Auteur / Autrice : | Marie Bernhart |
Direction : | Huyên Pham |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance en 2011 |
Etablissement(s) : | Paris 7 |
Mots clés
Résumé
Le travail présenté dans cette thèse a été motivé par des problématiques posées par l'évaluation de contrats échangés sur le marché du gaz: les contrats de stockage et d'approvisionnement en gaz. Ceux-ci incorporent de l'optionalité et des contraintes, ce qui rend leur évaluation difficile dans un contexte de prix de matières premières aléatoires. L'évaluation de ces contrats mène à des problèmes de contrôle stochastique complexes: switching optimal ou contrôle impulsionnel et contrôle stochastique en grande dimension. La première partie de cette thèse est une revue relativement exhaustive de la littérature, mettant en perspective les différentes approches d'évaluation existantes. Dans une deuxième partie, nous considérons une méthode numérique de résolution de problèmes de contrôle impulsionnel basée sur leur représentation comme solution d'EDSRs à sauts contraints. Nous proposons une approximation à temps discret utilisant une pénalisation pour traiter la contrainte et donnons un taux de convergence de l'erreur introduite. Combinée avec des techniques Monte Carlo, cette méthode a été testée numériquement sur trois problèmes: gestion optimale de biomasse, évaluation d'options Swing et de contrats de stockage gaz. Dans une troisième partie, nous proposons une méthode pour l'évaluation d'options dont le payoff dépend de moyennes mobiles de prix sous-jacents. Elle utilise sur une approximation à dimension finie de la dynamique des processus de moyenne mobile, basée sur un développement en série de Laguerre tronquée. Les résultats numériques fournis incluent des exemples de contrats Swing gaziers à prix d'exercice, indexés sur moyennes mobiles de prix pétroliers.