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       RESUME 

La création de nouvelles enzymes pour l’hydrolyse de la biomasse est une stratégie clé pour le 
développement du bioraffinage. Dans ce contexte, les xylanases de la famille GH11 sont déjà 
déployées dans de nombreux procédés industriels et donc bien positionnées pour jouer un rôle 
important dans ces procédés. La cible de cette étude, la xylanase GH11 (Tx-Xyl) de la bactérie 
Thermobacillus xylanilyticus, est une enzyme thermostable et donc une bonne candidate pour des 
travaux d’ingénierie visant l’amélioration de son activité sur des substrats ligno-cellulosiques. 

Dans cette étude, deux stratégies d’ingénierie des enzymes ont été employées afin d’obtenir de 
nouvelles informations portants sur les relations structure-fonction au sein de Tx-Xyl. La première 
stratégie a consisté en l’utilisation d’une approche de mutagenèse aléatoire, couplée à l’emploi de 
méthodes de recombinaison in vitro. Ces travaux avaient pour objectif d’améliorer la capacité 
hydrolytique de Tx-Xyl sur la paille de blé. La deuxième stratégie mise en œuvre s’est appuyée sur 
une approche semi-rationnelle visant la création d’une enzyme chimérique, qui bénéficierait d’une 
amélioration des interactions enzyme-substrat au niveau du sous-site -3. 

Le premier résultat majeur de cette thèse concerne le développement d’une méthode de criblage 
qui permet l’analyse à haut débit de banques de mutants pour la détection de variants qui 
présentent une activité hydrolytique accrue directement sur paille de blé. A l’aide de ce crible, nous 
avons pu analyser plusieurs banques de mutants, représentant un total de six générations de 
mutants, et identifier une série de combinaisons de mutations différentes. D’un côté, un variant, 
comportant deux mutations silencieuses, permet une meilleure expression de Tx-Xyl, alors que 
d’autres enzymes mutées présentent des modifications intrinsèques de leurs aptitudes catalytiques. 
Comparés à l’enzyme parentale Tx-Xyl, certains mutants solubilisent davantage les arabinoxylanes de 
la paille et, lorsqu’ils sont déployés avec un cocktail de cellulases, participent à une réaction 
synergique qui permet un accroissement du rendement des pentoses et du glucose libérés. 

A l’aide d’une approche semi-rationnelle, une séquence de 17 acides aminés en provenance d’une 
xylanase GH11 fongique a été ajoutée à l’extrémité N-terminale de Tx-Xyl, afin de créer de nouveaux 
brins β. L’enzyme chimérique a pu être exprimée avec succès et caractérisée. Néanmoins, l’analyse 
de ses propriétés catalytiques a révélé que celle-ci ne présente pas davantage d’interactions avec son 
substrat dans le sous-site -3, mais les résultats obtenus fournissent de nombreux renseignements sur 
les relations structure-fonction au sein de l’enzyme. De plus, ces travaux nous permettent de 
postuler que Tx-Xyl posséderait un site de fixation secondaire pour les xylanes, un élement jusqu’ici 
insoupçonné dans cette enzyme. Par ailleurs, l’analyse de nos résultats nous permet de proposer une 
explication rationnelle pour l’échec de notre stratégie initiale. 
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       SUMMARY 

Engineering new and powerful enzymes for biomass hydrolysis is one area that will facilitate the 

future development of biorefining. In this respect, xylanases from family GH11 are already important 

industrial biocatalysts that can contribute to 2nd generation biorefining. The target of this study, the 

GH11 xylanase (Tx-Xyl) from Thermobacillus xylanilyticus is thermostable, and is thus an interesting 

target for enzyme engineering, aiming at increasing its specific activity on lignocellulosic biomass, 

such as wheat straw. Nevertheless, the action of xylanases on complex biomass is not yet well 

understood, and thus the use of a rational engineering approach is not really feasible. 

In this doctoral study, to gain new insight into structure-function relationships, two enzyme 

engineering strategies have been deployed. The first concerns the development of a random 

mutagenesis and in vitro DNA shuffling approach, which was used in order to improve the hydrolytic 

potency of Tx-Xyl on wheat straw, while the second strategy consisted in the creation of a chimeric 

enzyme, with the aim of probing and improving -3 subsite binding, and ultimately improving 

hydrolytic activity. 

The first key results that has been obtained is the development of a novel high-throughput 

screening method, which was devised in order to reliably pinpoint mutants that can better hydrolyze 

wheat straw. Using this screening method, several generations of mutant libraries have been 

analyzed and a series of improved enzyme variants have been identified. One mutant, bearing silent 

mutations, actually leads to higher gene expression, while others have intrinsically altered catalytic 

properties. Testing of mutants has shown that some of the enzyme variants can improve the 

solubilization of wheat straw arabinoxylans and can work in synergy with cellulose cocktails to 

release both pentose sugars and glucose. 

Using a semi-rational approach, 17 amino acids have been added to the N-terminal of Tx-Xyl, with 

the aim of adding two extra β-strands coming from a GH11 fungal xylanase. A chimeric enzyme has 

been successfully expressed and purified and its catalytic properties have been investigated. 

Although this approach has failed to create increased -3 subsite binding, the data presented reveals 

important information on structure-function relationships and suggest that Tx-Xyl may possess a 

hitherto unknown secondary substrate binding site. Moreover, a rational explanation for the failure 

of the original strategy is proposed.  
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Etude et ingénierie d'une endo-beta-1,4-xylanase de la famille 

GH11, une hémicellulase dégradant la biomasse lignocellulosique 

 Introduction 

La biomasse végétale s’impose à l’heure actuelle comme une ressource à privilégier pour la 

production d’énergies alternatives. A ce titre, de par leur abondance et leur disponibilité et 

puisqu’ils ne rentrent pas dans la chaine alimentaire, les coproduits lignocellulosiques issus 

de l’agriculture (pailles, rafles, etc…) sont ainsi considérés comme des matières premières 

idéales pour les futures bio-raffineries industrielles.   

 

Parmi les 4 étapes unitaires qui interviennent dans tout procédé de bio-raffinerie 

(prétraitement, saccharification, fermentation et purification), le pré-traitement demeure à 

l’heure actuelle une étape critique. C’est là que la matière végétale subit une 

désorganisation massive de ces constituants (cellulose, hémicellulose et lignines), rendant 

les polysaccharides alors disponibles pour les enzymes hydrolytiques utilisées dans l’étape 

de saccharification. Le pré-traitement est une étape couteuse, mais indispensable, qui 

repose le plus souvent sur des procédés physico-chimiques couteux en énergie ou en réactif.  

Supprimer totalement cette étape est peu réaliste, mais réduire son cout en diminuant son 

impact est envisageable, à condition d’employer en aval, des enzymes adéquates, aptes à 

agir sur une matière première récalcitrante. 

 

Depuis les 20 dernières années, l’ingénierie enzymatique a très largement profité des 

progrès faits dans le domaine de l’évolution moléculaire dirigée, qui permet de re-créér à 

l’échelle du laboratoire, les processus mis en place par la Nature pour améliorer une 

protéine. Très largement employée dans la R&D industrielle, ces techniques offrent des 

opportunités immenses, et présentent l’avantage majeur de ne pas nécessiter au préalable 

des connaissances approfondies des relations structure-fonction de la protéine à améliorer, 

mais simplement un crible puissant capable d’identifier parmi une population d’enzymes 

mutées des variants qui auraient acquis la propriété recherchée. De ce point de vue, les 

techniques d’évolution moléculaire dirigée sont particulièrement pertinentes pour 



RESUME EN  FRANÇAIS  3 

 

l’amélioration des propriétés d’enzymes destinées à une utilisation en bioraffinerie pour des 

opérations qui sont encore à caractériser finement. 

 

Jusqu’ici les cellulases ont été la cible de la plupart des travaux de recherche dédiés à la 

création de nouvelles enzymes pour les procédés de bioraffinage, et aujourd’hui, la 

production de cocktails cellulolytiques performants devient une réalité, bien que la faible 

activité des cellulases sur la cellulose cristalline soit toujours une source de problèmes. En 

effet, malgré d’énormes efforts et 15 années de recherche, l’activité des cellulases n’a 

progressé que de 50%. Comparées aux cellulases, les xylanases ont fait l’objet de beaucoup 

moins d’études, alors qu’elles ont un rôle majeur dans les cocktails cellulolytiques, qui 

souffrent, entre autres, de l’inhibition des cellulases par les xylo-oligosaccharides. En 

conséquence, il est sans doute désormais pertinent de s’intéresser davantage aux xylanases 

et de réaliser des travaux d’ingénierie visant l’amélioration de leur action sur des substrats 

lignocellulosiques. 

 

La xylanase de Thermobacillus xylanilyticus (Tx-Xyl) est une endo-β-(1→4) xylanase qui 

possède la capacité de dépolymériser les arabinoxylanes présents dans les parois 

secondaires de plantes d’origines botaniques diverses. Tx-Xyl est thermostable - son activité 

maximale est mesurée à 75°C- et fonctionne sur une plage de pH relativement large et, en 

particulier aux pHs alcalins. Le gène de la xylanase a été cloné et produit chez Escherichia coli 

et sa structure 3D a été résolue. Comme toutes les enzymes de la famille 11 des glycosides-

hydrolases (GH11, base de données CAZy), Tx-Xyl possède un domaine catalytique en forme 

de β-jelly-roll. La topographie de ces enzymes est souvent assimilée à une main droite 

partiellement recroquevillée sur elle-même. La longue boucle entre les brins B7 et B8 -qui 

constitue le « pouce » de l’enzyme- a été notamment étudiée pour son rôle dans la fixation 

du substrat dans le site actif.  

 

L’action de Tx-Xyl a été déjà caractérisée sur plusieurs substrats, dont la paille et le son de 

blé. Cette enzyme possède une forte activité sur xylane de bouleau, et solubilise 40 à 50% 

des arabinoxylanes du son de blé. Par contre, sur la paille de blé, Tx-Xyl s’avère nettement 

moins efficace, sans doute parce que cette biomasse présente une structure complexe, 

composée à la fois d’arabinoxylanes, de cellulose et de lignines. Cependant, les facteurs qui 
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gouvernent et limitent l’action de Tx-Xyl sur la paille de blé sont actuellement peu connus et 

il est donc impossible d’envisager des travaux d’ingénierie rationnelle des enzymes pour 

l’amélioration de telle ou telle propriété. 

 

Cette étude doctorale porte donc sur les xylanases de la famille GH11 et leur utilisation 

comme outils de déstructuration de la biomasse. Elle a pour objectif majeur de contribuer 

significativement à leur optimisation en vue de leur futur emploi dans des procédés de 

bioraffinage et, par ailleurs, de fournir de nouvelles informations sur les relations structure-

fonction qui régissent les différentes propriétés des enzymes de la famille GH11, et 

notamment leurs propriétés catalytiques. 

 

Lors d’expériences d’évolution in vitro, si la méthode de criblage ne reflète pas fidèlement la 

réaction étudiée, il devient difficile d’isoler des mutants vraiment intéressants. Par 

conséquent, le premier défi de ce travail doctoral était de concevoir et mettre en œuvre une 

méthode de criblage à haut débit suffisamment robuste pour permettre la détection 

d’enzymes mutées présentant une activité hydrolytique accrue directement sur la paille de 

blé. 

 

La deuxième partie de ce travail porte sur l’utilisation de la méthode de criblage pour 

l’analyse de plusieurs générations successives d’enzymes mutées. Dans cette phase, il a été 

nécessaire d’adapter à certains moments la procédure expérimentale, afin de tenir compte 

de nouvelles contraintes qui se sont révélées au fur et à mesure de la réalisation des travaux, 

sans pour autant perdre de vue l’objectif principal qui était l’isolement de xylanases 

performantes. 

 

Enfin, le troisième volet de cette étude porte sur l’emploi d’une approche semi-rationnelle 

pour l’étude des relations structure-fonction impliquées dans l’interaction de la xylanase, Tx-

Xyl, avec son substrat. Des travaux précédents ont permis l’hypothèse qu’un site actif plus 

étendu chez Tx-Xyl, comportant un sous site -3, conduirait à un accroissement de l’activité 

hydrolytique. En conséquence, l’ambition des travaux réalisés dans le cadre de cette thèse 

était d’étendre le site actif de Tx-Xyl dans sa région glycone et de caractériser l’enzyme 

chimérique produite. 
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 A- Développement d’un criblage à haut-débit adapté à 

l’évaluation de glycoside-hydrolases  sur substrats complexes 

Avant de s’attaquer aux tests en microplaques, nous avons d’abord vérifié que l’absence 

d’agitation n’affecte pas l’hydrolyse de la biomasse insoluble. Toutefois, celle-ci reste 

dépendante, en début de réaction (jusqu’à 8 heures), de la quantité de catalyseur introduite 

au départ.    

 

Pour pouvoir être utilisée en format microplaque, la paille de blé a d’abord été broyée 

finement afin d’obtenir une poudre fine (taille des particules < 0.5 mm). Après lavage, 

séchage et autoclavage, nous avons retenu l’utilisation d’un « multiscreen column loader » 

de la société Millipore pour repartir cette poudre de manière homogène et reproductible 

dans les 96 puits d’une microplaque (Fig. A).  

 

 

Fig. A : Distribution de la paille de blé broyée en microplaque 96 puits, à l’aide du Multiscreen column 

loader (Millipore). 

 

L’homogénéité du transfert de matière a été confirmée par la faible dispersion mesurée 

entre les masses de microplaques chargées (2,27%) mais également par la mesure indirecte 

de l’activité  d’une solution de xylanase uniformément répartie dans la microplaque, qui 

nous indique une répartition de biomasse variant d’environ 7 à 11% entre les puits. 
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Toutes les étapes du criblage ont ensuite été optimisées indépendamment : méthode de 

dosage des sucres réducteurs pour mesurer l’hydrolyse du substrat ; conditions d’incubation 

à 60°C ; solutions pour limiter l’évaporation sur une durée de 4 heures d’incubation.  A 

chaque fois, notre souci était de minimiser l’erreur associée à chaque manipulation. Le mode 

opératoire optimal qui permet de mesurer de manière reproductible une activité xylanase 

produite est ainsi résumé dans la Fig. B. 

 

 

Fig. B : Diagramme des opérations intervenant dans le criblage à haut-débit sur paille de blé.  

 

Après l’optimisation des variables physico-chimiques, ce sont les facteurs biologiques qui ont 

été étudiés un par un : souche de production, vecteur d’expression, conditions de culture 

(milieu, température et induction) ont été évalué afin de trouver les meilleures conditions de 

production d’enzymes en microplaques.  

 

En cumulant les erreurs associées à chaque étape, cette méthode de criblage sur substrat 

complexe présente une déviation inférieure à 10% losqu’elle est testée sur la souche 

sauvage. Seulement 3% des mesures se retrouvent au-delà de la limite de μ+2σ, en accord 

donc avec les principes dune distribution normale (5% attendus dans le cadre d’une loi 

normale).  

 

Pour valider cette stratégie de criblage à haut-débit, une première série de 264 mutants 

obtenus après mutagénèse aléatoire (error-prone PCR, epPCR) a été soumise au crible. 

L’activité hydrolytique moyenne calculée sur chaque microplaque présente une variabilité 

faible (3,2%) confirmant la robustesse du crible. A l’issu du criblage sur paille de blé, les 

clones présentant une activité supérieure de 2 écarts-type à la moyenne des activités des 

clones contrôles ont été sélectionnés. L’étude du mutant Tx-Xyl-AF7 a montré que ce clone 

présentait une activité supérieure de 74.5 % à celle de la souche sauvage. Son séquençage a 
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indiqué la présence de 2 mutations silencieuses : cultivé en plus grand volume, ce mutant 

produit en fait environ 2 fois plus de xylanase que la souche sauvage. L’analyse attentive des 

mutations révèle que l’une d’entre elles (T27C) est située près du site de fixation du 

ribosome, une zone critique en termes d’efficacité de l’expression génique. C’est la 

réorganisation plus favorable de cette structure secondaire de l’ARNm correspondant qui 

serait à l’origine de l’augmentation de l’expression du gène muté.  

 B- Evolution moléculaire dirigée de la xylanase de 

Thermobacillus xylanilyticus pour l’obtention de mutants 

optimisés pour la dégradation de paille de blé récalcitrante 

Le clone Tx-Xyl-AF7, isolé à l’issue de la validation de la méthode de criblage, présente une 

d’ores et déjà amélioration de son potentiel, du fait de sa meilleure capacité à produire 

l’enzyme recombinante. C’est donc ce gène qui a servi de matrice pour le second tour de 

mutagénèse aléatoire. La stratégie globale que nous avons suivi, s’est appuyée au total sur 3 

tours successifs de mutagénèse aléatoire (PCR à erreurs, ou error-prone PCR, epPCR) suivis 

de différentes méthodes de recombinaison.  La suite et le contenu de ces expériences sont 

résumés dans le Tableau. A. 

 

Sur l’ensemble des 2 premiers tours, c’est un total de 4597 clones qui a été criblé sur paille 

de blé broyée, permettant d’obtenir une sélection de 5 mono-mutants présentant une 

activité hydrolytique significativement supérieure par rapport à l’enzyme sauvage.  

 

Ce lot de mutants a ensuite été re-soumis à un dernier tour de mutagénèse à erreur, mais 

cette fois, le criblage a été adapté pour être effectué sur paille de blé déplétée, c'est-à-dire 

ayant été soumis à une complète hydrolyse par la xylanase Tx-Xyl. La biomasse résultante ne 

contient plus que la part d’arabinoxylanes inaccessibles ou résistants à l’action de l’enzyme 

sauvage. 
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Au terme de ces 3 tours de mutagénèse, le taux de mutation moyen dans les clones de la 

dernière banque tourne autour de 7,2 substitution par kilobase, avec près de 2 % des clones 

présentant une activité supérieure de plus de 4 écart-types de la moyenne du clone parental.  

 

Tableau. A : Succession des différents tours de mutagénèse aléatoire et de recombinaison.  

% de clones présentant une 

activité supérieure à la 

moyenne du sauvage de : 
Génération 

Type de 

banque 

Substrat 

de 

criblage 

N°  de 

mutants 

criblés 

CV of 

wild-type 

control † 
>4CV >5CV >6CV >7CV >8CV 

N° de hits 

sélectionnés 

1ere 
epPCR  sur gène 

sauvage 
In-WS 264 11.1±1.3% 0.4% 0.4% - - - 1 

2nde 

epPCR sur 

mutant  Tx-Xyl-

AF7 

In-WS 4333 18.1±5.4% 0.1% - - - - 4 

3ème 
Mutagenèse 

dirigée 
- - -      11 

4ème 

epPCR sur 11 

gènes 

sélectionnés 

Dpl-WS 4300 10.9±2.2% 1.2% 0.6% - - - 30 

5ème Recombinaison Dpl-WS 3840 8.1±0.6% 1.4% 6.0% 2.1% 0.8% 0.1% 7 

6ème Recombinaison Dpl-WS 864 10.2% 9.3% 2.8% 0.9% 0.2% - 8 

7ème Recombinaison Dpl-WS 864 11.3% 19.5% 7.5% 2.4% 0.5% 0.2% 7 

† CV = coefficient de variation. Pour le premier tour, le contrôle est la Tx-Xyl, alors que pour les tours 
suivants, nous avons utilisé le mutant Tx-Xyl-AF7. 

 

Afin de valoriser plus efficacement les combinaisons fonctionnelles obtenues par 

mutagénèse, les tours suivant d’évolution se sont appuyés sur la recombinaison de 

mutations obtenues dans les meilleurs clones issus du tour précédent. Ainsi, la technique 

StEP (pour Staggered Extension Process) a été utilisée du 5ème au 7ème tour d’évolution. 

Plus de 5560 mutants ont été soumis à la méthode de criblage sur paille de blé déplétée, et à 

chaque tour, comme illustré sur la Fig. C, les recombinaisons ont permis d’optimiser 

graduellement l’enzyme pour le substrat considéré. 

 

Le séquençage des hits sélectionnés au terme du 7ème tour d’évolution a montré que la 

majorité des mutations mises en évidence étaient déjà des mutations observées lors des 

tours précédents, indiquant que le processus d’évolution de Tx-Xyl sur paille déplétée 

atteignait son terme. 
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L’analyse fine des mutations observées dans les meilleurs clones a permis d’identifier 

plusieurs changements, dont la fréquence était importante : ainsi, la mutation Y111H se 

retrouve dans tous les hits sélectionnés, et la fréquence de répétition des mutations Y6H et 

S27T a été augmentée entre le 5ème et le 7ème tour de mutagénèse. 
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Fig. C : Accélération de l’évolution de Tx-Xyl soumise à des tours successifs de mutagénèse et de 

recombinaison, suivie de criblages sur paille de blé déplétée. Le même lot de paille de blé déplétée a été 

utilisé pour les 4 expériences. 

 

Lors du 2ème cycle de mutagénèse aléatoire, 2 clones ont été sélectionnés, qui avaient 

bénéficié d’une mutation ponctuelle du résidu Tyrosine en position 3. Cette position ainsi 

que la Tyrosine 111 –systématiquement mutée dans les meilleurs clones- ont donc été 

soumises à de la mutagénèse à saturation. Les 3 meilleurs clones provenant de la librairie 

Y3N présentent  tous la même mutation –Y3W- alors que le criblage de la banque Y111N a 

permis d’isoler 3 mutants présentant un acide aminé hydroxylé, sous la forme de 2 mutants 

serine et d’un mutant thréonine.  

 

6ème tour d’évolution  : recombinaison  
5ème tour d’évolution : recombinaison 

4ème tour d’évolution : epPCR 

contrôle sauvage (mutant Tx-Xyl-AF7) 
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L’analyse détaillée de l’activité des meilleurs mutants a été menée à la fois sur substrats 

solubles, xylane de bouleau (non ramifié) et arabino-xylane de blé (arabinose/xylose = 0.54), 

pour lesquels les paramètres cinétiques d’hydrolyse ont été déterminés, mais également sur 

les substrats complexes utilisés lors du criblage, seuls ou en combinaison avec un cocktail 

enzymatique commercial, l’Accelerase 1500.  

 

Sur xylane de bouleau et arabinoxylane de blé, le mutant S27T affiche une augmentation de 

son efficacité catalytique de 55 et 20% respectivement, et hydrolyse 2,3 fois plus de xylane 

dans la paille de blé déplétée que l’enzyme sauvage. Les effets de la mutation Y111T sont 

plus modestes, mais plus discriminants entre les substrats testés. Ainsi, sa constante 

catalytique sur xylane de bouleau est augmentée de 48%, mais reste identique à la valeur du 

sauvage pour les arabinoxylanes de blé. Tout comme S27T, ce mutant arrive à hydrolyser 2 

fois plus de substrats dans la paille déplétée que Tx-Xyl. 

 

Si l’effet synergétique attendu entre la xylanase sauvage et le cocktail commercial a bien été 

vérifié, la substitution de Tx-Xyl par différents mutants (Y111S et Y111T) a permis 

d’améliorer significativement cette performance. 

 C- Impact of an N-terminal extension on the stability and 

activity of the GH11 xylanase from Thermobacillus xylanilyticus 

La xylanase produite par Neocallimastix patriciarum (Np-Xyl) appartient tout comme TxXyl à 

la famille 11 des glycosides-hydrolases, et présente une activité plus élevée que la plupart 

des xylanases apparentées. Ceci a été en partie attribué à la présence d’un site catalytique 

étendu, possédant 6 sous-sites (-3 à +3). L’existence d’un sous-site supplémentaire (-3) par 

rapport à Tx-Xyl, localisé au niveau d’un feuillet β additionnel situé en N-term, pourrait 

justifier ces résultats, d’autant plus que l’on sait que cette extrémité joue un rôle important 

dans la liaison au substrat et potentiellement dans la thermostabilité de l’enzyme. Ainsi, 

dans la famille GH11, alors que Np-Xyl se distingue par une extrémité N-terminale allongée, 

Tx-Xyl tout au contraire se caractérise par une extrémité plus courte (Fig. D). Par conséquent, 

sur la base de ces observations et d’une forte homologie entre les 2 enzymes, nous avons 
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donc décidé de fusionner les 2 brins β qui constitue ce feuillet additionnel sur l’extrémité N-

terminale de Tx-Xyl.  

 

 

Fig. D : Superposition des structures de Tx-Xyl (orange) et Np-Xyl (gris). Les 2 feuillets ββββ supplémentaires 

de Np-Xyl sont indiqués en rose. 

 

C’est par PCR, en utilisant une amorce en 5’ longue de 81 pb et contenant la séquence 

codante des 17 acides aminés supplémentaires à introduire, qu’a été obtenu le gène de la 

protéine hybride, nommée Tx-Xyl-NTfus. Après clonage et surexpression dans E. coli, cette 

nouvelle protéine a été produite sous forme soluble, et purifiée selon le même protocole 

employé pour Tx-Xyl. 

 

En utilisant du xylane de bouleau comme substrat de référence, l’activité spécifique de Tx-

Xyl-NTfus correspond à environ 80% de celle de Tx-Xyl, et son activité est stable sur une 

gamme de pH large (5,0 à 7,5), tout comme sa version raccourcie (Tableau. B).  

 

Tableau. B : Caractéristiques enzymatiques des protéines Tx-Xyl et Tx-Xyl-NTfus. 

Enzymes 
 ε 

(M-1 cm-1) 

Mw  

(kDa) 

AS 

(U mg-1) 
pHopt 

Topt 

(°C)  

Tm  

(°C) 

60°C t1/2   

(heure) 

70°C t1/2   

(heure) 

Tx-Xyl 102790 20,65 1450 5,8 – 6,0 ~ 67 75,9 5,4 0,32 

Tx-Xyl-NTfus 102790 22,30 1127 ~ 6,2 ~ 67 70,9 4,1 0,16 

ε: coefficient d’extinction molaire; AS: activité spécific at 60°C; Tm: température de melting; t1/2 : demi-vie  
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Même si la protéine de fusion conserve une température optimale d’activité relativement 

élevée (67°C), son profil d’inactivation au delà de 70°C est plus marqué que pour Tx-Xyl. 

C’est au niveau de sa thermostabilité que la protéine hybride se distingue le plus de son 

parent le plus proche : même si les 2 protéines présentent une bonne stabilité à 50°C, 

conservant près de 100% de leur activité originelle au bout de 6h d’incubation, à 60 et 70°C, 

Tx-Xyl-NTfus affiche une demi-vie réduite de 25 à 50% respectivement par rapport à Tx-Xyl 

(Tableau. B).  

 

En utilisant des xylanes solubles différant par leur taux de ramification par des résidus 

arabinose, les paramètres cinétiques de la protéine hybride ont pu être comparés à ceux des 

ses parents. Alors que sur substrat non ramifié (xylane de bouleau), Tx-Xyl et Tx-Xyl-NTfus 

présentent des paramètres cinétiques comparables, la constante catalytique de la protéine 

de fusion sur arabino-xylane de blé –qui compte un résidu arabinose pour 2 résidus xyloses- 

est augmentée d’environ 14,4 %. 

 

Afin de vérifier si un sous-site supplémentaire a bien été créé lors de la fusion des 2 brins 

beta additionnels, des cinétiques d’hydrolyse de xylo-oligosaccharides synthétiques –oNP-X2 

et oNP-X3 ont été réalisées.  En plus de nous donner accès aux paramètres cinétiques des 

enzymes sur ces substrats, la méthodologie employée nous permet également de calculer 

l’énergie de liaison propre aux sous-site -3. Ainsi, même si l’activité de Tx-Xyl-NTfus est 

légèrement plus faible sur les 2 oligosaccharides comparé à Tx-Xyl, les calculs révèlent, dans 

les 2 protéines, la présence d’un sous-site -3, de force équivalente et relativement faible. 

 

Lors des tests d’activité sur paille de blé brute, les enzymes testées ont été utilisées sur la 

biomasse broyée intacte mais également déplétée, seules ou en combinaison avec un 

cocktail cellulolytique commercial, l’Accelerase 1500. Les analyses montrent que dans tous 

les cas, Tx-Xyl-NTfus solubilise plus de xylose que Tx-Xyl, avec une augmentation pouvant 

atteindre 30% de xylose supplémentaire produit sur paille de blé déplétée.   

 

 Conclusions 
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La découverte et l’ingénierie d’enzymes qui dégradent la biomasse végétale, à l’aide de 

technologies telles que l’approche métagénomique ou l’évolution moléculaire in vitro, ne se 

font pas sans difficultés, car la biomasse est un substrat d’une complexité inouïe qui est en 

conséquence extrêmement difficile à employer dans des méthodes de criblage 

traditionnelles. Néanmoins, parce que ce type de stratégie obéit obligatoirement à la 

maxime « on ne trouve que ce que l’on recherche », l’emploi de la biomasse dans le criblage 

parait inévitable si l’on vise la détection efficace de mutants pertinents par rapport aux 

objectifs fixés. Les travaux développés durant cette thèse auront donc permis dans un 

premier temps de mettre au point une méthode robuste et efficace de criblage à haut-débit, 

spécifiquement adaptée à l’hydrolyse de la matière lignocellulosique brute.  L’optimisation 

rigoureuse de cette méthode a permis d’obtenir un taux d’erreur à la fois faible (environ 

15%) et maitrisée, et d’atteindre un débit d’environ 2000 clones par semaine. Peu de travaux 

similaires ont été publiés, et notre approche se caractérise par la simplicité des outils mis en 

œuvre, notamment au niveau du système de distribution de la biomasse dans les 

microplaques. En outre, notre méthode est totalement versatile et pourra être adaptée à la 

fois à d’autres biomasse -dès lors que celle-ci se présentera sous la forme de poudre- mais 

également pour le criblage d’autres cellulases, hémicellulases et cocktails enzymatiques 

performants. 

 

Pour développer des xylanases capables de solubiliser une plus grande partie des 

arabinoxylanes de la paille de blé, nous avons adopté une approche combinatoire qui 

associe la mutagenèse aléatoire, l’évolution moléculaire in vitro et la mutagenèse à 

saturation. Pour l’exécution de la phase initiale de ce projet, nous avons employé comme 

substrat une poudre de paille de blé intacte (In-WS), puis, à partir du 4ème tour d’évolution, 

nous avons utilisé une paille blé préalablement traitée avec le Tx-Xyl, désignée Dpl-WS, afin 

de favoriser la détection d’enzymes qui dépassent le point final d’hydrolyse. 

 

L’analyse des données obtenues à chaque phase du criblage a révélé que la performance 

globale des banques de mutants augmentait avec chaque génération successive, ce qui est 

cohérent avec l’effet escompté de l’évolution moléculaire in vitro. A l’issu de six générations 

de mutagenèse, puis de recombinaison homologue, neuf mutants impliquant des 

substitutions des acides aminés 3 (Y3W), 6 (Y6H), 27 (S27T) and 111 (Y111H, Y111S, Y111T) 
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ont été retenus pour des études approfondies (Fig. E). Comparés à Tx-Xyl, toutes ces 

enzymes mutées présentent une activité hydrolytique sur paille de blé (Dpl-WS) accrue, ce 

qui valide le mode de criblage. Nous pouvons donc conclure que la stratégie adoptée a bien 

été adaptée à l’objectif recherché, même si l’augmentation de la performance des meilleurs 

mutants reste modeste en termes absolus, de l’ordre de 20 % maximum pour le meilleur 

variant. 

 

 

Fig. E : Positions des 4 acides-aminés les plus fréquemment mutés dans la structure tertiaire de Tx-Xyl : 

Y3, Y6, S27 and Y111. Tx-Xyl présente un repliement typique an β-jelly roll, souvent comparé à une main 

droite partiellement repliée.  

 

Les raisons de ces résultats modestes sont sans doute liées à la complexité du substrat. Face 

à la paille de blé, Tx-Xyl est confrontée à une multitude de défis : la complexité structurale 

de la biomasse, l’accessibilité du substrat, la complexité chimique et structurale des 

arabinoxylanes eux-même, ainsi que la présence de multiples sources d’inhibition. La 

limitation liée à l’accessibilité est particulièrement bien mise en évidence lorsque Tx-Xyl ou 

l’une des enzymes mutées, est déployée avec un cocktail de cellulases. Dans ce cas, l’action 

des xylanases se trouve augmentée, grâce à l’action des cellulases et vice versa. Ce résultat 
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indique que la dégradation de la biomasse consiste en l’épluchage progressif des couches 

d’hémicelluloses et de cellulose, qui alternent et s’entremêlent au sein des parois végétales.  

 

Les modifications d’acides aminés observées lors des différents cycles d’ingénierie 

combinatoire nous permettent néanmoins d’obtenir de nouvelles informations sur les 

relations structure-fonction de la xylanase Tx-Xyl. 

 

Ainsi, alors que plusieurs études sur des xylanases apparentées indiquent la présence d’un 

site secondaire de fixation du xylane (secondary binding site, SBS), situé en surface de la 

protéine, aucune preuve expérimentale de la présence d’un tel site n’existait pour Tx-Xyl, 

malgré une identité globale élévée entre les différentes séquences (>70%), et même 

renforcée au niveau des déterminants du SBS (81%). Dans ce travail, nous avons généré le 

mutant S27T dont l’activité hydrolytique renforcée constituerait peut être la première 

preuve expérimentale de l’existence d’un SBS chez Tx-Xyl. En principe, l’acide aminé 27 se 

trouverait dans la trajectoire du SBS, et le changement d’une sérine en thréonine aurait pour 

effet d’augmenter l’hydrophobicité locale, ce qui pourrait être bénéfique pour la fixation de 

xylanes. 

 

Concernant la thermostabilité de Tx-Xyl, les résultats obtenus dans cette étude apportent de 

nouveaux éléments qui tendent à confirmer une théorie qui relie la thermostabilité de Tx-

Xyl à la présence de plusieurs résidus aromatiques exposés à la surface de l’enzyme. Selon 

cette hypothèse, un certain nombre de ces résidus seraient impliqués dans des interactions 

intermoléculaires et seraient à l’origine de la formation d’oligomères, qui constitueraient la 

forme stable de Tx-Xyl. Et parmi ces résidus, figurent les acides aminés 6 et 111, qui ont fait 

l’objet de mutations dans cette étude. Conformément aux attentes, les mutations Y6H et 

Y111H ont conduit chacune à une baisse de la thermostabilité. 

 

De manière intéressante, le mutant S27T s’est montré plus thermostable que l’enzyme 

parentale, ce qui est en parfaite adéquation avec une théorie selon laquelle la 

thermostabilité s’améliore avec l’augmentation du ratio Thr/Ser à la surface des enzymes. 

C’est cette même corrélation qui pourrait également expliquer les observations faites à 

l’égard du mutant Y111T, qui présente une thermostabilité similaire à celle de l’enzyme 
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parentale, en dépit du probable effet négatif associé à la perte d’une interaction 

intermoléculaire hydrophobe de surface. 

