to applying them using galaxies sampled by the BOSS

survey, and in the near future by the BigBOSS and EUCLID surveys.
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Appendix A

Second order perturbation theory

The determination of the time evolution of the amplitude of an arbitrary matter overden-

sity δ in an arbitrary cosmological background is a problem that can be solved only by in

a perturbative way. The linear solution of this problem was already presented in chapter

1. In this section, using an original formalism, I calculate the second-order correction. Let

me first introduce some definitions and notations. The spatial Fourier transform ~fk of a

vectorial function ~f that depends on position ~x is

~fk = F
[

~f(~x)
]

=
1

(2π)3

∫

~f(~x)ei~k·~xd3~x,

and the inverse Fourier transform is

~f(~x) =

∫

~fke
−i~k·~xd3~k.

I take the Fourier transform of the LHS of equation (1.19)

F

[
∂δ

∂τ

]

=
∂δk

∂τ

F [θ] = θk.

Since the RHS is non linear, it takes more steps to express it in Fourier space. I first

expand the divergence

~∇.(δ~v) = (~∇δ).~v + δ~∇.~v,

and, then , I take the Fourier transform of each term

~∇.~v =

∫

−i~k1.~vk1e
−i~k1.~xd3~k1

and

~∇.δ =

∫

−i~k2.δk2e
−i~k2.~xd3~k2
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so

~∇.(δ~v) = −

∫∫

i
(

~k1 + ~k2

)

.~vk1δk2e
−i(~k1+~k2).~xd3~k1d

3~k2.

Since ~∇.~v = θ, I obtain

~vk1 = i
~k1

k1
2 θk1,

from which I deduce

~∇.(δ~v) =

∫∫ (

~k1 + ~k2

)

.
~k1

k1
2 θk1δk2e

−i(~k1+~k2).~xd3~k1d
3~k2

so that, finally, I obtain

F
[

~∇.(δ~v)
]

=
1

(2π)3

∫∫∫ (

~k1 + ~k2

)

.
~k1

k1
2 θk1δk2e

i[~k−(~k1+~k2)].~xd3~k1d
3~k2d

3~x.

By defining ~k12 = ~k1 + ~k2, I can re-express the previous equation as

F
[

~∇.(δ~v)
]

=

∫∫

~k12.
~k1

k1
2 θk1δk2

(
1

(2π)3

∫

ei(~k−~k12).~xd3~x

)

d3~k1d
3~k2

where one can recognize the Dirac delta.

δD(~k − ~k12) =
1

(2π)3

∫

ei(~k−~k12).~xd3~x,

The Fourier transform of equation (1.19) is therefore

∂δk

∂τ
+ θk = −

∫∫

~k12.
~k1

k1
2 θk1δk2δ

D(~k − ~k12)d
3~k1d

3~k2.

It is convenient to define Θk = − θk

H where H is the Hubble parameter is conformal time

( H∂τ = ∂ ln(a)), and where a is the scale factor of the universe. I obtain the non linear

continuity equation of the matter perturbations

∂δk

∂ ln a
− Θk = −

∫∫

α
(

~k1, ~k2

)

Θk1δk2δ
D(~k − ~k12)d

3~k1d
3~k2, (A.1)

where

α
(

~k1, ~k2

)

= ~k12.
~k1

k1
2 .

Now I take the Fourier transform of equation (1.20). Since

~v(~x) ≡

∫

~vk1e
−i~k1.~xd3~k1,
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it follows that

~v.~∇ =

∫

~vk1 .(−i~k2)e
−i(~k1+~k2).~xd3~k1d

3~k2

from which I deduce that

(

~v.~∇
)

~v = −i

∫∫ (

~vk1 .
~k2

)

~vk2e
−i(~k1+~k2).~xd3~k1d

3~k2,

and finally

~∇.
[(

~v.~∇
)

~v
]

= −i

∫∫

−i
(

~k1 + ~k2

)

.~vk2~vk1 .
~k2e

−i(~k1+~k2).~xd3~k1d
3~k2.

Since
{ ~vk1 = i

~k1

k1
2 θk1

~vk2 = i
~k2

k2
2 θk2

,

where, by definition, ~k12 = ~k1 + ~k2, it follows that

~∇.
[(

~v.~∇
)

~v
]

=

∫∫ ~k12.~k2

k2
2

~k1.~k2

k1
2 θk1θk2e

−i~k12.~xd3~k1d
3~k2.

Finally, the Fourier transform of equation (1.20) is given by

∂θk

∂τ
+ Hθk +

3

2
ΩmH2δk = −

1

(2π)3

∫∫∫

β
(

~k1, ~k2

)

θk1θk2e
i(~k−~k12).~xd3~k1d

3~k2d
3~x,

where

β
(

~k1, ~k2

)

≡
~k12.~k2

k2
2

~k1.~k2

k1
2 .

By performing a first integration in configuration space ~x I obtain

∂θk

∂τ
+ Hθk +

3

2
H2δk = −

∫∫

β
(

~k1, ~k2

)

θk1θk2

(∫
1

(2π)3
ei(~k−~k12).~xd3~x

)

d3~k1d
3~k2,

a result that can be expressed in the following form

1

H2

∂θk

∂τ
+

θk

H
+

3

2
δk = −

∫∫

β
(

~k1, ~k2

) θk1

H

θk2

H
δD
(

~k − ~k12

)

d3~k1d
3~k2.

