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Spécialité : Physique des Plasmas

Transport turbulent et néoclassique
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Abstract

The goal of magnetic confinement devices such as tokamaks is to produce energy from
nuclear fusion reactions in plasmas at low densities and high temperatures. Experimen-
tally, toroidal flows have been found to significantly improve the energy confinement, and
therefore the performance of the machine. As extrinsic momentum sources will be lim-
ited in future fusion devices such as ITER, an understanding of the physics of toroidal
momentum transport and the generation of intrinsic toroidal rotation in tokamaks would
be an important step in order to predict the rotation profile in experiments. Among the
mechanisms expected to contribute to the generation of toroidal rotation is the transport
of momentum by electrostatic turbulence, which governs heat transport in tokamaks. Due
to the low collisionality of the plasma, kinetic modeling is mandatory for the study of toka-
mak turbulence. In principle, this implies the modeling of a six-dimensional distribution
function representing the density of particles in position and velocity phase-space, which
can be reduced to five dimensions when considering only frequencies below the particle cy-
clotron frequency. This approximation, relevant for the study of turbulence in tokamaks,
leads to the so-called gyrokinetic model and brings the computational cost of the model
within the presently available numerical resources. In this work, we study the transport
of toroidal momentum in tokamaks in the framework of the gyrokinetic model. First,
we show that this reduced model is indeed capable of accurately modeling momentum
transport by deriving a local conservation equation of toroidal momentum, and verifying
it numerically with the gyrokinetic code GYSELA. Secondly, we show how electrostatic
turbulence can break the axisymmetry and generate toroidal rotation, while a strong link
between turbulent heat and momentum transport is identified, as both exhibit the same
large-scale avalanche-like events. The dynamics of turbulent transport are then analyzed
and, although the conventional gyro-Bohm scaling is recovered on average, local processes
are found to be clearly non-diffusive. The impact of scrape-off layer flows on core toroidal
rotation is also analyzed by modifying the boundary conditions in GYSELA. Finally, the
equilibrium magnetic field in tokamaks, which is not rigorously axisymmetric, provides
another means of breaking the toroidal symmetry, through purely collisional processes.
This effect is found to contribute significantly to toroidal momentum transport and can
compete with the turbulence-driven toroidal rotation in tokamaks.
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Résumé

L’objectif de la fusion par confinement magnétique, et notamment du tokamak, est de
produire de l’énergie à partir des réactions de fusion nucléaire, dans un plasma à faible
densité et haute température. Expérimentalement, une amélioration de la performance
des tokamaks a été observée en présence de rotation toröıdale. Or, les sources extérieurs
de quantité de mouvement seront très limitées dans les futurs tokamaks, et notamment
ITER. Une compréhension de la physique de la génération intrinsèque de rotation toröıdale
permettrait donc de prédire les profils de rotation dans les expériences futures. Parmi les
mécanismes envisagés, on s’intéresse ici à la génération de rotation par la turbulence,
qui domine le transport de la chaleur dans les tokamaks. Les plasmas de fusion étant
faiblement collisionnels, la modélisation de cette turbulence suppose un modèle cinétique
décrivant la fonction de distribution des particules dans l’espace des phases à six dimen-
sions (position et vitesse). Cependant, ce modèle peut être réduit à cinq dimensions
pour des fréquences inférieures à la fréquence cyclotronique des particules. Le modèle
gyrocinétique qui découle de cette approximation est alors accessible avec les ressources
numériques actuelles. Les travaux présentés portent sur l’étude du transport de quan-
tité de mouvement toröıdale dans les plasmas de tokamak, dans le cadre du modèle gy-
rocinétique. Dans un premier temps, nous montrons que ce modèle réduit permet une
description précise du transport de quantité de mouvement en dérivant une équation
locale de conservation. Cette équation est vérifiée numériquement à l’aide du code gy-
rocinétique GYSELA. Ensuite, nous montrons comment la turbulence électrostatique peut
briser l’axisymétrie du système, générant ainsi de la rotation toröıdale. Un lien fort entre
transport de chaleur et transport de quantité de mouvement est mis en évidence, les deux
présentant des avalanches à grande échelle. La dynamique du transport turbulent est
analysée en détail et, bien que l’estimation standard gyro-Bohm soit vérifiée en moyenne,
des phénomènes on-diffusifs sont observés. L’effet des écoulements de bord du plasma sur
la rotation toröıdale dans le cœur est étudié en modifiant les conditions aux bords dans
le code GYSELA. Enfin, le champ magnétique d’équilibre, qui n’est pas rigoureusement
axisymétrique, peut également participer à la génération de rotation toröıdale, via des
mécanismes purement collisionnels. Dans un tokamak, cet effet est suffisamment impor-
tant pour entrer en compétition avec la rotation générée par la turbulence électrostatique.
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Chapter 1

Introduction

Continued greenhouse gas emissions at or above current rates would cause
further warming and induce many changes in the global climate system during
the 21st century that would very likely be larger than those observed during
the 20th century.
(...) Societies can respond to climate change by adapting to its impacts and by
reducing greenhouse gas emissions (mitigation) thereby reducing the rate and
magnitude of change.
(...) Unmitigated climate change would, in the long term, be likely to exceed
the capacity of natural, managed and human systems to adapt. Reliance on
adaptation alone could eventually lead to a magnitude of climate change to
which effective adaptation is not possible, or will only be available at very high
social, environmental and economic costs.

Fourth Assessment Report of the Intergovernmental Panel on Climate Change,
2007. IPCC, Geneva, Switzerland

Nuclear fusion has emerged over the course of the 20th century as a possible source
of energy for our future. In particular, the tokamak concept is considered as a likely
candidate to satisfy mankind’s growing energy demands. In this introductory chapter,
the basics of controlled nuclear fusion are briefly reviewed, with a special emphasis on the
tokamak configuration. Next, the important issue of toroidal rotation in tokamaks, which
is the main topic of this thesis, is presented. Finally, the question of the models available
to describe the collective processes responsible for momentum transport in fusion plasmas
is addressed.

1.1 Controlled nuclear fusion

1.1.1 Nuclear fusion

For light elements, the fusion of two nuclei to form a larger one can lead to the release of
energy, because the binding energy of the newly created atom will be greater than the sum
of the binding energies of the two original nuclei. This is best illustrated by the positive
slope for light nuclei (especially hydrogen and helium isotopes) of the binding energy
curve, Fig. 1.1, which represents the average binding energy per nucleon as a function of
the number of nucleons. Symmetrically, the negative slope for heavier nuclei implies that
the fission of such an atom (for instance a Uranium atom) into two lighter nuclei can lead

1



1.1. CONTROLLED NUCLEAR FUSION

Figure 1.1: Average binding energy per nucleon as a function of the number of nucleons
per nucleus. Only the points corresponding to the most abundant isotopes are shown.
The iron atom with A=56 nucleons is the most tightly bounded nucleus.

to released energy. This latter process is the basis for nuclear fission reactors, while the
former is the energy source which fuels stars.

Of the various reactions able to produce energy through the fusion of two nuclei, the
fusion of a deuterium nucleus (D) with a tritium nucleus (T) has the highest cross-section
at low energies, i.e. the highest probability for the reaction to occur. This reaction leads
to the creation of a helium atom and a neutron, with each product of the reaction carrying
a part of the liberated energy:

2
1D + 3

1T −→ 4
2He (3.5MeV ) + 1

0n (14.1MeV ) (1.1)

The cross-section for this reaction is maximum for energies of approximately 70keV,
and drops sharply below 10keV, which appears as a minimum energy for a nuclear fusion
reactor to be viable. In order to have a significant amount of particles at such energies, the
reactants must be heated up to temperatures above several keVs, i.e. around 108K 1. At
such temperatures, the hydrogen atoms will be fully ionized, corresponding to the plasma

state of matter 2.

1We assume here that thermal methods are used to obtain nuclear fusion, meaning that the reactant is
assumed to be near thermodynamic equilibrium with a particle distribution “close” to a Maxwellian. In
this scenario, the cross-section of the reaction will be significant mainly for the tails of the distribution.
Another possibility is via non-thermal methods where the fusion process relies on the fact that at least
one of the reactants has a significantly non-Maxwellian distribution, for example with a large population
of highly energetic particles with a higher cross-section. However, such methods exhibit fundamental
limitations due to the problem of power recycling [Rid97].

2On Earth, plasmas are found naturally only in the form of auroras (Northern and Southern polar lights).
However, they represent roughly 99% of visible matter in the Universe, including stars, the interstellar
medium and intergalactic space.
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CHAPTER 1. INTRODUCTION

1.1.2 The Lawson criterion

Although a fraction of the fusion energy is used to heat the plasma and maintain a suit-
able temperature for fusion reactions, additional heating is required, performed either by
injecting energetic particles or by radio-frequency heating. As the aim is to produce en-
ergy from nuclear fusion reactors, the key figure of merit is the amplification factor, i.e.
the ratio between the power produced by nuclear fusion reactions and the external power
necessary to heat the plasma. Intuitively, the key parameters one can maximize to obtain
a favorable ratio are

• the ion temperature Ti of the plasma, which in turn increases the cross-section of
the D-T reaction,

• its density n, which increases the number of reactions,

• the quality of the energy confinement in the plasma, which is directly linked to the
energy input required to maintain the plasma at a given temperature.

The latter is usually described in terms of the confinement time τE , which corresponds to
the characteristic time for the plasma to cool down in the absence of any heat source.

Taking into account the main sources and sinks of energy in the system, one can
obtain a direct relation between the amplification factor Q and these three operational
parameters [Law57]. Assuming that an amplification factor of at least 40 is necessary for
an economically viable fusion reactor, one finds a condition on the triple product of the
three parameters:

nTiτE ≥ 3.1021 keV s−1 (1.2)

The quantities considered in this crude estimate are the volume averaged temperature and
density. Note that this condition can be significantly modified when taking into account
other factors, such as density and temperature profiles, or impurity concentration.

1.1.3 The tokamak concept for plasma confinement

Several possibilities can be considered in order to reach the Lawson criterion, depending on
how one confines the plasma. In order to maximize the cross-section of the D-T reaction,
the optimal temperature range is Ti & 20 keV . Thus, with two parameters remaining in
the triple product, two main directions can be explored3 to satisfy the Lawson criterion:

• Inertial confinement aims at obtaining very dense plasmas (n ∼ 1031m−3) with
low energy confinement time (τE ∼ 10−11s). This is achieved by compressing a
fuel target consisting of a deuterium-tritium pellet. The energy necessary for the
compression of the pellet is usually delivered by intense laser beams.

• Magnetic confinement uses the fact that the trajectories of the charged particles in
the plasma can be guided by magnetic fields. The plasmas produced in this case are
at lower densities (n ∼ 1020m−3) but the confinement time is larger (τE ∼ 1s). Of
the numerous magnetic configurations that can be considered to confine the plasma,
the tokamak4 design is considered at the moment to be the most promising.

3Note that a third method of confinement is theoretically available: in stars, plasma confinement
is ensured by gravity. However, the mass needed to satisfy the Lawson criterion through gravitational
confinement is such that this form of confinement is not accessible for nuclear fusion reactors.

4 From the Russian Toroidal’naya kamera s magnitnymi katushkami, literally “toroidal chamber with
magnetic coils”.
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1.2. TOROIDAL ROTATION IN TOKAMAKS

In the tokamak configuration, the plasma is confined in a toroidal chamber by a helical
magnetic field, as can be seen in Fig. 1.2, which shows a schematic view of a tokamak.
The toroidal component of the magnetic field is generated by external coils, while its

Figure 1.2: Schematic view of a tokamak

poloidal component is generated by a toroidal plasma current. When inductive, this
current is obtained by varying the magnetic flux in the central solenoid, while the plasma
acts as the secondary winding of a transformer. Assuming only collisional transport, this
configuration provides a very good confinement of the plasma. However, experiments have
shown that the energy confinement time is lower than expected from collisional theory,
and is in fact dominated by micro-scale turbulence in the plasma.

Since the first tokamaks operated in the late 1950s at the Kurchatov Institute in
Moscow, many devices have been built throughout the world to explore various operational
regimes and technologies. At the moment, the largest device is the Joint European Torus
(JET) tokamak, which has reached an amplification factor Q ∼ 0.7. The next step on the
path to a functioning nuclear reactor is the experimental tokamak ITER, currently being
built in Cadarache (France), which aims to reach Q = 10, demonstrating the capability of
tokamaks to produce more fusion power than the power required to operate them.

1.2 Toroidal rotation in tokamaks

The issue of toroidal rotation in tokamaks, which is the focus of this thesis, has been
identified in recent years as an important factor for the performance of fusion reactors (for a
review of theoretical and experimental results, see [deG09]). Experiments have shown that
a sufficient level of toroidal rotation can stabilize certain magnetohydrodynamic (MHD)
modes, such as the resistive wall mode [BW94] or the neoclassical tearing mode [PPJ+08].
Moreover, toroidal rotation impacts energy transport through the saturation of turbulence
by sheared flows [BDT90], and can therefore contribute to the formation and sustainment
of improved confinement regimes such as transport barriers. Thus, toroidal rotation can
have a significant impact on the energy confinement time, and therefore on the capability
of fusion reactors to produce energy.

4



CHAPTER 1. INTRODUCTION

In most present experiments, toroidal rotation is largely controlled by external sources,
namely through the torque due to neutral beam injection (NBI). However, for future
experiments such as ITER, as well as for reactors, the torque from NBI is expected to be
small. Fortunately, in the absence of external torque, toroidal rotation has been observed
experimentally. This phenomenon is referred to as spontaneous or intrinsic rotation, and
has been reported in a large number of tokamaks. Attempts have been made to unify the
different experimental results, leading for instance to the so-called Rice scaling [RICd+07]
for the increased level of toroidal rotation after the transition to an improved confinement
regimes.

However, no clear picture has emerged so far as to the exact process generating intrinsic
rotation, as many different physical effects may play a role, such as MHD activity, micro-
turbulence, plasma-wall interaction or the effects of fast particles. A better understanding
of the physics of intrinsic rotation, and more generally of momentum transport, would be
an important step in order to anticipate the level of rotation and therefore the performance
of future devices. This thesis addresses the issue of intrinsic generation and transport
of toroidal rotation by electrostatic micro-turbulence, as well as the role of collisional
processes due to the non-axisymmetry of the magnetic configuration.

1.3 Modeling turbulence in weakly collisional plasmas

The description of micro-turbulence in a plasma requires a model solving self-consistently
(i) Maxwell’s equations for the dynamics of the electromagnetic fields, and (ii) the col-
lective response of the plasma. For the latter, the most accurate model would be to write
Newton’s equation of motion for each particle in the plasma, including relativistic correc-
tions for the most energetic particles. With this approach, one obtains six equations –
for the three dimensions in space and in velocity – for each particle, and these equations
are all coupled through Maxwell’s equations. As tokamak plasmas have a density of ap-
proximately 1020m−3, such a many-body problem is clearly not tractable numerically with
the current computing resources, and will remain out of reach in the foreseeable future.
Therefore, reasonable approximations must be made to obtain more accessible models.
One specificity of fusion plasmas is the very large diversity of scales in the physics, as
illustrated by Fig. 1.3. To study these scales, various levels of approximation can be
adopted, leading to a hierarchy of models for the plasma response.

As it is not possible to model each particle individually, the next step is to use a statis-
tical description. The information on the position and velocity of each individual particle
is not necessary to describe plasma behavior and can be replaced by the probability of
finding a particle at a given position and velocity. In this context, the important quan-
tity becomes the probability distribution function Fs(x,v, t) in six dimensions, for each
species s. This description assumes an averaging – in space and time – of the behavior of
individual charged particles. Thus kinetic theory allows one to model collective processes
in fusion plasmas at scales larger than the Debye length (roughly 10−4m), which corre-
sponds to the characteristic scale over which electric charges are shielded. The general
form of the equation for the distribution function is the kinetic equation

dFs
dt

= C(Fs) (1.3)

where C is a collision operator which retains the statistically averaged effect of individual
collisions. Eq. (1.3) is given different names – Boltzmann equation, Fokker-Planck equa-
tion – depending on the physics contained by the collision operator. When C(Fs) = 0,

5



1.3. MODELING WEAKLY COLLISIONAL PLASMAS

Figure 1.3: Diversity of scales in fusion plasmas, with the domains of applicability of
Vlasov, gyrokinetic and MHD models. Here, ωps is the plasma oscillation frequency, Ωs is
the cyclotron frequency, ω∗s is the diamagnetic rotation frequency, vA is the Alfvén velocity,
νii is the ion-ion collision frequency, λDs is the Debye length, ρs is the Larmor radius, Ln
is the characteristic gradient length of the equilibrium density profile, a is the plasma size
and s denotes the particle species. (figure from [GIVW10])

Eq. (1.3) is often referred to as the Vlasov equation and corresponds to the case of a
collisionless plasma. Solving Eq. (1.3) and the Maxwell equations allows one to describe
plasma phenomena in tokamaks at all relevant time and length scales. However, the nu-
merical cost required to simulate such a model remains large, as the evolving quantity is a
6D distribution function. The kinetic model can be further simplified to 5 dimensions for
the study of plasma turbulence in the presence of a strong magnetic field. This reduction,
which leads to the so-called gyrokinetic model, will be the main topic of chapter 2.

Finally, the last family of models in the hierarchy of models for plasma response cor-
responds to the fluid approach. By integrating the kinetic equation over velocity space,
one obtains equations for the so-called fluid moments, which are 3D quantities of the form
∫
Fsv

kdv where k is an integer. The first moments correspond to well-known physical
quantities: density, flow velocity, pressure. Importantly, the evolution equation for the
moment of rank k contains the moment of rank k+1. In principle, this leads to an infinite
set of moment equations, containing all the information from the kinetic equation (1.3).
Thus, the major difficulty of the fluid approach is the closure problem, as an additional
approximation must be made in the model to close the system and obtain a finite set of
fluid equations.

The closure can be relatively easy and efficient for neutral fluids or plasmas close
to thermodynamic equilibrium, where a Maxwellian distribution can be assumed for Fs,
which can be described by its first moments. Then, one only has to solve for a finite –
usually very small – number of unknowns in 3D space, which reduces greatly the numerical
cost compared to kinetic simulations. However, tokamak plasmas are weakly collisional
systems and can be expected to depart significantly from thermodynamic equilibrium.
This can be understood by an estimate of the spatial scale of collisions, which can be
obtained from the deviation angle of Coulomb collisions. This angle is a function of two
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CHAPTER 1. INTRODUCTION

characteristic lengths, namely the distance of closest approach and the impact parameter5.
The distance of closest approach between two particles is the Landau distance, correspond-
ing to the distance at which all of a particle’s kinetic energy has been converted to potential
energy, leading to

λL =
q2

4πǫ0T
(1.4)

where q is the species charge, ǫ0 is the vacuum permittivity and T is the relative energy
of the colliding nuclei. The value of the Landau distance λL for deuterium particles at
an energy of 10keV is of the order of 10−12m. The deviation angle can be expressed as
θ = λL/b where b is the impact parameter. The characteristic length scale of collisions
is then obtained by integrating θ2 over the impact parameter b, from λL to the maximal
distance of interaction, which corresponds in plasmas to the Debye length, above which
individual charges are screened by the plasma. From this calculation, a simple estimate
of the characteristic collision length can be obtained as

Lcoll ∼
λ3l
λ2L

(1.5)

where λl = n−1/3 is the mean distance between two particles, referred to as the Loschmidt
distance. For the typical densities of magnetized fusion plasmas, λl ∼ 10−7. Thus, Lcoll is
of the order of the km, much larger than the largest spatial scale considered in tokamak
plasmas, which corresponds to the size of the tokamak. To summarize, the various lengths
can be ordered as follows

λL ≪ λl ≪ λD ≪ Lturb ≪ Lcoll (1.6)

where Lturb is the characteristic scale of micro-turbulence. As a consequence, collisions are
expected to have very little impact and one cannot assume that the plasma will remain
close to thermodynamic equilibrium. Indeed, no completely satisfactory closure has been
found for tokamak plasmas, and the results from fluid simulations show strong discrepan-
cies with kinetic simulations when dealing with micro-scale turbulence [DBB+00].

As a conclusion, it appears that while fluid models provide a convenient and numer-
ically cheap solution to model the plasma response, kinetic modeling is mandatory for
accurate simulations of collective behavior in weakly collisional tokamak plasmas. The
gyrokinetic model, which will be presented in chapter 2, provides a reduced version of
the general kinetic model, well-suited for the study of turbulence in strongly magnetized
plasmas and compatible with the available computing resources.

1.4 Outline of this manuscript

The topic of this thesis is the investigation of toroidal momentum transport in tokamak
plasmas through turbulent and collisional – referred to as neoclassical in the magnetic
confinement fusion literature – processes. The gyrokinetic model used for this study is
described in detail in the following chapter 2. The key underlying assumptions and the
theoretical basis of the model are discussed. The numerical code Gysela, based on the
gyrokinetic model, is presented, with an emphasis on the modeling choices and a brief
description of the numerical methods. An example of the general results obtained in a

5The impact parameter is defined as the hypothetical distance of closest approach between two particles
if the particles did not interact.
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Gysela simulation is also given. In order to validate the gyrokinetic model, both theo-
retically and numerically, local conservation laws are derived analytically in chapter 3 for
charge density, energy and toroidal angular momentum. The latter equation is also use-
ful in order to identify the different fluxes governing toroidal momentum transport. The
local conservation of toroidal momentum is tested numerically with the gyrokinetic code
Gysela, along with the force balance equation, demonstrating that the gyrokinetic model
achieves an accurate description of mean flows in tokamaks. The transport of momentum
and generation of intrinsic rotation by electrostatic turbulence is investigated in chapter 4
by performing simulations from a vanishing initial profile of toroidal rotation and with
no external momentum source. The characteristics of turbulent momentum transport,
and the relation with heat transport, which both exhibit large-scale avalanche-like events,
are analyzed through a statistical description in steady-state simulations. The non-local
properties of turbulent transport are discussed in chapter 5. Despite the observation of
large-scale transport events and the strong poloidal asymmetry of turbulence, the con-
ventional gyro-Bohm scaling can be recovered for both heat and momentum transport.
The impact on toroidal rotation of edge flows, critical because of the local conservation
of toroidal momentum in the core plasma, is also investigated. Finally, neoclassical mo-
mentum transport, in the presence of a non-axisymmetric magnetic field, is presented in
chapter 6. This breaking of toroidal symmetry leads to a friction on the toroidal velocity,
which can be predicted theoretically in a number of limit cases. Simulations with the
Gysela code achieve a self-consistent study of both turbulence and neoclassical momen-
tum transport, allowing for a qualitative comparison with both theory and experimental
results.
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Chapter 2

The gyrokinetic model for plasma

turbulence

Earl Ferrers – My Lords, what kind of thermometer

reads a temperature of 140 million degrees centigrade

without melting?

Viscount Davidson – My Lords, I should think a

rather large one.

Debate on the JET Nuclear Fusion Project,
United Kingdom House of Lords, March 3, 1987

This chapter is devoted to the presentation of the main tools, both theoretical and
numerical, used for the study of micro-turbulence in tokamak plasmas. The first part of
this chapter, section 2.1, is dedicated to a brief description of the magnetic configuration
of the tokamak, including the system of coordinates used throughout the manuscript, and
of the particle trajectories in this configuration. Next, the gyrokinetic model is detailed
in section 2.2, with an emphasis on the different approximations made in order to reduce
the complete kinetic model to a more tractable system of equations, adapted to the study
of electrostatic turbulence in fusion plasmas. The gyrokinetic code Gysela, used for
the simulation results included in the present manuscript, is presented in section 2.3.
The important modeling choices are discussed, the collision operator and gyro-averaging
operator implemented in the code are described in detail, and the numerical methods used
are briefly introduced. Finally, to illustrate the numerical results which can be obtained
by gyrokinetic simulations, a Gysela simulation is described in section 2.4.

2.1 Magnetic configuration and particle trajectories

2.1.1 Magnetic configuration

As outlined in section 1.1.3, a tokamak plasma is contained in an axisymmetric toroidal
vessel and confined by a helical magnetic field. The general form of the magnetic field in
an axisymmetric tokamak is

B = I(χ)∇ϕ+∇ϕ×∇χ (2.1)

where χ is the opposite of the poloidal magnetic flux [DHCS91], which is a label of magnetic
flux surfaces, ϕ is the geometric angle in the (axisymmetric) toroidal direction and I is
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2.1. MAGNETIC CONFIGURATION AND PARTICLE TRAJECTORIES

Figure 2.1: The tokamak magnetic configuration and the toroidal coordinate system
(r, θ, ϕ). The geometry of the torus can be described by its minor radius a and major
radius R0 (at the magnetic axis)

a flux function. We can define a poloidal angle θ such that the safety factor q is only a
function of χ:

q(χ) ≡ B · ∇ϕ
B · ∇θ (2.2)

The safety factor q describes the pitch of the magnetic field lines, and can be understood
as the number of toroidal revolutions performed for one poloidal revolution following a
magnetic field line.

An adequate system of toroidal coordinates in tokamak geometry can then be defined
by (χ, θ, ϕ). Note that the poloidal angle obtained here is not the geometric poloidal angle
and depends on the structure of the magnetic field. This corresponds to so-called flux

coordinates, designed for the magnetic field lines to be straight on a given flux-surface.
More details on this system of coordinates can be found in appendix A. The Jacobian of
the metric obtained with this coordinate system is Js = 1/(B · ∇θ), where s stands for
space, as opposed to the Jacobian in velocity space Jv (see section 2.2). As manipulating
a flux as a variable is not always practical, the coordinate χ can be replaced by a radial
coordinate r, also a label of flux surfaces, such that χ is a function of r only. This system
of toroidal coordinates is represented in Fig. 2.1.

In the following, a simplified magnetic geometry will be adopted, with the poloidal
cross-sections of the magnetic surfaces (see Fig. 2.1) taken as circular and concentric.

2.1.2 Particle trajectories

As tokamak plasmas are weakly collisional, with a very large mean free path between
collisions, particle trajectories are governed by the electromagnetic field. In a uniform

magnetic field, the motion of a particle can be described by

• a free streaming motion in the direction parallel to the magnetic field lines, at an
unperturbed velocity v‖

• a rapid cyclotron rotation around the magnetic field. All particles of a given species
s will perform this rotation at the same gyrofrequency (or cyclotron frequency) Ωs =
esB/ms, where B is the intensity of the magnetic field, es and ms are the species
mass and charge. The radius of the cyclotron motion is the Larmor radius ρc =
msv⊥/(esB) where v⊥ is the velocity of the particle in the direction perpendicular
to the magnetic field.

10



CHAPTER 2. THE GYROKINETIC MODEL

The presence of non-uniform or time-varying electromagnetic fields leads to additional
drift velocities. In the most general case, the derivation of these drifts is not tractable
analytically. One specific case where the drifts can indeed be derived is the context of
adiabatic theory, which assumes slow variations (in space and time) of the electromagnetic
fields, compared to the gyromotion of the particle. In terms of time variations, this
corresponds to the conditions

∣
∣
∣
∣

∂ logB

∂t

∣
∣
∣
∣
≪ Ωs ;

∣
∣
∣
∣

∂ logE

∂t

∣
∣
∣
∣
≪ Ωs

The spatial variations of the magnetic field must also occur on scales larger than the
Larmor radius

ρc

∣
∣
∣
∣

∇B
B

∣
∣
∣
∣
≪ 1

These limits, which are relevant for tokamak plasmas, will be assumed in the following.
With such assumptions, a separation of scales appears and the motion of particles can
be obtained as the sum of the (fast) gyromotion and the (slow) drift of the particle’s
guiding-center (i.e. the center of the Larmor radius).

The derivation of the guiding-center drifts will not be detailed here but can be found
in many plasma physics textbooks, for instance [HM92]. However, it is important to note
that, in the adiabatic limit and when the electromagnetic fields are constant in time, the
particle motion is characterized by three independent motion invariants, namely

• the total energy Heq = mv2/2+esφ, where v is the total velocity and φ is the electric
potential;

• the magnetic moment µ = msv
2
⊥/(2B) where B is evaluated at the guiding-center

position

• the toroidal kinetic momentum pϕ = −eχ+mRvϕ where R is the major radius and
vϕ is the toroidal velocity of the particle.

The total energy is an exact invariant, while the magnetic moment is often referred to as
the adiabatic invariant as it is conserved only in the adiabatic limit. The toroidal kinetic
momentum reflects the axisymmetry of the tokamak configuration.

2.2 Introduction to gyrokinetic theory

2.2.1 The gyrokinetic ordering

As outlined in section 1.3, describing plasma turbulence in tokamaks requires a kinetic
description of collective dynamics, with a six dimensional equation for the distribution of
particles. Although this model is already a statistical reduction of the complete many-
body problem, it still involves a large diversity of scales, down to cyclotron waves and
Langmuir waves. For the study of micro-turbulence in tokamak plasmas, the interest is
on characteristic frequencies smaller than the cyclotron frequency, i.e. ω < Ωs where
Ωs = esB/ms is the cyclotron frequency (see Fig. 1.3). By restricting the problem to
such frequencies, the gyrokinetic model allows one to simulate plasma turbulence with a
reasonable computational cost.

As presented in section 2.1.2, the equilibrium motion of particles in a tokamak mag-
netic configuration can be decomposed into a fast motion around the magnetic field, a
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2.2. INTRODUCTION TO GYROKINETIC THEORY

parallel drift along the magnetic field line and slower drifts in the perpendicular plane. As
the characteristic turbulent frequencies we are focusing on are slower than the cyclotron
frequency of the particles considered, the 6D model can be reduced to a 5D model by
averaging over the cyclotron motion, provided that certain orderings are respected. These
orderings, deduced from experimental observations of tokamak micro-turbulence, form the
basis of gyrokinetic theory. The gyrokinetic ordering for the microscopic fluctuations can
be summarized as

ω

Ωs
∼
k‖
k⊥

∼ esφ

T
∼ δns

n0
∼ δB

B0
∼ ρc
Ln

∼ O (ρ∗s) (2.3)

The key dimensionless parameter is ρ∗s, which corresponds to the thermal Larmor radius
normalized to the tokamak minor radius, i.e. ρ∗s = msv⊥/(esBa). In the case of tokamaks,
for electrons ρ∗e < 10−4 and for ions ρ∗i < 10−2. Let us review these orderings in more
detail:

• the characteristic frequency of micro-turbulence (ω) is much slower than the cy-
clotron frequency of the species (Ωs),

• the parallel component of the wave vector (k‖ = k · b where b = B0/B0) is much
smaller than the perpendicular component (k⊥ = |k× b|). This reflects the fact
that the rapid motion of particles along the magnetic field leads to large gradient
lengths in the parallel direction,

• the microscopic potential energy (esφ) is much smaller than the kinetic energy (or
temperature T )1,

• the density perturbations (δns) are much smaller than the equilibrium density (n0),

• the perturbed magnetic field (δB) is much smaller than the equilibrium magnetic
field (B0),

• the Larmor radius (ρc) is much smaller than the characteristic length of the equilib-
rium density gradient (Ln = |∇ lnn0|−1).

