Allocation stratégique d’actifs et ALM pour les régimes de retraites

par Alaeddine Faleh

Thèse de doctorat en Sciences actuarielle et financière

Sous la direction de Frédéric Planchet et de Didier Rulliere.

Soutenue le 13-05-2011

à Lyon 1 , dans le cadre de École doctorale Sciences économiques et gestion (Lyon) , en partenariat avec Laboratoire des Sciences Actuarielles et Financières (laboratoire) .

Le président du jury était Jean-Claude Augros.

Le jury était composé de Jean-Pierre Aubin, Guillaume Lezan.

Les rapporteurs étaient Jean-Paul Laurent, François Dufresne.


  • Résumé

    La présente thèse s’intéresse aux modèles d’allocation stratégiques d’actifs et à leurs applications pour la gestion des réserves financières des régimes de retraite par répartition, en particulier ceux partiellement provisionnés. L’étude de l’utilité des réserves pour un système par répartition et a fortiori de leur gestion reste un sujet peu exploré. Les hypothèses classiques sont parfois jugées trop restrictives pour décrire l'évolution complexe des réserves. De nouveaux modèles et de nouveaux résultats sont développés à trois niveaux : la génération de scénarios économiques (GSE), les techniques d’optimisation numérique et le choix de l’allocation stratégique optimale dans un contexte de gestion actif-passif (ALM). Dans le cadre de la génération de scénarios économiques et financiers, certains indicateurs de mesure de performance du GSE ont été étudiés. Par ailleurs, des améliorations par rapport à ce qui se pratique usuellement lors de la construction du GSE ont été apportées, notamment au niveau du choix de la matrice de corrélation entre les variables modélisées. Concernant le calibrage du GSE, un ensemble d’outils permettant l’estimation de ses différents paramètres a été présenté. Cette thèse a également accordé une attention particulière aux techniques numériques de recherche de l'optimum, qui demeurent des questions essentielles pour la mise en place d'un modèle d'allocation. Une réflexion sur un algorithme d’optimisation globale d’une fonction non convexe et bruitée a été développée. L’algorithme permet de moduler facilement, au moyen de deux paramètres, la réitération de tirages dans un voisinage des points solutions découverts, ou à l’inverse l’exploration de la fonction dans des zones encore peu explorées. Nous présentons ensuite des techniques novatrices d'ALM basées sur la programmation stochastique. Leur application a été développée pour le choix de l’allocation stratégique d’actifs des régimes de retraite par répartition partiellement provisionnés. Une nouvelle méthodologie pour la génération de l’arbre des scénarios a été adoptée à ce niveau. Enfin, une étude comparative du modèle d’ALM développé avec celui basé sur la stratégie Fixed-Mix a été effectuée. Différents tests de sensibilité ont été par ailleurs mis en place pour mesurer l’impact du changement de certaines variables clés d’entrée sur les résultats produits par notre modèle d’ALM

  • Titre traduit

    Strategic assets allocation and ALM for retirement schemes


  • Résumé

    This thesis focuses on the strategic asset allocation models and on their application for the financial reserve management of a pay-as-you-go (PAYG) retirement schemes, especially those with partial provision. The study of the reserve utility for a PAYG system and of their management still leaves a lot to be explored. Classical hypothesis are usually considered too restrictive for the description of the complex reserve evolution. New models and new results have been developed over three levels : economic scenario generation (ESG), numerical optimization techniques and the choice of optimal strategic asset allocation in the case of an Asset-Liability Management (ALM). For the generation of financial and economic scenarios, some ESG performance indicators have been studied. Also, we detailed and proposed to improve ESG construction, notably the choice of the correlation matrix between modelled variables. Then, a set of tools were presented so that we could estimate ESG parameters variety. This thesis has also paid particular attention to numerical techniques of optimum research, which is an important step for the asset allocation implementation. We developed a reflexion about a global optimisation algorithm of a non convex and a noisy function. The algorithm allows for simple modulating, through two parameters, the reiteration of evaluations at an observed point or the exploration of the noisy function at a new unobserved point. Then, we presented new ALM techniques based on stochastic programming. An application to the strategic asset allocation of a retirement scheme with partial provision is developed. A specific methodology for the scenario tree generation was proposed at this level. Finally, a comparative study between proposed ALM model and Fixed-Mix strategy based model was achieved. We also made a variety of a sensitivity tests to detect the impact of the input values changes on the output results, provided by our ALM model

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Claude Bernard. Service commun de la documentation. Bibliothèque numérique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.