By deriving with respect to conformal time τ the expression

θk = HΘk,

I obtain
∂θk

∂τ
= −Θk

∂Hk

∂τ
−H

∂Θk

∂τ
.
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and, therefore

∂θk

∂τ
= −Θk

∂Hk

∂τ

H2
−

∂Θk

H∂τ

In order to simplify the previous expression it is necessary to express the term
∂Hk
∂τ

H2 , this can

be done using the FL equations in conformal time, for a generically curved, 2-component

Universe (matter + dark energy with time evolving equation of state). This leads to

∂Hk

∂τ

H2
= −

1

2
{(1 + 3w)ΩX + Ωm} ,

so that I finally get

∂Θk

∂ ln a
+(2−(1+3w)ΩX −Ωm)

Θk

2
−

3

2
Ωmδk =

∫∫

β
(

~k1, ~k2

)

Θk1Θk2δ
D
(

~k − ~k12

)

d3~k1d
3~k2.

(A.2)

By combining equations (A.1) and (A.2) I obtain the following system,

{ ∂δk

∂ ln a − Θk = −
∫∫

α
(

~k1, ~k2

)

Θk1δk2δ
D(~k − ~k12)d

3~k1d
3~k2

∂Θk

∂ ln a + (2 − (1 + 3w)ΩX − Ωm)Θk

2 − 3
2Ωmδk =

∫∫
β
(

~k1, ~k2

)

Θk1Θk2δ
D
(

~k − ~k12

)

d3~k1d
3~k2

,

where non linear terms have been moved to the RHS. It is then convenient to turn the

RHS into a symmetric form. Since ~k1 and ~k2 are integration variables, I can permute them

in equations (A.1) and (A.2). For (A.1) I obtain

{ ∂δk

∂ ln a − Θk = −
∫∫

α
(

~k1, ~k2

)

Θk1δk2δ
D(~k − ~k12)d

3~k1d
3~k2

∂δk

∂ ln a − Θk = −
∫∫

α
(

~k2, ~k1

)

Θk2δk1δ
D(~k − ~k12)d

3~k2d
3~k1

and, by taking the half sum, I obtain

∂δk

∂ ln a
− Θk = −

∫∫ [
α(~k1,~k2)Θk1

δk2
+α(~k2,~k1)Θk2

δk1
2

]

δD(~k − ~k12)d
3~k1d

3~k2. (A.3)

I apply the same trick to equation (A.2)

∂Θk

∂ ln a
+(1+3wΩX+Ωm)

Θk

2
−

3

2
Ωmδk =

∫∫ [
β(~k1,~k2)+β(~k2,~k1)

2

]

Θk1Θk2δ
D
(

~k − ~k12

)

d3~k1d
3~k2,

(A.4)

where I define

βs
12

(

~k1, ~k2

)

=
β
(

~k1, ~k2

)

+ β
(

~k2, ~k1

)

2
,
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which gives, In terms of the wave vectors ~k1, ~k2, ~k12,

βs

(

~k1, ~k2

)

=
1

2

k12
2(~k1.~k2)

k1
2k2

2 .

We finally obtain

{ ∂δk

∂ ln a − Θk = −
∫∫ 1

2

[
α12Θk1

δk2
+α21Θk2

δk1
2

]

δD(~k − ~k12)d
3~k1d

3~k2

∂Θk

∂ ln a + ǫΘk − 3
2Ωmδk =

∫∫
βs

12

(

~k1, ~k2

)

Θk1Θk2δ
D
(

~k − ~k12

)

d3~k1d
3~k2

, (A.5)

where αij ≡ α
(

~ki, ~kj

)

and where ǫ ≡ 2(1 + H′H2) = 2 + (1 + 3w)ΩX + Ωm. Note that

this system can be solved analytically, if the coefficients on the LHS do not depend on

time, which occurs only if Ωm = 1 and ΩX = 0, i.e. in the case of an Einstein-de Sitter

Universe (e.g. Moutarde, 1991; Goroff, 1986; Makino, 1992; Jain & Bertschinger, 1994;

Bernardeau et al., 2002). However it is possible to exploit a different change of variable

to obtain an approximate analytical solution. The variable µ defined as µ = Θ/f , where

f ≡ d ln D/d ln a is the linear growth rate, allows transforming the derivative with respect

to the scale factor into derivatives with respect to the growth factor. Thus

Θ = fµ

and if I take the derivative with respect to ln a

dΘ

d ln a
=

df

d lna
Θ + f

dΘ

d ln a

and replace fd lna = d ln D1 I obtain

dΘ

d ln a
=

df

d lna
Θ + f2 dΘ

d lnD1

It is now necessary to express df
d ln a in a more convenient way. This can be done by using

the first order perturbation equation which applies to the growth factor in conformal time

D
′′

1 + HD
′

1 −
3

2
ΩmH2D1 = 0, (A.6)

and changing variable in order to obtain the corresponding equation for the growth rate.

As D1
′ ≡ dD1/dτ and Hdτ = d ln a it follows that D1

′ = HfD1 and that

D
′′

1 = (H
′

f + f
′

H)D1 + H2f2D1,

By inserting these expressions of D
′

1 and D
′′

1 into eq. (A.6) and by dividing it with respect
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to the Hubble rate in confomal time H I obtain

D1

{
H′

H2
f +

df

d lna
+ f2 + f −

3

2
Ωm

}

= 0.

and, therefore, a differential equation for the growth rate f (since the growing mode is

different from 0 for all times),

df

d ln a
=

3

2
Ωm −

(
H′

H2
+ 1

)

− f2.

