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1Introduction

With the recent technological developments concerning three-

dimensional images (3D scanners, 3D graphic accelerated hard-

ware, and so on; see figure 1.1), the creation and storage of three-

dimensional models have become a reality. The usage range of these

three-dimensional models is wide: cultural heritage, medical and surgical

simulation, CAD design, video games, multimedia applications, etc (see

figure 1.2).

Figure 1.1 – 3D scanner ( c©Faro) and GeForce 3D accelerated graphic card

( c©NVIDIA).

Consequently to the growing usage of three-dimensional models, the

scientific community produces a lot of works about the processing of these

3D-data for various computer graphic applications such as modeling, in-

dexing, watermarking and compression.

The three-dimensional models are generally represented as meshes of

polygons (generally triangles). This kind of representation has the advan-

tage of being perfectly adapted to 3D display with the help of modern

1



2 Chapter 1. Introduction

Figure 1.2 – From left to right and top to bottom: Remote visualization of stored 3D

models ( c©the Leland Stanford Junior University), life-changing facial reconstruction for

young Child ( c©Sensable), solid modelling 3D-CAD design ( c©Compucraft, Ltd),

splinter cell 3D-video game ( c©UBISOFT).

3D accelerated hardware. But the main drawback of this format is the

lack of a structure or a hierarchical description that could be very useful

for the applications cited above. Hence, the automatic segmentation of

3D-meshes is very often a necessary pre-processing tool for these applica-

tions. Mesh segmentation consists in subdividing a polygonal surface into

patches of uniform properties either from a strictly geometrical point of

view or from a perceptual / semantic point of view.

Many systems were and are still currently developed for the segmen-

tation of bidimensional data (images or videos). However, these solu-

tions are not really effective or not easily adaptable to intrinsically three-

dimensional data. Indeed, the segmentation algorithms proposed so far

in the literature for three-dimensional meshes require geometrical and/or

topological descriptors which characterize the shape parts either from a

geometric point of view or from a semantic point of view. Defining such

descriptors is not an obvious task, and existing ones are still suffering

from many limitations such as sensitivity to geometric noise, sensitivity
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to topological changes, etc. Moreover, one could easily notice that, con-

trary to the 2D-data domain, there is neither protocol, nor standard data

collection that allow the researchers to evaluate and compare existing and

new 3D segmentation methods. In this context, and within the framework

of the MADRAS project 1, the objectives of this thesis are to address two

main problems namely the quantitative evaluation of mesh segmentation

algorithms and learning mesh segmentation by exploiting the human fac-

tor.

1.1 Contributions

In this thesis we bring three different contributions: the first two ones are

related to the problem of quantitative evaluation of mesh segmentation,

and the last one is related to the problem of learning mesh segmentation.

A benchmark for 3D-mesh segmentation evaluation. We propose

a benchmark for 3D-mesh segmentation evaluation which includes a

ground-truth corpus and a set of similarity metrics. The corpus is com-

posed of a set of 3D-models grouped in different classes and associated

with several manual segmentations produced by human observers. The

metrics allow to measure the similarity between the reference segmenta-

tions from the corpus and that obtained by an algorithm (on the same

models). The quality of segmentations obtained by automatic algorithms

is then evaluated automatically in a quantitative way thanks to the met-

rics, and on an objective basis thanks to the ground-truth corpus. Besides,

we propose a thorough study and comparisons of existing metrics ad-

dressing the assessment problem of mesh segmentation together with a

new measure of segmentation similarity that allows to quantify the con-

sistency between multiple segmentations of a model. We show that this

new metric outperforms existing ones in terms of properties and discrim-

inative power.

1MADRAS (3D Models And Dynamic models Representation And Segmentation) is a

French research project sponsored by ANR (The French National Research Agency) – ref.

ANR-07-MDCO-015 – http://www-rech.telecom-lille1.eu/madras/.

http://www-rech.telecom-lille1.eu/madras/


4 Chapter 1. Introduction

A subjective experiment. We present a subjective quality assessment ex-

periment for 3D-mesh segmentation. To this end, we carefully designed a

protocol with respect to several factors namely the rendering conditions,

the possible interactions, the rating range, and the number of human sub-

jects. To carry out the subjective experiment, 50 human observers have

rated a set of 250 segmentation results issued from various algorithms.

The obtained Mean Opinion Scores, which represent the human subjects’

point of view toward the quality of each segmentation, have then been

used to evaluate the quality of automatic segmentation algorithms and to

validate the relevance of our benchmark in term of quality of the ground-

truth corpus and of discriminative power of the new metric.

A new 3D-mesh segmentation algorithm with machine learning tech-

niques. We propose a new fully automatic 3D-mesh segmentation algo-

rithm based on boundary edge learning. Our algorithm is carried out us-

ing two main steps: an off-line step in which an objective boundary edge

function is learned from a set of human segmented training meshes, and

an on-line step in which the learned function is used to segment any input

3D-mesh. The edge function is determined based on multiple geometric

feature calculations and Adaboost learning, and then is used in a pro-

cessing pipeline (on-line step) to produce smooth closed boundaries. The

processing pipeline includes the following stages: thinning, closing con-

tour, and snake movement. The battery of experiments conducted using

different benchmarks (benchmark2 from Chen et al. (CGF09) and our own

benchmark) demonstrates the performance superiority of our algorithm

over the state-of-the-art of mesh segmentation algorithms. We propose an

application of our segmentation algorithm for kinematic skeleton extrac-

tion of dynamic 3D-meshes and we show that the early obtained results

are promising.

1.2 Outline

The manuscript of this thesis is organized as follows:

2http://segeval.cs.princeton.edu/

http://segeval.cs.princeton.edu/
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Chapter 2 reviews the state-of-the-art of 3D-mesh segmentation algo-

rithms and their evaluation methods. The chapter points out on one hand,

the fact that plenty of mesh segmentation algorithms were and are still

developed due to the importance of this processing task for mesh un-

derstanding and analysis. On the other hand, it points out the need of

automatic tools to evaluate/compare the segmentation quality of existing

and new mesh segmentation algorithms.

Chapter 3 presents our benchmark dedicated to the evaluation of mesh

segmentation algorithms. The chapter describes the different steps and

protocol followed to create the ground-truth corpus. It presents also an

extensive experimental comparison between our new proposed metric and

existing ones. The experiments include subjective tests that allow to vali-

date the discriminative power of the new metric.

Chapter 4 presents our new segmentation algorithm based on a learn-

ing approach together with extensive experiments that demonstrate its rel-

evance. It presents also an application of this new segmentation algorithm

which consists of extracting kinematic skeletons for dynamic meshes.

Chapter 5 concludes the manuscript and provides a discussion about

future work.
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This chapter reviews the state-of-the-art of 3D-mesh segmentation al-

gorithms and their evaluation methods. First, we define the mesh

segmentation problem and classify the different existing techniques of the

state-of-the-art. We briefly discuss about the advantages and drawbacks

of each technique. Then, we present the different types of segmentations

while listing out for each one of them some application examples. Finally,

we emphasize the need of automatic tools for the quality assessment of

mesh segmentation. We present the different existing evaluation methods

in the field of 2D-image since the most significant proposed works for the

3D-mesh segmentation evaluation are based on the same methodology

as that proposed in the 2D-image domain. Then, we summarize the few

existing works in the literature for mesh segmentation evaluation.
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2.1 Introduction to polygon mesh

The passage from the reality to the computer modeling, begins as in any

domain activity, with an idea of the designer, and then is translated to

a computer representation. This computer representation is called model,

and the translation of the idea to the computer representation is called

modeling.

The model allows to understand or to visualize the structure or behav-

ior of the entity. It allows also to experiment manipulations and observe

their effects.

In the different fields of study, there are several models: mathematical

models for meteorology for instance, chemical models such as the Bohr

atom model, behavioral models in psychology, etc.

Since this thesis is related to the computer graphics field, we are in-

terested in 3D modeling based on geometric models. A geometric model

describes the shape of a 3D space object that it represents.

There exist several tools to represent these shapes, for instance: surface

or curve modeling (NURBS, B-spline, etc.), constructive solid geometry,

voxels, etc. These tools are generally used to create primitive shapes which

are gathered to obtain the final model. Basically, the model created is

converted to a polygon mesh in order to be efficiently displayed by the

computer.

Nowadays the most popular way to represent a geometric model is

polygon meshes.

A polygon mesh is a collection of connected polygons (i.e. bounded

planar surfaces of different sizes) which allows to approximate the surface

of any 3D object. As shown in figure 2.1 the polygons can be triangles,

quadrangles, or any kind of polygons. With such a mesh, it is possible to

obtain an approximation of any surface. Thus, we can consider that the

transformation of any surface to a polygon mesh is a discretization more

or less fine of this surface.

The main reasons that make polygon meshes very useful is the fact

that 3D specialized graphic cards are designed to optimize their display.

Indeed, to obtain a rendering of such a mesh, only an algorithm more
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Figure 2.1 – David model presented by a triangle, quadrangle, and polygon

mesh (ADIV03).

or less evolved (Wireframe, Gouraud shading, Phong shading, etc.) is

used to draw the polygons one by one. These algorithms are integrated in

the graphics processing units. Moreover, even current three dimensional

scanners use techniques which provide a 3D-model of the object scanned

under the form of a polygon mesh. Finally, this format is universal since

all three dimensional representations can be converted to polygon meshes.

As part of our thesis, we restrict our discussion to the processing of

a specific kind of polygon meshes, namely closed two-manifold triangle

meshes.

In what follow we present through a set of definitions the notions of

3D triangle meshes, two-manifold meshes, and closed meshes.

Definition 2.1 (3D triangle mesh) A three-dimensional triangle mesh M is defined as a tuple

{V, E, F} of vertices V, edges E, and triangles (or facets) F:

V =
{

vi|vi ∈ R3, 1 ≤ i ≤ m
}

(2.1)

E =
{

eij = (vi, vj)|vi, vj ∈ V, i 6= j
}

(2.2)

F =
{

fijk = (vi, vj, vk)|vi, vj, vk ∈ V, i 6= j, i 6= k, j 6= k
}

(2.3)

Definition 2.2 (Two-manifold mesh) A three-dimensional triangle mesh M is two-manifold if

every vertex v of M has a neighborhood homeomorphic to a disk or a half disk (see

figure 2.2).

Definition 2.3 (Closed two-manifold mesh) A closed two-manifold mesh M is a two-manifold

mesh which does not contain any boundary edges. A boundary edge e is an edge

which has only one adjacent facet f .
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Figure 2.2 – Example of non-closed two-manifold 3D-mesh.

As we have pointed out, polygon mesh particularly triangle mesh is

an excellent format for 3D display since it can be directly processed by

the specialized devices. However, the main drawback of a polygon (or

triangle) mesh is the lack of structure or hierarchical description. Indeed,

if the object is composed of a set of significant parts such as head, arms,

legs of a human model, its representation by a polygon mesh will lead to

the loss of its semantic (or the composition information). Consequently,

it will not be possible to deal with the different object parts. From this

statement, it appears the need of 3D-mesh segmentation.

2.2 Mesh segmentation problem

Mesh segmentation consists in decomposing a polygonal surface into dif-

ferent regions (i.e. connected set of vertices or facets) of uniform proper-

ties, either from a geometric point of view or from a semantic point of view.

It is a critical step toward content analysis and mesh understanding.

A formal definition of mesh segmentation is the following:

Definition 2.4 (Mesh segmentation S) Given a mesh M, and the set of mesh elements R which

corresponds to V, E, or F. The segmentation S of M is the set of sub-meshes

S = {M0, ..., Mk−1} induced by the partitioning of R into k disjoint sub-sets

(R = {R0, ..., Rk−1}).

Definition 2.5 (Sub-mesh) Let us consider R′ as a sub-set of R (R′ ⊂ R). Thus, we can create a
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sub-mesh M′ ⊂ M by choosing all vertices which are included in R′ like V ′, and

then define M′ = {V ′, E′, F′}, where:

E′ =
{

eij = (vi, vj)|vi, vj ∈ V ′, i 6= j
}

(2.4)

F′ =
{

fijk = (vi, vj, vk)|vi, vj, vk ∈ V ′, i 6= j, i 6= k, j 6= k
}

(2.5)

Shamir (Sha08) proposed to define the mesh segmentation problem as

an optimization problem.

Definition 2.6 (Mesh segmentation as an optimization problem) Given a mesh M, and the set

of elements R ∈ {V, E, F}, find a disjoint partitioning of R into R0,..., Rk−1

such that the criterion function J = J(R0, ..., Rk−1) be minimized (or maximized)

under a set of constraints C.

The mesh segmentation process uses both criterion and constraint

sets for partitioning. These two sets are generally related to the end-

application. Shamir (Sha08), however, proposed to separate them from

the objective of the segmentation process. The set of constraints in-

cludes conditions on the sub-sets Ri, such as a restriction on their min-

imum/maximum size, and on sub-meshes Mi with respect to their geom-

etry or topology. The criteria that decide which elements have to belong

to the same segment include the attributes of these elements such as pla-

narity and normal directions (AFS06), geodesic distances (KT03), dihedral

angles (ZTS02), etc.

2.3 Mesh segmentation techniques

There are different ways to classify segmentation algorithms. In this

section, we propose to classify them according to their characteristics

and how much user intervention they need. Note that this classifica-

tion is not exhaustive; we just give an overview of the most popular

techniques and briefly discuss their advantages and drawbacks. Inter-

ested readers are referred to different surveys proposed in the litera-

ture (Sha08, APP∗07, AKM∗06) for more details.
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2.3.1 Region growing

Region growing is the most intuitive method to segment a mesh (LDB05b,

ZH04, ZPK∗02, RB02, ZTS02, MW99). As described in algorithm 1, it starts

by selecting a seed element (a vertex), and then the growing is realized by

adding successively compatible elements (vertices which satisfy a given

criterion). This leads to create a region (or segment). The growing process

is repeated with a new seed element each time the previous growing is

interrupted. The algorithm stops when all the seed elements are visited.

Algorithm 1: Region growing
1: Initialize a queue Q

2: Select seed elements s and insert them into Q

3: while Q is not empty do

4: Get the next seed element si from Q

5: Define a new region Ri

6: Add si to Ri

7: Add all compatible elements with si to Ri

8: end while

The main difference between the region growing algorithms lies in the

choice of the criterion which decides whether an element can be added to

a given region.

Zeckerberger et al. (ZTS02) have proposed two segmentation methods

of which one of them is based on a region growing algorithm. The algo-

rithm starts by computing the dual graph of the input mesh. Each node of

the graph represents a facet of the mesh, and the arcs which connect the

nodes represent the adjacency relation between the facets. Then, the algo-

rithm randomly selects a node (seed element) and goes through the graph

while collecting facets which form a convex patch (or convex region). The

process of computing a new patch is launched each time the previous one

is interrupted because of the violation of the convexity.

The segmentation method proposed by Lavoué et al. (LDB05b) is also

based on a region growing algorithm. The curvature is first calculated

for all vertices of the mesh, and classified into several clusters. A region
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growing mechanism then extracts connected regions (associated with sim-

ilar curvature), starting from several seed-facets.

One of the drawbacks of region growing techniques is the dependency

on the initial seeds. Indeed, a bad choice of seed elements can lead to a

bad segmentation. Another drawback is the over-segmentation (multiple

small patches) induced by an important number of seed elements.

2.3.2 Watershed

Watershed is a popular method used to segment 2D-images. The fun-

damental principle of this method is segmenting regions into catchment

basins. Many existing works in the literature have adapted this technique

for 3D-mesh segmentation (CG06, YGZS05, AGC∗05, PKA03, ZTS02,

MW99). Based on a prior defined hight function over the vertices of the

mesh, the local minima are detected (vertices which do not have lower

level neighbors). Then, catchment basins are associated with these min-

ima based on one of the two following strategies: the first one (ascendant

approach, see figure 2.3(a)) is to progressively flood the minima until the

neighbor basins touch each other. The second one (descendant approach,

see figure 2.3(b)) is to stream a drop along the steepest gradient until

reaching a minimum and then labeling the path traversed by the drop.

However, in both strategies, a special case should be considered. It cor-

responds to flat regions (or plateaus) which consist of a set of connected

vertices (not only one vertex) which does not have lower level neighbors.

(a) Ascendant approach (b) Descendant approach

Figure 2.3 – Watershed strategies.
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Algorithm 2 summarizes the different steps of the watershed segmen-

tation process. The algorithm uses a hierarchical queue (HQ) to optimize

the flood simulation process in term of computation time. Each queue is

associated to a level of the height function which can be the curvature for

instance. The priority of processing queues corresponds to the lowest level

of the height function.

Algorithm 2: Watershed
1: Compute the height function for each vertex of the input mesh (curvature for

instance)

2: Find flat regions (plateaus)

3: Find local minima and assign each one a label

4: Insert the minima in the HQ according to the level of their height function

5: while HQ is not empty do

6: Get the next vertex x from HQ

7: Get the vertex x neighbors which are not labeled yet

8: for each non labeled neighbor do

9: Assign the neighbor the same label as x

10: if the neighbor does not belong to plateaus then

11: Insert the neighbor in the HQ according to its height function level

12: end if

13: end for

14: end while

Zeckerberger et al. (ZTS02) proposed a segmentation method based on

a watershed algorithm. They defined a simple height function h computed

for each edge of the mesh. h = 1− cos(α), where α is the dihedral angle of

the edge (angle between the normals of the two facets sharing this edge).

Then, each facet is associated with the edge that has the lowest height.

Thus, all adjacent planar facets will be clustered into the same segment.

Figure 2.4 illustrates the result of segmentation, using the watershed and

based on the height function defined above, for a steps model. Note that

the facets that lie on the same plan belong to the same patch, and thus

each step is decomposed into two segments.

Chen and Georganas (CG06) proposed a watershed method which use



16 Chapter 2. State-of-the-art of 3D-mesh segmentation and evaluation

Figure 2.4 – Segmentation result based on the watershed algorithm from Zeckerberger

et al. (ZTS02).

the Gaussian curvature together with the concaveness information. The

specificity of their method is its ability to segment highly detailed meshes

(high number of vertices) thanks to the use of what they defined as ex-

tended multi-ring neighborhood. This latter one consists of considering

only the ith level of vertices connected to a given vertex while excluding

the vertices of inferior levels (i− 1). The algorithm extracts features based

on Gaussian curvature and concaveness estimation, then applies an ascen-

dant watershed approach to segment the mesh into meaningful parts.

Watershed algorithms can be seen as multiple region growing algo-

rithms of which the seed elements correspond to local minima. Conse-

quently, the quality of the segmentation depends highly on the height

function definition. The algorithms suffer also from over-segmentation

due to the noise on the polygonal surface and its complexity. The classical

solution to solve this problem is to merge segments in order to eliminate

non-significant ones. Chen and Georganas (CG06) have integrated this lat-

ter solution in their algorithm and considered to this end two constraints:

the size of regions (or segments), and the length of boundaries.

2.3.3 Hierarchical clustering

In hierarchical clustering, each segment is initially represented by a unique

mesh element (a facet for instance). Each pair of adjacent segments is as-
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signed a merging score based on a given criterion (AFS06, GG04, GWH01,

She01). A merging process is then realized according to the increasing

order of the scores. Algorithm 3 describes the general schema of the hier-

archical clustering.