Using this ordering, the gyrokinetic model was originally obtained by gyro-averaging
the Vlasov equation with a recursive method [FC82]. This model served as the basis for
the first kinetic simulations of plasma micro-turbulence [Lee83]. However, an important
drawback of the recursive method is that it does not preserve the key mathematical prop-
erties of the Vlasov equation, namely its symmetry and conservation properties. The
modern derivation of gyrokinetic theory [Hah88, BH07] is based on the Hamiltonian rep-
resentation using Lie perturbation theory, which retains the symmetry and conservation
properties of the coupled Vlasov and Maxwell equations. In particular, the conservation
properties are essential to correctly describe the physics in nonlinear simulations and will
be presented in section 3. The detailed derivation of the modern gyrokinetic model was
reviewed in [BH07], and its key results will be presented in the following section in two
asymptotic limits for the Maxwell equations. First of all, we consider the electrostatic
limit, i.e. a constant magnetic field and E = −∇φ where φ is the electrostatic potential.
Furthermore, we also assume the low β approximation, where β is the ratio of kinetic
energy to magnetic energy 2.

1For macroscopic fields with radial extents comparable to the gradient lengths, esφ/T ∼ 1 is possible.
2In tokamak plasmas, β is usually of the order of a few percents.
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CHAPTER 2. THE GYROKINETIC MODEL

Figure 2.2: Reduction of phase-space from 6D to 5D in gyro-center coordinates by the
gyro-center transform (figure from [GIVW10])

2.2.2 The gyrokinetic equation

The first step is a change of coordinates in 6D phase-space from the particle coordinates
to the guiding-center coordinates. With the orderings in (2.3), the low frequency per-
turbations affect only the slow motion of the guiding center while the magnetic moment
µ = msv

2
G⊥/2B becomes an adiabatic invariant (see section 2.1.2). To obtain the gyroki-

netic equation, we use the coordinates of the guiding-center, z = (xG, vG‖, µ, α) where xG
is the guiding-center position,vG‖ = vG · b is the guiding-center parallel velocity and α is
the gyro-angle, i.e. the angle describing vG⊥ in the plane perpendicular to the magnetic
field. It is important to underline here that the guiding-center position xG depends on
the particle position and velocity. Therefore, there is no direct coordinate transformation
between particle and guiding-center position, or between particle and guiding-center veloc-
ity, but rather a complete coordinate transformation in 6D phase-space, mixing position
and velocity coordinates.

The Lie transformation provides the gyrokinetic equation at an arbitrary order in ρ∗s
while keeping the Hamiltonian structure of the Vlasov equation. In practice, only the first
order is kept in the perturbed Hamiltonian, which can be written as

Hs =
1

2
msvG‖

2 + µB + esφ+O(ρ∗2s) (2.4)

At this stage, the Hamiltonian still depends on the six phase-space coordinates. The second
step is to remove the dependence of the perturbed Hamiltonian Hs on the gyro-angle α by
integrating over the cyclotron motion. After this so-called gyro-center transform, the gyro-
angle α becomes an ignorable variable in the system while the magnetic moment µ becomes
an exact invariant rather than an adiabatic invariant. The result of this transformation is
represented schematically in Fig. 2.2. We stress here that gyro-averaging does not simply
average out the cyclotron motion of the particle, and in particular the procedure retains
the information on the variation of the fields at the scale of the Larmor radius. One can
thus understand the gyro-center as a current ring of the size of the Larmor radius, rather
than the classical picture of a pseudo-particle traveling at the center of the particle’s orbit.

In principle, a distinction should be made between the coordinate system z previously
used and the one resulting from the gyro-center transformation. In order to simplify
notations, this distinction will not be made here. The Hamiltonian H̄s, which is now
independent of the gyro-angle α, reads

H̄s =
1

2
msvG‖

2 + µB + esJ · φ (2.5)
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2.2. INTRODUCTION TO GYROKINETIC THEORY

where the gyro-averaging operator J is defined as J · φ ≡
∮
φ dα/2π.

The result is a reduced kinetic equation for the evolution of the (5D) gyro-center
distribution function F̄s(xG, vG‖, µ) which can be expressed in the Hamiltonian formalism
as

dF̄s
dt

≡ ∂F̄s
∂t

+
[
F̄s, H̄s

]
= C(F̄s) (2.6)

where [·, ·] is the Poisson bracket in the gyro-center coordinate [BH07], which is defined
for two given fields G and H as

[G,H] =
Ωs
B

(
∂G

∂α

∂H

∂µ
− ∂G

∂µ

∂H

∂α

)

− 1

eB∗||
b · {∇G×∇H}+ 1

B∗||
B∗ ·

{

∇G∂mvG‖H − ∂mvG‖G∇H
}

(2.7)

where where b is the unit vector in the direction in the direction of B, B∗ = B +
(mvG‖/e)∇× b and B∗|| = b ·B∗ is the volume element in guiding-center velocity space.
Note that the first term in (2.7) contains derivatives with respect to the gyro-angle α which
will be trivially vanishing as the gyro-angle dependence of all the quantities considered
have been removed by the gyro-center transformation. The term C(F̄s) on the right-hand
side of (2.6) is a gyro-averaged collision operator in guiding-center phase-space, which will
be discussed in section 2.3.2.

In order to close the gyrokinetic system, the electric potential, which appears in the
Hamiltonian, must be computed. This is the object of the following section.

2.2.3 The gyrokinetic quasi-neutrality equation

In the general electrostatic case, the electric potential can be obtained from the Poisson
equation

∇2φ = − 1

ǫ0

∑

species

nses (2.8)

where ǫ0 is the vacuum permittivity and ns is the density of species s. This can be
expressed using the electron Debye length λD,e = (ǫ0Te/n0e

2)1/2, which leads to

λ2D,e∇2

(
eφ

Te

)

= − 1

n0

∑

species

nses (2.9)

In fusion plasmas, the electron Debye length is orders of magnitude smaller than the ion
Larmor radius. Such sub-Larmor scales cannot be treated by the gyrokinetic model due to
the approximations previously considered, and the term in λ2D,e∇2 is therefore negligible
in the Poisson equation. As a result, at the scales considered in the gyrokinetic model,
the plasma can be considered quasi-neutral, which is consistent with the conventional
interpretation of the Debye length as corresponding to the characteristic length at which
individual charges are shielded. Thus, the left-hand side of Eq. (2.9) can be neglected and
the Poisson equation is then replaced by a quasi-neutrality condition

∑

species

nses = 0 (2.10)

where ns is the density of species s. It is important to realize here that the densities
appearing in Maxwell’s equations are the densities of particles, rather than the densities
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CHAPTER 2. THE GYROKINETIC MODEL

of gyro-centers, which correspond to the first moment of the distribution functions evolved
by the gyrokinetic Vlasov equation. Thus, the density of particles for each species ns must
be computed from the gyro-center distribution F̄s. The latter distribution is related to
the particle distribution Fs by the following expression

Fs = F̄s +
es
B

{
φ− φ̄

}
∂µF̄s,eq (2.11)

where F̄s,eq is the equilibrium distribution of gyro-centers and φ̄ = J · φ is the gyro-
averaged electric potential. More generally, an overbar indicates a gyro-averaged quantity.
This result arises from the canonical transformation relating the particle and gyro-center
coordinates, a detailed proof can be found in [GS]. This leads to ns = nG,s + npol,s
where nG,s is an integral in gyro-center phase-space and the polarization density npol,s
is a function of the electric potential φ. The detailed calculations of these two terms is
presented in appendix B and, in the large wavelength limit (k⊥ρc ≪ 1) for the polarization
density, lead to

nG,s =

∫

JvdµdvG‖J · F̄s (2.12)

npol,s = ∇ ·
{
neq,sms

esB2
∇⊥φ

}

(2.13)

where Jv = 2πB∗||/ms is the Jacobian in gyro-center velocity-space. We recall that J is

the gyro-averaging operator. Injecting equations (2.12) and (2.13) in the quasi-neutrality
equation (2.10) leads to an equation which can be solved to obtain the electric potential
φ for a given distribution function F̄s:

∑

species

−∇ ·
{neq,sms

B2
∇⊥φ

}

=
∑

species

es

∫

2πB∗||dµdvG‖J · F̄s (2.14)

where J is the gyro-averaging operator, and neq,s is the equilibrium density of species s.
Note that, if we consider that the electron mass is negligible compared to the ion mass,
only the polarization contribution of ions need to be accounted for on the left-hand side
of the equation.

2.2.4 A reduced gyrokinetic model for electrostatic ion turbulence

The model described in the previous sections is well-suited for the description of elec-
trostatic turbulence in tokamaks, which can be generated by a number of underlying
mechanisms corresponding to electron or ion-driven instabilities (see [CW94] for a review).
However, the numerical cost of simulating electron turbulence in global simulations is ex-
tremely demanding in terms of numerical resources, because the characteristic lengths and
scales are many orders of magnitude smaller than the relevant time-scales for confinement
studies, i.e. the tokamak size and the confinement time. In order to perform global simula-
tions using dimensionless parameters relevant for ITER, including only ion turbulence, one
already needs to apply state-of-the-art techniques in terms of High Performance Comput-
ing, using the maximum numerical resources available today. For an equivalent simulation
including electron turbulence, the radial and poloidal resolution should be increased by
one order of magnitude, and the characteristic time-step reduced approximately by the
square root of the mass ratio. Roughly speaking, the cost of a simulation of electron rather
than ion turbulence is three to four orders of magnitude greater.
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2.2. INTRODUCTION TO GYROKINETIC THEORY

Global nonlinear gyrokinetic simulations including electro turbulence have become
accessible due to the rapid progress of numerical resources [GLB+11, BVS+11], but for
larger values of ρ∗. In the present work, we focus only on ion micro-turbulence, which
allows us to reach dimensionless parameters relevant for ITER. With this choice, the
only source of energy for turbulence is from the ion temperature gradient, corresponding
to the so-called Ion Temperature Gradient (ITG) instability [CRS67]. These modes are
sometimes referred to as ηi modes, as the instability is characterized by the parameter
ηi = d log Ti/d log ni.

Quasi-neutrality equation

For the study of ion turbulence only, we can consider the asymptotic limit me → 0,
which is consistent with the ρ∗i approximation since me/mi < ρ∗i. In this limit, at the
time scales considered in the model, one can assume that the parallel electron motion is
fast enough for the electrons to have reached a Boltzmann equilibrium, and they do not
need to be treated kinetically. With this approximation, the fluid equation for parallel
electron dynamics simply reads ene∇‖φ − ∇‖pe = 0 where ∇‖ is the gradient in the
direction of the magnetic field line, i.e. ∇‖ = b · ∇. In the isothermal limit, this leads
to ∇‖ne = (ene/Te)∇‖φ. The solution of this equation is ne = n0 exp (eφ/Te) for k‖ 6= 0.
Thus, the perturbed electron density in the quasi-neutrality equation reads

δne = −neq
δφ

Te
(2.15)

where δne (respectively δφ) is the non-zonal component of the electron density (respec-
tively of the electric potential). This approximation of the electron dynamics is often
referred to as adiabatic electron response.

Moreover, only one ion species is considered in the following. Therefore, only one
species will be treated kinetically and the species subscript s will be left out wherever no
ambiguity is possible. Assuming that an equilibrium solution is known, corresponding to
a vanishing electric potential, the gyrokinetic quasi-neutrality equation (2.14) then reads

−∇ ·
{neqm

B2
∇⊥φ

}

+
neqe

T

(
φ− 〈φ〉F.S.

)
= e

∫

2πB∗||dµdvG‖J · (F̄ − F̄eq) (2.16)

where F̄eq is the equilibrium gyrocenter distribution function, associated with a vanishing
electric potential and 〈·〉F.S. is the flux-surface averaged electric potential defined for a
given field g as

〈g〉F.S. =
∫
g Jsdθdϕ

∫
Jsdθdϕ

(2.17)

where Js = 1/(B · ∇θ) is the jacobian in real space (see section 2.1.1). Interestingly,
Eq. (2.16) takes the form of a Poisson equation where the vacuum permittivity ǫ0 is
replaced by neqm/B

2 (in the perpendicular direction only).

Gyrokinetic equation

From the expression of the gyrokinetic equation in its general Hamiltonian form Eq. (2.6),
it is useful to expand the Poisson bracket and obtain the following equivalent expression

∂tF̄ +
1

B∗||
∇z ·

(

żB∗||F̄
)

= C(F̄ ) (2.18)
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where z = (χ, θ, ϕ, vG‖, µ) and ż = dtz. B
∗
|| = B + (mvG‖/e)b · (∇× b) is the jacobian of

the gyrocenter transformation, where b is the unit vector in the direction of B; m and e
are the species mass and charge. Eq. (2.18) is valid at order one in the small parameter
ρ∗ = ρi/a ≪ 1 where ρi is the ion thermal gyroradius and a is the minor radius of the
plasma. The equations of motion are

B∗||dtxG = vG‖B
∗ +

1

e
b×∇Λ (2.19)

B∗||mdtvG‖ = −B∗ · ∇Λ (2.20)

where xG is the gyrocenter position. We define B∗ = B+(mvG‖/e)∇×b and Λ = eφ̄+µB,
where φ̄ is the gyro-averaged electric potential. As can be observed in Eq. (2.20), the
parallel motion along the magnetic field is not a free-streaming motion, as electromagnetic
perturbations and the gradient of the magnetic force lead to acceleration forces. In order
to highlight the physics content, Eq. (2.19) can be recast as

B∗||
B
dtxG = vG‖

B

B
+
mvG‖

2

eB2
µ0j+ vD + vE (2.21)

where j is the plasma current and

vD =
mvG‖

2 + µB

e

B

B2
× ∇B

B
(2.22)

vE =
B

B2
×∇φ̄ (2.23)

The velocity vD, called the curvature drift velocity, corresponds to the drift of guiding-
centers due to the inhomogeneity of the magnetic field. Note that, at a given position
in guiding-center phase-space, this drift is constant in time and does not depend on the
distribution or on the electric potential. The second drift velocity, vE , corresponding to
the E × B drift, contains the nonlinear physics as the electric potential, via the quasi-
neutrality equations, is derived from the gyro-center distribution function.

These expressions, obtained here by expanding the Poisson brackets, can be easily re-
covered (up to small terms proportional to the parallel current j‖) from the gyroaverage of
Newton’s equation of motion in the adiabatic limit [GS]. The gyrokinetic equation (2.18),
coupled with the quasi-neutrality equation (2.16) provide a self-consistent description of
electrostatic ion micro-turbulence in tokamak plasmas.

2.3 Gysela: a global gyrokinetic code

The Gysela code has been developed to solve the gyrokinetic model presented in the
previous section. In the following, we present the modeling choices which have been
made. Section 2.3.1 presents the key physics aspects of the code, while sections 2.3.2 and
2.3.3 focus respectively on the collision operator and gyro-averaging operator implemented
in Gysela. The semi-Lagrangian numerical scheme adopted in the development of the
code is briefly reviewed in section 2.3.4.

2.3.1 Physical assumptions

First of all, let us summarize the key approximations which have already been made to
obtain the model:
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a) The gyrokinetic ordering (2.3) forms the basis of the model,

b) Simplified magnetic geometry (see section 2.1.1): we consider circular concentric mag-
netic surfaces, with the magnetic field given by its analytical expression Eq. (2.1),

c) Low plasma β limit (i.e. the ratio of the kinetic energy to the magnetic energy is small):
this leads to a simplified expression for the curvature drift (see Eq. (2.22)),

d) Electrostatic approximation: time variations of the magnetic field are ignored. From
the Maxwell-Faraday equation, this leads to E = −∇φ and to the expression of the
E ×B velocity given by Eq. (2.23),

e) Adiabatic electron response: at the frequencies considered (ω ≪ Ωi), the electrons
follow a Boltzmann response to the perturbations in the direction of the magnetic
field.

Global, full-f gyrokinetic simulations

Historically, a number of gyrokinetic codes have chosen to separate the distribution func-
tion into a time independent equilibrium part and a fluctuating perturbation. This is the
so-called “δf method” [DK95], where F̄ (t) = F̄eq + δF̄ (t), with F̄eq constant in time and
with the assumption that δF̄ ≪ F̄eq. However, this assumption has serious implications
in terms of physics, as it does not allow for any back-reaction of the small scales on the
background equilibrium, which will remain close to its initial state. Therefore, so called
full-f codes have been developed, which solve the full distribution function, with no scale
separation between equilibrium and perturbations. Note that an equivalent possibility is
to allow for a self-consistent time evolution of F̄eq in a δf algorithm. Although this method
is more demanding numerically, it may give access to additional physics, namely the relax-
ation of the equilibrium profiles due to small-scale turbulence. Thus the equilibrium is not
fixed at its initial value and may evolve to a very different state. Removing the constraint
of δF̄ ≪ F̄eq means that events such as bifurcations or relaxations can occur. In particular,
this allows for a self-consistent modeling of the so-called zonal and mean flows [DIIH05] –
large-scale axisymmetric and poloidally symmetric shear flows with low or zero frequency –
which play an essential role in the regulation of turbulent transport [LHL+98] (see section
2.4).

Another important modeling choice to make for gyrokinetic codes is how to account for
the toroidal geometry, and whether or not global geometric effects should be included. One
possibility is to take advantage of the strong anisotropy of the physics, and in particular
the much smaller wavelengths in the perpendicular direction (k‖ ≪ k⊥ in the gyrokinetic
ordering (2.3)). In this context, using coordinates aligned with the magnetic field, one can
perform simulations in spatial regions which remain close to a magnetic field line. This
choice gives rise to so-called “flux-tube” codes [DJKR00, CW03a]. On the one hand, the
reduction in numerical cost achieved by the flux-tube approach allows one, for identical
numerical resources, to include additional physics in the model, for instance including
electron dynamics. On the other hand, the main drawback of this type of modeling is
the implicit scale separation between mean profiles and fluctuations. Flux-tube codes
assume periodic fluctuations in the radial direction and constant-in-time mean gradients
of the background profiles. To avoid this approximation, so-called “global” gyrokinetic
codes have been developed, taking into account the geometry of the whole plasma – or at
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least a large radial domain in the tokamak. Obviously, this approach leads to more costly
numerical simulations, and the issue of the radial boundary conditions must be addressed.

A number of global, full-f , gyrokinetic codes have been developed in recent years
[GBB+06, KCA+06, JBA+07, WHL+07, HJKO08, IUAT09, GLB+11] (see [GIVW10] for
a general review) without assuming any scale separation between equilibrium and fluctu-
ations. The question of radial boundary conditions is critical and can impact the physics
in these codes. For global codes, including Gysela, three types of simulation can be
distinguished.

Flux driven simulations

Most global gyrokinetic codes have been developed to simulate the core plasma, inside the
last closed flux-surface – usually up to a normalized radius ρ = r/a ranging from 0.8 to 0.9.
Moreover, because of numerical difficulties, the region near the magnetic axis (ρ = 0) is
rarely included in the simulation domain, which usually has a minimum normalized radius
between 0.1 and 0.2. The choice of the inner and outer radial boundary conditions for
temperature profiles is an important issue for plasma turbulence simulations, as identified
previously in fluid simulations [GSB+99], and should also be addressed in detail for global
gyrokinetic simulations3.

The first gyrokinetic simulations were performed with so-called thermal baths boundary
conditions. In such simulations, the ion temperature was fixed to its initial value at both
radial boundaries of the simulation domain. Several serious limitations to this type of
simulation have been identified. First of all, it was found [GSA+07] that strong gradients
may appear near the boundaries of the simulation domain, due to the relaxation of the
temperature profiles, as can be anticipated from a simple picture such as Fig. 2.3. More
importantly, the drawback of such simulations is that, far from the radial boundaries of
the simulation, the gradients in the system will systematically relax towards the state of
marginal stability. Thus, it is not possible, using thermal baths as boundary conditions, to
drive the system towards a different state, further from the non-linear stability threshold.
This represents a serious limit as it is not evident that experimental plasmas are indeed
systematically near this state of marginal stability.

Another type of gyrokinetic simulations is obtained by forcing the mean temperature
gradient to remain near its initial profile. This type of simulation is referred to, for obvious
reasons, as gradient driven. One of the motivations for this choice is that experimental
profiles can then be enforced in global simulations, allowing one to perform comparisons
between simulations and experiments, for example in [GLB+11]. These simulations im-
ply the use of an ad hoc heat source to maintain the mean gradient. Several strategies
are possible to perform this, but the most common solution is to use a Krook opera-
tor [MJT+09]. While gradient driven simulations allow for long times to be reached, with
a statistical steady-state and adequate statistics, the obvious limitation is that the heat
source must depend on the distribution function. Thus, the input power to the system
will vary in time and will depend on the dynamics of the turbulence, while one would
rather expect turbulence to adapt to the input power. The heat source acts to counter
the effects of turbulence locally – both spatially and in time. In fact, one might describe
this heating scheme as an infinity of independent, localized sources. Moreover, although
gradient driven simulations do not necessarily imply a scale separation in the form of a

3Boundary conditions for toroidal rotation are also a critical open issue when studying momentum
transport, and will be discussed in sections 4.1.1 and 5.3.
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δF̄ ≪ F̄eq, one expects the mean profiles to remain close to their initial values, as the heat
source forces the distribution function in the direction of the initial (generally Maxwellian)
distribution, preventing or at least hindering significant excursions from the initial state
of the system. Thus, even though the global geometry effects may be taken into account,
such simulations appear to have much in common with flux-tube simulations, as the mean
gradient remains constant throughout the duration of the simulation.

The third possibility for gyrokinetic simulations, which is the one adopted in Gysela,
is to prescribe the heat source in the system. The turbulence then becomes flux driven, as
the mean energy flux is imposed by the source. The importance of flux driven simulations
has been demonstrated by fluid simulations [CNLD96, SG98], and the impact on the result-
ing turbulent transport of the choice between gradient driven and flux driven simulations is
well documented in this context [GSB+99]. Heat sources have recently been implemented
in several gyrokinetic codes [IUAT09, SGA+10, GLB+11], together with boundary condi-
tions such as presented in Fig. 2.3. At the outer radial boundary, the temperature remains
fixed at its initial value, acting as a heat sink for the system. On the other hand, the system
is driven by a heat source localized near the inner boundary, and a vanishing temperature
gradient is imposed at this boundary, corresponding to the symmetry condition which
would be enforced at ρ = 0.

Figure 2.3: Sketch of the difference between simulations with fixed boundaries (left) or
fixed flux (right)

Prescribing a heat source in a 5-dimensional gyrokinetic simulation, at a reasonable
numerical cost, is a non-trivial problem. In Gysela, a versatile source has been imple-
mented by projecting the velocity-dependent part of the source on the orthogonal basis of
Hermite and Laguerre polynomials. Thus the general form of the source is

S(r, θ, ϕ, vG‖, µ) =
+∞∑

l=0

+∞∑

h=0

chl(r, θ)Hh(v̂‖)Ll(µ̂)e
−v̂2
‖
−µ̂

(2.24)

where Hh (respectively Ll) represent the Hermite (respectively Laguerre) polynomials.
The normalized parallel velocity is v̂‖ = vG‖/

√

2Ts/ms and the normalized magnetic
moment is µ̂ = µB/Ts. With a careful choice of the coefficients chl, one can decide which
fluid moments will be affected by this source [SGA+11]. For instance, if only the second
moment of the source is non-vanishing, one can construct a heat source which does not
inject any particle or parallel momentum. Likewise, another choice of coefficients can
provide a source of momentum without additional heating.

Finally, when performing flux driven simulations, an ad hoc diffusion term is added
to the gyrokinetic equation (2.18) near the radial boundaries of the simulation. It takes
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the form of a spatial diffusion, 1
r∂r

{
D(r)∂rF̄

}
where D(r) vanishes outside narrow radial

regions localized near the edges of the simulation domain. Additionally, a similar diffusion
term in the poloidal direction can be added. Near the inner edge, this term helps preventing
the occurrence of negative values of the distribution function in the region of localization of
the heat source4. More importantly, at the outer edge, this diffusion ensures the coupling
of the plasma to the fixed temperature outside the domain. In this sense, radial diffusion
acts as the heat sink in the system.

2.3.2 A model collision operator for Coulomb interactions

The right-hand side of the gyrokinetic equation (2.18) contains a collision operator C(F̄ )
for binary interactions. As we only consider one kinetic species in the present work,
this operator should account for ion-ion Coulomb collisions. As explained in section 1.3,
tokamak plasmas are weakly collisional, with mean free paths of the order of the km,
and transport is dominated by turbulence. However, even in the presence of turbulence,
collisional effects play an essential role in determining the mean flows on times longer than
the characteristic turbulent times. Second, the issue of the interplay between turbulent
and collisional (also known as “neoclassical”) transport, has yet to be resolved [LHL+99,
DPGS+09]. Moreover, it was shown that the damping of zonal flows is modified when
taking into account collisions, as they are damped to a non-vanishing residual value in the
absence of collisions [RH98]. As a final motivation, we recall that collisions may help limit
the development of small-scale structures in velocity space, thus improving the accuracy
of gyrokinetic codes.

A compact integral expression for grazing Coulomb collisions was originally derived
by Landau [Lan36], in the approximation of weak, elastic collisions. For a single species
plasma, the collision operator can be expressed as

C(F ) = w
∂

∂v
·
∫

U ·
(

F (v′)
∂F

∂v
− F (v) ∂F

∂v′

)

d3v′ (2.25)

where w = 2πe4s ln Λ/ǫ
2
0m

2
s. The Coulomb logarithm is lnΛ = ln(λD/λL) where λD is

the Debye length, corresponding to the maximum distance of interaction between two
particles because of Debye shielding, and λL is the minimal impact parameter between
two ions, usually referred to as Landau length. In tokamak plasmas, lnΛ ≃ 17. Note that
although the exact value of Λ may not be known, since only its logarithm appears in the
collision operator, an approximate value is acceptable as an error in the value of Λ would
not significantly impact lnΛ.

The tensor U depends on the relative velocity u = v − v′, and reads

Uij =
u2δij − uiuj

u3
(2.26)

The fact that this tensor depends only on the relative velocity reflects the symmetry
properties of binary Coulomb collisions. In terms of the collision operator, this should
lead to a property of Galilean invariance through a momentum-conserving operator.

In the context of gyrokinetics, a linearized gyro-averaged version of this operator
was derived [XR91], assuming that the distribution function remains close to a refer-

4Because the source is designed to inject a fixed quantity of energy in a localized phase-space domain,
regardless of the distribution function, it may lead to important local modifications of the distribution
(and possibly even to negative values) which can be smoothed out by radial diffusion and collisions.
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ence Maxwellian. This type of operator, well-suited for δf codes, is challenging numer-
ically for full distribution gyrokinetics. It was nevertheless successfully implemented re-
cently [IUAT09]. In order to avoid such costly development and simulations, simplified
collision operators have been derived for full-f codes. The objective is to find a simpler
form for the collision operator, compatible with the numerical scheme and implying limited
numerical costs, while verifying a number of basic properties:

• particle, momentum and energy conservation;

• relaxation toward a Maxwellian distribution function (Boltzmann’s H theorem);

• correct description of the neoclassical equilibrium [HH76].

One such operator, which retains the conservation properties but has a simpler form than
the complete operator [XR91] is the Lenard–Bernstein collision operator [LB58], which can
be expressed in momentum variables p‖ and p⊥ as

C(F ) = 1

p⊥
∂p⊥

{

p⊥Dp⊥FM∂p⊥

(
F

FM

)}

+ ∂p‖

{

Dp‖FM∂p‖

(
F

FM

)}

(2.27)

where FM is a reference Maxwellian distribution. Dp⊥ and Dp‖ are velocity diffusion coef-
ficients. Assuming FM to depend only on gyro-center variables, gyro-averaging expression
(2.27) leads to [GDPN+09]

C(F̄ ) = 1

B∗||
∂µ

{

B∗||D⊥
FM
B2

∂µ

(
F̄

FM

)}

+
1

B∗||
∂vG‖

{

B∗||D‖FM∂vG‖

(
F̄

FM

)}

+
1

B∗||
∇⊥ ·

{

B∗||DclFM∇⊥
(
F̄

FM

)}

(2.28)

where D⊥ = Dp⊥p
2
⊥/m

2, D‖ = Dp‖/m
2 and Dcl = Dp⊥/e

2B∗||
2. Interestingly, the third

term in (2.28) is a spatial diffusion term, of the form ∇2
⊥. Mathematically speaking,

this term is a direct result of the gyro-averaging procedure. One can understand this as
a consequence of the “mixing” of position and velocity coordinates by the guiding-center
transformation. The immediate drawback – in terms of numerical simulations – is that the
momentum and energy conservation of the collision operator, which is local in position
for the particle collision operator, is no longer verified at a given position in guiding-
center space, but rather appears as a nonlocal effect. In other words, it takes the form of
a compensation between the position and velocity terms of Eq. (2.28) in guiding-center
phase space. In Gysela, this small spatial diffusion term Dcl has not been implemented
at the moment and a local (in space) momentum and energy conservation property for
the collision operator is therefore possible.