Accordingly, the system of equations (A.5) becomes, in terms of the new variable µ,

{ ∂δk

∂ ln D1
− µk = −

∫∫ 1
2

[
α12µk1

δk2
+α21µk2

δk1
2

]

δD(~k − ~k12)d
3~k1d

3~k2

∂µk

∂ ln D1
+
(

3
2

Ωm

f2 − 1
)

µk − 3
2

Ωm

f2 δk =
∫∫

βs
12

(

~k1, ~k2

)

µk1µk2δ
D
(

~k − ~k12

)

d3~k1d
3~k2

,

It is standard to assume that the solutions of this non linear system can be expressed as

a sum where each contribution is sorted by order of magnitude (i.e. X(n) ≫ X(n+1))

δ(~x, t) =
∞∑

n=1

δ(n)(~x, t) (A.7)

θ(~x, t) =
∞∑

n=1

θ(n)(~x, t), (A.8)

which can be expressed in Fourier space. Indeed, let’s suppose that Ωm

f2 ≃ 1, which is a

fairly good approximation, since it has been shown that, for a wide range of cosmologies,

f ≃ Ω0.55
m . So it becomes possible to look for separable (e.g. Bernardeau et al., 2002)

solutions of the form

δk(t) =
∞∑

n=1

Dn(t)δ
(n)
k (A.9)

µk(t) = −Hf
∞∑

n=1

En(t)θ
(n)
k , (A.10)

where the time dependency of each order (n) is encoded in the functions Dn and En

which are, by definition, scale independent. The factorized time dependent part of the

divergence of the velocity field (i.e. −Hf) guarantees that, at linear order, E1 = D1. The

following calculation is made using the formalism introduced by Crocce & Scoccimarro

(2006) Let’s represent the solutions as a 2 dimensional vector, which leads to the compact

representation

−→
Ψ(~k1) =

[

δk1

µk1

]
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where Ψi

(

~k1

)

is the ith component of vector
−→
Ψ(~k1), that is

{
Ψ1

(

~k1

)

= δk1

Ψ2

(

~k1

)

= µk1

Let’s start by transforming the LHS using a matrix representation

[
∂δk

∂ ln D1
− µk

∂µk

∂ lnD1
+ 1

2Θk − 3
2δk

]

=
∂

∂ ln a

−→
Ψ(~k) + Ω ×

−→
Ψ(~k),

where

Ω =

[

0 −1
−3
2

1
2

]

.

An element of the Ω matrix is identified by Ωj
i , which allows us to write

∂

∂ ln a

−→
Ψ(~k) + Ω ×

−→
Ψ(~k) ⇔

∂

∂ ln a
Ψi(~k) + Ωj

iΨj(~k),

where

Ωj
iΨj =

∑

j

Ωi,jΨj.

The RHS is somewhat more complicate. It necessary to define two matrix γ1 and γ2 as

γ1 =






0
α(~k2,~k1)

2 δD
(

~k−~k12

)

α(~k1,~k2)
2 δD

(

~k−~k12

)

0




 ,

and

γ2 =




0 0

0 βs

(

~k1, ~k2

)

δD
(

~k−~k12

)



 .

Therefore, the full non linear system can be written in a quite simple way

∂

∂ ln a
Ψi(~k) + Ωj

iΨj(~k) =

∫∫

γjl
i Ψj(~k1)Ψl(~k2)d

3~k1d
3~k2 (A.11)

We now look for solutions of the type Ψi(~k,τ),

Ψi(~k,τ) = Ψ
(1)
i (~k) + Ψ

(2)
i (~k) + .... + Ψ

(n)
i (~k) =

∞∑

n=1

Ψ
(n)
i (~k)

Let’s see what happen when I insert this perturbative solution in (A.11). Since

Ψj(~k1) =
∞∑

n=1

Ψ
(n)
j (~k1),
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and

Ψl(~k2) =
∞∑

m=1

Ψ
(m)
l (~k2).

their product is

Ψj(~k1)Ψl(~k2) =
∞∑

n=1

[

Ψ
(n)
j (~k1)

∞∑

m=1

(

amΨ
(m)
l (~k2)

)
]

,

which can be written as a double sum

Ψj(~k1)Ψl(~k2) =
∞∑

n=1

∞∑

m=1

Ψ
(n)
j (~k1)Ψ

(m)
l (~k2).

Then it is convenient to shift indexes as λ = n + m

Ψj(~k1)Ψl(~k2) =
∞∑

λ=2

λ−1∑

m=1

Ψ
(λ−m)
j (~k1)Ψ

(m)
l (~k2),

and define Ψ
(0)
j (~k1) = 0. By setting λ = n I obtain

Ψj(~k1)Ψl(~k2) =
∞∑

n=1

n−1∑

m=1

Ψ
(n−m)
j (~k1)Ψ

(m)
l (~k2).

Now it is necessary to express the derivative ∂
∂ lnaΨi(~k). To this purpose it is convenient

to define the vector Φ(D1) such that

Φ(n) ≡

[

Dn

En

]

.

It follows that

Ψi(~k,τ) =
∞∑

n=1

Φ
(n)
i Ψ

(n)
i (~k)

∂
∂D1

Ψi(~k,τ) =
∞∑

n=1

∂

∂D1
Φ

(n)
i Ψ

(n)
i (~k)

D1
∂

∂D1
Ψi(~k,τ) =

∞∑

n=1

D1
∂

∂D1
Φ

(n)
i Ψ

(n)
i (~k)

∂
∂ lnD1

Ψi(~k,τ) =
∞∑

n=1

IjiΦ
(n)
j Ψ

(n)
j (~k)

where

I =

[

fn 0

0 gn

]

and where fn = d lnDn

d lnD1
and gn = d ln En

d ln D1
. By replacing these terms in equation (A.11) I

obtain
∞∑

n=1

(

Iji + Ωj
i

)

Ψ
(n)
j (~k) =

∞∑

n=1

∫∫

γjl
i

n−1∑

m=1

Ψ
(n−m)
j (~k1)Ψ

(m)
l (~k2)d

3~k1d
3~k2,



147

which can be simplified as

A−1j
iΨ

(n)
j (~k) =

n−1∑

m=1

∫∫

γjl
i Ψ

(n−m)
j (~k1)Ψ

(m)
l (~k2)d

3~k1d
3~k2, (A.12)

where

A−1 = I + Ω =

[

fn −1

−3
2 gn + 1

2

]

.