 

La mutation du résidu Tyr111 est particulièrement intéressante, car ce résidu est situé sur le 

pouce, un élément mobile qui est impliqué dans la fixation du substrat et dans le 

déroulement du cycle catalytique. Localisé à la base du pouce, le résidu 111 déterminerait 

en partie la mobilité de cette boucle, même si le mécanisme du mouvement de cet élément 

n’est pas totalement élucidé. Dans cette étude, les mutations introduites à la position 111 

(Y111H, Y111T, Y111S) réduisent toutes l’occupation spatiale locale et conduisent à une 

augmentation de l’activité hydrolytique, probablement liée un mouvement plus fluide du 

pouce et, donc, à une cadence catalytique plus élevée. Il est aussi intéressant de noter que la 

perte d’une chaine latérale aromatique à cette position pourrait diminuer l’inhibition de Tx-

Xyl par des inhibiteurs hydrophobes, tels que les acides phénoliques (présents dans les 

parois végétales) et les lignines,  

 

Dans le but d’investiguer et/ou de créer un sous-site -3 chez Tx-Xyl, nous avons prolongé 

l’extrémité N-terminale de l’enzyme, en ajoutant une séquence de 17 acides aminés en 

provenance d’une xylanase GH11 fongique (Np-Xyl de N. patriciarum), ce qui représente 

l’addition de deux nouveaux brins β. Etonnamment, nous avons rapidement réussi à exprimé 

et purifié l’enzyme chimère sous une forme soluble et stable. Néanmoins, l’analyse de 

l’enzyme chimère (Tx-Xyl-NTfus) et sa comparaison avec Tx-Xyl, a montré que cette enzyme 

ne présente pas davantage d’interactions avec le substrat dans le sous-site -3. Nos analyses 

on tout de même procuré la première preuve expérimentale de l’existence au sein de Tx-

Xyl d’un sous-site -3, même si celui-ci est caractérisé par une interaction faible. A la lumière 

de nos résultats expérimentaux, nous avons réalisé a posteriori une étude de modélisation 

qui révèle que parmi les 3 acides aminés impliqués dans le sous-site -3 chez Np-Xyl -Gln11, 

Ile151 et Tyr193- deux résidus (Gln11 et Ile132) sont correctement positionnés pour former 

un sous-site -3 dans notre protéine de fusion. Seule la Tyr193 n’est pas conservée : l’acide 

aminé correspondant -Ser178- pourrait donc être muté afin  reproduire la configuration 

constatée chez Np-Xyl, et finir de reconstituer l’environnement nécessaire à l’établissement 

d’un sous-site -3 additionnel. 
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 Research Background 

To move our oil-based economy towards a more sustainable bio-based one, considerable 

efforts are now being deployed to harness biomass as both a source of energy and carbon. 

In this respect, lignocellulosic co-products of agriculture (e.g. straws, cobs etc.) are 

considered to be ideal feedstocks for the future biorefinery industry, because these are 

abundant, available and do not constitute a threat for the food chain. 

 

Biorefinery processes that convert lignocellulosic biomass into biofuels and biochemicals are 

often termed second generation processes, to distinguish them from first generation 

biorefining, which relies on sugar and starch-based feedstocks. A typical second generation 

biorefinery is composed of four major operational units, which are pretreatment, 

saccharification, fermentation and product separation/purification. According to the current 

state of the art, all of these operations are necessary, but pretreatment is absolutely critical, 

because it largely determines the efficiency of the cell wall-degrading enzymes (i.e. 

cellulases and hemicellulases) that are used in the saccharification step. Indeed, in the 

second step, partially disrupted lignocellulosic biomass is subjected to enzyme treatment 

with the goal of procuring fermentable sugars. 

 

According to Charles Wyman, a prominent researcher in the field of biorefining, the only 

biorefinery concept that would be more expensive than one with a pretreatment would be 

one without pretreatment. In other words, pretreatment is costly, but currently 

indispensable (Wyman, 2007). This is because state of the art enzymes are unable to 

efficiently deconstruct raw lignocellulosic biomass, which is a chemically and structurally 

complex substrate. Nevertheless, if it were possible to dispense with pretreatment, or even 

use less energy and chemically intensive pretreatments, it would be possible to reduce cost 

and thus accelerate the development of second generation biorefining. 

 

Over the last 15 to 20 years enzyme engineering has entered a new phase, with the 

introduction of powerful techniques such as in vitro enzyme evolution. However, despite 

major progress, enzyme engineering is still in its infancy, and there remains considerable 
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scope for progress, since the ultimate goal of being able to predict changes, perform rational 

engineering and create de novo enzyme activities is still a long way off. Nevertheless, the 

possibilities are enormous and industrial areas such as biorefining will almost certainly be 

prime targets for future developments. 

 

So far, cellulases have been the major focus of R&D, because the reduction of production 

costs is a priority. Today, large-scale commercial production of cellulases is becoming a 

reality (Clarke, 2010; Wilson, 2009), although the limited activity of cellulases on crystalline 

cellulose is still a cause for concern. This is illustrated by the fact that cellulase engineering 

has so far only managed to increase activity by 1.5-fold despite 15 years of research efforts 

(Wilson, 2009). 

 

Compared to cellulases, hemicellulases have been the focus of much less attention, despite 

the fact that hemicellulases are important in biorefining. Indeed, their vital role in cellulase 

cocktails has recently been highlighted in several publications (Gao et al., 2010; Kumar and 

Wyman, 2009b; Prior and Day, 2008) that have shown that xylanases and xylosidases are 

necessary to alleviate inhibition of cellulases by xylo-oligosaccharides, increase cellulase 

activity via synergistic interactions and thus reduce process costs (Merino and Cherry, 2007; 

Murashima et al., 2003). Therefore, it appears timely to address the improvement of 

hemicellulases, in particular xylanases, using state of the art enzyme engineering and 

experience gained from cellulase engineering. 

 Key concepts and Research Strategy 

The key contextual elements presented above are at the heart of the research that has been 

tackled in the doctoral studies described in this dissertation. These are: (i) second generation 

biorefining is today’s challenge and tomorrow’s industry; (ii) new biorefinery concepts that 

use less or no pretreatment will accelerate the implementation of biorefining; (iii) 

hemicelluloses and hemicellulases are key elements in the biorefining story; and (iv) it is 

important and timely to engineer new xylanases for biorefining. In addition to these grand 

challenges, another goal of the doctoral project was to open new avenues of investigation, 

notably in terms of structure-function relationships, and especially with regard to the 
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complex processes that govern the action of cell wall-degrading enzymes when faced with 

structurally and chemically complex biomass. 

 

Designing an experimental plan to tackle the various aims of this project was not an easy 

task, since the goals themselves were rather ambitious. Nevertheless, it was clear that one 

way forward was to employ some of the latest techniques in enzyme engineering, including 

in vitro random mutagenesis and DNA shuffling, which have already been shown to be 

powerful for the improvement of enzyme properties (Johannes and Zhao, 2006). However, 

previous experience drawn from work performed on cellulases indicates that engineering 

enzymes for biomass deconstruction is hazardous, especially when model substrates are 

employed. Therefore, the first challenge in this doctoral work was the conception, 

development and testing of a high-throughput screening procedure that employs raw 

biomass and that is sufficiently reliable to identify true hits in vast libraries. 

 

The second part of the work described here addresses the implementation of the screening 

procedure and the generation of a series of mutants. In this phase of the work, it was 

necessary to adapt experimental procedure to new constraints and to maintain an overall 

aim, which was to exploit the power of in vitro random mutagenesis and DNA shuffling, by 

performing several rounds of these techniques. 

 

Finally, in the third part of the research performed in this study, a semi-rational approach 

was adopted, whose context was the investigation of structure-function relationships via the 

creation of a chimeric enzyme. Based on previous observations made by workers in Prof. 

Harry Gilbert’s laboratory (University of Newcastle, UK), the primary goal of this study was to 

create a more extensive active site in a xylanase and, if successful, examine whether this 

modification would be translated into higher enzyme activity. 

 

All of the work performed in this study, and described here, was performed on a xylanase 

from Thermobacillus xylanilyticus that belongs to family 11 of the glycoside hydrolase 

classification CAZy. This enzyme has been one of the preferred study objects of Dr. Michael 

O’Donohue, the supervisor of this work, for many years, and thus a considerable amount of 

prior knowledge is available and importantly, its 3D structure has been solved. Moreover, as 



GENERAL INTRODUCTION  21 

 

a member of family GH11, this xylanase belongs to the group of xylanases that has been 

most extensively implemented in industrial processes, and as a thermostable protein, it 

figures among some of the best candidates for further development. Finally, unlike many 

xylanases, the action of the GH11 xylanase from Thermobacillus xylanilyticus has already 

been studied in detail on industrially pertinent biomass, such as wheat bran and wheat straw. 

 

In the chapters that follow, the reader is invited to discover an extensive bibliographic 

introduction to the key concepts and state of the art knowledge that form the basis of the 

study, the description of experimental work, which has been organized into three 

standalone manuscripts (the first of which is published), followed by a discussion of general 

conclusions and suggestions for future work. An annexe to this thesis supplies a 

complementary view of state of the art knowledge in the area of hemicelluloses-specific 

biocatalysis. 

 
 
 
Clarke, N.D., 2010. Protein engineering for bioenergy and biomass-based chemicals. Current 

Opinion in Structural Biology, 20, 527-532. 
Gao, D., Chundawat, S.P.S., Krishnan, C., Balan, V., Dale, B.E., 2010. Mixture optimization of 

six core glycosyl hydrolases for maximizing saccharification of ammonia fiber 
expansion (AFEX) pretreated corn stover. Bioresource Technology, 101, 2770-2781. 

Johannes, T.W., Zhao, H., 2006. Directed evolution of enzymes and biosynthetic pathways. 
Curr Opin Microbiol, 9, 261-7. 

Kumar, R., Wyman, C.E., 2009b. Effect of xylanase supplementation of cellulase on digestion 
of corn stover solids prepared by leading pretreatment technologies. Bioresour 

Technol, 100, 4203-13. 
Merino, S.T., Cherry, J., 2007. Progress and challenges in enzyme development for biomass 

utilization. Adv Biochem Eng Biotechnol, 108, 95-120. 
Murashima, K., Kosugi, A., Doi, R.H., 2003. Synergistic effects of cellulosomal xylanase and 

cellulases from Clostridium cellulovorans on plant cell wall degradation. J Bacteriol, 
185, 1518-24. 

Prior, B.A., Day, D.F., 2008. Hydrolysis of ammonia-pretreated sugar cane bagasse with 
cellulase, beta-glucosidase, and hemicellulase preparations. Applied Biochemistry 

And Biotechnology, 146, 151-164. 
Wilson, D.B., 2009. Cellulases and biofuels. Curr Opin Biotechnol, 20, 295-9. 
Wyman, C.E., 2007. What is (and is not) vital to advancing cellulosic ethanol. Trends in 

Biotechnology, 25, 153. 
 



 

 

 



BIBLIOGRAPHY  22 

 

 

 

BIBLIOGRAPHY  
BIBLIOGRAPHY 

In this chapter, the scientific literature, relevant to the research work presented, is organized 

into four sections. In part A, we describe the nature of lignocellulosic biomass and present 

the configurations of state-of-the-art biorefining processes, highlighting the importance of 

enzyme-mediated operations. In part B, the general biological and biochemical properties of 

xylanases are exposed and current knowledge of structure-function relationships of GH11 

xylanases is described. Part C is a historical review of studies that have been performed on 

Tx-Xyl xylanase, which is the target enzyme in this thesis study. Finally, in part D, the state of 

the art in random engineering of proteins is described and the application of these 

techniques to xylanases is summarized. 
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 Part A  Biorefining of lignocellulosic biomass  

 A.1 What is lignocellulosic biomass? 

The term lignocellulosic biomass designates parts of plants that are generally inedible and 

composed of composite material, consisting of various plant polysaccharides (including 

cellulose and hemiucelluloses) and lignin (Himmel et al., 2007). This organic matter, 

generated from carbon dioxide fixed by plants during photosynthesis and stored in plant cell 

walls, plays a wide variety of functions in plant physiological processes. Unlike the use of 

fossil resources (oil, coal and natural gas) that constitute natural, long-term repositories of 

“ancient CO2”, stocked by plants millions of years ago, the use of lignocellulosic biomass 

does not inevitably lead to increases in atmospheric greenhouse gases. Regarding the 

production of lignocellulosic biomass, global annual growth represents between 10 – 50 

billion tonnes (Sticklen, 2006), although most of this is available for use. Since the use of 

excess biomass (i.e. the amount of biomass produced once permanent biomass, such as 

primary forests, have been substracted) represents a renewable, sustainable source of 

carbon and energy, it constitutes a viable alternative to unsustainable fossil resources.  

 A.1.1 Structure and composition of lignified plant cell wall 

In the plants, polysaccharides, highly glucosylated proteins and lignin are the principal 

components of cell walls (Somerville et al., 2004). In this section, the microstructure and the 

biochemical composition of the plant cell wall, an important object in this doctoral thesis, 

will be described 

 A.1.1.1 Structural organisation of plant cell wall 

The plant cell wall is the outer layer of cells that surrounds the plasma membrane and 

provides structural support and protection to the cell contents. Its shape and components 

vary between different cell types. Plant cell walls can be divided into two types: primary and 

secondary walls (Figure A-1). Primary walls can be found in all living plant tissues, and are 

located outside the secondary wall when there is one. The secondary wall is formed after the 

cell is fully grown and is not found in all cells (Brett and Waldron, 1996; Somerville et al., 

2004).  
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Generally, the primary wall is a thin and extensible layer generated during cell growth and 

division. The predominant components are cellulose, hemicellulose and pectin. The 

framework of primary wall is mainly built up by cellulose microfibrils embedded in 

hemicellulose and pectin chains, with only a small amounts of lignin being (sometimes) 

present.  

 

 

Figure A-1. Schematic representation of the plant cell wall cross-section and the polymeric complexes in 

the secondary wall. The primary wall encloses the secondary wall, and the secondary wall is composed of 

S3, S2 and S1 layers from inside to outside. The framework of the secondary wall is formed by three kinds 

of cross-linked macromolecules, which are cellulose, hemicellulose and lignin. Adapted from (Sticklen, 

2008) . 

 

Unlike the primary wall which is very flexible, the secondary wall is stiffer, its principal role 

being to strengthen and protect the cell from phytopathogenic aggression, dehydration and 

other environmental risks. The secondary wall is decomposed into S1, S2 and S3 layers 

(Figure A-1), where S1 and S3 are very thin, contrary to the S2 layer that constitutes 70-90% 

of the overall thickness of the secondary wall (Sticklen, 2008). The secondary wall is mainly 

made of cellulose, hemicelluloses and lignins, with the latter being intimately linked to the 

polysaccharide chains through both covalent and non-covalent bonds. As a consequence, 

cells possessing a secondary wall are also known as lignified plant cells. 

 A.1.1.2 Structure and interactions of wall polymers in lignified plant cell wall 

As mentioned above, the main chemical components of lignified cell walls are cellulose, 

hemicellulose and lignin. Their structure, chemical and biological properties are depicted as 

follows. 
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(1) Cellulose  

Cellulose is primary terrestrial repository of renewable carbon, and accounts for 35-50% 

of the dry content of lignocellulose. The structure of cellulose in vitro consists of a long linear 

chain of β-1,4 linked glycosyl groups, with a degree of polymerization ranging from 300 to 10 

000 units. In vivo, the cellulose chains assemble together side-by-side, interacting through 

multiple hydrogen bonds involving the hydroxyl groups on the glucose residues and thus 

form multichain structures, called microfibrils (Figure A-2) (Bayer et al., 1998; Nishiyama et 

al., 2002). Microfibrils are highly stable, and high temperature and pressure are required to 

solubilise their very resistant crystalline organisation (over 320°C and 25 bar) (Shigeru 

Deguchi et al., 2006). 

 

 

Figure A-2. Mesh structure of cellulose microfibrils. 

 

(2) Hemicelluloses 

Hemicelluloses are branched heteropolysaccharide chains, composed of pentoses (D-

xylose and L-arabinose), hexoses (D-mannose, D-galactose, and D-glucose) and uronic acids 

(D-glucuronic acid and D-galacturonic acid). Hemicellulose constitutes 20-40% of the dry 

weight content of lignocellulosic biomass, and is the second most abundant source of 

renewable carbon and the first source of pentose sugars (Ebringerová et al., 2005; Fraser-

Reid et al., 2008; Saha, 2003; Scheller and Ulvskov, 2010). Depending on the backbone 

residues, hemicelluloses are grouped into xylans, glucomannans, xyloglucans, mannans, and 

β-(1→3, 1→4)-glucans. The content of various hemicellulose types is quite different in 

herbage, softwoods and hardwoods. Predominant hemicelluloses are the (glucurono-
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)arabinoxylans (including arabinoxylan and glucurono-arabinoxylan) and galacto-

glucomannans that belong to xylans and mannans respectively , while the other types are 

present in lesser proportions (Fraser-Reid et al., 2008). The details are summarized in Table 

A-1.  

(Glucurono)arabinoxylans are the major hemicellulose found in the secondary cell walls 

of grasses (20-40%, w/w of dry mass), and are also present in softwoods (5-15%), whereas 

glucuronoxylan is the major hemicellulose of hardwoods (15-30%) (Scheller and Ulvskov, 

2010). Consequently, heteroxylans are the second most abundant polysaccharide family 

after cellulose (Haltrich et al., 1996; Prade, 1996).  

 

 

Figure A-3. Schematic structures of glucuronoarabinoxylan (A) and galactoglucomannan (B). 

 

Xylans are composed of a backbone made up of 1,4-linked β-D-xylosyl residues, which 

can be substituted with L-arabinofuranosyl (L-araf), O-acetyl, α-4-O-methyl-D-glucuronic acid 

(MeGlcUA), feruloyl and p-coumaroyl residues (Figure A-3.A and Table A-1). More specifically, 

side chains of glucurono/arabino-xylans are principally α-1,2 or 1,3-linked L-araf, which can 

be present simultaneously on one main chain xylosyl unit, MeGlcUA, and sometimes feruloyl 

or p-coumaroyl moieties, that are linked to the C-4 position of the arabinosyl residue via an 

ester linkage (Berrin and Juge, 2008; Zimmermann, 1991). Glucuronoxylans are substituted 

by α-1,2-linked D-glucuronic acids that are frequently methylated on their O-4 position, and 



BIBLIOGRAPHY  27 

 

nearly 70% of xylosyl residues are acetylated at their C-2 or C-3 positions (Kulkarni et al., 

1999; Numan and Bhosle, 2006). Side chains of xylans are important, since they influence 

many polymer properties such as solubility, physical conformation, interactions with 

cellulose and lignins.  

Galacto-glucomannans are the second most abundant hemicelluloses, mainly present in 

softwood species. The backbone of galacto-glucomannans is a β-1,4-linked copolymer chain 

made up of glucose and mannose units in the ratio 4:1. Single galactose side chain are 

occasionally present as C6-substitutents of mannosyl residues (Figure A-3.B and Table A-1). 

(3) Lignin  

Lignin is a complex phenolic macromolecule that accounts for 10-25% dry weight content 

of lignocelullosic biomass. The structure of lignin is derived mainly from three 

hydroxycinnamyl alcohol monomers: p-coumaryl alcohol, coniferyl alcohol, and sinapyl 

alcohol (Figure A-4) (Boerjan et al., 2003; Lapierre et al., 1986). Three mono-lignols are 

further transformed into p-hydroxyphenyl (H), guaiacyl (G), and syringyl (S) phenylpropanoid 

units and form an amorphous three-dimensional lignin polymer. Inside the plant cell wall, 

lignin never exists as an independent polymer but covalently binds to hemicelluloses via 

linkages between α-carbons and C-4 of benzene rings (Buranov and Mazza, 2008; Ralph et al., 

1995). Due to its high heterogeneity and complex linkage, it is impossible to isolate pure 

lignin polymer and define its precise primary structure. 

 

          

Figure A-4. The three lignin monomers: p-coumaryl alcohol (1), coniferyl alcohol (2), and sinapyl alcohol 

(3). Adapted from (Buranov and Mazza, 2008)  
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Table A-1. Main types of hemicelluloses in plant cell wall. Information are from (Ebringerová et al., 2005; Fraser-Reid et al., 2008; Girio et al., 2010; Scheller and Ulvskov, 

2010) 

Amount in plant cell wall (% w/w, dry mass) Backbone Side chains 

Herbage Softwood Hardwood 
Hemicelllulose 

Type 
Primary Secondary Primary Secondary Primary Secondary 

Unit Linkage Unit Linkage 

L-Araf  α-(1→2/3) 

5-O-Feruloyl-L-Araf α-(1→2/3) 

4–O-Me-D-GlcAp α-(1→2/3) 

(Glucurono-

)arabinoxylan* 
15-30 20-40 Minor 2-15 0-5 - D-Xylp β-(1→4) 

Acetyl O-2/3 

4–O-Me-D-GlcAp α-(1→2) 
Glucuronoxylan - - - - - 15-30 D-Xylp β-(1→4) 

Acetyl O-2/3 

D-Galp † α-(1→6) Galacto-

glucomannan 
- - Minor 10-30 - 0-3 

D-Manp and D-

Glup in ratio 4:1 
β-(1→4) 

Acetyl O-2/3 

Glucomannan 0-2 0-5 - - 2-5 2-5 
D-Manp and D-

Glup 
β-(1→4)   

D-Xylp α-(1→6) 

β-D-Galp-(1→2)-D-Xylp α-(1→6) 

α-L-Fucp-(1→2)-β-D-

Galp-(1→2)-D-Xylp α-(1→6) 

α-L-Araf -(1→2)-D-Xylp α-(1→6) 

β-L-Araf -(1→3)-α-L-Araf -

(1→2)-D-Xylp α-(1→6) 

Xyloglucan 2-5 - 0-10 - 20-25 Minor D-Glcp β-(1→4) 

Acetyl 

O-2/3 of 

Xylp 

β-(1→3, 1→4)-

glucan 
2-15 Minor - - - - D-Glcp 

β-(1→4):β-

(1→3) = 3:4   

* (Glucurono-)arabinoxylan include glucurono-arabinoxylan and arabinoxylan 

† Substitution of D-Galp only happens on mannose backbone residues 
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(4) Overall spatial organisation   

In secondary walls, the three polymer families described above are spatially dispersed, 

and attached to one another, making up a highly cross-linked network (Lin and Tanaka, 

2006; Sticklen, 2008; Takashi, 1989). Here, hemicelluloses work as molecular glue, coating 

the surface of cellulose microfibrils, mainly via hydrogen bonds, and associating with lignin 

via covalent bonds (Grabber et al., 2004; Somerville et al., 2004). In addition, a portion of 

lignin directly links to cellulose (Choi et al., 2007; Tenkanen et al., 1999). 

In woody biomass, lignin forms a complex with hemicelluloses via benzyl ester, benzyl 

ether, acetal and glycosidic bonds (Koshijima and Watanabe, 2003; Takashi, 1989). In 

herbaceous crops, lignin can be covalently linked to hemicelluloses via so-called phenolic 

bridges (Figure A-5). These phenolic bridges (involving feruloyl or p-coumaroyl moieties) 

which are formed via the establishment of ester links between two phenolic acids or by 

various types of ether or C-C links between a phenolic acid and lignin, provide the means to 

physically link two hemicellulose molecules or a hemicellulose molecule to lignin (Grabber et 

al., 2004; Ralph et al., 1998). Both alkali and acidic reagents can cleave the lignin-

carbohydrate complex, acting on ester- or ether- bonds respectively, and acid treatment can 

cut the ether bond between sugar residues (Figure A-5) (Buranov and Mazza, 2008; Sun et al., 

2002).   

 

 
Figure A-5. Lignin-arabinoxylan complex in wheat straw. Adapted from (Buranov and Mazza, 2008). 

 

Since lignin is a hydrophobic and aromatic macromolecule, the association of carbohydrates 

and lignin results in the cell wall becoming more hydrophobic, impermeable and difficult to 

degrade, thus lignification can be considered to be the erection of a defensive barrier 
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(Buranov and Mazza, 2008). From the point of view of biorefining, the existence of lignin-

carbohydrate complexes constitutes a major physical and spatial obstacle in the conversion 

of lignocellulosic biomass into useful products. 

 

In conclusion, lignocellulosic biomass holds considerable promise in terms of renewable 

carbon and energy, and as such is a potential feedstock for biofuels and biochemicals. 

However, lignified cell walls are naturally designed to resist biological or chemical aggression. 

Therefore one of the greatest challenges for biorefining is to find how to efficiently 

breakdown the cell wall barrier, without destroying the intrinsic value of the molecular 

constituents. 

 A.1.2 Availability of lignocellulosic feedstocks for biorefining 

In terms of quantity, the primary sources of lignocellulosic biomass are wood and the 

coproducts of major cereal crops. Another important source of lignocellulosic biomass that is 

often neglected is domestic and industrial waste materials, which can also form part of 

virtuous recycling strategies. Therefore, it is possible to classify lignocellulosic biomass into 

two groups: one is natural resource and the other is derived from human activities (Table A-

2). 

 

Table A-2. Available lignocellulosic feedstocks 

Category Sub-category Examples 

Forest residues  
Woody plants 

Short rotation plantations (e.g. willow, poplar) 

Agricultural crops (e.g. wheat straw, corn stover) 
Natural source 

Herbaceous plants 
Grasses (e.g. Napier grass, reed canarygrass) 

Industrial by-

products and wastes 

Fibrous waste and lignin from paper industry; 

Industrial waste wood (e.g. sawdust from sawmills) 
Industrial & 

municipal sources 
Municipal wastes Waste papers, demolition wood, building rubble 

 

Theoretically, all lignocellulosic biomass types are potential feedstocks for biorefining. 

However, accounting for economic and logistical constraints such as purchase price, 

available volumes, feasibility of harvesting and transportation, cereal crop by-products are 

suitable sources for countries that have a strong agricultural industry (e.g. west Europe, 

eastern and south-eastern Asia and USA), and wood is a potentially very abundant feedstock 
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in forest-dense areas (e.g. north Europe and north America) (Ash, 2004; Möller et al., 2007) 

(Somerville et al., 2010). In addition to forestry and agri-food industries, an alternative 

source of biomass are so-called energy crops, which are plants that are grown in the primary 

aim of supplying biorefineries. Ideally, these crops, which include Miscanthus sp., 

switchgrass and short rotation coppice such as willow, poplar etc., should be grown on 

marginal or polluted land that is not used for food production (Borland et al., 2009; 

Campbell et al., 2008; Somerville et al., 2010; Yuan et al., 2008).  

 A.1.2.1 Wheat straw as an important biomass feedstock 

Wheat (Triticum spp.) is the second most popular cereal crop in the world and is widely 

cultivated between 30-50° N and 25-40° S latitudes (U.S.DOE, 2006). Wheat cultivation 

worldwide uses about 2.2 billion hectares, and 681 million tons of wheat grain was 

harvested in 2009 (FAO, June 2009). The ratio of wheat straw to grain yields is reported to 

be in the range 1.25-1.67 (Engel et al., 2005). Therefore annual global wheat straw 

production is estimated to be at least to 850 million tons. Taking into account the fact that 

the European Union is the world’s primary producer of wheat, it is logical that wheat straw is 

the most abundant crop residue in Europe. 

 

Table A-3. Chemical composition of wheat straw (w/w, % content of dry mass) 

Country Cellulose 
Hemicellulose 

(Xylan) 
Klason lignin Ash Reference 

Mexico 49.2 31.4  10.8 - (Salmones et al., 2005) 

India 36.6 24.8 (21.6) 14.5 9.6 (Chandrakant and Bisaria, 1998) 

USA 36.7 34.7 18 7.4 (Mckean and Jacobs, 2007) 

USA 39.8 27.3 (24.5) 22.6 4.2 (Kristensen et al., 2008) 

Denmark 49.8 22.9 (19.2) 16.9 1.9 (Pedersen and Meyer, 2009) 

France 41.2 - (26.1) 19.1 - (Rémond et al., 2010) 

 

The composition of wheat straw can be influenced by both the genotype and pedoclimatic 

conditions. Table A-3 lists the chemical contents of wheat straw from different countries. In 

general terms, wheat straw contains a high level of carbohydrates that account for 

70.1±5.9% of total weight, and xylan represents the majority of the hemicellulose. Lignin 

content varies significantly, but represents about 17.0±3.7% (coefficient variation = 22%), 

which may result from different methods of biomass decomposition and measurement. In 

the molecular structure of wheat straw hemicellulose, p-coumaric and ferulic acids are 
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involved in cross-linkages between polysaccharide and lignin chains, so that these two 

hydroxycinnamic acids exist as esterified or etherified compounds in vivo (Buranov and 

Mazza, 2008). Sun et al. have observed that esterified and etherified p-coumaric acids 

account for 3.78% and 1.72% of total components, while esterified and etherified ferulic 

acids are in the amount of 1.02% and 2.20% respectively, indicating a much less amount of 

esterified p-coumaric acid than in corn stovers (6.7%) (Sun and Tomkinson, 2002). 

 

Current industrial applications of wheat straw mainly focus on animal feed, papermaking, 

and combustible fuel. In a long-term view, wheat straw constitutes an attractive feedstock 

for biorefinery industry due to its advantages of low cost (35-55 € per dry tonne, quote 

online), regional abundance and homogeneous production (Banowetz et al., 2008; Buranov 

and Mazza, 2008; Kerstetter and Lyons, 2001). In addition, excellent knowledge of wheat 

genetics and breeding techniques holds promises to optimize cell wall characteristics and to 

generate dedicated bioenergy wheat varieties (Möller et al., 2007). It is believed that 

expansion of wheat straw as biorefinery feedstock will offer a new market for agricultural 

crop residues and will benefit rural areas.  

 A.2 The biorefinery concept 

This section will consider the state-of-the-art processing options used in the biorefinery of 

lignocelluloses, and highlights the actions of microorganisms/enzymes in the process. 

 A.2.1 General introduction 

By definition, biorefining concerns the production of energy, chemicals and materials from 

biomass, associated with an overall favourable environmental footprint that is consistent 

with ‘green’ strategies. To achieve this, biorefineries will rely to some extent on the use of 

biotechnology tools that will contribute to a zero waste approach and to sustainable 

production (Clark and Dewarte, 2009; McKendry, 2002). Biorefining has been identified as a 

key technology for the necessary transition towards a post-petroleum economy, not only 

because it provides renewable energy, especially liquid fuels (bioethanol and biodiesel), but 

also because its predominant contribution is to produce chemicals and materials that other 

renewable energy sources (winds, solar and hydro powers, etc) can not furnish.  
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In contrast to 1st generation biorefinery processes, which use cereal grains (corn, wheat) and 

sucrose-rich plants (sugar cane, sugar beet) as raw material and lead to potential food 

competition, lignocellulose-based biorefining uses non-food feedstocks and is thus classified 

as 2nd generation biorefining. However, the conversion of lignocellulose is more difficult than 

the conversion of starch grain or sucrose, as the structural and chemical composition of 

lignocelluosic biomass is much more complex. Currently, hemicellulose conversion is divided 

into two distinct itineraries, which are the thermochemical and biotechnological routes 

(Goyal et al., 2008; Hubbard et al., 2007; McKendry, 2002).  

 

Thermochemical conversion relies on heat and chemical reactions, as means of extracting 

and creating products and energy (Hubbard et al., 2007). The main processes include 

combustion, gasification, pyrolysis and liquefaction (Goyal et al., 2008). Combustion directly 

burns biomass to produce heat and electricity; gasification occurs at 800-900°C to 

decompose lignocelluloses into synthesis gases, mainly comprised of hydrogen and carbon 

monoxide; pyrolysis is performed in anaerobic conditions within a temperature range of 

350-550°C, and converts biomass into energy, liquid oil, gases and char; liquefaction liquefies 

biomass under conditions of high pressure and low temperature, together with hydrogen 

and a catalyst (Goyal et al., 2008; Saxena et al., 2008). In the case of lignin conversion into 

added value products, themochemical methods, especially pyrolysis, appears to offer more 

potential than biotechnological strategies (Lynd et al., 2005; Yang et al., 2007) (Goyal et al., 

2008; McKendry, 2002). 

 

Biotechnological conversion can be subdivided into two main processes: anaerobic digestion 

and fermentation (McKendry, 2002).  

(1) Anaerobic digestion converts lignocellulosic biomass into biogases using consortia of 

methanogenic bacteria operating in an anaerobic environment. The biogas product is 

mainly composed of methane and carbon dioxide. This process is widely used for 

biomass wastes with high moisture content, and the most used microbial species include 

Methanobacterium sp., Methanococcus sp., Methanosarcina sp. and Methanopyrus sp. 

(Arshadi and Sellstedt, 2009). The purified methane can be utilized as fuel or as a 

chemical raw material. The overall efficiency from biomass to electricity through gas 

combustion is about 10-16% (McKendry, 2002). 
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(2) Unlike anaerobic digestion, fermentation employs pure (axenic) microbial cultures 

involving a bacterium or yeast strain. The process is usually oxidative and 

monosaccharides (predominantly glucose and xylose extracted from lignocelluloses) are 

transformed into fuels or desired chemicals.  

 

With the development of strain engineering, especially for the use of pentose sugars, 

fermentation is becoming an extremely powerful industrial option (Hendriks and Zeeman, 

2009). Glucose can be selectively fermented into various chemicals, among which the two 

main representatives are lactic acid and ethanol (Ohara, 2003). Lactic acid can be 

polymerized to make plastics, solvents and other chemicals through the processing of 

esterification, dimerization and polymerization (Dodds and Gross, 2007; Ragauskas et al., 

2006). Ethanol mainly serves as a transportation fuel, and can also be esterified, forming 

ethyl lactate which is used as a biodegradable solvent, or dehydrogenated to form ethylene 

which then can be used to form polyvinyl chloride (Clark and Dewarte, 2009; Ohara, 2003). 

Xylose is mostly fermented into ethanol or xylitol. The latter is one of the top 12 value-added 

chemicals evaluated by the US Department of Energy, and its derivatives include xylaric acid, 

hydroxyl-furans, polyesters, and propylene glycol (Koutinas et al., 2009). The residues of 

fermentation are usually rich in phosphates and potash, both of which can be utilized as 

fertilizers. 

 A.2.2 State of the art of process configurations 

To date, although biorefining of lignocellulosic biomass only exists at laboratory or pilot-

scale stage (Huang et al., 2008), extensive studies are progressing in Europe (e.g. Biorefinery 

Euroview, BIOPOL, BIOCORE projects), USA and other countries (Clark and Dewarte, 2009). It 

is expected that 2nd generation biorefining should be highly flexible, using a wide variety of 

lignocelluloses feedstocks and producing an array of end-products. 

To achieve these ambitious goals, it is recognized that an integrated platform should 

basically include the following four modules, also shown in Figure A-6.    

(1) Module 1 – physical separation and pretreatment: involve milling or grinding of 

biomass into small particles, and further extraction of lignin and hemicelluloses from 

cellulose through chemical, physical and/or biological pretreatment methods. 
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(2) Module 2 – enzymatic hydrolysis (saccharification): aimed at fractionating cellulose 

and hemicelluloses into monomeric sugars independently or simultaneously by catalytic 

cocktails made of various microorganisms and/or enzymes. Enzymatic hydrolysis is 

thought to be superior to chemical methods, such as acid hydrolysis, because enzymes 

are more specific, thus avoiding the generation of degradation products and reducing the 

need for depollution of effluents. 