Algorithm 3: Hierarchical segmentation
1: Initialize a queue Q

2: Insert all possible pairs of adjacent regions in Q according to the increasing order of

merging scores

3: while Q is not empty do

4: Get the next pair (u, v) from Q

5: if the pair (u, v) can be merged then

6: Merge (u, v) in w

7: Insert w in Q

8: Update Q

9: end if

10: end while

Sheffer (She01) proposed a clustering algorithm based on compatibil-

ity criteria. The algorithm is carried out through two stages: adjacency

graph computation, and a graph contraction algorithm. In the first stage

each cluster, which is initially represented by one facet, is mapped to a

graph node, and the adjacency between two clusters is mapped to a graph

arc. In the second stage, each arc is assigned a weight that corresponds

to the improvement in the shape properties when merging the two clus-

ters connected by the given arc. The weight is a combination of a set of

geometric indices which are the following:

• Uncontractable arcs used to detect whether two clusters cannot be

merged. This happens when the edge is non-manifold.

• Boundary preservation used to preserve clusters with sharp bound-

aries and do not merge them. The computation of this index is based

on dihedral angle of edges.

• Region size used to control the size of clusters and decide if they

have to undergo a merging operation or not. The computation of
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this index is based on the area of the cluster, and the length of its

perimeter.

• Boundary shape used to join clusters with longer shared boundaries

of which the angle is obtuse.

• Region curvature change used to maintain the compatibility of cur-

vature when merging two clusters.

Attene et al. (AFS06) proposed a segmentation algorithm based on fit-

ting primitives. The set of primitives includes plan, sphere, and cylinder.

The algorithm generates a binary tree of segments where each segment is

fitted to one of the employed primitives. To this end, all possible pairs of

adjacent segments are considered (initially each pair of segment is repre-

sented by two adjacent facets), and the pairs that are fitted well with one

of the defined primitives, form a new segment. The authors proposed to

use the L2 distance to approximate the fitting error between segments and

primitives. The distance allows to select the primitive that covers as well

as possible the segment (see figure 2.5).

Figure 2.5 – Horse segmentation based on fitting segments with cylinders obtained by

the algorithm from Attene et al. (AFS06).

Hierarchical clustering allows to simplify the segments, computed for

a given model, thanks to its hierarchy. Consequently, this kind of algo-

rithm can be used as a post processing step for region growing and wa-

tershed algorithms which are suffering from over-segmentation. However,

the main difficulty in this kind of algorithm is the definition of a relevant

merging criterion that allows to produce a significant segmentation.
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2.3.4 Iterative clustering

Finding an optimal segmentation can be formulated as an iterative re-

search process of the best partitioning of k segments, where k is the num-

ber of segments which is defined a priori (see algorithm 4). This pro-

cess corresponds to solve the k-means clustering problem associated to

the Lloyd’s quantification algorithm (Llo82). The iterative process begins

with k clusters, each one having a representative centroid, and adds each

mesh element (vertex for instance) to the closest cluster. To this end, a

distance between the vertex and each class centroid is measured based on

a given criterion (SSCO08, KJS07, LZHM06, YLW06, JKS05, SS05, WK05,

PC04, CSAD04, KT03, STK02). Once all vertices are assigned to the dif-

ferent clusters, the centroids of these clusters are updated. The iterative

process is repeated until the centroids stop changing.

Algorithm 4: Iterative clustering
1: Initialize k clusters

2: repeat

3: for each element (vertex or facet) of the mesh do

4: assign it to the closest cluster

5: end for

6: Update the centroids of clusters

7: until the centroids of clusters stop changing

Katz and Tal (KT03) proposed an iterative segmentation algorithm us-

ing fuzzy clustering and cuts. The algorithm proceeds from coarse to fine

thanks to a binary tree of which each node corresponds to a segment. For

each node of the tree (initially only the root node which corresponds to

the whole mesh), the algorithm computes a k-decomposition through the

following steps:

• Compute a geodesic and angular distances for each pair of adjacent

facets of the mesh.

• Compute an initial k-decomposition and assign each facet the prob-

ability of belonging to each segment.
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• Compute a fuzzy decomposition by refining the probability values.

• Construct the exact boundaries between the segments, and thus

transform the fuzzy decomposition into the final one.

The probability that a facet belongs to a segment depends on its dis-

tance with respect to all facets of this segment. In the binary case (2-

decomposition) for instance, the two facets that are the farthest away from

each other in term of geodesic and angular distance are selected to repre-

sent the initial two segments. Then, the probability of belonging to each

segment is computed for the remaining facets of the mesh. This gener-

ates a fuzzy decomposition (see figure 2.6(a)) since for some facets of the

mesh, the probability of belonging to each segment is identical. The fuzzy

decomposition is then converted into the final one by computing the exact

boundary (see figure 2.6(b)). This is done using a graph cut algorithm

which traverses the fuzzy patch (red facets in figure 2.6(a)). The binary

decomposition is recursively repeated on each segment until a given con-

dition is no longer satisfied (for example a threshold on the distance be-

tween the representatives of segments).

(a) Fuzzy decomposition (fuzzy facets are

represented by red color)

(b) Final decomposition

Figure 2.6 – Binary decomposition, for the cat model, obtained by the algorithm from

Katz and Tal (KT03).

Lai et al. (LZHM06) proposed a clustering-based iterative segmenta-

tion algorithm dedicated for large models with high connectivity. They

first generate a mesh hierarchy suitable for segmentation using a feature
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sensitive remeshing algorithm. Then, they apply a clustering algorithm

to segment the mesh. To increase the robustness of their method against

geometric variations on the regions of the mesh, they introduced a metric

which allows to compute efficiently the distance between facets for cluster-

ing. The metric definition includes geodesic distance, integral invariants

related to averaged normal curvature (MHYS04), and statistical measures

of these invariants characterizing local properties such as geometric tex-

ture.

Shapira et al. (SSCO08) have also proposed an iterative segmentation

algorithm based on a volume shape function called the shape-diameter

function (SDF). The SDF expresses a measure of the diameter of the ob-

ject’s volume in the neighborhood of each point on the surface. Glob-

ally the algorithm is composed of two steps. The first step uses a soft-

clustering of the mesh elements (facets) to k clusters based on their SDF

values, and the second step finds the partitioning using k-way graph-cut

to smooth the boundaries between segments.

The major drawback in iterative clustering algorithms is the conver-

gence of the iterative process. To face this latter problem, a particular

attention has to be paid regarding the way how to compute the represen-

tative centroids. An other drawback is the choice of the initial representa-

tives of classes which may affect also the algorithm convergence and the

final segmentation result. However, generally the existing algorithms in

the state-of-the art give hand to users to choose the initial representatives.

2.3.5 Spectral segmentation

Spectral segmentation has seen an important amount of work (LZ07, LZ04,

FBCM04, BH03, NJW01, ZHD∗01, PF98) over the past decade and it is

mainly based on spectral graph theory (Spi07, Chu97). We suppose that

the input mesh is represented as a graph G of which A and D are their

respective adjacency and degree matrices. A is a binary matrix such that

Aij = 1 if the ith and jth elements (vertices for instance) are adjacent or

0 otherwise. D is a diagonal matrix where Dii = di is the degree (or
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valence) of the ith vertex (it represents the number of neighbor vertices).

The Laplacian L of the graph G corresponds to the matrix L = D− A.

Let {ξ0, ξ1, ..., ξn−1} be the Laplacian eigenvectors associated with the

eigenvalues {λ0, λ1, ..., λn−1}. The graph G can be embedded into the

space Rk by using the first k eigenvectors. Thus, a vertex vi of G will be

positioned at a point of coordinates {ξ0(i), ξ1(i), ..., ξk(i)} ∈ Rk. As raised

by Gotsman (Got03), the embedding allows to convert the combinatorial

graph partitioning problem into a geometric space partitioning problem.

To make clear his statement, he gave an example which is illustrated in

figure 2.7. The figure shows on left side the graph G, on right side the

spectral embedding and the resulting partitioning. The embedding is car-

ried out as follow: find the direction s of the largest spread of the vertices

in R2, and the 1 hyperplane in R1 (straight line) normal to s which parti-

tions R2 into two half-spaces. The partitioning of the graph G (or graph

cut) consists of the edges that straddle the hyperplane.

Figure 2.7 – On left the graph G, on right the spectral embedding together with the

resulting partitioning (2 parts separated by dashed line) (Got03).

Liu et al. (LZ04) have proposed a segmentation algorithm that makes

use of spectral space partitioning. To this end, they defined a symmetric

affinity matrix W ∈ Rn×n such that for each i, j, 0 ≤ Wij ≤ 1 encodes

the probability that two facets i and j can be grouped in the same seg-

ment. The defined matrix is inspired from the one proposed by Katz and

Tal (KT03) which is based on geodesic and angular distances. This lat-

ter one allows to avoid grouping facets which are separated by concave

regions. The W matrix can be seen as a graph adjacency matrix A. The

spectral analysis of the W matrix (using its first k largest eigenvectors and
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computing an embedding) creates a partitioning which induces a segmen-

tation of the mesh.

Liu et al. (LZ07) have proposed an other algorithm which improves

the results of the previous one (LZ04). Besides the spectral analysis, they

made use of contour analysis. The algorithm consists of the following

steps:

• Projecting the 3D-mesh into a 2D-plane.

• Extracting and analyzing the contour on the 2D-plane.

• Detecting the spectral cuts.

The 2D-projection is accomplished using the Laplacian L. To this end,

the first 3 eigenvectors are computed (the first eigenvector is a constant

so it is omitted). However, the projection using the original version of

L matrix does not allow to capture the geometric segmentation informa-

tion since this latter matrix is based only on the connectivity of the mesh.

To overcome this drawback, Liu et al. (LZ07) proposed a new Laplacian

matrix NL = D −W, with W an adjacency matrix based on principal

curvatures of the vertices.

After 2D-projection, the contour is extracted by rendering the 2D-shape

in black against a white background and tracing the boundary of the re-

sulting binary image. If the contour is judged “segmentable” (it satisfies

a convexity criterion), two sample points located on two different parts

of the contour are computed. From these two points, which correspond

to two facets on the mesh, a linear sequence of facets is derived using

Nyström approximation (FBCM04). Then, a 1D embedding is computed

and used to perform a linear search over the sequence of facets. Each bi-

section of the sequence corresponds to a cut in the mesh, resulting in two

parts. Figure 2.8 illustrates the different steps of the algorithm.

Figure 2.8 – An iteration of the segmentation algorithm from Liu et al. (LZ07).
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Obviously, spectral analysis based segmentation methods depend

strongly on the definition of the Laplacian matrix. This latter matrix has to

be defined in such way to capture the geometric information. This allows

to obtain a relevant segmentation.

2.3.6 Skeleton extraction based segmentation

Some segmentation algorithms make use of the shape skeleton to deduce

the different segments (ATC∗08, RT07, TVD07, XWS03, LTTH01). First of

all, an approximate skeleton of the input mesh is computed using Reeb

graph for instance (Tie08), then each critical node of the skeleton will cor-

respond to a segment.

In the segmentation algorithm proposed by Tierny et al. (TVD07), the

skeleton is used to delimit the object core and to identify the junction

surfaces. Thus, the resulting segmentation is a coarse one which is re-

fined following a hierarchical schema based on the topology of the model.

The authors developed their own algorithm that allows to compute an en-

hanced topological skeleton (see figure 2.16(a)). This latter algorithm seeks

to follow both of topological and geometrical variations of mesh contours

computed using a geodesic mapping function.

Once the skeleton is computed, each node will refer to a segment.

This gives an over-segmentation, as shown in figure 2.16(b), which is re-

fined by merging segments. To this end, the skeleton nodes are classi-

fied, according to their degrees, into three categories: extreme with 1-

degree (green nodes in figure 2.16(a)), tubular with 2-degree (blue nodes

in figure 2.16(a)), and junction with at least 3-degree (red nodes in fig-

ure 2.16(a)). Thus the object core is defined by merging the segments

which correspond to junction nodes. Then, each component adjacent to

the object core, undergoes a merging to obtain a hierarchical segmentation

(see figure 2.16(c,d)).

Similarly to the work cited above, Au et al. (ATC∗08) proposed to use

a skeleton for mesh segmentation. The main difference between the two

segmentation algorithms relies on the skeleton computation. The one pro-

posed by Au et al. (ATC∗08) is based on mesh contraction. To this end,
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(a) Topological skeleton (b) Over-segmentation (c) Fine segmentation (d) Coarse segmentation

Figure 2.9 – Skeleton extraction based segmentation result, of the hand model, obtained

by the algorithm from Tierny et al. (TVD07).

a Laplacian smoothing is applied on the mesh to iteratively contract its

geometry. The contraction allows to remove details from the input mesh,

and leads to a zero-volume mesh which is converted to a 1D-curve skele-

ton. The conversion is carried out by removing all the collapsed facets

from the zero-volume mesh. To remove collapsed facets a sequence of

edge-collapse operations is applied using a coast function.

The quality of segmentation produced by this kind of algorithms de-

pends strongly on the computed skeleton. This latter one has to reflect

both of topological and geometrical variations of the shape in order to re-

veal the different object parts (or segments). Computing a skeleton with

such property is not an obvious task, especially on noisy surfaces.

2.3.7 Interactive methods

This kind of methods requires the interaction of the user (FLL11, WPP∗07,

JLCW06, LLS∗04). In the method proposed by Wu et al. (WPP∗07), the

user draws, on the 3D-mesh, a set of sketches which correspond to future

segments (see figure 2.10). Each set of vertices traversed by a sketch is

assigned a unique label. Then, a merging algorithm is applied to generate

the final segments. To this end, a queue is filled, initially with the unla-
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beled vertices which are directly connected to labeled ones (direct neigh-

bors). During the insertion, an angular distance is computed between each

unlabeled vertex and its direct labeled neighbors. An iterative process is

then applied in which the queue vertex that has the minimum distance is

merged with the closest segment (set of labeled vertices) and is replaced

in the queue by its direct unlabeled neighbors. The process stops when

the queue is empty.

Figure 2.10 – Interactive segmentation result based on drawing sketches (WPP∗07).

Generally, the main difference between the proposed methods relies

on the definition of the criterion (angular distance in (WPP∗07), Gaus-

sian mixture and shape diameter function in (FLL11)) that decides how

to merge the mesh elements (vertices for instance). The drawback of this

kind of methods is the user interaction amount induced by the manual

specification of sketches.

2.3.8 Learning segmentation

Lastly mesh segmentation has seen the use of advanced techniques based

on learning thanks to the recent creation of ground-truth segmentation

databases (CGF09). These databases have given to the computer graph-

ics community the opportunity to quantitatively analyze and learn mesh

segmentation. A very recent work based on learning approach has been

proposed by Kalogerakis et al. (KHS10). It allows to simultaneously seg-
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ment and label the input mesh, and is expressed as an optimization prob-

lem. The problem consists in optimizing a Conditional Random Field

(CRF) of which an objective function is learned, using a set of geometric

features, from a collection of labeled training meshes. The algorithm has

demonstrated its efficiency through the improvement of the results over

the state-of-the-art of mesh segmentation. According to our knowledge,

only this latter work has been proposed that involves learning for 3D-mesh

segmentation. In chapter 4, we present our own segmentation technique

based on learning.

2.3.9 Other segmentation techniques

Some other segmentation techniques exist in the literature, that cannot be

classified into one of the previously described classes. In this section we

present some of them.

Statistical methods. Lai et al. (LHMR08) proposed an algorithm based

on such approach. Their algorithm is inspired from random walk meth-

ods used for image segmentation. The algorithm is carried out through

three steps. Firstly, seed facets are selected either manually or automati-

cally and assigned each one a label. These facets represent initial elements

used to compute the final segments. Secondly, a probability is associated

with each non-seed facet. It corresponds to the likeliness that a random

walk moves across a facet to another one. Thirdly, each non-seed facet fi

is assigned the same label as the one of a seed facet fs, if a random walk

starting from fi has the highest probability to reach fs. Golovinskiy and

Funkhouser (GF08) proposed also a statistical segmentation algorithm. It

consists of applying, on the input mesh, different segmentation algorithms

with different settings for several times. Then, a partition function is de-

fined on each edge. This function measures the frequency that an edge

belongs to a segment boundary in the mesh regarding the set of generated

segmentations. A segmentation is then computed based on this partition

function.
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Symmetry computation based methods. Objects surrounding us

(scanned objects and human-made objects) present a certain degree

of symmetry, with respect to their shape, which is more or less

important. Consequently, some existing algorithms in the litera-

ture (SKS06, PSG∗06, MGP06) seek to exploit such information (sym-

metry) for segmenting the object into symmetric parts. The algorithm

proposed by Simari et al. (SKS06) provides a hierarchical segmentation

thanks to a recursive process that computes a set of symmetry planes.

More precisely, at a given iteration a part of the mesh (initially the whole

input mesh) is divided into two half parts that are separated by the de-

tected symmetry plane. The same process is repeated on the resulting

local parts until there is no longer symmetry plane detected. To compute

a symmetry plane, the authors use an iterative re-weighted least squares

(IRLS) algorithm. Basically, the main difference in this family of algo-

rithms is the method used to compute the symmetry plane. For instance,

in the segmentation algorithm proposed by Podolak et al. (PSG∗06) they

use Monte Carlo integration to compute this plane, while in the algorithm

proposed by Mitra et al. (MGP06) they use a method based on matching

local shape descriptors.

Feature point extraction. Katz et al. (KLT05) proposed a segmentation

algorithm based on such approach. First, the mesh is transformed into

a canonical mesh, using multidimensional scaling, where the Euclidean

distance between its vertices is similar to geodesic distance. This latter

transformation leads to a pose-invariant representation. Then, a set of fea-

ture points that correspond to the prominent points on the canonical mesh

are extracted, and used to guide the segmentation. Finally the core com-

ponent of the original mesh is extracted by applying a spherical mirror-

ing operation on the canonical mesh, and the remaining segments (each

segment is represented by at least one feature point) are determined by

“removing” the core component.
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2.4 Discussion on existing segmentation techniques

Mesh segmentation is a wide research area. We conducted in the pre-

vious section a study of the different segmentation algorithms proposed

in the literature and tried to classify them according to their characteris-

tics. Table 2.1, on the next page, summarizes the different segmentation

techniques while providing their principles together with their advantages

and drawbacks. However, it is clear that comparing the different families

of segmentation algorithms is not obvious since each one of them seek to

produce a specific segmentation which depends on the end-application.

Moreover, even algorithms issued from the same family do not necessar-

ily produce the same type of segmentation. In what follow we describe

the different types of segmentation and give some application examples.
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2.5 Mesh segmentation types and their applications

According to recent states-of-the-art (Sha08, APP∗07, AKM∗06), mesh

segmentation techniques can be classified into two categories: surface-

type (or geometric) methods and part-type (or semantic) methods (see fig-

ure 2.11). In the first case, the algorithms are based on low level geometric

information (e.g. curvature (LDB05b)) in order to define segments (i.e.

regions) with respect to geometric homogeneity, while in the latter case,

the algorithms aim at distinguishing segments that correspond to relevant

features of the shape, such as in the recent work proposed by Kalogerakis

et al. (KHS10).

Figure 2.11 – Example of surface-type segmentation on the left, and part-type

segmentation on the right (Sha08).