To solve this system of differential equations we need to invert A−1. As a consequence

its determinant must be non zero. On the other hand it is possible to show that the

only possible solution is obtained for Dn = En = Dn
1 , therefore gn = fn = n. Thus the

determinant is expressed as

det(A−1) = fn(gn + 1
2 ) − 3

2

= n2 + n1
2 − 3

2

= 1
2

(
2n2 + n − 3

)

= 1
2(n − 1)(2n + 3).

As a result, since n ≥ 2 the conditions n 6= 0 and n 6= −3/2 are satisfied and the matrix

A−1 can be inverted. It leads to

A =
1

(n − 1)(2n + 3)

[

2n + 1 2

3 2

]

,

thus the complete hierarchy of equations can be solved using a matrix representation when

f ≃ Ω0.5
m (which corresponds nearly to the Einstein-de Sitter solution). In other terms

by substituting D1 by a one recover the general solution for the universe containing only

matter and zero curvature (Ωm = 1). The solution up to a given oder must be derived in

a recursive way, by using equation (A.12). For instance, the second order solution can be

calculated by setting n = 2, which leads to

Ψ
(2)
i (~k) = Ak

i

∫∫

γjl
k Ψ

(1)
j (~k1)Ψ

(1)
l (~k2)d

3~k1d
3~k2,

where

A =
1

7

[

5 2

3 4

]

.

The solution can therefore be represented as




δ
(2)
k

θ
(2)
k



 = A ×





∫∫
γjl
1 Ψ

(1)
j (~k1)Ψ

(1)
l (~k2)d3~k1d

3~k2
∫∫

γjl
2 Ψ

(1)
j (~k1)Ψ

(1)
l (~k2)d3~k1d

3~k2.



 ,
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If I consider only matter perturbations I obtain

7δ
(2)
k = 5

∫∫

γjl
1 Ψ

(1)
j (~k1)Ψ

(1)
l (~k2)d

3~k1d
3~k2 + 2

∫∫

γjl
2 Ψ

(1)
j (~k1)Ψ

(1)
l (~k2)d

3~k1d
3~k2.

By substituting the corresponding matrix γ1 and γ2 we get

δ
(2)
k =

1

7

∫∫ [
5

2
α(~k1,~k2)θ

(1)
k1

δ
(1)
k2

+
5

2
α(~k2,~k1)θ

(1)
k2

δ
(1)
k1

+ 2βs(~k1,~k2)θ
(1)
k1

θ
(1)
k2

]

δD
(

~k − ~k12

)

d3~k1d
3~k2.

Since, at linear order, θk = δk I obtain

δ
(2)
k =

1

7

∫∫

F2

(

~k1, ~k2

)

δ
(1)
k1

δ
(1)
k2

δD
(

~k − ~k12

)

d3~k1d
3~k2,

where

F2

(

~k1, ~k2

)

=
5

2
α(~k1,~k2) +

5

2
α(~k2,~k1) + 2βs(~k1,~k2),

is called the second order perturbation theory kernel. This kernel , that can be expressed

in terms of the wave vectors ~k1 et ~k2 as

F2

(

~k1, ~k2

)

=
5

7
+

1

2

~k1.~k2

k1k2

(
k2

k1
+

k1

k2

)

+
2

7

(
~k1.~k2

k1k2

)2

.

displays how non-linear effect are generated by the mixing of wave vectors, a phenomenon

usually referred to as mode coupling.

Now I briefly outline how one can address the the problem of finding the ‘true’ non-

linear solution, that is the solutions of the system (A.5) when we take into account the time

dependency of the coefficients ǫ and Ωm. Following the same matrix formalism previously

introduced it follows that

dDn

d lnD1
δ
(n)
k − Enθ

(n)
k =

∫
d3~k1d

3~k2∆n(~k1,~k2)δD(~k−~k12) (A.13)

dEn

d lnD1
θ
(n)
k +[

3

2

Ωm

f2
−1]Enθ

(n)
k +

3

2

Ωm

f2
Dnδ

(n)
k =

∫
d3~k1d

3~k2Σn(~k1,~k2)δD(~k−~k12), (A.14)

where

∆n(~k1, ~k2) ≡
1

2

n−1∑

m=1

{

α12En−mDmθ
(n−m)
k1

δ
(m)
k2

+ α21EmDn−mθ
(n−m)
k2

δ
(m)
k1

}

,

and

Σn(~k1, ~k2) ≡ βs
12

n−1∑

m=1

En−mEmθ
(n−m)
k1

θ
(m)
k2

.

