Thèse soutenue

Spectroscopie infrarouge cométaire : analyse des observations de la comète 9P/Tempel 1 obtenues avec le télescope spatial Spitzer lors de l'évènement Deep Impact

FR  |  
EN
Auteur / Autrice : Adeline Gicquel
Direction : Dominique Bockelée-Morvan
Type : Thèse de doctorat
Discipline(s) : Astronomie et astrophysique
Date : Soutenance en 2011
Etablissement(s) : Observatoire de Paris (1667-....)
Ecole(s) doctorale(s) : École doctorale Astronomie et astrophysique d'Île-de-France (Meudon, Hauts-de-Seine ; 1992-....)
Jury : Président / Présidente : Didier Pelat
Examinateurs / Examinatrices : Dominique Bockelée-Morvan, Olivier Groussin, Philippe Rousselot, Eric Pantin, Gian Paolo Tozzi
Rapporteurs / Rapporteuses : Olivier Groussin, Philippe Rousselot

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

Les comètes sont des petits corps glacés primitifs, témoins de la formation du Système Solaire. Leur composition pourrait être inchangée depuis leur accrétion dans le disque protoplanétaire. Leur étude nous renseigne donc sur les processus physiques et chimiques de la formation planétaire. Lorsque les comètes passent à proximité du Soleil, leur noyau s'entoure d'une atmosphère appelée coma composée de poussières et des produits de sublimation des glaces, ce qui rend leur noyau difficilement observable. La NASA a choisi la comète 9P/Tempel 1 comme cible de la mission Deep Impact. C'est l'unique mission spatiale, à ce jour, à avoir sondé de l'intérieur d'un noyau cométaire en impactant sa surface le 4 juillet 2005. Au cours de cette thèse, je me suis intéressée à l'étude des éjectas associés à cet évènement ce qui m'a permis 1/ d'analyser l'activité de la comète 9P/Tempel 1 ainsi que les propriétés de sa coma avant et après la collision et 2/ de déterminer le rapport poussière/glace dans les couches profondes du noyau. Pour cela j'ai exploité et interpreté, en développant des modèles numériques, les données spectroscopiques dans l'infrarouge fournies par le télescope spatial Spitzer avant et après l'impact. Les spectres de Spitzer, dont les gammes de longueur d'onde s'étendent entre 5. 2--13. 2 µm, permettent d'analyser l'émission de fluorescence de la bande de vibration v₂ de l'eau à 6. 4 µm et l'émission thermique de la poussière. L'évolution temporelle du continuum dû à la poussière a été analysée avec ce modèle thermique en considérant deux lois de distribution en taille et deux types de grains : des grains de carbone amorphe et des grains constitués d'un manteau de carbone amorphe et d'un coeur de silicates amorphes. La température des grains est déduite de l'équilibre radiatif et les coefficients d'absorption sont calculés en utilisant la théorie de Mie. Les paramètres libres des distributions en taille ont été contraints pour les éjectas de poussières et pour la poussière de la coma ambiante ce qui a permis de déduire l'évolution temporelle de la masse des éjectas dans le champ de vue. L'analyse des données montre que l'impact a conduit à la libération d'une grande quantité de petits grains. Elle suggère également que les grains se sont fragmentés lors de leur expansion dans la coma. La masse totale des poussières présentes pour des grains entre 0. 1 et 100 µm, estimée à (0. 5--2. 1) x 10⁶ kg, est en accord avec d'autres valeurs publiées dans la littérature. L'émission thermique des éjectas de poussières à l'intérieur du champ de vue de Spitzer a été interpretée par un modèle dépendant du temps qui simule le développement de nuage et prend en compte la dynamique des gains. La loi de variation de la vitesse des grains en fonction de leur taille a été contrainte par ce modèle. La bande d'émission v₂ de l'eau a été extraite des spectres de Spitzer et le nombre de molécules d'eau à l'intérieur du champ de vue de Spitzer a été déduit en utilisant un modèle de fluorescence. L'étude de la distribution spatiale du nombre de molécules d'eau avant l'impact par un modèle de densité a permis de déterminer le taux de production en eau pour la coma ambiante de la comète 9P/Tempel 1, égal à 4. 7 x 10²⁷ molécules s-1. L'évolution temporelle du nombre de molécules dans le champ de vue, étudiée avec un modèle dépendant du temps simulant l'évolution du nuage de molécules d'eau a permis de déduire la masse de vapeur d'eau injectée par l'impact qui est estimée à (7. 4 +/- 1. 5) x 10⁶ kg. Cette évolution temporelle met en évidence une production prolongée de molécules d'eau après l'impact provenant de la sublimation de grains de glace présents dans les éjectas. Un modèle de sublimation de grains a été développé pour analyser la production soutenue de vapeur d'eau après l'impact. Deux approches, correspondant à un milieu dense et raréfié, ont été utilisées pour modéliser l'expansion des molécules d'eau provenant de la sublimation de grains glacés (glace pure ou comprenant des impuretés) dans le flux de gaz ambiant. L'analyse des données met en évidence la présence de grains de glace pure dans des éjectas. La masse de glace de ce modèle pour des grains de rayons entre 0. 1 et 1 µm est estimée a Mglace > 4. 7 x 10⁶ kg. Cette étude sur l'eau et la poussière dans les éjectas conduit à un rapport poussière/glace < 0. 03. Ce résultat, mis en comparaison avec le rapport poussière/gaz ~ 1 normalement mesuré dans les atmosphères cométaires, suggère la présence d'une quantité importante de glace sous la surface du noyau de comète 9P/Tempel 1.