(3) Module 3 – biological and/or chemical catalysis (including fermentation): tends to use 

multiple processes to convert sugar syrups (glucose and pentoses) into a range of bio-

products.   

(4) Module 4 – product recovery/separation and purification: these are general grouped 

under the term downstream processes. 

 

 
Figure A-6. Biotechnological biorefinery strategies for lignocellulosic biomass. Enzymatic saccharification 

and fermentation are performed independantly in the separate hydrolysis and fermentation concept 

(SHF) (grey background with dashed frame), but are performed simultaneously in the simultaneous 

saccharification and fermentation concept (SSF) (blue background). Consolidated bioprocessing (CBP) 

(pink background) is an integrated concept in which enzyme production, saccharification and 

fermentation occur in a single reactor. The figure is adapted from (Clark and Dewarte, 2009) and (Girio et 

al., 2010).  

 

With the exception of downstream processes, which generally constitute independent 

process operations, the other three modules can be conducted either separately, or through 

the combination of two or three steps. Currently two process strategies exist: separate 

hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) 
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(Figure A-6). As indicated by their names, the two strategies differ in that hydrolytic and 

fermentative steps are either discrete or simultaneous. More specifically, when soluble 

pentose is fermented together with hexose, the above two processes are designated as 

separate hydrolysis and co-fermentation (SHCF) and simultaneous saccharification and co-

fermentation (SSCF).  

 

In the concept of future biorefining, consolidated bioprocessing (CBP) is a favourable 

alternative that was first proposed by Lynd in 1996. Basically, CBP combines enzyme 

production, polysaccharide hydrolysis and fermentation in a single step, using 

microorganisms that possess both (hemi)cellulolytic and fermentative properties (Figure A-

6) (Lynd, 1996). Compared to other transformation itineraries, CBP has important 

advantages, especially in cost reduction and efficiency improvement (French, 2009; Lynd et 

al., 2002). As a comparison, in 2005, it was estimated that the CBP process could decrease 

the theoretical cost of bio-ethanol from 0.036 €/l (SSCF process) to 0.008 €/l, while 

shortening reaction time from 7 days to 1.5 days (Lynd et al., 2005). 

 A.2.3 Pretreatment of lignocellulosic biomass 

As lignocellulosic biomass is hard to fractionate, the aim of pretreatment is to break down 

the plant cell wall matrix, extract the three main components (cellulose, lignocelluloses and 

lignin) and render cellulose more accessible to further enzymatic hydrolysis (Ragauskas et al., 

2006). Consequently, pretreatment critically influences the feasibility and efficiency of 

subsequent steps (Wyman, 2007). Existing pre-treatment methods are classified into 

chemical, physical and/or biological families according to the process and reagents 

employed (Figure A-7).  

 

Mechanical milling or grinding is generally carried out for all raw biomasses, to increase 

biomass density, enlarge accessible surface area, and reduce cellulose crystallinity. 

Regarding chemical pretreatment, the intrinsic pH of this step determines to a large extent 

the composition of the residual, solid lignocellulosic fraction. Acidic (including hydrothermal) 

treatments selectively target hemicellulose removal through the generation and action of 

hydronium ions and/or high temperature, and result in liquid fractions rich in hemicellulose 

oligomers and cellulose/lignin-enriched solids (except in the case of concentrated acid 



BIBLIOGRAPHY  37 

 

treatment, where monosaccharides are generated) (Martin et al., 2008; Ruiz et al., 2008). In 

contrast, alkaline reagents cleave ester bonds between lignin and polysaccharides, and thus 

remove lignin, but only partly solubilise hemicelluloses (Girio et al., 2010). In addition, 

alkaline pretreatment removes acetate substitutions (Carvalheiro et al., 2008). Of the 

various methods, hydrothermal pretreatment using liquid hot water is considered the best 

strategy to remove hemicellulose from cellulose/lignin-enriched solids, because of the mild 

pH involved, the reduced amounts of polluted effluents, and low level of inhibitory by-

products (Girio et al., 2010; Merino and Cherry, 2007; U.S.DOE, 2006). However, to maximize 

lignin extraction, leaving a residue of hemicelluloses and cellulose, ammonia fiber explosion 

appears to be a better choice (Carvalheiro et al., 2008; Chundawat et al., 2007). 

 

 

 
Figure A-7. Various pretreatments tailored for lignocellulosic biomass. 

 

 

Biological pretreatment employs microorganisms (e.g. white-rot fungi) that directly act on 

raw lignocellulosic biomass, by secreting one or more lignin and/or hemicellulose-degrading 

enzymes. Compared to other pre-treatments, the biological approach is characterized by 

mild reaction conditions, high specificity, and no generation of fermentation inhibitors, and 

is potentially highly environmentally friendly. However, current biological pretreatments are 

slow and thus require long reaction times, which are incompatible with industrial demands 
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(Sánchez and Cardona, 2008). Therefore, it is necessary to develop new strains and enzymes 

with improved efficiency.  

 A.2.4 Saccharification and fermentation in various process configurations 

Regarding enzymes for SH(C)F process, complex cocktails of containing cellulases and 

hemicellulases are employed. For example, a cocktail of CMC-ase cellulase, β-glucosidase 

xylanase, β-xylosidase and α-arabinofuranosidase successfully solubilised 96.7% of total 

sugars held within alkaline peroxide-pretreated wheat straw (Saha and Cotta, 2006). 

Monomeric hexoses and pentoses produced by enzymatic hydrolysis can be fermented, 

either using yeast (e.g. Saccharomyces cerevisiae, Kluyveromyces marxianus, Pichia stiptitis) 

or bacteria (e.g. E. coli, Z. mobilis). The yeast S. cerevisiae is the most commonly used 

microorganism to produce ethanol, which uses hexoses as substrate. Many years of 

metabolic engineering on this yeast have recently allowed the creation of new strains that 

are also able to ferment pentoses (Fonseca et al., 2007; Hahn-Hagerdal et al., 2007a; Hahn-

Hagerdal et al., 2007b) 

 

In SS(C)F process, enzymes and microorganisms are added into one reactor, and 

monosaccharides generated by enzyme action on polysaccharides are immediately 

consumed by the microorganism, thus avoiding side reactions and end-product inhibition 

(Olofsson et al., 2008). In many cases, fermentation can be carried out prior to the 

completion of saccharification. As a matter of fact, the extent and speed of ethanol 

production can increase in SS(C)F compared to SHF (Arshadi and Sellstedt, 2009; Merino and 

Cherry, 2007; Olofsson et al., 2008; Stenberg et al., 2000). Nevertheless, to maintain correct 

rheological conditions, very large amounts of culture medium are used, resulting in diluted 

products. Moreover, because the SS(C)F process requires a compromise between hydrolysis 

and fermentation conditions (in terms of pH and temperature optima), enzyme loading is 

higher than in the SH(C)F process in order to ensure adequate hydrolysis (Sánchez and 

Cardona, 2008). Consequently, decreasing the cost of saccharolytic enzymes is important for 

the SS(C)F strategy. 

 

Identifying naturally occurring microorganisms that satisfy all of the requirements for CBP is 

difficult, although a number of candidates that exhibit some of the requirements are known 
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(e.g. thermophilic bacteria that display good utilization of pentoses and hexoses or yeast 

that are characterized by high productivity and product yields). Therefore, strain engineering 

is almost certainly a prerequisite for the production of efficient CBP microorganisms and in 

this respect synthetic biology holds much promise (French, 2009; Lynd et al., 2005). In recent 

studies, cellulases, hemicellulases or even mini-cellulosomes have been successfully 

expressed on the surface of recombined S. cerevisiae to complement its natural 

fermentation ability (Lilly et al., 2009; van Zyl et al., 2007), constituting a definite 

breakthrough for the CBP configuration. 

 A.3 Enzymes in biorefining 

The enzymes involved in biorefining are categorized into two groups: cellulases and 

hemicellulases. Cellulases refer to a series of enzymes participating in cellulose hydrolysis, 

but which can also be active on hemicelluloses. Similarly, hemicellulases correspond to a 

multi-component enzyme system active towards the degradation of hemicelluloses. These 

enzymes can be either added into the reactor in the form of a crude or purified enzymatic 

preparation, or directly produced in the reactor by (hemi)cellulolytic microorganisms. In this 

paragraph, we will focus on the different elements of each enzyme group and on how they 

participate to substrate hydrolysis.  

 A.3.1 Cellulases   

 A.3.1.1 Type of cellulases and mode of action 

In order to break down cellulose chains into glucose monomers, a minimum of three major 

cellulose activities are required, which are endoglucanases (EC 3.2.1.74), exoglucanases (EC 

3.2.1.91) and β-glucosidases (EC 3.2.1.21) (Chang, 2007; Lynd et al., 2002). Concerning their 

enzymatic activities (Figure A-8), endoglucanases cleave internal β-1,4 glycosidic linkages of 

amorphous cellulose to form oligosaccharides of various lengths. Exoglucanases cover two 

subtypes: CBHI and CBHII, which cleave off cellobiosyl residues (and to some extent glucose 

and other cello-oligosaccharides) from the reducing (CBHI) or the non-reducing ends (CBHII) 

of poly/oligo-cellulose chains. In addition, exoglucanases can also slowly break down 

microfibril structures and decrease the degree of polymerization of cellulose. Finally, β-

glucosidases act upon the cellobiose and cellodextrins and turn them into glucose 

monomers (Himmel et al., 2007; Lynd et al., 2002; U.S.DOE, 2006).  
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Most fungal cellulases are composed of a catalytic module and a carbohydrate binding 

module (CBM) which are connected by a flexible linker (Lynd et al., 2002). The CBM only 

affects the ability of the enzyme to bind to cellulose, and presumably helps the cellulase to 

remain in close contact with its insoluble substrate (Lynd et al., 2002).  

 

Due to synergetic interactions between all the components, the efficiency of a cellulolytic 

system is always higher than the sum of the individual activities of each enzyme. This 

cooperation is mainly linked to the following four aspects (Lynd et al., 2002): 

(1) synergistic interactions between the catalytic domain and CBMs for substrate 

binding; 

(2) endo-exo synergism between endoglucanases and exoglucanases in degrading 

cellulose into oligomers; 

(3) exo-exo synergism between CBHI and CBHII exoglucanases in cleaving cellulose at 

both reducing and non-reducing ends; 

(4) synergistic interactions between exoglucananases and β-glucosidases in converting 

cellobiose into glucose. 

 

 

  

Figure A-8. Functional representation of a free cellulase system in the hydrolysis of cellulose (Lynd et al., 

2002). 
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 A.3.1.2 Sources of cellulolytic enzymes and cellulosome 

Cellulolytic microorganisms are classified into two categories. The first category, known as 

the free cellulase system, includes filamentous fungi and actinomycetes bacteria, which 

secrete cellulases into the surrounding medium (Lynd et al., 2002). Such secretomes can be 

recovered and used as so-called cocktails for biorefining. The majority of current industrial 

cellulose cocktails are of fungal origin, especially from Trichoderma sp., Penicillium sp. or 

Aspergillus sp. (Lynd et al., 2002; Nieves et al., 1998).  

 

In contrast, cell-bound cellulosomes (2-100 MDa) are found in anaerobic cellulolytic bacteria 

and fungi (e.g. Clostridium and Bacteroides) (Lynd et al., 2002). Cellulosomes are remarkably 

large enzymatic complexes, which not only include cellulolytic modules, but also possess 

modules of other glycoside hydrolases, polysaccharide lyases and carboxyl esterases. These 

catalytic domains are linked together by a large noncatalytic scaffoldin protein, consisting of 

a cluster of cohesins, connected to other functional units such as enzymes and CBMs via 

dockerins (Gilbert, 2007; Lynd et al., 2002). The cellulosome thus formed is attached to the 

cell wall surface through an anchoring protein. 

 

The fundamental mechanisms that describe the hydrolysis of cellulose by cellulosomes are 

identical to those that characterize free cellulase systems, except that the overall activity is 

much more efficient thanks to powerful synergistic effects (Lynd et al., 2002). The first 

observation is that the cellulosome itself is a combination of various cellulases, so it provides 

critical co-localisation of the vital cellulolytic components. Secondly, other enzymatic 

activities also present on the cellulosome, such as hemicellulases and/or esterases, will 

enhance the impact of the cellulases by helping to overcome physical hindrances of 

lignocelluloses (Demain et al., 2005; Gilbert, 2007; Lynd et al., 2002).  

 A.3.2 Hemicellulases 

In order to maximize the use of lignocellulosic biomass and thus to minimize waste and 

reduce the cost of products, it is important to account for hemicellulose valorization (Bhat, 

2000; Wyman, 2007). Nevertheless, the complexity of hemicellulose structures requires a 

wide diversity of hemicellulases, which can be decomposed into three types according to 

linkage specificity: 
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(1) Depolymerizing hemicellulases, such as endo-1,4-β-xylanase and endo-1,4-β-

mannanase that cleave the backbone of hemicellulose – acting on heteroxylans and 

heteromannans respectively-  and release short chain oligosaccharides.  

(2) Accessory hemicellulases that act on mainchain substitutions and thus reduce spatial 

impediment and facilitate the action of depolymerizing hemicellulases. Accessory 

hemicellulases include α-glucuronidase, esterases, β-glucosidase and α-galactosidase. 

(3) Oligosaccharide-cleaving hemicellulases convert oligomers into monosaccharides : 

they include β-xylosidase, β-mannosidase, and α-L-arabinofuranosidase producing xylose, 

mannose and arabinose respectively. 

 

Hemicellulases act synergistically both between themselves to achieve hemicelllulose 

hydrolysis, but also with cellulases to better degrade cellulose. Indeed, because 

hemicellulose and cellulose are intimately associated in biomass, the degradation of one 

polymer increases the accessibility of the other and vice versa (Kumar and Wyman, 2009b; 

Murashima et al., 2003; Shallom and Shoham, 2003). 

 A.3.2.1 Hemicellulases for heteroxylan hydrolysis 

The key enzymes required for heteroxylan hydrolysis are endo-1,4-β-xylanase (EC3.2.1.8), α-

L-arabinofuranosidase (EC 3.2.1.55), and β-xylosidase (EC 3.2.1.37) (Figure A-9).  

 

 

 
Figure A-9. Representation of hemicellulase action on the hydrolysis of heteroxylan. All involved 

enzymes are underlined. The figure is adapted from (Dodd and Cann, 2009). 
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Endo-1,4-β-xylanase selectively hydrolyse β-1,4-linkages between xylosyl units that form low 

to moderately substituted regions in xylan. These enzymes initially liberate short xylo-

oligosaccharides as products. Upon prolonged incubation, the main final products of endo-

1,4-β-xylanase are xylobiose and xylotriose. Xylanase properties will be detailed in Part B.  

 

α-L-arabinofuranosidases are exo-acting enzymes that release α-(1→2) and/or α-(1→3) 

linked arabinofuranose residues from soluble products of xylanases (Numan and Bhosle, 

2006; Paës et al., 2008; Sørensen et al., 2007). Finally, β-xylosidase attacks the non-reducing 

ends of xylooligosaccharides and liberates terminal xylosyl residues, thus helping to decrease 

the inhibition of cellulases by xylo-oligosaccharides (Kumar and Wyman, 2009b).  

 

Other accessory hemicellulases commonly involved in heteroxylan hydrolysis include α-

glucuronidase (EC 3.2.1.139) that removes α-1,2-linked glucuronic acid residues in 

glucuronoxylan and glucurono-arabinoxylan, acetyl-xylan esterase (EC 3.1.1.72) that cleaves 

acetyl groups substituted at C-2 and C-3 positions of backbone xylosyl residues, and ferulic 

acid/p-coumaric acid esterases (EC 3.1.1.73) that removes phenolic acids linked to arabinosyl 

residues (Figure A-9) (Beg et al., 2001; Carvalheiro et al., 2008). 

 

In Nature, xylanolytic microorganisms are widespread among bacteria and fungi (Sunna and 

Antranikian, 1997). However, so far Bacillus sp, Aspergillus niger, Thermomonospora fusca, 

and Trichoderma reesei have been used as the primary sources of industrial xylanases 

(Polizeli et al., 2005). Also, genes encoding various hemicellulases have been cloned into S. 

cerevisiae in order to create a recombinant strain suitable for SSF applications (Gorgens et al., 

2004; La Grange et al., 2001; Lee et al., 2009).  

 

Like the cellulosome, the xylanosome – a complex xylanolytic system – has also been found 

in some anaerobic bacteria. An extracellular xylanosome from Butyvibrio fibrisolvens H17c 

has been reported to possess eleven enzyme subunits displaying xylanase activity and three 

subunits displaying endoglucanase activity (Lin and Thomson, 1991). Likewise, Jiang et al 

found a xylanosome in Streptomyces olivaceoviridis that was composed of at least four 

xylanase units, one CMCase unit and one xylan binding module (Jiang et al., 2006). 
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 A.3.2.2 Hemicellulases for heteromannan hydrolysis 

Mannanases also have potential applications for biorefining of softwoods, in which galacto-

glucomannans are the predominant hemicelluloses (see section I.1.1 for details). The 

complete hydrolysis of heteromannans first requires endo-1,4-β-mannanase (EC 3.2.1.78) to 

depolymerize the backbone, as well as branch-removing enzymes, including α-galactosidase 

(EC 3.2.1.22), acetylmannan esterase and β-glucosidase. Finally, mannose liberation is 

accomplished by β-mannosidase (Ademark et al., 1998; Wyman, 2003). Important species 

for mannanase production include Bacillus sp., Streptomyces sp. and Caldibacillus sp. (Girio 

et al., 2010). 

 A.3.3 Current and future R&D targets and challenges 

Reducing the cost of enzymes is a key issue in enzymatic deconstruction of lignocellulosic 

biomass (Merino and Cherry, 2007; U.S.DOE, 2006), and improving enzymatic efficiency and 

increasing yield and productivity constitute the two major strategies to achieve cost 

reduction. Over the past 15-20 years, cellulases have benefited from considerable research 

focus, with large-scale commercial production now being a reality.  

 

Table A-4. Commercially available lignocellulosic enzyme cocktails on the  market. 

Product Manufacturer State Production organism Components 

Celluclast 1,5L  Novozymes Liquid Trichoderma reesei Cellulases 

Cellic Ctec 1/2 Novozymes Liquid unknown Cellulases 

Cellic Htec 1/2 Novozymes Liquid unknown Xylanases 

Novozym188  Novozymes Liquid Aspergillus niger β-glucosidases 

Accellerase 1000/1500 Genencor Liquid Trichoderma reesei Cellulases 

Accellerase XC Genencor Liquid Penicillium funiculosum Cellulases and xylanases 

Accellerase XY Genencor Liquid Trichoderma reesei Xylanases 

Accelerase BG Genencor Liquid Trichoderma reesei β-glucosidases 

CellulaseA“Amano”3 Amano Enzyme Liquid Aspergillus niger Cellulases 

Meicelase Meiji Seika Kaisha Powder Trichoderma viride Cellulases 

 

In contrast, studies on hemicellulases have lagged behind, despite the fact that these are 

also important and that it is necessary to properly valorise hemicelluloses. Therefore, one of 

today’s challenges is to further develop hemicellulases, selecting robustness, efficiency and 

productivity, and aiming for enzymes that will better penetrate and hydrolyze complex 

biomass and work in synergy with cellulases.  
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When one considers today’s commercial biomass-degrading cocktails, it is apparent that 

Trichoderma reesei is the main industrial source of these (Table A-4), with the secretome of 

this fungus being composed of at least two exoglucanases, five endoglucanases and two β-

glucosidases (Lynd et al., 2002).  

 

Regarding future improvements of such cocktails, it will be necessary to further increase 

catalytic turnover of the component enzymes, reduce absorption of enzymes onto, or 

inhibition, by lignins and phenolic compounds, harmonize pH and temperature optima of the 

enzyme components, and reduce sensitivity to high temperatures and/or other denaturants 

and inhibitors. To achieve all of the targets, sophisticated enzyme engineering technologies 

will be required. These will include both rational engineering and random approaches,  

which both can be very powerful when the necessary prerequisite conditions are present. 

For rational enzyme engineering it is vital to possess detailed knowledge of 3D structure, 

structure-function relationships, fundamental mechanisms and the factors that define 

enzyme action on biomass. Although, increasingly, methods now exist to provide such 

information, the role of dynamic protein movements is still under study and the 

understanding of complex interactions that characterize the action of enzymes on biomass 

and the synergies between biomass-degrading enzymes is still at an immature stage. 

Comparatively, random engineering approaches require much less input information. 

However, the key issue in random engineering is the availability of an appropriate high 

throughput screening method that is sufficiently well built to provide pertinent output from 

a given mutant library. This is a considerable challenge because very simple screens are likely 

to procure oversimplified answers, while highly complex screens can provide a multitude of 

different solutions, which are then difficult to interpret. 

 

Regarding enzyme production, future advances in this area will have to address issues such 

as the development of a wider range of industrial host expression systems and/or the 

improvement of robust gene expression in existing ones, focussing among other things on 

regulation factors. The development of new production modes is also an attractive target, 

for example, the co-cultivation of cellulolytic organisms (microbial consortia) producing 

complementary cellulolytic and hemicellulolytic components (Kumar et al., 2008). Enzyme 
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production based on solid-state fermentation, using moist agricultural wastes as the carbon 

source is also an interesting avenue of research. In recent studies, this technique has 

provided high yields of both cellulases and xylanases (Beg et al., 2001; Dogaris et al., 2009). 

Finally, further development of autonomous or CBP microorganisms that can both produce 

their own enzymes and perform bioconversion of biomass intermediates into useful 

products is to be expected.  
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 Part B  Endo- β-1,4-xylanase 

 B.1 Source and classification 

Endo-1,4-β-xylanases (EC 3.2.1.8), commonly known as xylanases, randomly attack and 

depolymerize β-1,4 linked heteroxylans, producing short xylo-oligosaccharides (XOS) and, in 

some cases, xylose as main products (Berrin and Juge, 2008; Zimmermann, 1991). Only 

endo-1,3-β-xylanases (EC 3.2.1.32), rarer than endo-1,4-β-xylanases, hydrolyse β-1,3-linked 

xylan or β-1,3/β-1,4-mixed linkage xylan, which are mainly found in marine organisms 

(Deniaud et al., 2003; Frei and Preston, 1964; Okazaki et al., 2002; Turvey and Williams, 

1970).  

 

Endo-1,4-β-xylanases are widespread among bacteria and fungi, with the genera Bacillus, 

Aspergillus, Penicillium, and Streptomyces being particularly associated with xylanase 

production. Usually, fungal xylanolytic organisms prefer acidic growth conditions compared 

to bacterial ones (Kulkarni et al., 1999) and the production of xylanases in natural hosts is 

usually induced by the presence of xylan or xylan derivatives in the culture medium (Beg et 

al., 2001; Prade, 1996). Some fungal species are able to produce multiple xylanases. For 

example, Aspergillus niger and Trichoderma viride secrete fifteen and thirteen extracellular 

xylanases respectively (Collins et al., 2005). Post-translational glycosylation of xylanases is 

frequently observed among eukaryotic endoxylanases and even some prokaryotic xylanases, 

from Bacillus sp. and Clostridium stercorarium, have been reported to be non-covalently 

associated with sugar chains (Kulkarni et al., 1999; Wong et al., 1988). In all cases, it is 

hypothesized that the associate carbohydrate groups contribute to the stability of xylanases, 

offering protection in extreme environments (Kulkarni et al., 1999).  

 

At present time, the most common classification system for glycoside hydrolases (GH) is the 

CAZy database (http://www.cazy.org/) that organizes enzymes into families according to 

amino acid sequence similarity (Henrissat and Bairoch, 1993). Unlike the IUBMB enzyme 

classification system, which is based on the chemical reaction, the CAZy is informationally-

rich, because it accounts for enzyme structure and, providing that the biochemical 
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characteristics of at least one family member are known, it reveals fundamental mechanistic 

and structural information for whole families. Importantly, the CAZy system pinpoints family 

relationships among enzymes that display different substrate specificities and thus accounts 

for divergent evolution. Thus far, up to 125 GH families have been defined, though regular 

updates will without doubt increase this number. Beyond the family level, CAZy also defines 

clans, which are composed of CAZy families that display similar 3D architecture. Clans also 

result from divergent evolution and thus probably reflect the differential adaption of a 

common ancestor (Henrissat and Bairoch, 1996). The 14 existing clans and their associated 

folds are summarized in Table B-1. 

 

Table B-1. Clans of glycoside hydrolases. 

Clan Structural fold GH family 

GH-A (β/α)8 1, 2, 5, 10, 17, 26, 30, 35, 39, 42, 50, 51, 53, 59, 72, 79, 86, 113 

GH-B β-jelly roll 7, 16 

GH-C β-jelly roll 11, 12 

GH-D (β/α)8 27, 31 36 

GH-E 6-fold β-propeller 33, 34 83 93 

GH-F 5-fold β-propeller 43, 62 

GH-G (α/α)6 37, 63 

GH-H (β/α)8 13, 70 77 

GH-I α+β 24, 46 80 

GH-J 5-fold β-propeller 32, 68 

GH-K (β/α)8 18, 20 85 

GH-L (α/α)6 15, 65 125 

GH-M (α/α)6 8, 48 

GH-N β-helix 28, 49 

 

Endo-1,4-β-xylanases have been classified into CAZy GH families 5, 8, 10 and 11, all of them 

only comprising a single catalytic domain. Additionally, some bifunctional enzymes bearing 

xylanase activity have also been found in GH families 16, 43, 52 and 62 (Collins et al., 2005; 

Henrissat and Bairoch, 1993; Lagaert et al., 2009).  

 

Both GH 5 and GH 10 belong to clan GH-A and thus share similar 3D architecture. However, 

enzymes from GH 8 and GH 11 belong to clans GH-M and GH-C respectively (Table B-1). The 

majority of xylanases known so far belong to GH 10 and 11 families, which have been 
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extensively studied due to their industrial relevance (Collins et al., 2005; Kulkarni et al., 

1999).  

 B.2 Active site and catalytic mechanism 

The active site (AS) of glycosidases is made of a catalytic dyad, which is surrounded by 

binding sites, where substrate recognition and binding happen. The concept of a subsite is 

used to define the region of the active site that accommodates a single glycosyl unit. 

Glycoside hydrolases display n subsites. Negatively-labeled (-n) subsites accommodate sugar 

moieties that are located on the non-reducing part (glycon region) of the glycoside to 

hydrolyzed, whereas  positively-numbered (+n) subsites accommodate sugar moieties that 

are located on the reducing end (aglycon region). The point of hydrolysis or catalytic site is 

located at the interface between the glycon and aglycon regions (Figure B-1) (Davies et al., 

1997). Like the vast majority of glycoside hydrolases, xylanases perform catalysis via the 

intervention of two acidic amino acids, with one acting as an acid–base and the other as an 

electrophile/nucleophile (Zvelebil and Sternberg, 1988). 

 

 
Figure B-1. Schematic representation of substrate binding subsites in glycosidases (Dodd and Cann, 

2009). 

 

Among glycoside hydrolases and, a fortiori, xylanases, there are two major mechanisms for 

hydrolysis, differing in whether they lead to overall retention or inversion of the 

configuration of the anomeric carbon at the cleavage point (Henrissat and Bairoch, 1996). 

Retaining catalysis employs two carboxylic amino acids, designated as the acid/base and the 

nucleophile, located about 5.5 Å apart. These residues provide assistance to the reaction, 

achieved via two separate chemical steps, known as a double-displacement mechanism 

(Figure B-2.A). In the first step, the concomitant action of two carboxylic amino acids, one 

acting as a Lewis acid and the other as a nucleophile, leads to the formation of a covalent 

glycosyl-enzyme intermediate displaying inverted anomeric configuration and a leaving 

group (aglycon product). In the second step, the now deprotonated carboxylate, acting as a 
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general base, captures a proton from an incoming water molecule. This simultaneously 

hydroxylates the anomeric carbon of the covalent glycosyl-enzyme intermediate, once again 

inverting the anomeric configuration. Upon release of the glycon product, which now 

displays the same anomeric configuration as the substrate, the enzyme is recycled into its 

ground state (McCarter and Withers, 1994; Sinnott ML, 1990). 

 

Inverting glycoside hydrolases also employ two carboxylic amino acids (Figure B-2.B), which 

perform catalysis in a single step. Like in the double displacement mechanism, one 

carboxylic residue provides acid catalysis, provoking leaving group departure, while another 

carboxylic residue provides base-assistance to the nucleophile attack of a water molecule, 

which occurs on the opposite side of the sugar ring. Overall, this leads to the cleavage of the 

glycosidic bond and the inversion of the anomeric configuration. The key feature that 

differentiates retaining enzymes from inverting ones is the distance that separates the two 

catalytic carboxylic amino acids. In inverting enzymes this distance is in the range of 6.5-9.5 

Å (McCarter and Withers, 1994). 

 

 

Figure B-2. Retaining (A) and inverting (B) mechanisms of glycosidases. Adapted from (Dodd and Cann, 

2009).  

 

As indicated earlier, the catalytic mechanism is generally conserved within each GH family 

(Henrissat and Bairoch, 1996). Regarding xylanases, enzymes in GH families 5, 10, 11 and 16 

act via the retaining mechanism using two glutamic acid residues as the catalytic dyad. In 
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contrast, GH 8 and 43 xylanases perform hydrolysis via an inverting mechanism and employ 

a glutamate and an aspartate residue respectively (Berrin and Juge, 2008; Collins et al., 2005; 

Jeffries, 1996). 

 B.3 Industrial application 

In the past decades the industrial applications of xylanases have mainly concerned paper 

pulping and the improvement of the nutritive value and technological properties of human 

foodstuffs and animal feeds (Collins et al., 2005; Kulkarni et al., 1999).  

 

In the pulp and paper industry, xylanases are used to replace chlorine-mediated bleaching of 

paper pulp. Here, xylanases disrupt the intimate contacts that are made between cellulose 

and lignin, which is mediated by heteroxylans (Ragauskas et al., 1994; Roncero et al., 2005; 

Viikari et al., 1994). This enzymatic bleaching process is usually carried out at high 

temperatures (50-70°C) and under alkaline conditions. Therefore thermo-alkaliphilic 

xylanases are preferred for this process. Compared to chemical bleaching, xylanase usage is 

not only environmental friendly, but also allows the recovery of lignins after treatment, thus 

reducing the overall cost (Kulkarni et al., 1999; Olsson et al., 2007).  

 

In the food industry, xylanases are used for the production of beverages, such as fruit and 

vegetable juices, beer and wine (Bhat, 2000; Collins et al., 2005). The use of xylanases 

improves the maceration step and can also play a useful role in juice clarification and for the 

reduction of liquid viscosity. Such effects improve the yield and the efficiency of the 

extraction and filtration steps. A second important application for xylanases in the food 

industry is within the baking sector (Autio et al., 1996; Courtin and Delcour, 2001; Courtin 

and Delcour, 2002). Here, xylanases have a significant impact on dough preparation and 

proofing for bakery products, where they improve the elasticity and make the dough soft and 

slack and thus allow easier handling and provide larger loaf volumes. Since dough 

preparation is often carried out at around 35°C, xylanases having high activity at low or 

intermediate temperatures are more suitable (Collins et al., 2005; Collins et al., 2006).   

 

Another important application of xylanases is in the animal feed industry (Beauchemin et al., 

2003; Choct, 2006; Francesch and Geraert, 2009), where they are used as additives in feed 
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for non-ruminant animals that lack appropriate digestive enzymes. When applied to feed 

such as wheat bran or wheat flour, xylanases act upon the non-starch polysaccharide (NSP) 

components. The depolymerization of NSP leads to a reduction in viscosity (Beauchemin et 

al., 2003; Vahjen et al., 1998), which favours digestion, and generates short xylo-

oligosaccharides, which are thought to have a beneficial prebiotic effect on digestive 

microbiota (Hsu et al., 2004; Swennen et al., 2006). Preferably, xylanases that are employed 

as feed additives should display a certain degree of thermostability, because ideally the 

xylanase component is introduced into the feed before pelleting, which incurs a short 

duration rise in temperature to 70-95°C. Also, it is beneficial if the xylanases are highly active 

in the acidic environment of the animal’s stomach (approximately 40°C and pH 4.8) (Collins 

et al., 2005). 

 

Increasingly, the importance of xylanases in biorefinery processes is being taken into 

account. Therefore, in the longer term, it is certain that biorefining will become a major 

application sector for xylanases. Specifically, xylanases (and other hemicellulases) will 

probably be recognized as a key component of cellulase cocktails that are used for the 

deconstruction of biomass and the production of fermentable sugars. Accordingly, future 

improvement of these cocktails will also focus on the improvement of the xylanase 

components and will aim at overall goals such as cost reduction and robustness. Regarding 

cost reduction this will be achieved by improving enzyme production and increasing enzyme 

activity on complex substrates. More details on these goals and challenges are given in the 

Chapter A.3. 

 B.4 Xylanases from GH11 family  

 B.4.1 Biochemical properties 

A key feature of the CAZy family GH11 is that it is exclusively composed of endo-1,4-β-

xylanases that hydrolyze xylans. In other terms, no other activities have been so far 

associated with this family. The catalytic domain of GH11 enzymes is characterized by a low 

molecular weight, between 20 – 26 kDa, and relatively high pI and a wide optimal pH 

window, in the range of 2.0 – 9 .0. In fact, most bacterial GH11 xylanases present an optimal 

pH above pH 5.5, in contrast to the majority of fungal xylanases which are more acidic: the 

most acidophilic xylanase derived from Aspergillus kawachii has an optimal pH at 2.0 (Ito et 
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al., 1992). Regarding catalysis, GH11 family members hydrolyse β-1,4 linkages between D-

xylosyl units via a retaining mechanism. 

 

 
Figure B-3. Phylogenetic tree of eighteen GH11 xylanases whose 3D structures are known. Bacterial 

xylanases are underlined in red. The tree is calculated using the neighbour joining algorithm, and the 

distance is based on the percentage identity between the two sequences. The numbers at each node are 

distance values and the tree is built by Jalview (Waterhouse et al., 2009). 

 

 B.4.2 Overall structure 

To date, 24 GH11 xylanases have been assigned good quality, published 3D structures by X-

ray crystallographic studies.  Table B-2 mentions 18 of these. Nine are of bacterial origin, and 

the other nine are of fungal origin. A phylogenetic analysis of this set of xylanases (Figure B-

3) reveals several distant branches, which indicate that these sequences are sufficiently 

diverse to be representative of GH11 family diversity. In addition, branch lengths suggest 

that the bacterial group is more inter-related from an evolutionary point of view than the 

fungal group of GH11 xylanases, which is in accordance with previous alignment studies on 

eighty-two GH11 sequences (Sapag et al., 2002). In other words, the evolution of fungal 

GH11 xylanases is more divergent. As shown on the multiple sequence alignment (Figure B-

5), the highly conserved residues (>80% identity) of GH11 xylanase account for around 28% 

of total length. 
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The secondary structure of the catalytic domain of GH11 xylanases consists of two large β-

pleated sheets and one α-helix (Figure B-4.A). β-sheet A includes a maximum of six 

antiparallel β-strands -from A1 to A6- and β-sheet B contains nine β-strands, from B1 to B9. 