This system of equation don’t have any solution, in this case, the guess on the space and

time separability of the solutions is no longer useful.
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Specifically, I show the calculation for the second order of matter fluctuations. There-

fore we are left with the system of equations

dδ
(2)
k

d lnD1
− θ

(2)
k = D2

1

∫∫

d3~k1d
3~k2

δ
(1)
k1

δ
(1)
k2

2
{α12 + α21} δD(~k − ~k12) (A.15)

dθ
(2)
k

d ln D1
+ [

3

2

Ωm

f2
− 1]θ

(2)
k +

3

2

Ωm

f2
δ
(2)
k = D2

1

∫∫

d3~k1d
3~k2δ

(1)
k1

δ
(1)
k2

βs
12δ

D(~k − ~k12), (A.16)

where δ
(2)
k and θ

(2)
k depend on both k-modes and D1. This system can be written in a

concise way as

dδ
(2)
k

d ln D1
− θ

(2)
k = D2

1Ak (A.17)

dθ
(2)
k

d lnD1
+ [ǫ − 1]θ

(2)
k + ǫδ

(2)
k = D2

1Bk, (A.18)

where ǫ ≡ 3
2

Ωm

f2 ,

Ak ≡

∫∫

d3~k1d
3~k2

δ
(1)
k1

δ
(1)
k2

2
{α12 + α21} δD(~k − ~k12),

and

Bk ≡

∫∫

d3~k1d
3~k2δ

(1)
k1

δ
(1)
k2

βs
12δ

D(~k − ~k12).

By deriving eq. (A.17) I obtain
d2δ

(2)
k

d ln2 D1
−

dθ
(2)
k

d ln D1
= 2D2

1Ak from which it is possible to

express the second order differential equation of matter fluctuations as

d2δ
(2)
k

d ln2 D1
+ [ǫ − 1]

dδ
(2)
k

d ln D1
− ǫδ

(2)
k = D2

1 {Bk + [1 + ǫ]Ak} .

This is a non-homogeneous, linear, second order differential equation with time varying

coefficients. Note that, since the homogeneous equation is, by construction, the equation

ruling the evolution of linear fluctuations, we already know that its general solution is

proportional to the growth factor D1. As a consequence, I need only to find a particular

solution. Since the RHS is decomposed in two terms proportional to Ak and Bk respec-

tively, I look for particular solution characterized by the same decomposition. Moreover,

since the growth factor D2
1 appears as a factor in the LHS, and since I derive with respect

to the logarithm of D1, it is also possible to factorize the solution with D2
1 , thus I set

δ
(2)
k = D2

1 {gBBk + gAAk} ,
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and by deriving it two times with respect to ln D1 and by replacing the result in the above

equation I obtain two differential equations, one for gA and another for gB

g
′′

B + (ǫ + 3)g
′

B + (ǫ + 2)gB = 1 (A.19)

g
′′

A + (ǫ + 3)g
′

A + (ǫ + 2)gA = 1 + ǫ, (A.20)

where the prime indicates the drivative with respect to the logarithm of the linear growth

factor D1. One can remark that these two equations are not independent because by

substituting gA = 1 − gB in eq. A.20 one recovers equation eq. A.20. As a consequence,

the general second order solution that we are looking for, can be written as

δ
(2)
k = D2

1 {gBk + (1 − g)Ak} ,

where g ≡ gB . After some algebra this solution can be expressed as

δ
(2)
k =

∫∫

F2

(

~k1, ~k2

)

δ
(1)
k1

δ
(1)
k2

δD
(

~k − ~k12

)

d3~k1d
3~k2, (A.21)

where

F2

(

~k1, ~k2

)

= (1 − g) +
1

2

~k1.~k2

k1k2

(
k2

k1
+

k1

k2

)

+ g

(
~k1.~k2

k1k2

)2

, (A.22)

a term that is usually called the second order perturbation theory kernel of the matter

field.

It is interesting to compare the expression that I obtained with results from other

approaches in the literature. In (Catelan et al., 1995) the second order PT kernel depends

on a function B such as

F2

(

~k1, ~k2

)

= (1 − B) +
1

2

~k1.~k2

k1k2

(
k2

k1
+

k1

k2

)

+ B

(
~k1.~k2

k1k2

)2

.

It is obvious that the function g that I introduced can be identified with the function B.

Furthermore, Bouchet (1992) parameterized the second order PT kernel in terms of the

the κ function

F2

(

~k1, ~k2

)

=

(
1

2
+ κ

)

+
1

2

~k1.~k2

k1k2

(
k2

k1
+

k1

k2

)

+

(
1

2
− κ

)(~k1.~k2

k1k2

)2

.

As a consequence, we see that κ + g = 1/2. Finally, by comparing my result (cfr. eq.
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(1.39)) with those of Kamionkowski & Buchalter (1999)

F2

(

~k1, ~k2

)

=
1

2






(1 + µ) +

~k1.~k2

k1k2

(
k2

k1
+

k1

k2

)

+ (1 − µ)

(
~k1.~k2

k1k2

)2





,

I conclude that µ + 2g = 1. These multiple definition of the second order growth factor

obtained following different analytical approaches lead exactly to the same expression for

the second order perturbation theory kernel F2. This convergence makes the use of the

perturbation theory kernel extremely robust and reliable.
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Appendix B

2-point moments with respect to 2-point cumulants

In this Appendix I list the relations between two-point moments of the density contrast

µnm ≡ 〈δn(~x1)δ
m(~x2)〉 as a function of the one- and two-point cumulant moments κn ≡

〈δn〉c and κnm ≡ 〈δn(~x1)δ
m(~x2)〉c:

µ1,1 = κ1,1

µ12 = κ12

µ13 = κ13 + 3κ11κ2

µ22 = κ22 + 2κ11
2 + κ2

2

µ14 = κ14 + 6κ12κ2 + 4κ11κ3

µ23 = 3κ12κ2 + 6κ12κ11 + κ3κ2 + κ23

µ15 = 15κ11κ2
2 + κ15 + 5κ11κ4 + 10κ12κ3 + 10κ13κ2

µ24 = 8κ13κ11 + 6κ12
2 + κ24 + 3κ2

3 + 4κ12κ3 + 6κ22κ2 + 12κ11
2κ2 + κ4κ2

µ33 = 9κ11κ2
2 + 9κ12

2 + 6κ11
3 + κ33 + 6κ13κ2 + κ3

2 + 9κ22κ11

µ16 = 6κ11κ5 + κ16 + 60κ11κ3κ2 + 20κ13κ3 + 15κ14κ2 + 45κ12κ2
2 + 15κ12κ4

µ25 = 20κ13κ12 + 20κ3κ11
2 + 60κ12κ11κ2 + κ25 + 15κ12κ2

2 + 10κ23κ2 + κ5κ2

+10κ3κ2
2 + 5κ12κ4 + 10κ14κ11 + 10κ22κ3

µ34 = 12κ13κ12 + 36κ12κ11κ2 + κ34 + 12κ11κ3κ2 + 4κ13κ3 + 3κ14κ2 + 18κ12κ2
2

+6κ23κ2 + 3κ3κ2
2 + 18κ12κ22 + 12κ23κ11 + 36κ11

2κ12 + κ3κ4

These relations are valid for any discrete or continuous field, as long as the field is defined

via its density contrast δ(~x) ≡ λ(~x)
λ̄

− 1.
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Appendix C

Reduced correlators and cumulants of the smoothed matter

field

Cumulants SN,R and correlators Cnm,R of the density contrast of the matter field smoothed

with a spherical Top-Hat window function have already been calculated in the weakly non

linear regime (Bernardeau, 1994a,b, 1996). Here I briefly reproduce the calculation of the

reduced correlor C12,R.

To this purpose, it is necessary to express the third order 2-point cumulant moment

of the smoothed density contrast of the matter field 〈δ(~x1)δ
2(~x2)〉. In Chapter 1, I have

shown that in the weakly non-linear regime the matter density contrast can be expressed

as

δ(~k, τ) = D(τ)δ(1)(~k) + D2(τ)δ(2)(~k), (C.1)

where

δ(2)(~k) =

∫∫

F2 (~q1, ~q2) δ(1)(~q1)δ
(1)(~q2)δ

D
(

~k − ~q1 − ~q2

)

d3~q1d
3~q2,

and where

F2 (~q1, ~q2) =
5

7
+

1

2

~q1 · ~q2

q1q2

(
q2

q1
+

q1

q2

)

+
2

7

(
~q1 · ~q2

q1q2

)2

.

Multiplying equation (C.1) by the Fourier transform of the spherical Top-Hat window

function Ŵ (kR) and taking its inverse Fourier transform I get

δR(~x, τ) = D(τ)δ
(1)
R (~x)

︸ ︷︷ ︸

≡δ1(~x)

+ D2(t)δ
(2)
R (~x)

︸ ︷︷ ︸

≡δ2(~x)

, (C.2)

where

δ
(1)
R (~x) =

∫

δ(1)(~k)Ŵ (kR)ei~k·~xd3~k, (C.3)

and where
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δ
(2)
R (~x) =

∫∫

F2 (~q1, ~q2) δ(1)(~q1)δ
(1)(~q2)Ŵ [|~q1 + ~q2|R]ei(~q1+~q2)·~xd3~q1d

3~q2. (C.4)

The smoothed density contrast (eq. C.2) can be taken at two positions (~x1) and (~x2),

thus

δR(~x1) = δ1(~x1) + δ2(~x1),

and

δ2
R(~x2) = δ2

1(~x2) + δ2
2(~x2) + 2δ1(~x2)δ2(~x2),

where for simplicity I drop the explicit dependence on time. By neglecting terms of order

strictly greater than two, I can express the product

δR(~x1)δ
2
R(~x2) ≃ δ1(~x1)δ

2
1(~x2) + δ2(~x1)δ

2
1(~x2) + 2δ1(~x1)δ1(~x2)δ2(~x2).

And, by taking its ensemble average, I get

〈δR(~x1)δ
2
R(~x2)〉 ≃ 〈δ1(~x1)δ

2
1(~x2)〉 + 2〈δ1(~x1)δ1(~x2)δ2(~x2)〉 + 〈δ2(~x1)δ

2
1(~x2)〉,

Since initial conditions of the linear order are assumed to be drawn from a multivariate

Gaussian distribution it results that 〈δ1(~x1)δ
2
1(~x2)〉 = 0, thus the third order 2-point

cumulant can be expressed at the leading order as a function of two contributions

〈δR(~x1)δ
2
R(~x2)〉 ≃ 2〈δ1(~x1)δ1(~x2)δ2(~x2)〉

︸ ︷︷ ︸

I

+ 〈δ2(~x1)δ
2
1(~x2)〉

︸ ︷︷ ︸

J

. (C.5)

Given the expressions of the first and the second order terms (eq. C.3 and C.4) I can

express I as

I = 2D4(t)

∫

F2(~q1, ~q2)Ŵ (k1R)Ŵ (k2R)Ŵ [q12R]〈δ(1)(~q1)δ
(1)(~q2)δ

(1)(~k1)δ
(1)(~k2)〉

×ei(~k1·~x1+~k2·~x2+~q12·~x2)d3~k1d
3~k2d

3~q1d
3~q2,

where ~q12 = ~q1 + ~q2. Since the 4-point moments (in the above expression) involves only

the initial perturbation field (which is Gaussian), the Wick theorem (Bernardeau, 2008)

applies and the 4-point moments can be expressed as a sum of products of the 2-point

moments

〈δ(1)(~q1)δ
(1)(~q2)δ

(1)(~k1)δ
(1)(~k2)〉 = 〈δ(1)(~q1)δ

(1)(~q2)〉〈δ
(1)(~k1)δ

(1)(~k2)〉+

〈δ(1)(~q1)δ
(1)(~k1)〉〈δ

(1)(~q2)δ
(1)(~k2)〉+

〈δ(1)(~q1)δ
(1)(~k2)〉〈δ

(1)(~q2)δ
(1)(~k1)〉.
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It results that I = I0 + I1 + I2 where