Because the magnetic moment µ is an exact invariant of the collisionless gyrokinetic
model, it serves as a parameter in the numerical model, and gyrokinetic codes such as
Gysela are parallelized in the µ direction. As a result, the numerical cost of collisions
in perpendicular velocity space would be substantial, as large amounts of communication
between processors, each representing a single µ value, would be required to compute
the collision operator. It has been demonstrated analytically that collisions in parallel
velocity space only are sufficient to recover the basic properties expected of the collision
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operator [GDPN+09], including the predictions of neoclassical theory. This corresponds to
the present status in Gysela, i.e. D⊥ = 0 and Dcl = 0, leading to the following expression
for the collision operator

C(F̄ ) = 1

B∗||
∂vG‖

{

B∗||D‖FM∂vG‖

(
F̄

FM

)}

(2.29)

The Maxwellian FM is chosen to be a local Maxwellian, characterized by a density n,
a mean velocity V‖coll in the parallel direction and a temperature Tcoll identical in the
parallel and perpendicular directions. The following Maxwellian distribution is a solution
of C(FM ) = 0:

FM = n

(
m

2πTcoll

)3/2

exp

{

−
m

(
vG‖ − V‖coll

)2

Tcoll
− µB

Tcoll

}

(2.30)

where Tcoll and V‖coll need to be determined according to the required conservation prop-
erties of the operator. The collision operator (2.29) trivially conserves the number of
particles. In addition, the conservation of parallel momentum and energy read

∫ B∗||
m
dµdvG‖ mvG‖C(F̄ ) = 0 (2.31)

∫ B∗||
m
dµdvG‖

(
1

2
mvG‖

2 + µB

)

C(F̄ ) = 0 (2.32)

These two constraints provide two linear equations in Tcoll and V‖coll, and are therefore
verified if the temperature and velocity of the reference Maxwellian are defined as

mPV‖coll =

〈

m

B∗||
∂vG‖(B

∗
||D‖vG‖)

〉

〈
mD‖vG‖

〉

−
〈
m2D‖vG‖

2
〉

〈

1

B∗||
∂vG‖(B

∗
||D‖)

〉

(2.33)

PTcoll =
〈
D‖

〉 〈
m2D‖vG‖

2
〉
−

〈
mD‖vG‖

〉2
(2.34)

where

P =
〈
D‖

〉

〈

m

B∗||
∂vG‖(B

∗
||D‖vG‖)

〉

−
〈
D‖vG‖

〉

〈

m

B∗||
∂vG‖(B

∗
||D‖)

〉

(2.35)

Details of the calculation are presented in appendix C, including the more general case
D⊥ 6= 0. The velocity-space average is defined as

〈...〉 =
∫ B∗||

m
dµdvG‖F... (2.36)

For full-f simulations such as those performed with the Gysela code, the temperature
and velocity of the reference Maxwellian may evolve significantly and must therefore be
updated regularly throughout the simulation.

As computed in [GDPN+09], the velocity diffusion coefficient in (2.29) is

D‖(r, vG‖) = 3

√
π

2

v3T (r/R)
3/2

qR0
ν∗
Φ(v)−G(v)

2v
(2.37)

23



2.3. GYSELA: A GLOBAL GYROKINETIC CODE

where the collisionality parameter ν∗ is a function of the ion-ion collision frequency νii

ν∗ =
qR0νii

vT (r/R)3/2
(2.38)

νii =
4
√
π

3

ne4 ln Λ

(4πǫ0)2m2v3T
(2.39)

Eq. (2.37) makes use of the error function Φ and Chandrasekhar function G

Φ(v) =
2√
π

∫ v

0
e−x

2

dx (2.40)

G(v) =
Φ(v)− vΦ′(v)

2v2
(2.41)

The simplified operator (2.29), taking into account collisions in parallel velocity space
only, was extensively studied in [DPDG+11]. The key results of neoclassical theory, in
particular concerning heat transport and poloidal rotation, are well reproduced using this
operator, including their aspect ratio and collisionality dependence.

2.3.3 Padé approximation of the gyro-average operator

In order to compute the gyro-center trajectories in the gyrokinetic equation (2.18), the
electric potential must be gyro-averaged to obtain φ̄ = J ·φ. The gyro-averaging operator J
is also applied to the gyro-center distribution function F̄s in the quasi-neutrality equation
(2.16). This operator corresponds to an average around a Larmor circle, which lies in the
plane perpendicular to the magnetic field with a radius defined by the magnetic moment
µ. The general expression of the gyro-average of a given field G is

J ·G =

∮ 2π

0

dα

2π
G

=

{∮ 2π

0

dα

2π
exp (ρc · ∇)

}

G (2.42)

where ρc is the Larmor radius. Note that, even if G depends only on the spatial coordinate,
J · G will depend on the spatial coordinate and the magnetic moment µ. Eq. (2.42) can
be explicited using a Fourier decomposition of G into its components Ĝk

J ·G =

∫ 2π

0

dα

2π

∫ +∞

−∞

d3k

(2π)2
Ĝk exp {ik · (x+ ρc)}

=

∫ +∞

−∞

d3k

(2π)2

[∫ 2π

0

dα

2π
eik·ρc

]

Ĝke
ik·x

=

∫ +∞

−∞

d3k

(2π)2
J0(k⊥ρc)Ĝke

ik·x (2.43)

where J0 is the Bessel function of first order, and k⊥ is the norm of the perpendicular
component k⊥ = k − (k · b)b of the wave vector. This expression in Fourier space is
practical when dealing with periodic geometry, and when the radial dependence of the
Larmor radius is not accounted for. Thus, the exact expression (2.43) is mainly well-
suited for the local gyrokinetic codes mentioned in section 2.3.1.
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In the context of global gyrokinetic codes, Fourier decomposition is not practical, and
other solutions must be sought. A method which has been adopted in several gyroki-
netic codes, including Gysela, is to use an approximation of the Bessel function which
has a tractable expression in real space. The most common approximation is the Padé
expansion [SGF+05] of the Bessel function

J0(k⊥ρc) ≃
1

1 + (k⊥ρc)2/4
(2.44)

This approximation allows one to recover the limit of the Bessel function for large wave-
lengths, i.e., k⊥ρc ≪ 1, but overdamps smaller scales, as can be seen for the example in
Fig. 2.4. In real space, the Padé approximation corresponds to an implicit equation where

(a) (b)

Figure 2.4: Exact and Padé approximated gyro-average operators applied on an arbitrary
funcion F exhibiting a broad Fourier spectrum ranging from low to large wavelengths as
compared with the Larmor radius ρc: (a) Representation in Fourier space, (b) Represen-
tation in real space (figures from [SGF+05]).

a Laplacian must be inverted
(

1− ρ2c
4
∇2
⊥

)

J ·G = G (2.45)

where we recall the general expression of the Larmor radius ρ2c = 2mµ/
[
e2B(r, θ)

]
. This

expression does not verify the Hermitian property of the gyro-average operator, which is
of importance for the symmetry and conservation properties of the gyrokinetic model (see
section 3). Therefore, in Gysela, the gyroaverage of a function G is actually obtained by
solving [

1−∇⊥
(

mµ

2e2B0
∇⊥

)]

J ·G = G (2.46)

where B0 is constant. This additional approximation is consistent with the gyrokinetic
ordering and recovers the Hermitian property of the exact gyro-average operator.

Since the Padé approximation is known to overdamp small scales, other approaches
have been considered for the gyro-average operator in global simulations [CMS10]. One
possibility is to approximate the integral over the Larmor circle by a sum over a finite
number of points on this circle. By increasing the number of points, a good accuracy
can be obtained even for large Larmor radii, which is not the case with the Padé ap-
proximation. Another promising alternative lies in direct integration of the gyro-average
operator [CMS10].
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2.3.4 The semi-Lagrangian numerical method

The gyrokinetic model considered in the present work, obtained by coupling a gyrokinetic
equation (2.18) with a quasi-neutrality equation (2.16), belongs to the class of models
generically referred to as Vlasov–Poisson models. Historically, three general types of nu-
merical schemes have been developed to solve this class of problems. A detailed review of
the numerical methods used to solve the gyrokinetic model can be found in [GS].

On the one hand, Lagrangian – also known as Particle-in-Cell (PIC) – methods [BL85]
use a discrete description of velocity space as a finite number of macro-particles. These
macro-particles then follow the characteristics of the Vlasov equation, using the fundamen-
tal property that the distribution function is exactly conserved along these characteristics.
The only grid used is in real space, where the macro-particle distribution is deposited in
order to solve the quasi-neutrality equation. The numerical cost of Lagrangian method
depends on the number of macro-particles, which can be chosen depending on the expected
accuracy. Moreover, parallelization of such algorithms is fairly straightforward and can be
efficient for a very large number of processors. The main drawback of Lagrangian methods
is that the sampling of the distribution function can lead to large numerical noise, which
needs to be treated by efficient – but complex and computationally heavy – noise reduction
method [JBA+07].

On the other hand, Eulerian methods use a fixed grid in all directions of phase-space.
The operators in the Vlasov equation can then be discretized using finite volumes, finite
differences or spectral methods. The numerical scheme may be more expensive computa-
tionally than in the Lagrangian approach, but the essential advantage is that this method
is not subject to noise issues. However, the discretization of the operators can lead to
numerical dissipation.

The semi-Lagrangian method, which is the one chosen for Gysela, is a compromise
between the two classical Eulerian and Lagrangian methods. This approach was first
developed for meteorological studies (see [SC91] for a review) before being adapted to
plasma simulations [SRBG99]. The (Eulerian) fixed grid is adopted in order to avoid
numerical noise due to sampling of the distribution function. In the spirit of Lagrangian
simulations, the characteristics of the Vlasov equation are used for the time evolution of
the distribution function, using its conservation along the characteristics. Thus, numerical
dissipation due to the discretized operators is avoided.

The basic algorithm for the backward semi-Lagrangian numerical scheme implemented
in Gysela [GBB+06, GS] is described in Fig. 2.5. At a given time iteration, for each grid
point, the characteristic of the Vlasov equation is integrated backward in time. The foot
of the characteristic which is then obtained is not, in general, on the simulation grid.
Therefore, an interpolation must be performed to compute the value of the distribution
function for that characteristic. A good accuracy during this interpolation step is essential
to the overall results of the semi-Lagrangian scheme. It has been shown [FSB01, BM08]
that cubic spline interpolation provides a good compromise between accuracy (i.e., low
diffusivity) and numerical cost.

In the case of a complex geometry rather than circular magnetic surfaces, a new ap-
proach to the semi-Lagrangian method has been investigated, using Non Rational Uniform
B-Splines (NURBS)5. This approach was implemented and validated in a two dimensional
(1D in space, 1D in velocity) Vlasov–Poisson simulation [ALG+11], but at the moment is
not sufficiently mature to be adapted to the five dimensional model considered here.

5NURBS are a mathematical tool commonly used in the computer-aided design (CAD) community,
which can describe complex geometries with a relatively low numerical cost.
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CHAPTER 2. THE GYROKINETIC MODEL

Figure 2.5: Interpolation scheme for the semi-Lagrangian method: (a) on a fixed phase-
space grid, (b) follow trajectories back in time to compute Fij(t+∆t), (c) interpolate the
value from the known values of F (t), (d) solve the field equations. (figure from [GIVW10])

2.4 General presentation of a Gysela simulation

As a complement to the presentation of the gyrokinetic model and its implementation in
Gysela, we describe in this section general results from a Gysela simulation, setting the
framework for the numerical results presented in later sections.

We consider a reference simulation where the normalized gyroradius is ρ∗ = 1/512
at mid-radius, roughly corresponding to the expected value for ITER. The dimension-
less collisionality, as defined in Eq.(2.38), approximately constant throughout the simu-
lation domain, is ν∗ = 0.1. The 5D phase-space grid necessary for this simulation was
(Nr, Nθ, Nϕ, NvG‖ , Nµ) = (1024, 1024, 128, 128, 16), leading to approximately 3.1011 grid

points. This simulation ran for one month on 8192 processors6 on the Jade supercomputer
of the Centre Informatique National de l’Enseignement Supérieur (CINES) in Montpellier,
France.

The safety factor (see Eq. (2.2)) profile is chosen as q(r) = 1 + 2.78 (r/a)2.8 while the
aspect ratio is R/a = 3.2. The temperature and density profiles are initialized with
constant logarithmic gradients, except at the radial boundaries of the domain where
the gradients are vanishing. The initial parameters are −dr log n = R0/Ln = 2 and
−dr log T = R0/LT = 12 where Ln and LT are respectively the ion density and temper-
ature gradient lengths, and R0 is the major radius at the magnetic axis. These profiles
place the plasma significantly above the linear threshold for the ITG instability. Since the
adiabatic electron response impedes particle transport, the particle density profile remains
constant throughout the simulation7. A heat source is prescribed in the plasma core, in
order to operate in the flux driven regime. Note that the heat source used in the simula-
tion does not inject any momentum or vorticity, as presented in section 2.3.1. Thus, the
ion temperature is fixed only at the outer radial boundary, and evolves freely elsewhere.

6This corresponds to approximately 6.106 total hours, in other words nearly seven centuries of compu-
tation time!

7Variations of the gyro-center density are possible due to polarization but remain small.
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2.4. GENERAL PRESENTATION OF A GYSELA SIMULATION

In the statistical steady-state reached by the simulation, a mean ion temperature profile
is obtained with R0/LT ≃ 11.5 The mean density and temperature profiles obtained are
shown in Fig. 2.6.
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Figure 2.6: Initial density and temperature profiles for a Gysela simulation.

In the initial distribution function, a small perturbation is present, covering a wide
spectrum of poloidal and toroidal Fourier modes. From this initial state, stable modes will
be rapidly damped while unstable modes will grow exponentially. The unstable modes
then saturate and transfer energy to the zonal flows, eventually leading to a statistical
steady-state resulting mainly from the competition between unstable modes and zonal
flows (see the review [DIIH05] and references therein). Schematically, the unstable modes
drive zonal flows by transferring energy through nonlinear interactions, more specifically
three-wave coupling between two micro-scale modes and the zonal flow. Zonal flows can
only be driven by such interactions and cannot directly grow from the free energy source
(i.e., the temperature gradient). Thus the generation of zonal flows necessarily leads to a
reduction of turbulence and transport. One can picture this as a predator-prey system,
where the predator (zonal flows) feeds on the prey (unstable turbulent modes) but needs
the prey to thrive in order to develop.

The condition of resonance for ITG modes leads to a vanishing wavenumber in the
parallel direction, i.e. k‖ = (n +m/q)/R = 0. Thus, the unstable modes correspond to
m/n = −q. This is apparent when computing the 2D Fast Fourier Transform (FFT) of
the electric potential – which governs turbulent transport in electrostatic simulations – in
the poloidal and toroidal directions, as represented in Fig. 2.7. The dominant modes are
all localized near the n = −m/q line.8

In real space, the electric potential is characterized by vortex-like structures. As these
vortices are stretched in the direction of the magnetic field line, they can best be visualized
by taking a poloidal cross-section of the electric potential fluctuations, as presented in
Fig. 2.8 for the same time in the simulation as the previous representation in Fourier
space (Fig. 2.7). The radial dimension of the structures in Fig. 2.8 is of the order of 10
Larmor radii, as will be discussed in chapter 5.

Because the fundamental goal of turbulence studies in tokamaks is to predict the

8We note that, although non-resonant modes have a very small amplitude (as can be observed in
Fig. 2.7), they may play an important role through non-linear coupling with resonant modes and zonal
flows. The important role of non-resonant modes was clearly identified in [SSDP+10]
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Figure 2.7: Two-dimensional Fast Fourier Transform (FFT) of the electric potential at
mid-radius. The colors represent the logarithm of the amplitude for each (m,n) mode.
The white line corresponds to the local resonance m/n = −q, while the dashed red lines
correspond to the resonance computed from the minimum and maximum values of q in
the simulation domain.

confinement time (see section 1.1), an important quantity to consider is the radial heat
flux. We analyze here the dynamics of the flux-surface averaged turbulent heat flux, i.e.

Qturb =

〈∫

d3v vEr

(
1

2
mvG‖

2 + µB

)

F̄

〉

F.S.

(2.47)

where vEr is the radial component of the E×B velocity (Eq. (2.23)) and 〈 . 〉F.S. is the flux-
surface average defined in Eq. (2.17). Fig. 2.9 shows the radial and time evolution of Qturb,
normalized to gyro-Bohm units (see section 5.2). Several phases can be identified in this
figure. At first, as the system is initialized without turbulence, no transport is observed.
At approximately ωct = 3.104, a large outward propagating front is observed, which corre-
sponds to the linear regime of the instability. Finally, turbulent transport reaches a regime
of statistical steady-state. This regime is dominated by large-scale avalanche-like events,
with fronts propagating both inward and outward (although the heat flux remains out-
ward), recovering the basic properties of self-organized criticality (SOC) models [SGA+10].
The detailed dynamics of this transport dominated by avalanches will be analyzed in depth
in chapter 4.

Finally, to illustrate the kinetic aspects of the simulation, an example of the time
evolution of the guiding-center distribution function is given in Fig. 2.10a, as a function
of the parallel velocity for fixed values of all the other coordinates. Structures appear in
velocity space, suggesting non-Maxwellian features of the distribution function. This is
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Figure 2.8: Poloidal cross-section of the electric potential perturbations

Figure 2.9: Two-dimensional (in radius and time) representation of the – flux-surface
averaged – turbulent heat flux.

confirmed in Fig. 2.10b, where examples of clearly non-Maxwellian distribution functions
in the simulation are given. It is interesting to note that non-Maxwellian features are not
only identified in the tails of the distribution, where the number of particles is small, but
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(a) (b)

Figure 2.10: (a) Time evolution of the guiding-center distribution function (F̄ ) as a func-
tion of parallel velocity, for r/a = 0.5, µ = 0 and θ = ϕ = 0 and (b) Four examples of
F̄ (vG‖) for various times, corresponding to the dashed white lines in (a).

rather in the bulk of thermal particles, at velocities smaller than – or of the order of –
the thermal velocity. The contribution of these structures to fluid moments is likely to
be significant. The appearance of such structures in phase-space, possible because the
characteristic collision time is much longer than the turbulent time scale, can explain why
fluid simulations – which assume thermodynamic equilibrium – do not correctly reproduce
the transport due to electrostatic turbulence in tokamak plasmas.
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Chapter 3

Conservation equations and

calculation of mean flows in

gyrokinetics

I presented the main theorems of Frl. Noether at the July 26
meeting (...) The main theorem given in section 2 above is a
special case of the following far-reaching theorem of Frl. Noether:
If an integral I is invariant under a continuous group Gρ with ρ
parameters, then ρ linearly independent combinations of the

Lagrangian expressions are divergences.

Felix Klein, 1918

The issue of the conservation properties of the gyrokinetic model, especially with re-
spect to toroidal momentum, has emerged as a controversial subject in recent years. As a
result, the suitability of gyrokinetic codes for the description of toroidal momentum trans-
port has been questioned [PC08, PC10]. Indeed, verifying adequate conservation laws is
an essential step to provide a correct description of mean flows. Using Noether’s theo-
rem [Noe18], Brizard [Bri10] derived a conservation equation in the context of a reduced
gyrofluid model based on orderings consistent with gyrokinetic theory. The same method
was also applied to the gyrokinetic variational principle [BT11]. Through a different ap-
proach, using the tools of gyrokinetic field theory, Scott and Smirnov [SS10] derived local
conservation equations for energy and toroidal momentum.

In the following section 3.1, we derive local conservation equations for density, en-
ergy and toroidal momentum from the gyrokinetic model described in section 2.2.4, which
corresponds to the equations implemented in full-f gyrokinetic codes [GIVW10]. These
equations are exact insofar as they are obtained directly from the gyrokinetic model and
require no further assumption or approximation. The local conservation of toroidal angu-
lar momentum is verified numerically in section 3.2, along with the radial force balance
equation, confirming that gyrokinetic codes provide a self-consistent description of mean
flows and radial electric field, that holds within the gyrokinetic framework and that can
be computed with the precision of the code [AGG+11].
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3.1 Local conservation laws for gyrokinetics

From the conservative form of the gyrokinetic equation (2.18), local conservation equations
can be derived analytically. In the following, we consider the general case where several
species are treated kinetically, but the subscript s will be left out for simplicity where there
are no ambiguities. Details of the collision operator used in the model are not essential,
as long as number of particles, momentum and energy are conserved, which is indeed the
case for the reduced operator implemented in Gysela (see section 2.3.2).

3.1.1 Charge density

To obtain local conservation equations, we perform integrations of the conservative form
of the gyrokinetic equation (2.18) over all variables other than the radial coordinate χ,
i.e. over dτ∗ ≡ JsdθdϕJvdvG‖dµ. We recall that Js = 1/(B · ∇θ) is the Jacobian in real
space and Jv = 2πB∗||/ms is the Jacobian in gyro-center velocity-space.

We integrate Eq. (2.18) in a small phase-space volume between two surfaces χ and
χ + δχ and apply a divergence theorem. Summing over all species, this leads directly to
the usual expression for local transport of charge density

∂tρ̄+ ∂χJ χ = 0 (3.1)

where ρ̄ is the charge density and J χ is the radial current of gyrocenters:

ρ̄ =
∑

species

es

∫

dτ∗F̄ (3.2)

J χ =
∑

species

es

∫

dτ∗(ż · ∇χ)F̄ (3.3)

In the case of electrostatic simulations with adiabatic electron response (see section 2.2.4),
boundary conditions impose a vanishing radial current at the edges of the simulation
domain. Therefore the radial current J χ is expected to be small in such simulations.

3.1.2 Energy

Similarly, a conservation equation for the total energy can be derived by multiplying the
gyrokinetic equation (2.18) by the gyrocenter Hamiltonian (2.5), which reads

H̄ =
1

2
mvG‖

2 + µB + eφ̄ (3.4)

Integrating over dτ∗ yields

∂t

∫

dτ∗
(
1

2
mvG‖

2 + µB

)

F̄ +

∫

dτ∗eφ̄∂tF̄ +

∫

dτ∗H̄
1

B∗||
∇z ·

(

żB∗||F̄
)

= 0 (3.5)

Note that additional terms may appear if the collision operator does not conserve the total
Hamiltonian. The first term in Eq. (3.5) is the kinetic energy of the gyrocenters for the
species considered, noted EK in the following. To compute the third term, we integrate
again over a phase-space volume between χ and χ+ δχ. Because ż · ∇zH̄ = 0, this leads
to ∫

dτ∗H̄
1

B∗||
∇z ·

(

żB∗||F̄
)

= ∂χ

∫

dτ∗H̄ (ż · ∇χ) F̄ (3.6)
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This term yields the radial flux of energy Q defined as

Q =

∫

dτ∗H̄ (ż · ∇χ) F̄ (3.7)

For each species, we find an equation for the radial energy transport as

∂tEK + ∂χQ =W (3.8)

where the right-hand side appears as an energy source W = −e
∫
dτ∗φ̄∂tF̄ . This term

corresponds to an exchange of energy between a given species and the turbulence, and
is generally referred to as turbulent heating [MOT77, WSD+97, HW06, WS08], and cor-
responds to a transfer of energy between particles and the electromagnetic field (i.e.,
photons).

To obtain a local conservation equation with no source term, one should consider the
total energy. We decompose W as

e

∫

dτ∗φ̄∂tF̄ = e

∫

dτ∗φ
(
J · ∂tF̄

)
+ e

∫

dτ∗
{
(J · φ) ∂tF̄ − φ

(
J · ∂tF̄

)}
(3.9)

Summing over species and using the quasi-neutrality equation (2.14), the first term in
Eq. (3.9) can be identified as the potential energy

∑

species

e

∫

dτ∗φ
(
J · ∂tF̄

)
= −

∑

species

∫
dθdϕ

B · ∇θ φ∇ ·
{neqm

B2
∇⊥∂tφ

}

= −1
2
∂t

∫
dθdϕ

B · ∇θ φ∇ ·
{neqm

B2
∇⊥φ

}

= ∂t
∑

species

1

2
e

∫

dτ∗φ
(
J · F̄

)
≡ ∂tEp (3.10)

Finally, the second term in Eq. (3.9) corresponds to a polarization term, due to the
difference between particle and gyro-center densities. This term vanishes when integrating
over the complete phase-space volume. Therefore, it is indeed the divergence of a flux in
the local conservation equation. One possible approach to express this term explicitly as
a flux contribution is to use the low wavenumber approximation, which is consistent with
the gyrokinetic ordering, of the gyro-average operator

J ≃ 1 +
1

2
∇ ·

(mµ

e2B
∇⊥

)

(3.11)

At leading order in ρ∗, this expression allows one to recover the gyroaverage operator for
low wavenumbers, i.e. k⊥ρi ≪ 1 where k⊥ is the norm of the transverse component of the
wave vector. Using this approximation, we find for each species

IE = e

∫

dτ∗
{
(J · φ) ∂tF̄ − φ

(
J · ∂tF̄

)}

=
m

2e

∫

dτ∗
{

∂tF̄ ∇ ·
( µ

B
∇⊥φ

)

− φ∇ ·
( µ

B
∇⊥∂tF̄

)}

(3.12)

Integrating these terms by parts (see appendix D.1 for details) leads to

IE =
m

2e
∂χ

∫

dτ∗∂tF̄
µ

B
∇φ · ∇χ − m

2e

∫

dτ∗
µ

B
(∇⊥∂tF̄ ) · (∇⊥φ)

− m

2e
∂χ

∫

dτ∗φ
µ

B
∇(∂tF̄ ) · ∇χ+

m

2e

∫

dτ∗
µ

B
(∇⊥φ) · (∇⊥∂tF̄ ) (3.13)
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The second and fourth terms cancel each other out. The remaining terms can be expressed
in a more compact form using the gyrocenter perpendicular pressure P̄⊥ =

∫
d3vF̄µB.

This leads to the following conservation equation summed over all species

∂tEK + ∂tEp + ∂χQ+ ∂χQpol = 0 (3.14)

where

EK =
∑

species

∫

dτ∗
(
1

2
mvG‖

2 + µB

)

F̄ (3.15)

Ep =
∑

species

1

2

∫

dτ∗eφJ · F̄ (3.16)

Q =
∑

species

∫

dτ∗H̄(ż · ∇χ)F̄ (3.17)

Qpol =
∑

species

m

2e

∫
dθdϕ

B · ∇θ
1

B2

{

−φ∇(∂tP̄⊥) · ∇χ+ ∂tP̄⊥∇φ · ∇χ
}

(3.18)

We recall that, although the polarization term is necessarily the divergence of a flux term,
the expression for Qpol given here is not exact as it relies on an approximation of the
gyroaverage operator.

3.1.3 Toroidal momentum

Formally, the derivation of a conservation law for toroidal angular momentum is very
similar to what was done for energy in the previous section. The general idea is to multiply
the conservative gyrokinetic equation (2.18) by an invariant of motion. For the energy, this
invariant was the gyro-center Hamiltonian H̄ given by Eq. (2.5). In a tokamak geometry
such as described in section 2.1.1, the equilibrium motion of particles (in the adiabatic
approximation) is characterized by three motion invariants: the magnetic moment µ, the
energy Heq = mv2‖/2 + µB + φeq and the toroidal canonical momentum which reads

pϕ = −eχ+mR2 ż · ∇ϕ (3.19)

This third motion invariant is a direct consequence of the axisymmetry of the unperturbed
problem. Thus, the following derivation can be understood as an application of Noether’s
theorem [Noe18]. pϕ is an invariant of the unperturbed particle motion, i.e. related to the
Hamiltonian Heq =

1
2mv

2
‖+µB+φeq where the equilibrium electric potential φeq does not

depend on the toroidal angle.
In the context of gyrokinetic theory, the motion of gyrocenters – rather than particles

– should be considered. The unperturbed motion of gyrocenters also exhibits three motion
invariants, including the gyrocenter toroidal canonical momentum Pϕ defined as

Pϕ = muϕ − eχ (3.20)

with the notation uϕ = (I/B)vG‖. Pϕ is an exact invariant of the unperturbed gyrocenter

motion described by the Hamiltonian H̄eq =
1
2mvG‖

2 + µB + φ̄eq, which corresponds to
collisionless motion in a fully axisymmetric system. When axisymmetry is broken, which
can occur for instance due to turbulence (see chapter 4) or magnetic field ripple (chapter
6), Pϕ is no longer a motion invariant. In particular, when the electric potential becomes
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non-axisymmetric, the evolution of Pϕ is governed by the equation dtPϕ = −e∂ϕφ̄. This
result can be obtained from the expression of the gyrokinetic Poisson brackets Eq. (2.7).
Details of the calculation are presented in appendix E.

It is important to note that Pϕ is different from the particle canonical momentum,
which should be expected as the equations for particle motion and for gyro-center motion
are not identical. Formally, both can be derived as ∂L/∂ϕ̇ where L is a Lagrangian, but for
different dynamical systems and therefore different Lagrangians. However, the difference
between the two canonical momenta is of order O(ρ2∗) [BH07]. From the definition of Pϕ
given by Eq. (3.20), we define the local toroidal angular momentum as

Lϕ =
∑

species

m

∫

dτ∗uϕF̄ (3.21)

Note that Lϕ is the momentum for gyrocenter, which differs from the particle momentum
by terms of order O(ρ2∗). In order to derive a local conservation equation for Lϕ, we
multiply the conservative gyrokinetic equation (2.18) by Pϕ and integrate over all variables
other than χ, leading to

m∂t

∫

dτ∗uϕF̄−e
∫

dτ∗χ∂tF̄+e
∫

dτ∗F̄ ∂ϕφ̄+∂χ

∫

dτ∗(ż·∇χ)F̄ (muϕ − eχ) = 0 (3.22)

where we have used the fact that dtPϕ = −e∂ϕφ̄. Using the local conservation of number
of particles Eq. (3.1), the second term can be written as χ∂χJ χ. We also identify the last
term as −∂χ(χJ χ). Summing over all species this leads to

∂tLϕ + ∂χΠ
χ
ϕ + ∂χT

χ
ϕ = J χ (3.23)

where

Πχϕ =
∑

species

m

∫

dτ∗F̄ uϕv
χ
G (3.24)

Tχϕ =
∑

species

e

∫ χ

dχ

∫

dτ∗F̄ ∂ϕφ̄ (3.25)

J χ =
∑

species

e

∫

dτ∗vχGF̄ (3.26)

Equation (3.23) is an exact equation for the transport of gyrocenter toroidal momentum,
in the sense that it was obtained directly from the gyrokinetic model, with no additional
assumptions of orderings. Note that this equation can be linked to the result derived
in [PC10] by using a different approach for the derivation and applying additional approx-
imations, as described in appendix F.