In some enzymes, the N-terminal region is shorter and β-strand A1 is then replaced by a loop.  

 

Table B-2. Selection of eighteen crystallized GH11 xylanases.  

Abbreviation Organisms PDB code Genbank Reference 

               Bacterial origin    

T_xyl Thermobacillus xylanilyticus Cryst CAJ87325.1 (Paës, 2005) 

B_cir Bacillus circulans 1XNB ACR92575.1 (Ludwiczek et al., 2007) 

B_aga Bacillus agaradhaerens AC13 1QH7 CAB42305.1 (Sabini et al., 1999) 

B_sp_41M-1 Bacillus sp. 41M-1 2DCJ AAS31755.1 
(Ihsanawati et al, 

unpublish) 

B_sub_168 
Bacillus subtilis subsp. subtilis str. 

168 
1AXK AAA22897.1 (Ay et al., 1998) 

D_the 
Dictyoglomus thermophilum 

RT46B.1 
1F5J AAC46361.1 (McCarthy et al., 2000) 

G_ste 
Geobacillus stearothermophilus 

236 
Cryst AAB72117.1 (Cho and Choi, 1995) 

S_sp_S38 Streptomyces sp. S38 1HIX CAA67143.1 (Wouters et al., 2001) 

T_fle 
Thermopolyspora flexuosa 

DSM43186 (ATCC35864) 
1M4W AAO97628.1 (Hakulinen et al., 2003) 

                  Fungal origin    

A_kaw Aspergillus kawachii 1BK1 AAC60542.1 (Fushinobu et al., 1998) 

A_nig Aspergillus niger 1UKR CAA01470.1 Krengel_1996 

C_the 
Chaetomium thermophilum 

CBS730.95 
1H1A AAR67679.1 (Hakulinen et al., 2003) 

H_jec_XynI Hypocrea jecorina  1XYN AAE16058.1 
(Törrönen and 

Rouvinen, 1995) 

H_jec_XynII Hypocrea jecorina  1ENX AAB29346.1 
(Törrönen and 

Rouvinen, 1995) 

N_pat Neocallimastix patriciarum 2C1F CAA46498.1 (Vardakou et al., 2008) 

P_fun Penicillium funiculosum 1TE1 CAC15487.1 (Payan et al., 2004) 

S_aci Scytalidium acidophilum 3M4F AAQ22691.1 (Michaux et al., 2010) 

T_lan 
Thermomyces lanuginosus SSBP / 

ATCC 46882 
1YNA AAB94633.1 (Gruber et al., 1998) 

 

 

The structural elements of GH11 xylanases pack closely to fold into a β-jelly roll tertiary 

structure, belonging to clan GH-C. This structure has been compared to a right hand and 

different structurally regions have been named accordingly (i.e. fingers, palm and thumb). As 

shown in Figure B-4.B, fingers are made up of β-sheet A and part of β-sheet B, the palm is 

formed by the α-helix and a twisted β-sheet B, the thumb is made of the loop between 
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strands B7 and B8 and finally the cord is a long loop between B6 and B9 (Purmonen et al., 

2007). The active site is a cleft located at the inner surface of the palm, and is partially 

surrounded by the fingers, cord and thumb (Ludwiczek et al., 2007; Purmonen et al., 2007). 

Except for a few GH11 xylanases from Cellulomonas fini, Clostridium thermocellum and 

Bacillus sp., most GH11, members don’t have additional carbohydrate binding domains and 

only present a single catalytic domain. 

 

 

   
Figure B-4. The typical topology diagram (A) and cartoon representation (B) of GH11 xylanases. The 

letters A1-A6 and B1-B9 represent numbered β-strands for β-sheet A and β-sheet B respectively. N and C 

represent the N-terminus and C-terminus in the figure B. In addition, the relevant thumb, palm, fingers 

and cord regions in the tertiary structure are also indicated. Figure A is adapted from (Paës, 2005) and 

figure B originates from (Purmonen et al., 2007).  

(B) 

(A) 
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Figure B-5. Multiple sequence alignment of catalytic domains (without signal peptide) of eighteen GH11 xylanases 

possessing a resolved 3D structure. Database and biographic references of the xylanases is presented in Table B-2. The nine 

bacterial xylanases and nine fungal xylanases are indicated by green and yellow boxes respectively. Conserved residues (>80% 

identity) are highlighted using a blue background, in which the deeper colour corresponds to higher conservation. The thumb 

region in the sequence is indicated by a red box. The residues that constitute the secondary binding site of the Bacillus 

circulans xylanase are highlighted using orange boxes along the sequence of B_cir. The alignment was performed and edited 

using Jalview (Waterhouse et al., 2009). 
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 B.4.3 Structure-function relationships 

 B.4.3.1 Highly conserved region 

The sequence alignment of eighteen representative GH11 xylanases reveals fifty-two highly 

conserved residues with more than 80% identity (Figure B-5). Conserved residues are found 

around the catalytic site, on the loops linking adjacent β-sheets, and on the inner side of the 

α-helix (Figure B-6.A). Logically, invariant residues in the catalytic site maintain the tight 

enzymatic specificity of GH11 xylanase. Other conserved residues can be regarded as 

‘‘linker’’ elements, that are localized at the junctions between the structural elements. These 

contribute to the definition of the overall protein fold and probably ensure the adoption of 

an active conformation. Figure B-6.B and C reveals that most of the conserved residues 

cluster together and that more than half of these clusters are located in buried, solvent 

inaccessible regions. An interesting feature is the high conservation of amino acids observed 

in the thumb region. This suggests that this area might play an important role in enzyme 

function. 

 

 

 

 

 

 

 

 

 
     

    
 

 

Figure B-6. (A) Cartoon representation of the GH11 xylanase from T. xylanilyticus indicating the 

positions of highly conserved residues (red colour). Front (B) and back (C) views of conserved residues 

(bright red for exposed residues and dark red for buried residues) in the surface presentation. The 

position of thumb region is highlighted by a circle. 

 

 

(A) (B) (C) 

Thumb 
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 B.4.3.2 Active site and substrate specificity 

The active site of GH11 xylanases has been described as a deep cleft that generally spans 

three glycon subsites and two or three aglycon subsites (Vardakou et al., 2008). Like other 

hydrolases, the active site of GH11 xylanases is mainly composed of aromatic residues 

(Figure B-7), tightly packed together and providing a hydrophobic environment for substrate 

accommodation. In addition, the presence of aliphatic hydrophobic side chains not only 

enhances the overall hydrophobicity of the active site, but also provides possibilities for Van 

der Waals interactions with xylan substrates. The two conserved glutamate residues 

responsible for catalysis are located at the centre of the active site.  

 

 

Figure B-7. Active site residues in the surface representation of T. xylanilyticus GH11 xylanase. The 

residues are labelled with name and position number. Different colours are used to represent the various 

residue groups: white – glycine (G); yellow - aromatic hydrophobic residues (P, Y and W); grey – aliphatic 

hydrophobic residues (A, I, L, V and P); orange – amphipathic residues (T, L and M); red – hydrophilic 

residues with negative charge (D, E and C); cyan – neutral hydrophilic residues (S, N and Q); blue – 

hydrophilic residues with positive charge (R and H);. The amino acid classification is based on (Petsko and 

Ringe, 2004).  
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To understand the substrate binding in the active site, it is important to describe substrate 

specificity and related biochemical features. In general, the most important forces for 

enzyme-substrate are hydrogen bonds, and Van der Waals interactions (Petsko and Ringe, 

2004). To investigate enzyme-substrate interactions in xylanases, X-ray crystallization has 

often been the method of choice (Havukainen et al., 1996; Janis et al., 2005; Sabini et al., 

1999; Sidhu et al., 1999; Vardakou et al., 2008), sometimes coupled to mutational studies 

(Vandermarliere et al., 2008; Wakarchuk et al., 1994).  

 

Among the different subsites that comprise the active site of GH11 xylanases, subsites -2 and 

-1 subsites have been the major focus of characterization. This is because they make tight 

contacts with the substrate and are essentially invariant in GH11 xylanases (Havukainen et 

al., 1996; Janis et al., 2005; Sabini et al., 1999; Wakarchuk et al., 1994). In contrast, little is 

known about aglycon interactions and the substrate binding across the -1/+1 subsites. The 

binding in the aglycon subsites is usually suggested to be energetically unfavourable, 

because it is believed that weak binding is necessary for the efficient release of the products 

(Janis et al., 2005; Vandermarliere et al., 2008). Moreover, obtaining a crystal structure of an 

active enzyme with a substrate molecule bound in the -1/+1 subsites is technically 

impossible, because of its fast hydrolysis (microsecond timescale). Nevertheless, so far, two 

publications have revealed some information about aglycon subsites binding using X-ray 

crystallography (Vandermarliere et al., 2008; Vardakou et al., 2008), although only 

Vandermarliere et al actually solved the complex structure with a substrate across the -1/+1 

subsites, using an inactive mutant.  

 

In the following, the details of xylanase-ligand interactions are presented for each subsite, 

and summarized in Table B-3. 

(1) -3 subsite: only weak electron densities have been described for this subsite, which 

indicates that the binding does not involves strong forces (Vandermarliere et al., 2008; 

Vardakou et al., 2008). Indeed, the xylosyl moiety in -3 subsite is located just outside the 

active site, so if hydrogen bonds are formed, they are either weak or are mediated by water 

molecule intermediates with a flanking isoleucine residue (Ile116 in Figure B-7). 
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(2) -2 subsite: the α-face of the xylosyl unit always stacks against the indole ring of 

ipsilateral tryptophan in alkaline xylanases or tyrosine in acidic xylanases (Trp7 in Figure B-7) 

(Sabini et al., 1999; Wakarchuk et al., 1994). In addition, the hydrogen bonds formed 

between O2 and/or O3 of xylosyl unit and vicinal tyrosine residues (Tyr63 and Tyr167 in 

Figure B-7) are also highly conserved (Table B-3). 

(3) -1 subsite: here there are hydrogen bond interactions between the sugar and several 

amino acids (Glu76, Pro114 and Arg110 in Figure B-7), which are, 

� catalytic (nucleophile) glutamate residue 

� carbonyl group of the adjacent proline residue 

� positively charged arginine residue in the thumb region.  

All of these contribute equally to the stabilization of the xylosyl moiety’s twisted boat (B2,5), 

which is necessary for catalysis (Sabini et al., 1999). Additionally, a pH-related residue 

Asn/Asp (Asn33 in Figure B-7) can also be hydrogen-bonded to the endocyclic oxygen and/or 

O1 position of the xylosyl unit and a 90° conformational rotation of this residue before/after 

ligand binding has been found in B. subtilis and A. niger xylanases (Vandermarliere et al., 

2008). It has also been proposed that steric hindrance caused by the conserved hydrophobic 

residue Val/Ile (Val35 in Figure B-7), adjacent to the acid/base catalytic residue, plays an 

important role in preventing the accommodation of a glucose at -1 subsite for GH11 

xylanases (Sabini et al., 1999).  

(4) +1 subsite: the study of the crystal structure of a B. subtilis xylanase-xylotriose 

complex has clearly indicated that the xylosyl moiety at +1 subsite is presented in a twisted 

boat conformation (Vandermarliere et al., 2008). Even though very few crystal structures 

reveal +1 subsite binding, conserved hydrogen bonds between the catalytic (acid/base) 

glutamate residue and two neighbouring residues (Asn124 and Tyr78 in Figure B-7) are likely 

to occur, as these three residues are strictly conserved in GH11 family (Vardakou et al., 

2008). 

(5) +2 and +3 subsites: the binding affinity in these two subsites is much weaker than in 

any other parts of the active site. The xylosyl moieties are speculated to make hydrogen 

bonds with the threonine and/or asparagine residues lying at the end of the aglycon cleft 

(Thr89 and Asn61 in Figure B-7) (Vardakou et al., 2008). In addition, a stacking interaction is 

thought to occur, which involves a Trp/Tyr side chain (Tyr86 in Figure B-7). 
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In the hydrolysis of heteroxylan, GH11 xylanases prefer to attack unsubstituted regions of 

the polymer backbone due to the stereo conformation of -2, -1 and +1 subsites, which are 

too narrow to accommodate main-chain substitutions, especially at the -2 subsite (Gruber et 

al., 1998; Pollet et al., 2010; Vandermarliere et al., 2008). Since the predominant substrate 

binding occurs at +1 and glycon subsites, xylobiose and xylotriose are the major end 

products of hydrolysis (Pollet et al., 2010).  

 

However, the analysis of reaction products released from decorated xylans suggests that at 

least some GH11 xylanases might accommodate/tolerate 4-methyl-glucuronic acid 

substitution of xylosyl moieties bound in the -3 and +2 subsites (Katapodis et al., 2003; 

Kolenov et al., 2006). In addition, a structure of a co-crystal clearly indicated that a xylanase, 

isolated from an environmental source, was able to accommodate an α-1,3 linked arabinosyl 

ramification, itself bearing a o-5-linked ferulate moiety, in the +2 subsite (Vardakou et al., 

2008). Nevertheless, whether GH11 xylanases can commonly accept side chains at +2 and -3 

subsites is still unclear, as the identified enzyme-substrate side chain interactions are rarely 

reported.
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Table B-3. Summary of binding interactions in GH11 xylanase-ligand crystal complexes. The hydrogen bonds are shown in dots that link atoms from sugar to amino acid residue, 

the stacking interaction and covalent bonds are noted in brackets. 

Organism Ligand PDB code -3 -2 -1 +1 +2 +3 Reference 

Bacillus circulans Xylobiose 1BCX 

 W9 (stacking) 
O2⋅⋅OH (Y69) 

O3⋅⋅OH (Y166) 

C1⋅⋅OE1 (E78) 

C1⋅⋅OH (Y80) 

O1⋅⋅OE1 (E172) 

O2⋅⋅OE2 (E78) 

O2⋅⋅NE (R112) 

O3⋅⋅O (P116) 

O3⋅⋅NH2 (R112) 

   

(Wakarchuk et al., 
1994) 

Trichoderma 

reesei (Xyn II) 

2,3-epoxypropyl-β-D-
xyloside (X-O-C3) 

1REF 

 W18 (stacking) 
O1⋅⋅OH (Y77) 

O2⋅⋅OH (Y77) 

O2⋅⋅OH (Y171) 

O3⋅⋅OH (Y171) 

    

(Havukainen et al., 
1996) 

Bacillus 

agaradhaerens 

2-deoxy-2-fluoro-4-O-β-D-
xylopyranosyl-α-D-

xylopyranose 
1QH6 

 W19 (stacking) 

O2⋅⋅OH (Y85) 

O2⋅⋅NH2 (R49) 

O3⋅⋅NH1 (R49) 

O3⋅⋅OE2 (E17) 

C1 - OE2 (E94) (ester 
bond) 
F2⋅⋅NH (R129) 

O3⋅⋅NH2 (R129) 

O3⋅⋅O (P133) 

O5⋅⋅OH (Y85) 

 

  

(Sabini et al., 1999) 

Chaetominum 

thermophilum 

Methyl 4,4II,4III,4IV-tetrathio-
α-xylopentoside (S-Xyl5-

Me) 
1XNK 

 O2⋅⋅OH (Y78) 

O2⋅⋅OH (Y172) 

O3⋅⋅OH (Y172) 

CH3O⋅⋅OE2 (E178)    

(Janis et al., 2005) 

Environmental 

source, extracted 

from soil 

(EnXyn11A) 

Xylobiose (glycon subsites); 
Ferulic acid-1,5-

arabinofuranose-α1,3-
xylotriose (FAX3) (aglycon 

subsites) 

2VGD 

O4⋅⋅HOH⋅⋅O 
(I132) 

W22 (stacking) 
O1⋅⋅OE2 (E89) 

O1⋅⋅OH (Y80) 

O2⋅⋅OH (Y80) 

O2⋅⋅OH (Y175) 

O3⋅⋅OH (Y175) 

 O2⋅⋅OH (Y76) 

O3⋅⋅OH (Y91) 

O3⋅⋅NH2 (Q140) 

O4⋅⋅OE2 (E181) 

O4⋅⋅ND2 (N48) 

O5⋅⋅ND2 (N74) W99 (stacking) 
O3⋅⋅ND2 (N74) 

(Vardakou et al., 
2008) 

Bacillus subtilis 

Xylotriose (-3, -2 and -1 
subsites in asymmetric unit 
A, and -2, -1 and +1 subsites 

in unit B) 

2QZ3 and 2Z79 

O4⋅⋅O (I118) W9 (stacking) 
O1⋅⋅O (P116) 

O2⋅⋅OH (Y69) 

O2⋅⋅OH (Y166) 

O3⋅⋅OH (Y166) 

O3⋅⋅NE2 (Q7) 

O5⋅⋅O (P116) 

O5⋅⋅N (P116) 

O1⋅⋅OD1 (N35) 

O2⋅⋅OE1 (E78) 

O2⋅⋅OE2 (E78) 

O2⋅⋅NE (R112) 

O3⋅⋅O (P116) 

O3⋅⋅NH2 (R112) 

O3⋅⋅NE (R112) 

O1⋅⋅OH (Y80) 

O2⋅⋅N (G173) 

O3⋅⋅OH (Y80) 

  

(Vandermarliere et 
al., 2008) 

Aspergillus niger Xylotriose 2QZ2 

 Y10 (stacking) 
O1⋅⋅O (P119) 

O2⋅⋅OH (Y70) 

O2⋅⋅OE1 (Q8) 

O3⋅⋅NE2 (Q8) 

O5⋅⋅O (S120) 

O5⋅⋅N (S120) 

O1⋅⋅OD1 (D37) 

O1⋅⋅OD2 (D37) 

O1⋅⋅OH (Y81) 

O2⋅⋅OE1 (E79) 

O2⋅⋅OE2 (E79) 

O2⋅⋅NE2 (N129) 

O3⋅⋅O (P119) 

O5⋅⋅OD2 (D37) 

   

(Vandermarliere et 
al., 2008) 
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 B.4.3.3 Secondary binding site 

As mentioned above, the majority of GH11 xylanases are composed of a single catalytic 

domain. However, a xylan-specific secondary binding site (SBS) on the surface of the catalytic 

domain has been discovered and identified in the xylanase from Bacillus circulans (B_cir in 

Table B-2) (Ludwiczek et al., 2007). Using the “right-hand” analogy to describe the location 

of this binding site, the SBS crosses the ‘knuckles’ of the hand. In addition, the SBS is formed 

by a line of flanking asparagine, serine and threonine residues and is terminated by a C-

terminal tryptophan, which provides hydrogen bond and aromatic stacking interactions. 

Finally, although the SBS that have been described are located on the outer surface of the 

enzyme, this feature appears to be linked to the active site (located on the ‘palm side’ of the 

‘hand’) via a small shallow groove (Figure B-8). 

 

 
Figure B-8. Surface representation of the secondary binding site (blue) and active site (red) of GH11 

xylanases from B. circulans (PBD 1XBN). The arrow indicates the shallow groove that links the SBS and 

the active site. Adapted from (Ludwiczek et al., 2007).  

 

In B. circulans xylanase, the scope of the SBS allows it to span three to four xylosyl units. 

Unlike the active site, the SBS does not participate in any additional conformational change 

in the binding or release of the substrate, because its association/disassociation rate is 

measured ten-fold higher than that for the active site. It has been hypothesized that the SBS 

and the active site might associate independently to short XOS, but corporately bind longer 

xylan polymers (Ludwiczek et al., 2007). Ludwiczek et al (2007) have inferred the 
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cooperation between the active site and SBS enhances the binding affinity and specific 

activity of B. circulans xylanase towards both soluble and insoluble xylans.  

 

However, except for Ser27, Thr143 and Thr183, most of SBS residues in B. circulans xylanase 

are not conserved in GH11 family, as revealed from an alignment of 473 structure-known 

GH11 xylanase sequences (Figure B-5 shows the results of a partial alignment). Nevertheless, 

through crystallographic study, Vandermarliere et al (2008) have identified SBS in two 

xylanases from evolutionally distant species – Bacillus subtilis and Aspergillus niger. This 

suggests that the function of the SBS might be conserved, but involves different amino acids 

according to the exact biological origin of the enzyme. Overall, it is possible to speculate that 

the SBS constitutes an alternative strategy to the addition of a carbohydrate binding module.  

 C.4.3.4 Thumb region 

The thumb region in the structure of GH11 xylanase is composed of a loop that links the B7 

and B8 β-strands and is a unique feature in GH11 xylanases when compared to other 

enzymes that display jelly-roll folding. This thumb loop is formed by 11 residues (from 

Tyr111 to Thr121 numbered in Figure B-9), where the invariant Asn112 and Thr121 

constitute the base of the thumb and the highly conserved motif Pro114-Ser115-Ile116-

X117-Gly118 (X can be any residue) form the tip. Structurally, the thumb displays a typical 

hairpin topology with a type I β-turn (Ser115 – Gly118) and six internal hydrogen bonds. The 

presence of Asn112 terminates the series of internal hydrogen bonds and sharply distorts 

the thumb downwards, forming a half-folded shape.  

 

The thumb loop is structurally and functionally important for catalysis. Previous structural 

studies have revealed that the thumb region partially closes the glycon side of active site in 

the presence of the ligand (Havukainen et al., 1996), and causes a steric hindrance to avoid 

the accommodation of xylan side chains (Paës et al., 2007; Vandermarliere et al., 2008). In 

addition, the thumb position determines the width of the cleft, the narrowest part being 

formed on one side by the conserved Pro residue (thumb tip) and the opposite side by a Trp 

residue (Trp7 in T. xylanilyticus xylanase). Moreover, thumb residues Pro114 and Ser115 

(numbering in Figure B-9) appear to be in direct contact with the substrate at -1 and -2 
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subsites via hydrogen bonds (Table B-3) (Sabini et al., 1999; Vandermarliere et al., 2008; 

Wakarchuk et al., 1994).  

 

 
Figure B-9. Stick and cartoon representation of thumb region in GH11 xylanase from T. xylanilyticus.  

 

The mobility of the thumb region during catalysis is thought to be an intrinsic feature of this 

element and an essential characteristic of GH11 xylanases. It has been hypothesized that 

upon substrate binding, the thumb leaves a ground state position, closing downwards onto 

the substrate. Supposedly, reopening of the closed conformation occurs during the release 

of reaction products, although precise details are not yet available (Muilu et al., 1998; Paës 

et al., 2007; Pollet et al., 2009). Pollet et al (2009) have inferred that the possible movement 

of the thumb proceeds through three steps: first, the thumb adopts a loose and open 

conformation as the substrate enters into the active site; then the thumb moves downwards 

into the cleft to enhance the stabilization of the ligand; finally, the thumb returns to its initial 

position, the tip residue (Ile116 in Figure B-9) aiding to push the product out of the active 

site to diffuse away. The mobility of the thumb highly depends on three residues: Arg110, 

Asn112 and Thr124 at the base of the thumb (numbering in Figure B-9) (Paës et al., 2007; 

Pollet et al., 2009).  
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As mentioned earlier, GH family 11 together with family 12 constitutes clan GH-C (Table I-5), 

and therefore enzymes in these two families share the same β-jelly roll architecture. 

However, GH12 endoglucanases are characterized by wider substrate specificity, acting on 

both cellulose and xylan in contrast to GH11 xylanases (Shimokawa et al., 2008; Vincken et 

al., 1997). Importantly, in GH12 enzymes the thumb structure is little more than a 

protuberance and thus cannot play the same functional role as that of the thumb of GH11 

xylanases (Paës et al., 2007; Sabini et al., 1999). Among the functions attributed to the 

thumb of GH11 xylanases is that of gatekeeper. It is postulated that the thumb would be one 

of the major obstacles for the binding of glucose-based substrates in the active site of GH11 

xylanases. In support of this postulate, Paës et al (2007) have shown, via the complete 

deletion of the thumb of the xylanase from T. xylanilyticus, that a thumbless GH11 xylanase 

can bind cellulo-oligosaccharides, although hydrolysis does not occur. 

 D.4.3.5 N-terminal end 

The N-terminal region of GH11 xylanases is usually considered to span from the N-terminal 

amino acid through to β-strand B3, hence including five or six β-strands (Figure B-4.A).  

Sequence alignments indicate that the N-terminal region varies drastically in sequence and 

length among family 11. Based on thermodynamic simulation, this N-terminal part has been 

suggested to be an unstable region, wherein unfolding of the xylanase could be initiated 

(Purmonen et al., 2007). Therefore, abnormal folding or loss of N-terminal β-strands are 

likely to cause protein instability or denaturation (Purmonen et al., 2007).   

 

Compared to mesophilic GH11 xylanases, thermophilic ones generally possess an additional 

β-strand at the N-terminus. Therefore, one might suppose that the elevated number of 

strands rigidify the protein structure and thus stabilize the molecular conformation 

(Hakulinen et al., 2003; Purmonen et al., 2007; Ruller et al., 2008). However, a longer N-

terminal strand does not necessarily correlate with higher thermostability. This is 

demonstrated by the xylanase from Neocallimastix patriciarum, which has an unusually long 

N-terminal sequence, but is a mesophilic enzyme (Gilbert et al., 1992; Vandermarliere et al., 

2008). This is because thermostability is the result of an intricate combination of several 

features such as a high Thr : Ser ratio, high numbers of charged residues and/or aromatic 
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residues or the presence of ion pairs at the surface. (Gruber et al., 1998; Hakulinen et al., 

2003; Pack and Yoo, 2004).  

 

Since the N-terminal region appears to have a casual relationship with regard to the thermo-

tolerance of xylanases, a lot of engineering work has been focused on it. Disulphide bonds 

were introduced into this N-terminal region and were shown to successfully stabilize the 

structure of T. reesei and T. xylanilyticus xylanases (Fenel et al., 2004; Paës and O'Donohue, 

2006). In another experiment, extension of the N-terminal side of the protein with an 

arginine-rich sequence has improved the thermal performance of the fusion protein 

compared to the wild-type (Sung, 2007). Similarly, the replacement of the N-terminal region 

of a mesophilic xylanase by that of a thermophilic one has also procured higher thermal 

tolerance (Shibuya et al., 2000; Sun et al., 2005). Finally, Zhang and colleagues have 

managed to enhance the thermostability of 3 mesophilic xylanases – from Streptomyces 

olivaceovirdis, Streptomyces lividans, Aspergillus niger – using a combination of five 

thermophilic mutations in the N-terminal sequence (Zhang et al., 2010).  

 

From a functional point of view, the N-terminal region might also partially contribute to the 

more remote glycon subsites of the active site cleft. However, the electron density around 

the N-terminal region is difficult to analyze and model when xylanases are bound to 

substrates, suggesting that this region is disordered (Vandermarliere et al., 2008; Vardakou 

et al., 2008). Nevertheless, the N-terminal region might display kinetic assistance in catalysis, 

as revealed from a study focused on the Neocallimastix patriciarum xylanase. Here, it was 

proposed that the full β-strands A1 and B1 would make extensive binding at the -3 subsite, 

and thus provide an explanation for the unusually high catalytic activity of this enzyme 

(Vardakou et al., 2008).  
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 Part C The endo-β-1,4-xylanase from Thermobacillus 

xylanilyticus (Tx-Xyl) 

 C.1 Biological and biochemical characteristics 

 C.1.1 General characteristics of Tx-Xyl 

 C.1.1.1 Origin of Tx-Xyl 

The microorganism Thermobacillus xylanilyticus, previously designated as Bacillus sp. D3, is 

an aerobic, thermophilic, xylanolytic and spore-forming bacterium. It was first isolated from 

soil beneath a manure heap in northern France, using an enrichment and a functional 

screening approach with oat spelt xylan being used as the main carbon source (Samain, 

1991; Samain, 1992). T. xylanilyticus is a moderate thermophile, growing at temperatures up 

to 63°C, and in a wide range of pH from 6.5 to 8.5 (Samain, 1992; Touzel et al., 2000). Based 

on  16S rDNA sequence comparisons, this microorganism has been identified as a new genus 

and species that belongs to the Gram-negative group of bacteria (Touzel et al., 2000).  

 

When cultivating the type strain T. xylanilyticus XE at 50°C over 16 hours, an expression level 

of 110 U ml-1 xylanase production was obtained (Samain, 1992). This activity was attributed 

to a single protein species, designated as Tx-Xyl. This enzyme is an extracellular, cellulose-

free, low-molecular-weight (20.6 KDa) endo-β-1,4-endoxylanase, which belongs to the GH11 

family (Samain et al., 1997; Samain, 1992). To maximize expression, strain XE was submitted 

to in vivo mutagenesis using ethyl methanesulfonate. This led to the isolation of a hyper-

producing strain designated T. xylanilyticus D3 (Samain, 1991), which produces >1000 U ml-1 

of xylanase activity in less than 15 hours of cultivation (Samain et al., 1997). The sequence 

encoding the mature Tx-Xyl (Figure C-1) was determined and then expressed in Escherichia 

coli (Harris et al., 1997). 
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Figure C-1. Nucelotide sequence and deduced amino acid sequence of the wild-type of Tx-Xyl xylanase 

from T. xylanilyticus. 

 

 C.1.1.2 Activity of Tx-Xyl 

Tx-Xyl xylanase displays high activity on soluble xylan (e.g. birchwood xylan) and yields 

mainly xylo-oligosaccharides of DP (degree of polymerization) 2-4 as end products 

(Benamrouche et al., 2002; Zilliox and Debeire, 1998; Beaugrand 2004). On lignocellulosic 

biomass, such as wheat straw and bran, Tx-Xyl is found to be only active on the AX fraction 

of the substrate, and in the case of bran hydrolysis, Tx-Xyl focused on AXs displaying a high 

Xyl : Ara ratio (Benamrouche et al., 2002; Zilliox and Debeire, 1998). The pH optimum of Tx-

Xyl is around 6, but the enzyme is active over a broad pH range.  

 C.1.1.3 Thermostability of Tx-Xyl 

Thermostability measurements have shown that Tx-Xyl is relatively thermostable and that 

this stability is dependent on enzyme concentration, indicating that the formation of 

      1 aacacgtactggcagtattggacggatggcatcgggtatgtgaac 
        N  T  Y  W  Q  Y  W  T  D  G  I  G  Y  V  N   
     46 gcgacgaacggacaaggcggcaactacagcgtaagctggagcaac 
        A  T  N  G  Q  G  G  N  Y  S  V  S  W  S  N   
     91 agcggcaacttcgtcatcggcaagggctggcaatacggtgcgcac 
        S  G  N  F  V  I  G  K  G  W  Q  Y  G  A  H   
    136 aaccgggttgtcaactacaacgccggcgcatggcagccgaacggc 
        N  R  V  V  N  Y  N  A  G  A  W  Q  P  N  G   
    181 aacgcgtatctgacgctgtacggctggacgcgcaacccgctcatc 
        N  A  Y  L  T  L  Y  G  W  T  R  N  P  L  I   
    226 gaatactacgtcgtcgacagctggggcagctaccgcccgaccggc 
        E  Y  Y  V  V  D  S  W  G  S  Y  R  P  T  G   
    271 gactaccggggcagcgtgtacagcgacggcgcatggtatgacctc 
        D  Y  R  G  S  V  Y  S  D  G  A  W  Y  D  L   
    316 tatcacagctggcgctacaacgcaccgtccatcgacggcacgcag 
        Y  H  S  W  R  Y  N  A  P  S  I  D  G  T  Q   
    361 acgttccaacaatactggagcgttcgtcagcagaaacgcccgacg 
        T  F  Q  Q  Y  W  S  V  R  Q  Q  K  R  P  T   
    406 ggcagcaacgtctccatcacgttcgagaaccacgtgaacgcatgg 
        G  S  N  V  S  I  T  F  E  N  H  V  N  A  W   
    451 ggcgctgccggcatgccgatgggcagcagctggtcttaccaggtg 
        G  A  A  G  M  P  M  G  S  S  W  S  Y  Q  V   
    496 ctcgcaaccgaaggctattacagcagcggatactccaacgtcacg 
        L  A  T  E  G  Y  Y  S  S  G  Y  S  N  V  T   
    541 gtttggtaa 549     
        V  W  *  



BIBLIOGRAPHY   70 

 

intermolecular interactions is important for this physical property (Harris et al., 1997). At 20 

mg ml-1, Tx-Xyl loses 60-70% of its initial activity when incubated at 60°C for 24 hours, 

whereas at a concentration of 200 mg ml-1, the half-life at 75°C and 80°C are 40 and 25 

minutes respectively (Harris et al., 1997). Other characteristics of Tx-Xyl are listed in Table C-

1.  

 

Table C-1. Principle parameters of Tx-Xyl xylanase. 

Enzyme identity  

 Name Tx-Xyl 

 Fonction endo-β-1,4-xylanase 

 Microorganism Thermobacillus xylanilyticus 

 GH family GH11 

 EC Classification EC 3.2.1.8 

 Genebank number CAJ87325.1 

Structural characteristics  

 Nucleotide number 549 

 Amino acid number 182 

 Top 3 abundant residues Gly (12.6%), Tyr (11.5%) and Ser (10.4%) 

 Folding β-jelly roll 

 Catalytic residues E76 (nuclophile); E169 (acid/base) 

 Composition 57% β-sheet and 6% α-helix 

Biochemical characteristics  

 Molecular weight 20.693 kDa 

 pI 7.7 

 Optimal pH 5.8 – 6.0 

 pH activity > 50% residual activity in the range of pH 4.2 - 8.2 

 Optimal temperature ~ 68°C 

 Apparent Tm 75.5°C 

 Extinction coefficient 218592 (experimental) / 102790 (theoretical)  M-1cm-1 

 Thermostability Several hours at 60°C and several days at 50°C 

 

 C.1.2 Action on lignocellulosic biomass 

Previous studies indicate that the hydrolytic behaviour of Tx-Xyl is different depending on 

the nature of the substrate (Beaugrand et al., 2004; Benamrouche et al., 2002; Lequart et al., 

1999; Zilliox and Debeire, 1998). On wheat bran, Tx-Xyl can solubilise 49% of available AXs. 

This reaction follows Michaelian kinetics and is characterized by a fast initial phase (over 1h) 

and completion after 24 hours, achieved using low enzyme loadings (i.e. as little as 50 IU kg-1 

bran) (Beaugrand et al., 2004; Benamrouche et al., 2002). Previously, microscopic analyses 
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have revealed that Tx-Xyl initially disorganizes the homogeneous aleurone layer and then 

penetrates towards the inner bran layer, where 80% and 50% of container polysaccharides 

would be degraded respectively (Figure C-2). However, the further penetration of Tx-Xyl is 

impeded and the outer bran layer remains intact, possibly because of the high content of 

phenolic compounds in the outer layer or because of the highly substituted nature of the 

AXs therein (Beaugrand et al., 2005; Benamrouche et al., 2002). Significantly, the hydrolysis 

of wheat bran using Tx-Xyl in combination with a GH 10 xylanase did not reveal any evidence 

of synergy, and only led to a modest increase of liberation of ferulic acid and p-coumaric acid 

(Beaugrand et al., 2004).  

  

 

Figure C-2. Schematic structure of a cross-section of wheat bran (WB). From the interior to the exterior 

of the grain, wheat bran is composed of outer bran layer (OB), inner bran layer (IB) and aleurone layer 

(AL) (Beaugrand et al., 2005).   