Both categories of 3D-mesh segmentation techniques are a fundamen-

tal process in many applications. In what follow we summarize some of

them.

2.5.1 Applications based on surface-type segmentation

We list here some applications that use surface-based segmentation, and

give, as examples, some existing works in the literature.
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Mesh compression. 3D-compression techniques are used for reducing

the delays in transmitting triangle meshes over the Internet, and to make

their storage feasible. Interested readers are referred to the survey pro-

posed by Alliez and Gostman (AG05). Among the different compression

methods some of them are based on spectral approach (KG00). This is

achieved by projecting the mesh geometry onto an orthonormal basis de-

rived from the mesh topology. To reduce complexity, the mesh is parti-

tioned into a number of balanced sub-meshes with minimal interaction,

each of which are compressed independently. Lavoué et al. (LDB05a) have

proposed a framework based on subdivision surface approximation for

polygon mesh compression and coding. Their method involves the seg-

mentation of the target 3D object into surface patches of which bound-

aries are extracted. They approximate then the surface patches, put them

together, and encode the mesh information. Qin et al. (QXP∗06) addressed

the problem of photo-realistic rendering using a parallel architecture and

proposed a mesh compression scheme called PRMC (Parallel Rendering

based Mesh Compression). The segmentation allows them to obtain a

set of sub-meshes which are compressed and sent to multiple rendering

servers in order to compute the different parts of the scene.

Texture mapping. Texture mapping allows to glue an image to a 3D ob-

ject (polygon mesh) in order to enrich its photo-realistic rendering and

to reduce its complexity in term of size (see figure 2.12). Sander et

al. (SSGH01) have proposed a texture mapping method for progressive

meshes. Given an arbitrary mesh, they construct a progressive mesh

(PM) such that all meshes in the PM sequence share a common texture

parametrization. The method begins by partitioning the mesh into charts

(surface patches) using planarity and compactness heuristics. Next, it sim-

plifies the mesh while respecting the chart boundaries. Finally, the charts

are packed into a texture atlas. Sander et al. (SWS∗03) have proposed

an algorithm which partitions a mesh into rectangular charts while pre-

serving a one-to-one texel correspondence across chart boundaries. This

mapping permits any computation on the mesh surface which is typically
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carried out on a regular grid, and prevents seams by ensuring resolution

continuity along the boundary.

Figure 2.12 – Example of texture mapping for 3D-mesh (LPRM02).

Watermarking. 3D-mesh watermarking aims to preserve the author’s

copyright of 3D models. For example, a message which allows to identify

the object owner can be dissimulated by slightly modifying the position

of certain vertices. Watermarking methods that use the global information

of the mesh fail to face attacks which consist to cut the mesh in order to

keep a part of it. To address this drawback, Randão et al. (RaAMC07) have

proposed to firstly segment the input mesh into a set of parts and then to

watermark each one of them. In Wang et al. (WLDB11) the mesh is nor-

malized to a canonical and robust spatial pose by using its global volume

moments. Then, the normalized mesh is segmented into patches and the

watermark is embedded into some selected candidate patches.

2.5.2 Applications based on part-type segmentation

By partitioning an object into meaningful parts (part-based segmentation),

many analysis and modeling tasks could be enhanced. For instance, par-

tial match queries can be formulated, annotation of parts in objects can be

utilized, modeling-by-parts applications could be supported, object skele-

ton extraction is facilitated, etc.
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Partial matching. Partial matching systems aim at helping human users

browsing large collections of 3D shapes in an interactive and intuitive

way. These systems are expected to retrieve objects that have similar sub-

parts even if they visually differ globally (see figure 2.13). Mademlis et

al. (MDA∗08) have proposed a framework used for partial and global 3D-

object retrieval. First, the object is decomposed into meaningful parts and

an attributed graph is constructed based on the connectivity of the parts.

Then, a 3D shape descriptor is computed and associated to the corre-

sponding graph nodes. Finally, the matching process, based on attributed

graph matching, is performed. Shapira et al. (SSS∗10) have addressed the

problem of finding analogies between parts of 3D objects. In their ap-

proach, all objects are hierarchically segmented into meaningful parts, and

each part is given a local signature. To find corresponding parts in other

objects they use a context enhanced part-in-whole matching based on bi-

partite graph matching algorithm.

Figure 2.13 – Example of partial matching. On the left the query part and on the right

the results (SSS∗10).

Semantic annotation. Semantic annotation of a 3D object consists in an-

notating this object in terms of its meaningful subparts, their attributes

and their relations (see figure 2.14). The possibility to semantically anno-

tate shape parts may have a relevant impact in several domains such as the

creation of avatars in emerging MMORPGs (Massive Multiplayer Online

Role-Playing Games) and in on-line virtual worlds. Attene et al. (ARMS09)

have proposed a system called the “ShapeAnnotator” through which an

input 3D-object is first segmented into meaningful parts, then each de-
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tected part is annotated through concepts expressed by an ontology. Each

part is connected to an instance that can be stored in a knowledge base.

Through an intuitive interface, users create such instances by simply se-

lecting proper classes in the ontology.

Figure 2.14 – Example of semantic annotation based on ontology (ARMS09).

Modeling by example. Modeling by example enables a novice user to

search into a large database of 3D meshes to find parts of interest, select

the desired parts of several meshes, and compose them together in differ-

ent ways to form new objects (see figure 2.15). Funkhouser et al. (FKS∗04)

have proposed a data-driven synthesis approach for such application. The

models of a database are segmented into meaningful parts, and using a

shape-based search algorithm, 3D-models with parts matching the input

query are found. The user can then perform editing operations in which

parts are cut out from the retrieved models and composited into a new

model.

Skeleton extraction. A skeleton is an object that represents the shape

of its target object with a lower dimension (see figure 2.16). Because a

skeleton is simpler than the original object, many operations, e.g., shape

deformation, can be performed more efficiently on the skeleton than on

the full object. In the segmentation techniques section2.3, we have seen
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Figure 2.15 – Modeling a new chair composed from the circled parts of the

others (FKS∗04).

that some segmentation algorithms make use of the shape skeleton to

deduce the different segments. In what follow we describe the reverse

application in which the segmentation is used to deduce the shape skele-

ton. Lien et al. (LKA06) have proposed an iterative approach that simul-

taneously generates a hierarchical shape decomposition (or segmentation)

and a corresponding set of multi-resolution skeletons. The skeleton of a

model is extracted from the components of its decomposition. Mortara et

al. (MPS06) have introduced a framework for the automatic extraction and

annotation of anthropometric features from human body models. Based

on a meaningful segmentation, a semantic model is built as an annotated

shape-graph where each node corresponds to a relevant feature repre-

sented by its centerline skeleton and a set of cross-sections.
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Figure 2.16 – Extracted skeletons of some 3D-models (LKA06).

2.6 2D-image VS. 3D-mesh segmentation evaluation

As we have seen in section 2.3, many 3D-mesh segmentation methods

have been developed over the past decade which makes it hard to com-

pare their different results, or even different tunings of the same method.

Indeed, having tools which allow to automatically evaluate the quality of

the segmentation in an application-independent way is important:

• To select among different segmentation algorithms the best one with-

out any a priori knowledge;

• To rank new segmentation algorithms or existing ones based on a

solid experimental and comparative study;

• To analyze the drawbacks of proposed algorithms and thus improve

their quality.

However, providing an objective and quantitative evaluation method

for segmentation quality is not obvious. On one hand, each person has
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his/her own criteria for a good segmentation. On the other hand, the

segmentation is usually application-dependent. However, in most ap-

plications the difference between a good and bad segmentation is clear.

Consequently, it is mandatory to design automatic tools to capture such

difference.

In what follow, we provide a review of the state-of-the-art of 2D-image

and 3D-mesh segmentation evaluation. Indeed, the most significant works

for the 3D-mesh segmentation evaluation (CGF09) (including our work

which is presented in the next chapter) are based on the same methodol-

ogy as that proposed in the 2D-image domain (MFTM01).

2.6.1 2D-image segmentation evaluation

Several advanced works exist for the quality assessment of 2D-image seg-

mentation. Zhang et al. (ZFG08) offer a study on the different methods

proposed for this task. According to them, the different methods can be

classified into five groups:

Analytical methods. They directly treat the segmentation algorithms

themselves by taking into account principles, requirements, utilities, com-

plexity, etc. of algorithms. Using analytical methods to evaluate segmenta-

tion algorithm avoids a concrete implementation of the algorithms. How-

ever, the real quality of these algorithms cannot be obtained by a simple

analytical study.

Subjective methods. They evaluate the segmentation algorithms in a

subjective way in which the segmentation results are judged by a human

operator. Therefore, the evaluation scores can vary significantly from one

human evaluator to another since they do not have necessarily the same

standards for assessing the quality of a segmentation. Furthermore, the

results can depend on the order in which the human operator observes

them. To minimize bias, such a method requires a large set of objects and

a large group of humans. Unfortunately, this kind of methods cannot be

integrated in an automatic system.
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System level evaluation methods. This kind of methods indicates if the

characteristics of the results obtained by a segmentation algorithm are

suited for the over-all system which uses this segmentation algorithm.

However, this evaluation method is indirect. If the process which follows

the segmentation generates better results, it does not necessarily mean that

the segmentation results were superior, and vice-versa.

Empirical goodness or unsupervised methods. They evaluate the per-

formance of the algorithms by judging the quality of the segmented im-

ages themselves. To achieve this task, a set of quality criteria has to be

defined. These criteria are established according to human intuition about

what conditions should be satisfied by an ideal segmentation. However,

it seems difficult to establish quantitatively the quality of a segmentation

only by using such a priori criteria.

Empirical discrepancy or supervised methods. A set of reference im-

ages presenting the ideal segmentation is first of all built. This set of

images, which can be manually segmented by experts of the domain, con-

stitutes a ground-truth. The purpose is to measure the discrepancy be-

tween these reference segmentations and that obtained by an algorithm to

evaluate. So, these methods try to determine how far a segmented image

obtained by an algorithm is from one or several manually segmented im-

ages. A large discrepancy involves a large segmentation error and thus

this indicates a low performance of the considered segmentation algo-

rithm.

Although some unsupervised methods exist (CEL∗04, CERL06), the

empirical discrepancy methods are the most popular for 2D-image seg-

mentation evaluation (MFTM01, UPH07). Indeed they seem to be the

most suited for a quantitative evaluation as the measures of quality can

be numerically computed, and for an objective evaluation thanks to the

ground-truth.

Martin et al. (MFTM01) have proposed such a method to evaluate

image segmentation algorithms. They built a public corpus containing

ground-truth segmentations produced by human volunteers for images of
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a wide variety of natural scenes. They also defined a measure of segmen-

tation similarity based on the computation of refinement error of a pixel

between two segments (i.e. regions) containing this pixel.

2.6.2 3D-mesh segmentation evaluation

In the 3D-domain, there exist some works proposing the segmentation

quality assessment in a specific context. In the MRI (Magnetic Resonance

Imaging) field for example, Gerig et al. (GJC01) propose a tool that quanti-

fies the segmentation quality of 3D-images (volumetric images) including

different shape distance metrics such as maximum Hausdorff distance,

and mean/median absolute distance between object surfaces. For texture

mapping, Sander et al. (SSGH01) introduce a metric based on the texture

stretch induced by the parametrization of the segmented regions and al-

lowing the evaluation of the segmentation quality.

More recently, Attene et al. (AKM∗06) have proposed some criteria

like the aspect of the boundaries (smoothness, length), the hierarchical /

multi-scale properties, the robustness, the complexity and the number of

parameters. However, these criteria rather judge some technical points

than the real quality of the techniques themselves, they rather fall in the

empirical goodness methods. As raised by the authors, the main problem

is that the objective quality of a segmentation of a given model is quite

difficult to define, since it depends on the viewer’s point of view and

knowledge.

Berretti et al. (BDBP09) have presented some experimental results

which are based on ground-truth segmentations to evaluate and validate

their own segmentation algorithm. However, the ground-truth segmenta-

tions are not available on-line and according to the authors they contain

very simple 3D-models (surfaces of revolution, vases, etc.).

One of the goals of this thesis is the evaluation of the quality of

mesh segmentation algorithms (empirical discrepancy). In the next chap-

ter, we present our evaluation method which is based on a benchmark.

The benchmark includes a ground-truth corpus of human segmented 3D-

models and a set of similarity metrics. The evaluation of a segmentation
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algorithm is realized by quantifying the consistency between the reference

segmentations of the ground-truth corpus and those obtained by this algo-

rithm on the same models using the set of similarity metrics. A concurrent

work that addresses the same task and is based on the same methodol-

ogy (a benchmark including a ground-truth corpus and a set of similarity

metrics) has been simultaneously proposed by Chen et al. (CGF09). The

difference between the two benchmarks lies in the protocol followed to

create the ground-truth corpus and the choice of the similarity metrics

(more details are provided in the next chapter).

2.7 Conclusion

In this chapter we reviewed the state-of-the-art of 3D-mesh segmentation

algorithms and the evaluation methods proposed to assess their quality.

In the first part, that concerns 3D-mesh segmentation algorithms, we

have seen that plenty of algorithms have been developed over the past

decade. We decided to classify them according to their characteristics and

how much user intervention they need, so we defined 8 groups which

are the most popular in the literature, namely region growing, watershed,

hierarchical clustering, iterative clustering, spectral segmentation, skeleton

extraction based segmentation, interactive methods and learning methods.

We added an other group that we called “other techniques” in which we

pointed out some non common algorithms in the literature (random walk,

symmetry detection, etc.). We briefly discussed about the advantages and

drawbacks of each group. Globally, we have seen that except interactive

and learning methods, the others require geometrical and/or topological

descriptors that provide relevant information about the semantic of the

shape and its geometry. Defining such descriptors is not an obvious task.

Interactive algorithms aim at improving the segmentation quality with

the help of the user. Unfortunately, this kind of algorithms cannot be

integrated in a fully automatic system since they require user interactions.

We have also pointed out the appearance of a new algorithm category in

the literature that involves learning for 3D-mesh segmentation. This kind

of algorithms seeks to fix all the previous drawbacks by exploiting the
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information provided by ground-truth segmentation databases. Finally,

we have shown the importance of 3D-mesh segmentation in providing

a structural description of 3D-meshes and listed out several applications

that use this latter process.

In the second part we have raised the need of automatic tools to eval-

uate and compare segmentation algorithms. Although development of

mesh segmentation algorithms has drawn extensive and consistent atten-

tion, relatively little research has been done on segmentation evaluation.

We have shown that evaluation tools are necessary since they allow for in-

stance to rank the different algorithms and to select the best one without

any prior knowledge. We have pointed out the fact that existing works

for the quality assessment of 3D-mesh segmentation are inspired from

2D-image field. Consequently, we have included the classification of the

2D-image segmentation evaluation methods which is available in the lit-

erature. Then, we have reviewed existing methods in the 3D field. We

have seen that these methods fall either in empirical goodness methods or

empirical discrepancy methods.

In the following chapter, we present in detail the contributions of this

thesis regarding to the evaluation of 3D-mesh segmentation algorithms.
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This chapter presents a benchmark addressing the quality assessment

problem of mesh segmentation. The benchmark includes a ground-

truth segmentation corpus and a new reliable similarity metric named

the 3D Normalized Probabilistic Rand Index (3D-NPRI). The chapter also

presents an extensive experimental comparison of existing similarity met-

rics in the literature and the new one. The new metric is shown to out-

perform the others in terms of properties and discriminative power. The

experimental comparison includes a subjective experiment with human

observers. Finally the 3D-NPRI is applied to evaluate six recent segmen-

tation algorithms using our corpus and the Chen’s et al. (CGF09) corpus.
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3.1 Motivation

Our motivation to propose a benchmark for 3D-mesh segmentation eval-

uation is justified by the fact that before starting this thesis, no automatic

tool had been proposed to evaluate segmentation algorithms (particularly

part-type ones) in a general purpose context. In the previous chapter, we

showed that the evaluation is an important task not only for researchers to

compare a new algorithm to those already existing, but also for users so as

to choose an algorithm and fix its parameters depending on the problem

to solve.

Although for surface-type segmentation algorithms some evaluation

tools exist depending on the end application as texture mapping (SSGH01)

or medical imaging (GJC01), the question of the evaluation of part-type

segmentation algorithms remains critical. Whereas compression or recog-

nition algorithms are quite easy to evaluate thanks to compression ratio

or misclassification probability, this task is far more difficult to handle for

semantic segmentation. Typically researchers exhibit some results for sev-

eral models and just point out why their results look “good”. Moreover

many authors argue that a segmentation quality is theoretically impossible

to evaluate objectively because it depends only on the desired application.

Indeed the desired task is of course of importance. For instance a struc-

tural recognition application does not need the same segmentation than a

mesh texture mapping task. However, for many applications (see previous

chapter) researchers aim to obtain semantic decomposition (or part-type

segmentation). Thus our objective is rather to focus on the evaluation of

such semantic (i.e. part based) algorithms.

To this end, we propose a benchmark for segmentation evaluation

which includes a ground-truth corpus and a set of similarity metrics. The

quality of segmentations obtained by automatic algorithms is then evalu-

ated in a quantitative way thanks to the metrics, and on an objective basis

thanks to the ground-truth corpus (see figure 3.1). More specifically, the

evaluation is carried out by measuring the similarity between the reference

segmentations from the corpus and that obtained by the automatic algo-

rithm (on the same models). The corpus is composed of a set of 3D-models
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grouped in different classes and associated with several manual segmen-

tations produced by human observers. Of course, the ground-truth can

depend also on the application.

Figure 3.1 – Overview of benchmark-based mesh segmentation evaluation methods.

As a service to the scientific community, we have made the bench-

mark publicly available under the form of an on-line automatic tool1 (see

figure 3.2).

In order to quantify the efficiency of our benchmark (metrics and

ground-truths), we include in this chapter a detailed experimental com-

parison between the different similarity metrics while studying their prop-

erties. Moreover, we propose a subjective experiment in which a set of

volunteers rate a set of automatic segmentations including ground-truths

of our benchmark, and then these rates are correlated with the values

produced by the metrics for the same segmentations. The subjective ex-

periment allows, from one side to check whether the ground-truths have

the best rates given by the volunteers, with comparison to the remaining

1http://www-rech.telecom-lille1.eu/3dsegbenchmark/

http://www-rech.telecom-lille1.eu/3dsegbenchmark/
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Figure 3.2 – A snapshot of our automatic tool for mesh segmentation evaluation.

segmentations, and thus validate the quality of our ground-truths. From

the other side, it allows to find the metric of which the values are the best

correlated with the rates given by the volunteers, and thus validate the

discriminative power of this latter metric.

3.2 Ground-truth corpus

We detail now how we created our ground-truth corpus while emphasiz-

ing the dataset construction, the tool used for manual segmentation and

the segmentation protocol followed.

3.2.1 Dataset construction

The corpus contains twenty-eight 3D-models (as triangle meshes) grouped

in five classes, namely animal, furniture, hand, human and bust. Note that



48 Chapter 3. A benchmark for 3D-mesh segmentation evaluation

it was crucial for our corpus, to present a high variety of models so as to

be able to study properly the different segmentation algorithm’s behav-

iors while avoiding to privilege certain algorithms over others. We have

then conducted a large campaign of manual segmentation with human

subjects. Each 3D-model of the corpus is associated with 4 manual seg-

mentations which give a total of 112 ground-truth segmentations done by

36 volunteers. Figure 3.3 illustrates the models of the corpus with one

manual segmentation per model. We have selected a small number of

varied models with respect to a set of properties. All the selected models

are manifold, connected, and do not have intersecting faces. Hence they

are supported as an input by any segmentation algorithm. The models

come from the GAMMA2 database from INRIA, from the Princeton Shape

Benchmark3 (SMKF04), and from the AIM@SHAPE4 repository, which are

public 3D-model databases.