The fact that the third term in equation (3.23), ∂χT
χ
ϕ , can be expressed as the di-

vergence of a flux is not trivial and requires further discussion. This can be shown by
multiplying the gyrokinetic equation (2.18) by Pϕ (instead of only uϕ) and integrating
over the complete phase-space, i.e. using dτ = dχdτ∗. This leads to

∂t

∫

dτPϕF̄ + e

∫

dτF̄ ∂ϕφ̄+

∫

dτ
1

B∗||
∇z ·

(

żB∗||PϕF̄
)

= 0 (3.27)

The canonical momentum Pϕ is an invariant of the equilibrium motion. Moreover, in an
isolated system, the only perturbations are internal to the system. More precisely, the
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perturbation considered in the gyrokinetic model used here is the electric potential, which
is computed self-consistently from the distribution function using the quasi-neutrality
equation. Therefore,

∫
dτPϕF̄ is an invariant of the isolated system, and the first term in

Eq. (3.27) vanishes. The third term also vanishes up to surface terms. Therefore, for an
isolated system,

∫
dτF̄ ∂ϕφ̄ = 0, which implies that

∫
dτ∗F̄ ∂ϕφ̄ is the divergence of a flux

term, and justifies the fact that it was expressed as ∂χT
χ
ϕ in the local conservation equation

(3.21). Note that in the case of a non-isolated system, momentum can be exchanged at
the boundaries of the system due to the two divergence terms in Eq. (3.27).

The result that the term e
∫
dτ∗F̄ ∂ϕφ̄ in the local conservation equation (3.23) corre-

sponds to the divergence of a flux is very general. In particular, it does not depend on
details of the quasi-neutrality equation. This result can be further ensured through the
symmetry properties of the gyroaverage operator, which verifies

∑

species

∫

dτF̄ ∂ϕφ̄ =
∑

species

∫

dτJ · F̄ ∂ϕφ (3.28)

Using the quasi-neutrality equation (2.14) it is straightforward to show that the right-
hand side of Eq. (3.28) is exactly zero with appropriate boundary conditions. When the
gyroaverage operator is replaced by a simplified expression, as is often the case in numerical
simulations, it is important for the conservation properties of the system to verify that
the reduced operator still verifies Eq. (3.28) [SS10]. One way to guarantee this condition
is to choose a Hermitian gyroaverage operator. This is the case for instance of the Padé
approximation (see section 2.3.3) as it is used in the Gysela code, i.e. Eq. (2.46).

Physical interpretation of the toroidal momentum fluxes

The first flux in the local conservation equation for toroidal angular momentum (3.23),
Πχϕ, corresponds to the off-diagonal (ϕχ) component of the Reynolds stress. This term,
and specifically the contribution related to a non-axisymmetric E ×B velocity, describes
the generation of large-scale flows from small-scale turbulence. The role of the Reynolds
stress in generating toroidal rotation will be analyzed more precisely in section 4.

The second flux, Tχϕ , can be interpreted as the polarization flux of momentum, i.e. the
equivalent of the polarization flux of energy Qpol defined in equation (3.18). To obtain an
explicit expression of Tχϕ , we can use the low wavenumber approximation of the gyroav-
erage operator already presented, Eq. (3.11). As mentioned previously, this expression is
equivalent to the exact operator for low wavenumbers at leading order in ρ∗. Moreover,
this reduced operator verifies the symmetry property Eq. (3.28) of the exact operator,
which is necessary in order to preserve the conservative nature of the gyrokinetic model.
Using this approximation and following the calculations in appendix G, one can express
the polarization flux of momentum as

Tχϕ = −
∫

dθdϕ

B · ∇θ

{
neqm

B2
EχEϕ +

∑

species

1

2

m

eB2
(EχGϕ + GχEϕ)

}

(3.29)

up to higher order terms in k⊥ρi. Conventional covariant notations are used for the
components of the electric field E = −∇φ and G ≡ −∇P̄⊥, where we recall that P̄⊥ =
∫
d3vF̄µB is the gyrocenter perpendicular pressure.
The result is consistent with previous work by McDevitt et al. [MDGH09b] for parallel

momentum generation. Assuming P̄⊥ = 0, Tχϕ takes the form of the off-diagonal compo-
nent of a Maxwell stress linked to polarization effects. More precisely, it is simply the usual
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vacuum Maxwell stress, but replacing the vacuum permittivity ǫ0 by neqm/B
2. This cor-

responds to the classical Minkowski expression of the Maxwell stress tensor [Jac75]. One
can relate this result to the fact that, as previously noted in section 2.2.4, the quasi-
neutrality condition used in the gyrokinetic model, Eq. (2.16), takes the form of a Poisson
equation with the same substitution. The additional terms, proportional to derivatives of
the perpendicular pressure P̄⊥, correspond to Finite Larmor Radius (FLR) effects. They
can be interpreted as a generalization of the Maxwell stress in the case of hot plasmas.

Finally, the term on the right-hand side of the local conservation equation (3.23), J χ,
is the radial current of gyrocenters. This term appears formally as a local source of toroidal
angular momentum, and it is expected to be small in electrostatic simulations assuming
adiabatic electron response. We will show in the following that this term can actually be
interpreted as an exchange of momentum between the gyrocenters and the electric field.

3.1.4 Poloidal momentum: vorticity equation

Let us recall the equation previously derived in section 3.1.1 for the local conservation of
charge density

∂tρ̄+ ∂χJ χ = 0 (3.30)

where the charge density ρ̄ is defined in Eq. (3.2) and the radial current of gyrocenters
J χ is given by Eq. (3.3). Interestingly, the conservation equation for density can also be
interpreted as a vorticity equation, by expressing the charge density ρ̄ as a function of the
electric potential φ. The idea is to rewrite the distribution function as F̄ = J ·F̄+(F̄−J ·F̄ ),
using the quasi-neutrality equation (2.16) to express the first term and the low wavenumber
approximation Eq. (3.11) of the gyroaverage operator to compute the second. Up to higher
order terms in k⊥ρi, this leads directly to

ρ̄ = −
∫

dθdϕ

B · ∇θ∇ ·
(
neqm

B2
∇⊥φ+

∑

species

1

2

m

eB2
∇⊥P̄⊥

)

(3.31)

where the gyrocenter density is the sum of the fluid vorticity (∼ ∇2φ) and a perpen-
dicular pressure term, interpreted as a FLR correction leading to a generalized vorticity.
Integrating the vorticity equation (3.30) once leads to

∂tσ = −J χ (3.32)

where we define the generalized polarization σ as

σ =

∫
dθdϕ

B · ∇θ

(
neqm

B2
Eχ +

∑

species

1

2

m

eB2
Gχ

)

(3.33)

This appears as the χ component of the polarization vector [BH07], plus an additional
term corresponding to FLR corrections. Up to these FLR effects, σ is proportional to
the poloidal component of the E × B drift velocity. Thus the evolution equation for the
polarization, Eq. (3.32), governs the radial electric field, which contributes to the poloidal
flow.

The radial current J χ can be decomposed into two components coming respectively
from the curvature and E × B drifts. Expressions of both components of the radial
current are presented in appendix H. The curvature term appears as the neoclassical vis-
cous damping term, describing the relaxation of the poloidal velocity to its neoclassical
value [KDG91]. The E × B contribution corresponds to the (off-diagonal) perpendicu-
lar component of the Reynolds stress. A relation between the flux of vorticity and the
Reynolds stress is thus obtained, as expected from Taylor’s theorem [Tay15].
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3.1.5 Total momentum conservation and steady-state

In the previous sections, we have derived two local conservation equations for momentum.
The first equation describes the evolution of gyrocenter toroidal angular momentum

∂tLϕ + ∂χΠ
χ
ϕ + ∂χT

χ
ϕ = J χ (3.34)

The second, obtained by integrating the generalized vorticity equation, is a conservation
equation for polarization, which is directly linked to poloidal momentum

∂tσ = −J χ (3.35)

Notice that the source terms on the right-hand side of equations (3.34) and (3.35) are
exactly opposite. Therefore a conservation equation without any source term can be
obtained by summing these two equations:

∂t (Lϕ + σ) + ∂χ
(
Πχϕ + Tχϕ

)
= 0 (3.36)

This equation can be understood as a local conservation of total toroidal momentum, with
σ corresponding to the toroidal momentum carried by the field. In the Minkowski for-
mulation, the field momentum density is proportional to the Poynting vector, and reads
g = D × B, where D = ǫ0E + P = −(neqm/B2)∇⊥φ. Taking the toroidal compo-
nent of g, i.e. gϕ = R2g · ∇ϕ, one finds the radial component of the polarization vector,
(neqm/B

2)Eχ. Neglecting FLR corrections, this corresponds to the definition of the gener-
alized polarization σ given by Eq. (3.33). Thus, Eq. (3.36) describes the local conservation
of total toroidal momentum, with Lϕ accounting for gyrocenter momentum and σ corre-
sponding to field momentum. This formulation is consistent with results obtained in both
gyrokinetic [SS10] and fluid [Bri10] approaches, with similar expressions for the toroidal
momentum carried by the field.

The equations obtained for momentum conservation are particularly useful to describe
the time-independent mean flows in tokamaks. In the steady-state regime and in the
absence of momentum sources, one has

J χ = 0 (3.37)

∂χΠ
χ
ϕ + ∂χT

χ
ϕ = 0 (3.38)

In the first equation, the radial current J χ is the sum of two contributions. The first
contribution (see appendix H.1) comes from the curvature drift, and corresponds to neo-
classical viscous damping, which forces the poloidal velocity to relax to its neoclassical
value. This friction competes with the turbulence driven radial current, which appears
as the transverse component of the Reynolds stress (see appendix H.2). Therefore, the
equation J χ = 0 describes the competition between neoclassical damping and turbulent
generation of poloidal flows. The competition between these two effects, still largely a
debated issue, was recently investigated in gyrokinetic simulations [DPGS+09, VBV+12].

In the second equation, Πχϕ is the off-diagonal (ϕχ) component of the Reynolds stress,
while Tχϕ is the corresponding component of the Maxwell stress obtained from the polar-
ization field. In the fully axisymmetric problem, the solutions to this equation exhibit a
degeneracy, which can be alleviated by taking into account a breaking of the axisymmetry,
for instance by turbulence (section 4) or magnetic field ripple (section 6).
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3.2 Numerical test of the momentum conservation

In this section, we verify numerically the conservation properties of the gyrokinetic model
necessary to describe the mean flows and radial electric field. As previously mentioned,
the equations implemented in Gysela correspond to the model which was used for the
analytical derivation, in the specific case of adiabatic electrons and a single kinetic ion
species. We recall in particular that the Padé approximation chosen for the gyroaverage
operator, although it overdamps small scales (see section 2.3.3), verifies the symmetry
property Eq. (3.28) necessary to preserve the conservation properties of the gyrokinetic
model. Also, the collision operator implemented in Gysela locally conserves density,
momentum and energy, as detailed in section 2.3.2.

3.2.1 Radial force balance

In the fluid description, the radial electric field and the flows are related via the force
balance equation [HH76]. It is important to ensure that this relation holds also in gy-
rokinetics [GDPN+09]. The radial force balance can be recovered analytically from the
gyrokinetic description, as shown in appendix I, yielding the standard fluid expression

∂χφeq +
∂χPeq
neqe

+
B

I
V‖eq = q

B2R2

I2
(V · ∇θ) (3.39)

where the equilibrium density neq, pressure Peq, velocity V‖eq and potential φeq are func-
tions of −Pϕ/e (which is approximately equal to χ at first order in ρ∗).

In order to check that the force balance equation is verified numerically, we compare
the poloidal velocity directly computed in Gysela with the expected velocity from the
force balance equation, i.e. the left-hand side of Eq. (3.39). This result was previously
verified in Gysela simulations for a wide range of parameters such as temperature gradi-
ent, collisionality and normalized gyroradius ρ∗ [DPGS+09, DPDG+11]. We present here
the result from the simulation described in section 2.4, recalling the key dimensionless
parameters of the simulation: the normalized gyro-radius ρ∗ = 1/512 (at mid-radius) and
collisionality ν∗ = 0.1. In the present simulation, the heat source injected mainly par-
allel energy, leading to a strongly anisotropic pressure. However, only the perpendicular
component of the diagonal pressure tensor enters the force balance equation. As shown
in Fig. 3.1, excellent agreement is obtained, with a precision of approximately 2%. Notice
that the balance results mainly from a competition between radial electric field, which
dominates the small-scale variations of the poloidal velocity, and perpendicular pressure.

This agreement is obtained very robustly, whether or not the quantities considered are
time-averaged. This result is somewhat surprising considering the time scales involved in
the problem. The pressure, which acts as a force in the balance equation, is generally
considered as a consequence of collisions, and one might expect the force balance to be
recovered on time scales of the order of the collision time. However, in turbulent simu-
lations with very low collisionality – and νii ≪ ωturb – the radial force balance is at any
given time in the simulation.

3.2.2 Toroidal angular momentum

A local conservation equation for toroidal angular momentum was derived in section 3.1.3.
To test this conservation numerically, we compare in Fig. 3.2a the time derivative of the
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Figure 3.1: Numerical test of the radial force balance, comparing the poloidal velocity as
computed directly in the code (vGY Sθ ) and as a sum of the other terms in the radial force
balance equation (vFBθ ).
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Figure 3.2: (a) Numerical test of the conservation of toroidal angular momentum, com-
paring the time derivative of angular momentum (i.e. ∂tLϕ) to the sum of the other terms
in Eq. (3.23), (b) plotted separately for a smaller radial domain.

toroidal momentum Lϕ with the sum of the other terms in Eq. (3.23), for the same
simulation considered in the previous section, showing excellent agreement.

The quantities are averaged over a significant time interval in the non-linear statistical
steady-state (approximately 104ω−1c where ωc is the ion cyclotron frequency) and are
normalized to minR0v

2
T /a where R0 is the major radius at the magnetic axis, vT is the

thermal velocity and a is the minor radius. Note that the conservation is verified despite
strong variations of the momentum flux both radially and in time. This result was robustly
obtained in several nonlinear simulations using Gysela with a wide range of parameters
in the dimensionless numbers ρ∗ and ν∗.

The contributions of the different terms in equation (3.23) are detailed in Fig. 3.2b,
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separating the Reynolds stress (Πχϕ) into its turbulent and neoclassical components, i.e.
splitting vχG in expression (3.24) into E×B and magnetic drifts. Note that the neoclassical
stress, although it corresponds to momentum transport by the magnetic drifts, is present
due to symmetry breaking by turbulence only, as magnetic field ripple (see section 6) is
not included in this simulation. As expected, contributions from the radial currents of
guiding-centers (J χ) are negligible in the statistical steady-state regime (approximately
0.1% of the total magnitude, i.e. a factor ρ∗ smaller than ∂tLϕ). The balance of toroidal
angular momentum results mainly from a competition between turbulent and neoclassical
stresses, with a significant contribution from the polarization stress.

3.3 Summary

In addition to standard conservation laws for charge density and energy, we have derived
a local conservation equation for gyrocenter toroidal angular momentum in the context of
gyrokinetics, Eq. (3.23). Within the gyrokinetic framework, this conservation equation is
exact as it was obtained directly from the gyrokinetic model, with no additional assump-
tions of orderings. Moreover, the gyrocenter and particle toroidal momentum differ only
by terms of order O(ρ2∗). This local conservation was verified numerically with excellent
precision in nonlinear gyrokinetic simulations using Gysela

An evolution equation was also obtained for poloidal momentum, by reinterpreting the
charge density conservation as a vorticity equation. The local conservations of toroidal
and poloidal momentum, associated with the radial force balance equation, which was
also verified numerically, provide a complete and accurate description of mean flows in
gyrokinetics.
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Chapter 4

Toroidal symmetry breaking by

electrostatic turbulence

Immanquablement, ces vents isolés se rencontrèrent, contrecarrant leurs puissances,
les cumulant parfois, s’entredéviant et s’entrecalmant. . . Ainsi naquirent les premiers
tourbillons, ainsi commença la lenteur. De ce chaos de matière alentie, brassée par
l’hélice des vortex, émergea les volutes relatives du lentevent, ce cosmos des vitesses
vivables, d’où nous provenons.

Alain Damasio, La Horde du Contrevent, 2004

As demonstrated in section 3.1.3, the fact that the canonical toroidal momentum is an
invariant of unperturbed guiding-center motion prevents the generation of toroidal rotation
in an axisymmetric system. Thus, for intrinsic rotation to appear, a breaking of the
axisymmetry is required. One important mechanism which can lead to toroidal symmetry
breaking is plasma micro-turbulence, and in particular electrostatic ITG turbulence.

In order to describe in detail the generation of intrinsic toroidal rotation from tur-
bulence, we consider only simulations with a vanishing initial profile for toroidal rotation
and no extrinsic momentum source. In section 4.1, we present the different phases in
the buildup of an intrinsic rotation profile in the simulation. The statistical properties of
turbulent momentum transport are analyzed in section 4.2, emphasizing the strong link
with heat transport. Different possible mechanisms leading to the turbulent generation of
intrinsic toroidal rotation are considered in section 4.3, and their relative importance is
investigated.

4.1 Intrinsic toroidal rotation generated by turbulence

We consider a Gysela simulation with the normalized gyroradius ρ∗ = 1/512 at mid-
radius and collisionality ν∗ = 0.1. The parameters are those already detailed in section
2.4. We recall in particular that the density and temperature profiles were initialized
with dr log n = R0/Ln = 2 and dr log T = R0/LT = 12, constant in the simulation
domain except near the radial boundaries. The density profile remains constant due to
adiabatic electron response while the temperature gradient eventually stabilizes around
R0/LT ≃ 11.5.
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4.1. TOROIDAL ROTATION GENERATED BY TURBULENCE

4.1.1 Rotation buildup

As explained in section 2.4, Gysela simulations are initialized with a turbulent drive
above the threshold for the ITG instability, but in a non-turbulent initial state. The
simulation thus begins with a linear phase, where resonant modes grow exponentially.
This linear growth phase is followed by a large relaxation event, propagating outward in
the radial direction at a speed higher than the ion diamagnetic velocity. This relaxation
is characterized by a strong front of positive (i.e. outward) heat flux1.

From a vanishing initial profile of toroidal rotation, we observe the generation of signif-
icant intrinsic rotation during the initial relaxation event, as shown in Fig. 4.1, where both
the turbulent heat flux and the generated toroidal momentum are plotted. The resulting
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Figure 4.1: Propagation of a front of turbulent heat flux and generation of toroidal rota-
tion. The turbulent heat flux is in gyro-Bohm units (see section 5.2).

flow structure is dipolar, which is consistent with the existence of a local conservation law
for toroidal angular momentum, Eq. (3.23), with no source term as the radial current of
gyrocenters is negligible. Indeed, the radial integral of the toroidal angular momentum
resulting from this dipole is vanishing. The generation of intrinsic rotation clearly follows
the outward propagation of the front of heat flux. In other words, the maxima of turbu-
lent heat flux and momentum flux (∂tLϕ) propagate together. This also coincides with
a large turbulent Reynolds stress, which is the dominant contribution to the momentum
flux during the relaxation, as is the case in the statistical steady-state (Fig. 3.2b).

Another way to visualize the front observed in Fig. 4.1 is to represent the momentum
torque as a function of the heat flux, for all values of the radius, as shown in Fig. 4.2a.2

As the dipolar structure of toroidal momentum generated here is mainly cause by the
turbulent Reynolds stress, a clearer picture is obtained by representing the cycle in terms
of the two turbulent fluxes: the heat flux and the Reynolds stress. The result is shown
in Fig. 4.2b. With this representation, one can clearly identify a cycle, as both fluxes
are vanishing at the inner and outer radial boundaries. An important result is that the
largest value of the Reynolds stress appears to propagate ahead (i.e., is located further out

1Although they are identical here, note the important distinction between (i) the direction of propaga-
tion of the front and (ii) the direction of the flux.

2The cycle could also be analyzed through the time evolution of the quantities at a given radius. The
choice of studying instead the radial evolution at a given time is motivated by the fact that the resolution
of the diagnostics in the simulation is greater in the radial direction than in time.
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(a) (b)

Figure 4.2: Representation of the initial turbulent front (Fig. 4.1) as a cycle in heat flux
and (a) momentum torque (∂tLϕ) or (b) Reynolds stress. The cycles start and finish with
both fluxes at zero, the arrows represent the direction of increasing radius.

radially) of the maximum heat flux. More precisely, the delay between the two maxima
in Fig. 4.2b is of 5.7 ρi. The propagation velocity of the front can also be estimated
by following the maximum of either flux, and is found to be of roughly five times the
diamagnetic velocity, i.e. Vfront ≃ 5ρ∗vT where vT is the ion thermal velocity. Thus,
one can compute the delay between the maxima of heat flux and Reynolds stress, leading
to approximately 580ω−1c . The relation between heat and momentum transport will be
explored further in section 4.2.

Formally, the Reynolds stress can be decomposed into diffusive, convective [PAS07,
HDGR07] and so-called residual contributions [DMG+08, PSC+09] as follows

Πχϕ = −χϕ
∂vϕ
∂r

+ V vϕ +Πχϕ
res (4.1)

where χϕ is a diffusion coefficient and V is a momentum pinch velocity and Πχϕ
res

is
the residual Reynolds stress. Because the simulation was initialized with very low initial
toroidal rotation, the Reynolds stress generating toroidal rotation during the initial burst
contains only the residual stress. However, in the following, for full-f simulations, as
the Reynolds stress is computed self-consistently with an evolving equilibrium, the three
contributions cannot be distinguished. Thus, the results concerning toroidal momentum
transport are obtained from the total Reynolds stress, including residual stress contribu-
tions.

The conservation law for toroidal angular momentum, Eq. (3.23), in the absence of an
extrinsic source, implies that momentum is globally conserved in the simulation domain.
Thus, in the absence of momentum fluxes at the boundaries, one would only obtain dipolar-
like structures, with no net generation of toroidal rotation [IUAT09], i.e.

∫
dχLϕ would be

constant. In Gysela, so-called “no-slip” (i.e. V‖ = 0) boundary conditions are imposed at
the edge of the simulation domain. With this type of boundary conditions, non-vanishing
edge fluxes, and therefore a net generation of toroidal rotation, are possible. This occurs
after the propagation of the initial turbulent front (Fig. 4.1), when turbulence has spread to
the edge regions of the simulation domain, where spatial diffusion is applied (see page 21).
During this phase of the simulation, a net profile of toroidal rotation builds up with a
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dominant contribution in the co-current direction, as shown in Fig. 4.3. Note that the
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Figure 4.3: Time evolution of the radial profile of parallel flow. The velocity is normalized
to the thermal velocity vth, while time is normalized to R0/vth where R0 is the major
radius at the magnetic axis

initial distribution function was chosen as a canonical Maxwellian [ITK03, DPGS+08],
leading to a small but finite initial toroidal flow.

Eventually, the peak of the co-current rotation profile reaches a parallel Mach number
of a few percent, which is of the order of – though somewhat smaller than – typical
experimental observations. We emphasize the fact that the toroidal rotation profile is still
slowly evolving at the end of the simulation, due to limitations in the available computer
resources. In order to obtain a steady-state of the flows, simulations on time scales of
the order of the confinement time are necessary. For the ρ∗ value considered here, such
simulations are not accessible with the current resources. Reaching a statistical steady-
state for turbulence occurs on shorter time scales, and the temperature profile is initialized
close to an equilibrium with respect to the level chosen for the heat source, but the mean
flows are still slowly evolving at the end of the simulation

4.1.2 Large-scale avalanches of toroidal momentum flux

Once turbulence has reached its statistical steady-state and the rotation profile is only
slowly evolving, we can study the dynamics of toroidal momentum transport. Previously,
turbulence studies of tokamak plasmas using gyrokinetic codes have focused primarily on
the dynamics of heat transport. One important result of this work, especially in flux
driven simulations, is the observation of avalanche-like events for the heat flux. The term
“avalanche” is used to describe large-scale transport events characterized by a propagating
front of large outward heat flux. These fronts propagate at fractions of the diamagnetic
velocity, over distances larger than the typical correlation length of turbulence. Such
avalanches have been well documented for Gysela simulations [SGA+10, SGA+11] as
well as with other global gyrokinetic codes [CW03b, IUAT09, MJT+09, GLB+11, JI12],
regardless of details of the simulations. This intermittent transport has been found to re-
cover the basic properties of models based on self-organized criticality (SOC) [BTW87,
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HK92, CNLD96], in particular the typical 1/f decay of the frequency Fourier spec-
trum [SGA+10, MJT+09].

Momentum transport is found to exhibit very similar avalanche-like structures. In
Fig. 4.4, the space-time evolutions of the flux-surface averaged turbulent heat flux and
Reynolds stress near mid-radius are plotted, from the simulation previously described in
section 2.4 where the normalized gyroradius is ρ∗ = 1/512. The time slice corresponds to

(a) (b)

Figure 4.4: Space-time evolution of the turbulent heat flux (left) and turbulent Reynolds
stress (right) for the same simulation with the normalized gyroradius ρ∗ = 1/512. The
horizontal axis corresponds to normalized radius r/a. The green straight lines are identical
in both figures.

the phase of the simulation where turbulence has reached a steady-state, while flows are
still slowly evolving.

The two plots show important similarities. First of all, large-scale avalanches are clearly
visible both for the heat flux and the momentum flux, despite the flux-surface average.
Moreover, in both cases, fronts are propagating both inward and outward. Studying the
figures in detail, it appears that the same avalanches transport both heat and momentum.
To highlight this, two straight lines are represented on both plots at the same coordinates,
following two outward propagating fronts. The two avalanches are well captured by this
line on both graphs, suggesting that they are responsible for both heat and momentum
transport. The propagation velocity of the two fronts are not identical, however both are
propagating at velocities slightly lower than the diamagnetic velocity.

4.2 Statistical analysis of turbulent fluxes

In order to quantify more precisely the relation between heat and momentum transport, we
perform a statistical analysis of these fluxes in the turbulent steady-state. As a first step,
we can compute the two-dimensional – in radius and time – cross-correlation function of the
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Figure 4.5: Two dimensional (in radius and time) cross-correlation function of turbulent
heat flux and toroidal Reynolds stress

two fluxes, as shown in Fig. 4.5, where the momentum flux is represented by its dominant
contribution, i.e. the turbulent Reynolds stress3. The key result that can be extracted
from this figure is the maximum value of the cross-correlation, roughly 0.65, suggesting
a strong correlation. This value is found to vary depending on the position where the
analysis is performed and on the parameters of the simulation, but is systematically in
the range from 0.5 to 0.8. This result, along with the elongated elliptical structures
observed in the cross-correlations, confirm that the same avalanches transport both heat
and momentum, as observed in Fig. 4.4. These observations have been compared with
results from the gyrokinetic particle-in-cell code XGC1p [KCD09], showing good statistical
agreement between the two codes [KAD+12].

The next step in the statistical analysis of the heat and momentum fluxes is to study
their probability distribution functions (PDF). We compute the PDFs of the flux-surface
averaged fluxes for a radial domain around mid-radius, after turbulence has reached a
statistical steady-state in the simulation. Given the resolution of the simulation, the radial
and temporal domain considered lead to roughly 75 000 points for the PDFs. Because the
time average of the heat flux can vary slightly at different radial positions, we consider the
PDF of Q− 〈Q〉 where 〈Q〉 is the time-averaged heat flux at a given radial position. The
PDF of the heat flux, Fig. 4.6a, is clearly non-Gaussian, as it is strongly asymmetric and
displays a heavy tail for large values of the flux. Note that if the heat flux is interpreted as
the cross-correlation of two fluctuating fields with Gaussian statistics, one expects to find
a non-Gaussian PDF for the flux [CHS+96], with detailed characteristics depending on the
strength and sign of the correlation between the two fields. We perform the same statistical
analysis for the turbulent Reynolds stress in Fig. 4.6b. The resulting PDF exhibits the
same characteristic, with a strong asymmetry and a heavy tail for large values of the
Reynolds stress. The PDFs of heat flux and Reynolds stress can be compared directly on
a single plot by normalizing them to their respective mean values and standard deviations,

3In the following, only the off-diagonal (ϕχ) component of the Reynolds stress (Πχ
ϕ in the notations of

section 3.1.3) is considered as it is responsible for the radial transport of toroidal momentum.
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as shown in Fig. 4.6c. Thus normalized, the two PDFs are remarkably similar, in particular
in terms of the tails at large values of the fluxes. Finally, the asymmetry and intermittency
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Figure 4.6: Statistical distribution functions of the turbulent (a) heat flux and (b) Reynolds
stress, around mid-radius r/a = 0.5. In both cases, a Gaussian fit is also plotted as a
reference. (c) Both distributions are then normalized to their mean value and standard
deviation for direct comparison.

observed in the PDFs can be quantified by computing the third and fourth moments of the
distributions. The normalized third central moment, or skewness, measures the asymmetry
of a distribution, and is defined for a given distribution f as

Sk(f) =
〈(f − f̄)3〉
〈(f − f̄)2〉3/2 (4.2)

where f̄ = 〈f〉 is the mean value of f . The skewness of a Gaussian distribution – or
any other symmetric distribution – is exactly zero, while positive skewness indicates a
longer tail to the right of the mean value. For the PDFs in Fig. 4.6, we find a skewness of
approximately 0.79 for both fluxes. The normalized fourth central moment, or kurtosis,
measures the weight of the tails in the distribution. Kurtosis (sometimes referred to as
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4.2. STATISTICAL ANALYSIS OF TURBULENT FLUXES

Figure 4.7: Logarithmic contour of the joint statistical distribution of turbulent heat flux
and Reynolds stress. Both fluxes are normalized to their respective standard deviations.

excess kurtosis) is defined as

Ku(f) =
〈(f − f̄)4〉
〈(f − f̄)2〉2 − 3 (4.3)

so that the kurtosis of a Gaussian distribution is exactly zero. A positive kurtosis is
indicative of flat distributions, i.e. with heavy tails. We obtain values of roughly 1.7
for the heat flux and 1.5 for the Reynolds stress, clearly departing from a Gaussian in
both cases. Note that the fluxes used for the analysis are flux-surface averaged, and the
intermittency would be more pronounced for the truly local (poloidally and toroidally)
fluxes, as observed experimentally [NII+11].