 

When wheat straw is used as the substrate, Tx-Xyl action is considerably more limited, since 

it can only release 18 to 20% of total AXs over a 24-H period and at high enzyme loadings 

(Lequart et al., 1999; Zilliox and Debeire, 1998). This reaction does not obey Michaelian 

kinetics and increasing enzyme loads do not lead to proportional increases in reaction rate. 

Likewise, the reaction does not appear to reach a clear endpoint, even after extended 

incubation periods (Lequart et al., 1999; Rémond et al., 2010; Zilliox and Debeire, 1998). 

Absorption studies indicated that Tx-Xyl binds tightly and irreversibly to wheat straw, up to a 

maximum of 512 µg enzyme g-1 straw. However, importantly Tx-Xyl was shown to bind to 

isolated wheat straw lignin, but not to microcrystalline cellulose, which might be due to the 

hydrophobic character of Tx-Xyl (Zilliox and Debeire, 1998). 

 

Undoubtedly, the different hydrolytic profiles displayed by Tx-Xyl on wheat bran and wheat 

straw are correlated to the obvious differences between these two substrates. A significant 
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proportion (approximately 50%) of AXs in wheat bran is localized in the aleurone layer, 

which is composed of living cells. AXs in this layer are moderately substituted by arabinosyl 

units, with an approximate average X/A ratio of 2. In the Tx-Xyl-recalcitrant wheat bran 

residue, the X/A ratio is 0.98. Therefore, as expected Tx-Xyl is less active on highly 

substituted AX. Nevertheless, in wheat straw, AXs are quite unsubstituted, displaying a 

xylose : arabinose ratio of approximately 10, thus this factor is not a limitation for Tx-Xyl 

(Lequart et al., 1999). However, the ultra-structure of wheat straw is quite different from 

wheat bran, and the former contains approximately 20% of lignin, whereas wheat bran only 

contains about 3.4% (Lequart et al., 1999) (Figure C-3). Therefore, the presence of lignin is 

probably one of the key barriers for Tx-Xyl, though the presence of diferulic acid bridges, 

linking lignin to AX could also contribute to the resistance of wheat straw to Tx-Xyl action 

(Grabber et al., 1998; Lequart et al., 1999). 

 

 

 

Figure C-3. Schematic structure of a cross-section of an inter-node portion of wheat straw. The 

outermost ring is termed epidermis which is rich in cellulose. Inside the epidermis is a lignin containing 

(25-27%) layer loosely composed of vascular bundles and parenchyma (Hornsby et al., 1997a). The pith 

cavity lining is a thin layer of modified parenchyma cells that lines the centre void (pith cavity) (Hansen et 

al., 2010). The diagram is drawn referring to the microscopy images from (Hansen et al., 2010; Liu et al., 

2005). 
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 C.2 Structure of Tx-Xyl 

 C.2.1 Overall structure  

The crystal structure of Tx-Xyl has been determined by Harris et al (1997). Like all GH11 

xylanases, Tx-Xyl displays a typical β-jelly roll framework, consisting of two antiparallel β-

pleated sheets and one α-helix (Figure C-4). The catalytic dyad is composed of two glutamate 

residues – Glu76 (nucleophile) and Glu169 (acid/base catalyst) – that are situated in the 

centre of the active site cleft. When comparing the 3D structure of Tx-Xyl to other GH11 

xylanases, two individual features can be distinguished i.e. (1) a significantly large number of 

surface exposed aromatic residues and (2) a distinctly shorter N-terminal region.  

 

   

Figure C-4. Front view (A) and back view (B) of the cartoon tertiary structure of Tx-Xyl xylanase. The 

protein schematic is “colour-ramped” from the N-terminus (blue) to the C-terminus (red). The eleven 

surface aromatic residues (Y6, Y13, Y42, Y86, Y92, Y97, W102, W109, Y111, Y172 and Y176) are indicated 

in stick presentation with red colour. 

 

Harris et al have proposed that the high number of surface-exposed aromatic residues may 

form the basis of thermostability in Tx-Xyl. Precisely, it has been postulated that the eleven 

surface aromatics, Tyr6/13/42/86/92/97/102/111/172/176 and Trp102/109 (Figure C-4), 

form clusters or ‘‘sticky patches’’ that mediate intermolecular protein interactions between 

monomers via aromatic-aromatic interactions (Harris et al., 1997). The formation of dimers 

or higher order polymers is assumed to help the stabilization of enzyme at high temperature. 

(A) (B) 
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On the other hand, the shorter N-terminal end of Tx-Xyl is a curious feature that is 

apparently in contradiction with the notion of thermostability, because usually thermophilic 

GH11 xylanase possess an extended N-terminal region (Hakulinen et al., 2003).  

 C.2.2 Topology of the active site 

Using crystallographic data showing a Bacillus circulans GH11 xylanase complexed to 

xylobiose as template (Wakarchuk et al., 1994), a xylohexaose molecule has been built into 

the  active site of 3D model of Tx-Xyl, thus providing a theoretical view of subsite (-3 to +3) 

occupancy (Paës et al., 2007). This docking model has provided useful means to investigate 

binding energies in each subsite and, in particular, has furnished data on the putative -3 

subsite. According to the model, the existence of this subsite is uncertain, since only a weak 

binding energy has been calculated and the xylosyl moiety is visualized as being partially 

exposed to the solvent (Paës et al., 2007) (Figure C-5 and Table C-2). In contrast, the other 

subsites appear to be associated with much more favourable binding energies. Two stacking 

interactions are identified at the -2 and +3 subsites, while Van der Waals interactions appear 

to be the main driving force for interactions in the -1, +1 and +2 subsites. A total of six 

hydrogen bonds were predicted through -2 to +3 subsites. Apart from the predicted H bond 

formed between Tyr89 and the xylosyl moiety in +2 subsite, which is only seen in equivalent 

modelled structures (Andre-Leroux et al., 2008; Cervera Tison et al., 2009), the other 

equivalent H bonds have been identified through X-ray crystallographic studies and have 

been proposed to be highly conserved among GH11 xylanases (Janis et al., 2005; Sabini et al., 

1999; Vandermarliere et al., 2008; Vardakou et al., 2008; Wakarchuk et al., 1994).  

 

Table C-2. Binding interactions between the Tx-Xyl xylanase and docked xylohexaose (Paës, 2005).  

Subsite Stacking Hydrogen bond Van der Waals interactions 

-3  O2⋅⋅⋅NE1 (W7) S115 

O3⋅⋅⋅OH (Y163) 
-2 W7 

O2⋅⋅⋅OH (Y67) 
Q5, S115, I116 

-1  O2⋅⋅⋅NH1 (R110) W7, N33, V35, Y67, E76, Y78, P114, S115 

+1  O⋅⋅⋅OE2 (E169) N33, Y78, R110, Q124, W126, Y171 

+2  O2⋅⋅⋅N (T89) Y63, P88, T89, W126, Y171 

+3 Y86 O2⋅⋅⋅ND2 (N61) Y63, Y86, Y171 
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Figure C-5. Binding of xylohexaose in the active site of Tx-Xyl. The xylohexaose molecule is shown in 

green, indicated with subsite number corresponding to each xylosyl moiety. Hydrogen-bonded amino acid 

residues are in blue, and hydrogen bonds are drawn in blue dash lines. Stacking residues are in red.  

 

 C.2.3 Thumb region of Tx-Xyl 

To better understand the function of the thumb loop in Tx-Xyl, Paës et al (2007) have probed 

the conserved triplet Pro114-Ser115-Ile116 using site-directed saturation. An unnatural 

combination, Pro114-Gly115-Cys116, has been generated and surprisingly, the kcat value of 

this novel triplet variant was increased by 20%. In the same study, site-directed mutagenesis 

was also performed on amino acids Tyr111 and Thr121 that together form the N- and C-

terminal extremities of the thumb loop. The analysis of mutant enzymes in which either 

Tyr111 or Thr121 were deleted revealed that these amino acids are tightly linked to catalysis, 

probably determining the 3D trajectory of the loop’s motion. Finally, the complete deletion 

of the loop, creating a “thumbless” enzyme, abolished catalysis but allowed the mutant to 

bind both xylo-oligosaccharides and cellotetraose. Taking into account the fact that wild type 

Tx-Xyl is unable to bind cello-oligosaccharides, this result indicates that the thumb plays a 

substrate filtering role, exclusively admitting xylose-based oligosaccharides and polymers 

into the active site (Paës et al., 2007). 

 C.2.4 Protein engineering of Tx-Xyl 

The cloning and expression in E. coli of the sequence encoding mature Tx-Xyl (i.e. without a 

signal peptide) led to the production of a recombinant enzyme that displayed abnormally 
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low thermostability. Closer analysis of the recombinant protein revealed that the initial Met 

residue, which is absent in 90% of E. coli-expressed proteins was still present and that this 

extra residue was the source of protein instability (Paës, 2005). Normally, the initial Met 

should be removed by the combined post-translational action of a methionyl-deformylase 

and a methionyl-aminopeptidase (Ben-Bassat et al., 1987; Schmitt et al., 1996). To 

circumvent this problem, a new recombinant Tx-Xyl was produced, which bears an Ala in the 

place of Asn at position 1. This single amino acid modification is sufficient to alleviate post-

translational protein processing problems and allows the production of a protein that 

presents characteristics identical to that of wild type Tx-Xyl.  

 

Similarly, in an attempt to increase the thermostability of Tx-Xyl, Paës et al (2006) have 

created several variants via the introduction of cysteine residues that can mediate the 

formation of disulphide bridges. The first disulphide bridge was introduced by mutating 

Ser98 and Asn145, residues that are located on β-strand B9 and on the α-helix respectively. 

This disulphide bridge led to increased thermostability, with a 4-fold increase in half-life at 

70°C, but slightly decreased thermoactivity. The second disulphide bridge, linking the N-

terminal and C-terminal extremities, was produced by adding Cys residues at either 

extremity. This led to increases in both thermostability and thermoactivity. Likewise, the 

combination of the two disulphide bridges procured an additive effect, increasing by 10-fold 

the half-life of the resulting mutant at 70°C and nearly doubling the specific activity at 75°C. 

The results suggested that the disulphide bonds slowed down the denaturation of Tx-Xyl.  
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 Part D  Irrational engineering of xylanase  

Over the past two decades, random enzyme engineering strategies have been increasingly 

applied with success to a wide variety of protein engineering projects (Arnold and Moore, 

1997; Arnold and Volkov, 1999; Johannes and Zhao, 2006). Likewise, several examples of 

random engineering applied to xylanases are available. Compared to rational approaches, 

random engineering does not require detailed structural or mechanistic information, but 

simply relies on good knowledge of the reaction that is catalyzed and a robust, pertinent 

screening method that allows the identification of improved enzyme variants. Moreover, the 

success of random approaches (including DNA shuffling) is highly dependant on two factors, 

which are the diversity of the mutant library and the reliability of screening method 

(Johannes and Zhao, 2006). 

 D.1 Mutagenesis techniques 

 D.1.1 Error-prone PCR 

Directed evolution is a popular strategy to improve enzyme characteristics, which can be 

used to improve the fitness of enzymes for industrial processes. Likewise, when coupled to 

detailed analyses of improved enzymes, directed enzyme evolution is a valuable approach 

for probing protein structure-function relationships (Arnold and Volkov, 1999).  

 

Generally, to achieve directed evolution, both random in vitro mutagenesis and gene 

shuffling techniques are employed. Several methods can introduce random mutations into a 

target gene. These include UV irradiation (Bagg et al., 1981), chemical mutagenesis (e.g. 

deamination, alkylation, base-analog mutagens, etc.) (Encell et al., 1998; Lai et al., 2004), 

cloning genes in mutator strains (e.g. XL1-red) (Greener et al., 1997; Henke and Bornscheuer, 

1999) and PCR-based mutagenesis (e.g. error-prone PCR, PCR using randomly synthesized 

oligonucleotides, gene shuffling etc.) (Botstein and Shortle, 1985; Cadwell and Joyce, 1992; 

Fromant et al., 1995). However, among the various methods, error-prone PCR (epPCR) is the 

most attractive one, because of its versatility and simplicity. 
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In epPCR, the introduction of mutations relies on the low fidelity of polymerase-catalyzed 

DNA replication, which is induced by several factors, including dNTP imbalances, high 

concentrations of divalent metal ions, and the intrinsic low fidelity of certain DNA 

polymerases (Cadwell and Joyce, 1994; Cirino et al., 2003). The very common Taq DNA 

polymerase (hereafter called Taq) is a suitable choice for epPCR, because of its lack of 

fidelity when used with inappropriate buffers. The natural error rate generated by Taq 

usually varies between 0.001 and 0.002% per nucleotide per round of replication, (Cadwell 

and Joyce, 1992),which is insufficient for directed evolution projects. To enhance the error 

rate of Taq, epPCR typically contains a high concentration of Mg2+ (normally around 7 mM), 

which helps to stabilize non-complementary nucleotide pairing. In addition, the error rate 

can also be adjusted by adding Mn2+ into the PCR reaction. This increases mis-incorporation 

of nucleotides into the amplified product and the effect of Mn2+ ions is proportional to the 

concentration used (LinGoerke et al., 1997). However, one important drawback of Taq 

utilization is linked to a higher frequency of transition mutations (A ↔ G and T ↔ C) 

compared to transversions (A/G ↔ C/T) (Cadwell and Joyce, 1992; Cadwell and Joyce, 1994; 

Cirino et al., 2003). To reduce this inherent bias, the use of an unbalanced mixture of dNTPs 

is thus recommended. For instance, Cirino et al (2003) published a protocol that uses 1.0 

mM dCTP/dTTP and 0.2 mM dGTP/dATP, which apparently solved the problem and provided 

relatively even occurrence of mutations involving the four nucleotides.  

 

In addition to the influence of external factors, one must also consider internal factors. The 

first is inherent codon bias, which must be taken into account when performing random 

mutagenesis. For example, the chance of a Val being substituted by a Phe is greater than if 

Val is mutated to Cys or Glu, simply because the Val→Phe substitution only requires a single 

nucleotide mutation, whereas the latter mutations require either double or triple mutations. 

This bias linked to codon degeneracy can be considered as a self-protection for living 

organisms, since it limits the loss of function caused by point mutations (Neylon, 2004). 

However, this is clearly undesirable in in vitro random mutagenesis, because it reduces the 

diversity of mutant libraries, compared to that which is theoretically achievable. Other 

factors that can affect error rate, and thus library quality, are template concentration and 

the number of amplification cycles. Importantly, mutation frequency will vary between 

different templates, even if the same amplification conditions are employed, because 



BIBLIOGRAPHY   79 

 

sequence length, nucleotide composition, etc… play extremely important roles (Cirino et al., 

2003). Therefore, it is important to measure error rate for each individual epPCR experiment. 

 D.1.2 In vitro DNA recombination 

Normally, advantageous mutations generated by epPCR are randomly distributed 

throughout the sequence and, most of the time, mixed with deleterious ones. Therefore, the 

overall result is often modest improvements of the targeted function, or even complete 

failure to detect beneficial mutants, that are masked by deleterious ones. As a consequence, 

in order to concentrate beneficial point mutations and facilitate their identification, 

homologous recombination can be performed. This technique significantly increases enzyme 

fitness, thanks to synergistic interactions between the beneficial mutations. To achieve this, 

several robust DNA recombination technologies have been developed. 

 

DNA shuffling, also known as sexual PCR, is the original homologous DNA recombination 

approach (Stemmer, 1994b; Stemmer, 1994a). In this process, two or more parental genes 

are first randomly cleaved by DNase I, producing small fragments (≥50 bp) that are then 

reassembled in a PCR reaction that is performed without primers. Homologous and partially 

homologous fragments anneal together and are extended progressively cycle after cycle. 

The outcome of the process is chimeric self-primer extension products, which can then be 

amplified using standard PCR reaction, thus creating a library of daughter genes (Figure D-

1.A) (Joern, 2003; Neylon, 2004; Zhao and Arnold, 1997). 

 

Another classical DNA recombination method is the Staggered Extension Process (StEP) 

(Zhao et al., 1998), which does not require DNA fragmentation, but is based on a very simple 

PCR process using short elongation times (Figure D-1.B). Compared to standard PCR, StEP 

PCR also employs primers that anneal to the extremities of the sequence to be amplified, 

but the amplification program merges annealing and extension into one single step 

characterized by a very short incubation time. Consequently, in each cycle, the DNA 

polymerase synthesizes stretches of DNA of limited length along the template. Then, in the 

next cycle, single stranded fragments can anneal to a different template and therefore 

generate a crossover. After the cycle is repeated until the full length of the sequence is built 

up. The key point of StEP PCR is to limit the DNA replication rate, in order to increase the 
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incidence of template switching or crossover (Zhao and Zha, 2006). A lower 

annealing/extension temperature reduces the turnover rate of the DNA polymerase and 

promotes the complementation between fragments that are only partially homologous. 

Nevertheless, caution is required, because a too low temperature would cause non-specific 

annealing. When using Taq, Zhao et al(2006) recommended that an optimal annealing 

temperature would be in the range of (Tm - 25)°C to (Tm - 5)°C. The Taq can also be replaced 

by other polymerases with proofreading activity, especially enzymes with slow extension 

rate such as the Vent polymerase, which only incorporates 1000 bases per minute 

comparing to > 4000 bases per minute for Taq (Aguinaldo and Arnold, 2003; Zhao and Zha, 

2006).  

 

In addition to DNA shuffling and StEP, other well-known DNA recombination methods 

include Random Chimeragenesis on Transient Templates (RACHITT) and some 

fragmentation-free PCR methods, derived from the StEP method. RACHITT involves the 

hybridation of single-stranded fragments onto the full-length complementary ssDNA of a 

template parental gene. Therefore, this technique does not require any thermocycling, but 

only needs the removal of non-annealed flaps and filling in of remaining gaps (Figure D-1.C) 

(Coco et al., 2001; Pelletier, 2001).   

 

When all of these DNA recombination methods are compared, StEP offers the simplest 

procedure, though RACHITT is the most advantageous, because it involves elimination of 

parental genes in the chimeric library. Even though the protocol for DNA shuffling is a little 

labour intensive, the average number of crossovers per chimeric gene is similar or higher 

than that of StEP (Chaparro-Riggers et al., 2007; Zhao and Zha, 2006). Among the three 

methods, RACHITT produces more crossovers than the other two methods (Coco et al., 

2001). 
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Figure D-1. Schematic representation of DNA recombination techniques: (A) DNA shuffling (Joern, 2003), 

(B) Staggered Extension Process PCR (StEP) (Zhao and Zha, 2006), and (C) RAndom CHImeragenesis on 

Transient Templates (RACHITT) (Coco et al., 2001). 

 

 D.1.3 Site-saturation mutagenesis 

Site-saturation mutagenesis is well adapted to the further investigation of mutational hot-

spots that have already been identified. Basically, this technique allows the substitution of a 

specific amino acid for the 19 other amino acids. Saturated mutagenesis is either achieved in 

a ‘one pot’ approach using degenerate mutagenic primers, in which the target codon is 

randomized, or in a more laborious parallel approach, in which each amino acid variant is 

created by site-directed mutagenesis. In the former strategy the design of the mutagenic 

primers can be achieved in a straightforward way by introducing the sequence NNN (N = A, T, 

G or C). This will lead to the generation of all 64 codons in a mutational library, theoretically, 

in equal proportions. Nevertheless, the number of possible codon triplets can be reduced to 

(A) (B) 

(C) 
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32 by restricting the mutation of the third base to G or C only, as this does not influence the 

overall amino acid diversity, but only decreases the size of library and the probability of 

introduction of stop codons (Georgescu et al., 2003). Similarly, it is possible to further 

restrict the sequence of the targeted codon in order to avoid the generation of the original 

codon. However, in this case the overall number of possible amino acid substitutions is also 

likely to be decreased. In addition, when designing the primers, it is critical to leave enough 

correct bases on both sides to ensure the annealing occurs normally. The PCR reaction is the 

same as when doing site-directed mutagenesis, in which the full length of plasmid is 

amplified (Georgescu et al., 2003; Ho et al., 1989). 

 D.1.4 Family shuffling 

In Nature, evolution endows each species with inherent traits, such as  thermostability, 

psychrophilicity, acidophilicity or alkaliphilicity, to adapt to various natural surroundings. 

Family shuffling is a powerful process that permits to combine these natural advantages in 

one chimeric protein through in vitro DNA recombination. Since Stemmer’s group first 

formulated family shuffling in 1998, this method has been shown to be efficient for the 

acceleration of protein evolution (Crameri et al., 1998). As described in Chapter D.1.1, epPCR 

accumulates point-mutations in a single DNA resource. In contrast, family shuffling simply 

recombines homologous genes from a wide variety of related organisms, and therefore 

avoids degenerate mutations (i.e. in principle all of the parental genes encode active 

proteins) and greatly expands the sequence space which is explored (Figure D-2).   

 

In theory, all of the methodologies suitable for simple DNA recombination (described in 

Chapter D.1.2) can be used in family shuffling. However, without modification, their direct 

application in family shuffling leads to poor mixing of the parental genes, because of their 

low similarity. For example, shuffling of two parental genes encoding catechol 2,3-

dioxygenases (84% nucleotide identity) by traditional DNA shuffling method, only resulted in 

a low frequency of hybrid mutants (<1%) (Kikuchi et al., 1999). StEP-mediated recombination 

gives a better result when parental genes share more than 80% of identity (Aguinaldo and 

Arnold, 2003; Chaparro-Riggers et al., 2007). The main problem is that, in the course of 

reassembly, most re-annealing occurs between fully homologous segments, derived from 
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the same parental gene (homo-duplex formation) instead of heterogeneous genes (hetero-

duplex formation). 

 

 

Figure D-2. Sequence space of chimeric library generated by family shuffling versus single sequence 

shuffling (Crameri et al., 1998). The coloured dots represent the parent(s) which are used as template in 

the different strategies. 

 

To overcome the problem of homo-annealing, Kikuchi et al (1999) have utilized restriction 

enzymes to cleave parental genes independently; thus DNA elongation only appears on 

hetero-duplex molecules in the reassembly process. The success of this method relies 

heavily on the location of the cleavage sites: indeed the hetero-duplex will be hard to 

amplify if the 3’-ends of the two fragments are closer than 20 bp. That’s why, a set of 

multiple restriction enzymes is recommended for the gene fragmentation. Alternatively, 

single stranded (ss) DNA shuffling can also be used, in which a single-stranded DNA template 

is first prepared, either through the use of a plasmid bearing a M13 bacteriophage origin of 

replication and helper phage (Kikuchi et al., 2000), or by λ exonuclease digestion of 

phosphorylated dsDNAs (Zha et al., 2003). Once ssDNA is obtained, it is randomly digested 

with DNaseI and reassembled. Nevertheless, in the ssDNA-based method, extra care needs 

to be provided to produce and purify single-stranded DNA, avoiding contamination with 

dsDNA or simply the complementary strand, which would otherwise result in failure of the 

experiment. However, when properly performed, both approaches powerfully improve the 

frequency of hybrid genes to reach 100% of chimera in the library.  
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 D.2 Application of random approaches to xylanases 

 D.2.1 High-throughput screening approaches 

The success of combinatorial engineering does not require detailed 3D protein structures 

but critically depends on the availability of an appropriate high-throughput screening 

methodology. A good screen should be i) be specific to the experimental demand, ii) 

sensitive enough to discriminate between negative and positive mutants and iii) perfectly 

reproducible (Arnold and Moore, 1997; Moore et al., 1997).  

 

Concerning the screening of xylanase mutants, the choice of substrate is a key issue. 

Selection based on the degradation of a substrate and the formation of a lytic halo on solid 

medium is widely used to screen active clones in libraries. Generally, synthetic chromogenic 

substrates, such as the widely used RBB-xylan (Shibuya et al., 2000; Stephens et al., 2007) or 

Blue-xylan (Andrews et al., 2004; Xie et al., 2006) are preferred because substrate hydrolysis 

automatically leads to the formation of a clear zone. However, unmodified xylan can also be 

used, but in this case it is necessary to reveal the lytic halo using a polysaccharide-specific 

colouring agent such as Congo red (Chen et al., 2001; Ruller et al., 2008). Other screening 

criteria can for example be pH-based, where lytic haloes are allowed to develop in medium 

containing acid or alkaline compounds (Chen et al., 2001). Overall lytic halo detection is 

rapid and intuitive, but it does not give any quantitative indication of the targeted 

improvements. 

 

In order to perform rigorous screening, it is desirable to use individually cultured clones and 

cell-free extracts to measure activity. Likewise, the library variants can be exposed to 

stringent conditions before residual enzyme activity is quantified. For example, to screen for 

thermostability a heat shock selection at the targeted temperature is often employed 

(Miyazaki et al., 2006; Palackal et al., 2004). Similarly, for pH adaptation, a high pH reaction 

condition can be used for alkali-stability selection (Stephens et al., 2009). Residual activity is 

often measured in 96-well microtitre plates and quantitative measurements are facilitated 

by the use of chromogenic reagents. For example, for the hydrolysis of birchwood xylan or 

oat spelt xylan, solubilised reducing sugars can be quantified through the use of 3,5-

dinitrosaylicylic (DNS) or bicinchoninic acid (BCA), which are the two most popular methods. 
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The DNS assay functions in a wide range of sugar concentration (6.7 - 600 mg l-1) and does 

not cross-react with proteins (Miller, 1959; Zhang et al., 2006). On the other hand, the BCA 

assay is more sensitive than the DNS assay, being able to detect sugar concentrations as low 

as 0.2 mg l-1. However, this method is subject to interference by the presence of proteins 

(Kenealy and Jeffries, 2003; Zhang et al., 2006). Azo-xylan, a soluble chromogenic substrate, 

is also widely used to quantitatively measure xylanase activity and does not require 

additional colorimetric reagents (Dumon et al., 2008; Palackal et al., 2004). However, this 

substrate is chemically modified. 

 

One of the central dilemmas for the identification of high performance enzymes for 

biorefining processes is the gulf that exists between simple substrates that are often used 

for screening and the highly complex nature of actual lignocellulosic biomass. The latter is 

insoluble, amorphous and is composed of numerous macromolecules, whose accessibility to 

the enzyme is widely variable. To address this problem, several attempts have been made to 

devise screening methods that employ ‘real’ substrates (Chundawat et al., 2008; Navarro et 

al., 2010). Notably, Chundawat et al (2008) devised a screening method that uses finely 

milled, pretreated lignocellulosic biomass (diameter < 100 µm). The use of such particles 

allowed the constitution of a nearly homogeneous aqueous slurry, which could be pipetted 

using manually cut pipette tips and an automated workstation. However, Chundawat’s 

method requires specific grinding equipment that is not widely available, and relies on a 

rather artisanal pipetting of slurry (which can decant) method that hinges on the use of 

manually modified tips. Overall, these potentially represent major sources of error, linked to 

biomass delivery. 

 D.2.2 Examples of xylanase engineering projects 

 

Table D-1 summarizes a number of xylanase engineering studies that have been undertaken 

over the last ten years. Mostly, epPCR has been employed and in some cases, 

thermostability has been significantly increased via only one round of random mutagenesis 

(Chen et al., 2001; Stephens et al., 2009; You et al., 2010). Nevertheless, directed evolution 

on xylanases has also been shown to be very powerful and relevant, especially for increasing 

the thermostability of a Bacillus subtilis xylanase (Miyazaki et al., 2006; Ruller et al., 2008). 
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Interestingly, the extent of the improvements is not proportional to the number of 

generated mutations. Often the best performing mutants are the result of subtle changes, 

while others result from more than ten mutations. Therefore, at this stage it is hard to make 

generic predictions concerning the residues that are important for any given aspect of 

xylanase activity, even when detailed tertiary structures are available.  

 

Nevertheless, one might expect that the ever increasing use of random approaches for 

xylanase engineering will lead to greater insight and will eventually allow reliable prediction 

and rational design. In this respect, some advances have been made, via the structural 

analyses of thermostabilized mutants, arising from directed evolution strategies. In some 

cases, increased thermostability has been associated with surface hydrophobic properties 

and/or local hydrophobic interactions (Dumon et al., 2008; Miyazaki et al., 2006; Xie et al., 

2006), and for others with a rigidified N-terminal region (Palackal et al., 2004; Shibuya et al., 

2000), an increase in the potential for salt bridge formation (Stephens et al., 2009), or 

reinforced interactions between newly engineered Cys residues (You et al., 2010). Likewise, 

it has been proposed that an increase of surface polarity is highly beneficial for the 

development of alkaphilicity in xylanases (Chen et al., 2001; Stephens et al., 2009). 

 

So far, the main aims of xylanase combinatorial engineering studies have concentrated on 

improving protein stability at high temperatures and under alkaline environments, in order 

to fit industrial applications, such as bio-bleaching processes used in the paper industry. 

However, for biorefining, these characteristics may or may not be useful, depending on the 

exact process design and the precise use of the enzymes. What is certain, is that biorefining 

will require robust enzymes that can efficiently hydrolyze xylans contained within complex 

lignocellulosic material or derivatives thereof (e.g. pretreated pulps). In this case, novel 

screening approaches using complex biomass medium coupled with powerful protein 

engineering strategies should be applied for xylanases.  
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Table D-1. Summary of irrational engineering of xylanases over the last ten years.  

Objectives 
Organism of 

parental gene(s) 
Combinatorial engineering method Screening strategy  

 Number of 

mutations in 

best mutant  

Hypothesis/Explanation Reference 

S. lividans and T. 

fusca 

Family shuffling between 2 parental 
genes 

Halo selection on plate (RBB-xylan) - 
Thermostable N-termninus of S. lividans 
xylanase 

(Shibuya et 
al., 2000) 

XYL7746 xylanase 
Gene site saturation mutagenesis + Gene 
reassembly technology  

High temperature incubation + activity 
assay on Azo-xylan 

9 
Rigidified N-terminal β-strand; Increased 
hydrophobic interactions 

(Palackal et 
al., 2004) 

Bacillus subtilis 
1 round of epPCR + 1 round of DNA 
shuffling + Site-saturation mutagenesis 

High temperature incubation+ activity 
assay on birchwood xylan 

3 Increased hydrophobicity 
(Miyazaki et 
al., 2006) 

Thermomyces 

lanuginosus 
2 rounds of epPCR Halo selection on plate (RBB-xylan)  1 Not mentioned 

(Stephens et 
al., 2007) 

Cellvibrio mixtus 
1 round of epPCR + mutation 
recombined by site-directed mutagenesis 

Halo selection on plate (overlaying 
with blue-xylan) 

2 
Increased hydrophobic interactions; 
Potentially enhanced substrate binding 
affinity 

(Xie et al., 
2006) 

Enviromental 
resource xylanase 

Gene site saturation mutagenesis + Gene 
reassembly technology  

High temperature incubation + activity 
assay on Azo-xylan 

7 
Increased hydrophobic interactions; 
Locked conformation of a surface loop 

(Dumon et 
al., 2008) 

Thermotoga 

maritima 

Family shuffling between 2 parental 
genes 

Activity assay on oat spelt xylan and 
CD measurement 

- 
Increased interactions between N- and C-
terminus 

(Kamondi et 
al., 2008) 

Bacullus subtilis 
2 round of epPCR + 1 round of DNA 
shuffling 

Halo selection on plate (oat spelt xylan 
+ Congo red staining) 

4 
Change of protein-solvent interface; 
Decrease in the heat capacity change 

(Ruller et al., 
2008) 

Thermomyces 

lanuginosus 
Mixture of 7 independent epPCR 

High temperature incubation + activity 
assay on birchwood xylan 

4 
Increased number of arginine residues 
on the surface 

(Stephens et 
al., 2009) 

Geobacillus 

stearothermophilus 

2 round of epPCR + mutation 
recombined by shuffling and site-
directed mutagenesis 

High temperature incubation + activity 
assay on birchwood xylan 

13 
Potentially enhanced substrate binding 
affinity 

(Zhang et al., 
2010) 

More 

thermostable 

Neocallimastix 

patriciarum 

1 round of epPCR + mutation 
recombined by site-directed mutagenesis 

High temperature incubation + activity 
assay on birchwood xylan 

2 
Increased hydrophobic interaction 
between two cystein residues 

(You et al., 
2010) 

Neocallimastix 

patriciarum 

1 round of epPCR + mutation 
recombined by site-directed mutagenesis 

Halo selection on alkaline plate (oat 
spelt xylan + Congo red staining) 

7 
Increase of the negative charge on the 
surface  

(Chen et al., 
2001) 

Bacillus sp. Strain 

41M-1 
1 round of epPCR Halo selection on alkaline plate  4 Not mentioned 

(Inami et al., 
2003) 

More 

alkaliphilic/alk

aline-stable 
Thermomyces 

lanuginosus 
Mixture of 7 independent epPCR 

Halo selection on alkaline plate 
(birchwood xylan) 

1 Increased polarity 
(Stephens et 
al., 2009) 

More stable in 

the absence of 

Ca
2+

 

Cellvibrio japonicus 3 rounds of epPCR 
Halo selection on plate (overlaying 
with blue-xylan) 

3 
Influence in calcium binding site; New 
generated disulfide bridge, hydrogen 
bond and hydrophobic interactions 

(Andrews et 
al., 2004) 
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ARTICLE I 
ARTICLE I. A HIGH THROUGHPUT SCREENING SYSTEM FOR THE EVALUATIO N OF BIOMASS-

HYDROLYZING  GLYCOSIDE HYDROLASES  

 

This article has been published in the journal of Bioresource Technology, 2010. Here, we 

described how we designed a novel screening method that uses wheat straw as substrate, 

and how we validated its relevance in different conditions. In addition, the comparison of 

this screening method to the other similar screens was mentioned as well. Most importantly, 

the established screening system provides technique support for the following random 

engineering study. 
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Abstract 

To implement a protein engineering strategy for the improvement of enzyme performance 

on biomass, we have devised a straightforward, robust high throughput method using wheat 

straw and a recombinant GH11 xylanase as a test case scenario. Inevitably, the method 

requires automated liquid handling equipment, but it avoids the need for specialized milling 

and powder weighing devices and the use of labour intensive steps such as manual cutting of 

pipette tips. After expression in E. coli cells grown in microtiter plates, recombinant xylanase 

was released into the culture medium and used directly for biomass hydrolysis. Reactions 

were monitored using a micro-DNS assay. The cumulative error of the method was less than 

15%. To validate the method, randomly generated xylanase mutants were analyzed. This 

allowed the detection of one mutant, which produced a 74 % increase in hydrolysis 

compared to the parental enzyme. Closer analysis revealed that this increase in activity was 

correlated with a two-fold increase in xylanase expression. 

Keywords 

Biomass; high throughput screening; enzymatic hydrolysis; wheat straw; glycoside hydrolase
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 I.1 Introduction 

Lignocellulosic biomass is the most abundant terrestrial repository of renewable carbon 

(McKendry, 2002; Wyman, 2007). In this respect, the development of efficient technologies 

that will give access to its various constituents and provide the means to produce fuels, 

chemicals and materials is a vital challenge for modern society (Himmel et al., 2007). 