3.2.2 Tool for manual segmentation

In order to easily collect manual segmentations from a wide range of

people, we have used the MeshLab5 application; this software allows the

processing of 3D-meshes, providing a set of tools for editing, filtering, in-

specting, rendering and converting them. In particular it allows an explicit

vertex-per-vertex segmentation of models using colors.

Indeed, a virtual brush allows a human observer to colorize each vertex

of the mesh to segment. Each segment (a set of connected vertices) is then

distinguished from others by its associated color.

Using this application, anyone can segment models without having

any prior skills in computer graphics. Figure 3.4 illustrates the coloring

process using the MeshLab application. Moreover to accelerate the color-

ing process (which could be fastidious for complex models) and to make

it easier, we have developed a color propagation algorithm that allows

the user to only indicate the different boundaries between the different

2http://www-roc.inria.fr/gamma/gamma.php
3http://shape.cs.princeton.edu/benchmark/
4http://shapes.aimatshape.net/
5http://meshlab.sourceforge.net/

http://www-roc.inria.fr/gamma/gamma.php
http://shape.cs.princeton.edu/benchmark/
http://shapes.aimatshape.net/
http://meshlab.sourceforge.net/
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Figure 3.3 – Models of our corpus associated with one ground-truth.



50 Chapter 3. A benchmark for 3D-mesh segmentation evaluation

segments; the whole segments are then automatically filled by colors (see

figure 3.5). Basically with this tool, between 5 and 15 minutes are neces-

sary for an observer to segment a 3D-model depending on its complexity.

Figure 3.4 – Vertex coloring process using MeshLab.

3.2.3 Segmentation protocol

To obtain precise manual segmentations, we have assisted the 28 volun-

teers (staff members and PhD students from University of Lille and Insa-

Lyon) in tracing the vertex-boundaries through the different models. Note

that the volunteers have freely segmented the models and no condition

was imposed on the manner with which they have segmented them. The

models were randomly assigned to each volunteer with a bias towards

models that had been already segmented several times.

Having more than one segmentation per mesh is very important since

two observers do not necessarily share the same opinion on the segmen-

tation of a model. This is due to the lack of rules that define how to

decompose an object into sub-objects. Consequently, two observers may

segment the same model differently for the following reasons:
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Figure 3.5 – Automatic propagation of colors on the baby model. The user just need to

color the boundaries of the regions that he wants to separate (left), our algorithm then

automatically complete the coloring (right).

• Attention. Observers may differently pay more attention to some

parts of the object and may therefore over-segment these parts of

interest, and under-segment the parts to which they did not pay

attention.

• Refinement. Two observers may segment a given object identically,

except that one observer may divide the object segments into smaller

sub-segments than the other observer did. In other term, observers

can segment at different granularities.

3.2.4 Consistency of ground-truth segmentations

We explained in the previous section that the segmentations produced

by different humans for a given 3D-object are not necessarily identical.

But are they consistent? The positive answer to this question is impor-

tant, since it affects directly the utility of our benchmark. Our choice to

use human-made segmentations as “ground truth” for our benchmark is

justified by the following assumptions:

• Although people do not share the same attention and refinement

degree toward an object and its segmentation, they tend to segment

it in the same way in term of significance of its parts.
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• Automatic algorithms, particularly part-type ones, seek to imitate

human segmentations.

A direct manner to assert the first assumption is to visually analyze

our corpus ground-truths. Figure 3.6 illustrates multiple manual segmen-

tations done by different persons for some 3D-models of our corpus. One

can notice that people select the same types of functional parts, however,

as we raised in the previous section, the difference lies rather in the level

of refinement and slightly on the position of the boundaries. For instance,

we can see that the second and the third segmentations, from left to right,

of the baby model are mutual refinements of each other regarding the

head and legs. We can say that the humans are consistent in their segmen-

tations.

This statement was also validated quantitatively using a subjective ex-

periment described in section 3.5.

3.2.5 Our corpus VS. Princeton corpus

Chen et al. (CGF09) proposed another corpus that seems complementary

to ours: they present more objects (380 3D-models of the Watertight Track

of the 2007 SHREC Shape-based Retrieval Contest (GBP07)) when we se-

lected a small representative set (it allows to rapidly evaluate a segmenta-

tion algorithm without running it on 380 objects). They chose to use the

web application Amazon’s Mechanical Turk6 to collect the manual – i.e.

ground-truth – segmentations without any supervision when we chose to

supervise our volunteers to obtain more precise manual segmentations.

Finally, their ground-truths present facet-based segmentations whereas

ours contain vertex-based segmentations.

3.3 Mesh segmentation similarity metrics

In benchmark-based evaluation methods, the quality of the evaluation de-

pends on the quality of the corpus but also on the quality of the segmen-

tation similarity measure.

6http://www.mturk.com/

http://www.mturk.com/
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Figure 3.6 – Examples of ground-truth segmentations from our corpus made by

different persons.
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This leads to conclude that the choice of an accurate measure is critical

in order to provide a relevant evaluation and to reflect the real quality

of an automatic segmentation with comparison to a manual one. In this

context, less efforts were investigated to propose a reliable measure of

mesh segmentation similarity. Indeed, in the work proposed by Chen et

al. (CGF09) more interest has been paid on the design of the ground-truth

corpus and they presented rather simple metrics suffering from degenera-

cies and low discriminative power.

3.3.1 Properties of a reliable similarity metric

A reliable measure of mesh segmentation similarity has to possess the

following set of properties:

Non degenerative cases. The score’s measure must be proportional

to the similarity degree between an automatic segmentation and the

ground-truth segmentations of the same model. For example, an over-

segmentation where each vertex (or facet) is represented by a segment

must give a very low value of similarity, since no ground-truth segmenta-

tion can be represented in such a way.

Tolerance to refinement. The segmentation performed by some human

observers can be coarse while the segmentation performed by others can

be finer. However, they basically remain consistent; the difference just lies

in the level of refinement. Hence, a reliable segmentation measure has

to accommodate and to be invariant to these segmentation granularity

differences.

Cardinality independence. The measure must neither assume equal car-

dinality nor depend on this attribute. This means that two segmentations

to be compared can have different numbers of segments and different sizes

of segments.

Tolerance to cut boundary imprecision. Humans define the segment

boundaries of 3D-objects in a subjective way. Indeed, it is possible that
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two volunteers define the same segment on a model with a slight differ-

ence between boundaries, however, from a semantic point of view, the

segments remain similar. Hence, a reliable measure has to accommodate

this imprecision of cut boundaries.

Multiple ground-truths. The measure has to be able to compare one

automatic segmentation with multiple ground-truths (reference segmen-

tations) for a given model, otherwise, providing multiple ground-truths

in a benchmark is useless. An alternative solution is to simply average the

similarity scores obtained between an automatic segmentation and each

manual segmentation (reference segmentation), however, this may bias the

result and not really reflect how much an automatic segmentation agrees

with the multiple ground-truths.

Meaningful comparison. The scores obtained by the measure have to

allow a meaningful comparison between different segmentations of the

same model and between segmentations of different models. For the first

case (segmentations of the same model), the scores have to vary accord-

ing to the segmentation quality, then, more the automatic segmentation is

similar to the ground-truth segmentations of the same model, and better

the score is. For the second case (segmentations of different models), the

scores have to indicate which kind of 3D-models is the most convenient to

segment by an automatic algorithm.

3.3.2 Categories of mesh segmentation similarity metrics

Essentially, the measures used to evaluate 3D-mesh segmentation can be

classified into three categories: boundary matching, region differencing

and non-parametric tests based measures.

In order to be able to formulate the above measures, we use defini-

tion 2.4 of mesh segmentation reported in chapter 2. We will use this

latter definition for the remainder of this chapter.
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Boundary matching metrics

This kind of measures compute the mapping degree between the re-

gion boundaries of two segmentations. Chen et al. (CGF09) proposed

to use such a measure called Cut discrepancy. It measures the distances

between cuts, where each cut represents an extracted region boundary.

Let S1 and S2 be two segmentations of a 3D-mesh M and C1, C2, their

respective sets of points on the segment boundaries. Let dG(p1, C2) =

min{dG(p1, p2), ∀p2 ∈ C2} be the geodesic distance from a point p1 ∈ C1

to a set of cuts C2.

The Cut discrepancy between S1 and S2 is then:

CD(S1, S2) =
DCD(S1 ⇒ S2) + DCD(S2 ⇒ S1)

avgRadius

where, avgRadius is the average Euclidean distance from a point on

the surface to the centroid of the mesh, and DCD is a directional function

defined as DCD(S1 ⇒ S2) = mean{dG(p1, C2), ∀p1 ∈ C1}.

A value of 0 indicates a perfect matching between S1 and S2 and is

greater otherwise. As observed by Chen et al. (CGF09) the measure is

undefined when the model has no cuts and decreases to zero as more cuts

are added to a segmentation. Hence it suffers from a degenerative case

(see section 3.3.1). In addition, it is not tolerant to refinement since for two

segmentations that are perfect mutual refinements of each other, it can

provide a large value. Moreover, for the unmatched points in C1 and C2

(points that have a geodesic distance which is greater than 0), it is possible

to change their locations randomly and the measure will keep the same

value. This measure is also not tolerant to imprecision of cut boundaries

since it is based on geodesic distances. Finally, it allows to compare an

automatic segmentation to only one ground-truth segmentation.

Region differencing metrics

These measures compute the consistency degree between the regions pro-

duced by two segmentations S1 and S2. Berretti et al. (BDBP09) have pro-

posed an overlap index representing the extent to which a region Ri of
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an automatic segmentation overlaps to closest region Rj of a ground-truth

segmentation. The overlap index Oindex of Ri is defined as:

Oindex = maxj
A(Ri ∩ Rj)

A(Ri)

with A(.) the operator that returns the area of a region. If we suppose

that S1 is the automatic segmentation and S2 is the ground-truth segmen-

tation, then the distance between them is the average of the Overlap index

over-all regions of S1. A value of 1 means that the two segmentations are

exactly the same and is lower otherwise. This measure falls in a degener-

ative case when each region Ri of a segmentation S is represented by one

facet. Indeed, in this latter case, computing the similarity, using the over-

lap index, between S and any other segmentation will give a value equals

to 1. This means that the segmentation S is similar to any other segmenta-

tion. The measure does not allow a comparison to multiple ground-truths.

We and Chen et al. (CGF09) generalized the consistency error mea-

sure (MFTM01), used to evaluate 2D-image segmentation, for 3D-mesh

segmentation evaluation. The measure is based on the computation of a

local refinement error L3D of a vertex (or facet) vi between S1 and S2 and

is defined as:

L3D(S1, S2, vi) =
|R(S1, vi)\R(S2, vi)|

|R(S1, vi)|
where the operator \ denotes the set differencing, |x| the cardinality

of the set x, and R(S, vi) the region in segmentation S that contains the

vertex vi, i.e. the subset of vertices corresponding to a sub-mesh Mj of S

containing vi.

This local refinement error produces a positive real valued output that

represents the ratio of the number of vertices not shared between the first

segment and the second one.

Given this L3D, there exist two ways to combine it for all vertices into

a global measure for the entire 3D-mesh: the Global Consistency Error

(GCE) and the Local Consistency Error (LCE).

The Global Consistency Error (GCE) forces all local refinements to be

in the same direction and is defined as:
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GCE(S1, S2) =
1
N

min{∑
i

L3D(S1, S2, vi), ∑
i

L3D(S2, S1, vi)}

The Local Consistency Error (LCE) allows for different directions of

refinement in different segments of the 3D-mesh:

LCE(S1, S2) =
1
N ∑

i
min{L3D(S1, S2, vi), L3D(S2, S1, vi)}

where N is the number of vertices. For both the GCE and the LCE, a

value of 0 indicates a complete similarity, whereas a value of 1 indicates

a maximum deviation between the two segmentations being compared.

There are two degenerative segmentations that achieve a GCE and a LCE

score of zero: one vertex per segment, and one segment for the entire

mesh. We can also notice that the measure does not allow a comparison

to multiple ground-truths.

Chen et al. (CGF09) proposed to use another measure namely Ham-

ming distance. The Hamming distance between two segmentations S1

and S2 measures the region differencing between their respective sets of

segments. The directional Hamming distance is defined as:

DH(S1 ⇒ S2) = ∑
i

∥∥∥Ri
2\R

it
1

∥∥∥
where the operator \ denotes the set differencing, ‖x‖ the cardinality

of the set x, and it = argmaxk
∥∥Ri

2 ∩ Rk
1

∥∥ the closest segment in S1 to the

region (or segment) Ri
2 in S2.

Given this DH, and considering S2 as the ground-truth, the authors

of (CGF09) defined the missing rate Mr and the false alarm rate Fr as

follow:

Mr(S1, S2) =
DH(S1 ⇒ S2)

‖S‖ , Fr(S1, S2) =
DH(S2 ⇒ S1)

‖S‖
and the Hamming distance as the average of missing rate and false

alarm rate:

HD(S1, S2) =
1
2
(Mr(S1, S2) + Fr(S1, S2))
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Similarly to the GCE and LCE, a value of 0 indicates a complete sim-

ilarity between the two segmentations, and it is higher otherwise. As

observed by the authors (CGF09) the measure has a good behavior when

the correspondences between segments are correct but it fails when they

are not. Another limit is the comparison to only one ground-truth.

Non-parametric tests metrics

In the statistical literature there exists a lot of non-parametric measures.

We can cite for example Cohen’s Kappa (Coh60), Jaccard’s index (FM83),

Fowlkes and Mallow’s index (FM83). The latter two are variants of Rand

index (Ran71). Chen et al. (CGF09) generalized Rand index (UPH07), used

to evaluate 2D-image segmentation, for 3D-mesh segmentation evaluation.

This index converts the problem of comparing two segmentations S1 and

S2 with different numbers of segments into a problem of computing pair-

wise label relationships. If we denote li
S1

the corresponding label of vertex

vi (or facet) contained in region R of S1 and similarly li
S2

the corresponding

label of vertex vi in region R of S2, the Rand index can be computed as the

ratio of the number of pairs of vertices or facets having a compatible label

relationship in S1 and S2 and can be defined as:

RI(S1, S2) =
1

(N
2 ) ∑

i,j
i<j

I(li
S1

= l j
S1

)(li
S2

= l j
S2

) + I(li
S1
6= l j

S1
)(li

S2
6= l j

S2
)

where I is the identity function, and the denominator is the number of

possible unique pairs among N vertices or facets. This gives a measure of

similarity ranging from 1, when the two segmentations are identical, to 0

otherwise. This measure does not allow comparison to multiple ground-

truth segmentations.

We can notice that all existing measures suffer from either degenerative

cases and/or sensitivity to refinement and/or sensitivity to cut boundary

imprecision and/or limitation in term of comparison to multiple refer-

ence (i.e. ground-truth) segmentations. Therefore none of these measures

satisfies the whole set of properties defined in section 3.3.1.
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3.3.3 3D Probabilistic Rand Index (3D-PRI)

The goal of this measure is to perform a quantitative comparison between

a mesh segmentation algorithm and a set of ground-truth segmentations

(of the same model). In the field of 2D-image, Unnikrishnan et al. (UPH07)

proposed a probabilistic interpretation of Rand Index to evaluate the per-

formance of 2D-image segmentation algorithms and shown the relevance

of the obtained results.

Hence we have generalized this measure for 3D-mesh segmentation

evaluation.

Let Sa be the automatic segmentation to be compared to a set of man-

ual segmentations (ground-truths) {S1, S2, ..., SK} of a 3D-mesh M. We de-

note the corresponding label of a vertex vi (label of the segment to which

belongs vertex vi) by li
Sa

in segmentation Sa and by li
Sk

in the ground-truth

segmentation Sk. It is assumed that the label li
Sk

takes a value ranged

between 1 and the number of segments of Sk and similarly li
Sa

takes a

value ranged between 1 and the number of segments of Sa. The label

relationships for each vertex pair is modeled by an unknown underlying

distribution. This can be considered as a process where each human seg-

menter provides information about the segmentation Sk of the 3D-mesh

in the form of binary numbers I(li
sk

= l j
sk) for each pair of vertices (vi, vj).

The set of all perceptually correct segmentations defines a Bernoulli dis-

tribution over this number, giving a random variable with expected value

denoted as pij. Hence, the set {pij} for all unordered pairs (i, j) defines

a generative model of correct segmentations for the 3D-mesh M. The 3D

Probabilistic Rand Index is then defined as:

3DPRI(Sa, {Sk}) =
1

(N
2 ) ∑

i,j
i<j

eij pij + (1− eij)(1− pij) (3.1)

where eij denotes the event of a pair of vertices i and j belonging to the

same segment (or region) in the automatic segmentation:

eij = I(li
Sa

= l j
Sa

)

and pij denotes the probability of the vertices i and j belonging to the same

segment in the ground-truth set {Sk} and is given by the sample mean of
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the corresponding Bernoulli distribution as suggested by Unnikrishnan et

al. (UPH07):

pij =
1
K ∑

k
I(li

Sk
= l j

Sk
)

The 3D-PRI takes a value ranged between 0 and 1, where 0 indicates

no similarity between Sa and {S1, S2, ..., Sk}, and 1 indicates a perfect sim-

ilarity.

Note that with this formulation for pij, computing the 3D-PRI is equiv-

alent to averaging the RI over the multiple ground-truths. However, the

3D-PRI formulation is generic and we can imagine a different and more

efficient way to compute the pij. The main advantage of the simple mean

estimator is its fast computation.

We have noticed in practice, however, that the 3D-PRI suffers from a

lack of discriminative power in its values. Indeed, the values obtained by

the index do not allow to clearly decide if a segmentation obtained by an

automatic algorithm is relevant or not. This is due to the limited effective

range of 3D-PRI in term of maximum and minimum value. To address this

drawback, we present in the next section, the 3D normalized probabilistic

Rand index (3D-NPRI).

3.3.4 3D Normalized Probabilistic Rand Index (3D-NPRI)

Our objective is to normalize the 3D-PRI, in order to increase its dynamic

range and thus its discriminative power. Hence we need to define a base-

line to which the index can be expressed. For 3D-mesh segmentations,

the baseline may be interpreted as the expected value of the index under

some particular segmentations of the input 3D-model. A popular strategy

(FM83, UPH07) of index normalization with respect to its baseline is:

Normalized index =
Index− Expected index

Maximum index− Expected index
(3.2)

As observed by Unnikrishnan et al. (UPH07) there is a little agreement

in the statistics community regarding whether the value of “Maximum

index” should be estimated from the data or set constant. We choose to

follow what was done by Unnikrishnan et al. (UPH07) and set the value
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to be 1 (the maximum possible value of the 3D-PRI). Thus, we avoid the

practical difficulty of estimating this quantity for complex data sets.