A useful tool when analyzing the correlation between two turbulent fluxes Γ1 and Γ2

is the technique of joint PDF, which represents the statistical distribution of the variable
(Γ1,Γ2). Obviously, this technique requires larger datasets than standard PDFs, as the
variable becomes two dimensional. Nevertheless, the 75 000 points previously used are
sufficient to obtain a well-resolved joint PDF of turbulent heat flux and Reynolds stress,
as shown in Fig. 4.7. A significant number of events with both large turbulent Reynolds
stress and heat flux is clearly identified, which can be associated with the large-scale
avalanches presented in section 4.1.2. Finally, a striking feature of the joint PDF is the
two lines which can be drawn from the origin of the figure, one corresponding to the
minimum value of the Reynolds stress and another for growing heat flux and Reynolds
stress. These lines are reminiscent of the cycle observed during the initial front propagation
of the simulation (Fig. 4.2b), suggesting that the mechanism associated with this initial
front and the generation of a dipolar toroidal rotation profile is also at work during the
statistical steady-state of the simulation.

As a final result in the statistical analysis of the turbulent fluxes, we present a striking
observation of the difference between the dynamics of the Reynolds stress and of the time
evolution of toroidal momentum. Although the latter is governed by the divergence of the
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Reynolds stress, a statistical analysis by means of PDFs reveals that they exhibit very
different dynamics. The PDF of ∂tLϕ is shown in Fig. 4.8a, and is then normalized to its
mean value and standard deviation for comparison with the turbulent Reynolds stress in
Fig. 4.8b. We recall that, although momentum transport contains several terms as detailed
in section 3.1.3, Eq. (3.23), the dominant term is the divergence of the turbulent toroidal
Reynolds stress. The PDF for ∂tLϕ is quite different from the PDF of the Reynolds stress
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Figure 4.8: (a) Statistical distribution functions of the time derivative of the toroidal
angular momentum (∂tLϕ), around mid-radius r/a = 0.5, with a Gaussian fit is also
plotted as a reference. (c) The distribution is normalized to its mean value and standard
deviation for direct comparison with the distribution of the turbulent Reynolds stress.

obtained in Fig. 4.6b. The tails of the PDF, while still present, appear less important, as
characterized by the kurtosis of the distribution of approximately 0.46, to be compared
with 1.5 for the Reynolds stress. Also the PDF of ∂tLϕ is much more symmetric, with a
skewness of approximately 0.1, which is only marginally larger than the expected precision
considering the number of points in the distribution. We recall that the PDFs of heat flux
and Reynolds stress had a skewness of approximately 0.79.

This result, with a PDF for ∂tLϕ closer to a Gaussian than the PDF of the Reynolds
stress, highlights the fact that the turbulent Reynolds stress and its divergence exhibit
significantly different dynamics. A possible interpretation of this observation is that the
events of largest Reynolds stress, for instance corresponding to the large-scale avalanches
observed in section 4.1.2, are also characterized by a larger radial extent, leading to less
significant intermittency in the divergence of the Reynolds stress than in the Reynolds
stress itself.

4.3 Possible mechanisms for intrinsic rotation

As evident from the derivation of the equation for local conservation of toroidal momen-
tum, momentum transport, and therefore the generation of intrinsic rotation, requires a
breaking of the symmetry along the magnetic field lines [PAA05]. Several mechanisms have
been put forward to explain how ITG turbulence can perform this symmetry breaking,
including radial electric field shear [GDHS07], the Coriolis effect [HDGR07, PAS07] which
acts as a momentum pinch in a toroidally rotating plasma, polarization drift [MDGH09b,
MDGH09a], up-down asymmetry of the magnetic equilibrium [CPA+09, CBD+10], turbu-
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lence intensity gradient [GDH+10], profile shearing [CIJP11, WSS11] and density gradient
at finite ρ∗ [SSK+12]. We focus here on two mechanisms expected to dominate in electro-
static ITG turbulence when the equilibrium magnetic field is up-down symmetric, namely
electric field shear and turbulence intensity gradient.

Historically, the radial electric field has been identified as a key player in turbulent
momentum flux [DS93, D+94, GSG+02]. Recent theoretical work [GDHS07] demonstrated
that radial electric field shear, by generating sheared poloidal E×B flows, could break the
symmetry in the parallel wave number (i.e. k‖) spectrum, thus generating intrinsic rotation
via the turbulent Reynolds tress. This effect was then observed in nonlinear gyrokinetic
simulations [CPC+09, WHE+09]. Similarly, both theoretical work [DMG+08, GDH+10]
and numerical simulations [KYR+12] found that a gradient in turbulence intensity can
lead to breaking of the k‖ symmetry, and therefore to intrinsic toroidal rotation. For
both mechanisms, the process can be understood as that of an engine, converting the free
energy stored in the mean gradients of the system into mean toroidal flows [KDG10].

In order to investigate the role of the different possible symmetry breaking mechanisms,
we consider in Fig. 4.9a the correlations with the Reynolds stress of the radial electric field
shear, expressed in terms of shear E × B flow, and turbulence intensity gradient. The
turbulence intensity I is defined as

I(r) =
1

(2π)2

∫

dθdϕ (φ− 〈φ〉F.S.)2

where 〈φ〉F.S. is the flux-surface averaged electric potential. Since the momentum transport
is actually controlled by the divergence of the Reynolds stress, we also show its correlation
with the symmetry breakers in Fig. 4.9b. We focus only on the magnitude (i.e., the
strength) of the correlation, regardless of whether it corresponds to positive or negative
correlation. The results were obtained from a simulation with normalized gyroradius
ρ∗ = 1/256, over several 104ω−1c . The other parameters are similar to those described in
detail in section 2.4.
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Figure 4.9: Radial profile of the correlations between the symmetry breaking mechanisms
(E×B flow shear V ′E and turbulence intensity gradient dI/dr) and (a) the Reynolds stress;
(b) the divergence of the Reynolds stress.

Both for the Reynolds stress and its divergence, values of the correlation above 0.5 are
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obtained at various radial positions, both with radial electric field shear and turbulence in-
tensity gradient. This suggests that both proposed mechanisms can act as local symmetry
breakers driving toroidal rotation. However, the present results are inconclusive as to the
relative importance of the mechanisms considered here. Indeed, in global full-f gyrokinetic
simulations, both effects are necessarily present and therefore difficult to isolate. Similar
results have been obtained with the XGC1p [KAD+12] and gKPSP [KYR+12] gyrokinetic
codes.

4.4 Summary

In this chapter, electrostatic micro-turbulence was considered as a means of breaking the
axisymmetry in tokamaks, which was identified in chapter 3 as a necessary condition
for the generation of toroidal rotation. In a simulation with a vanishing initial rotation
profile, turbulence was found to generate intrinsic rotation. This rotation initially exhibits
a dipolar profile, eventually the no-slip boundary conditions lead to the generation of
net toroidal rotation. Large-scale avalanches are observed in the simulations, which are
found to transport both heat and momentum. A detailed analysis during the statistical
steady-state of the simulation reveals that the turbulent heat flux and Reynolds stress are
strongly correlated, and characterized by very similar statistical dynamics. In both cases,
the statistical distribution of the fluxes exhibit non-Gaussian properties. Finally, electric
field shear and turbulence intensity gradient are identified as possible symmetry breaking
mechanisms for the generation of toroidal rotation by electrostatic turbulence.
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Chapter 5

Non-local properties of turbulent

transport

Turbulent transport is often analyzed in terms of a purely local description, often assum-
ing diffusive or diffusive-convective transport. In this chapter, we investigate non-local
properties of turbulent transport, showing how the description of turbulence depends on
the scales considered or, in other words, on the averages performed. The influence of
boundary conditions on toroidal momentum transport also reveals the limitations of a
local description of turbulent transport.

In chapters 3 and 4, as in most studies of turbulence in tokamak plasmas, the quantities
considered were systematically flux-surface averaged. However, there is no reason to expect
the avalanche dominated transport observed in section 4.1.2 to be homogeneous over a
flux-surface, and in particular in the poloidal direction. In section 5.1, we describe the
poloidal asymmetry of turbulent transport, and the impact of flux-surface averaging on
the description of turbulence on tokamaks.

When trying to extrapolate present experimental observations to future devices, a
convenient method is to estimate turbulent transport in terms of a diffusion coefficient, and
consider the scaling of this coefficient with machine size, expressed in terms of normalized
gyroradius ρ∗. In section 5.2, we review the main results regarding the ρ∗ scaling of
turbulent heat transport and extend it to momentum transport. In addition to flux-surface
averaging, such a result requires averages over significant radial and temporal domains in
the simulations, and does not retain the information on the large-scale intermittency of
turbulent transport observed in the previous chapter.

For the case of momentum transport, another important non-local effect, the impact
of boundary conditions on core rotation, is discussed in section 5.3. Because edge flows
can vary significantly between different experiments and provide the only source of net
intrinsic rotation in the core, their effect on core momentum transport must be carefully
analyzed.

Finally, implications of the non-locality of turbulent heat and momentum transport
in terms of transport modeling, where one seeks the simplest model to capture the basic
properties of plasma confinement, are discussed in section 5.4.

5.1 Poloidal asymmetry of turbulent transport

Turbulent transport is often studied in terms of flux-surface averaged quantities, which
was the framework adopted in the previous chapters. However, transport in tokamaks is
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5.1. POLOIDAL ASYMMETRY OF TURBULENT TRANSPORT

known to be poloidally asymmetric. More precisely, turbulence is expected to be strongest
in the low-field side (LFS) near θ = 0, and very weak in the high-field side (HFS). This
is due to the fact that interchange instabilities, such as the ITG mode studied in the
present work, are unstable when the gradient of the magnetic field is aligned with the
gradient driving the instability (in this case, the temperature gradient), which occurs
on the low-field side, when both gradients are directed towards the core of the plasma.
Indeed, such modes are locally stable in the high-field side region, where the magnetic field
gradient points outward. This poloidal asymmetry is referred to as the ballooning structure
of turbulence in toroidal devices, and has been observed experimentally, for example in
Tore Supra [GBD+07, FGG+09] and Alcator C-MOD [LRH+04, SLP05]. In this section,
we present detailed observations of turbulence ballooning in gyrokinetic simulations, and
analyze the impact of flux-surface averaging on the measured intermittency of turbulent
heat and momentum fluxes.

We consider here poloidally local fluxes, rather than the flux-surface averaged fluxes
described in previous sections. The poloidal anisotropy of turbulent fluxes has previously
been analyzed in fluid edge simulations of particle transport [TGT+09], and very similar
results are obtained here in the case of a gyrokinetic simulation of core turbulent heat
transport, with the parameters described in section 2.4. Comparing results from heat
transport and particle transport is justified as both are a consequence of the convection of
the distribution function by the E × B velocity. Particle transport is not included in the
model used by Gysela at the moment as electron response is assumed adiabatic, but one
expects similar properties for heat and particle fluxes resulting from core ITG turbulence.

As a first observation, the minimum and maximum value of the heat flux on a given
flux-surface are plotted as a function of radius in Fig. 5.1a, and compared with the mean
(i.e., flux-surface averaged) quantity. One notices that the minimum value of the heat flux,
which corresponds to positions near θ = π, remains much smaller than the mean flux, and
is in fact locally negative. Conversely, local maxima of the heat flux can be significantly
greater than flux-surface averaged quantities. The large values of minimum and maximum
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Figure 5.1: Characterization of the ballooning of turbulent heat transport: (a) Radial
profile of the maximum, minimum and mean value of the local (in θ) radial heat flux ; (b)
Proportion of the heat flux transported between θ = −π/2 and θ = +π/2, as a function
of the radius. The blue circles correspond to the radial positions considered in Fig. 5.2.

heat flux close to the inner radial boundary, where the mean flux is vanishing, appears to
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be a consequence of the properties of the heat source, which in this simulation injected
mainly parallel energy. It has been shown that anisotropic heating such as this leads to
the generation of a poloidal electric field [Tag93], which is indeed observed in the present
simulation and corresponds to the large variations of the heat flux in the region of the
source.

In Fig. 5.1b, the proportion of the flux transported between −π/2 and +π/2, i.e. on the
low-field side, is given as a function of the radius. Throughout most of the radial domain,
and especially far from the heat source, it appears that a large majority of the heat flux
(> 60%) is transported on the LFS. For r/a & 0.55, this figure is above 80%. This is
consistent with the poloidal distribution of the radial flux inferred from experiments on
Tore Supra [FGG+11].

A more precise characterization of the poloidal structure of the heat flux can be ob-
tained by considering the proportion of the radial heat flux transported in various poloidal
sections of the torus, at a fixed radial location. As the flux is roughly symmetric around
θ = 0, one can consider sections between −θ and +θ for θ ∈ [0;π]. The result is shown
in Fig. 5.2 for two typical radial positions, one close to the heat source and another closer
to the edge of the simulation domain. The results obtained are very similar to previous

(a) (b)

Figure 5.2: Proportion of the heat flux transported between −θ and +θ for two different
values of the radius, identified by red circles in Fig. 5.1b.

observations in fluid edge simulations [Tam07]. An important feature highlighted in both
Fig. 5.1b and Fig. 5.2 is that the ballooning of turbulent transport appears to increase
with the minor radius. Thus, one can expect a strongly ballooned source at the separatrix,
which is consistent with experimental results on Tore Supra [FGG+11].

5.2 Gyro-Bohm scaling of turbulent heat and momentum

transport

In terms of a purely local description of turbulent transport in tokamaks, an important
issue is the scaling of the transport coefficients with machine size, which is important in
order to extrapolate present experimental results to future machines. More precisely, this
issue is usually addressed through the scaling with the dimensionless parameter ρ∗, which
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corresponds to the ion thermal gyroradius ρs normalized to the tokamak minor radius a.

In order to estimate the scaling of turbulent transport with machine size, one can
begin by describing turbulence simply as a random walk process. With this very simple
description, heat transport is completely described by a diffusion coefficient χi such that
the heat flux is Q = −χi∇T . The diffusivity is generally normalized to the so-called Bohm
diffusion, χB = T/eB.

From a theoretical point of view, one can estimate the heat flux simply from a dimen-
sional analysis as

χi ∼
λ2c
τc

(5.1)

where λc and τc are the correlation length and time of the turbulence. Clearly, this
description of turbulence is very crude and must be dealt with accordingly. Importantly,
an implicit assumption is for the turbulence to develop on scales much larger than its
correlation length. Moreover, the description of heat transport as a simple random walk
process treats temperature as a passive tracer in a turbulence field, whereas the actual
transport results from a complex interplay between temperature gradients and fluxes.
Keeping these important limitations in mind, one can still use the basic expression (5.1) to
obtain a rough estimate of turbulent transport by measuring or estimating the correlation
length and time.

Measurements of ion heat diffusivity in experiments have found either Bohm scaling,
χi ∼ χB, or the so-called gyro-Bohm scaling, χi ∼ ρ∗χB. The latter result, which is more
favorable when extrapolating to larger future devices, was mainly observed in improved
confinement regimes [PLB+95]. Such results were obtained by measuring the mean gradi-
ents and fluxes, as detailed measurements of turbulence characteristics were not available.
More recently, efforts have been made to measure the local fluctuations, in order to obtain
scaling laws for correlation length and time. These studies, reviewed in [Hen06], obtained
results consistent with a gyro-Bohm scaling:

• the correlation length scales with the ion Larmor radius,

• the correlation time scales with the transit time a/cs

• which, according to Eq. (5.1), leads to χi ∼ ρ2i a/cs = ρ∗χB.

These local measurements are consistent with predictions from fluid simulations (see for
example [OBC+97]).

The first results from gyrokinetic simulations [LEHT02, WCR02] found a transition
from Bohm scaling to gyro-Bohm scaling for decreasing ρ∗. A simple understanding of
these results is that the gyro-Bohm prediction based on correlation time and length as-
sumes a scale separation between the turbulent scales and the machine size. In fact, the
assumptions leading to the estimate Eq. (5.1) basically correspond to the limit ρ∗ → 0.
Thus, if the machine size – or simulation domain – is small, the turbulence may feel the
size of the system, leading to Bohm (or worse) scaling.

For the specific case of ion heat transport, a major effort was undertaken recently to
review the scaling with respect to ρ∗ using global gyrokinetic simulations. Despite large
fluctuations in both the temperature gradient and the heat flux in such simulations, a mean
value of the diffusivity can be obtained by averaging over a large radial domain as well as
over a significant time frame during the statistical steady-state of the simulation. These
studies [MLB+10, VBB+10, SGA+11], using several different gyrokinetic codes, identified
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a transition from Bohm to gyro-Bohm scaling for ρ∗ ∼ 1/300, possibly linked to the
dynamics of avalanches and zonal flows [SGA+11].

While the scaling of density and heat transport with ρ∗ has been extensively studied,
both experimentally and numerically, very little work has been done regarding the scaling
of momentum transport. However, this issue is important if one is to predict the level
of rotation in future tokamaks by extrapolating results from smaller, existing machines.
Assuming gyro-Bohm characteristics for turbulence, symmetry arguments [PAA05] provide
a prediction for the level of momentum transport from the Reynolds stress. The following
scalings are expected for the Reynolds stress and its divergence:

Πχϕ

Rv2T
∝ ρ2∗

∂χΠ
χ
ϕ

Rv2T /a
∝ ρ∗

Several simulations were performed with the Gysela code at various values of ρ∗, with
all other parameters kept constant, in order to investigate the scaling of both heat and
momentum transport. For heat transport, the mean diffusivity was estimated in these
simulations, confirming the transition from Bohm to gyro-Bohm at small ρ∗ [SGA+11].
Locally, the correlation time and length of turbulence corresponded to the gyro-Bohm
ordering, i.e. λc ∼ ρi and τc ∼ a/cs.

Because the turbulent Reynolds stress exhibits large variations radially and in time
(see Fig. 3.2b), around a vanishing mean value, the scaling with ρ∗ can be investigated
by focusing on the fluctuations. Therefore, we consider the scaling with ρ∗ of the root
mean square (RMS) fluctuations of the divergence of the Reynolds stress, normalized to
mnR0v

2
T /a, where m and n are the species mass and density, R0 is the major radius

at the magnetic axis, vT is the thermal velocity and a is the minor radius. This choice
of normalization is independent of ρ∗ as the simulations are performed by varying only
the tokamak size with all the other parameters constant, in particular the aspect ratio,
i.e. R0/a, remains the same. The temperature, density and magnetic field also remain
constant between the simulations. One finds a roughly linear scaling [AGG+11], approx-
imately ρ0.7∗ , as shown in Fig. 5.3. This result appears to indicate that the scaling of
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Figure 5.3: Scaling against ρ∗ of the RMS fluctuations of the divergence of the Reynolds
and polarization stresses. A logarithmic fit for the divergence of the Reynolds stress yields
∂χΠ

χ
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2
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momentum transport is gyro-Bohm, or slightly worse than gyro-Bohm. However, more
data would be required, in particular using different gyrokinetic codes as in the study of
heat transport, in order to confirm this result. In the different simulations considered, the
characteristic spatial scale of the Reynolds stress remains roughly constant, of the order
of several Larmor radii. Therefore, normalized to mnR0v

2
T , the Reynolds stress scales

roughly quadratically with ρ∗. We also note that the divergence of the polarization stress
identified in section 3.1.3 is small at moderate values of ρ∗, but is of the same order as the
divergence of the Reynolds stress at smaller values of ρ∗ relevant for ITER.

One may regard the scalings obtained here as contradicting the observations of large-
scale events in the dynamics of turbulent transport in chapter 4. Indeed, the predictions
of a gyro-Bohm scaling, as recovered in the simulations, assume that turbulence remains
purely local with a correlation length of the order of the Larmor radius. In fact, the auto-
correlation function of the electric potential fluctuations in gyrokinetic simulations reveals
that, despite the large-scale avalanches, the correlation length is of the order of several
Larmor radii and is independent of the system size [SGA+11]1. This apparent contradiction
could be explained by the existence of an intermediate scale between the Larmor radius and
the system size, limiting the radial extent of the avalanches, as explored in [DPDG+10].
As Bohm scaling is expected when the correlation length scales with ρ∗, this additional
meso-scale, larger than the Larmor radius but scaling with ρi independently of the system
size, could explain why turbulent heat and momentum transport, despite being dominated
by avalanches, exhibit gyro-Bohm scaling.

5.3 Influence of scrape-off layer flows on core rotation

Throughout the manuscript, the role of boundary conditions in gyrokinetic simulations
of momentum transport has emerged, at least implicitly, as a critical issue. Since a local
conservation law for toroidal momentum is verified by the gyrokinetic model (chapter 3),
the only net generation of toroidal rotation observed in the simulations must be linked
to boundary conditions. We recall that no-slip conditions (i.e. vanishing rotation) were
imposed at the outer radial boundary, with an ad hoc diffusion ensuring exchange of
momentum between the plasma and the edge of the simulation domain. This modeling
choice, although it should not presumably affect the statistical dynamics of turbulent
momentum transport as described in chapter 4, may have an impact on the toroidal
rotation profiles eventually reached by the simulations.

Most gyrokinetic simulations, including those described in the present manuscript,
have assumed such boundary conditions – or alternatively a vanishing momentum flux at
the edge – without evaluating their impact on the observed rotation profiles. One of the
difficulties is that the role of the edge plasma with respect to rotation in the core is not
well understood, as core and edge toroidal rotation have often been studied independently.
There is experimental evidence that flows from the scrape-off layer (SOL) of the plasma
may influence toroidal rotation in the outer core [LRH+04, GBD+07, HVF+10], but this
effect has yet to be confirmed by core turbulence simulations. Of course, using the edge
as a boundary condition for the core constitutes a simplified view of the complex cou-
pling between edge and core physics. In particular, the ballooning of turbulent transport
described in section 5.1 is expected to significantly affect flows in the SOL .

1Note that, as can be expected from the ballooning of turbulence discussed in section 5.1, the correlation
length is not poloidally homogeneous, and was found to vary by a factor of two from the LFS to the HFS
of the tokamak [SGA+11].
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In the following, we investigate the effect on core toroidal rotation of modified boundary
conditions in Gysela simulations. The basic theory of parallel scrape-off layer flows is
recalled in section 5.3.1, and Gysela simulations are presented in section 5.3.2 with
boundary conditions based on standard SOL flows. Note that the important issue of how
the core plasma is coupled to the edge of the simulation domain (i.e. the diffusion in the
buffer regions) and how details of this coupling may affect the resulting rotation profiles
is not addressed here and would benefit from further investigation.

5.3.1 Simple model for scrape-off layer flows in tokamaks

In this section, we present a basic description of parallel flows in tokamak scrape-off layers,
as described in more detail in standard textbooks [Sta00]. The most simple physics in the
SOL can be described by a one-dimensional model for the evolution of ion density n and
parallel flow Γ = nu‖, assuming constant temperature, with the following equations

∂tn+∇‖Γ = S (5.2a)

mi∂tΓ +∇‖Π = 0 (5.2b)

where S is the particle source and Π is the total pressure, which can be expressed as
Π = pe + pi +minu

2
‖ where pe and pi are the electron and ion pressure. For simplicity,

we do not consider any source of momentum. Note that here the parallel direction is
along the magnetic field lines, which are open in the scrape-off layer. Considering only
the steady-state solution, the system of equations (5.2) becomes simply ∇‖Γ = S and
∇‖Π = 0. A convenient way of rewriting these equations is to consider the parallel Mach

number, M ≡ Γ/(ncs), where cs = [(Te + Ti)/m]
1/2 is the isothermal ion acoustic speed.

Combining both equations leads to

∇‖M =
S

ncs

1 +M2

1−M2
(5.3)

In order to obtain the Mach number profile, one must describe the scrape-off layer in
more detail. We consider here the case of a simple SOL in limiter geometry with a
homogeneous particle source. Assuming the usual Bohm boundary conditions M2 = 1 at
both sides of the limiter, one obtains analytically the (solid blue) profile of Mach number
shown in Fig. 5.4a. Notice that the Mach number goes to −1 and +1 at both ends, which
correspond to the two sides of the limiter, with infinite derivatives along the magnetic
field line. This basic profile can be modified when taking into account the asymmetry of
the particle source or a different geometry. As an example, an output from the fluid code
SOLEDGE-2D [ICC+10] in the case of a strongly ballooned source is given in Fig. 5.4a.

The next step is to estimate the resulting parallel velocity profile in the closed field-
line region. An approximate result can be obtained by considering a stationary two-
dimensional diffusive model for density n and parallel flow Γ in the closed-field line region
near the last closed magnetic flux surface (LCFS). This simple model reads

−D∆⊥n+∇‖Γ = 0 (5.4a)

−miν∆⊥Γ +∇‖Π = 0 (5.4b)

where D and ν are diffusion coefficients describing radial transport. In the limit where
M2 → 0 (i.e. low flow) and in the isothermal approximation, ∇‖Π = T∇‖n. Thus the
system of equations (5.4) reduces to an equation for the parallel flow

∇2
‖Γ =

Dν

c2s
∆2
⊥Γ (5.5)
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Figure 5.4: Simple profiles for the parallel Mach number along the magnetic field line in
(a) the scrape-off layer (open magnetic field lines) and (b) in the region of closed field lines
near the last closed flux surface. The solid blue lines correspond to analytical profiles in
the case of a symmetric source, while the dashed red lines are outputs from SOLEDGE-2D
simulations with a strongly ballooned source.

In Fourier space, this reads

− k2‖ =
Dν

c2s
k4⊥ (5.6)

Although this precise result is dependent on the choice of reduced model made here, we
can expect the profiles obtained in the open field line region (Fig. 5.4a) to be damped
inside the LCFS, with the small k‖ structures being damped more rapidly. In particular,
the discontinuity between both sides of the limiter will not be observed inside the LCFS.
Schematically, this leads to profiles such as Fig. 5.4b for the parallel Mach number. The
solid blue line corresponds to the case of a symmetric source, while the dashed red line is
the result of a SOLEDGE-2D simulation with a strongly ballooned source.

5.3.2 Modifying the boundary conditions in Gysela

In the following, we explore the influence of scrape-off layer flows on core rotation by
setting velocity profiles as boundary conditions in Gysela, rather than the usual no-slip
conditions. As a starting point, we consider a simulations at ρ∗ = 1/150 and ν∗ = 0.02
which was run with conventional no-slip boundary conditions for approximately 3.105 ω−1c .
Given the input power and the pressure profile, this time is comparable to the confinement
time, and the plasma appears to have reached a steady-state for the mean flows, as shown
in Fig. 5.5a.

Limiter-like boundary conditions

From this steady-state, we impose as a boundary condition for parallel velocity a poloidally
symmetric profile as shown in Fig. 5.4b, with the poloidal position corresponding to the
limiter at θ = 0. The maximum absolute value of the edge velocity is Vth = 0.25 vth0,

2

2We recall that vth0 is the thermal velocity corresponding to the temperature at the center of the
simulation domain. Thus, the corresponding local Mach number is in fact slightly larger.
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for θ = ±π/4. As a result, the profile is rapidly modified near the edge, as can be
observed in Fig. 5.5b, and a new steady-state is reached by the flows in the simulation.
Inside r/a ≃ 0.75, the profile does not appear to be affected by the modification of the
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Figure 5.5: Radial profiles of the parallel velocity at different simulation times (normalized
to a/cs) showing (a) the slow evolution around a mean profile in the steady-state regime
(with ∆t = 21 a/cs), and (b) the rapid modification of the profile (with ∆t = 4.2 a/cs)
near the edge after modifying the boundary condition for parallel velocity. The velocities
are normalized to a reference (i.e., constant) thermal velocity.

boundary conditions, even on a long time scale. This has been confirmed by continuing
the simulation with no-slip boundary conditions and comparing the obtained profiles: the
difference between the two remains smaller than the level of fluctuation of the profiles
around their mean steady-state values.

Considering our choice of boundary condition, it is not sufficient to analyze its effect on
the core plasma in terms of flux-surface averaged flows, which was the quantity of interest
in the previous chapters. However, before we consider the effect of modified boundary
conditions, it is useful to analyze the poloidal structure of the steady-state flows. Indeed, in
the steady-state regime, the parallel velocity is not homogeneous in the poloidal direction,
as can be observed in Fig. 5.6. Large variations of the velocity are present on a given flux-
surface, essentially dominated by an m = 1 mode, which corresponds to Pfirsch-Schlüter
rotation. Note that the amplitude of this variation is of the same order of magnitude –
and in fact often larger – than the flux-surface averaged flow, and can lead to a reversal
of the sign of the parallel flow on a given flux-surface (see the white V‖ = 0 contour in
Fig. 5.6).

After the boundary conditions have been modified, the poloidal structure of parallel
velocity is affected, but only in a small region between r/a ≃ 0.75 and the outer bound-
ary of the simulation domain, r/a = 0.85. The resulting poloidal cross-section of the
parallel velocity is shown in Fig. 5.7a. In order to highlight the result, the modification
of the parallel velocity near the boundary, ∆V‖ = V‖(end) − V‖(steady-state), is given in
Fig. 5.7b. Interestingly, the effect on the poloidal structure is not localized near θ = 0,
where the boundary condition has been modified, but rather moves to the high-field side
with decreasing minor radius.
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Figure 5.6: Poloidal cross-section (averaged over ϕ) of the parallel velocity – normalized to
the thermal velocity – in the steady-state regime with no-slip boundary conditions. .The
white line corresponds to the V‖ = 0 contour.

(a) (b)

Figure 5.7: (a) Poloidal cross-section of the parallel velocity after modifying the boundary
conditions (the white line corresponds to the V‖ = 0 contour) and (b) corresponding
modification of the parallel velocity, i.e. ∆V‖ = V‖(end) − V‖(steady-state), with a zoom
near the outer radial boundary (the white lines correspond to ∆V‖ = 0 contours).

In Fig. 5.8, we analyze the transition from the last point of the domain, where the
boundary condition is imposed, to the core plasma, where the flows are not affected. First
of all, in the region closest to the simulation edge, the radial diffusion term damps fluc-
tuations and governs heat and momentum transport. We recall that this radial diffusion,
of the form 1

r∂r
{
D(r)∂rF̄

}
, ensures the coupling of the plasma to the fixed temperature

outside the domain and acts as a heat sink for the system in flux driven simulations. The
radial profile of the diffusion term D(r) is given in Fig. 5.8a, along with its effect on the
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poloidal structure of parallel velocity, represented by the radial profile at two fixed posi-
tions of θ corresponding to the minimum and maximum value of parallel velocity. The
main observation is that the boundary condition is transported as expected by the dif-
fusion coefficient, although an asymmetry appears between positive and negative parallel
rotation. The cause for this asymmetry is not understood at the moment.