 

The breakdown of lignocellulosic biomass into its constituent subunits is the first step in 

biorefining and the choice of technologies that are used is critical, because to a large extent 

it will determine the economic and environmental sustainability of the overall value chain. In 

state of the art concepts, it is envisaged that hemicellulose and cellulose will be broken 

down into fermentable sugar syrups in two separate unit operations. Hemicellulose is 

targeted in the initial pretreatment step that often employs a combination of chemical 

catalysis and thermo-physical effects, while cellulose is hydrolysed using appropriate enzyme 

cocktails. However, it is widely acknowledged that current pretreatment technologies lead 

to both high capital investment and high operational costs (Mosier et al., 2005; Wyman, 

2007). Equally, it is recognized that bioconversion processes involving microorganisms 

and/or enzymes will progressively contribute to the improvement of the environmental and 

economic performance of today’s industrial processes (Demain, 2007), notably through the 

development of consolidated bioprocessing of lignocellulosic biomass (Lynd et al., 2005). 

Nevertheless, for biocatalysts to become the linchpins of future biorefining processes it is 

necessary to accelerate both the discovery and engineering of enzymes and microorganisms. 

To achieve this, high throughput technologies such as functional metagenomics and in vitro 

enzyme evolution strategies are being increasingly employed to identify and/or engineer 

enzymes that are particularly adapted to the constraints of the industrial environment and 

to the specific demands of targeted processes. 

 

To devise strategies to isolate new enzymes arising from natural or artificially-created 

biodiversity, it is vital to account for the truism “you get what you screen for” (Schmidt-

Dannert and Arnold, 1999). In the case of biomass deconstruction, this implies that the 

chemical and structural complexity of the natural substrate must be reflected in the screen, 
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thus the choice of substrate is a key issue. To illustrate this point, it is noteworthy that the 

use of CMC-cellulose as a substrate for the selection of improved activity in mutant cellulase 

populations has failed to isolate enzymes that display higher activity on crystalline cellulose 

(Lin et al., 2009; Nakazawa et al., 2009). Presumably, the use of filter paper in these 

experiments would have been preferable, even though this still does not account for the 

presence of residual lignin-derived inhibitors present in chemically-pretreated biomass. 

Similarly, conventional screening methods for hemicellulases are also unsuitable. These are 

based on the use of isolated, often modified, polysaccharides such as RBB-xylan, which is 

added to solid agar medium (Shibuya et al., 2000; Stephens et al., 2007). Practically-speaking, 

these substrates, which allow the detection of lytic haloes around colonies, provide a rapid 

way to discriminate between active and inactive mutants, but there is no clear relationship 

between activity on these substrates and activity on complex biomass (Chundawat et al., 

2008; Zhang et al., 2006).  

 

In this research study, we have focused on the development of simple and reliable screening 

approach that can be used for automated high throughput screening (HTS) of biomass 

deconstructing enzymes or enzyme cocktails, using complex biomass as the substrate. In a 

previous study, Chundawat et al. (2008) described a similar high throughput screening 

approach, which was used to assay the cellulase-mediated hydrolysis of AFEX-pretreated 

corn stover. Their method relied upon the use of finely ground biomass (<100 µm) and a 

glucose-specific detection assay. In the method described here, we have attempted to both 

design a more generic HTS method using an alternative biomass distribution approach, 

which does not require high performance milling equipment, and a reducing sugar micro-

assay using the 3,5-dinitrosalicylic acid (DNS) reagent. To illustrate the performance of our 

method we have prepared a library of randomly mutated variants of the GH11 xylanase from 

Thermobacillus xylanilyticus (designated as Tx-Xyl) that has been assayed for improved 

activity on untreated wheat straw, the aim being to increase hydrolysis efficiency and 

improve hemicellulose solubilisation beyond the current 18% (w/w, dry weight) level. 
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 I.2 Materials and methods 

 I.2.1 General materials and chemicals 

Unless otherwise stated, all chemicals were analytical grade and purchased from Sigma-

Aldrich (St. Louis, MO, USA). Restriction enzymes, Taq DNA polymerase and their 

corresponding buffers were obtained from New England Biolabs (Ipswich, MA, USA). 

Oligonucleotides were synthesized by Eurogentec (Angers, France). Microtiter plates and 

their accessories were purchased either from Evergreen Scientific (Los Angeles, CA, USA) 

(sterile plates for bacterial growth) or from Corning Corp. (NY, USA).  

 I.2.2 Biomass preparation   

Wheat straw (Apache variety), harvested in 2007 in southern France, was obtained from 

ARD (Pomacle, France). Subsequently, the straw was ground to powder form (0.5 mm) and 

washed with distilled water at 4°C (> 10 volumes). Straw powder was recovered by filtration 

using a Büchner funnel with Whatman® No.4 filter paper (pore size: 20-25 µm), then dried in 

a dry oven. The dried powder was then sterilized by autoclaving. 

 I.2.3 Xylanase preparation, purification and activity assay 

A recombinant form of the GH11 endo-β-1,4-xylanase from T. xylanilyticus (Tx-Xyl) was 

expressed using E. coli JM109(DE3) cells bearing a previously prepared plasmid construction, 

pECXYL-R2 (Paës and O'Donohue, 2006). Purification of Tx-Xyl was performed as Paës et al. 

described (2006). Xylanase activity was determined by monitoring the hydrolysis of 

birchwood xylan (5 g l-1 ) at 60°C using the DNS method (Miller, 1959). One unit of xylanase 

activity (1 IU) was defined as the quantity of xylanase needed to release 1 µmol of 

equivalent xylose per minute.  

 I.2.4 Enzymatic hydrolysis of wheat straw powder 

Wheat straw (0.6 g in 30 ml 50 mM sodium acetate, pH 5.8) was treated with different 

xylanase loadings (90 IU, 120 IU and 300 IU) at 60°C in a double jacketed, thermostated 

reactor with and without stirring. At regular intervals, samples were removed and 

centrifuged (13 200 rpm, 2 min) and the supernatant was used in a DNS assay to measure 

the amount of released sugars. In each case, data were derived from triplicate reactions run 
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in parallel. These were completed by a suitable control performed without the addition of 

enzyme. 

 I.2.5 Error-prone PCR and construction of mutant library 

Random mutagenesis of the Tx-Xyl encoding DNA was performed using error-prone PCR 

according to an established method (Cirino et al., 2003). The final PCR product, obtained 

after 30 cycles of amplification, was purified using QIAquick PCR Purification Kit (Qiagen, 

Germany). Following digestion using EcoRI and NdeI restriction enzymes, the amplified 

fragment was inserted into a similarly digested pRSETa vector. The plasmid library was 

transformed into chemically competent E. coli Novablue(DE3) cells (Novagen, Germany) that 

were spread onto LB-agar supplemented with ampicillin (100µg/ml) and tetracyclin 

(12.5ug/ml) in Q-trays (Corning, USA) and incubated at 37°C, 16 hours. 

 I.2.6 Screening method procedure  

 I.2.6.1 Robotic handling 

All cultivation medium dispensations into microtiter plates were performed by a Biomek® 

2000 Laboratory Automation Workstation (Beckman, USA) in sterile conditions. Colony 

picking and plate replication were performed with a QPix2 (Genetix, UK). A Genesis RSP-200 

station (TECAN, Switzerland) was used for non-sterile liquid handling and a TECAN Sunrise 

microplate reader was employed for spectrophotometric absorbance measurement. 

 I.2.6.2 Distribution of wheat straw 

A transfer device (40 µl capacity Multiscreen® column loader, Millipore Inc., USA) compatible 

with 96-well microtiter plate format was employed to deliver a fixed amount of wheat straw 

to all individual wells in polypropylene microtiter plates (Figure I-1). The good reproducibility 

of this method was verified by comparing the weights of twenty microtiter plates before and 

after the addition of wheat straw powder.  

 I.2.6.3 Cell growth and expression of xylanase in microtiter plates 

For the heterogeneous expression of Tx-Xyl in microplates, the plasmid pECXYL-R2 was 

transformed into E. coli Novablue(DE3). Individual colonies bearing either of wild-type or 

potential mutant plasmids (from directed evolution) growing on LB-agar plates were picked 

and automatically arrayed in sterile microtiter plates containing 200 µl LB medium 
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supplemented with ampicilin (100 µg/ml) and tetracycline (12.5 µg/ml). The microtiter 

plates were sealed with air permeable membranes and incubated at 30°C for 20-24 hours 

with shaking (200 rpm). After, the cultures were used to inoculate sterile medium 

(containing antibiotics and IPTG at 0.01 mM) in microtiter plates for enzyme expression. 

These fresh cultures were incubated for 16 hours at 30°C with shaking (200 rpm). After 

growth, cells were lysed for 1 hour at 37°C using 20 µl of lysozyme solution (5 g/l) per well.  

Bacterial lysis was completed using a freezing/thaw cycle (-80°C followed by rapid heating at 

37°C). The resulting cell extracts were then used to perform micro-DNS assays using straw 

powder as the substrate.  

 

 

 

Figure I-1. Distribution of wheat straw powder into microtiter plate via the device of Multiscreen® 

Column Loader.  Firstly, the powder is poured into the wells of device and the excess is removed from the 

surface, then an empty microtiter plate is covered onto the straw-accommodate device, only through a 

simple reversion, the straw powder will fall off into each well of microtiter plate.  

 

 I.2.6.4 Wheat-straw hydrolysis in microtiter plates  

Sodium acetate buffer (50 mM, pH 5.8) and either purified Tx-Xyl xylanase (1 IU and 2 IU per 

well) or the previously prepared cell extracts were dispensed into individual wells of 

microtiter plates (96-well format) in a 1:1 ratio with a final volume of 250 µl. The microtiter 

plates were then sealed with an aluminium film and incubated at 60°C for 4 hours in a dry 
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oven. After incubation, plates were centrifuged (3700 rpm, 30 min) at 4°C to stop hydrolysis 

and to pellet residual straw solids. 50 µl of the supernatant were dispensed into a 96-well 

PCR microtiter plate and mixed with 50 µl of DNS reagent. To allow colour development, the 

PCR microtiter plate was incubated without sealing on a PCR-bottom heating block (CPAC 

Ultraflat, Watlow Inc., Germany) at 95°C for 10 min, followed with cooling in an ice bath. 

Finally, samples were transferred into polystyrene microplates and read absorbance at 540 

nm. Generally, experiments were performed in triplicate unless otherwise stated. 

 I.2.7 Statistical analyses and software  

To analyze the errors on micro-DNS measurements in order to evaluate the precision of the 

screening tests, the mean value (µ), standard deviation (σ) and coefficient of variation (CV = 

σ/µ × 100%) were calculated. Analysis of variance was performed to compare the tests using 

two different concentrations of Tx-Xyl (1 and 2 IU per well). Resulting p-value was provided 

using the R software. When the p-value was below 5%, the comparison was considered as 

statistically different. The other calculations and all statistical figures were achieved using 

the SigmaPlot software (Systat Software Inc., USA).  

 I.3 Results and discussion 

Previous studies have indicated that Tx-Xyl can solubilise arabinoxylans contained within 

complex substrates such as wheat bran and straw (Lequart et al., 1999; Zilliox and Debeire, 

1998), although the reaction is always incomplete. Taking into account the thermostability of 

Tx-Xyl, this enzyme can be qualified as a potentially useful enzyme for biorefining 

applications that specifically target the extraction of arabinoxylans. Therefore, it is pertinent 

to develop a strategy for the optimization of the catalytic properties of Tx-Xyl, in particular 

its activity on lignocellulosic substrates. However, because the action of enzymes on plant 

cell walls is limited by a large number of often ill-defined factors, a random approach to the 

engineering of Tx-Xyl is preferable. A prerequisite for this strategy is a powerful, pertinent 

and high-throughput screening procedure that can identify promising variants. To satisfy 

these criteria, we have developed a microtiter plate-based assay that uses powdered wheat 

straw as the substrate and recombinant Tx-Xyl-containing E. coli extracts as the enzyme 

inoculums. 
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 I.3.1 Establishment of the basic conditions for a microtiter plate assay 

Before developing the microtiter plate-based assay, it was first necessary to ascertain (i) 

whether agitation is a requisite to achieve enzyme-mediated hydrolysis and (ii) to what 

extent hydrolysis is proportional to enzyme quantity/activity present in the reaction. To 

answer these two questions, powdered wheat straw was incubated with three different 

amounts of enzyme in both stirred and unstirred reactions. The results (Figure I-2) indicate 

that stirring does not affect the course of the reaction, which reached completion after an 

extended time period. However, in the initial phase (up to 8 h), the reaction rate appeared 

to be approximately proportional to the number of units of enzyme deployed. Therefore, 

these preliminary data confirm that microtiter plate agitation is unnecessary and indicate 

that a 4-h incubation time is suitable for the detection of variants that accelerate or improve 

the hydrolysis of wheat straw. 

 

Figure I-2. Tx-Xyl mediated hydrolysis of wheat straw in 30 ml reactor. Solid lines and black symbols 

represent reactions performed with stirring, whereas dashed lines and open symbols are reactions 

performed without stirring. The symbols ■ and □, ▲ and ▲, ● and ○, represent enzyme loadings of 500, 

200 and 150 IU/ g respectively. 
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 I.3.2 Preparation of the wheat straw and its distribution in microtiter 

plates 

To provide wheat straw in an appropriate form for distribution in microtiter plates, it was 

ground into a fine powder (0.5 mm). In addition, it is known that size reduction of biomass 

can be an effective physical pretreatment, which improves enzymatic hydrolysis through 

increased accessible surface area and lowered cellulose crystallinity (Chundawat et al., 2008; 

Sánchez and Cardona, 2008). In our experiment, the major consequence of grinding was a 

significant release of water soluble pigments that had to be removed by washing in pure 

water, in order to avoid problems with subsequent spectrophotometric measurements. 

Afterwards, the dried powder was sterilized in order to avoid artifacts linked to the 

undesirable development of microorganisms.  

 

The homogeneous distribution of powdered biomass into microtiter plates is quite a 

challenge, because the chosen method needs to be both rapid and reliable. To overcome 

this challenge, Chundawat et al (2008) prepared a slurry of finely milled (<100 µm) corn 

stover, which was transferred to microplates using a pipettor workstation equipped with 

hand-cut tips. In our case, using a coarser wheat straw powder, we found that this method 

was both inconvenient and inconsistent. Therefore, we adopted another method that 

involves the use of a Multi-screen® Column Loader. This device allows the delivery of dry 

beads, powders, or resins into the 96-well microtiter plates. Its use is very simple, rapid and, 

according to our verifications, reliable. The careful weighing of 25 microtiter plates before 

and after delivery of wheat powder revealed that the average weight of biomass delivered 

to plates was 424.32±9.61 mg and the coefficient of variation was 2.27%.  

 I.3.3 Establishment and refinement of screening procedures 

The screening approach basically allows xylanase-mediated hydrolysis of wheat straw to be 

performed in microtiter plates, using the DNS method to monitor the progress of the 

reaction. The DNS method is among the most rapid and economic assays for measuring 

reducing sugars and is characterized by a wide detection range (20-2500 µg/ml) and low 

interference from proteins (Zhang et al., 2006). The use of DNS assay in 96-well microtiter 

plate format has been previously described (King et al., 2009; Miyazaki et al., 2006). In our 

micro-DNS assay, a 100 µl final volume was constituted in individual wells of a PCR 
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microplate, and a 96-well format thermocycler was used for the heating step, this avoids the 

obvious disadvantages of a water bath. The accuracy of the micro-DNS measurement was 

verified using a series of standard xylose solutions (data not shown). Moreover, when the 

hydrolysis of wheat straw by Tx-Xyl was monitored using the micro-DNS assay, it was 

possible to correlate the colorimetric measurement with enzyme activity. The optimal 

procedure was considered to be sufficiently reproducible, with a test using a pure xylanase 

solution producing a low average error (average of CV = 10.91%, quadruplicate repeats). 

 

 

Figure I-3. Statistical analysis of various steps in the HTS protocol. Shown from left to right are: the 

optimized protocol, the protocol with no microtiter plate sealing (lid only, variant 1), the protocol with the 

use of a heating block during hydrolysis (variant 2) and the protocol with the use of a water bath for the 

micro-DNS assay (variant 3). 

 

Various options for microplate sealing (lid or aluminium film) and incubation (heating block 

or oven) were investigated in order to choose the best overall configuration, which is 

characterized by low error rate and time-saving advantages. For the evaluation of each 

protocol, a hydrolysis test was performed using a solution of pure Tx-Xyl and the CV of the 

final micro-DNS values was calculated (Figure I-3). Although sealing with aluminium film 

constitutes a limiting operation, it avoided the intolerable level of evaporation associated 

with the use of simple microtiter plate lids. Using aluminium film, the percentage weight loss 

due to evaporation (in 4-h incubation) was only 1.44 ± 0.16% (average value for 20 replicate 
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microplates). Advantageously, because stirring does not enhance hydrolysis, it was possible 

to incubate the microtiter plates in an oven during the hydrolysis reaction. Although, this 

method does not procure a major gain in accuracy, it does allow the simultaneous 

processing of a large number of microtiter plates. The key steps in the final optimized 

protocol are summarized in Figure I-4. 

 

 

 

 

 

 

Figure I-4. Flow chart of the HTS protocol. 

 

 

Figure I-5. Box plots of micro-DNS assays performed on reactions involving (A) two different loadings (1 

and 2 IU/well) of pure Tx-Xyl (triplicate data); (B) Tx-Xyl-containing cell extracts produced in microtiter 

plate format (two sets of triplicates) and (C) Cell extracts of xylanase variants from the error-prone PCR 

library (three microtiter plates). Whiskers extend from 10th to 90th percentiles and outliers contain all 

data. 
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 I.3.4 Evaluation of the micotiter plate assay using pure Tx-Xyl 

preparation 

Because the amount of straw powder dispensed to each well cannot be directly determined, 

an indirect measurement was performed by hydrolyzing the straw in individual wells with an 

identical amount of pure Tx-Xyl enzyme solution. Likewise, using two different 

concentrations of enzyme (1 and 2 IU per well) it was found that the coefficient of variation 

in the DNS measurements for individual wells of a microtiter plate was less than 11% (µ±σ = 

0.211±0.025), for tests involving 1 IU/well of Tx-Xyl and approximately 7% (µ±σ = 

0.276±0.020) in tests using 2 IU/well. The 2-fold increase in enzyme activity which can be 

clearly seen on Figure I-5.A is statistically significant (p-value from the analysis of variance < 

10-15). Overall, these results show that the straw distribution in the microtiter plate is 

sufficiently homogeneous and that the assay is sensitive enough to reproducibly reveal 2-

fold increases in enzyme activity.  

 I.3.5 Optimization for microtiter plate-based culture extracts 

This high throughput method is intended to screen xylanase activity produced by E. coli cells 

bearing an expression vector. Therefore it was necessary to establish the optimal 

parameters for the production of Tx-Xyl and the analysis of culture supernatants in 

microtiter plate format. First, various E. coli strains such as JM109(DE3), BL21(DE3), 

Rosetta(DE3) and Novablue(DE3), expression vectors (pRSETa and pET21a) and culture 

conditions (liquid media and IPTG concentration) were evaluated in order to pinpoint the 

best combination for the production of recombinant Tx-Xyl. Only JM109(DE3) and 

Novablue(DE3), which are E. coli K12 derivatives, grown in LB medium produced stable 

growth in microtiter plates and low background noise in the micro-DNS assay  (data not 

shown). The vector pET21a proved to be unsuitable, so the preferred combination was 

Novablue(DE3) bearing a pRSETa-based plasmid. The major advantage of Novablue(DE3) 

over JM109(DE3) was the fact that the former is commercialized in the form of chemically 

competent cells, which are useful when creating mutant libraries. 

 

The growth of E. coli cells at 30°C in microtiter plates was subject to evaporation, with a final 

percentage weight loss of 5.94±1.54% (cumulative results from 15 microtiter plates). The 
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average amount of xylanase activity produced by the microtiter plate-based cultures was 

4.83±0.34 IU/ml (hydrolysis measurements from 16 microtiter plates using birchwood xylan 

as substrate) and maximal xylanase production was achieved by cultures displaying an 

OD600nm of 0.4. Importantly, quite heterogeneous culture densities (CV of OD600nm = 19.05%) 

did not produce heterogeneous activity measurements (CV of OD540nm = 8.14%), indicating 

that the method is quite robust with regard to the uneven growth of bacteria in individual 

wells.  

 

Unlike the tests carried out using pure xylanase solution, the use of culture extracts was a 

source of further challenges linked to the viscosity and the complexity of the reaction 

mixture. To ensure good reproducibility in these conditions and to avoid the carry-over of 

straw powder into the micro-DNS assay, it was found to be important to ensure that (i) the 

reaction was sufficiently diluted by adding an equivalent volume of buffer solution to the 

culture extract, and (ii) straw powder was completely eliminated before the micro-DNS assay, 

by applying an adequate centrifugation step after hydrolysis. When these conditions were 

satisfied, a negative control (i.e. performed using an extract of E. coli 

Novablue(DE3)/pRSETa) produced a DNS measurement of 0.079±0.004, which was similar to 

a blank control (0.085±0.003), performed using buffer only. Additionally, using a prolonged 

incubation time (16 h), it was possible to show that the course of a reaction catalyzed by a 

xylanase-containing culture extract, prepared and assayed in microtiter plate format, was 

highly similar to that of a reaction catalyzed by a pure xylanase solution and performed at a 

30 ml scale (data not shown). 

 

With regard to the reproducibility of the screening method performed in microtiter plate 

format, results from six microtiter plates revealed that mean activity measurements 

(expressed as OD540nm) were in the range 0.158 to 0.164 (Figure I-5.B) and that the deviation 

was below 10%. Only 3% of measurements fell outside the limits of µ+2σ, in accordance with 

a normal distribution (5% expected for a normal distribution). Overall, the small variation 

between individual wells, corresponding to individual colonies, confirmed that the method is 

suitable for the screening of clonal libraries. 
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 I.3.6 Implementation of the HTS method on an error-prone PCR clone 

library 

To provide an ultimate validation of the HTS method, a 264-mutant subset of an error-prone 

PCR clone library was submitted to screening. Three microtiter plates were prepared, each 

with 88 colonies from the mutant library and eight clones encoding wild-type Tx-Xyl. These 

latter were placed in column 12 of each microplate and were included as an internal control. 

The µ±σ values of the wild-type controls in the three microplates were 0.177±0.017, 

0.168±0.020 and 0.164±0.013 respectively (Figure I-5.C). This reveals variability between 

microtiter plates, but variability between individual control wells within the same microtiter 

plate was low. Among the clones from the mutant library, those displaying an activity 

greater than µ+2σ of wild-type activity were selected for further analysis. In this way, one 

mutant designated Tx-Xyl-AF7 was found to display 74.5% greater activity than the wild-type 

controls. DNA sequencing revealed two silent mutations (T27C and C516T) in the Tx-Xyl-AF7 

coding sequence, which can be correlated with increased protein expression. Indeed, 

production of Tx-Xyl using the Tx-Xyl-AF7 clone in 50 ml flasks (performed in quadruplicate) 

revealed an average two-fold increase in the number IU per ml culture compared to a 

parental clone grown in the same conditions (Figure I-6.A). Further analysis revealed that the 

mutation T27C is located in the 5’-region of the Tx-Xyl coding sequence, near to the 

ribosome binding site, which is thought to be a key zone with regard to protein expression 

levels (Kudla et al., 2009; Seo et al., 2009). Using an mRNA structure prediction webserver 

(http://rna.tbi.univie.ac.at/) (Gruber et al., 2008; Hofacker et al., 1994), it was possible to 

reveal the presence of a putative hairpin structure in this region and show that this structure 

is modified by the mutation T27C (Figure I-6.B and C). According to this model, the single base 

alteration causes a local reorganisation of hydrogen bonding, which correlates to a drop in 

the minimum free energy (-8.0 to -2.5 kcal/mol) of the hairpin. Therefore, we conclude that 

the increased protein expression displayed by the clone Tx-Xyl-AF7 is due a modification of 

the mRNA secondary structure, which produces a favourable effect on the initial rate 

ribosome-mediated translation rate. 
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Figure I-6. (A) SDS-PAGE analysis of Tx-Xyl expression from mutant Tx-Xyl-AF7 and wild-type coding 

sequences: lane 1, Mw marker; lane 2, wild-type; lane 3, mutant Tx-Xyl-AF7. (B) and (C) predicted 

structures of the 5’-end of Tx-Xyl-encoding mRNA (position -4 - +37) displaying either the original 

sequence (B) or that of the mutant Tx-Xyl-AF7 (C). 

 

 I.4 Conclusion 

In this study, we have developed a HTS method that can be applied to the screening of 

glycoside hydrolase activity on lignocellulosic biomass. Because the biomass only needs to 

be milled to coarse powder form, no specialized micronization equipment is required. 

(A) 

(B) (C) 
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Likewise, because the method employs a very simple and reliable method to distribute the 

powdered biomass into microtiter plates, the purchase of an automatic powder distributor is 

avoided. The whole HTS process has been carefully conceived to provide robust technology 

that can be applied to mutant enzyme libraries, with a screening rate of approximately 2000 

clones per week when using 96-well format microtiter plates in a TECAN liquid handling 

workstation. Working with a xylanase and wheat straw as the substrate, we have 

demonstrated the reproducibility and robustness of the HTS method. It has been possible to 

show that any mutants that display more than 15% increase in activity on wheat straw can 

be detected. In this work, activity measurements have been performed at an early stage in 

the hydrolytic reaction. Therefore, it has been possible to show that the HTS method can 

even detect mutants that simply increase protein expression and therefore accelerate the 

initial rate of the reaction. To detect mutant xylanases that actually solubilise more 

hemicelluloses than the parental enzyme (i.e. those that go beyond the normal endpoint) a 

modification of the method is required. This involves either an increase in the incubation 

time, in order to attain the end-point of the reaction, or the use of depleted wheat straw as 

the substrate, which has been first treated with the parental xylanase. In recent work, we 

have tested this latter option and have shown that it constitutes a suitable way to identify 

high-performance xylanases. The creation and characteristics of these enzymes will be 

reported in a future communication. 

 

 I.5 References 

 
Chundawat, S.P., Balan, V., Dale, B.E., 2008. High-throughput microplate technique for 

enzymatic hydrolysis of lignocellulosic biomass. Biotechnol Bioeng, 99, 1281-94. 
Cirino, P.C., Mayer, K.M., Umeno, D., 2003. Generating Mutant Libraries Using Error-Prone 

PCR. in: F.H. Arnold, G. Georgiou (Eds.), Directed Evolution Library Creation. Humana 
Press, pp. 3-9. 

Demain, A.L., 2007. REVIEWS: The business of biotechnology. Industrial Biotechnology, 3, 
269-283. 

Gruber, A.R., Lorenz, R., Bernhart, S.H., Neubock, R., Hofacker, I.L., 2008. The Vienna RNA 
Websuite. Nucl. Acids Res., gkn188. 



ARTICLE I  120 

 

Himmel, M.E., Ding, S.-Y., Johnson, D.K., Adney, W.S., Nimlos, M.R., Brady, J.W., Foust, T.D., 
2007. Biomass Recalcitrance: Engineering Plants and Enzymes for Biofuels Production. 
Science, 315, 804-807. 

Hofacker, I.L., Fontana, W., Stadler, P.F., Bonhoeffer, L.S., Tacker, M., Schuster, P., 1994. Fast 
Folding And Comparison Of Rna Secondary Structures. Monatshefte Fur Chemie, 125, 
167-188. 

King, B.C., Donnelly, M.K., Bergstrom, G.C., Walker, L.P., Gibson, D.M., 2009. An optimized 
microplate assay system for quantitative evaluation of plant cell wall-degrading 
enzyme activity of fungal culture extracts. Biotechnol Bioeng, 102, 1033-44. 

Kudla, G., Murray, A.W., Tollervey, D., Plotkin, J.B., 2009. Coding-Sequence Determinants of 
Gene Expression in Escherichia coli. Science, 324, 255-258. 

Lequart, C., Nuzillard, J.-M., Kurek, B., Debeire, P., 1999. Hydrolysis of wheat bran and straw 
by an endoxylanase: production and structural characterization of cinnamoyl-
oligosaccharides. Carbohydrate Research, 319, 102. 

Lin, L., Meng, X., Liu, P., Hong, Y., Wu, G., Huang, X., Li, C., Dong, J., Xiao, L., Liu, Z., 2009. 
Improved catalytic efficiency of Endo-β-1,4-glucanase from Bacillus subtilis BME-15 
by directed evolution. Applied Microbiology and Biotechnology, 82, 671. 

Lynd, L.R., Zyl, W.H.v., McBride, J.E., Laser, M., 2005. Consolidated bioprocessing of cellulosic 
biomass: an update. Current Opinion in Biotechnology, 16, 577. 

McKendry, P., 2002. Energy production from biomass (Part 1): Overview of biomass. 
Bioresour Technol, 83, 37-46. 

Miller, G.L., 1959. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. 
Analytical Chemistry, 31, 426. 

Miyazaki, K., Takenouchi, M., Kondo, H., Noro, N., Suzuki, M., Tsuda, S., 2006. Thermal 
stabilization of Bacillus subtilis family-11 xylanase by directed evolution. J Biol Chem, 
281, 10236-42. 

Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M., 2005. 
Features of promising technologies for pretreatment of lignocellulosic biomass. 
Bioresource Technology, 96, 673-686. 

Nakazawa, H., Okada, K., Onodera, T., Ogasawara, W., Okada, H., Morikawa, Y., 2009. 
Directed evolution of endoglucanase III (Cel12A) from Trichoderma reesei. Applied 

Microbiology and Biotechnology, 83, 649. 
Paës, G., O'Donohue, M.J., 2006. Engineering increased thermostability in the thermostable 

GH-11 xylanase from Thermobacillus xylanilyticus. J Biotechnol, 125, 338-50. 
Sánchez, Ó.J., Cardona, C.A., 2008. Trends in biotechnological production of fuel ethanol 

from different feedstocks. Bioresource Technology, 99, 5270-5295. 
Schmidt-Dannert, C., Arnold, F.H., 1999. Directed evolution of industrial enzymes. Trends in 

Biotechnology, 17, 135. 
Seo, S.W., Yang, J., Jung, G.Y., 2009. Quantitative correlation between mRNA secondary 

structure around the region downstream of the initiation codon and translational 
efficiency in Escherichia coli. Biotechnol Bioeng, 104, 611-6. 

Shibuya, H., Kaneko, S., Hayashi, K., 2000. Enhancement of the thermostability and 
hydrolytic activity of xylanase by random gene shuffling. Biochem J, 349, 651-6. 

Stephens, D.E., Rumbold, K., Permaul, K., Prior, B.A., Singh, S., 2007. Directed evolution of 
the thermostable xylanase from Thermomyces lanuginosus. Journal of Biotechnology, 
127, 348-354. 



ARTICLE I  121 

 

Wyman, C.E., 2007. What is (and is not) vital to advancing cellulosic ethanol. Trends in 

Biotechnology, 25, 153. 
Zhang, P.Y.H., Himmel, M.E., Mielenz, J.R., 2006. Outlook for cellulase improvement: 

Screening and selection strategies. Biotechnology Advances, 24, 452-481. 
Zilliox, C., Debeire, P., 1998. Hydrolysis of wheat straw by a thermostable endoxylanase: 

Adsorption and kinetic studies. Enzyme and Microbial Technology, 22, 58. 
 
 



ARTICLE II  122 

 

 

 

ARTICLE II    
ARTICLE II.  ENGINEERING BETTER BIOMASS -DEGRADING ABILITY INTO A GH11 XYLANASE 

USING A DIRECTED EVOLUTION STRATEGY  

 

In this article, the process of random engineering of Tx-Xyl by error-prone PCR, DNA shuffling 

and site-saturation mutagenesis, in addition to the statistical analyses of screening on wheat 

straw are described in detail. For the isolated best performing mutants, the enzyme 

properties of kinetics, thermostability, melting temperature, etc. are characterized 

respectively. In addition, the hydrolytic performance and synergistic actions with cellulases 

for the mutant enzymes are studied in the hydrolysis assays of wheat straw. Finally, we 

develop the insights gained from this study for the understanding of xylanase structure-

function effects on complex biomass. 
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Abstract  

Improving the hydrolytic performance of hemicellulases on lignocellulosic biomass is of 

considerable importance for second generation biorefining. To address this problem, and 

also to gain greater understanding of structure-function relationships, especially related to 

xylanase action on complex biomass, we have implemented a combinatorial strategy to 

engineer the GH11 xylanase (Tx-Xyl) from Thermobacillus xylanilyticus. After in vitro enzyme 

evolution and screening on wheat straw, nine best-performing clones were identified, which 

display mutations at positions 3 (Y3W), 6 (Y6H), 27 (S27T) and 111 (Y111H, Y111S, Y111T). All 

of these mutants showed increased hydrolytic activity on wheat straw, and solubilised 

arabinoxylans that were resistant to the parental enzyme. The most active mutants, S27T 

and Y111T, increased the solubilisation of arabinoxylans 2.3-fold and 2.1-fold respectively, in 

comparison to the wild type enzyme. In addition, five multiple mutants (all containing 

mutations at position 27 and/or 111) increased total hemicellulose conversion of intact 

wheat straw from 16.7%tot. xyl (wild-type Tx-Xyl) to 18.6 – 20.4%tot. xyl. Also, all five mutant 

enzymes exhibited a better ability to act in synergy with a cellulase cocktail (Accellerase 

1500), thus procuring increases in overall wheat straw hydrolysis. Analysis of the results in 

the light of state of the art knowledge has allowed us to hypothesize that the increased 

hydrolytic ability of the mutants is linked to i) improved ligand binding in a putative 

secondary binding site caused by mutation S27T, ii) the diminution of surface hydrophobicity, 

resulting from mutations at positions 6 and 111, and iii) the modification of thumb flexibility, 

induced by mutation at position 111. However, the relatively modest improvements that 

were observed also reveal that enzyme engineering alone cannot overcome the limits 

imposed by the complex organisation of the plant cell wall and the lignin barrier. 

Keywords  

Directed evolution; high-throughput screening; endo-β-1,4-xylanase; lignocellulosic biomass; 

synergistic interaction; biorefining. 

Abbreviations 

Tx-Xyl: Thermobacillus xylanilyticus xylanase; DW: dry weight; In-WS: intact (untreated) wheat straw; Dpl-

WS: xylanase-depleted wheat straw; epPCR: error-prone PCR; StEP: staggered extension process; CV: 

coefficient variation; μ: mean value; σ: standard deviation; BWX: birchwood xylan; LVWAX: low viscosity 

wheat arabinoxylan; AX: arabinoxylan; SR: ratio of the specificity constants (BWX/LVWAX).   
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 II.1 Introduction  

Wheat straw is an abundant co-product of the agri-food industry that is currently considered 

to be a primary source of lignocellulosic biomass for 2nd generation biorefining. The 

composition of wheat straw is typical of graminaceous species, containing arabinoxylan (20-

25% dry weight or DW), cellulose (35-45% DW) and lignins (15-20% DW) in variable 

proportions that are determined by both cultivar characteristics and pedo-climatic 

differences (Fraser-Reid et al. 2008; Scheller and Ulvskov 2010). Regarding the ultrastructure 

of wheat straw, the internode regions, which in DW terms represent the majority of wheat 

straw, are characterized by different tissue types, which notably display different levels of 

lignifications. The central cavity, or lumen, of straw is lined by pith that covers parenchyma 

cells that possess mainly primary cell walls. Moving further outwards to the external part of 

wheat straw, one can identify sclerenchyma cells, xylem tissue and finally the outer 

epidermis, all of which possess lignified secondary cell walls (Hansen et al. 2010; Hornsby et 

al. 1997a).  