I0 = 2D4(t)

∫

F2(~q1, ~q2)Ŵ (k1R)Ŵ (k2R)Ŵ [q12R]δD(~q1 + ~q2)P (~q1)δD(~k1 + ~k2)P (~k1)

×ei(~k1·~x1+~k2·~x2+~q12·~x2)d3~k1d
3~k2d

3~q1d
3~q2,

I1 = 2D4(t)

∫

F2(~q1, ~q2)Ŵ (k1R)Ŵ (k2R)Ŵ [q12R]δD(~q1 + ~k1)P (~q1)δD(~q2 + ~k2)P (~q2)

×ei(~k1·~x1+~k2·~x2+~q12·~x2)d3~k1d
3~k2d

3~q1d
3~q2,

and

I2 = 2D4(t)

∫

F2(~q1, ~q2)Ŵ (k1R)Ŵ (k2R)Ŵ [q12R]δD(~q1 + ~k1)P (~q1)δD(~q2 + ~k2)P (~q2)

×ei(~k1·~x1+~k2·~x2+~q12·~x2)d3~k1d
3~k2d

3~q1d
3~q2,

where I used 〈δ(1)(~k1)δ
(1)(~k2)〉 = δD(~k1 + ~k2)P (~k1) and P is the initial power spectrum.

One can remark that by exchanging ~q1 and ~q2 in I2 we recover I1 thus I = I0 + I12 where

I12 = 4D4(t)

∫

F2(~q1, ~q2)Ŵ (k1R)Ŵ (k2R)Ŵ [q12R]δD(~q1 + ~k1)P (~q1)δD(~q2 + ~k2)P (~q2)

×ei(~k1·~x1+~k2·~x2+~q12·~x2)d3~k1d
3~k2d

3~q1d
3~q2.

Moreover, in I0 the Dirac distribution imposes that ~q1 = −~q2. Since the second order

perturbation theory kernel can be expressed as

F2 (~q1, ~q2) =
1

2

(

1 +
~q1 · ~q2

q2
1

)

+
1

2

(

1 +
~q1 · ~q2

q2
2

)

−
2

7

[

1 −

(
~q1 · ~q2

q1q2

)2
]

, (C.6)

it is obvious that F2(~q1,−~q1) = 0, as a result I0 = 0 thus

I = 4D4(t)

∫

F2(~q1, ~q2)Ŵ (q1R)Ŵ (q2R)Ŵ [q12R]P (q1)P (q2)e
i~q1·~rd3~q1d

3~q2,

where I used the fact that
∫

δD(~q1 + ~k1)Ŵ (k1R)ei~k1·~x1d3~k1 = Ŵ (q1R)e−i~q1·~x1. According

to (C.6) the expression I can be split into three contributions I = I ′ + I ′′ + I ′′′ where

I ′ = 2D4(t)

∫

d3~q1P (q1)Ŵ (q1R)ei~q1·~r
∫

d3~q2P (q2)Ŵ (q2R)Ŵ [q12R]

(

1 +
~q1 · ~q2

q2
1

)

,

I ′′ = 2D4(t)

∫

d3~q1P (q1)Ŵ (q1R)ei~q1·~r
∫

d3~q2P (q2)Ŵ (q2R)Ŵ [q12R]

(

1 +
~q1 · ~q2

q2
2

)

,

and

I ′′′ = −
8

7
D4(t)

∫

d3~q1P (q1)Ŵ (q1R)ei~q1·~r
∫

d3~q2P (q2)Ŵ (q2R)Ŵ [q12R]

[

1 −

(
~q1 · ~q2

q1q2

)2
]

.

In spherical coordinates (when q1 is chosen as the azimuthal axis) the vector ~q2 can be split
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into its radial (q2) and angular (θ2, φ2) parts and the properties of the spherical Top-Hat

window (Bernardeau, 1994a) can be expressed as

∫

d2Ω2Ŵ [q12R]

(

1 +
~q1 · ~q2

q2
1

)

= 4πŴ (q1R)j0(q2R), (C.7)

and

∫

d2Ω2Ŵ [q12R]

[

1 −

(
~q1 · ~q2

q1q2

)2
]

= 4π
2

3
Ŵ (q1R)Ŵ (q2R), (C.8)

where d2Ω = sin(θ2)dθ2dφ2 and j0 is the spherical Bessel function of order zero (j0(x) ≡

sin(x)/x). Using the identity (C.7) one can express I ′ and I ′′ in a simpler form

I ′ = 2D2(t)

∫

∆q1Ŵ
2(q1R)j0(q1r)d ln q1

︸ ︷︷ ︸

=ξR(r)

×D2(t)

∫

∆q2Ŵ (q2R)j0(q2R)d ln q2,

and

I ′′ = 2D2(t)

∫

∆q1Ŵ (q1R)j0(q1R)j0(q1r)d ln q1 × D2(t)

∫

∆q2Ŵ
2(q2R)d ln q2

︸ ︷︷ ︸

=σ2
R

,

where I have integrated over the angular part of the vector ~q1 and where ∆q ≡ 4πq3P (q)

is the dimensionless power spectrum. In order to simplify both expressions I ′ and I ′′ it is

convenient to use the logarithmic derivative of the 2-point correlation ξR(r)

βR(r) ≡
d ln ξR(r)

d lnR
. (C.9)

Using the definition (C.9) and the fact that dŴ (x)
d ln x = 3[j0(x) − Ŵ (x))] one can show that

D2(t)

∫

∆q1Ŵ (q1R)j0(q1R)j0(q1r)d ln q1 = ξR(r)

[
βR(r)

6
+ 1

]

.

