Liquidity risk modelling and quantization methods applied to sequential stochastic control
Auteur / Autrice : | Paul Gassiat |
Direction : | Huyên Pham |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance en 2011 |
Etablissement(s) : | Paris 7 |
Mots clés
Résumé
Cette thèse est constituée de deux parties pouvant être lues indépendamment. Dans la première partie on s'intéresse à la modélisation mathématique du risque de liquidité. L'aspect étudié ici est la contrainte sur les dates des transactions, c'est-à-dire que contrairement aux modèles classiques où les investisseurs peuvent échanger les actifs en continu, on suppose que les transactions sont uniquement possibles à des dates aléatoires discrètes. On utilise alors des techniques de contrôle optimal (programmation dynamique, équations d'Hamilton-Jacobi-Bellman) pour identifier les fonctions valeur et les stratégies d'investissement optimales, sous ces contraintes. Le premier chapitre étudie un problème de maximisation d'utilité en horizon fini, dans un cadre inspiré des marchés de l'énergie. Dans le deuxième chapitre on considère un marché illiquide à changements de régime, et enfin dans le troisième chapitre on étudie un marché où l'agent a la possibilité d'investir à la fois dans un actif liquide et un actif illiquide, ces derniers étant corrélés. Dans la deuxième partie on présente des méthodes probabilistes de quantification pour résoudre numériquement un problème de switching optimal. On considère d'abord une approximation en temps discret du problème et on prouve un taux de convergence. Ensuite on propose deux méthodes numériques de quantification : une approche markovienne où on quantifie la loi normale dans le schéma d'Euler, et dans le cas où la diffusion n'est pas contrôlée, une approche de quantification marginale inspirée de méthodes numériques pour le problème d'arrêt optimal.