Another parameter to define is the expected probabilistic Rand index

E(3D-PRI). One may draw an analogy between the E(3D-PRI) and the 3D-

PRI in equation 3.1 as follow:

E [3DPRI(Sa, {Sk})] =
1

(N
2 ) ∑

i,j
i<j

éij pij + (1− éij)(1− pij) (3.3)

where éij = E
[
I(li

Sa
= l j

Sa
)
]
. This latter quantity has to be computed in

a meaningful way. Unnikrishnan et al. (UPH07) proposed to estimate it

from segmentations of all images of the database for all unordered pairs

(i, j). Let Φ be a number of images in data-set and Kφ the number of

ground-truth segmentations of image φ. Then, éij is expressed as:

éij =
1
Φ ∑

φ

1
Kφ

Kφ

∑
k=1

I(li
Sk

φ
= l j

Sk
φ
)

However, this estimation can only be used in a data-base of 2D-images

having equal sizes (where each pixel has its correspondent over all the

other segmented images). In the 3D case, it is not possible, since the dif-

ferent models of the corpus have different number of vertices and different

connectivities. One possible way to compute the E(3D-PRI) while keeping

a correct baseline and without having any constraint on the corpus, is to

use random segmentations Sr:

E [3DPRI(Sa, {Sk})] =
1
N

N

∑
r=1

3DPRI(Sr, {SKr}) (3.4)

where N is the number of 3D-models in our corpus and {Skr} are ground-

truths of the model concerned by Sr. We then define the 3D-NPRI of an

automatic segmentation of a given 3D-model as follow:

3DNPRI(Sa) =
3DPRI(Sa, {SK})− E [3DPRI(Sa, {Sk})]

1− E [3DPRI(Sa, {Sk})]
(3.5)

The random segmentations were generated using a simple algorithm: L

seed vertices were randomly chosen on the object, then L connected re-

gions were obtained by a simple region growing mechanism. The number

of segments takes a value ranged between 2 and the number of vertices of
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the concerned model. Figure 3.7 shows some 3D-models of the corpus on

which the random segmentation algorithm was applied. We have to pre-

cise here that the 3D-NPRI is not affected by the choice of these random

segmentations. Indeed we will show later (see figure 3.8) that the 3D-PRI

provides very stable values when comparing ground-truth segmentations

to random segmentations (even with very different granularities) hence

the normalization constant E(3D-PRI) (see equation 3.4) is almost invari-

ant to the choice of the random segmentations Sr.

Figure 3.7 – Random segmentations of some 3D-models of the corpus.

Hence, the 3D-NPRI takes a value with a lower bound of −1 and an

upper bound of 1, where −1 indicates no similarity between the automatic

segmentation and the ground-truth segmentations of the same model, and

1 indicates a perfect match. The lower bound of −1 is explained by the

fact that the expected Index can not exceed 0.5 since we compare a set

of random segmentations to a set of ground-truth segmentations (see sec-

tion 3.4.1). Therefore, the worst case will be:

3DNPRI(Sa) =
0− 0.5
1− 0.5

= −1

where the automatic segmentation has no similarity with its correspond-

ing ground-truths.

Note that the metric does not allow to compare different segmentations

of the same model with different sampling (the same model with vertex

number varying). However, in our case, it is not really a drawback since

we always compare segmentations of the same model while keeping the

same sampling and the same order of vertices.
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3.4 Experimental comparison of existing segmentation

similarity metrics

In what follows, we provide an experimental study of the 3D-PRI/3D-

NPRI properties and we compare them to the existing metrics for assess-

ing 3D-mesh segmentation quality. For this end, we use our corpus mod-

els and their corresponding ground-truths.

Most of the measures introduced in section 3.3 quantify dissimilarity

(the lower is the number, the best is the segmentation result) between

segmentations rather than similarity. In order to have a meaningful com-

parison between these measures and the 3D-PRI/3D-NPRI, we define the

quantities CDI(S1, S2) = 1− CD(S1, S2), GCI(S1, S2) = 1− GCE(S1, S2),

LCI(S1, S2) = 1− LCE(S1, S2), and HDI(S1, S2) = 1− HD(S1, S2). The

“I” in the acronyms stands for “Index”, complying with the popular us-

age of the term in statistics when quantifying similarity. Hence, except

the CDI, all of the other indexes are in the range [0, 1] with a value of 0

indicating no similarity between segmentations of the same model and a

value of 1 indicating a perfect match. The CDI is in the range ]−∞, 1].

3.4.1 Sensitivity to degenerative cases

The first property to study is the sensitivity of each index regarding de-

generative cases. For this end, we compare our Probabilistic Rand In-

dex (3D-PRI) with the Cut Discrepancy Index (CDI), the Hamming Dis-

tance Index (HDI), the Global and Local Consistency Index (GCI/LCI),

and the Overlap Index (OI) for three kinds of random segmentations

namely extreme-low segmentation (segmentation composed of 2 or 3 seg-

ments), middle-segmentation (segmentation composed of a number of

segments which is similar to that of ground-truths of the corresponding

model), and extreme-high segmentation (segmentation composed of more

than 50 segments). They were generated using a random segmentation

algorithm. Figure 3.8 presents the results obtained by the comparison

of these random segmentations to the set of the ground-truths for each

model of the corpus. Each index of the figure is computed for the three
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kinds of segmentation (extreme-high segmentation, middle-segmentation,

and extreme-low segmentation) and averaged across the entire data set.

Since the segmentations are random, the scores obtained by the metrics

are expected to be low for the three kinds of segmentation, and it is the

case for the 3D-PRI. We can notice, however, that although the random

segmentations are totally different from the ground-truths, the scores of

the other metrics are very high (i.e. very good) for certain segmentations

with degenerative granularity (extreme-high and/or extreme-low). Hence

the 3D-PRI is the most stable regarding degenerative cases considering its

scores which are always less than 0.32.

Figure 3.8 – Comparison of three levels of random segmentation (extreme-low, middle,

and extreme-high) to the ground-truths for the whole corpus using different indexes.

3.4.2 Tolerance to refinement

The second property to study is the tolerance of each index to refine-

ment. For this end, we perform two kinds of experiments. The first one

uses segmentations with mutual refinements, and the second one uses

segmentations with hierarchical refinements. The obtained results for the

first experiment are presented in figure 3.9.

It shows two segmentations of the dinopet model which are perfect mu-
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(a) (b)

Figure 3.9 – Tolerance to mutual refinement of different indexes, by comparing two

segmentations (a,b) with perfect mutual refinement for the dinopet model.
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tual refinements of each other, and a plot in which is computed the simi-

larity between the two segmentations using different metrics. The plot of

figure 3.9 clearly shows that the CDI fails to capture the similarity between

the two segmentations (a) and (b). Although the two segmentations are

similar (the difference just lies in the level of refinement). However, the

other metrics have a good behavior toward this kind of refinement since

all of them give scores which are close to 1.

The second experiment was performed using the hierarchical segmen-

tation algorithm of Attene et al. (AFS06). We generated several levels of

segmentation (from 4 segments to 15 segments) on the horse model of

our corpus then we compared these 12 versions to the ground-truths. Fig-

ure 3.10 illustrates the obtained results using different indexes. The OI and

the GCI does not appear on the figure since they have the same behavior

as the LCI. The figure clearly shows that the CDI is less stable toward hi-

erarchical refinement than the other indexes. The LCI seems completely

invariant while the 3D-PRI and the HDI present a slight variation; they

are not fully invariant but present a good tolerance to refinement.

3.4.3 Independence from cardinality

The third property to study is the independence of each index toward seg-

mentation cardinality. According to the previous performed experiments

about the first two properties (degenerative cases and refinement), the CDI

seems to be the only metric which depends on the cardinality, in a critical

way. Indeed, the comparison between two segmentations with different

number of segments will give a bad score using this metric whatever the

quality.

3.4.4 Tolerance to imprecision of cut boundaries

The fourth property to study is the tolerance of each index to the impre-

cision of cut boundaries. For this end, we manually segmented a simple

model (bitorus) into two segments. We proposed five segmentations (fig-

ure 3.11 (a to e)) where each one of them has a slight difference in the

boundary position with comparison to the others, then we computed the
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Figure 3.10 – Tolerance to hierarchical refinement of different indexes, by comparing

several levels of segmentation of the horse model to its corresponding ground-truths.

similarity between segmentation (c) and the other segmentations. The plot

in figure 3.11 shows the obtained results using different indexes. Contrary

to the other indexes, the CDI gives low values of similarity between seg-

mentations. Although the CDI is not in the same range as the other met-

rics, the plot still allows to illustrate the qualitative behavior of this latter

index toward the imprecision of cut boundaries. We can notice also that

except the 3D-PRI which presents a slight variation but a good tolerance,

the other indexes are almost invariant.

At this point, we have shown that the 3D-PRI satisfies the five proper-

ties: ability to compare one automatic segmentation with multiple ground-

truth segmentations, non degenerative cases, tolerance to refinement, in-

dependence from segmentation cardinality, and tolerance to imprecision

of cut boundaries. We also have shown that the 3D-PRI outperforms the

other indexes in terms of the first two properties. We show in the next ex-

periments that the normalization of this index (into 3D-NPRI) improves its

discriminative power and give better results in term of meaningful com-

parison.
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(a) (b) (c) (d) (e)

Figure 3.11 – Tolerance to imprecision of cut boundaries of different indexes, by

comparing segmentation (c) to segmentations (a to e) for the bitorus model.

3.4.5 Meaningful comparison

The main advantage of the 3D-NPRI is the ability to provide values that

allow a meaningful comparison between segmentations of different 3D-

models. Figure 3.12 demonstrates this behavior. The top two rows show

different 3D-models of our corpus segmented at different granularity us-

ing the hierarchical algorithm from Tierny et al. (TVD07). These automatic

segmentations are compared to the ground-truth corpus (see figure 3.3 on

page 49) using the previous indexes and our 3D-NPRI. Visually, regard-

ing the ground-truth, segmentations a and b (figure 3.12) seem very poor,



70 Chapter 3. A benchmark for 3D-mesh segmentation evaluation

(a) (b) (c)

(d) (e) (f)

Figure 3.12 – Example of comparing segmentations of different models: From a to f

segmentations using algorithm from (TVD07). The plot shows the scores of different

indexes for each segmentation (a to f).
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segmentations c, d, and f are correct, and segmentation e is perfect. One

can notice that the OI similarity is high for all of the 3D-models. Hence,

it cannot indicate which segmentation is the best. Note that although the

HDI gives lower scores than the OI, it also fails to distinguish between

correct and poor segmentations since it gives high values for poor ones

(figure 3.12.a and 3.12.b) and low values for correct ones (figure 3.12.c

and 3.12.d). The GCI/LCI does not appear in the plot in order to keep

a clear display. This latter metric has the same behavior than HDI. The

CDI has slightly a better behavior than HDI but still to fail distinguishing

between correct and poor segmentations. The 3D-PRI reflects the correct

relationship among the segmentations. However, its range is small, and

the expected value is unknown, hence it is difficult to determine which

segmentation is really good. The 3D-NPRI fixes all of these drawbacks. It

reflects the desired relationship among the segmentations with no degen-

erate cases. Besides, any segmentation which gives a score significantly

above 0 can be considered as relevant (since it provides results signifi-

cantly better than random segmentations).

3.5 Subjective experiment

In order to attest the discriminative power of our 3D-NPRI and to quantify

the efficiency of our ground-truth corpus, we have conducted a subjective

experiment in which human observers have rated a set of segmentations

issued from different automatic algorithms including ground-truths of our

corpus and random segmentations. To this end, we carefully designed a

protocol with respect to several factors namely the rendering conditions,

the possible interactions, the rating range, and the number of human sub-

jects.

3.5.1 The corpus of segmentations

The design of stimulus is a critical step in a subjective protocol. In our case,

we need to select a set of 3D-models that will be segmented by different

algorithms and then rated by human subjects. To this end, we use our

corpus of 3D-models. The size of the corpus is reasonable (28 3D-models),
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and its content is representative since it contains different categories of

3D-models.

In our experiment, we asked human subjects to rate segmentations of

these objects coming from different automatic algorithms. We have created

a set of 250 segmentations based on the corpus of 28 models.

For this task, we have considered four automatic segmentation al-

gorithms: Attene et al. (AFS06), Lavoué et al. (LDB05b), Shapira et

al. (SSCO08) and Tierny et al. (TVD07). The source code and/or the binary

were provided by the authors for each algorithm. Except the algorithm of

Lavoué et al. (LDB05b), the others are hierarchical. Hence, for each algo-

rithm, we generated two levels of segmentation per model namely coarse

and fine, which gave 28× 2 segmentations per algorithm and 28 segmen-

tations for the Lavoué’s et al. algorithm. Figure 3.13 illustrates an example

of coarse and fine segmentation of the hand model using the algorithm

from Tierny et al. (TVD07).

Figure 3.13 – From left to right, coarse and fine segmentation of the hand model using

Tierny’s et al. (TVD07) algorithm.

Note that the number of segments of a given level of segmentation

(coarse for example) is not the same through the different models and

through the different algorithms. For the algorithms from Shapira et

al. (SSCO08) and Tierny et al. (TVD07), the number of segments is au-

tomatically computed. We just need to fix the level of detail of the desired
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segmentation. For the algorithm from Attene et al. (AFS06), the number

of segments is manually fixed, we then select two numbers (a small one

and a big one). These two numbers vary according to the complexity of

the model and to the consistency of the segmentation. For the algorithm

from Lavoué et al. (LDB05b) the number of segments was also manually

chosen so as to optimize the quality. To these 28× 7 segmentations were

added 28 manual segmentations coming from our ground-truth corpus

and 28 random segmentations generated using a simple algorithm based

on a random region growing mechanism. Figure 3.14 illustrates different

segmentations of the camel model. Thus we obtained a whole corpus of

250 segmentations to rate.

3.5.2 Subjective protocol

The protocol that we propose is inspired from existing ones used for

video segmentation quality evaluation, 3D-watermarking quality evalu-

ation, and image quality evaluation (GEKS06, CDGEB07, RR01). They are

all based on Single Stimulus Continuous Quality Scale (SSCQS) which is a

standard technique used to evaluate the quality of video and multimedia

content. Our protocol consists of the following stages:

• Oral instructions. We give instructions to our volunteers and make

them familiar with the rating task, the 3D-models, and the available

interactions.

• Training. We show some ground-truth and random (bad) segmenta-

tions of several models, in order to clarify the concept of good and

bad segmentation for the user and to establish a referential range

for him. The goal for the user is not to learn the ground-truth of

each model, but to learn what is a good segmentation so as to be

able to rate the quality of a given segmentation independently from

ground-truths.

• Experimental trials. For each segmentation from the corpus, we ask

the volunteer to give a score between 1 and 10 indicating its quality

from a semantic point of view. 10 for a perfect segmentation and 1
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(a) Ground-truth. (b) Shapira et al. (SSCO08).

(c) Tierny et al. (TVD07). (d) Attene et al. (AFS06).

(e) Lavoué et al. (LDB05b). (f) Random.

Figure 3.14 – Segmentation of the camel model using different algorithms.
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for a bad one. This scale range allows the volunteers to distinguish

more easily between the quality of segmentations.

During the experiment trials, each segmentation is displayed one by

one to the observer on a 22-inch LCD monitor, without the ground-truth.

In order to avoid the effect of the temporal sequencing factor, the se-

quence of segmentations was randomly generated for each participant.

Interaction was allowed (rotation, scaling, translation). It is important

to notice that rating 250 segmentations represents a too much fastidious

task for an observer; hence we only asked each human subject to rate 50

segmentations from the corpus (randomly chosen with a bias to obtain

enough scores for all the 250 segmentations). The user interface which

was developed for this rating task is illustrated in figure 3.15.

The Mean Opinion Score (MOS) is then computed for each segmenta-

tion of the corpus:

MOSi =
1
n

n

∑
j=1

mij (3.6)

MOSi is the mean opinion score of the ith segmentation, n is the number

of test subjects, and mij is the score (from 1 to 10) given by the jth subject

to the ith segmentation. This subjective experiment has been conducted on

50 people (students and staff) from the University of Lille, which provided

a total of 10 opinion scores per segmentation.

3.5.3 Results and data analysis

Consistency of the ratings

Firstly in order to check the suitability of our evaluation protocol and

the relevance of the mean opinion scores, we have assessed the variation

between the different observers in their subjective ratings of the objects.

The value of the intraclass correlation coefficient (ICC) is 0.65, that is a

rather good value that means that the observers had a good agreement on

their visual estimations; hence we can assert that our protocol was correct

since it led to produce meaningful consistent ratings among the observers.
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Figure 3.15 – User interface for rating the segmentations.

Discriminative power

The best way to attest the discriminative power of our 3D-NPRI, is to show

that its values are well correlated with the rates given by the observers for

the 250 segmentations. To this end, we computed the quality index of

these 250 segmentations (using our benchmark) using the different met-

rics. Hence each segmentation was associated with quality index values

from the different metrics and a subjective Mean Opinion Score (MOS)

from the human observers.

For the correlation, we considered a statistical indicator namely the

Pearson Product Moment Correlation (Dan99). This indicator measures

the linear dependence between two variables X and Y. In order to optimize

the matching between the values of the different metrics and the MOS of

observers, we performed a psychometric curve fitting using the Gaussian

psychometric function (recommended by Corsini et al. (CGEB07)).

Table 3.1 shows the results of Pearson correlations between the values

of the different metrics and the MOS of observers.

The results in the table show that the 3D-NPRI outperforms the other

metrics in term of correlation for each category and for the whole corpus.

Moreover, the Pearson correlation value of the 3D-NPRI for the whole cor-
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CDI OI GCI LCI HDI 3D-NPRI

Animal 2.6 2.3 9.3 8.3 16.9 58.7

Bust 10.9 0 45.9 61.1 54.8 77.4

Furniture 5.8 14.8 49.9 50.5 63 73.2

Hand 21.2 1 54.1 54.4 57.5 70.2

Human 1.5 5.5 32.1 32.6 39 51.6

Whole 7.1 2.6 23.7 20.9 32.9 66.1

Table 3.1 – Pearson correlation values (%) between the Mean Opinion Scores and the

values of the different metrics for each model category of our corpus.

pus is high (66.1%), when those of the other metrics are quite bad (less

than 33%). This means that except the 3D-NPRI, the other metrics fail to

distinguish between good and bad segmentations. Figure 3.16 presents

the psychometric curve fitting between the objective and subjective scores

for 3D-NPRI, HDI, LCI and CDI for the 250 segmentations of the corpus

models. It visually illustrates the superiority of the 3D-NPRI for predict-

ing the subjective opinion, and leads to conclude that the 3D-NPRI has

the best discriminative power. These results clearly validate the 3D-NPRI.

Moreover, we attest that our benchmark (ground-truth corpus and met-

ric) is able to predict the subjective quality of a segmentation since the

obtained results are in agreement with the human opinion.