In Fig. 5.8b, we consider the effect of the velocity outside the buffer region by analyzing
the poloidal profile at several radii. At r/a = 0.825, corresponding roughly to the limit
of the buffer region, the parallel velocity still has the shape imposed at the boundary, but
with an important asymmetry, as observed in Fig. 5.8a. Further inward, we clearly observe
two lobes of negative parallel velocity moving toward the high-field side, corresponding to
the structures observed in Fig. 5.7. Eventually, the initial cos θ structure (see Fig. 5.6) is
recovered for r/a . 0.75.
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Figure 5.8: (a) Maximum (solid red) and minimum (dashed red) of parallel velocity in the
buffer region where radial diffusion is applied, the radial profile of the diffusion coefficient
is given by the dotted blue line. (b) Poloidal profiles of the parallel velocity at different
radii near the boundary of the simulation domain.

In order to understand both the asymmetry of the result obtained here in terms of pos-
itive and negative parallel velocity, an analogue simulation was run but with the opposite
boundary condition: the maximum value V‖/vth0 = 0.25 is now at θ = +π/4, compared
to θ = −π/4 previously (see Fig. 5.4). In terms of the flux-surface averaged velocity, the
effect is the opposite in the region near the edge, with the parallel velocity increasing on
the same time scale and with roughly the same magnitude as the decrease observed in
Fig. 5.5b.

Analyzing the propagation of the poloidal structure of the boundary conditions, one
again finds an asymmetry in the buffer region and a propagation to the high-field side fur-
ther inward, as highlighted in Fig. 5.9. However, the lobes propagating inward correspond
to a positive velocity, the opposite sign as in the previous simulation. Thus it appears
that their sign, and ultimately the flux-surface averaged parallel velocity, is determined
by the value of the edge velocity for θ > 0.

Note that in both cases, no measurable effect is observed inside r/a ≃ 0.75, suggesting
that the impact of SOL flows on core rotation is limited to a narrow region near the edge.
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(a) (b)

Figure 5.9: Effect of a boundary condition with V‖/vth0 = 0.25 at θ = +π/4. (a) Modifi-
cation of the poloidal structure of parallel velocity near the edge, and (b) poloidal profiles
at several radii, indicated with dashed black lines in (a).

This key result does not appear to depend directly on the amplitude of the SOL flow, as
a simulation with equivalent boundary profiles and V‖/vth0 doubled from 0.25 to 0.5 (at
θ = +π/4) leads to a comparable penetration in the core.

Pedestal-like boundary conditions

In the previous section, the boundary condition applied to the core plasma mimicked the
structure of flows in the scrape-off layer, as they are observed experimentally in L-mode
plasmas. When the plasma is in the so-called H-mode (see [ASD89] for a review) of im-
proved confinement, a transport barrier develops near the plasma edge, modifying the
coupling of the core plasma to the scrape-off layer. At the position of this barrier, also
referred to as the pedestal, a strong shear is measured for the toroidal rotation, which in-
creases in the core [RICd+07]. Consequently, in H-mode plasmas, the boundary condition
for core toroidal rotation can be described by a uniform (or “solid”) rotation of relatively
large amplitude at the radial position of the pedestal.

Here, we investigate the effect of such boundary conditions on the plasma core, starting
from the same reference simulation described previously (ρ∗ = 1/150). Rather than an
inhomogeneous poloidal profile, we set the boundary condition to a fixed non-vanishing
value at the edge of the simulation domain, i.e. r/a = 0.85. Two simulations have been
performed, with V‖(r/a = 0.85) = ±0.1vth0, which is of the order of the pedestal ve-
locities observed experimentally [RICd+07]. The resulting parallel velocity profiles are
shown in Fig. 5.10 approximately 2.3 105 ω−1c after the modification of the boundary con-
dition, averaged over 5 103ω−1c . As a reference, the simulation with no-slip conditions (i.e.
V‖(r/a = 0.85) = 0) has also been run for the same simulation time. In contrast to the pre-
vious simulations where the effect of modified boundary conditions had a limited impact
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Figure 5.10: Mean parallel velocity profile for simulations with poloidally homogeneous
boundary conditions, either no-slip or with V‖(rmax) = ±0.1vth0. The profiles have been
averaged over a time frame of approximately 5 103 ω−1c .

on the radial velocity profile, the homogeneous conditions applied here strongly impact
the core rotation, at least up to r/a ∼ 0.6. For the case where V‖(rmax) = −0.1vth0, no
significant effect on parallel velocity can be measured inside this radius, as observed dif-
ferences remain well within the level of fluctuations. In the case where V‖(rmax) = 0.1vth0,
the gradient of toroidal rotation is strongly reduced, and this appears to lead to a mod-
ification of the rotation profile throughout the radial domain. This suggests that a local
description of momentum transport in the core is not adequate as, in certain conditions,
edge flows can have a significant impact in the entire plasma. However, the modification
observed in Fig. 5.10 for r/a < 0.6 is only marginally larger than the observed fluctuations
in the velocity profile. In order to confirm this result with more certainty, the simulation
would need to be run for a time larger than the energy confinement time, which was not
the case here as more numerical resources would be necessary for such a simulation.3.
Additionally, it would be useful to perform similar simulations at lower values of ρ∗ in
order to investigate whether the penetration – or screening – of edge flows is dependent
on the machine size.

5.4 Discussion

As a conclusion to this chapter, it appears that the description of turbulence, and espe-
cially momentum transport, in terms of local transport coefficients, cannot capture the
complexity of the processes at play. Even with flux-surface averaging, which tends to
reduce the intermittent effects, transport is clearly non-diffusive and large-scale events
are observed. This is even more critical when considering (poloidally) local transport, as
avalanches are strongly localized events, and the intermittency of turbulent transport is
not poloidally homogeneous. In the case of momentum transport, the influence of edge

3Each of the simulations presented in Fig. 5.10, for a simulation time of 1.8 105 ω−1
c , required approxi-

mately 8 105 computing hours, running on 8192 processors on the Curie supercomputer of the Très Grand
Centre de Calcul (TGCC) in Bruyères-le-Châtel, France.
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flows on core rotation can lead to additional, complex, non-local effects which would be
difficult to capture in a local approach.

Although the statement may appear self-contradictory, one may actually recover a local
description by performing averages. The flux-surface average is not sufficient, and averages
over time and over extended radial domains must also be performed for a description
in terms of transport coefficients to be foreseeable. Through adequate averaging, for
instance, the gyro-Bohm scaling of turbulent transport can be recovered. Such results
are encouraging as describing intermittent transport by the average resulting transport
may be a useful ansatz for computationally light transport codes. However, it is not clear
that the complex dynamics observed in simulations can be correctly captured by a local
description. For instance, meso-scale events and self-organization can play an important
role, as discussed in [SvMC05].

Recently, a method was suggested which considers the calculation of transport coeffi-
cients as an inverse problem [ES12], with a matricial approach aiming to compute diffusion
and convection coefficients from experimental plasma profiles in modulation experiments.
Importantly, this approach is capable of identifying situations where such a description is
not possible. One could apply this method to modulation experiments not only in toka-
maks but also in numerical simulations.4 In fact, one may expect the method to be more
efficient in the latter case, as the precision of the method depends on the accuracy with
which the source is computed. Performing various choices of averaging, the method could
provide insights into the question of whether a description of turbulence in terms of local
transport coefficients is relevant, and at which – spatial and temporal – scales.

Finally, if a local description proves inefficient, a possible compromise between local
transport coefficients and complete turbulence simulations could be the use of nonlocal
kernels [DPDG+10], which may provide a more satisfying description of the meso-scale and
intermittent dynamics of turbulent transport with only a limited increase in numerical cost.

4As a caveat, note that this method would require very long simulation times, greater than the energy
confinement time. For values of ρ∗ relevant to ITER, such simulations are hard to imagine with global
gyrokinetic codes at the moment, but may be achievable in the future with increased numerical resources.
Otherwise, this could be analyzed in flux-tube simulations or, in order to remain in the flux-driven regime,
in fluid simulations.
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Chapter 6

Toroidal symmetry breaking by

the equilibrium magnetic field

The law that entropy always increases holds, I think, the supreme position among
the laws of Nature. If someone points out to you that your pet theory of the
universe is in disagreement with Maxwell’s equations — then so much the worse for
Maxwell’s equations. If it is found to be contradicted by observation — well, these
experimentalists do bungle things sometimes. But if your theory is found to be
against the second law of thermodynamics I can give you no hope; there is nothing
for it but to collapse in deepest humiliation.

Sir Arthur Stanley Eddington, The Nature of the Physical World, 1928

An important result of the conservation equation for toroidal momentum derived in
chapter 3 is that the generation of toroidal rotation in tokamaks requires a breaking of
axisymmetry. One means of breaking the axisymmetry, explored in the previous chap-
ters, is electrostatic turbulence Another possibility is via a non-axisymmetric equilibrium
magnetic field. We will see that, even in the absence of turbulence and through purely
collisional processes, this can lead to the generation of toroidal rotation.

In particular, for any tokamak, the finite number of coils gives rise to toroidal mag-
netic field ripple, i.e. variations of the magnetic field amplitude along the field lines.
Through collisional processes, the presence of ripple leads to a neoclassical friction driving
the toroidal velocity in the counter-current direction. In tokamaks where the ripple am-
plitude is strong, such as Tore Supra or JT-60U, this effect can be dominant in generating
the toroidal rotation profile. In the general case, the neoclassical friction will compete
with other mechanisms resulting from various symmetry breakers such as electrostatic
turbulence, as will be discussed in section 6.4, fast particle losses [EJH+04] or magnetohy-
drodynamic (MHD) modes [SCH+90], which may drive the plasma in either co-current or
counter-current direction.

Experimentally, toroidal field ripple was found to play an important role in deter-
mining toroidal rotation in various tokamaks. Dedicated experiments on JET [dVSP+08,
CAB+09, NJE+10] found that, when increasing the ripple, a significant torque drives the
toroidal rotation in the counter-current direction. Similar observations were made on JT-
60U [YKT+06, UOK+07]. Recently, dedicated experiments were performed on Tore Supra
where the ripple amplitude was varied by over an order of magnitude [FGT+11].

On the theoretical side, the effect of a non-axisymmetric magnetic field on toroidal ro-
tation was the subject of much work in the 1990s [Yus90, Mik95, KMS95, Sha96, Kov99].
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The issue was extensively developed for the study of the penetration of Resonant Mag-
netic Perturbations (RMPs), which are also static non-axisymmetric magnetic fields and
can be tackled using the same theoretical framework as magnetic field ripple [Sha03,
CHC07, BHG+09]. Recently, the predictions for neoclassical toroidal rotation were re-
viewed in [GAT+10]. In this work, an approach based on an extremum of the entropy
production rate allows one to recover and clarify previous theoretical predictions in a
large number of limit cases. Long-standing contradictions between previous works [Mik95,
Kov99] are also resolved by this work.

We review in sections 6.1 and 6.2 the methodology developed in [GAT+10] and present
the key resulting theoretical predictions in 6.3. Gyrokinetic simulations including both
turbulent momentum transport and the effect of toroidal field ripple will be presented in
section 6.4.

6.1 Obtaining neoclassical equilibria from entropy produc-

tion rates

In this section, we present the method for determining the neoclassical equilibrium in
tokamaks in the presence of toroidal field ripple. In fact, the approach is more general as
it allows for an arbitrary helical perturbation. Several regimes are identified depending on
collisionality and on the amplitude of the helical perturbation. For each regime, using a
variational principle based on entropy production rates, one can compute the neoclassical
equilibrium in terms of particle, heat and momentum transport. The aim of this section
is not to present the complete and detailed calculations, which can be found in [GAT+10,
GAS+10]. Rather, we will present the key concepts to carry out the calculations and the
different regimes which can be obtained depending on the perturbation. A summary of
the results will follow in section 6.3.

The equilibrium Hamiltonian is H = mvG‖+µB+eφ where B is a reference – uniform
– magnetic field and φ is the mean electric potential. The perturbed Hamiltonian reads

δH = −µBǫ cos θ + µBδ cos (Nϕ+Mθ) (6.1)

where ǫ = r
R and δ(r) is the amplitude of the helical perturbation. For simplicity, we

assume here that the perturbation does not depend on the poloidal angle. In the case
of toroidal field ripple, M = 0 and N corresponds to the number of toroidal field coils
(N = 18 for Tore Supra and ITER). Note that the perturbed Hamiltonian contains both
the standard neoclassical (banana) effects and the helical perturbation. Particles can
be trapped by either perturbation, as can be seen in Fig. 6.1, which corresponds to a
case with strong perturbation amplitude and M = 0. Particles will be trapped in the
helical perturbation when the perturbed magnetic field along a field line exhibits a local
extremum, as is the case in Fig. 6.1. The condition for this local trapping depends on the
perturbation amplitudes and mode numbers and will be detailed in section 6.2.2.

The distribution function is a function of motion invariants and is close to a local
Maxwellian, namely

FM =
N

(2πT/m)3/2
exp

(

−H
T

)(

1 +
mWv‖
T

)

(6.2)

The function N is defined as N = n exp (eφ/T ). The density n, electric potential φ and
temperature T are functions of the toroidal kinetic momentum pϕ = −eχ+mRv‖, while
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Figure 6.1: Amplitude of the perturbed Hamiltonian along a field line θ = ϕ/q. The
parameters are q = 2, ǫ = 0.3, N = 10 and δ = 0.05.

W is a function of the total energy H that ensures finite mean parallel velocity and parallel
thermal flux. The distribution function FM , Eq. (6.2), is an exact solution of the kinetic
equation dF/dt = C(F ) for the unperturbed problem when the condition

RT

e
∂ψΞ +W = VT (6.3)

is fulfilled, where

∂ψΞ = ∂ψ lnn+
e

T
∂ψφ+

(
E

T
− 3

2

)

∂ψ lnT (6.4)

and VT is the toroidal velocity (strictly speaking the parallel velocity).
Multiplying Eq. (6.2) by v2‖/v

2
T , where vT =

√

T/m is the thermal velocity, and inte-
grating over the velocity space yields the conventional force balance equation in the large
aspect ratio limit [GDPN+09]

− ∂rφ+ VpB − VTBp =
∂rp

ne
(6.5)

where Vp is the poloidal velocity and Bp is the poloidal component of the magnetic field.
With this equation and following the equations derived in [GDPN+09, GAT+10], one can
compute the resonant entropy production rate and express it using the general form of
transport equations as

Ṡres = −
1

2

∫

dV n

(
Γ

n

∂rn

n
+

M
nmvT

VT
vT

+
Q

nT

∂rT

T

)

(6.6)

where dV = 4π2Rrdr. Γ and Q are the particle and heat fluxes, and M is the rate of
dissipated momentum due to toroidal collisional damping. These fluxes can therefore be
calculated as functional derivatives of the resonant entropy production rate

Γ = −1
2

δṠres
δ∂r lnn

(6.7)

M = −1
2
nmv2T

δṠres
δVT

(6.8)

Q = −1
2
nT

δṠres
δ∂r lnT

(6.9)
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where Ṡres is the total entropy production rate, and the partial derivatives on the r.h.s.
are functional derivatives. These derivatives provide the particle, momentum and heat
fluxes.

The strategy to determine the neoclassical equilibrium from the entropy production
rate is rather straightforward. First the extremum of the entropy production rate with
respect to density yields the particle flux. As the electron flux is smaller than the ion flux
by a factor

√

me/mi ≪ 1. Therefore the ambipolarity constraint reduces to a condition of
vanishing ion flux, Γ = 0. This constraint provides a relation between the radial electric
field, toroidal velocity and gradients of density and temperature (the poloidal velocity can
be eliminated using the force balance equation). The dynamics governing radial electric
field is assumed to be faster than that for the toroidal velocity. Second the extremum
with respect to toroidal velocity allows one to determine the damping rate in the toroidal
direction and another relation between the radial electric field Er, toroidal velocity VT , and
gradients of density and temperature. Finally, the extremum with respect to temperature
gradient provides the ion thermal diffusivity.

6.2 Entropy production rates

As shown in the previous section, in order to obtain the neoclassical equilibrium, one must
compute the resonant entropy production rate Ṡres due to the perturbed Hamiltonian (6.1).
This calculation is complicated by the fact that the two perturbations in (6.1) resonate
on neighboring resonant surfaces in phase-space, namely where vG‖ = 0. This general
problem is addressed in [GAT+10]. When both perturbations are taken into account, one
must be considered as the primary perturbation and the other as secondary. Therefore,
the resulting entropy production depends on the orderings between the two perturbations,
which governs the choice of the primary perturbation. Accordingly, the total entropy
production rate can be split into four contributions

Ṡres = Ṡtor + Ṡhel + Ṡ′tor + Ṡ′hel (6.10)

where each entropy production rate describes a specific process:

• Ṡtor corresponds to toroidally trapped particles,

• Ṡhel corresponds to helically trapped particles,

• Ṡ′tor due to the effect of the toroidal perturbation on helically trapped particles,

• Ṡ′hel due to the effect of the helical perturbation on toroidally trapped particles.

Detailed calculations of these terms, using the reduced collision operator presented in
section 2.3.2, are given in [GAT+10] and will not be reproduced here, the focus is on the
resulting neoclassical equilibria depending on the ordering parameters, i.e. on which term
is dominant in (6.10).
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6.2.1 Toroidally trapped particles

For toroidally trapped particles only, the entropy production rate corresponds to the stan-
dard neoclassical calculation [HH76], and reads

Ṡtor =
1

2

√
π

2

∫

dV n
qRv2D
vT

∫ +∞

0
du e−uu2min

(

1,
4

π
Iν∗ ν̄

u1/2

)

×
(

∂r lnN +

(

u− 3

2

)

∂r lnT +
eBp
T
VT

)2

(6.11)

where vD = T
eBR is the thermal curvature drift velocity, I ≃ 1.38 and the collisionality ν∗,

which is the conventional parameter for neoclassical theory, is defined as in section 2.3.2.
The normalized collision frequency is

ν̄(v) =
3

4

√
2π
Φ(v)−G(v)

v3
(6.12)

where

Φ(v) =
2√
π

∫ v

0
dx exp

(
−x2

)

G(v) =
Φ(v)− vΦ′(v)

2v2
(6.13)

Close to the resonance vG‖ = 0, one has v = (µB/T )1/2 =
√
u.

6.2.2 Helically trapped particles

We callMh =M+Nq the helical wave number. If |Mh| ≫ 1, which is relevant for toroidal
field ripple in tokamaks, local trapping occurs when Y = α |sin θ| < 1, where α = ǫ

|Mh|δ .
This condition defines for each minor radius r a domain in θ for which there exists locally
trapped particles. One can define an effective ripple amplitude, which is the depth of the
magnetic well along the field lines between successive minima and maxima [Yus90], namely

2δeff =
Bmax
Bmin

− 1 = 2δ
(√

1− Y 2 − Y arccosY
)

(6.14)

The collisionality paremeter for helical trapping, which is the equivalent of ν∗ for toroidal

trapping, is ν∗hel =
ν∗

|Mh|
(
ǫ
δ

)3/2
. We also define an effective collisionality ν∗eff = max(1,M2

h)ν
∗.

Note that, for the case of ripple in tokamaks, ν∗eff = M2
hν
∗. With these notations, the

entropy production rate due to helically trapped particles reads

Ṡhel =
1

2

√
π

2

∫

dV n
M2

|Mh|

(
δ

ǫ

)2 qRv2D
vT

∫ +∞

0
due−uu2

(

G′0(α) +G0(α)min

(

1,
4

π
Iν∗hel

ν̄

u1/2

))

(

∂r lnN +

(

u− 3

2

)

∂r lnT +
eBp
T

Mh

M
VT

)2

(6.15)

where G0 and G
′
0 are form factors [GAT+10]. When α ≫ 1, they are given by G0(α) =

1
2π

∫

Y <1 dθ and G′0(α) = 1
2π

∫

Y >1 dθ. We recall that the integration domains Y < 1
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correspond to the fraction of phase-space where helical trapping occurs. In the opposite
limit α≪ 1, one gets G0 = 1 and G′0 = 0.

In the specific case where M = 0 and ν∗hel ≫ 1, corresponding to ripple trapped
particles in the plateau regime, Eq. (6.15) can be replaced by its limit when M → 0,
which yields

Ṡhel =

√
π

2

∫

dV n

(
δ

ǫ

)2 qRv2D
vT

∫ +∞

0
due−uu2

(
eBp
T
VT

)2

(6.16)

as G0 +G′0 = 1. Notice that the mode number N no longer appears in this expression.

6.2.3 Effect of the toroidal perturbation on helically trapped particles

We now consider the case where the helical trapping is the primary perturbation to the
Hamiltonian while toroidal trapping by the vertical drift is the secondary perturbation.
For large collisionality ν∗hel ≫ 1, this term is small, as the effect of collisional detrapping
will be more important than the secondary perturbation. When ν∗hel ≪ 1, the entropy
production rate reads

Ṡ′tor = Khel

∫

dV G1(α)n

(
Nq

Mh

)2 (δ

ǫ

)3/2 1

ν∗
qRv2D
vT

∫ +∞

0
due−uu5/2

1

ν̄(u)

(

∂r lnN +

(

u− 3

2

)

∂r lnT

)2

(6.17)

where Khel =
(
2
π

)3/2
min

(
8
9 , |Mh|

)
and G1 is a form factor [GAT+10], given by G1(α) =

1
2π

∫

Y <1 dθ sin
2 θ when α≫ 1. In the opposite limit α≪ 1, one gets G1 = 1.

6.2.4 Effect of the helical perturbation on toroidally trapped particles

We now consider the case where the toroidal trapping is the primary perturbation to the
Hamiltonian while helical trapping is the secondary perturbation. Similarly to the previous
section, this effect will be negligible when ν∗ ≫ 1 and collisional detrapping dominates.

If ν∗ ≪ 1, the expression of Ṡ′hel depends on the effective collision frequency. In the
low effective collisionality regime ν∗eff ≪ 1

Ṡ′hel = K ′
hel

∫

dV n(Nq)2
(
δ

ǫ

)2 1

ν∗
qRv2D
vT

∫ +∞

0
due−uu5/2

1

ν̄(u)

(

∂r lnN +

(

u− 3

2

)

∂r lnT

)2

(6.18)

where K ′
hel =

(
2
π

)3/2
min

(
8
9 ,

1
|Mh|3

)

, while for larger effective collisionality ν∗eff ≫ 1 one

has

Ṡ′hel =
1

2

√
π

2

∫

dV n
N2q2

|Mh|

(
δ

ǫ

)2 qRv2D
vT

∫ +∞

0
due−uu2

(

∂r lnN +

(

u− 3

2

)

∂r lnT

)2

(6.19)
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6.3 Neoclassical equilibria in limit cases

The different contributions to the total entropy production rate Eq. (6.10) have been
computed in the previous section 6.2, and can now be used to determine the neoclassical
equilibrium, following the procedure described in section 6.1. Several regimes must be
considered, depending on whether local trapping occurs or not, and depending on the
various collisionality parameters. We will focus on cases with a weak helical perturbation
where local trapping does not occur in section 6.3.1 while section 6.3.2 will focus on strong
perturbation regimes where helical trapping is present. Note that we restrict the study to
the case of toroidal field ripple, which implies M = 0.

The radial electric field, poloidal velocity and toroidal velocity are generically of the
form

eEr
T

= ∂r lnn+ kE∂r lnT (6.20)

Vp = kp
∂rT

eB
(6.21)

VT = kT
∂rT

eBp
(6.22)

The aim of the following sections is to obtain the expressions for kE , kp and kT in the
various regimes. The heat diffusivity and the friction rate driving the toroidal velocity to
its relaxed value Eq. (6.22) can also be derived.

6.3.1 Weak perturbation regime

When the amplitude of the helical perturbation is small, i.e. when Y > 1, particles are
not trapped in the helical perturbation. In this case, only banana-trapped particles are
important. In the total entropy production rate Eq. (6.10), two terms must therefore be
taken into account: the entropy productions due to toroidally trapped particles Ṡtor and
due to the effect of the helical perturbation on these particles Ṡ′hel.

Two regimes can be considered depending on the effective collisionality ν∗eff = (Nq)2ν∗.
These two limit cases will be referred to as “banana-drift” (ν∗eff ≪ 1) and “ripple-plateau”
(ν∗eff ≫ 1), following the terminology introduced by Yushmanov [Yus90].

Banana-drift regime

For small effective collisionality ν∗eff ≪ 1, the expression for the total entropy production

rate is Ṡres = Ṡtor+ Ṡ′hel where Ṡtor is given by Eq. (6.11) and Ṡ′hel is given by Eq. (6.18).
From this expression of Ṡres, the ambipolarity condition Γ = 0 reads

(1 + k1)∂r lnN + (3.37− 0.17k1)∂r lnT + k1
eBpVT
T

= 0 (6.23)

where the collisionality parameter k1 is defined as

k1 ≃
1.1

7.41G2(α)
Nq

(
ǫν∗

δ

)2

(6.24)

where G2 is a form factor [GAT+10]. A high collisionality regime is obtained when ν∗ ≫
1√
Nq

δ
ǫ Note that, for this condition to be consistent with ν

∗
eff ≪ 1, one must have δ/ǫ≪
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(Nq)−3/2. If this is the case, two separate regimes, are identified, namely “banana-drift
weakly collisional” and “banana-drift collisional”.

The extremalization with respect to the toroidal velocity yields the following evolution
equation

∂tVT = −
1.1

1 + k1

√
ǫν

(

VT − 3.54
∂rT

eBp

)

(6.25)

When the toroidal velocity has relaxed, i.e. VT = 3.54∂rTeBp
, the poloidal velocity is found

by combining the ambipolarity condition (6.23) with the force balance equation. It turns
out that, whatever the collisionality, it is equal to the conventional neoclassical poloidal
velocity

Vp = 1.17
∂rT

eB
(6.26)

The force balance equation yields the radial electric field

eEr
T

= ∂r lnn+ 3.37∂r lnT (6.27)

Finally the extremalization with respect to ∂r lnT yields the heat flux Q = −χin∂rT
where

χi = 36.94G2(α)
δ2

Nqǫ1/2
v2D
ν
(1 + 0.246k1) (6.28)

These results are consistent with the values given by Kovrizhnykh [Kov99]. At high
collisionality, k1 ≫ 1, the heat diffusivity coincides with the banana neoclassical value

1.35ν∗
qRv2D
vT

, as it should, since in that case the dominant entropy production rate comes
from banana particles.

Ripple-plateau regime

For large effective collisionality ν∗eff ≫ 1, the expression for the total entropy production

rate is Ṡres = Ṡtor+ Ṡ′hel where Ṡtor is given by Eq. (6.11) and Ṡ′hel is given by Eq. (6.19).
The ambipolarity condition reads

(1 + k2)∂r lnN + (1.5− 0.17k2)∂r lnT + k2
eBpVT
T

= 0 (6.29)

where the collisionality parameter k2 is defined as

k2 ≃
√

2

π

1.1

G2(α)

1

Nq

( ǫ

δ

)2
ν∗ (6.30)

The weak collisional regime is defined as ν∗ ≪ Nq
(
δ
ǫ

)2
, which is consistent with ν∗eff > 1

if δ/ǫ ≫ (Nq)−3/2. In this case, as in the previous section, two regimes are identified,
namely “ripple-plateau weakly collisional” and “ripple-plateau collisional”.

The extremalization with respect to the toroidal velocity yields the following evolution
equation

∂tVT = −
1.1

1 + k2

√
ǫν

(

VT − 1.67
∂rT

eBp

)

(6.31)

The poloidal velocity is found by combining the relaxed toroidal velocity VT = 1.67∂rTeBp

with the force balance equation and the ambipolarity condition Eq. (6.29). Again it is
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regime banana-drift banana-drift ripple-plateau
weakly collisional collisional collisional

collisionality ν∗ ≪ 1√
Nq

δ
ǫ

1√
Nq

δ
ǫ ≪ ν∗ ≪ 1

N2q2
1

N2q2
≪ ν∗

kE 3.37 3.37 1.5

kp 1.17 1.17 1.17

kT 3.54 3.54 1.67

toroidal damping rate νϕ 1.1
√
ǫν 7.41G2(α)

δ2ǫ3/2

Nq3
1
ν

(
vT
R

)2 √
π
2G2(α)Nδ

2 vT
R

heat diffusivity χi 1.35ν∗
qRv2D
vT

36.94G2(α)
δ2

Nqǫ1/2
v2D
ν 1.35ν∗

qRv2D
vT

Table 6.1: Neoclassical equilibrium without local trapping Y > 1, when δ
ǫ ≪ 1

(Nq)3/2
.

regime banana-drift ripple-plateau ripple-plateau
weakly collisional weakly collisional collisional

collisionality ν∗ ≪ 1
N2q2

1
N2q2

≪ ν∗ ≪ Nq
(
δ
ǫ

)2
Nq

(
δ
ǫ

)2 ≪ ν∗

kE 3.37 1.5 1.5

kp 1.17 1.17 1.17

kT 3.54 1.67 1.67

toroidal damping rate νϕ 1.1
√
ǫν 1.1

√
ǫν

√
π
2G2(α)Nδ

2 vT
R

heat diffusivity χi 1.35ν∗
qRv2D
vT

3
√

π
2G2(α)N

(
qδ
ǫ

)2 Rv2D
vT

1.35ν∗
qRv2D
vT

Table 6.2: Neoclassical equilibrium without local trapping Y > 1, and δ
ǫ ≫ 1

(Nq)3/2
.

found to be equal to the conventional neoclassical poloidal velocity Vp = 1.17∂rTeB whatever
the collisionality parameter k2. The force balance equation yields the radial electric field

eEr
T

= ∂r lnn+ 1.5∂r lnT (6.32)

Finally the extremalization with respect to ∂r lnT yields the heat flux Q = −χin∂rT
where

χi = 3

√
π

2
G2(α)N

(
qδ

ǫ

)2 Rv2D
vT

(1 + 0.41k2) (6.33)

The heat diffusivity coincides with the banana neoclassical value at high collisionality
k2 ≫ 1 as expected.