Thus I ′ and I ′′ can be expressed respectively as

I ′ = ξR(r)σ2
R

[

2 +
γR

3

]

, (C.10)

and

I ′′ = ξR(r)σ2
R

[

2 +
βR(r)

3

]

, (C.11)

where γR ≡ d lnσ2
R/d ln R = βR(0). Then using the identity (C.8) one can express

I ′′′ = −
16

21
ξR(r)σ2

R, (C.12)
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and by combining equations (C.10), (C.11) and (C.12) we obtain

I = ξR(r)σ2
R

(
68

21
+

γR

3
+

βR(r)

3

)

.

It is not possible, however, to express the term J in equation (C.5) according to the

procedure outlined above. This is due to the presence of a factor ei~q2·~r in the integral

representation of J that makes impossible the use of the identities (C.7) and (C.8) when

we integrate over ~q2. It is possible to integrate numerically the term J (see Bernardeau,

1996) and to show that in the large separation limit (r ≥ 3R) it can be neglected. On the

other hand, by assuming that in the large separation limit Ŵ (q12R) ≃ Ŵ (q1R)Ŵ (q2R)

(cf. Bernardeau, 1996) it is possible to express

J ≃ 2

{

1 −
β′

R(r)

3
ΥR(r) −

4

21
[2 − ΥR(r)] ΥR(r)

}

ξR(r)2,

where β′
R(r) = d ln ξR(r)/d ln r and Υ = ξ̄R(r)/ξR(r), and ξ̄R(r) = 3

∫ r
0 r′2ξR(r′)dr′/r3.

The term J is proportional to the square of the 2-point correlation function whereas the

term I is proportional to the variance times the 2-point correlation function. Since in

the large separation limit we have that ξR(r) ≪ σ2
R, it follows that the term J can be

neglected. Thus we finally obtain that

〈δR(~x)δ2
R(~x + ~r)〉 =

(
68

21
+

γR

3
+

βR(r)

3

)

ξR(r)σ2
R. (C.13)

If the distance distance r is least greater or equal to 3R, the third order 2-point cumulant

is proportional to the product of the variance and of the 2-point correlation function. This

coefficient of proportionality is the reduced correlator of order C12,R. However when taking

the limiting case R → 0 (i.e. no smoothing is applied to the field) the expression of J is

exact and the third order reduced correlator is expressed as

C12 =
68

21
+ 2

{

1 −
β′(r)

3
Υ(r) −

4

21
[2 − Υ(r)]Υ(r)

}

η(r),

where η(r) ≡ ξ(r)/σ2. In practice, for a realistic power spectrum, and when the matter

overdensity is not smoothed the clustering ratio η(r) turns out to be zero, which leads to

C12 = 68/21.
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Appendix D

Moment generating function

Here I show how to construct the moment generating function. Let’s consider an arbitrary

function M(t) that is continuous and differentiable, let’s expand it in Taylor serie

M(t) =
∞∑

n=0

1

n!

dnM(t)

dtn

∣
∣
∣
∣
t=0

tn,

and let’s define
dnM(t)

dtn

∣
∣
∣
∣
t=0

≡ 〈Nn〉.

As a result,

M(t) =
∞∑

n=0

1

n!
〈Nn〉tn,

however

〈Nn〉 =
∞∑

N=0

NnPN ,

which leads to

M(t) =
∞∑

n=0

1

n!

∞∑

N=0

NnPN tn.

It follows that

M(t) =
∞∑

N=0

PN

∞∑

n=0

1

n!
(Nt)n,

where we can idendity the Taylor expansion of the exponential

M(t) =
∞∑

N=0

PNeNt.

Which can be finally expressed as

M(t) = 〈eNt〉.
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Appendix E

Generating function of factorial moments

Here I show how to construct the factorial generating function. Let’s consider an arbitrary

function M(t) that is continuous and differentiable. Let’s expand it in Taylor serie

F (t) =
∞∑

n=0

1

n!

dnF (t)

dtn

∣
∣
∣
∣
t=0

tn

where, by definition,
dnF (t)

dtn

∣
∣
∣
∣
t=0

≡ 〈(N)nf 〉.

It follows

F (t) =
〈

(1 + t)N
〉

,

and, as a result, I get

F (t) =
∞∑

n=0

tn

n!
〈(N)nf 〉.

However,

〈(N)nf 〉 = 〈N(N − 1)(N − 2)...(N − n + 1)〉 =

〈
n−1∏

k=0

(N − k)

〉

,

which can be written as

〈(N)nf 〉 =
∞∑

N=0

PN

n−1∏

k=0

(N − k).

By replacing it into the Taylor expansion, one obtains

F (t) =
∞∑

n=0

tn

n!

∞∑

N=0

PN

n−1∏

k=0

(N − k),

and thus

F (t) =
∞∑

N=0

PN

∞∑

n=0

tn

n!

n−1∏

k=0

(N − k).
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where we identify the Taylor expansion of (1 + t)N . As a result

F (t) =
∞∑

N=0

PN (1 + t)N =
〈

(1 + t)N
〉

.



Appendix F

Higher order galaxy 2-point cumulant moments

In this appendix I present the 2−point cumulant moments of order (n,m) (up to order

7) of the galaxy density field as a function of the analogous statistics of the mass density

field.
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