 

Endo-β-1,4-xylanases (EC 3.2.1.8, xylanase) randomly depolymerize the backbone of β-1,4-

linked xylans (Berrin and Juge 2008; Zimmermann 1991), including arabinoxylans such as 

those found in wheat straw. Current commercial uses for xylanases mainly focus on the 

paper, food and animal feed industries (Collins et al. 2005; Kulkarni et al. 1999), but it is 

increasingly recognized that these will also be important for biorefining of lignocellulosic 

biomass (Shallom and Shoham 2003; Wyman 2007). Indeed, recent studies have shown that 

xylanases are needed in cellulase cocktails in order to alleviate the inhibition of various 

cellulose-degrading enzymes by xylo-oligosaccharides (Kumar and Wyman 2009b). Also, the 

development of ambitious approaches such consolidated bioprocesses (Lynd et al. 2002; 

Lynd et al. 2005), which require the use of microorganisms possessing the dual ability to 

degrade complex biomass and convert the fermentable sugars into useful products, will also 

create new demands for highly efficient xylanolytic systems, including xylanases. 

 

So far, most industrial processes that employ xylanases use enzymes that belong to the 

glycoside hydrolase family, GH11 (CAZy classification). These xylanases are mostly single 
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domain enzymes that exclusively act on β-1,4-links between xylosyl units in xylans and 

display a β-jelly roll structure that has been likened to a partially folded human right-hand 

(Figure II-1) (Törrönen et al. 1994). Likewise, the prominent elements of the 3D structure, 

which is composed mainly of two β-sheets and one α-helix, have been identified using terms 

such as ‘thumb’, which describes a large mobile loop that is located above the active site 

cleft, ‘palm’, whose half-folded structure forms the active site cleft, and fingers, which 

constitute one side of the active site cleft and whose ‘knuckles’ bear a secondary substrate 

binding motif (Ludwiczek et al. 2007; Purmonen et al. 2007). 

 

Figure II-1. Ribbon presentation of 3D structure of Tx-Xyl xylanase. The schematic protein is “colour-

ramped” from the N-terminus (blue, N-ter) to the C-terminus (red, C-ter). The relevant regions of ‘thumb’, 

‘palm’ and ‘fingers’ are highlighted in frames, and the ‘knuckles’ in the fingers region is indicated by an 

arrow.  

 

Despite the fact that xylanases will be necessary for biorefining operations, very little R&D 

has so far being focused on the improvement of xylanases specifically for biorefining 

purposes, and in particular for increased activity on complex biomass. This is partly because 

a lot of effort has been focused on cellulase engineering, and also because presently it is 

unclear on what basis improvements could be achieved. Regarding the action of xylanases 

on lignocellulosic biomass that has not been subjected to prior pretreatment, very little is 



ARTICLE II  127 

 

known, though some studies on wheat bran and straw that focused on the GH11 xylanase 

from Thermobacillus xylanilyticus (designated Tx-Xyl) have provided insight into the factors 

that might determine overall enzyme efficiency. Nevertheless, the available information is 

still sparse, making the prospect of rational engineering rather haphazard. 

 

Alternatively, random approaches coupled to enzyme in vitro evolution could be a suitable 

way to tackle xylanase engineering. So far, the use of such techniques on xylanases has been 

limited to the improvement of thermostability (Dumon et al. 2008; Miyazaki et al. 2006; 

Ruller et al. 2008; Stephens et al. 2007; You et al. 2010) and alkaliphilicity (Chen et al. 2001; 

Inami et al. 2003; Stephens et al. 2009). In these studies, screening methods relied on the 

use of isolated xylans, such as RBB-xylan and birchwood xylan. However, in a recent study 

we have developed a new microtitre plate-based screening method that is far more suitable 

for the study of xylanase action on complex biomass(Song et al. 2010). Therefore, in this 

paper, we describe the use of this screening procedure in an enzyme engineering project 

that has focused on the moderately thermostable Tx-Xyl. Using a combination of random 

mutagenesis and DNA shuffling, we have isolated several Tx-Xyl variants that showed 

increased activity on wheat straw and improved synergistic action, when used in 

combination with a commercial cellulase preparation.  

 II.2 Materials and methods 

 II.2.1 General materials and regents 

Unless otherwise stated, all chemicals were of analytical grade and purchased from Sigma-

Aldrich (St. Louis, MO, USA). The T7-promoter based vector pRSETa was purchased from 

Invitrogen (Cergy Pontoise, France), and the Escherichia coli host strains Novablue(DE3) and 

JM109(DE3) were obtained from Stratagene (La Jolla, CA, USA) and Novagene (Darmstadt, 

Germany) respectively. All restriction enzymes, T4 DNA ligase, Taq DNA polymerase and 

their corresponding buffers were purchased from New England Biolabs (Beverly, MA, USA). 

Oligonucleotide primers were synthesized by Eurogentec (Angers, France), and the DNA 

sequencing is conducted by GATC Inc. (Marseille, France). Sterile 96-well cell culture 

mictrotiter plate and sealing tapes were purchased from Corning Corp. (NY, USA), and other 
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analyzing microtiter plates were from Evergreen Scientific (Los Angeles, CA, USA). The low 

viscosity wheat flour arabinoxylan (LVWAX) was obtained from Megazyme (Wicklow, 

Ireland), and the birchwood xylan (BWX) was purchased from Sigma-Aldrich (St. Louis, MO, 

USA). 

 II.2.2 Mutagenesis procedure and library construction 

 II.2.2.1 Random mutagenesis by error-prone PCR 

Random mutagenesis was carried out by error-prone PCR (epPCR) using an established 

protocol (Cirino et al. 2003). The adopted template was (first round only) the DNA encoding 

Tx-Xyl (Swiss-Prot accession number Q14RS0, bearing the substitution N1A) or (in 

subsequent rounds) Tx-Xyl-AF7 described by Song et al (2010). Briefly, the PCR reaction 

mixture (50 µl) contained 5 ng of template DNA, 0.3 µM of primers epF and epR (see below), 

0.2 mM dGTP/ATP (equimolar mixture) and 1 mM dCTP/TTP (equimolar mixture), 7 mM 

MgCl2, 5 IU Taq polymerase and (in the third round of epPCR only) 0.05 mM of MnSO4. 

Reactions were conducted using the following sequence: 1 cycle at 94°C for 2 min, 30 cycles 

at 94°C for 1 min, 1 cycle at 42°C for 1 min and 1 cycle at 72°C for 1 min, and finally 1 cycle at 

72°C for 5 min. The amplicons were purified using QIAquick PCR Purification Kit (Qiagene, 

Courtaboeuf, France) and were digested with EcoRI and NdeI and inserted into a similarly 

digested pRSETa vector. The ligation mixture was used to transform competent E.coli 

Novablue(DE3) cells. 

epF: 5’- GGAGATATACATATGGCCACG -3’ 

epR: 5’- GGATCAAGCTTCGAATTCTTACC -3’ 

 II.2.2.2 DNA recombination by staggered extension process (StEP) 

DNA recombination was carried out using an adapted StEP method (Zhao et al. 1998; Zhao 

and Zha 2006). The PCR reaction (50 µl) contained 5 ng of total template DNA (equimolar 

mixture of each parental gene), 0.3 µM of each primer, 0.2 mM of each dNTP, and 5 IU Taq 

polymerase. Reactions were conducted using the following sequence: 1 cycle at 94°C for 2 

min; 40 cycles comprising a step at 94°C for 30 s and 1 step at 58°C for 2 s; followed by 40 

cycles with 1 step at 94°C for 30 s and 1 step at 56°C for 2 s. Afterwards 20 IU of DpnI was 

added to PCR reaction, which was incubated at 37°C for 1 hour, before amplicon purification 

and digestion with EcoRI and NdeI. Finally, the mutant library was generated by ligating the 
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digested amplicons to EcoRI/NdeI-digested pRSET plasmid DNA and transforming the 

resultant products into competent E.coli Novablue(DE3) cells. 

 II.2.2.3 Site-saturation mutagenesis at amino acid positions 3 and 111 

Saturation mutagenesis on residues Tyr3 and Tyr111 of Tx-Xyl was performed using the 

QuikChange mutagenesis kit (Stratagene, La Jolla, CA). The following mutagenic primers 

(Eurogentec) were designed using NNK degeneracy (Reetz and Carballeira 2007), according 

to the recommendations provided in the instruction manual (mismatched bases are 

underlined; N is A, G, C, or T, K is G or T and M is A or C): 

For amino acid position 3:  

Y3N_FW: 5’- GATATACATATGGCCACGNNKTGGCAGTATTGGACG -3’  

Y3N_REV: 5’- CGTCCAATACTGCCAMNNCGTGGCCATATGTATATC -3’ 

For amino acid position 111: 

Y111N_FW: 5’- C TATCACAGCTGGCGCNNKAACGCACCGTCC ATCGAC -3’ 

Y111N_REV: 5’- GTCGATGGACGGTGCGTTMNNGCGCCAGCTGTGATAG -3’ 

After the PCR is performed, a digestion with DpnI removed template DNA, and the product 

was used to transform E. coli Novablue109(DE3) cells.  

 II.2.2.4 Site-directed mutagenesis  

The mutational combinations W109R-Y111H, Y3H-W109R-Y111H, Y3L-W109R-Y111H, S27T, 

and Y6H were created through site-directed mutagenesis. This was achieved using the 

QuickChange site-directed mutagenesis kit, according to the manufacturer’s instruction. The 

oligonucleotide primers employed in PCRs are listed in Table II-1S. 

 II.2.3 Library screening on intact and xylanase treated wheat straw 

 II.2.3.1 Substrate preparation 

Wheat straw (Triticum aestivum, cv. Apache) harvested (2007) in France was milled using a 

blade grinder that procured a fine powder having an average particle size of 0.5 mm. After, 

the wheat straw powder, designated In-WS, was washed with distilled water (10 volumes), 

filtered using a Büchner funnel equipped with a Whatman® No.4 filter paper (pore size: 20–

25 lm), dried in an oven at 45°C and then sterilized by autoclaving. To prepare xylanase-

treated wheat straw (designated Dpl-WS), 20 g In-WS was suspended in 50 mM sodium 
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acetate buffer, pH 5.8 (containing 0.02% NaN3) containing Tx-Xyl (150 BWX U g-1 biomass) 

and incubated at 60°C for 70 h. Afterwards, the reaction mixture was heated at 95°C for 5 

min to inactive the enzyme. The solid residues were recovered by filtration (see above) and 

dried as before. The sugar composition of both wheat straw substrates was analyzed 

according to the procedure published by The National Renewable Energy Laboratory (NREL) 

(Sluiter et al. 2008). The composition is shown in Table II-1. 

 

Table II-1. Characteristics of In-WS and Dpl-WS and short description of the two screening assays. 

  In-WS screening Dpl-WS screening 

Substrate properties   

 Substrate type intact (untreated) wheat straw xylanase-depleted wheat straw 

 Particle size 0.5 mm in average 

 Glucose% (w/w) 44.51±0.08% 45.69±0.94% 

 Xylose % (w/w) 26.16±0.14% 21.92±0.17% 

 Arabinose% (w/w) 2.37±0.03% 2.05±0.07% 

 Ratio of Ara: Xyl 0.091 0.094 

Screening conditions   

 Weight (mg per microplate) 420-440 385-405 

 Cell-free extract (CFE) loading CFE:NaOAc buffer = 1:1, 250 µl well-1 in total 

 Temperature and time 60°C, 4h 60°C, 16h 

 Sealing Aluminum film Polypropylene film 

 Evaporation (w/w, %) 1.44±0.16% 0.23±0.05% 

 Activity assay Micro-DNS assay 

 

 II.2.3.2 Microtitre plate-based automatized screening   

Microtitre plate-based screening of mutant libraries was performed according to the method 

described by Song et al (2010). Briefly, individual E. coli transformants were grown in the 

wells of 96-well microtitre plates and then cells were recovered and lyzed using the 

combined effect of lysozyme (0.5 g l-1) and freeze – thaw cycling (–80°C and 37°C). The 

screening of xylanase activity was then achieved using a 4-step protocol, which involved (1) 

substrate delivery into microtitre plates (2) addition of xylanase-containing cell lysates (3) 

incubation and (4) measurement of solubilised reducing sugar using a micro-DNS assay. The 

important experimental details of these steps are summarized in Table II-1. When Dpl-WS 

was employed in the place of In-WS, the incubation time was extended to 16 h and, 

consequently, microtitre plates were thermo-sealed using polypropylene film to reduce 
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evaporation. In all microtitre plate screening, wells containing transformants expressing wild 

type Tx-Xyl were included as internal controls. These were used to calculate a coefficient of 

variation (1 CV = σ/µ × 100%, σ is standard deviation and µ is mean value) of Tx-Xyl activity, 

which was employed to assess the activity of mutant variants. 

 II.2.4 Xylanase expression and purification 

The production in E.coli JM109(DE3) cells and purification of Tx-Xyl and variants thereof was 

performed according to the previously described procedure (Paës and O'Donohue 2006). 

Briefly, purification followed a 2-step protocol involving ion-exchange (Q sepharose FF) and 

then affinity chromatography (Phenyl sepharose) operating on an ÄKTA purification system 

(GE Healthcare, Uppsala, Sweden). Enzyme conformity and purity were assessed using SDS-

PAGE and theoretical extinction coefficients were computed using the ProtParam server 

(Walker et al. 2005). The concentration of xylanase solutions was determined by measuring 

UV absorbance at 280 nm and then applying the Lambert-Beer equation.  

 II.2.5 Evaluation of xylanase-mediated hydrolysis on Dpl-WS and In-

WS 

To measure xylanase activity using In-WS or Dpl-WS as substrates, a reaction mixture in 50 

mM sodium acetate buffer, pH 5.8 was prepared that contained 2 % (w/v) biomass, 0.1 % 

(w/v) bovine serum albumin (BSA), 0.02 % (w/v) NaN3 and an aliquot (final concentration of 

10 nmol enzyme g-1 biomass) of Tx-Xyl or a mutant thereof. To analyze the combined effect 

of xylanase and cellulases on In-WS, reactions were conducted as described above, except 

that Accellerase 1500 (Genencor, Rochester, NY) (0.2 ml cocktail per g biomass) was added 

to the reaction mixture and reactions were buffered at pH 5.0. To assess the action of 

Accellerase 1500 alone, xylanase was omitted. 

 

All hydrolyses were performed at 50°C for 24 h with continuous stirring (250 rpm) in a 

screwed-capped glass tubes, and then stopped by heating at 95°C for 5 min. For analysis, the 

reaction mixture was centrifuged (10 000 x g for 2 min) and then the supernatant was 

filtered (PTFE, 0.22 µm), before injection onto a high performance anion exchange 

chromatography system with pulsed amperometric detection (HPAEC-PAD). For 

monosaccharide analysis, separation was achieved at 30°C over 25 min on a Dionex 
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CarboPac PA-1 column (4×200 mm), equipped with its corresponding guard column and 

equilibrated in 4.5 mM NaOH and running at a flow rate of 1 ml min-1. For the analysis of 

xylo-oligosaccharides (XOS), a Dionex CarboPac PA-100 column (4×200 mm), equipped with 

its corresponding guard column and equilibrated in 4.5mM NaOH was employed. Separation 

of various XOS was achieved by applying a gradient of NaOAc (5 to 85 mM) in 150 mM NaOH 

over 30 min at 30°C, using a flow rate of 1 ml min-1. Appropriate standards 

(monosaccharides such as L-arabinose, D-xylose, D-glucose and D-galactose and various XOS 

displaying DP 2 to 6) at various concentrations (2 - 25 mg l-1) were used to provide 

quantitative analyses. Finally, the quantitative results from HPAEC analysis (monomeric and 

oligomeric sugars) were converted into the amount of soluble monosaccharide equivalents 

(designated ‘‘average solubilised weight’’), and the percentage conversion was calculated as 

follows, either in terms of xylose or glucose: 

. 
average solubilized 

Conversion %  =   100% ( / )
theoretical total tot N

N
w w

N
×  

‘‘N’’ represents xylose or glucose, and the ‘‘theoretical total N’’ is the total amount of sugar 

N present in the initial straw sample (Table II-1). 

 II.2.6 Determination of kinetic parameters 

To measure the kinetic parameters of Tx-Xyl and its mutants, BWX and LVWAX were used as 

substrates at eight different concentrations (0 – 12 g l-1). Hydrolysis reactions (1 ml) were 

performed at 60°C in NaOAc, pH 5.8 using approximately 4.5 and 3.5 nM of xylanase for 

BWX and LVWAX assays respectively. During the course of the reaction, aliquots (100 µl) 

were removed at 3-min intervals, and immediately mixed with an equal volume of 3,5-

dinitrosalicylic acid (DNS) regent to stop the reaction. The quantity of solubilised reducing 

sugars present in samples was assessed by the DNS assay(Miller 1959). Finally, results were 

analyzed using SigmaPlot V10.0, which generated values for kcat and KM. Taking into account 

the heterogeneous nature of the substrates computed KM values are apparent values having 

units of g. l-1. 

 II.2.7 Thermostability assay 

To measure the thermostability of the xylanases used in this study, enzyme solutions (100 

mM in 10 mM Tris∙HCl buffer, pH8.0) were incubated at 50 and 60°C for up to 6 h. At 

intervals, aliquots were removed and used to measure residual xylanase activity on BWX (at 
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5 g l-1) at 60°C using the DNS method to quantify solubilised reducing sugars. One unit (1 U 

BWX) of xylanase activity was defined as the amount of xylanase required to release 1 µmol 

of equivalent xylose per minute from BWX. Enzyme half life (t1/2) was deduced by fitting the 

curve of ln(residual activity) = kt where t is the time and k is the slope, and t1/2 = k-1ln(0.5) 

(You et al. 2010).  

 II.2.8 Determination of melting temperature by Differential Scanning 

Fluorimetry (DSF)  

A sample in 20 mM Tris-HCl buffer, pH 8.0 was prepared that contained 100 mM NaCl, 

SYPRO® Orange (Invitrogen, final concentration 10X), and an aliquot (final concentration of 

6.75 µM) of Tx-Xyl or mutant xylanases thereof. Negative controls containing either Sypro or 

xylanase alone were analyzed in parallel. A CFX96 Real-Time PCR Detection System (Bio-Rad) 

was used as a thermal cycler and the fluorescence emission was detected using the Texas 

Red channel (λexc= 560 - 590 nm, λem = 675 - 690 nm). The PCR plate containing the test 

samples (20 µl per well) was subjected to a temperature range from 20°C to 99.6°C with 

increments of 0.3°C every 3 seconds. The apparent melting temperature (Tm) was calculated 

by the Bio-Rad CFX Manager software.  

 II.3 Results 

 II.3.1 Screening of randomly mutagenized xylanase librairies 

The different steps of the engineering strategy are summarized in Figure II-2. The initial 

phase of this work involved the use of epPCR to generate random biodiversity. In preliminary 

work, we observed that more than 10 base mutations/kb produced >70% inactive clones. 

Therefore, a progressive strategy employing three successive rounds of epPCR was preferred, 

with moderate mutational charge (5-7 base mutations/kb) at each stage. The results of 

screening at each round are summarized in Table II-2. Regarding the first round of screening, 

this work has already been reported by Song et al (2010). Although the best mutant from 

this first round, designated Tx-Xyl-AF7, displays a wild type amino acid sequence, its DNA 

sequence contains two mutations (at nucleotiode positions 27 and 516) that cause 2-fold 

higher expression of the recombinant enzyme. Therefore, the sequence encoding Tx-Xyl-AF7 

was used as the template for the second round of epPCR. 
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Figure II-2. Flowchart of in vitro evolutional process. The terms epPCR, SDM and StEP are abbreviations 

of error-prone PCR, site-directed mutagenesis and staggered extension process respectively. The best-

performing mutants selected as parental input for the next round of evolution are boxed, and mutants 

are named after the point mutations that characterize them. 

 

DNA sequence analysis of 10 library clones, taken from the 2nd generation library, revealed 

an average mutation rate of 5.4 base substitutions/kb and a transition/transversion ratio of 

approximately 1.4, indicating that the mutations were relatively unbiased in this respect. A 

total of 4 333 clones were screened on In-WS, and the four most active clones (>4CV) were 

selected, using the activity of Tx-Xyl-AF7-bearing clones as the base case for comparison. 

DNA sequencing revealed that all four clones were characterized by single amino acid 

changes. Two clones were mutated at position 3 (Y3L and Y3H), while two others were 

mutated at independent, but neighbouring locations (W109R and Y111H).  

 

Examination of the 3D structure of Tx-Xyl, reveals that Y3 lies in the distal glycon part of the 

active site cleft, while W109 and Y111 are situated nearby and in the thumb region 

respectively, thus all three residues are potentially important for enzyme function. For this 

reason, at this stage in the experiment it was decided to focus on these mutations for the 
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creation of further mutant libraries. However, to ensure that all of the possible permutations 

would be present in the 3rd generation, recombination was achieved using site-directed 

mutagenesis. Consequently, five double mutants (Y3L-W109R, Y3L-Y111H, Y3H-W109R, Y3H-

Y111H and W109R-Y111H) and two triple mutants (Y3L-W109R-Y111H and Y3H-W109R-

Y111H) were created. Together with the other four original single-mutants, these were used 

as parental templates for the next round of epPCR, which led to the creation of a 4th 

generation. 

 

Table II-2. Summary of directed evolution for improvement of Tx-Xyl xylanase activity 

% of clones with improved activity 

Generation Library type 
Screening 

substrate 

No. of 

variants 

screened 

CV of 

wild-type 

control * 
>4CV >5CV >6CV >7CV >8CV 

No. of 

hits 

selected 

1st 
epPCR on wild-

type gene 
In-WS 264 11.1±1.3% 0.4% 0.4% - - - 1 

2nd 
epPCR on Tx-

Xyl-AF7 gene 
In-WS 4333 18.1±5.4% 0.1% - - - - 4 

3rd  
Site-directed 

mutagenesis † 
- - -      11 

4th   
epPCR using 11 

parental genes 
Dpl-WS 4300 10.9±2.2% 1.2% 0.6% - - - 30 

5th   Recombination Dpl-WS 
3840 

(≈ 2500) ‡ 
8.1±0.6% 1.4% 6.0% 2.1% 0.8% 0.1% 7 

6th   Recombination Dpl-WS 
864 

(1847) ‡ 
10.2% 9.3% 2.8% 0.9% 0.2% - 8 

7th  Recombination Dpl-WS 
864 

(127) ‡ 
11.3% 19.5% 7.5% 2.4% 0.5% 0.2% 7 

* CV = coefficient of variation. Wild type Tx-Xyl original coding was only used in the 1st generation. For 

2ndgenerations, variant Tx-Xyl-AF7 sequence (silent mutations T27C and C516T) is used as template.  

† Site-directed mutagenesis used to create mutants Y3L-W109R, Y3L-Y111H, Y3H-W109R, Y3H-Y111H, 

W109R-Y111H, Y3L-W109R-Y111H and Y3H-W109R-Y111H.  

‡ Values between brackets are the number of theoretical mutation combinations, which only depends on 

the mutation number (designated n) in the template genes and is calculated by  
1i

n i
nC

=
∑ .  

For the 5th generation, since only the templates for group 1 were sequenced, the total number of 

theoretical combinations was calculated by multiplying by 5  the number of theoretical combinations in 

group 1. 

 

To efficiently challenge clones present in the 4th library, the microtitre plate assay was 

modified by replacing In-WS with Dpl-WS. The principle behind this was to select clones that 

produce enzymes that can actually hydrolyze arabinoxylans that are inaccessible or resistant 
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to wild type xylanase. The key features and performance descriptors of this modified assay 

are summarized in Table II-1. Overall, the CV value for individual wells of Tx-Xyl-AF7 control 

varied between 8 to 11%, indicating that this screen was sufficiently reliable for library 

screening.  

 

DNA sequence analysis of a randomly picked sample of 4th generation library clones revealed 

an average mutation rate of 7.2 nucleotide substitutions/Kb. Likewise, functional screening 

using the modified Dpl-WS assay indicated that 0.6% of screened clones presented activities 

that were significantly higher (>5CV) than the mean value of the activity of Tx-Xyl-AF7 clones. 

Therefore, the top 30 clones were isolated and used for subsequent rounds of DNA 

recombination. 

 II.3.2 Optimization of mutant xylanases using DNA recombination 

To further increment the functional fitness of the enzymes expressed by the candidate 

clones obtained from random mutagenesis, the StEP DNA shuffling approach (Zhao and Zha 

2006) was adopted, because it offers a much simpler procedure than classical DNA shuffling 

(Chaparro-Riggers et al. 2007; Zhao and Zha 2006). This method was used to successively 

create 5th, 6th and 7th generation libraries. To appreciate the impact of the iterative use of 

StEP on overall library fitness, Figure II-3 shows the relative performance of 4th to 6th 

generation libraries. At each generational increment, library fitness increased in accordance 

with the expectations (Cirino et al. 2003; Zhao et al. 1998; Zhao and Zha 2006). The results of 

statistical analyses performed on the three successive libraries (5th, 6th and 7th generations) 

that were created using this method are summarized in Table II-2.  

 

For the initial round of DNA shuffling, 30 clones were used as parental input. Since we 

considered that 30 templates was quite a high number to handle, these were randomly 

separated into 5 groups of 6 clones and DNA shuffling was performed on each group. After 

DNA shuffling, the 5 libraries were submitted to screening using the modified Dpl-WS assay. 

This step allowed the selection of 7 hits whose activity were significantly higher (>7CV) than 

the mean value of the activity of Tx-Xyl-AF7 clones. DNA sequencing revealed that these 7 

clones contained 11 point mutations that give rise to new amino acid substitutions, and that 

constituted Y111H and 6 mutational combinations (Figure II-2). As before, the 7 mutants 
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were used as parental input for two further rounds (6th and 7th) of DNA shuffling. However, 

of the 11 point mutations present in above 7 parental clones the locations of Y24F, S27T, 

S29N and N30D were extremely close, meaning that the likelihood of homologous 

recombination would be low, thus reducing the actual number of mutational combinations 

when compared to the theoretical number. Taking this into account, a much smaller sample 

of library clones was screened after the 6th round of the in vitro evolution process.  
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Figure II-3. Evolutional acceleration among consecutive iterations screening on Dpl-WS. The X-axis is 96 

clones in one microtitre plate which is randomly selected from wild-type control ( , using Tx-Xyl-AF7 

coding sequence), 4th random mutagenesis library (▼), 5th recombinant library ( ) and 6th recombinant 

library (●). Y-axis indicates the activity value of corresponding clone in the screening. The same batch of 

Dpl-WS substrate was used for the 4 experiments. 

 

After the creation of the 7th generation library, the experiment was stopped, because DNA 

sequencing of the highest performing 7th generation clones showed that 5 mutational 

combinations out of a total of 7 had already identified in the 6th generation (Figure II-2). This 

observation suggested that the evolutionary itinerary had almost reached an end, with very 

little new biodiversity being introduced. 
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Of the 7 best performing 7th generation clones, Y6H-Y111H and Y6H-S27T-Y111H displayed 

the highest activity increase (>8 CV) in the screening, compared to that of wild-type control 

(Tx-Xyl-AF7). In addition, among the 6 amino acid substitutions that were detected in clones 

obtained from DNA shuffling, Y111H was present in every template and the frequency of 

Y6H and S27T increased from the 5th generation to the 7th generation (Table II-3). 

Consequently, we decided to focus on clones containing these three amino acid changes for 

enzyme production and characterization. Overall mutants that were retained for 

characterization included Y6H-Y111H, S27T-Y111H and Y6H-S27T-Y111H from the 7th 

generation screening and the single mutants Y111H, Y6H and S27T. 

 

Table II-3. Mutation frequency in the 5
th

 – 7
th

 iterations of recombination library. 

Generation Y6H Y24F S27T S29N N30D L64P W109R Y111H K132R V139A Y172H 

5th 22.2% 11.1% 22.2% 11.1% 11.1% 22.2% 11.1% 100% 22.2% 22.2% 11.1% 

6th 28.6% 14.3% 28.6% - 14.3% - - 100% 14.3% 14.3% - 

7th 44.4% - 55.6% - 11.1% - - 100% 22.2% 22.2% - 

 

 II.3.3 Saturation mutagenesis at position 3 and 111 

Among the 2nd generation clones, selected for higher activity on In-WS, two amino acid 

positions, 3 and 111, were pinpointed as potentially interesting locations. Therefore, in 

addition to the use of Y3H and Y111H as parental templates for further random mutagenesis 

and DNA shuffling, site-saturation mutagenesis was performed to investigate the importance 

of these two residues on the activity against recalcitrant AX in wheat straw (i.e. Dpl-WS). In 

each case an adequately large library was created and 288 clones were screened using the 

modified Dpl-WS assay, which was sufficient from a statistical point of view to ensure that all 

permutations were present (Georgescu et al. 2003). Additionally, a random sample of each 

library was submitted to DNA sequence analysis in order to control the success of the 

experiment. 

 

Figure II-4 shows the results of the screening of the two site-saturation libraries. Overall, the 

Y111N (N represents any amino acid) library provides a larger population of improved clones, 

though both libraries contain a small minority of clones that display activities that are above 

the value of µ+4σ of wild-type control. Three highest performing clones were selected from 
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each library and analyzed by DNA sequencing. All three clones from the Y3N library displayed 

the same Y3W mutation, whereas two clones from the Y111N library were phenotypically 

and genotypically identical (encoding the mutation Y111S) and one displayed an Y111T 

mutation. In view of these results, three individual clones encoding Y3W, Y111S and Y111T 

were retained for further characterization. 
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Figure II-4. Dpl-WS screening of site-saturation libraries targeted on position 3 (■) and position 111 ( ). 

The X-ray is the numbers for 288 clones in each library, and the Y-axis represents the corresponding 

activity measurement of each clone towards Dpl-WS. Two solid lines represent the mean value (μ) and 

mean value + 4 ×standard deviation (μ + 4σ) of the wild-type (Tx-Xyl-AF7 code) activities screened in the 

same condition.  

 

 II.3.4 Characterization of key properties of the Tx-xyl mutants 

Since the screening of mutant enzyme libraries obeys the maxim “you get what you screen 

for”, the mutants selected in this work were only improved with respect to the hydrolysis of 

wheat straw. Hence, other important properties such as thermostability could have been 

negatively affected. Consequently Table II-4 summarizes the evaluation of thermostability 

that was performed on each purified mutant. Although the thermostability of some mutants 

at 60°C was clearly affected (e.g. that of Y6H and Y6H-Y111H), all of the enzymes were 

sufficiently stable to be able to measure kinetic properties without any major modifications 
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to the protocols that were routinely used to characterize wild type Tx-Xyl. It is also 

noteworthy that all of the mutants were highly stable at 50°C, since measured activity 

remained stable over a 6h incubation period. 

 
 
Table II-4. Thermostability of Tx-Xyl and the mutants thereof. The melting temperature (Tm) was 

determined using differential scanning fluorimetry (DSF) and the half-life (t1/2) was defined period 

necessary for the initial activity to be reduced by 50% at 60°C. 

Mutant Tm (°C) t1/2 at 60°C (h) 

Tx-Xyl 75.9 5.4 

Y6H 72.9 2.6 

S27T 76.4 6.4 

Y111H 75.1 3.9 

Y6H-Y111H 72.7 2.7 

S27T-Y111H 75.4 6.4 

Y3W 73.1 3.2 

Y111S 75.1 3.6 

Y111T 74.9 5.0 

 

 

Each of the mutants was characterized with regard to its ability to hydrolyze BWX and 

LVWAX. According to another recent study(Song et al. Manuscript in preparation), BWX is 

devoid of α-L-arabinosyl substitutions, and LVWAX displays an A/X ratio of 0.54. Concerning 

wild-type Tx-Xyl, its turnover number and specificity constant were higher for LVWAX, 

though the apparent KM value was lower on BWX. This tendency was also displayed by the 

majority of the mutants (Table II-5). Nevertheless, the specificity constants for the single 

mutants Y3W, Y111S, Y111T, Y6H and S27T were almost identical for both substrates. 

Regarding the apparent values of KM, all of the mutants displayed improved affinity for BWX, 

but this was not the case for LVWAX. Notably, Y111H was the mutant that displayed the best 

affinity for BWX, while its affinity for LVWAX was unaltered. Other the hand, the rate 

constant for Y111H-mediated hydrolysis of BWX was lowered when compared to that of the 

wild type enzyme, but was improved on LVWAX. Intriguingly, the opposite was true for 

Y111T, for which the value of kcat was 48% greater than that of Tx-Xyl on BWX, but identical 

to that of Tx-Xyl on LVWAX. When Y111H was combined with other mutations (e.g. S27T-
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Y111H or Y6H-Y111H), its influence on the specificity constant appeared to be dominant, 

annulling the improved activity on BWX, displayed by the single mutants S27T and Y6H. 

 

Table II-5. Kinetic parameters of Tx-Xyl wild-type and mutants. Kinetic parameters were determined for 

hydrolysis reactions using either birchwood xylan (BWX, no arabinosyl substitution) or low viscosity wheat 

arabinoxylan (LVWAX, arabinose/xylose ratio of 0.54) respectively. 

Kinetic parameters 

BWX  LVWAX 
Mutant 

kcat (s
-1) KM

† (g L-1) 
kcat/KM

† 

(s-1 g-1. L) 
 kcat (s

-1) KM
† (g L-1) 

kcat/KM
† 

(s-1 g-1. L) 

SR‡ 

Tx-Xyl 610.5±19.6 2.54±0.19 242.1  1699.4±95.9 5.10±0.09 333.1 0.67 

Y6H 806.1±61.2 2.37±0.27 340.5  2081.6±16.4 5.73±0.09 363.0 0.94 

S27T 742.9±22.4 1.93±0.15 376.5  1936.0±19.2 4.81±0.04 402.5 0.94 

Y111H 449.3±23.2 1.54±0.14 292.0  1889.0±72.9 5.01±0.07 376.7 0.78 

Y6H-Y111H 433.1±12.5 1.91±0.11 226.8  1834.7±75.4 5.33±0.35 345.9 0.66 

S27T-Y111H 535.8±30.2 1.72±0.21 311.5  1906.1±4.4 4.39±0.02 434.1 0.72 

Y3W 704.5±29.8 2.11±0.14 333.4  1743.0±26.5 5.51±0.02 316.3 1.05 

Y111S 758.8±15.9 2.12±0.04 358.6  1755.0±106.3 4.75±0.14 369.4 0.97 

Y111T 905.2±17.2 2.35±0.15 369.4  1740.4±41.8 4.81±0.06 361.4 1.02 

† the heterogeneous nature of the substrate allows the determination of a relevant KM in stead of a true 

value for KM 

‡ SR: ratio of the specificity constants (BWX/LVWAX) 

 

 II.3.5 Assessment of the impact of Tx-Xyl mutants on wheat straw 

To further evaluate the altered properties of the different mutants, their activities on the 

original wheat straw samples (In-WS and Dpl-WS) were examined. Reactions were 

performed using pure preparations of wild-type and mutant xylanases either alone or in the 

combination with Accellerase 1500 (a cellulase cocktail). The results of HPAEC-PAD analyses 

performed on the reaction supernatants are shown in Figure II-5.A and B, which present as 

the conversion of total xylose and glucose (i.e. %tot. xyl and %tot. glu, w/w) in the straw residues. 