Summary of the weak perturbation regime

The weak perturbation regime is split into two regimes, “banana-drift” (ν∗eff ≪ 1) and
“ripple-plateau” (ν∗eff ≫ 1). One of these two regimes, depending on the relative ampli-

tudes of δ/ǫ and (Nq)−3/2, will be split into a weakly collisional and a collisional regime.
In either case, three regimes are obtained. For each regime, the values of kE , kp, kT and
the relevant damping rates have been calculated. These results are summarized in tables
6.1, and 6.2.

6.3.2 Strong perturbation regime

Large helical perturbations can locally trap particles, in the case of Y < 1, where we
recall the definition Y = ǫ

Nqδ |sin θ| in the case of an M = 0 perturbation. In tokamaks,
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this condition may be present for large ripple amplitudes. As in the weak perturbation
regime, many situations are possible depending on the orderings, especially since all four
contributions to the entropy production rate in Eq. (6.10) should be taken into account. We
focus here on an experimentally relevant case for tokamaks with ν∗ ≪ 1, implying that the
relevant contributions will be those proportional to 1/ν, i.e. Ṡ′tor and Ṡ

′
hel, Eqs. (6.17) and

(6.18). For standard values of collisionality, ripple amplitude and toroidal mode number,

the characteristic frequencies verify ν∗eff = (Nq)2ν∗ ≫ 1 and ν∗hel =
ν∗

|Mh|
(
ǫ
δ

)3/2 ≪ 1.
With these conditions, particles trapped in the ripple perturbation are in the ripple-
plateau regime, and the dominant entropy production rate is Ṡ′tor, as given by Eq. (6.17)
with G1 = 1 considering that all the particles are helically trapped. The extremalization
of this expression yields the particle and heat fluxes as

(
Γ
Q

)

= −nDlt

(
∂r lnN + 3.37∂r lnT

5∂rT

)

(6.34)

where Dlt = 6.58Nqδ3/2v2D/ν. The radial electric field can then be obtained from the
ambipolarity constraint Γ = 0, leading to

eEr
T

= ∂r lnn+ 3.37∂r lnT (6.35)

In order to obtain the toroidal velocity, which cannot be derived from Ṡ′tor and Ṡ
′
hel, the

other contributions to the entropy production rate must be considered. For M = 0,
Ṡtor ≫ Ṡhel is the dominant term. Thus, one finds VT = 3.54∂rTeBp

with a damping rate

νϕ ≃ 1.1
√
ǫν. Note that neither the equilibrium velocity nor the damping rate depend

on the ripple characteristics in this case. Finally, the force balance equation yields the
poloidal velocity as Vp = 1.17∂rTeB

6.4 Interplay between neoclassical and turbulent momen-

tum transport

6.4.1 Implementing toroidal field ripple in Gysela

The turbulent momentum transport studied in chapter 4 can also be described in terms
of entropy production rates [GAS+12]. However, in such an approach, neoclassical and
turbulent processes are simply additive. The aim of this section is to explore the competi-
tion between neoclassical and turbulent momentum transport by taking into account the
effects of a non-axisymmetric magnetic field in the Gysela code.

In terms of code development, this could in principle be achieved by modifying the
equilibrium magnetic field in the code. As the Gysela code has been developed assum-
ing an axisymmetric B field, this would require substantial modifications to the code1.
However, in the context of toroidal field ripple, the amplitude of the non-axisymmetric
component of the magnetic field is small compared to the equilibrium field. Thus, one can
consider an axisymmetric equilibrium field, and take into account toroidal field ripple as a

1For example, the description of the metric would be modified, and the velocity-space Jacobian B∗||
would depend on the toroidal angle. In addition to the important implications for code development, this
would significantly increase the memory cost of the simulations. As a consequence, this would deteriorate
the scalability of the code when running simulations on a large number of processors.
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perturbation. This can be expressed in terms of a perturbation to the Hamiltonian, given
by Eq. (2.5), which we recall here:

H̄ =
1

2
mvG‖

2 + eφ̄+ µB (6.36)

If the magnetic field is expressed as B = Beq + δB, then its amplitude can be computed
at the first order in δB/Beq as

‖Beq + δB‖ ≃
(
B2
eq + 2Beq · δB

)1/2

≃ Beq + beq · δB
︸ ︷︷ ︸

≡δB‖

(6.37)

where beq is the unit vector in the direction of Beq Thus, toroidal field ripple can be
described by an additional perturbation µδB‖ to the Hamiltonian Eq. (6.36), and we con-
sider a perturbation δB‖ of the form δ cos(Nϕ). In principle, the perturbation amplitude δ
could depend on the radius and poloidal angle, but we assume here a homogeneous ripple
amplitude.

6.4.2 Theoretical predictions for the perturbations considered

We consider a simulation with normalized gyroradius ρ∗ = 1/150 and collisionality ν∗ =
0.02. The aspect ratio is R/a = 3.2 and the safety factor profile is q(r) = 1.5+1.7 (r/a)2.8.
The simulation was run without toroidal field ripple for approximately 3.105 ω−1c . Several
simulations were then performed from this starting point with various ripple perturbations.
Before discussing the results in terms of momentum transport, it is useful to relate the
perturbations considered here with the theoretical predictions from section 6.3.

First of all, we consider a perturbation with δ = 5.10−3 and a toroidal mode number
N = 8. This choice of mode number, smaller than for most cases of toroidal field ripple
in tokamaks2, is imposed by the resolution of the simulation in the toroidal direction,
as the presence of ripple generates Fourier modes at the harmonics of the toroidal mode
number (see section 6.4.3). With this perturbation, the effect of local trapping is expected
to be small, as the domain where particles can be trapped is narrow3, as can be seen in
Fig. 6.2a. For the domain without local trapping, we can compare the values used here
with the limits identified in section 6.3.1. Throughout most of the simulation domain,
we find that δ/ǫ > (Nq)−3/2 and ν∗ > Nq(δ/ǫ)2. Thus, the particles are expected to be
mainly in the ripple-plateau collisional regime (see table 6.2). We recall that this implies
a toroidal damping rate of νϕ ∼ Nδ2 vTR towards a relaxed toroidal velocity VT = 1.67∂rTeBp

.
This regime was previously identified as relevant in experimental observations on Tore
Supra [FGT+11], albeit for higher toroidal mode number and larger ripple amplitude.

We also consider simulations with higher ripple amplitudes. For δ = 10−2, the local
trapping region (Y < 1) is larger, as can be seen in Fig. 6.2b. In this region, the conditions
described in section 6.3.2 for the strong perturbation regime are verified, i.e. ν∗eff ≫ 1 and
ν∗hel ≪ 1. For this situation, where particles trapped by the toroidal field ripple are in the
ripple-plateau regime, the damping rate is νϕ = 1.1

√
ǫν and the relaxed toroidal velocity is

VT = 3.54∂rTeBp
. Increasing the ripple amplitude also implies that the region without local

2For example, the number of toroidal field coils is N = 18 for Tore Supra and ITER
3Note that a domain where local trapping occurs is always present near θ = 0 and θ = π due to the

expression of the local trapping condition.
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(a) (b)

Figure 6.2: Poloidal cross-sections of the condition for local trapping in the ripple pertur-
bation with the parameters: R0/a = 3.2, N = 8 and (a) δ = 5.10−3 or δ = 10−2. Local
trapping occurs when Y < 1, corresponding to the domain between the two black lines.

trapping moves from the ripple-plateau collisional regime to the ripple-plateau weakly

collisional regime (see table 6.2). The damping rate becomes νϕ = 1.1ǫν while the relaxed
velocity remains VT = 1.67∂rTeBp

. On a given flux-surface, both regimes are present, and
making a general theoretical prediction is tricky. However, the damping rates and relaxed
velocities are of the same order of magnitude, and the damping rate is larger than in the
case with a weaker perturbation amplitude.

Finally, further increasing the ripple amplitude to δ = 2.10−2, the condition Y < 1 is
verified throughout the domain, and we are in the situation of strong ripple amplitude.
The conditions described in section 6.3.2, ν∗eff ≫ 1 and ν∗hel ≪ 1, are still verified, therefore

we can expect a damping rate νϕ = 1.1
√
ǫν and a relaxed toroidal velocity VT = 3.54∂rTeBp

.
Notice that the damping rate in the trapped regime does not depend on the ripple am-
plitude. However, as the trapping region is larger in this case and the damping rate is
weaker in the region without local trapping, the overall damping rate is expected to be
larger than for the case δ = 10−2.

6.4.3 Numerical results

A direct result of the addition of toroidal field ripple in the simulation can be observed in
the Fourier transform of the electric potential, shown in Fig. 6.3 for the case δ = 2.10−2.
Comparing this result with a standard simulation without ripple (for example Fig. 2.7), one
finds that the modes corresponding to low poloidal mode number and to the perturbation’s
toroidal mode number – in this case N = 8 – and its first harmonics develop with a strong
amplitude. These modes correspond mainly to the coupling of the (M = 0, N = ±8)
modes of the perturbation with the (M = ±1, N = 0) modes corresponding to the poloidal
variation of the magnetic field.

The effect of toroidal field ripple can also be identified in terms of heat transport, by
considering the time evolution of the neoclassical ion heat diffusivity, averaged over 20%
of the radial domain, near the center of the simulation. The result is shown in Fig. 6.4a for
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Figure 6.3: Two-dimensional Fast Fourier Transform (FFT) of the electric potential at
mid-radius in the presence of a toroidal field ripple with δ = 2.10−2 and N = 8. The
colors represent the logarithm of the amplitude for each (m,n) mode. The white line
corresponds to the local resonance m/n = −q, while the dashed red lines correspond to
the resonance computed from the minimum and maximum values of q in the simulation
domain.

the different ripple amplitudes considered and, for comparison, in the absence of ripple. In
the case without ripple, the heat diffusivity oscillates near the value predicted by standard
– i.e., axisymmetric – neoclassical theory in the banana regime [Tag88], as previously
verified in Gysela simulations [DPDG+11]. In the presence of ripple, as expected from
the theoretical predictions in section 6.3, the neoclassical ion heat diffusivity increases
with toroidal field ripple.

When adding toroidal field ripple to the simulation, a rapid transient phase is observed
due to the modification of the neoclassical equilibrium in the simulation. This transient
is similar to what has been reported in gyrokinetic simulations when the initial state is
not an equilibrium solution of the equation, such as when initializing the distribution
function with a local Maxwellian rather than a “canonical” Maxwellian, i.e. a function
of the motion invariants [ITK03]. This transient is not expected to modify the transport
on longer time-scales [DPGS+08]. Notice that, at the moment, the various simulations
have not been run for the same duration. This is due to the significant numerical cost
of such simulations: as an example, to obtain a simulation time of 7.104ω−1c , a run of 24
hours on 8192 processors is required, corresponding to nearly 2.105 hours of computing
time4. However, the results presented here are enough to obtain a qualitative observation
of the interplay between neoclassical and turbulent momentum transport, and to study

4The simulations were performed on the Curie supercomputer of the Très Grand Centre de Calcul
(TGCC) in Bruyères-le-Châtel, France.
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Figure 6.4: Time evolution of the (a) neoclassical heat diffusivity and (b) parallel velocity,
averaged over a large radial domain, without ripple and for different cases of toroidal field
ripple, depending on the perturbation amplitude δ.

the trends with varying ripple amplitude.
To analyze the effect of ripple on toroidal rotation, we consider the time evolution of

the velocity, also averaged over 20% of the radial domain, near the center of the simulation.
As the simulation was run on a time shorter than the confinement time, the mean flows are
still evolving. Therefore, the simulations in the presence of ripple must be compared to the
same simulation without adding the perturbation. The result is shown in Fig. 6.4b. A first
observation is that in the case with the weakest ripple amplitude, δ = 5.10−3, the mean
velocity is not affected by the presence of ripple. When increasing the perturbation to
δ = 10−2, although the velocity continues to increase, the rate of increase is not as fast as
in the case without ripple. With this realistic value of toroidal field ripple, it appears that
neoclassical momentum transport can compete with the contribution from electrostatic
turbulence. Furthermore, for δ = 2.10−2, the friction from toroidal field ripple appears
sufficient to counter the generation of toroidal rotation by turbulence.

As a conclusion, we find that these results are consistent with recent experimental
results on Tore Supra [FGT+11], where the measured rotation was in the co-current di-
rection for small values of toroidal field ripple (down to 0.5%), while it approached the –
counter-current – neoclassical prediction for the highest ripple achievable by the tokamak
(up to 5.5%). Quantitative comparisons between Gysela simulations and Tore Supra ex-
periments could be performed in the future, although several ingredients are still missing
in the model, such as realistic radial profiles for the collisionality and ripple amplitude.
Experimental density and temperature profiles should also be used in the simulations in
order to obtain a consistent amplitude for the neoclassical and turbulent contributions to
the generation of toroidal rotation.
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Chapter 7

Conclusions

Understanding and predicting toroidal momentum transport in tokamaks is an important
challenge on the path to using nuclear fusion as a source of energy. The level and profile of
toroidal rotation can significantly impact the energy confinement time, which describes the
quality of the energy confinement in the plasma and is a key parameter in view of obtaining
an economically viable fusion reactor. This issue will become specifically critical for future
devices such as ITER as external sources will play a minor role. Intrinsic toroidal rotation
has been observed experimentally in present tokamaks, in the absence of sources, but the
physical mechanisms governing its generation are not entirely understood. Thus, reliable
predictions for future experiments are lacking. In this thesis, we studied the generation

of intrinsic toroidal rotation by electrostatic turbulence and collisional effects.
Because tokamak plasmas are not in thermodynamic equilibrium, studying such collective
processes requires the use of a kinetic model to model the distribution of particles in phase-
space. The presence of a strong magnetic field allows us to reduce this six-dimensional
phase-space to five dimensions, leading to the gyrokinetic model used in this thesis.

In the context of this reduced model, we derived exact local conservation laws for
charge density, energy and toroidal momentum. The latter is particularly important as it
demonstrates that the gyrokinetic model can accurately describe the transport of toroidal
momentum, and provides the framework for this description by identifying the key contri-
butions, most notably the toroidal component of the Reynolds stress. This conservation
law was verified numerically with the global, full-f gyrokinetic code Gysela. Combining
the conservation of toroidal momentum with an equation for polarization, which can be
interpreted as the momentum carried by the electromagnetic field, we obtain an equation
for the total momentum. Along with the force balance equation, which is also verified
numerically in Gysela, this provides a complete description of mean flows in tokamaks.

A corollary to the conservation equation of toroidal angular momentum is that the
generation of toroidal rotation requires a breaking of axisymmetry. Electrostatic turbu-
lence is found to provide this symmetry breaking and can generate toroidal rotation in
simulations with a vanishing initial rotation profile and no momentum source. This rota-
tion, governed by the turbulent Reynolds stress, initially exhibits a dipolar structure due
to the conservation properties. Eventually, the diffusion of momentum fluxes at the edge
of the simulation allows for a net generation of toroidal rotation. Turbulent transport
exhibits large-scale avalanche-like events, which are found to transport large quantities
of both heat and momentum transport. In the statistical steady-state of the simulation,
turbulent heat and momentum transport are found to be strongly correlated. Moreover,
their dynamics – measured in terms of probability distribution functions – are remarkably
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similar.

We also explored possible non-local effects in turbulent heat and momentum trans-
port. An important observation is that the description of turbulence strongly depends
on the spatial and temporal scales considered. On the one hand, in addition to the in-
termittency observed in the flux-surface averaged turbulence, the fluxes are found to be
strongly localized in the poloidal direction on the low-field side (LFS) of the tokamak, and
the dynamics on the LFS and high-field side (HFS) show significant differences. On the
other hand, when performing averages in the radial and temporal dimensions, in addition
to the flux-surface average, one can recover the scaling expected from gyro-Bohm esti-
mates for both heat and momentum transport, which correspond to the assumptions of
a purely local and diffusive transport. This apparent contradiction suggests the existence
of a meso-scale, larger than the turbulence correlation length but smaller than the system
size, limiting the radial extent of the avalanches. Another feature which suggests that a
purely local description of turbulence is not satisfactory is the dependence of core toroidal
rotation on flows in the scrape-off layer. This was investigated through modified boundary
conditions in Gysela simulations, including poloidally inhomogeneous edge flows.

Apart from electrostatic turbulence, another means of breaking the axisymmetry in
tokamaks is via the equilibrium magnetic field. In all tokamaks, the finite number of
toroidal field coils leads to toroidal field ripple, i.e. variations of the magnetic field in
the toroidal direction. Other non-axisymmetric magnetic fields are also possible, such as
Resonant Magnetic Perturbations. Through purely collisional processes, in the absence of
turbulence, a non-axisymmetric magnetic field modifies the neoclassical equilibrium, and
in particular leads to a friction of the toroidal rotation. This friction, and the resulting
(counter-current) rotation, can be computed for a number of limit cases through the
extremalization of the entropy production rate. By implementing toroidal field ripple as
a perturbation to the Hamiltonian in Gysela, the competition between the neoclassical
friction and the turbulent generation of intrinsic toroidal rotation can be investigated. For
low values of the perturbation amplitude, toroidal rotation is not affected by ripple. For
higher ripple, neoclassical effects can compete with turbulent momentum transport, as
observed experimentally in Tore Supra.

Directions for future work

The issue of toroidal momentum transport in tokamaks is far from resolved. The model
used in the present study is based on a number of approximations which limit the scope of
physics that can be addressed, excluding for example electron turbulence or MHD modes.
The effect of extrinsic momentum sources, for instance by neutral beam injection or radio-
frequency heating, and its interaction with intrinsic momentum transport, also raises some
difficult questions. However, rather than going through a (long) list of open issues, we
focus here on three important aspects: the interaction between core and edge momentum
transport, the comparison between simulations and experiments, and the search for a
“minimal model” of tokamak turbulence.

As mentioned throughout this thesis, the conservation of toroidal momentum implies
that edge physics can have a significant impact on core toroidal rotation, and a more
consistent treatment of the effect of the edge on core rotation than was presented here
appears mandatory. Rather than a question of boundary conditions in gyrokinetic codes,
one should consider this issue as one of interaction. For instance, the structure of scrape-
off layer flows is intricately linked with the ballooning of turbulent transport, and the
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properties of turbulence in the core and in the SOL cannot be decoupled. As the appro-
priate models and relevant scales for edge and core modeling are significantly different,
such effects could be investigated through, for example, the coupling of a core gyrokinetic
code to a fluid simulation for the edge.

A second issue which should be addressed in the future is the comparison of gyroki-
netic simulations with experimental results. In terms of toroidal momentum transport,
gyrokinetic codes such as Gysela can now take into account self-consistently the turbu-
lent and neoclassical contributions, and the first results presented here have shown good
qualitative agreement. With a proper coupling to a model for the edge rotation, the key
ingredients should be present for a quantitative comparison with experimental results, at
least in situations where the effects of fast particles and MHD can be neglected. Such com-
parisons would represent an important step in the validation of the underlying theoretical
and numerical models, thus allowing for these models to be used for reliable predictions
of intrinsic rotation in future experiments. More generally, the observation in numeri-
cal simulations of intermittent, non-local turbulent transport raises questions in terms of
the quantities of interest when comparing simulations and experiments. It appears that
conventional comparisons through averaged quantities such as diffusion coefficients may
be misleading, and more significant measurements, perhaps focusing on detailed charac-
teristics of the fluctuations, must be be considered. Ideally, this should be achieved by
simultaneously improving the resolution of experimental diagnostics and implementing
synthetic diagnostics in numerical codes.

Finally, an issue which goes beyond the question of momentum transport but could
lead to significant advances in the study of plasma turbulence is that of the importance of
kinetic effects in electrostatic turbulence, and whether an adequate reduction can be found
which reproduces these effects. As mentioned in the introduction, tokamak plasmas are not
in thermodynamic equilibrium, and fluid models assuming this equilibrium systematically
fail to reproduce experimental observations. Indeed, the distribution functions obtained in
kinetic simulations of electrostatic turbulence such as presented in this thesis are clearly
non-Gaussian. As a result, a dominant trend in plasma physics at the moment is to
perform ever more costly numerical simulations, using the constantly increasing numerical
resources of modern supercomputers. This increase in computer cost – which is not without
a significant cost in terms of energy – allows us to progressively enrich the physics content of
gyrokinetic simulations, by including the effects of impurities, kinetic electrons, magnetic
geometry, electromagnetic turbulence, etc. However, a different approach should also be
considered, where kinetic simulations are not only the ends but also the means to explicitly
identify – for instance through comparisons with fluid simulations – the kinetic effects, in
view of reducing the model. Current simulations seem to indicate that a conventional
fluid approach will not be sufficient, but a careful study of gyrokinetic simulations could
help identify a “minimal model” capable of reproducing the properties of turbulence in
tokamak plasmas.
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Appendix A

Toroidal flux coordinates

A.1 Deriving straight field-line coordinates

The aim of this section is to derive a set of toroidal flux coordinates, i.e. coordinates in
which the magnetic field lines are straight lines on a given flux-surface. We assume as a
starting point that the magnetic fieldB is known for an arbitrary set of coordinates (ρ, θ̂, ϕ̂)
where the radial variable ρ is a flux-surface label and the angles θ̂ and ϕ̂ are the “geometric”
angles. The orientation of these angles is important in order to determine details of the
metric, in particular the sign of the Jacobian. Here, we choose the toroidal angle ϕ̂ in
the counterclockwise direction and the poloidal angle θ̂ in the clockwise direction. We
use the notation θ̂ and ϕ̂ to distinguish from the straight field line coordinates θ and
ϕ used throughout the thesis, which will be derived here. Conventional covariant and
contravariant notations are adopted in the following.

First of all, a label of flux surfaces must be chosen1. A number of choices can be
considered [DHCS91], but a convenient solution is to use the opposite of the poloidal flux
of the magnetic field

χ ≡ −ψpol(χ) = −
1

2π

∫

Sθ̂

dS B · ∇θ̂
|∇θ̂|

(A.1)

where Sθ̂ is the ribbon-like surface stretched between the magnetic axis and the flux surface

at a given value of θ̂. We use the opposite of the poloidal magnetic flux – rather than ψpol
itself – as a flux-surface label because it increases with the radius.

Flux surfaces can then be defined simply by the equation B · ∇χ = 0. Thus, in
contravariant coordinates, the expression of the magnetic field is

B = Bθ̂√g∇ϕ̂×∇χ+Bϕ̂√g∇χ×∇θ̂ (A.2)

where g is the determinant of the metric tensor for the system of coordinates (χ, θ̂, ϕ̂).
From the relation ∇ ·B = 0, one can write

∂θ̂

(√
gBθ̂

)

+ ∂ϕ̂

(√
gBϕ̂

)

= 0 (A.3)

The two components of the magnetic field can then be expressed as a function of a single

1Note that we only consider cases where flux surfaces exist. The following cannot be applied in the case
of a chaotic magnetic field, where flux surface labels are not defined.
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variable v(χ, θ̂, ϕ̂)

Bθ̂ = − 1√
g
∂ϕ̂v (A.4)

Bϕ̂ =
1√
g
∂θ̂v (A.5)

Therefore, since ∇χ×∇χ = 0, Eq. (A.2) becomes

B = ∇χ×∇v (A.6)

From this expression of the magnetic field, it appears that the equation for a magnetic
field line on a given flux surface is v = constant. Furthermore, as B is periodic in (θ̂, ϕ̂),
∇v must also be periodic in (θ̂, ϕ̂). The general form of v is

v = α(χ)θ̂ + β(χ)ϕ̂+ ṽ(χ, θ̂, ϕ̂) (A.7)

where ṽ is periodic in (θ̂, ϕ̂). From the expressions of the contravariant components of B,
the functions α and β can be straightforwardly obtained as functions of the poloidal and
toroidal fluxes of the magnetic field

α = −dψtor
dχ

(A.8)

β =
dψpol
dχ

(A.9)

where the poloidal flux ψpol is defined in Eq. (A.1) and the toroidal flux ψtor is

ψtor =
1

2π

∫

Sϕ̂

dS B · ∇ϕ̂|∇ϕ̂| (A.10)

where Sϕ̂ is a surface of constant ϕ̂ bounded by a given flux surface. In order for magnetic
field lines to be straight in a given set of coordinates, one needs ṽ = 0. This can be
achieved by a change of coordinates, for instance

θ = θ̂ − ṽ
(
dψtor
dχ

)−1
and ϕ = ϕ̂ (A.11)

For a simple magnetic field geometry, the angle θ can expressed or computed as a
function of θ̂. An example is given in Fig. A.1 for the case of concentric, circular magnetic
flux surfaces, corresponding to the geometry used inGysela, with an aspect ration R/a =
3.2. One can note that surfaces of constant θ (solid blue lines) can significantly deviate
from surfaces of constant θ̂ (dashed black).

In the new flux coordinates (χ, θ, ϕ), the equation of a magnetic field line is

dψtor
dχ

θ − dψpol
dχ

ϕ = constant (A.12)

which corresponds to a straight line. A convenient expression of B is obtained from
Eq. (A.6) as

B = ∇χ×∇ (qθ − ϕ) (A.13)

where the safety factor q is a flux function defined as

q ≡ −dψtor
dχ

=
Bϕ

Bθ
(A.14)

The choice of the variable χ – rather than the poloidal flux – ensures that the coordinate
system (χ, θ, ϕ) is direct and the safety factor positive.
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Flux surfaces and θ=constant surfaces

Figure A.1: Poloidal cross-section showing flux surfaces and contours of θ = constant
(solid blue lines) and θ̂ = constant (dashed black lines) surfaces, in the case of circular
concentric flux surfaces.

A.2 Properties of the system of coordinates

For the coordinate system (r, θ, ϕ), which is also direct, the metric tensor is

gij =





|∇r|2 ∇r · ∇θ 0

∇r · ∇θ |∇θ|2 0
0 0 1

R2



 (A.15)

In the special case of circular concentric surfaces, ∇r · ∇θ = 0 and the metric tensor is
diagonal. The Jacobian of the metric is defined as J −1s = (∇r ×∇θ) · ∇ϕ =

√
g where g

is the determinant of the metric tensor. Here, the Jacobian reads

Js =
1

B · ∇θ (A.16)

In the circular concentric case, the contravariant and covariant components of the magnetic
field can be expressed as

Br = 0, Bθ = J −1s , Bϕ = I/R2

Br = 0, Bθ = grrJs/R2, Bϕ = I
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Appendix B

Derivation of the gyrokinetic

quasi-neutrality equation

B.1 General expression

The aim of this section is to derive the gyrokinetic quasi-neutrality equation, as given by
equation (2.14). We recall the general form of the quasi-neutrality equation (2.10), which
is the starting point of the derivation

∑

species

nses = 0 (B.1)

This equation contains the density of particles for each species. The main difficulty lies in
expressing this particle density as a function of the gyrocenter distribution F̄s.

The derivation of such relation is not trivial. In particular, the difference between
positions in particle phase-space and in guiding-center phase-space, which have been left
out for simplicity in the description of the model, must be taken into account. When
considering the canonical transformation between the particle variables (x,v) and the
guiding-center variables (xG,vG), one finds [BH07, GS] the following relation between the
distribution functions of particles and guiding-centers

F (x,v, t) = F̄ (xG,vG, t) +
e

B

{
φ(x, t)− φ̄(xG,vG, t)

}
∂µF̄eq(xG,vG) (B.2)

in the electrostatic approximation considered here. The species subscript s has been
omitted in equation (B.2) and in the following, as the density is computed independently
for each species. Thus the particle density in equation (B.1) can be written

n(x,v, t) =

∫

d3v F̄ (xG,vG, t)

+

∫

d3v
e

B

{
φ(x, t)− φ̄(xG,vG, t)

}
∂µF̄eq(xG,vG) (B.3)

The difference between particle position and guiding-center position is x−xG = ρc where
we recall that ρc is the gyro-radius vector. The density can then be decomposed as
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n = nG + npol, and we find

nG(x) =

∫

JvdµdvG‖J · F̄ (B.4)

npol(x) =

∫

JvdµdvG‖
e

B

∫ 2π

0

dα

2π
e−ρc·∇∂µF̄eq(x,v)

{
φ(x,v)− e−ρc·∇

〈
eρc·∇

〉
φ(x,v)

}
(B.5)

where we recall that J is the gyro-averaging operator and α is the gyro-angle. The brackets
〈. . . 〉 correspond to the average over the gyro-angle, i.e.

∫ 2π
0 dα/(2π)

Equation (B.5) is the exact expression of the polarization density. Note that the
integrand is related to variations of the electric potential at the scale of the Larmor radius.
However, this expression for the polarization density is extremely difficult to compute in
a numerical code. In practice, it is most often replaced by an approximation in the long
wavelength limit, k⊥ρc ≪ 1, which will be derived in the following section.