Performance comparison of several segmentation algorithms

Table 3.2 presents the rank, based on the MOS, of each algorithm (fine

segmentation for hierarchical algorithms) for each category of models of

the corpus including random segmentations and ground-truths. The MOS

mean values are also displayed. As expected, our ground-truths have the

best ranks for each category and for the whole corpus, when random seg-

mentations have the worst ones. This validate once again the relevance of

our ground-truth corpus. The table shows that there is no automatic al-

gorithm which outperforms the others in all categories. It also shows that

the models of the bust category, seem to be the most difficult to segment

by automatic algorithms, since the average of their MOS is the lowest with
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(a) 3D-NPRI (b) HDI

(c) LCI (d) CDI

Figure 3.16 – Subjective MOS vs. metric values for the whole corpus models and for

different metrics. Each circle represents a segmentation. The Gaussian fitted curve is

displayed in red.

comparison to other categories. This may be due to the geometrical and

topological complexity of these models, but the main reason is probably

the fact that these models represent human faces. Human face images are

well-known in subjective experiments as a high-level factor attracting hu-

man attention, hence some features not relevant from a geometrical point

of view can be considered highly relevant for human observers. Globally,

the algorithm from Shapira et al. (SSCO08) seems to be the best one after

ground-truths.

Influence of the refinement on the segmentation quality

Some automatic algorithms are hierarchical, i.e. they are able to produce

segmentations with different levels of refinement. An interesting exper-

iment is to study whether this level of granularity influences the quality

perceived by the observers. For this end, we averaged the MOS of the
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Animal 1 / 8.26 2 / 7.20 3 / 5.72 5 / 4.83 4 / 5.01 6 / 2.37

Bust 1 / 8.03 2 / 4.64 4 / 2.81 3 / 3.64 5 /2.64 6 / 1.78

Furniture 1 / 9.25 3 / 7.74 5 / 3.35 2 / 8.53 4/6.21 6 / 1.99

Hand 1 / 8.68 5 / 4.82 2 / 7.64 4 / 4.85 3 / 5.53 6 / 1.60

Human 1 / 7.77 2 / 6.77 3 / 5.20 5 / 4.54 4/ 4.62 6 / 2.28

Whole 1 / 8.36 2 / 6.51 3 / 5.27 4 / 5.21 5 / 4.92 6 / 2.10

Table 3.2 – Algorithms ranking associated with the average of MOS for corpus

categories.

models for each category, for each algorithm and for both levels of seg-

mentation (coarse and fine), then we compared the results of the two lev-

els. Figure 3.17 illustrates the obtained results for the three hierarchical

algorithms. One can notice that the averages of the two levels of seg-

mentation for a given category or for the whole corpus are close to each

other. More exactly, the average variation between the two levels for the

whole corpus and for each algorithm: Shapira et al. (SSCO08), Attene et

al. (AFS06) and Tierny et al. (TVD07) is respectively of 7%, 11%, and 10%.

This means that the segmentations remain consistent whatever their level

of refinement.

3.6 Application for the evaluation of recent segmen-

tation algorithms

In this section, we apply the 3D-NPRI together with the Chen’s et

al. (CGF09) corpus and our corpus to evaluate a set of recent automatic

segmentation algorithms, then we compare the results obtained by the

two corpuses.
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(a) Shapira et al. (SSCO08).

(b) Tierny et al. (TVD07).

(c) Attene et al. (AFS06).

Figure 3.17 – Average of MOS of segmentations obtained from different hierarchical

algorithms.
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We have considered the six recent automatic segmentation algorithms

used in the benchmark from Chen et al. (CGF09): Attene et al. (AFS06),

Lai et al. (LHMR08), Golovinskiy et al. (GF08), Katz et al. (KLT05), and

Shapira et al. (SSCO08). These algorithms are respectively based on: fit-

ting primitives, random walks, normalized cuts/randomized cuts, core

extraction, and shape diameter function. The segmentations from these

algorithms for the Chen’s corpus are available on-line. On the other hand,

we used Attene’s et al. (AFS06), and Shapira’s et al. (SSCO08) algorithms

(the only algorithms available on-line among the previous six) to generate

automatic segmentations on our corpus models. The reader can refer to

chapter 2 for more details about the six algorithms.

Note that all the algorithms cited above are part-type hierarchical seg-

mentation methods. Hence for each of them we can generate several levels

of segmentation. Chen et al. (CGF09) provided only one level of segmen-

tation for each algorithm applied on their corpus. To this end, they used

the parameter settings recommended by the authors of the algorithms.

To keep a valid comparison between the two corpuses, we also used the

parameter settings recommended by the authors of the algorithms to gen-

erate segmentations on the models from our corpus. Note that the level of

segmentation should not influence the evaluation results since we proved

that the 3D-NPRI is tolerant to hierarchical refinement (see figure 3.10).

To ensure a relevant comparison between the algorithms, we compute

the 3D-NPRI for every 3D-model of the Chen’s corpus and of our corpus.

Figure 3.18 shows the 3D-NPRI for each model of the two corpuses and

for each algorithm. The values are sorted in increasing order for each

algorithm, hence the jth model may not be the same across algorithms.

This kind of graph was already applied for segmentation evaluation in

the field of 2D-image (UPH07).

Table 3.3 presents the rank of each algorithm together with the 3D-

NPRI mean value over all the two corpuses.

Table 3.3 and figure 3.18 demonstrate, as expected, that the segmenta-

tions obtained by the six algorithms are relevant since most of the values

of the 3D-NPRI are greater than zero. The Randomized Cut algorithm
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(a) Results on Chen’set al. (CGF09) corpus

(b) Results on our corpus

Figure 3.18 – Scores of 3D-NPRI sorted in increasing order over all the two corpus

models.
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Algorithm 3D-NPRI mean Rank

Fitting primitives 0.49/0.49 5/2

Random walks 0.50/- 4/-

Normalized cuts 0.59/- 2/-

Randomized cuts 0.63/- 1/-

Core extraction 0.46/- 6/-

Shape diameter function 0.56/0.55 3/1

Table 3.3 – Algorithms ranking applied on respectively the Chen’s corpus and our

corpus.

seems to provide the best results. It is very interesting to notice that the

Fitting Primitives and Shape Diameter keep similar behavior for the two

corpuses although these two corpuses are very different: the profiles of

the 3D-NPRI distributions (see figure 3.18) and the mean 3D-NPRI values

(see table 3.3) for these algorithms are almost exactly the same for both

corpuses. Hence it validates the fact that our corpus, since it presents

high quality manual segmentation and heterogeneous models, is efficient

for segmentation evaluation despite its small size.

Another interesting experiment is to study which category of models

the algorithms fail to segment accurately. To this end, we average the 3D-

NPRI for each category of the two corpuses. Figure 3.19 and 3.20 illustrate

the results obtained for the six algorithms. One can notice that whatever

the corpus, there is no algorithm that reaches the highest scores for all cat-

egories. Moreover, each algorithm has at least one category inadequately

segmented where the mean 3D-NPRI value is very low (close to 0 or less).

The core extraction algorithm for instance fails to adequately segment the

Bearing and Mech categories (see figure 3.19(e)). Indeed, it tries to detect

the core of a model which from a semantic point of view is hard to define

in such categories. As observed by Chen et al. (CGF09), some algorithms

which are expected to produce good segmentations for certain categories

seem to be not quite efficient. We can notice this behavior on our corpus

too. For instance, the algorithm based on Fitting Primitives was expected

to produce the best segmentations for the furniture category of models
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(The components of these models feet very well with cylinder and plan

primitives), but it is not the case.

As raised by Chen et al. (CGF09), this means that either the human ob-

servers do not segment models in the expected way, or the part structures

of these models are revealed by other properties.

(a) Fitting primitives (b) Random walks

(c) Normalized cuts (d) Randomized cuts

(e) Core extraction (f) Shape diameter function

Figure 3.19 – Scores of 3D-NPRI averaged for each category models of the Chen’s

corpus.

According to the experiments conducted in this section, we can con-

clude that our results and those of Chen et al. (CGF09) are coherent.
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(a) Fitting primitives (b) Shape diameter function

Figure 3.20 – Scores of 3D-NPRI averaged for each category models of our corpus.

3.7 Conclusion

In this chapter, we proposed a benchmark for the quantitative evalua-

tion of 3D-mesh segmentation algorithms. The benchmark is available

on-line and includes a ground-truth corpus, allowing an objective eval-

uation, and a new reliable similarity metric named the 3D Normalized

Probabilistic Rand Index (3D-NPRI). We have shown how we built the

ground-truth corpus. This corpus is composed of a set of 3D-models asso-

ciated with several manual segmentations produced by human observers.

The new metric (3D-NPRI) is a probabilistic interpretation of the Rand

Index (Ran71) which allows to quantify the consistency between multiple

segmentations of a 3D-mesh model. Then, we presented a thorough com-

parison between existing similarity metrics and the new one, and shown

that this new metric outperforms existing ones in terms of properties.

Moreover, to validate the quality of our segmentation ground-truths and

the discriminative power of the 3D-NPRI, we proposed a subjective seg-

mentation rating experiment. The protocol has been carefully designed so

as to be able to obtain relevant results. The obtained results have attested

the efficiency of our benchmark (quality of ground-truth segmentations

and discriminative power of the 3D-NPRI metric). Finally we applied the

3D-NPRI together with the Chen’s et al. (CGF09) corpus and our corpus

(the two benchmarks) to evaluate six recent 3D-mesh segmentation algo-

rithms. The evaluation allowed to compare the obtained results depending

on the corpus and showed their coherence.
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In the following chapter, we present in detail the contributions of this

thesis regarding learning 3D-mesh segmentation.
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This chapter presents a 3D-mesh segmentation algorithm based on a

learning approach. A large database of manually segmented 3D-

meshes is used to learn a boundary edge function. The function is learned

using a classifier which automatically selects from a pool of geometric
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features the most relevant ones to detect candidate boundary edges. We

propose a processing pipeline that produces smooth closed boundaries us-

ing this edge function. This pipeline successively selects a set of candidate

boundary contours, closes them and optimizes them using a snake move-

ment. Our algorithm is evaluated quantitatively using our benchmark

proposed in the previous chapter and the Princeton benchmark. It shows

to outperform most recent segmentation algorithms from the state-of-the-

art. The chapter presents also an application of this new segmentation

algorithm for kinematic skeleton extraction of dynamic meshes.
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4.1 Motivation

As we have shown in chapter 2, a significant attention has been paid,

by the computer graphics community, to 3D-mesh segmentation. Basi-

cally, the segmentation methods proposed so far in the literature focus

on analyzing either low level geometric information, or topological in-

formation of the input mesh. For instance, the use of geometric crite-

rion includes curvature (LDB05b), geodesic distances (KT03), dihedral an-

gles (ZTS02), shape diameter function (SSCO08), planarity and normal

directions (AFS06), etc. The use of topological criterion includes mainly

Reeb-graphs (TVD07) and spectral analysis (LZ07). Such criteria suffer ei-

ther from sensitivity to local surface features and to pose changes or from

the deterioration of the topology when connecting or disconnecting parts

of the mesh. Moreover, as raised by Kalogerakis et al. (KHS10), the main

drawback of this kind of algorithms is the fact that they are limited to a

single generic rule (e.g. skeleton topology) or a single feature (e.g. cur-

vature tensor). Indeed, such algorithms cannot be suited to segment an

input 3D-mesh which requires a combination of these criteria.

On the other side, learning for mesh segmentation has become possi-

ble thanks to the recent creation of ground-truth databases like the one

we presented in the previous chapter. In other words, the ground-truths

(man-made segmentations) allow to understand how do people decom-

pose (or segment) 3D-objects, and thus make possible to learn a model

that would generates similar segmentations to those created by humans.

A recent work proposed by Kalogerakis et al. (KHS10), has demonstrated

the efficiency of learning for segmentation through the improvement of

the results over the state-of-the-art of mesh segmentation.

For all these reasons, we propose a new fully automatic 3D-mesh seg-

mentation algorithm based on boundary edge learning. Human percep-

tion theory (HS97) says that to recognize a shape, the human visual sys-

tem decomposes it into its significant parts. The decomposition is carried

through the definition of each part boundaries by means of general com-
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putational rules such as the minima rule1. This observation is our primary

motivation for basing our learning algorithm on edges rather than on re-

gions. Our algorithm is carried out using two main steps: an off-line

step in which an objective boundary edge function is learned from a set

of segmented training meshes, and an on-line step in which the learned

function is used to segment any input 3D-mesh. The boundary function is

learned using the AdaBoost classifier (FS97), which automatically selects

from a set of geometric features the most relevant ones to detect candidate

boundary edges. In the on-line step, the learned edge function is used

successively to select a set of candidate boundary contours, to close them

and to optimize them using a snake movement to produce the final seg-

mentation. The best results are obtained when the learning is performed

on objects from the same category as the object to segment (see figure 4.1).

However, the results remain excellent even when we generalize the learn-

ing on different categories. Hence, we do not need to know the category

of the input model to segment it.

4.2 Related work

According to our knowledge, only one work has been proposed that in-

volves learning for 3D-mesh segmentation (KHS10). It allows to simulta-

neously segment and label the input mesh, and is expressed as an opti-

mization problem. As described in chapter 2, the problem consists in opti-

mizing a Conditional Random Field (CRF) of which an objective function

is learned from a collection of labeled training meshes. We differ from this

latter work in that instead of determining the suited label of each mesh

facet and then implicitly defining a segmentation resulting from this la-

beling, we explicitly determine the boundary edges that allow then to

obtain smooth closed contours that define the segmentation. Moreover,

even complex boundaries can be captured (see section 4.3), while in the

previous work, the method rather aims to find compact regions.

Before this recent work for 3D-mesh segmentation, several advanced

1The minima rule states that human vision defines part boundaries along negative

minima of the principle curvatures on surfaces (HR84).
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Figure 4.1 – For each pair of model: on the left, manual boundaries from the Princeton

segmentation benchmark (CGF09) (the darkness degree of contours indicates that people

have selected the same edges in their cuts); on the right, automatic boundaries from our

algorithm.
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works have already been introduced for 2D-image segmentation based on

learning approaches. Like for the 3D case, these algorithms use a model

learned from a database of segmented 2D-images. These 2D-image seg-

mentation algorithms based on learning can be grouped into two cate-

gories.

The first category covers algorithms that learn an optimal affinity func-

tion between each pixel of the input image and a set of prior defined la-

bels (SWRC09, HZCp04). A ground-truth (segmented and labeled images)

is employed to train the classifier that allows to affect the proper label to

each pixel.

The second category covers algorithms that use an objective function

to classify edges (MFM04, KH04). Each edge is classified as a boundary

or a non-boundary using a classifier trained on the ground truth (seg-

mented images), resulting in an edge image estimating human designated

boundaries.

Our algorithm is inspired by the second category since it classifies

edges as boundary or not, while the previous 3D-work (KHS10) is inspired

by the first category.

4.3 Our segmentation algorithm

In this section, we describe our approach. We provide details on the two

main steps of our algorithm: the off-line step in which the objective bound-

ary function is learned using a set of segmented models, and the on-line

step in which the learned function is used to segment the input mesh.

4.3.1 Off-line (learning) step

We formulate the problem of learning the boundary edges as a classifi-

cation problem. The classification model is learned on a corpus of 3D-

meshes accompanied by their manual segmentations using the AdaBoost

classifier. The classifier takes as input a training data set and generates

a function. The training data set is composed of a set of feature vectors

FE computed for each edge of the ground-truth corpus meshes. A feature
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vector FE of a given edge contains a set of geometric criteria and is associ-

ated with its proper class label L so that L = +1 if the edge is a boundary

(according to the manual segmentations of the mesh containing this edge)

and L = −1 if the edge is not a boundary. Figure 4.2 illustrates the off-line

step. Once the learning is done, the classifier produces a function (the

boundary edge function). This function takes as input a feature vector

from any given edge and outputs a signed scalar value whose sign will

provide the estimated classification of the edge (positive for boundary and

negative for non-boundary).

Figure 4.2 – Overview of the off-line step.

Now we summarize, the set of geometric criteria that we use to char-

acterize edges (and which compose the feature vector), and the AdaBoost

classifier.

Feature vector

We compute a 33 dimensional feature vector for each edge. It includes a

set of geometric criteria which are as follows:

• Dihedral Angle. The angle between two adjacent facets.

• Curvature. We compute different curvatures using the VTK li-

brary2. Let K1, K2 be the principal curvatures, we include: K1,

K2, K1 × K2 (Gaussian curvature), (K1 + K2)/2 (Mean curvature),

2http://www.vtk.org/

http://www.vtk.org/
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2/π ∗ arctan[(K1 + K2)/(K1−K2)] (Shape index), and
√

(K2
1 + K2

2)/2

(Curvedness).

• Global curvature. We compute the mean curvature integrated over a

large geodesic radius (10% of the bounding box lentgh) as in (LW08).

• Shape diameter. The shape diameter function (SSCO08) is computed

using the default parameters: a cone with an opening angle of 120◦,

30 rays, and a normalizing parameter α = 4.

Note that we do not propose new geometric criteria, but we only em-

ploy existing ones used in previous segmentation algorithms. As stated in

the introduction, the idea is to combine these criteria, then automatically

select relevant ones with the appropriate weights using the classifier.

Except the dihedral angle which is computed for each edge, the other

criteria (8 criteria) are computed for each vertex of the mesh. As illustrated

in figure 4.3, to derive the criteria for each edge (the red one in the figure),

we consider its two opposite vertices (blue points in figure 4.3(a)). Then,

considering that C1 and C2 are the values of a certain criterion computed

respectively on these two vertices, we derive two feature values for the

edge: C1 + C2 and C1 − C2. The idea is that, according to the nature of

the criterion, in certain cases the sum can be relevant while in others the

difference can carry a better information.

In order to bring a certain robustness to noise or sampling and to

integrate a kind of multi-resolution behavior we also consider, in a second

step, the 1-level neighborhood from each side of the edge (see green points

in figure 4.3(b)). In that case C1 and C2 are respectively the means of the

criterion from vertices at each side of the edge. This yields 32 features (16

in each case) to which we add the dihedral angle feature.

AdaBoost classifier

AdaBoost is a machine-learning method that builds a strong classifier by

combining weaker ones (FS97). The algorithm takes as input a set of train-

ing examples (x1, y1), .., (xN , yN); each xi (i = 1, ..., N) represents a feature

vector (a vector FE in our case), and each yi represents the class label of the
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(a) (b)

Figure 4.3 – Example of edge criterion computation with one vertex on each side (a),

and with a set of vertices (b).

example xi (yi belongs to the domain Y = {−1, +1} in our case). A large

number of hypothesis (or classifiers), hi : X −→ Y, are generated, each one

computed by a decision stump associated with a single dimension of the

feature vector. Then, along a finite number of iterations (t = 1, 2, ..., T), the

algorithm iteratively selects the hypothesis which minimizes the current

classification error. At the end a strong classifier H is produced as the

combination of the hypotheses weighted with αt: H(x) = ∑T
t=1 αtht(x).

As stated at the beginning of subsection 4.3.1, the generated function

H(x) is now able to produce a signed scalar for each edge of an input 3D-

mesh, whose sign gives its class label (positive sign for boundary edges

and negative sign otherwise).

Note that we tested some other existing classifiers from the literature

including non-parametric and parametric models such as Density estima-

tion, HME (Hierarchical Mixtures of Experts), and SVM (Support Vector

Machine). The performance was always nearly the same. We favor the

AdaBoost since it yields a slight improvement over the other classifiers,

and has the best running time.

