Thèse soutenue

Modèles fonctionnels d’hydrogénases [NiFe]

FR
Auteur / Autrice : Cyril Pieri
Direction : Marius RéglierRenaud Hardre
Type : Thèse de doctorat
Discipline(s) : Chimie
Date : Soutenance le 09/11/2012
Etablissement(s) : Aix-Marseille
Ecole(s) doctorale(s) : Ecole èdoctorale Sciences Chimiques (Marseille ; 1996-....)
Jury : Examinateurs / Examinatrices : Vincent Artero
Rapporteurs / Rapporteuses : Isabelle Artaud, Philippe Schollhammer

Mots clés

FR  |  
EN

Résumé

FR  |  
EN

Les sources d'approvisionnement en énergie proviennent essentiellement des matières fossiles, qui se raréfient et dont la combustion relargue dans l'atmosphère des polluants et gaz à effet de serre.Un vecteur d'énergie apparaît comme l'avenir pour subvenir aux besoins énergétiques de la planète : l'hydrogène ; cependant, son coût de production reste très élevé.Dans la nature, des enzymes, les hydrogénases, sont capables de produire et d'oxyder l'hydrogène de manière très efficace. Les scientifiques se sont alors inspirés de ces enzymes afin de concevoir des complexes qui seraient des catalyseurs bien plus robustes pour produire de l'hydrogène.Au cours de cette thèse, nous avons pris comme source d'inspiration les hydrogénases [NiFe], dont le site actif est composé d'un coeur bimétallique Ni-Fe coordiné par quatres ligands thiolates.Nous avons synthétisé divers ligands en vue d'obtenir des complexes polymétalliques de Ni, Fe ou Ru, rassemblant ce qui semble être quelques unes des propriétés clés de l'activité des hydrogénases [NiFe] : ligands thiolate sur le nickel, dont deux pontants avec le second métal, géométrie tétraédrique du nickel. Pour cela, de nouvelles familles de ligands polythiolates ont été conçues et préparées.Les complexes ainsi préparés ont été caractérisés et leur activité évaluée par différentes techniques, dont la voltammétrie cyclique et l'électrolyse couplé à une GC, qui nous ont permis d'évaluer l'activité de nos catalyseurs (TON, TOF, surtension). Un des catalyseurs actifs a été utilisé comme support pour des simulations en DFT qui nous ont aidés à mieux comprendre le mécanisme catalytique de production d'hydrogène.