B.2 Polarization density in the long wavelength limit

Because the Larmor radius depends on the local direction and value of the magnetic
field, the change from particle position to guiding-center position is not a straightforward
bijection, and both directions correspond to different expressions:

x→ xG : x = xG + ρc(x) (B.6)

xG → x : xG = x− ρc(xG) (B.7)

where the gyro-radius vectors ρc at the positions x and xG are different. Using a Taylor
expansion, we can write this difference as

ρc(xG) ≃ ρc(x) + (ρc · ∇)ρc (B.8)

With this approximation, we can expand the operators in equation (B.5) as

eρc·∇ ≃ 1 + ρc · ∇+
1

2
(ρc · ∇)2 (B.9)

e−ρc·∇ ≃ 1− ρc · ∇+ {(ρc · ∇)ρc} · ∇+
1

2
(ρc · ∇)2 (B.10)

where all quantities are now expressed at the position x. This allows us to rewrite the
polarization density equation (B.5) as

npol(x) =

∫

JvdµdvG‖
e

B

∫ 2π

0

dα

2π
(1− ρc · ∇) ∂µFeq

{

1−
[

1− ρc · ∇+ {(ρc · ∇)ρc} · ∇+
1

2
(ρc · ∇)2

]

〈

1 + ρc · ∇+
1

2
(ρc · ∇)2

〉}

φ (B.11)
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Since the brackets correspond to the average over the gyro-angle, 〈ρc · ∇〉 = 0. At second
order in k ⊥ ρc, the polarization density reads

npol(x) =

∫

JvdµdvG‖
e

B

∫ 2π

0

dα

2π
(1− ρc · ∇) ∂µFeq

{

ρc · ∇ − ((ρc · ∇)ρc) · ∇ −
1

2
(ρc · ∇)2 −

〈
1

2
(ρc · ∇)2

〉}

φ

=

∫

JvdµdvG‖
e

B

〈

∂µF̄

{

− ((ρc · ∇)ρc) · ∇ −
1

2
(ρc · ∇)2 −

〈
1

2
(ρc · ∇)2

〉}

φ̄

−
(
ρc · ∇∂µF̄

) (
ρc · ∇φ̄

)

〉

(B.12)

The gyro-average of the various operators in this equation can be computed by projecting
the gyro-radius ρc on a Cartesian basis in the plane perpendicular to the magnetic field,
as ρc = ρc (cosαe⊥1 + sinαe⊥2) where e⊥1 and e⊥2 are the two vectors of the basis and
ρc is the norm of the gyro-radius. With this projection, straightforward calculations lead
to

〈

(ρc · ∇)2
〉

=
1

2
ρs∇⊥ · (ρs∇⊥)

〈((ρc · ∇)ρs) · ∇〉 =
1

4

(
∇⊥ρ2s

)
· ∇⊥

〈(
ρc · ∇∂µF̄

) (
ρc · ∇φ̄

)〉
=
1

2
ρ2s∇⊥φ̄ · ∇⊥∂µF̄

This leads to

npol(x) = −
∫

JvdµdvG‖
e

B

{

∂µF̄

[
1

4
∇⊥ρ2s∇⊥φ̄+

1

4
ρs∇⊥ ·

(
ρs∇⊥φ̄

)
]

+
1

2
ρ2s∇⊥φ̄ · ∇⊥∂µF̄

}

With the relation ρs∇⊥ ·
(
ρs∇⊥φ̄

)
= ρ2s∇2

⊥φ̄+
1
2∇⊥ρ2s∇⊥φ̄, we can rewrite this as

npol(x) = −
∫

JvdµdvG‖
e

2B

{
∇⊥ρ2s · ∇⊥φ̄+ ρ2s∇2

⊥φ̄+ ρ2s∇⊥φ̄ · ∇⊥
}
∂µF̄

=

∫

JvdµdvG‖
e

2B
∂µ

{
∇⊥ρ2s · ∇⊥φ̄+ ρ2s∇2

⊥φ̄+ ρ2s∇⊥φ̄ · ∇⊥
}
F̄ (B.13)

To complete the calculation, we use the fact that the operator B−1∂µ = (mv⊥)−1∂v⊥
commutes with the operator ∇⊥, which also commutes with the integral in velocity space∫
Jvdµ. Finally, recalling the expression of the Larmor radius, we can use the expression

∂µρ
2
s = 2m/(e2B). We find

npol(x) =

∫

JvdµdvG‖∇⊥ ·
( m

eB2
F̄∇⊥φ̄

)

= ∇⊥ ·
∫

JvdµdvG‖
m

eB2
F̄∇⊥φ̄

= ∇⊥ ·
( nm

eB2
∇⊥φ̄

)

(B.14)
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Appendix C

Deriving the reference Maxwellian

for the collision operator

We recall the expression of the collision operator used in Gysela:

C(F̄ ) = 1

B∗||
∂vG‖

{

B∗||D‖FM∂µ

(
F̄

FM

)}

(C.1)

where the reference Maxwellian FM is defined by its two moments Tcoll and V‖coll

FM = n

(
m

Tcoll

)3/2

exp

{

−
m

(
vG‖ − V‖coll

)2

Tcoll
− µB

Tcoll

}

(C.2)

This collision operator (C.1) trivially conserves the number of particles. The conservations
of parallel momentum and energy impose

∫ B∗||
m
dµdvG‖ mvG‖C(F̄ ) = 0 (C.3)

∫ B∗||
m
dµdvG‖

(
1

2
mvG‖

2 + µB

)

C(F̄ ) = 0 (C.4)

Let us first consider only the contribution of collisions in the parallel direction. We use
the expression of the collision operator (C.1) and integrate Eq.(C.3) by parts twice in the
variable vG‖

(C.3)‖ =

∫ B∗||
m
dµdvG‖ mvG‖

1

B∗||
∂vG‖

{

B∗||D‖FM∂vG‖

(
F̄

FM

)}

= −
∫

dµdvG‖ B
∗
||D‖FM∂vG‖

(
F̄

FM

)

=

∫

dµdvG‖
F̄

FM
∂vG‖(B

∗
||D‖FM )

=

∫

dµdvG‖

{
F̄

FM
B∗||D‖∂vG‖FM + F̄ ∂vG‖(B

∗
||D‖)

}
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Using the fact that ∂vG‖FM = −FM m(vG‖−V‖coll)
Tcoll

, we obtain

(C.3)‖ =
1

Tcoll

∫

B∗||dµdvG‖

{

TcollF̄

B∗||
∂vG‖(B

∗
||D‖)−D‖F̄m(vG‖ − V‖coll)

}

=
m

Tcoll

{

V‖coll
〈
mD‖

〉
−

〈
mD‖vG‖

〉
+ Tcoll

〈

1

B∗||
∂vG‖(B

∗
||D‖)

〉}

(C.5)

where the integration in velocity space is

〈...〉 =
∫ B∗||

m
dµdvG‖ F̄ ... (C.6)

We perform similar operations on the contribution to Eq.(C.4) of collisions in the parallel
direction:

(C.4)‖ =

∫ B∗||
m
dµdvG‖(µB +

1

2
mvG‖

2)
1

B∗||
∂vG‖

{

B∗||D‖FM∂vG‖

(
F̄

FM

)}

= −
∫

dµdvG‖ B
∗
||D‖FMvG‖∂vG‖

(
F̄

FM

)

=

∫

dµdvG‖
F̄

FM
∂vG‖(B

∗
||D‖vG‖FM )

=
1

Tcoll

∫

B∗||dµdvG‖

{

−vG‖D‖F̄m(vG‖ − V‖coll) +
Tcoll
B∗||

F̄ ∂vG‖(B
∗
||vG‖D‖)

}

=
m

Tcoll

{

V‖coll
〈
mD‖vG‖

〉
−

〈
mD‖vG‖

2
〉
+ Tcoll

〈

1

B∗||
∂vG‖(B

∗
||D‖vG‖)

〉}

(C.7)

For collisions in the perpendicular direction, Eq.(C.3) is trivially verified. We perform two
integrations by parts in the variable µ for Eq.(C.4)

(C.4)⊥ =

∫ B∗||
m
dvG‖dµ (µB +

1

2
mvG‖

2)
1

B∗||
∂µ

{

B∗||D⊥FM
1

B2
∂µ

(
F̄

FM

)}

= − 1

m

∫

dvG‖dµ
B∗||
B
D⊥FM∂µ

(
F̄

FM

)

=
1

m

∫

dvG‖dµ
F̄

FM

1

B
∂µ(B

∗
||D⊥FM )

Using the fact that ∂µFM = −FMB/Tcoll, we obtain

(C.4)⊥ =
1

m

∫

dvG‖dµ

{
F̄

B
∂µ(B

∗
||D⊥)−B∗||D⊥

1

Tcoll
F̄

}

=
1

Tcoll

{〈

1

BB∗||
∂µ(B

∗
||D⊥)

〉

Tcoll − 〈D⊥〉
}

(C.8)
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Using Equations (C.5), (C.7) and (C.8), the conservation equations (C.3) and (C.4) form
a linear system in Tcoll(r, θ, ϕ) and V‖coll(r, θ, ϕ) as follows

V‖coll
〈
mD‖

〉
+ Tcoll

〈

1

B∗||
∂vG‖(B

∗
||D‖)

〉

=
〈
mD‖vG‖

〉

V‖coll
〈
m2D‖vG‖

〉
+ Tcoll

〈

m

B∗||
∂vG‖(B

∗
||D‖vG‖) +

1

BB∗||
∂µ(B

∗
||D⊥)

〉

=
〈
m2D‖vG‖

2 +D⊥
〉

Solving this system, we find that the conservation constraints are verified if the profiles
V‖coll(r, θ, ϕ) and Tcoll(r, θ, ϕ) for the collision operator are defined as follows

mPV‖coll =

〈

m

B∗||
∂vG‖(B

∗
||D‖vG‖) +

1

BB∗||
∂µ(B

∗
||D⊥)

〉

〈
mD‖vG‖

〉

−
〈

1

B∗||
∂vG‖(B

∗
||D‖)

〉

〈
m2D‖vG‖

2 +D⊥
〉

PTcoll =
〈
D‖

〉 〈
m2D‖vG‖

2 +D⊥
〉
−

〈
mD‖vG‖

〉2

where

P =
〈
D‖

〉

〈

m

B∗||
∂vG‖(B

∗
||D‖vG‖) +

1

BB∗||
∂µ(B

∗
||D⊥)

〉

−
〈
mD‖vG‖

〉

〈

1

B∗||
∂vG‖(B

∗
||D‖)

〉

We recall that

〈...〉 =
∫ B∗||

m
dµdvG‖F̄

Only collisions in the parallel direction are taken into account at the moment in the code,
i.e D⊥ = 0. In this case, the expressions of the mean velocity and mean temperature are
reduced to

mPV‖coll =

〈

m

B∗||
∂vG‖

(

B∗|| vG‖D‖
)
〉

〈
mD‖vG‖

〉
−

〈
m2D‖vG‖

2
〉

〈

1

B∗||
∂vG‖

(

B∗||D‖
)
〉

(C.9)

PTcoll =
〈
D‖

〉 〈
m2D‖vG‖

2
〉
−

〈
mD‖vG‖

〉2
(C.10)

P =
〈
D‖

〉

〈

m

B∗||
∂vG‖

(

B∗|| vG‖D‖
)
〉

−
〈
D‖vG‖

〉

〈

m

B∗||
∂vG‖

(

B∗||D‖
)
〉

(C.11)
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Appendix D

Detailed integrations for the

derivation of polarization stresses

In this appendix, we present several detailed calculations useful for the derivation of the
gyrokinetic conservation laws in chapter 3.

D.1 Integration for the polarization flux of energy

The aim of this section is to compute the integral

IE =
m

2e

∫

dτ∗
{

∂tF̄ ∇ ·
( µ

B
∇⊥φ

)

− φ∇ ·
( µ

B
∇⊥∂tF̄

)}

(D.1)

which corresponds to the polarization flux of energy. In order to perform this integration, it
is useful to write the operator∇·( 1

B2∇⊥) in covariant notations1. We use an approximation
of this expression on a poloidal plane, i.e. the direction ⊥ is actually perpendicular to ∇ϕ
rather than B. Given that ∇ϕ ·∇θ = ∇ϕ ·∇χ = 0, we can write in the covariant notations
for a given field X:

∇ ·
(
1

B2
∇X

)

=
1√
g
∂i

(√
g

B2
gij∂jX

)

+
1

B2R2
∂ϕϕX (D.2)

where i and j correspond to χ or θ, and
√
g is the Jacobian of the metric tensor. With

these notations, the operator we consider is

∇ ·
(
1

B2
∇⊥X

)

=
1√
g
∂i

(√
g

B2
gij∂jX

)

(D.3)

To perform the integration in a more general case, we consider two arbitrary fields X
and Y , corresponding for example to ∂tF̄ and φ. We can calculate the integral using an
integration by parts on the coordinate i

I ≡
∫

dχdθdϕ
√
gX

1√
g
∂i

(√
g

B2
gij∂jY

)

(D.4)

= −
∫

dχdθdϕ(∂iX)

√
g

B2
gij(∂jY ) +

∫

dθdϕX

√
g

B2
gχj(∂jY ) (D.5)

1We recall here that µB commutes with the operator ∇.
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D.2. INTEGRATION FOR THE MOMENTUM POLARIZATION FLUX

where i and j are still θ or χ. Because of the periodicity in θ, there is no surface term
resulting from the integration by parts on i = θ.

I = −
∫

dχdθdϕ

√
g

B2
∇⊥X · ∇⊥Y +

∫

dθdϕ

√
g

B2
X∇χ · ∇⊥Y (D.6)

Notice that ∇χ · ∇⊥ = ∇χ · ∇, since ∇ϕ · ∇χ = 0. Finally, applying this result to IE , we
find

IE =
m

2e
∂χ

∫

dτ∗∂tF̄
µ

B
∇φ · ∇χ − m

2e

∫

dτ∗
µ

B
(∇⊥∂tF̄ ) · (∇⊥φ)

− m

2e
∂χ

∫

dτ∗φ
µ

B
∇(∂tF̄ ) · ∇χ+

m

2e

∫

dτ∗
µ

B
(∇⊥φ) · (∇⊥∂tF̄ ) (D.7)

D.2 Integration for the momentum polarization flux

The aim of this section is to calculate integrals of the form

I ≡
∫

dχdθdϕ
√
g(∂ϕX)

1√
g
∂i

(√
g

B2
gij∂jY

)

(D.8)

= −
∫

dχdθdϕ(∂2ϕiX)

√
g

B2
gij(∂jY ) +

∫

dθdϕ(∂ϕX)

√
g

B2
gχj(∂jY ) (D.9)

where i and j are θ or χ. The operator ∇ · ( 1
B2∇⊥) has been expressed in covariant

notations, as justified in the previous section. This corresponds to several terms for the
computation of the polarization stress of momentum, Eq. (G.2) and (G.4). Because of the
periodicity in θ, there is no surface term resulting from the integration by parts on i = θ.

I = −
∫

dχdθdϕ

√
g

B2
(∂ϕ∇⊥X) · ∇⊥Y +

∫

dθdϕ

√
g

B2
R2(∇ϕ · ∇X)(∇χ · ∇⊥Y ) (D.10)

Notice that ∇χ · ∇⊥Y = ∇χ · ∇Y , since ∇ϕ · ∇χ = 0. Finally, we find

I =
∫

dθdϕ

(B · ∇θ)∂ϕX∇ ·
(
1

B2
∇⊥Y

)

= −
∫

dθdϕ

(B · ∇θ)
1

B2
(∂ϕ∇⊥X) · ∇⊥Y (D.11)

+ ∂χ

∫
dθdϕ

(B · ∇θ)
R2

B2
(∇ϕ · ∇X)(∇χ · ∇Y )
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Appendix E

Effect of the electric potential on

the toroidal canonical momentum

The objective of this appendix is to prove that dtPϕ = −e∂ϕφ̄. Because Pϕ is an invariant
of the equilibrium motion, this result is equivalent to proving that

[
eφ̄, Pϕ

]
= e∂ϕφ̄ where

[., .] indicate the Poisson brackets. In the gyrokinetic framework, we recall the expression
of the Poisson brackets for two given fields G and H

B∗|| [G,H] = −
1

e
b · {∇G×∇H}+B∗ ·

{

∇G∂mvG‖H − ∂mvG‖G∇H
}

(E.1)

where b = B/B is the unit vector parallel to the magnetic field and we define B∗ =
B + (mvG‖/e)∇ × b. In the chosen coordinate system, we recall that the magnetic field
B and the toroidal canonical momentum Pϕ can be written as

B = I∇ϕ+∇ϕ×∇χ (E.2)

Pϕ = −eχ+ mI

B
vG‖ (E.3)

where I is a flux function. Using this we can write

− eB∗||
[
φ̄, Pϕ

]
= −∇φ̄ ·

{
−e

(

1−
mvG‖
eB

∂χI
)

b×∇χ

−
mIvG‖
B2

b×∇B +
eI

B
B+

mIvG‖
B

∇× b
}

(E.4)

Using the expression of B given by (E.2) we find that

B×∇χ = IB−B2R2∇ϕ (E.5)

∇×B = −∂χIB−R2∂χP∇ϕ (E.6)

where P is the plasma pressure. Thus equation (E.4) becomes

− eB∗||
[
φ̄, Pϕ

]
= −eR2∇φ̄ · ∇ϕ

{

B −
mvG‖
e

∂χI −
mIvG‖
eB2

∂χP

}

(E.7)

We can identify B∗|| in this expression:

B∗|| = B −
mvG‖
e

∂χI −
mvG‖
e

R2∂χP
B · ∇ϕ
B2

︸ ︷︷ ︸

=I/B2R2
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In the chosen system of coordinates we also have ∇φ̄ · ∇ϕ = ∂ϕφ̄/R
2, therefore equation

(E.7) becomes
− eB∗||

[
φ̄, Pϕ

]
= −eB∗||∂ϕφ̄ (E.8)
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Appendix F

Recurrence and closure for the

conservation of toroidal

momentum

Eq.(3.23) is consistent with the equation derived by Parra and Catto [PC10], as we can
show by using a recurrence relation to prove the conservation law for toroidal momentum.
Indeed, multiplying the gyrokinetic equation (2.18) by (uϕ)

k, and using dtPϕ = −e∂ϕφ̄,
one gets the recurrence relation

∂tLk + ∂χΠk = k
e

m
(Πk−1 −Mk−1) (F.1)

where

Lk =
∑

species

∫

dτ∗F̄mukϕ (F.2)

Πk =
∑

species

∫

dτ∗F̄mukϕv
χ
G (F.3)

Mk =
∑

species

∫

dτ∗F̄mukϕ∂ϕφ̄ (F.4)

Obviously, Eq.(3.23) corresponds to Eq.(F.1) for k = 1. The ordering chosen by Parra
and Catto leads them to neglecting the left-hand side of Eq.(F.1) for k = 3. In that case,
M2 ≃ Π2 and

Π1 = M1 +
m

2e
∂χM2 +

m

2e
∂tL2

= m

〈

∂ϕφ̄

∫

d3vF̄uϕ

〉

+
m

2e
∂χ

〈

∂ϕφ̄

∫

d3vF̄mu2ϕ

〉

+
m

2e
∂t

〈∫

d3vF̄mu2ϕ

〉

(F.5)

In the limit Π0 = J χ = 0 (vanishing radial current of gyrocenters) and M0 = 0 (no
Maxwell stress tensor), one recovers the conservation equation in [PC10]. We note how-
ever that this conservation relies on a closure assumption. Although this closure appears
reasonable, we believe that Eq.(3.23) is more appropriate, because it is exact within the
framework of the gyrokinetic model, but also because it does not involve a time derivative
of the pressure in the r.h.s. (like the last term of Eq.(F.5)), which is delicate to compute
numerically with accuracy.
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Appendix G

Polarization stress

In this appendix, we compute the following integral from Eq. (3.23).

∂χT
χ
ϕ =

∑

species

e

∫

dτ∗F̄ ∂ϕφ̄

=
∑

species

e

∫

dτ∗(J · F̄ )∂ϕφ
︸ ︷︷ ︸

I1

+
∑

species

e

∫

dτ∗
{
F̄ ∂ϕ (J · φ)− (J · F̄ )∂ϕφ

}

︸ ︷︷ ︸

I2

(G.1)

In order to compute the first integral, we use the gyrokinetic quasi-neutrality equation
(2.16). The first polarization term in expression (G.1) becomes

I1 = −
∫

dθdϕ

B · ∇θ∂ϕφ∇ ·
{neqm

B2
∇⊥φ

}

(G.2)

We can integrate by parts this expression (see appendix D.2 for details), which yields

I1 =

∫
dθdϕ

B · ∇θ
neqm

B2
∂ϕ (∇⊥φ) · ∇⊥φ
︸ ︷︷ ︸

1

2
∂ϕ|∇⊥φ|2

−∂χ
∫

dθdϕ

B · ∇θ
neqm

B2
R2 (∇ϕ · ∇φ) (∇χ · ∇φ)

= −∂χ
∫

dθdϕ

B · ∇θ
neqm

B2
∂ϕφ (∇χ · ∇φ) (G.3)

In order to compute the second integral in (G.1), we use the low wavenumber approxima-
tion of the gyroaverage operator

J ≃ 1 +
1

2
∇ ·

(mµ

e2B
∇⊥

)

With this approximation, the integral can be written

I2 =
m

2e

∫

dτ∗F̄ ∂ϕ
[

∇ ·
( µ

B
∇⊥φ

)]

− m

2e

∫

dτ∗∂ϕφ∇ ·
( µ

B
∇⊥F̄

)

(G.4)

The sum over species is omitted for simplicity as the calculation is independent for each
species. We can integrate both these terms by parts as done previously for I1 (see appendix
D.2 for details), which leads to

I2 = − m

2e
∂χ

∫

dτ∗
µ

B
R2

(
∇ϕ · ∇F̄

)
(∇χ · ∇φ) + m

2e

∫

dτ∗
µ

B
∂ϕ

(
∇⊥F̄

)
· ∇⊥φ

− m

2e
∂χ

∫

dτ∗
µ

B
R2 (∇ϕ · ∇φ)

(
∇χ · ∇F̄

)
+
m

2e

∫

dτ∗
µ

B
∂ϕ (∇⊥φ) · ∇⊥F̄
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Combining the second and fourth terms leads to
∫
dτ∗ µB∂ϕ

(
∇⊥φ · ∇⊥F̄

)
= 0 so we find

I2 = −
m

2e
∂χ

∫

dτ∗
µ

B
R2

{(
∇ϕ · ∇F̄

)
(∇χ · ∇φ) + (∇ϕ · ∇φ)

(
∇χ · ∇F̄

)}
(G.5)

Combining equations (G.3) and (G.5), using the gyrocenter perpendicular pressure defined
by P̄⊥ =

∫
d3vF̄µB, we obtain the complete expression of the polarization terms for the

conservation of angular momentum:

Tχϕ =

∫
dθdϕ

B · ∇θ
{

− m

2eB2
(∇χ · ∇φ) ∂ϕP̄⊥ −

m

2eB2

(
∇χ · ∇P̄⊥

)
∂ϕφ−

neqm

B2
(∇χ · ∇φ) ∂ϕφ

}

(G.6)
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Appendix H

Radial currents

From the gyrocenter equations of motion, Eq. (2.21), the radial current of gyrocenters
J χ can be decomposed into two components, coming respectively from the curvature and
E ×B drifts, noted J χ

D and J χ
E .

H.1 Neoclassical viscous damping

In this section we derive the radial current due to curvature drift. In the axisymmetric
case, it can be verified that the radial current due to curvature drift is of the form

J χ
D = −

∑

species

e

∫

dθdϕ

∫

2πBdµdvG‖
(
mvG‖

2 + µB
)
I
∂θB

B2
F̄ (H.1)

where we have used the approximation B∗|| = B. This is nothing other than the neoclassical

viscous damping term. Indeed equation (H.1) can be recast as

J χ
D = −

∑

species

e

∫

dθdϕ
I

B

(
P̄‖ + P̄⊥

)
∂θ lnB (H.2)

which is the conventional fluid expression for the radial current.

An explicit expression for J χ
D can be easily found in the plateau regime for a large

aspect-ratio tokamak, i.e. when the ratio of the minor radius to the major radius is small.
In this high collisionality regime, the quasi-linear approach can be followed, modeling the
collision operator as a simple resonance broadening. For this neoclassical derivation, as we
are only interested in the large scales, we consider the gyroaveraging operator J ≃ 1. We
also assume B∗ = B and B∗|| = B. The solution of the kinetic equation reads F̄ = FM+δF̄
where FM is a shifted Maxwellian distribution

FM (χ, vG‖, H) =
neq exp (eφeq/Teq)

(2πTeq/m)
3/2

exp

(

−H
T

)(

1 +
mvG‖V‖
Teq

)

(H.3)

where H is the energy, i.e. H = mvG‖
2 + µB + eφeq. The mean density neq, temperature

Teq and potential φeq are functions of χ only. The radial current is dominated by the ion
contribution. Assuming a simplified geometry of concentric toroidal magnetic flux surfaces
with circular cross-sections, the magnetic field amplitude is B = B0(r) [1− (r/R) cos θ]
where B0 is constant on a given flux-surface and r (respectively R) is the minor (resp.
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major) radius. As the aim is to compute the radial current, we focus only on the resonant
part of δF̄ (i.e. in sin θ) which contributes to transport [HS02]:

δF̄res = π δ

(
vG‖
qR

)
(
mvG‖

2 + µB
)
I
∂θB

B2

µR

e

{

∂r −
erB0

mqR
∂vG‖

}

FM (H.4)

where q = B · ∇ϕ/B · ∇θ is the safety factor. Using the expression of FM in equation
(H.3), we can compute the radial flux 〈(vD · ∇χ)δF̄ 〉, which leads to

J χ
D = −

√
π

2

neqm

B2

qvT
R

(∂χ〈φ〉 − ∂χ〈φneo〉) (H.5)

where we define

∂χ〈φneo〉 =
B

I
V‖eq −

Teq
e
∂χ lnneq −

3

2

Teq
e
∂χ lnTeq (H.6)

Note that, when the system is completely axisymmetric, there is a degeneracy between
the radial electric field and the parallel velocity. Using the radial force balance equation
(3.39), Eq. (H.6) can be interpreted either as an equation on the radial electric field or
on the poloidal velocity. Hence the equation ∂tσ = −J χ

D can be seen as describing the
relaxation of the poloidal velocity towards the neoclassical value with a damping rate of
the order of qvT /R. Indeed the force balance equation Eq.(3.39) implies that V ·∇θ must
relax towards −1/(2qe)∂χTeq. As expected, radial transport in the plateau regime does
not depend on the value of the collision frequency. In the banana regime, calculation leads
to a similar equation with the appropriately modified damping rate and poloidal velocity.

H.2 Taylor theorem

We define, for a given vector H, the projection on the local flux-surface as

H∧ =

(
B

B2
×∇χ

)

·H (H.7)

In this section, we assume, for any scalar field h, that J · (∇h)∧ = (J · ∇h)∧, i.e. the
radial projection of the gradient and the gyroaveraging operator commute. This is a
fairly reasonable assumption, equivalent to ignoring the gyroaverage of metric elements,
which are of the order O(ρ2∗). Nevertheless, since exact conservation laws are required for
numerical tests, the following expressions should not be used for this purpose. Within this
approximation, following the same general method used in appendix G, the E × B drift
contribution to the radial current is found to be

J χ
E = −∂χTχ∧ (H.8)

with

Tχ∧ = −
∫

dθdϕ

B · ∇θ

{
neqm

B2
EχE∧ +

∑

species

1

2

m

eB2
(EχG∧ + GχE∧)

}

(H.9)

Given the definition of the radial projection Eq. (H.7), E∧ and G∧ can be understood
as projections of the perpendicular gradients of φ̄ and P̄⊥ on the local flux-surface. The
expressions (H.8) and (H.9) require comment. Note that, at least in slab geometry, we
recover the standard fluid expression of the polarization current including the correct
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diamagnetic contribution, as the factor 1/2 in front of the pressure gradients results from
the presence of pressure terms in the definition of the generalized vorticity Eq. (3.31). A
comparison with Eq.(3.29) indicates that Tχ∧ is an off-diagonal component of the Maxwell
stress tensor constructed from the polarization field (corrected for FLR effets). However
another interpretation of the vorticity is possible. In the cold plasma limit P̄⊥ = 0, Tχ∧
is the off-diagonal component of the Reynolds stress tensor. Since σ is then proportional
to the poloidal component of the E × B drift velocity, one recovers the usual expression
for the time evolution of the poloidal velocity. In other words, it is found that the flux of
vorticity is related to the Reynolds stress, a restatement of Taylor’s theorem [Tay15].
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Appendix I

Radial force balance equation

In this appendix, we recover the conventional fluid expression for the radial force balance.
In the absence of turbulence and collisions, the solution of the gyrokinetic equation (2.18)
is a function of the motion invariants: the energy H = ε+ eφeq (ε = mvG‖

2/2+µB is the
kinetic energy, and φeq is the mean electric potential); the magnetic moment µ and the
toroidal canonical momentum,

Pϕ = muϕ − eχ (I.1)

with the notation uϕ = (I/B)vG‖. The solution of C(F̄ ) = 0 (applied to all species) is
a Maxwellian. Except in the trivial case where all gradients are vanishing, the presence
of particle trapping implies that no solution satisfies both constraints, i.e. no Maxwellian
distribution can be found as a function of the motion invariants. The resolution of this
dilemma can be seen as the origin of neoclassical transport. However, far from the
trapped domain, a solution which satisfies both constraints can be found. It is of the
form [GDPN+09]

FM (H,µ, Pϕ) =
neq exp (eφeq/Teq)

(2πTeq/m)
3/2

exp

(

− H

Teq

)(

1 +
mWhvG‖

Teq

)

(I.2)

where the density neq, temperature Teq and potential φeq are functions of −Pϕ/e (which
is approximately equal to χ at order O(ρ∗)), hvG‖ is a motion invariant close to vG‖ and
the function W is given by

hW = V‖eq +
Teq
e

I

B
∂χΞ (I.3)

where V‖eq is the equilibrium toroidal velocity and

∂χΞ = ∂χ lnneq +
e

Teq
∂χφeq +

(
ε

Teq
− 3

2

)

∂χ lnTeq (I.4)

The flow associated with this distribution (I.2) is consistent with the general expression
in toroidal geometry

V = K(χ)B−
(

∂χφeq +
∂χPeq
neqe

)

R2∇ϕ (I.5)

with K =
∫
2πBdµdvG‖(vG‖

2/v2T )hWFM (vT =
√
Teq/m being the thermal velocity).

With this flow, the radial component of the force balance equation reads:

∂χφeq +
∂χPeq
neqe

+
B

I
V‖eq = q

B2R2

I2
(V · ∇θ) (I.6)
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Note that, in the case of an anisotropic pressure tensor, Peq should be replaced by the
perpendicular pressure Peq⊥ in the radial force balance Eq. (I.6).
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A. Strugarek. Solving the Vlasov equation in complex geometries. In ESAIM:

Proceedings, volume 32, pages 103–117, 2011.

[ASD89] ASDEX Team. The H-Mode of ASDEX. Nuclear Fusion, 29(11):1959, 1989.

[BDT90] H. Biglari, P. H. Diamond, and P. W. Terry. Influence of sheared poloidal
rotation on edge turbulence. Physics of Fluids B, 2(1):1, 1990.

[BH07] A. J. Brizard and T. S. Hahm. Foundations of nonlinear gyrokinetic theory.
Review of Modern Physics, 79(2):421, 2007.
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