4.3.2 On-line (segmentation) step

Figure 4.4 shows examples of edge classification results of some 3D-

meshes. On the top, the result of the binary decision: boundary (H(x) >

0), non-boundary (H(x) < 0) is displayed; while in the bottom, the edge

function scalar values H(x) are displayed using a color map (for visualiza-
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tion quality reason, we colored incident vertices of edges instead of color-

ing the edges themselves). One can notice that the boundary edges from

the binary decision (in red) are, neither smooth, nor closed. This result is

expected since our classification model is learned on different objects (even

if they belong to the same category), and uses multiple ground-truths per

model which are not necessarily the same (boundaries are defined in a

subjective way by humans, see figure 4.1). Hence it is not possible to

directly consider this classifier output as a segmentation result.

To overcome this problem we propose a processing pipeline that trans-

forms these non-connected fuzzy regions into thin, closed and smooth

contours, by using the edge function. This processing pipeline comprises

four stages.

In the first stage of the process, given an input 3D-mesh, the edge

function is computed (figure 4.5(a)), and all edges having positive func-

tion values are selected. Theses edges constitute a set of interest regions

(figure 4.5(b)). Then, for each interest region (connected set of edges), a

thinning algorithm (HG01) is applied. This latter algorithm gives as out-

put a set of open linear contours (figure 4.5(c)). Next, each open contour is

completed using an improved version of the algorithm proposed by Lee et

al. (LLS∗05) based on the edge function (figure 4.5(d)). At this step we have

created a set of closed contours which represent a first version of the seg-

mentation boundaries. However, these boundaries are often not smooth

nor precise since in the thinning stage we do not consider any geometric

information. To overcome this drawback, we apply an improved version

of the snake movement algorithm proposed by Jung and Kim (JK04) based

also on the learned edge function. The snake movement allows to improve

the quality of the boundaries in term of smoothness and precision with-

out changing the mesh connectivity (figure 4.5(e)). This set of improved

boundaries defines the final segmentation (figure 4.5(f)). These steps are

detailed in the following subsections.

Note that in all our experiments (more than 350 models), we never en-

countered any topological problem (e.g., broken regions representing the

same boundary) like in the work from Lee et al. (LLS∗05). The main reason
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Figure 4.4 – Edge classification results for some 3D-meshes; (top: boundary edges after

binary decision in red color; bottom: edge function scalar field).
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(a) Edge function (b) Interest region extraction

(c) Region thinning (d) Contour completion

(e) Snake movement (f) Final segmentation

Figure 4.5 – Overview of the processing pipeline.
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is probably that our regions of interest come from a learning processed on

different models associated with different manual segmentations; hence it

introduces a kind of fuzziness which smooth/filter the results. Thus, we

create one closed boundary for each connected region, even if two regions

are close to each other. We do not process any contour filtering or contour

merging.

Region thinning

In this stage, we transform a set of interest regions into a set of thin con-

tours; this set of contours will be further used as the initial set of bound-

aries. Each interest region is represented by a set of connected edges. The

algorithm from Hubeli and Gross (HG01) allows to thin a given interest

region to a piecewise linear contour by deleting the edges from the border

of the patch toward the inside. Initially, the algorithm inserts all border

edges into a list. A border edge is an edge of which at least one of the four

edges of its two opposite triangles does not belong to the interest region.

Then, each border edge is deleted from the interest region if it does not

disconnect this latter one. More precisely, a border edge e is deleted if it

satisfies one of the two following conditions:

1. All the incident edges of one of the two end points of e does not

belong to the interest region (see figure 4.6(a)).

2. The edges of one of the two opposite triangles of e belong to the

interest region (see figure 4.6(b)).

(a) e can be deleted (b) e can be deleted (c) e cannot be deleted

Figure 4.6 – Deleting a border edge e from the interest region (set of connected blue

edges).

Otherwise the edge e is not deleted as illustrated in figure 4.6(c). The

deleting operation produces new border edges which are added to the list.
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The algorithm is performed until there is no removable edge. This leads

to produce a connected skeleton of the interest region. Moreover, the algo-

rithm allows to obtain directly a closed contour if the interest region forms

a loop. Note that this algorithm does not contain any parameter setting.

The different steps of the region thinning are summarized in algorithm 5.

Algorithm 5: Region Thinning
1: Input: a list L containing the interest region edges

2: Initialize an empty border list BL

3: for all edges in L do

4: e = L.next();

5: if e is a border edge then

6: BL.insert(e);

7: end if

8: end for

9: while BL.notempty() do

10: e = BL.next();

11: BL.remove(e);

12: if e can be deleted from L then

13: L.delete(e);

14: BL.insertNewBorderEdges();

15: end if

16: end while

17: Output updated list L, organized under the form of an open contour

However, it is possible to obtain a branching skeleton. Figure 4.7 il-

lustrates an example in which a model has an interest region that leads

to the creation of a branching skeleton after undergoing a thinning algo-

rithm. This skeleton is composed of external and internal branches. An

external branch is limited by one endpoint and one junction point while

an internal branch is limited by two junction points. For a given branch-

ing skeleton coming from the thinning of an interest region, we consider

that only two external branches are correct regarding the real boundary

and we consider others like noise; to select these two relevant branches

we compute a weight for each external branch by summing the learned
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function values of their edges, and we keep the two branches that have

the highest weights together with the internal branches that connect them

(in the case where they do not share the same junction point). We precise

here that according to our experiments, such branching skeletons appear

mostly when the corresponding interest region is very large, which almost

never happens.

Figure 4.7 – From left to right: the interest region, the branching skeleton after

thinning, the open boundary after removing the noisy branches for the horse model.

Contour Completion

In this stage, each open contour is completed to form a closed boundary

around a specific part of the input mesh. To this end, we propose a mod-

ified version of the completion algorithm from Lee et al. (LLS∗05). The

principle is to find the weighted shortest path between the two endpoints

of the contour.

Let ζ be an open contour composed of a set of mesh vertices v. To

close the open contour, we search the shortest path between the two end

points of ζ by selecting among candidate edges using the following edge

cost function:

cost(e) = ηd(e)wd .ηn(e)wn .ηe(e)we

where ηd(e) and ηn(e) are defined as the average of the values of the

two incident vertices of the edge e.

ηd is the distance function. It measures the distance from ζ to a given

vertex v as:

ηd(v) = ∑
vi∈ζ

1
d(v, vi)
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where d(v, vi) is the Euclidean distance. The function is high in the

neighborhood of the contour ζ and decreases otherwise.

ηn is the normal function. It helps to go over the other side of the

mesh, and is defined for a given vertex v as:

ηn(v) =


1, if nζ .nv ≥ cos(α)

nζ .nv+1
cos(α)+1 , else

nζ is the average normal vector of ζ, nv is the normal vector of vertex

v, and α is the angle between the normals of the two endpoints of ζ.

ηe is the feature function; in the original work from Lee et al. (LLS∗05)

the feature function includes minimum curvature and centricity. The cen-

tricity of a vertex is defined as the average geodesic distance from the

given vertex to all other vertices of the mesh. As stated by the authors, the

original algorithm sometimes failed to correctly close the open contours.

In our modified version, we replace the feature function by our learned

edge function; it guides the path towards the regions learned as bound-

aries according to the results of the classifier. The results are significantly

improved (see an example in figure 4.8).

(a) (b) (c)

Figure 4.8 – Example of completing a contour on a 3D-mesh (a) using: the original

version of the algorithm from Lee et al. (LLS∗05) based on their feature function (b), and

the improved version based on our learned edge function (c).

Note that the three function values are normalized in the range [0, 1].

We set the weights wd,wn to 1 and we to 0.4.
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Snake movement

The snake movement is used to optimize the set of closed contours result-

ing from the previous stage. Each contour is used as the initial position of

the snake. We propose a modified version of the snake movement algo-

rithm from Jung et al. (JK04). The algorithm is based on an iterative process

in which the snake evolves (each vertex of the snake is moved to one of

its neighbor vertices on the mesh) by minimizing an energy functional E

composed of internal Eint and external Eext parts until it is adjusted (see

algorithm 6).

Algorithm 6: One iteration of the snake movement
1: Input: a list L containing the vertices of the closed contour

2: for each vertex vi in L do

3: Emin = Eint(vi) + Eext(vi)

4: for each neighbor vj of vi do

5: E = Eint(vj) + Eext(vj)

6: if E ≤ Emin then

7: Emin = E

8: Replace,in L, vi by vj

9: end if

10: end for

11: end for

12: Output updated list L

In the original work from Jung et al. (JK04), the internal energy controls

the length and the smoothness of the snake (i.e. the closed contour), and

is defined for a given vertex vi as:

Eint(vi) = α ‖vi − vi−1‖+ β ‖vi+1 − 2vi + vi−1‖

where α and β are tuning parameters that affect respectively the

smoothness of the snake in term of distance and curvature. We set the

α to 0.2 and the β to 0.8. The external energy controls the fitting of the

snake to the desired feature, and is defined in (JK04) by the maximum

principal curvature. In our modified version, we replace the maximum
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curvature by the learned edge function again. The external energy of a

given vertex is then computed by averaging the edge function values of

its incident edges, and normalizing them in the range [0, 1] after reversing

the sign since we aim to minimize the energy. The modification of the

external energy is justified by the fact that the original algorithm aims to

find features related to ridges and valleys based only on a single geomet-

ric criterion (maximum curvature). Hence, when replacing the maximum

curvature by the edge function, the quality of boundaries is clearly im-

proved (see section 4.4.4), since this latter function is based on multiple

geometric criteria which are learned to detect boundaries.

4.4 Experiments and results

Our segmentation method was evaluated and compared quantitatively to

the most recent algorithms from the state-of-the-art. To this end, we used

two recent benchmarks dedicated to 3D-mesh segmentation evaluation,

namely the Princeton benchmark3 (CGF09), and our benchmark which is

presented in the previous chapter.

Note that we used the same control parameter values in all our exper-

iments, except when we explicitly modify the threshold of the H function

for the hierarchical segmentation experiment (see section 4.4.5). The dif-

ferent parameters are set as follows:

• H Function threshold: H(x) > 0.

• Thinning and branch-filtering: no parameter.

• Contour completion: wd,wn to 1 and we to 0.4 of cost(e).

• Snake: α to 0.2 and β to 0.8 of Eint.

4.4.1 Segmentation results on the Princeton benchmark

The Princeton segmentation benchmark provides 19 categories of 3D-

meshes, each one containing 20 3D-models accompanied with multiple

ground-truth segmentations (manual segmentations). Our segmentation

3http://segeval.cs.princeton.edu/

http://segeval.cs.princeton.edu/
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method was trained and tested on this benchmark, using different learn-

ing strategies, namely categorical learning and global learning.

In the first type of learning (categorical), we train and test our algo-

rithm class by class. Similarly to Kalogerakis et al. (KHS10), we evaluate

our method using leave-one-out cross-validation. For each mesh i in each

class, we learn the edge function on the 19 other meshes from that class

using all ground-truths, and then we use that function to segment the

mesh i. In order to analyze the effect of the training set size on the quality

of the results, we repeat the same experiment, using less meshes in the

training set: we learned the edge function on 6 meshes randomly selected

for each class.

In the second type of learning (global), we learn the edge function in

a generic way using a subset of the whole database (6 models randomly

selected from each category), then we test on the remaining models (14×

19 models). In this generic (or global) learning scenario, we do not need

to know the category of the model to segment.

To evaluate the quality of the segmentation produced by our algorithm,

we follow the protocol defined in the Princeton segmentation benchmark.

Figure 4.9 shows the Rand Index error averaged over all models of the

corpus for our algorithm, using the different learning strategies, and for

the most recent algorithms from the state-of-the-art.

The first point to make is that, when using a categorical learning with

a training set size of 19 models, our algorithm provides very high quality

results; indeed, our algorithm yields the smallest Rand Index error (8.8%)

among all the other algorithms. One can also notice on the figure that

when reducing the training set size to 6 models, and keeping a categorical

learning, our algorithm still provides very good results with a slight drop

of performance (9.7% Rand Index Error). The second point to make is

that, our algorithm performs better than the algorithm from Kalogerakis

et al. (KHS10) which is also based on learning (9.5% and 12.2% Rand Index

Errors with respectivly a training set size of 19 and 6 models).

However, categorical learning involves the fact that before segment-

ing a model, you have to know its category hence it is not really fair to
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Figure 4.9 – Rand Index Error averaged over all the Princeton corpus models and sorted

in increasing order for different algorithms. Reference-type-size represent the Index

Error of algorithms based on learning with: learning type (categorical or global), size of

the used training set (19 and 6 models).

compare these results with generic algorithms (GF08, SSCO08, LHMR08,

AFS06) which do not need such knowledge of the data. When using

Global learning, our algorithm does not need this prior knowledge and

thus can be compared with generic algorithms; the fact is that it signifi-

cantly outperforms them: its Rand Index Error is 10.4% while the value of

the second best (GF08) is 14%.

It is interesting to study which criteria are selected by the classifier in

the learning step. Figure 4.10 illustrates the percentage of each criterion

selected by the AdaBoost classifier for both types of learning (categorical

for several categories such as bust, human, etc. and global). We can notice

that, whatever the learning strategy (categorical or global), all the criteria

are selected by the classifier, hence they all contribute to the results. How-

ever, the distribution of the criteria percentages differs from a category to

another. For instance, in the fourleg category, the most used criteria are

the shape diameter and minimum curvature, while in the table category,

the most used are the dihedral angle and maximum curvature. One can

notice also a more isotropic distribution between the different criteria in

the global learning with comparison to the categorical learning. This is
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due to the variety of 3D-meshes included in the training. All categories

together may have different shapes and topologies, and then they do not

share necessarily the same important features. In this case one or two

criteria are clearly not sufficient to obtain a correct segmentation.

Figure 4.10 – Percentage of criteria selected by AdaBoost: for a categorical learning of

size 19, and for a global learning of size 6. Legend: An (Angle), MiC (Minimum

Curvature), MaC (Maximum Curvature), MeC (Mean Curvature), GaC (Gaussian

Curvature), Cved (Curvedness), SI (Shape Index), GeC (Geodesic Curvature), SD

(Shape Diameter).

Figure 4.11 shows a visual comparison between our segmentation re-

sults (categorical learning - 19 training models) and those from recent al-

gorithms from the state-of-the-art on some 3D-meshes from the Princeton

benchmark; the average of manual segmentations (ground-truths) is also

included. The quality of our algorithm is confirmed; indeed, our segmen-

tations appear better than those of the other methods in term of similarity

to the ground-truths, and particularly regarding boundary precision.

4.4.2 Genericity of the learning across databases

In a second experiment, we still have trained our edge function on the

Princeton benchmark but we have launched the segmentation on our

benchmark which contains a different set of 3D-models. Besides, the

3D-models are associated with vertex-based manual segmentations, while
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Figure 4.11 – From left to right segmentations obtained by: average of ground-truths of

Princeton benchmark, our algorithm trained on the Princeton benchmark, (KHS10),

(GF08), (SSCO08).
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those of the Princeton benchmark are associated with facet-based segmen-

tations. We remind that our benchmark contains 28 3D-models grouped in

five classes. Each 3D-model is associated with 4 ground-truths. Similarly

to the previous experiment, to evaluate the segmentation produced by our

algorithm, we have followed the protocol defined in the benchmark. The

edge function used to segment the models of this benchmark was learned

on the Princeton segmentation benchmark using the global learning, with

a training set size of 6 models.

Figure 4.12 shows the NPRI (Normalized Probabilistic Rand index)

scores, computed for each model of the corpus (on the top) and averaged

over all the corpus (on the bottom), for different algorithms including

ours. Contrary to the Rand Index Error, the NPRI gives an indication

about the similarity degree between the automatic segmentation and the

manual segmentations. It is in the range [-1,1]. As described in the previ-

ous chapter, a value of 1 indicates a complete similarity, whereas a value of

−1 indicates a maximum deviation between the segmentations being com-

pared. The figure clearly shows the significant improvement of the results

obtained by our method with comparison to the others. More precisely,

our method reaches 65% of similarity rate, when the best result reached

by the other methods on the same corpus is 55%. We have to precise here

that these good results confirm the robustness and the genericity of our

learning since we have trained our edge function on a different database

containing different models.

Figure 4.13 shows segmentations obtained by our algorithm for some

3D-meshes selected from INRIA4, TOSCA5, and Stanford6 databases. The

edge function used to segment the models was learned on the Prince-

ton segmentation benchmark (global learning, 6 models). Again, our al-

gorithm correctly segments these meshes, and finds a set of meaningful

parts.

4http://www-roc.inria.fr/gamma/
5http://tosca.cs.technion.ac.il/
6http://graphics.stanford.edu/data/

http://www-roc.inria.fr/gamma/
http://tosca.cs.technion.ac.il/
http://graphics.stanford.edu/data/
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Figure 4.12 – Comparison of different segmentation algorithms using our benchmark;

(top: scores of NPRI sorted in increasing order over all the corpus models, bottom: the

average of NPRI over all the corpus). Although in this experiment, our method is based

on a global learning, performed on a different database, it outperforms the others.
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Figure 4.13 – Segmentations results, obtained by our algorithm trained on the

Princeton benchmark, for a variety of meshes from different databases.

4.4.3 Algorithm efficiency regarding the category of models

In this third experiment, we want to study the behavior of our algorithm

regarding the different categories of models in both benchmarks. For this

reason we use the NPRI which is a more discriminative metric than a

simple Rand Index (see previous chapter for more details). The NPRI

is computed for each model, then averaged by category. Figure 4.14 il-

lustrates the results obtained by our algorithm for the Princeton corpus

models, and for our corpus models. Note that for the first corpus, we use

a categorical learning of size 19, while for the second corpus, we use a

global learning of size 6, both trained on the Princeton benchmark.

Globally, we can notice that for both corpuses, our algorithm gives

quite good results for each category since the scores are much higher than

zero. An interesting point is that the scores of common categories among

the two corpuses are consistent, with a slight drop of performance for our

corpus which is due to the difference of learning strategy (categorical vs.

global on a different database). The figure illustrates also that the bust
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Figure 4.14 – Scores of NPRI averaged for each category and for all models from the

Princeton benchmark (CGF09) (on top), and from our benchmark (on bottom).
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category seems to be the most difficult one to segment (it is associated

with the smallest NPRI values for both benchmarks). The fact is that hu-

man face images are well-known in subjective experiments as a high-level

factor attracting human attention, hence some features not relevant from

a geometrical point of view can be considered highly relevant for human

observers and thus can influence the manual ground-truth segmentations.

4.4.4 Study of the performance of our improved snake movement

In this experiment, we show how the use of the learned boundary edge

function improves the original snake movement algorithm from Jung et

al. (JK04). To this end, we compute the similarity between boundaries

extracted by our algorithm using both versions of the snake movement,

and the manual boundaries on our corpus models. The most appropriate

metric to compute this kind of similarity is the CDI (Cut Discrepancy In-

dex), since it allows to compute the mapping degree between the extracted

boundaries of two segmentations of the same model (see previous chap-

ter). The metric is in the range ]−∞; 1], and a value of 1 indicates a perfect

matching between boundaries of the two segmentations. Figure 4.15 illus-

trates the scores of CDI averaged for each category of models and over

all models of our corpus for these cases. The results show clearly that

the new snake movement always improves the quality of the boundaries,

whatever the category of models.

4.4.5 User interaction and coarse to fine segmentation

One of the strong point of our algorithm is that it is fully automatic; in

particular the number of boundaries (and thus the number of segments) is

automatically determined within our processing pipeline; it corresponds

to the number of connected interest regions from the edge classification

step (see figure 4.5(b)). However, if needed, it is quite easy to introduce

human interactions in our process. This can be done by:

Tuning the classification threshold applied on the edge function. This

threshold is set to 0 in our method; however it is still possible to decrease
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Figure 4.15 – Scores of CDI averaged for each category and over all models of our

corpus with the original (JK04) and our improved version of the snake movement.

(resp. increase) this threshold to obtain more (resp. less) segments. Such a

coarse to fine segmentation is illustrated in figure 4.16. We have to notice

however that for a too low threshold (see the right hand in figure 4.16)

some regions of interest may become very large and thus may be abnor-

mally merged leading to merging some segments (like the bottom of the

fingers). However, this kind of problems never happened in all our exper-

iments, with a threshold set to zero.

Using a paintbrush. The paintbrush allows to directly select on the

mesh a set of edges representing a new interest region, similarly to Lee

et al. (LLS∗05). The segmentation process is then completed by perform-

ing the remaining steps.

4.4.6 Algorithm robustness regarding geometric transformations

We assessed the robustness of our method against two kinds of transfor-

mations, namely pose-variation and noise.

Pose-variation. Figure 4.17 shows the segmentations obtained by our al-

gorithm for the armadillo and human models with different poses. These
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(a) H(x) > 0.3 (b) H(x) > 0 (c) H(x) > −0.2

Figure 4.16 – Example of coarse to fine segmentation obtained by tunning the

classification threshold applied on H(x).

models are available in the Princeton segmentation benchmark. The edge

function used to segment the models is based on a global learning, with a

training set size of 6× 19 models (6 models selected from each category).

Globally, the segmentation of the models is quite stable, which underlines

the pose robustness of our algorithm.

Noise. We applied on the vertices of the test models two random dis-

placements in the direction of x−, y−, and z−axis (3% and 5% of the

bounding box length). Figure 4.18 shows the boundaries extracted by our

algorithm for the noisy versions of the ant model. On the top, the bound-

aries are generated using an edge function based on a categorical learning,

with a training set size of 19 models (all the training models belong to the

ant category); while in the bottom, the edge function is based on a global

learning, with a training set size of 6× 19 (6 models selected from each cat-

egory). When applying a noise of 3%, the results remain very good for the

categorical learning and correct for the global learning. However, when

applying a strong noise (5%) the quality of the boundaries is seriously de-
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Figure 4.17 – Algorithm robustness against pose-variation.

graded particularly when using the global learning. We have conducted

tests on 19 models (one model randomly selected from each category of

the Princeton segmentation benchmark) for 3% and 5% of noise, the qual-

ity of segmentation decreases respectively of 1% and 12% when using the

categorical learning, and of 10% and 50% when using the global learning.

The quality is measured by computing the NPRI for each test model.

This moderate robustness is due to the fact that the learning step is per-

formed on clean data; hence the learned function fails to extract the right

boundaries in the noisy models since the edges composing them do not

share the same geometric properties as in the clean ones. A solution could
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(a) original (b) 3% of noise (c) 5% of noise

(d) original (e) 3% of noise (f) 5% of noise

Figure 4.18 – Algorithm robustness against noise; (top: boundary extraction based on

categorical learning, bottom: boundary extraction based on global learning).
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be to artificially add noise on the segmented training data, before the fea-

ture extraction and learning.

4.4.7 Running time

All the previous experiments were carried out on a 2.99 GHz Intel(R)

Core(TM) 2 Duo CPU with 3.25 Gb memory. Globally, the running time

for the learning step is less than 10 minutes for most of the categories.

The process is longer, around 40 minutes, for some categories of which

the size of models is important such as the armadillo category. The on-line

step (segmentation) runs at an interactive time (around 1 minute), except

for the armadillo category for which the running time is more important

(around 9 minutes). This is due to the size of mesh and the number of ex-

tracted boundaries which are both important (24k vertices and 16 bound-

aries on average). More precisely, the average running time in seconds

for the thinning, contour completion, and snake movement steps is re-

spectively 0.58, 3.81, and 45.95. Table 4.1 presents in detail the average

running time for both steps (off-line and on-line) of our algorithm when

applied on the Princeton corpus models.

4.5 Application to dynamic surfaces

With the recent progress of acquisition systems, and the increasing of the

processors calculation power, the use of dynamic surfaces in the multi-

media domain has become important. This kind of data can be created

by a designer using animation softwares, or obtained from a scanner, or

a scientific simulation, etc. Generally, the dynamic surface is represented

under the form of a sequence of 3D-meshes (or a sequence of frames) with

constant connectivity, and time-varying geometry (the position of vertices

changes over time). Similarly to static meshes, dynamic meshes require

different preprocessing steps before to be used in a given application. In

this section we focus our interest on a specific preprocessing step which

is the kinematic skeleton extraction. Most of existing works that address

this latter task make use of motion-based geometric segmentation meth-

ods (DTTS08, SY07, AKcPT04). These methods seek to decompose the
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Airplane 5400 6 4.06 0.06 0.98 5.65

Ant 6370 11 6.08 0.03 2.25 7.95

Armadillo 24473 16 39.06 0.73 36.9 472.2

Bearing 1663 5 2.01 0.01 0.35 0.23

Bird 3478 6 2.59 1.62 0.71 3.01

Bust 9252 3 8.53 0.04 3.17 94.57

Chair 8499 8 8.35 0.01 2.6 7.82

Cup 15198 2 36.47 0.01 1.64 9.37

Fish 7121 6 6.58 1.04 1.42 10

Fourleg 6938 10 6.1 0.31 3.79 31.5

Glasses 7016 4 6.31 0.14 0.89 2.73

Hand 7242 6 7.54 0.01 1.57 11.92

Human 4706 15 3.51 0.01 2.03 17.59

Mech 14995 2 28.08 0.06 1.04 20

Octopus 5944 9 4.3 0.12 1.71 6.43

Plier 4487 5 3.31 0.57 0.82 4.34

Table 13926 5 9.42 0.67 2.7 65.5

Teddy 13826 8 9.26 5.51 4.82 57.7

Vase 14476 4 26.07 0.14 3.14 44.65

Table 4.1 – Average computation time for the categorical learning step with a training

set size of 19 models, and in sec for the on-line step.
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dynamic mesh into rigid parts by exploiting the temporal information.

They assume that the vertices of such a part are characterized by a uni-

form motion with a single rigid transformation along the sequence. Once

the parts are determined, an articulated skeleton is computed.

In what follow we propose a simple and precise kinematic skeleton

extraction method for dynamic meshes. The method begins by extracting

the different interest regions along the sequence (figure 4.19(a,b,c)) using

our boundary edge function described in section 4.3.1. Next, these re-

gions are merged along the different frames (figure 4.19(d)) to compute

the final boundaries (figure 4.19(e)) using the pipeline described in sec-

tion 4.3.2. Finally a skeleton is computed by connecting the centroids of

these boundaries (red points in figure 4.19(f)) with the centroids of their

adjacent segments (blue points in figure 4.19(f)).

The choice to use our segmentation method is justified by the fact that

dynamic meshes are characterized by motion boundaries. Indeed, each

part that undergoes a rigid transformation along the sequence of meshes

involves the appearance of new boundaries (figure 4.19(a,b,c)). Conse-

quently, our segmentation method allows to compute these boundaries

for any input frame, while the merging allows to cover all of them. More-

over, contrary to the classical methods which seek to segment only parts

characterized by motions, our method allows to capture even immobile

shape parts since it is able to detect their boundaries (see the ears of the

cut model in figure 4.19(d)). To summarize, we obtain a unique segmen-

tation for the whole dynamic sequence that is based both on motion and

geometric features.

To compute the skeleton, we use a simple algorithm which takes as

input the dynamic mesh together with the set of closed boundaries and

gives as output a structure composed of a set of edges and points that rep-

resents the kinematic skeleton. Figure 4.20 shows some dynamic surfaces

and their extracted kinematic skeletons.

The algorithm begins by computing the centroids of both boundaries

and segments, then it connects each boundary centroid with its two ad-

jacent segment centroids. Two segments are adjacent if they share the
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(a) Frame 1 (b) Frame 2

(c) Frame 3 (d) Merging

(e) Boundaries (f) Skeleton

Figure 4.19 – Overview of our kinematic skeleton extraction method for dynamic

meshes.
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Figure 4.20 – For each row, dynamic surfaces and their corresponding kinematic

skeletons.
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same boundary edges or a part of them. However, it is possible that a

part of a given boundary be shared between more than two segments.

Figure 4.21(a) illustrates an example in which three segments are adja-

cent since they share a common part of their boundaries (see the magenta

part in the figure). In this latter case, each boundary is connected with

the two segments that share its maximum common part as illustrated in

figure 4.21(b).

(a) (b)

Figure 4.21 – Example of three adjacent segments (a), and its resulting skeleton (b).

The whole process for computing the kinematic skeleton runs at an

interactive time (only few minutes). Table 4.2 summarizes the running

time for some models. Note that experiments were carried out on a 2.99

GHz Intel(R) Core(TM) 2 Duo CPU with 3.25 Gb memory.

Dynamic-mesh Vertices Frames Skeleton (s.)

Cat 7207 10 37

Dance 7061 201 411

Horse 8431 49 204

Lion 7207 10 28

Table 4.2 – Computation time for kinematic skeleton extraction of some dynamic meshes.
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4.6 Conclusion

In this chapter, we have presented a framework for segmentation based

on a learning approach. A boundary edge function is learned from a set

of ground-truths using AdaBoost classifier, and then is used to segment

any input 3D-mesh through different processing steps. Our framework is

the first to address the problem of learning boundary edges for 3D-mesh

segmentation. We have shown the possibility to make a generic (or global)

learning that can lead to segment a model without having a prior informa-

tion about its category. We have conducted a battery of experiments using

different benchmarks to validate the segmentation quality produced by

our algorithm. The different experiments have demonstrated that our al-

gorithm outperforms the most recent algorithms from the state-of-the-art,

and produces segmentations which are very similar to those created by

humans. For instance, we achieved 8.8% Rand Index error on the Prince-

ton segmentation benchmark (CGF09), while the last best result achieved

on this database is 14.9% Rand Index error obtained by Golovinskiy and

Funkhouser (GF08) (algorithm without learning), and 9.5% Rand Index er-

ror obtained by Kalogerakis et al. (KHS10) (algorithm with learning). This

latter algorithm needs a consistent labeling of the training data, which

may requires some manual interactions. However, it provides semantic

labeling which allows for instance to retrieve a part of interest across a

data-base of labeled 3D-models without additional processing. We have

also presented an application of our segmentation method for the kine-

matic skeleton extraction of dynamic meshes. To this end, we propose a

simple method that makes use of our segmentation algorithm to extract

motion boundaries that characterize the dynamic mesh. We have seen

through some first tests that the obtained results are promising.
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5.1 Summary

The need of mesh segmentation as a preprocessing step for numerous ap-

plications such as shape recognition, modeling by example, compression,

etc., has involved the development of an important amount of segmen-

tation algorithms by the computer graphics community. We have seen

through the state-of-the-art chapter that the different existing segmenta-

tion techniques seek to segment the 3D-mesh either from a geometric point

of view (surface-type segmentation) or from a semantic point of view

(part-type segmentation). In this thesis, we focused our interest rather

in the second type of segmentation (part-type one) together with the eval-

uation of the algorithms that aim to produce segmentations of such type.

We first studied the mesh segmentation evaluation problem (chapter 3)

due to the fact that before starting this thesis, no automatic tool had been

proposed addressing this task in a general purpose context. To this end,

we proposed a benchmark that includes a human-made ground-truth seg-

mentation corpus and a relevant similarity metric that quantifies the con-

sistency between these ground-truth segmentations and automatic ones

produced by a given algorithm on the same models. Additionally, we have

conducted extensive experiments including subjective ones to respectively

demonstrate and validate the relevance of our benchmark.

Then, we studied the part-type mesh segmentation problem with

learning techniques (chapter 4). Indeed, earlier segmentation algorithms,

developed by the computer graphics community, are not only sensitive to

topological/geometric changes due to lack of relevant descriptors charac-

terizing the semantic of the shape but are also, as raised by Kalogerakis

125
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et al. (KHS10), limited to a single generic rule (e.g. skeleton topology)

or a single feature (e.g. curvature tensor). To overcome these drawbacks

and improve the design of segmentation algorithms, we exploited the hu-

man factor for segmentation via learning techniques. Motivated by hu-

man perception theory (HS97) statements concerning shape recognition,

we proposed to learn, using multiple geometric criteria, a boundary edge

function from a set of human segmented training meshes and then used

this learned function, through a processing pipeline, to segment any in-

put mesh without having any prior information about the category of this

mesh. The battery of experiments conducted using different benchmarks

had shown the performance superiority of our algorithm over the state-of-

the-art. Moreover, we generalized our algorithm for dynamic meshes in

order to extract their kinematic skeletons, and the first results are promis-

ing.

5.2 Future work

Our first contribution (benchmark for mesh segmentation evaluation) has

been throughly studied in this thesis and we do not plan to extend our

work in this direction. However, learning mesh segmentation is a new

research area and can benefit from further improvements. Additionally,

this new type of algorithms produces automatically meaningful segmen-

tations (similar to those created by humans) that reflect the semantic of

the shape. This means that all applications requiring such type of seg-

mentation can use this algorithm as a preprocessing step. In what follow

we point out some research areas concerning possible improvements that

can be brought to our algorithm and a direct application of this latter one.

Algorithm improvements. Although the results of our algorithm are ac-

curate, some limitations remain and require a thorough analysis and fu-

ture work. First, the number of geometric criteria used for classification

could be more important. In particular, adding some rich features from

3D shape retrieval research field would certainly improve the results and

the sensitivity regarding to noise. The bust models are difficult to seg-
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ment, and our algorithm rather produces a coarse segmentation for this

kind of models. This is probably due to the high semantic aspect carried

by a face. This semantic aspect influences the manual segmentations, and

is difficult to capture using simple local geometric criteria. A solution

could be to include more global features such as topological ones; another

solution would be to learn a whole structure of the segmentation per cat-

egory (a prior graphical model from the manual segmentations), instead

of a simple binary classification model.

Partial indexing. Partial indexing systems allow to find, in a database,

models that have similar parts even if they are globally different. We

have seen in the state-of-the-art chapter that many implemented systems

make use of segmentation. Basically, they first segment the models, extract

the corresponding weighted adjacency graphs, and then apply a graph-

matching algorithm to find models containing similar parts. The graph

nodes correspond to the mesh segments and the edges reflect the adja-

cency between these segments. The weights of nodes correspond to a

geometric descriptor computed for each segment. The main advantage of

these systems is the fact that they combine both of topological information

(thanks to the adjacency graph), and geometric information (thanks to the

geometric descriptor) to describe the shape and the relationship between

its parts. Consequently, the retrieval process should be performed more

efficiently. It is clear that in this kind of systems the segmentation plays

a major role and the quality of the retrieved results is directly affected

by the quality of segmentation. Hence, these systems can benefit from

our segmentation algorithm. Nevertheless, many questions remain open

and need further investigations, for instance: should we use only one ge-

ometric shape descriptor or multiple ones? if so, how to combine them?

otherwise, which one is the most suited to describe the shape parts? which

graph-matching algorithm to use?

To our opinion, the number of geometric descriptors to use depends on

the refinement level of the segmentation produced for a given 3D-shape.

Indeed, if the segmentation is coarse, this means that the shape parts are

still remaining complicated from a semantic point of view, so their geom-
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etry is not uniform. For instance, if the segmentation algorithm produces

for a human model a coarse segmentation in which the arms and the

hands belong to the same segments, it is clear that one simple geometric

descriptor will fail to distinguish such segments. Consequently, multiple

descriptors should be combined using a simple mean for example. How-

ever, if the segmentation is fine, this means that the parts induced by the

partitioning of the shape can be approximated to a set of primitives such

as sphere, plane, cylinder, etc. In this latter case, one geometric descrip-

tor such as the shape diameter function (SSCO08) should be sufficient to

distinguish such kind of segments. Regarding the matching, existing tech-

niques in the literature basically transform the matching problem which is

NP-complete into an optimization problem to find an approximate solu-

tion. We therefore suggest to use one of the existing techniques in the

literature such as the Successive Projection Graph Matching algorithm

(SPGM), proposed by Wyk and Wyk (vWvW04). This latter algorithm

had already been used by Mademlis et al. (MDA∗08) for the same task (3D

indexing based on graph matching) and shown its performance.
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Titre Segmentation de maillages 3D : évaluation automatique et une

nouvelle méthode par apprentissage

Résumé Dans cette thèse, nous abordons deux problèmes principaux, à

savoir l’évaluation quantitative des algorithmes de segmentation de mail-

lages ainsi que la segmentation de maillages par apprentissage en ex-

ploitant le facteur humain.

Nous proposons les contributions suivantes :

• Un benchmark dédié à l’évaluation des algorithmes de segmentation

de maillages 3D. Le benchmark inclut un corpus de segmentations

vérités-terrains réalisées par des volontaires ainsi qu’une nouvelle

métrique de similarité pertinente qui quantifie la cohérence entre

ces segmentations vérités-terrains et celles produites automatique-

ment par un algorithme donné sur les mêmes modèles. De plus,

nous menons un ensemble d’expérimentations, y compris une ex-

périmentation subjective, pour respectivement démontrer et valider

la pertinence de notre benchmark.

• Un algorithme de segmentation par apprentissage. Pour cela,

l’apprentissage d’une fonction d’arête frontière est effectué, en util-

isant plusieurs critères géométriques, à partir d’un ensemble de

segmentations vérités-terrains. Cette fonction est ensuite utilisée,

à travers une chaîne de traitement, pour segmenter un nouveau

maillage 3D. Nous montrons, à travers une série d’expérimentations

s’appuyant sur différents benchmarks, les excellentes performances

de notre algorithme par rapport à ceux de l’état de l’art. Nous

présentons également une application de notre algorithme de seg-

mentation pour l’extraction de squelettes cinématiques pour les

maillages 3D dynamiques.

Mots-clés Segmentation de maillages 3D, vérité-terrain, tests subjectifs,

benchmark, apprentissage.



Title 3D-mesh segmentation: automatic evaluation and a new learning-

based method

Abstract In this thesis, we address two main problems namely the quan-

titative evaluation of mesh segmentation algorithms and learning mesh

segmentation by exploiting the human factor.

We propose the following contributions:

• A benchmark dedicated to the evaluation of mesh segmentation al-

gorithms. The benchmark includes a human-made ground-truth

segmentation corpus and a relevant similarity metric that quanti-

fies the consistency between these ground-truth segmentations and

automatic ones produced by a given algorithm on the same models.

Additionally, we conduct extensive experiments including subjective

ones to respectively demonstrate and validate the relevance of our

benchmark.

• A new learning mesh segmentation algorithm. A boundary edge

function is learned, using multiple geometric criteria, from a set of

human segmented training meshes and then used, through a pro-

cessing pipeline, to segment any input mesh. We show, through a

set of experiments using different benchmarks, the performance su-

periority of our algorithm over the state-of-the-art. We present also

an application of our segmentation algorithm for kinematic skeleton

extraction of dynamic 3D-meshes.

Keywords 3D-mesh segmentation, ground-truth, subjective tests, evalu-

ation, benchmark, learning.
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