The soluble sugar yields are summarized in Table II-2S and 3S. 

 

The hydrolysis of Dpl-WS revealed that all of the mutants could release further amounts of 

soluble xylose equivalents and that their performance was superior to that of wild type Tx-

Xyl. The mutants S27T and Y111T produced the most outstanding results, because these 

could release 2.3-fold and 2.1-fold more xylose equivalents from Dpl-WS than Tx-Xyl. The 
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lowest performers were Y111H and Y3W, which yielded 35% and 46% more xylose 

equivalents respectively (Figure II-5.A). However, it should be noted that even the best 

variant S27T could only release 2.5% tot. xyl of Dpl-WS (5.5 g xylose per kg wheat straw), which 

is a witness to the recalcitrance of this substrate. 

 

For the hydrolysis of In-WS (pH 5.8), wild type Tx-Xyl released 43.7 g equivalent xylose per kg 

wheat straw. This represents 4.4% of the dry weight and 16.7% of total xylan (16.7%tot. xyl) 

content. Similar results were obtained for the mutants Y6H, Y6H-Y111H, Y6H-S27T-Y111H 

and Y3W, but five other mutants yielded higher amounts (18.6 – 20.4%tot. xyl) of soluble 

xylose equivalents, with the best mutant being Y111T (Figure II-5.A). 

 

The five mutants, displaying improved activity on In-WS, were further selected to investigate 

synergy with cellulases on In-WS, operating at the optimum pH for Accellerase (pH 5.0). 

Likewise, suitable control reactions at pH 5.0 were performed using only mutant xylanases, 

or wild type Tx-Xyl. All controls revealed that the different xylanases displayed reduced 

hydrolytic capacity, compared to their activity at pH 5.8 (Figure II-5.A). According to its 

manufacturer, Accellerase 1500 principally contains endoglucanase and β-glucosidase 

activities. In our trials Accellerase alone, was able to solubilise 7.3%tot. xyl and 18.9%tot. glu In-

WS (Figure II-5.B). However, in combination with xylanases higher yields of xylose and 

glucose were measured, which were greater than the sum of the yields of Accellerase or the 

xylanases alone, clearly revealing the synergistic interactions between the enzyme 

participants. The mixture of wild type Tx-Xyl and Accellerase solubilised 24.5%tot. xyl and 

23.6%tot. glu of In-WS (Figure II-5.B). However, significantly the different mutants were able to 

improve on this performance, solubilizing 27.4 – 29.0%tot. xyl and 24.9 – 26.4%tot. glu from In-

WS. Among the mutants, Y111S provided the highest synergistic effect on xylan 

solubilization, while Y111T procured the most advantageous effect on glucan solubilization.  
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Figure II-5. (A) Percent conversion of total xylose in the Tx-Xyl wild-type/mutant–mediated hydrolyses 

on Dpl-WS (pH 5.8) and In-WS (pH 5.0 and 5.8). (B) Percent conversion of total xylose and glucose in the 

In-WS hydrolyses (pH 5.0), performed by the Accellerase 1500 alone and in combination with Tx-Xyl 

wild-type/mutant xylanases. In both diagrams, the X-axis indicates the enzyme(s) employed in the 

corresponding hydrolysis reaction. The %tot. xyl and %tot. glu are calculated as described in the methods. 

 
 

(B) 

(A) 
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 II.4 Discussion 

 II.4.1 Is enzyme engineering a useful strategy to improve biomass 

deconstruction?  

Artificial enzyme evolution, relying on in vitro random mutagenesis and DNA recombination 

techniques, is a powerful strategy to pinpoint functional determinants and to rapidly 

improve enzyme fitness with regard to a variety of physical or biochemical properties 

(Arnold and Moore 1997; Arnold and Volkov 1999; Johannes and Zhao 2006; Walsh 2001). 

However, the need for an appropriate screen is vital. In this work, we relied on a previously 

described screening method, which allowed us to address a highly ambitious target, which 

was the isolation of enzymes that display higher activity on raw biomass. To our knowledge, 

no such enzyme engineering has yet been attempted, mainly because biomass-degrading 

enzymes are improved for their activity on artificially isolated biodiversities or pretreated 

biomass, wherein the total chemical and structural complexities of complex biomass are 

omitted, or only rich in cellulose and lignin and hemicelluloses are very minor components 

(Lantz et al. 2010; Nakazawa et al. 2009; Zhang et al. 2006) .   

 

 Therefore, the underlying rationale of our approach was to investigate to what extent the 

fitness of a xylanase, or for that matter any other biomass-degrading enzyme, can be 

independently improved for hydrolysis of complex biomass, without interfering with the 

structural and chemical complexity of the substrate. Likewise, we hoped to provide a novel 

angle to the understanding of the factors that govern the enzymatic deconstruction of raw 

biomass. 

 

Our previous study revealed that the Tx-Xyl-mediated hydrolysis of wheat straw is a complex 

reaction that cannot be modelled using Michaelis-Menten kinetics and does not reach 

completion even at high enzyme loading and long time periods (Song et al. 2010; Zilliox and 

Debeire 1998). To achieve the first phase of the reaction requires quite long incubation 

times (approximately 8 h), thus screening using raw wheat straw (i.e. In-WS) provides a 

means to find variants that display improved initial catalytic rates, which can result either 

from the improvement of intrinsic catalytic properties of the xylanase, or from an increase in 
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enzyme production. On the other hand, the use of In-WS is not appropriate to isolate 

xylanases that will surpass the sugar solubilization yield of the wild type Tx-Xyl. For this 

purpose, it is more appropriate to use Tx-Xyl-pretreated wheat straw (i.e. Dpl-WS), which 

should provide a means to identify enzyme variants that can accelerate the latter phase of 

the reaction and better surmount the obstacles that prevent further action by Tx-Xyl. 

Therefore, in the strategy developed here, both screening approaches were applied, first in 

an attempt to accelerate the reaction and second to improve the overall impact of xylanase 

action on wheat straw. 

 

Overall, all of the qualitative indicators that are presented here show that the enzyme 

evolution approach was successful in increasing the fitness of Tx-Xyl for biomass hydrolysis. 

At each step, clones with ever increasing activity could be selected and the ultimate analysis 

of the best clones revealed that several could actually better hydrolyze wheat straw, 

especially when their action was coupled to a cellulase cocktail. Nevertheless, unsurprisingly 

the overall impact of the improvements was modest, but these results need to be 

considered in the light of current knowledge.  

 

Two recent studies (Hansen et al. 2010; Kristensen et al. 2008) have attempted to relate 

enzyme action on wheat straw to changes at the ultrastructural level. These authors have 

shown that a mild hydrothermal pretreatment (185°C, 10 min) releases approximately 34% 

of available xylans (i.e. approximately 8.2% of the initial DW), which appear to come from 

the pith that lines the central lumen of wheat straw. Further treatment of the sample with a 

cellulase cocktail released glucose and xylose from cellulose microfibrils and xylans 

respectively, apparently present in the parenchyma cells that form the cortex. However, 

enzymatic degradation was impotent on lignified cells (e.g. sclerenchyma cells). In our 

experiment, total xylans in wheat straw represent approximately 26% DW and Tx-Xyl can 

release 16.7% of these (i.e. 4.4% DW). The mutant Y111T is able to solubilise approximately 

21.9%tot. xyl or 5.3% DW over a 24 h period. Taken together, our results reveal that the 

hydrolysis of wheat straw using Tx-Xyl variants procures solubilization yields that are inferior, 

but not dissimilar, to those obtained using mild hydrothermal treatment and thus allows us 

to speculate that the same structures are affected, i.e. the pith and parenchyma cells. 
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The failure of Tx-Xyl, or variants thereof, to further solubilise xylans is probably not linked to 

intrinsic catalytic potency or to substrate selectivity of Tx-Xyl and its mutants, but rather to 

the inaccessibility of the substrate. Indeed, coupling of wild type Tx-Xyl to that of a cellulase 

cocktail clearly revealed a certain degree of synergy, releasing approximately 24% of the 

theoretical yield of sugars, Significantly, mutants generated in this work amplified this 

synergy and achieved higher levels of sugar solubilization, indicating that the enzymatic 

removal of cellulose exposes xylan and vice versa. Possibly, the improved action of the 

mutants allows a slightly more profound degradation of the parenchyma cells that form the 

cortex of wheat straw. However, the results of this study indicate that enzyme engineering 

alone cannot overcome the limits imposed by the lignin barrier, which is progressively 

exposed by the peeling action of the xylanse/cellulases cocktail. 

 II.4.2 Structure-function relationships revealed in this study 

One of the remarkable findings in this study is the identification of a relatively small number 

of mutations. After six rounds of combined mutagenesis and DNA shuffling, seven mutants 

possessing a total of six point mutations were identified. Among these mutations, three 

emerge (amino acids 6, 27 and 111) as important positions, because of their reoccurrence in 

the seven mutants. In addition, another three mutants (Y3W, Y111S and Y111T) were 

isolated from site-saturation mutagenesis libraries, in which amino acids 3 and 111 

respectively were targeted. Tyr3 and Tyr6 are located at the B2 β-strand in the N-terminal 

region of Tx-Xyl, whereas Ser27 forms part of the “knuckles” region of fingers and Tyr111 is 

located on the thumb (Figure II-6.A). The examination of the different combinations that 

were obtained reveals that generally these mutations did not provide additive benefits. For 

example, regarding the mutants Y6H-Y111H, S27T-Y111H and Y6H-S27T-Y111H, the two 

point mutation variants Y6H and S27T displayed greater hydrolytic potency on Dpl-WS than 

any of these combinations. Similarly, S27T displayed the highest catalytic efficiency towards 

the two soluble xylan substrates, BWX and LVWAX. Therefore, it appears legitimate to 

consider the impacts of the different mutations independently. 

 

The findings presented here concerning the reduced thermostability of mutants displaying 

substitutions at positions 6 (Y6H) and/or 111 (Y111H) clearly provide support for the 

existence of hydrophobic patches that might mediate the oligomerization, and thus the 
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thermostabilization, of Tx-Xyl in solution. According to Harris et al (1997), Tyr6 and Tyr111 

are surface exposed aromatic amino acids that along with 9 other aromatic residues 

participate in the formation of intermolecular “sticky patches” that form the basis for 

thermostability in Tx-Xyl. Nevertheless, it is also important to note that not all mutations at 

position 111 produced the same effect. Notably, the mutant Y111T displayed thermostability 

very close to that of the wild type Tx-Xyl. Interestingly, the mutant S27T actually increased 

thermostability, which agrees with a trend among GH11 xylanases that correlates 

thermostability with an increased Thr : Ser ratio (Hakulinen et al. 2003; Park et al. 2009). 

 

Among the six mutants bearing single substitutions, S27T, Y111H, Y111S and Y111T displayed 

improved hydrolysis of In-WS and synergy with the cellulase cocktail. On the other hand the 

selection of the mutants Y6H and Y3W in our assay was more surprising, because these did 

not appear to improve wheat straw hydrolysis, although their specificity towards BWX was 

clearly altered and Y6H displayed the highest kcat value on both BWX and LVWAX. The 

mutants S27T, Y111S and Y111T also showed increased specificity towards BWX, indicating 

that all single site mutants selected in our assay had acquired an improved ability to 

hydrolyze less substituted xylans, displaying a Ara: Xyl ratio that is comparable to that of 

wheat straw xylan (Ara : Xyl ratio of 0.091). Curiously, the only exception to this trend was 

the double mutant Y6H-Y111H, which displayed unaltered specificity on In-WS, when 

compared to wild type Tx-Xyl.  

 

The amino acid Ser27 is located in a region that has been identified as a secondary binding 

site (SBS) in the GH11 xylanases from Bacillus circulans (Ludwiczek et al. 2007) and Bacillus 

subtilis (Cuyvers et al. 2011; Vandermarliere et al. 2008). Tx-Xyl shares 73% amino acid 

identity with the xylanase from B. circulans xylanase, and this figure increases to 81% when 

one just considers the SBS determinants, suggesting that a functional SBS might be present 

in Tx-Xyl (Figure II-6.B). In this context, it is noteworthy that Ser27 is located in a relatively 

deep part of a surface groove in Tx-Xyl that is linked to a shallower region via Ser25, and that 

surface grooves are potential ligand binding sites (Bhinge et al. 2004). Therefore, one can 

speculate that Ser27 constitutes an element of a SBS in Tx-Xyl. Functionally, it is proposed 

that the SBS in certain GH11 xylanases interacts with three or four xylosyl units via hydrogen 

bonds and Van der Waals interactions, and possibly improves binding of xylan polymers in 
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the active site cleft (Ludwiczek et al. 2007). The mutation of Ser27 to Thr certainly leads to a 

localized increase in hydrophobicity, which is probably favorable for xylan binding to the 

putative SBS. Indeed, experimental evidence supports this, because the mutant S27T 

significantly reduced the Michaelis constant for the hydrolysis of BWX and, to a lesser extent, 

for LVWAX. In this respect, it is also noteworthy that among the other mutations identified 

during the directed evolution process (Table II-3), figure S29N, N30D and V139A are also in 

the vicinity of the putative SBS region in Tx-Xyl. Therefore, a complementary study of these 

mutations could be an interesting way forward to better define the Tx-Xyl SBS and 

understand its effect on the enzyme activity.  

 

The thumb loop is known to be of prime functional importance in GH11 xylanases. The open 

and closing of this loop almost certainly plays a key role in substrate selectivity and binding 

(Muilu et al. 1998; Murakami et al. 2005; Paës et al. 2007; Vieira et al. 2009) and product 

release (Pollet et al. 2009); Paës et al, manuscript in preparation) respectively. Regarding 

substrate binding, the conserved tip of the thumb, composed of the motif Pro-Ser-Ile 

(position 114 – 116 in Tx-Xyl), is involved in binding of xylosyl residues at the -1 and -2 

subsites via hydrogen bonds (Havukainen et al. 1996; Sabini et al. 1999; Vandermarliere et al. 

2008). Tyr111 and its opposing neighbour Thr121 are located at the base of the loop where 

they control the movement of this structure (Paës et al. 2007; Pollet et al. 2009). The 

mutation of Tyr111 to either His, Ser or Thr reduces the spatial occupancy at position 111 

(Figure II-6.C), although this is less so for His, and thus probably renders the loop more 

mobile and more inclined to fold downwards and inwards towards the -1 and -2 subsites. 

The overall effects of these changes would be improved catalytic turnover and possibly 

improved binding affinity, both of which are observed for the mutants Y111S and Y111T. 

 

Regarding the loop movement, the mutation of Tyr6 is also worth consideration. The 

relatively conservative substitution of this residue by a slightly less bulky histidine clearly 

improved the enzyme turnover on both BWX and LVWAX, but had a slightly negative effect 

of substrate affinity in the case of LVWAX. This implies that Tyr6 might influence the 

movement of the loop, although a direct interaction is impossible. Nevertheless, Trp7 forms 

part of the -2 subsite site and faces Pro114 and Ile116, which form the thumb tip. Slight 

adjustments in the position of Trp7 could facilitate the open-close movement of the thumb 
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loop, with the risk of disturbing the high energy interaction between this residue and the -2 

xylosyl moiety. 

 

 

 

Figure II-6. (A) Four mutated positions (green) in the tertiary structure of Tx-Xyl xylanase. The mutated 

residues identified from directed evolution are focused on Y3, Y6, S27 and Y111. (B) Potential secondary 

binding site (red) including residue S27 (blue) in the surface representation of Tx-Xyl xylanase. The 

residues S25 and S27 are indicated by arrows. (C) Spatial sphere view of the side chains at positions 111 

and 121 in the Tx-Xyl wild-type and variants Y111H, Y111S and Y111T. All the figures are prepared by 

Pymol software (DeLano 2002). 

 

(A) (B) 
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Finally it is noteworthy that many of the mutations that were identified in this study involved 

the loss of aromatic side chains. Often, the nonproductive binding by lignin is cited as a 

major cause of enzyme inefficiency on lignocellulosic biomass (Berlin et al. 2005; Chang and 

Holtzapple 2000; Tu et al. 2009; Zhu et al. 2008). In an earlier study, it was shown that wild 

type Tx-Xyl was strongly absorbed by both wheat straw and isolated wheat straw lignin 

(Zilliox and Debeire 1998). In a more recent study (Boukari, 2011, in press), it has been 

shown that phenolic acids can act as noncompetitive multisite inhibitors of Tx-Xyl that might 

provoke conformational alterations of the enzyme. Therefore, it is tempting to speculate 

that the elimination of surface exposed aromatic amino acid side chains might lower such 

inhibitory effects. 

 

In conclusion, using a random mutagenesis and directed evolution approach we have been 

able to generate a number of mutants whose behavior is globally coherent with the 

screening assay that was employed. Several mutants display improved (albeit modest) 

hydrolytic activity on wheat straw and shown increased synergy with cellulase, though none 

are sufficiently potent able to overcome the lignin barrier, which inevitably blocks the way to 

further hydrolysis of polysaccharides.  
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 II.6 Supplement Results 

Table II-1S. Oligonucleotide primer pairs used for site-directed mutagenesis 

Mutation Primer sequence (5' � 3') 

W109R and Y111H 
CTATCACAGCCGGCGCCACAACGCACCGTCCATC 

GATGGACGGTGCGTTGTGGCGCCGGCTGTGATAG 

Y6H 
CCACGTACTGGCAGCATTGGACGGACGGC 

GCCGTCCGTCCAATGCTGCCAGTACGTGG 

S27T 
GCAACTACAGCGTAACCTGGAGCAACAGCGG 

CCGCTGTTGCTCCAGGTTACGCTGTAGTTGC 

 

 
Table II-2S. Equivalent xylose yield (24 h) in the Tx-Xyl wild-type/mutant mediated hydrolyses of Dpl-

WS (pH 5.8) and In-WS (pH 5.0 and 5.8). 

Equivalent Xylose yield (g kg-1 biomass) 

In-WS 
Dpl-WS, pH 5.8  

pH 5.8  pH 5.0 Xylanase 

µ σ  µ σ  µ σ 

wild-type 2.5 0.1  43.7 2.1  33.5 4.6 

Y6H 3.2 0.6  45.1 0.4  ND 

S27T 5.5 0.4  49.1 1.5  37.8 2.0 

Y111H 2.8 0.1  48.6 1.5  36.9 2.5 

Y6H-Y111H 2.9 0.1  41.8 1.7  ND 

S27T-Y111H 3.6 0.6  51.3 1.2  39.5 1.2 

Y6H-S27T-Y111H 3.2 0.3  45.0 1.4  ND 

Y3W 3.0 0.4  43.5 0.2  ND 

Y111S 3.2 0.5  49.7 2.2  36.1 3.4 

Y111T 5.0 0.2  53.3 1.4  41.1 1.6 

µ and σ: mean value and standard deviation of triplicate measurements; ND: not determined 
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Table II-3S. Equivalent xylose and glucose yields (24 h) in the In-WS hydrolyses mediated by the enzyme 

combination of Accellerase 1500 and Tx-Xyl wild-type/mutant. 

xylose (g kg-1 biomass)  glucose (g kg-1 biomass) 
Enzyme 

µ σ  µ σ 

wild-type+Accellerase 64.2 2.9  105.0 3.6 

S27T+Accellerase 71.7 2.7  112.4 2.8 

Y111H+Accellerase 72.0 3.0  110.8 4.3 

S27T-Y111H+Accellerase 75.3 1.7  113.7 2.4 

Y111S+Accellerase 73.5 2.1  111.4 1.8 

Y111T+Accellerase 75.8 1.4  117.5 3.6 

Accellerase 19.2 1.0  84.3 4.9 

µ and σ: mean value and standard deviation of triplicate measurements 

 
 



ARTICLE III  156 

 

 

 

ARTICLE III    
ARTICLE III.  IMPACT OF AN N-TERMINAL EXTENSION ON THE STABILITY AND ACTIVITY OF  

THE GH11 XYLANASE FROM THERMOBACILLUS XYLANILYTICUS 

 

The content of this article is relatively independent from Article I and II. First, we describe 

how to fuse two additional β-strands to the N-terminal of Tx-Xyl. For the resulting hybrid 

xylanase, the changes of enzymatic properties and activities on different substrates are 

studied and compared to parental Tx-Xyl. Finally, according to the modelled structure of 

hybrid xylanase, the potential roles of N-terminal region influencing substrate selectivity are 

hypothesized. In addition, it should be noted that the analysis data of sugar composition of 

soluble xylans (i.e. BWX and LVWAX) and wheat straw residues (i.e. In-WS and Dpl-WS) 

presented in this article were used in the whole thesis study.  
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Abstract 

The 17 N-terminal amino acids of the GH11 xylanase from Neocallimastix patriciarum (Np-

Xyl) have been grafted onto the N-terminal extremity of the unusually short GH11xylanase 

from Thermobacillus xylanilyticus (Tx-Xyl), creating a hybrid enzyme denoted Tx-Xyl-NTfus. 

Remarkably, this neo-xylanase was produced in Escherichia coli as a stable, soluble protein 

that displayed pH (6.2) and temperature optima (approximately 67°C) that were close to 

those of the parental Tx-Xyl. Measurement of the thermostability (at 60°C and 70°C) 

indicated that the hybrid xylanase Tx-Xyl-NTfus was less thermostable than Tx-Xyl, and this 

was confirmed by the measurement of its Tm value, which was 5°C lower than that of Tx-Xyl. 

Kinetic assays using two oNP-xylo-oligosaccharides (DP2 and 3) indicated that the longer N-

terminal region of Tx-Xyl-NTfus does not procure more extensive substrate binding, but 

these experiments did provide evidence for a putative -3 subsite in both Tx-Xyl and the 

hybrid xylanase. The activities of Tx-Xyl-NTfus and parental Tx-Xyl on birchwood xylan were 

quite comparable, but the hybrid xylanase displayed higher activity on the more substituted 

low viscosity wheat arabinoxylan and, notably, on milled wheat straw. The combined action 

of Tx-Xyl-NTfus and the cellulolytic cocktail Accellerase 1500 on wheat straw procured yields 

of soluble glucose (24 % theoretical) and xylose (23 % theoretical) that were higher than 

those obtained when Tx-Xyl was combined with Accellerase 1500. Overall, this study 

revealed that the extension of the N-terminal region of Tx-Xyl leads to unexpected 

alterations in substrate selectivity and activity, which might be linked to alterations involving 

a hitherto unidentified secondary binding site. 

Keywords 

GH11 xylanase; Thermobacillu xylanilyticus; fusion; N-terminal region; secondary binding site. 

Abbreviation 

A/X ratio: arabinose to xylose ratio ; BWX: birchwood xylan; Dpl-WS: xylanase-depleted wheat straw; H 

bond: hydrogen bonds; In-WS: intact (untreated) wheat straw; LVWAX: low viscosity wheat arabinoxylan; 

Np-Xyl: Neocallimastix patriciarum xylanase; oNP-X2: o-nitrophenyl-β-D-xylobioside; oNP-X3: o-

nitrophenyl-β-D-xylotrioside; Tx-Xyl: Thermobacillus xylanilyticus xylanase; Tx-Xyl-NTfus: N-terminal fused 

hybrid xylanase; XOS: xylo-oligosaccharides.                         
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 III.1 Introduction 

Endo-β-1,4-xylanases (EC 3.2.1.8) that group in family 11 (GH11) of the CAZy database are 

true xylanases, because they only hydrolyze β-1,4 xylosidic linkages in xylans (Berrin and 

Juge 2008; Collins et al. 2005). In the past, xylanases from family GH11 have been empirically 

selected for a wide variety of industrial applications, and are currently in use in sectors such 

as paper pulping and food and animal feed processing (Collins et al. 2005; Kulkarni et al. 

1999). Likewise, now that biorefining has become a priority R&D target, the role of xylanases 

in the conversion of lignocellulosic biomass into platform intermediates, such as glucose and 

xylose, is increasingly recognized. Recent studies have underlined the importance of 

xylanases (and other hemicellulases) in cellulolytic cocktails for the hydrolysis of residual 

hemicelluloses, which remain in the biomass after pretreatment (Gao et al. 2010; Kumar and 

Wyman 2009b; Rémond et al. 2010; Wyman 2007), and used in integrated or consolidated 

biomass processing which require complete arsenals of highly active and efficient biomass 

degrading enzymes (Lynd et al., 2005). Therefore, in order to meet tomorrow’s needs in 

terms of robust, efficient xylanases, it is necessary to acquire a better understanding of 

structure-function relationships, which is a prerequisite for enzyme design and engineering.  

 

The secondary structure of GH11 xylanases is composed of two large anti-parallel β-pleated 

sheets and one α-helix. β-sheet A is composed of a maximum of six β-strands denoted A1 to 

A6, whereas β-sheet B is composed of nine β-strands, which are named B1 to B9. The N-

terminal part of GH11 is variable in length. In cases in which the N-terminal region is shorter, 

β-strand A1 is absent, being replaced by a loop (Havukainen et al. 1996; Törrönen and 

Rouvinen 1995). Regarding tertiary structure, GH11 xylanases display compact β-jelly roll 

architecture, which is common to members of the CAZy clan GH-C (i.e. families GH11 and 

GH12). Conveniently, the overall structure of GH11 xylanases has been likened to a partially 

closed right hand, and accordingly the different structural elements have been identified 

using anthropomorphic terms such as fingers, palm and thumb (Törrönen et al. 1994). The 

fingers are formed by β-sheet A and part of β-sheet B, while the palm is made up of the 

unique α-helix and the twisted β-sheet B. The thumb corresponds to the loop that connects 

strands B7 and B8 and finally, the ‘cord’ is a long loop that joins B6 and B9 (Purmonen et al. 
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2007). The active site is located within a cleft that is the major feature of the palm. The cleft 

is partially surrounded by the fingers and the thumb, and is blocked at one extremity by the 

cord (Ludwiczek et al. 2007; Purmonen et al. 2007). The catalytic dyad, which is composed of 

two conserved glutamate residues, is located at the centre of the cleft and is surrounded by 

a number of other conserved amino acids that are important for substrate binding (Collins et 

al. 2005; Jeffries 1996). 

 

The N-terminal region of GH11 xylanases, which is located on the opposite side of the 

protein with respect to the cord, is generally defined as the region that extends from the N-

terminal amino acid through to β-strand B3, and hence includes five or six strands. 

Numerous studies have shown that the N-terminal region is related to enzyme stability and 

recent molecular dynamics data have indicated that unfolding initiates there (Hakulinen et al. 

2003; Purmonen et al. 2007; Ruller et al. 2008). To improve the thermostability of various 

xylanases, several groups have focused on the N-terminal region, introducing therein 

disulphide bonds (Fenel et al. 2004; Paës and O'Donohue 2006) or arginine rich sequences 

(Sung 2007), or by replacing all (Shibuya et al. 2000; Sun et al. 2005) or part of the N-

terminal sequence of mesophilic GH11 xylanases (Zhang et al. 2010) with that of a 

thermophilic counterpart. However, the role of the N-terminal region in xylanase activity has 

been the focus of much less attention, despite the fact that it forms part of the active site 

cleft. Nevertheless, having engineered two disulphide bonds into the GH11 xylanase from 

Thermobacillus xylanilyticus (denoted Tx-Xyl), with one located in the N-terminal region, 

Paës and O’Donohue (2006) reported that the resultant mutant enzyme released more 

soluble sugars from destarched wheat bran than the parental enzyme. Similarly, a study of 

the GH11 xylanase from Neocallimastix patriciarum (denoted Np-Xyl) has revealed that this 

enzyme, which displays an unusually extended N-terminal region (one of the longest 

reported among GH11 members), is characterized by elevated catalytic efficiency on oat 

spelt xylan (kcat/KM = 1400 s-1 mM-1), which is tentatively attributed to the fact that the N-

terminal extension provides the xylanase with an extra subsite (Vardakou et al. 2008). 

 

Unlike Np-Xyl, the moderately thermostable Tx-Xyl is characterized by an exceptionally short 

N-terminal region, meaning that these two enzymes represent opposite extremes of family 

GH11 with respect to this structural feature. Therefore, in an attempt to gain some new 
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insight into the functional role of the N-terminal region of GH11 xylanases and to improve 

the catalytic potency of Tx-Xyl we have created a hybrid enzyme by adding the A1 and B1 

strands of Np-Xyl to the N-terminal extremity of Tx-Xyl. In this report, we recount our 

findings, in particular with regard to enzymatic activity of the hybrid enzyme. 

 III.2 Materials and methods 

 III.2.1 Plasmid construction and bacterial strain 

The recombinant plasmids used in the study were as follows: pECXYL-R2 contains the coding 

sequence of Tx-Xyl in vector pRSETa (Paës and O'Donohue 2006); pNP1 encodes the mature 

form of Np-Xyl in vector pET22b (Vardakou et al. 2008); the construction of expression 

vector pNPTX5 encodes hybrid xylanase Tx-Xyl-NTfus was described below. The E. coli strain 

JM109(DE3) (Stratagene, USA) was used for protein expression.  

 III.2.2 N-terminal fusion of Tx-Xyl xylanase 

An 81 base-length oligonucleotide (primer PL1, shown below) including the coding sequence 

of A1 and B1 strands of Np-Xyl (shown in bold as below) was synthesized, based on E. coli 

codon preference (K12 type strain), using the online optimizer server 

(http://genomes.urv.es/OPTIMIZER/). The fusion work was achieved through a two-step PCR. 

In the first PCR, the reaction mixture (total volume of 50 µl) contained 10 ng of pECXYL-R2 as 

template, 250 µM of primers PL1 and P2 (shown below), 200 µM of each dNTP and 1 IU of 

Phusion polymerase (NEB Inc., USA). The amplification reaction was conducted using the 

following sequence: 1 cycle at 98°C for 1 min, 25 cycles of [98°C for 10 s, 50°C for 30 s and 

72°C for 15 s] and finally 1 cycle of 10 min at 72°C. 

PL1: 5’-

GTGGCATATGGCCTTCACCGTTGGTAACGGTCAGAACCAGCACAAAGGTGTTA 

ACGACGGTACCTACTGGCAGTATTGGAC-3’  

PS1: 5’- GTGGCATATGGCCTTCACC-3’ 

P2: 5’- GGATCAAGCTTCGAATTCTTACC -3’ 

The second PCR, which amplified the final DNA product, used the products of the first PCR as 

template, with PS1 and P2 oligonucleotides as forward and reverse primers respectively 

(shown above). The same PCR reaction sequence as above was employed. The final PCR 
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product was purified using the QIAquick PCR purification kit (Qiagen, Germany), then 

double-digested by restriction enzymes NdeI and EcoRI (NEB Inc., USA) at 37°C. The insert 

was recovered from Sybr-safe agarose gel (Qiagen, Germany) and purified again, then cloned 

into the similarly digested pRSETa vector. 

 III.2.3 Growth condition and xylanase purification  

JM109(DE3) cells bearing the recombinant plasmids were cultured and expressed in LB 

medium at 37°C as described previously (Paës and O'Donohue 2006). The proteins, Tx-Xyl 

and Tx-Xyl-NTfus, were purified using the routine two-step chromatographic procedure that 

employs Q-sepharose fast flow followed by Phenyl Sepharose (GE healthcare, USA) (Paës et 

al. 2007), working on an ÄKTA FPLC purification system (GE healthcare, Uppsala, Sweden). 

The purification of Np-Xyl was performed according to described previously (Vardakou et al. 

2008). The purified enzymes were adjudged homogeneous by SDS-PAGE. Protein 

concentrations were determined by measuring absorbance at 280 nm and applying the 

Lambert-Beer equation. Theoretical molar extinction coefficients were calculated using 

ProtParam online software (Walker et al. 2005).  

 III.2.4 Thermoactivity and thermostability assays  

Thermoactivity assays were performed at various temperatures, in the range of 50 – 75°C. 

For Tx-Xyl-NTfus, activity at 60°C was explored in a pH range from 5.0 to 7.5. All the 

experiments were performed in triplicate, if not indicated otherwise. Specific activity was 

determined on birchwood xylan (5 g l-1, Sigma-Aldrich, USA) using the 3,5-dinitrosalicylic acid 

(DNS) method as previously described (Song et al. 2010). 

 

Thermostability assays were performed by incubating a xylanase solution (100 mM) in 10 

mM Tris-HCl, pH 8.0 buffer at 50°C, 60°C and 70°C for up to 6 h. At regular time intervals, 

residual xylanase activity was quantified at 60°C. Xylanase half life (t1/2) was deduced by 

fitting the curve with the following equation: ln(residual activity) = kt where t is the time and 

k is the slope, and t1/2 = k-1ln(0.5) (You et al. 2010).  

 III.2.5 Differential Scanning Fluorimetry (DSF)  

CFX96 Real-Time PCR Detection System (Bio-Rad) was used as a thermal cycler and the 

fluorescence emission was detected using Texas Red channel (λexc= 560 - 590 nm, λem = 675 - 
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690 nm). The PCR plate containing the test samples (in triplicate) of 20 µl per well were 

prepared by mixing SYPRO® Orange (Invitrogen, final concentration 10X) with protein (6.75 

µM) in 20 mM Tris-HCl, 100 mM NaCl, pH 8.0 buffer. Negative controls with either Sypro or 

proteins alone were analyzed in parallel. The DSF assay was conducted using a temperature 

ramp from 20°C to 99.6°C, with increments of 0.3°C every 3 seconds. The apparent melting 

temperature (Tm) was calculated using the Bio-Rad CFX Manager software.  

 III.2.6 Kinetic assay  

Kinetic parameters were derived from reactions using birchwood xylan (BWX) and low 

viscosity wheat arabinoxylan (LVWAX, Megazyme Inc., Ireland) as substrates. Eight different 

concentrations were selected in the range of 0.5 – 12 g l-1 for each substrate. Initial velocities 

were measured by following the rates of appearance of reducing sugar with the DNS method 

(Miller 1959). The kinetic parameters (kcat and apparent KM) were calculated using SigmaPlot 

V10.0, with non linear regression using the algorithm one site saturation. 

 III.2.7 -3 subsite mapping 

Two end-labeled xylo-oligosaccharides (XOS) – o-nitrophenyl-β-D-xylobioside (oNP-X2) and 

o-nitrophenyl-β-D-xylotrioside (oNP-X3) synthesized as previously described  (Eneyskaya et 

al. 2003) were used to investigate substrate binding in the -3 subsites of Tx-Xyl and Tx-Xyl-

NTfus. Using a previously described method (Matsui et al. 1991; Suganuma et al. 1978), the 

binding affinity of glycon subsites was calculated using equation (1). It was assumed that 

both Tx-Xyl and Tx-Xyl-NTfus release oNP as the main product from oNP-X2 and oNP-X3 

(Pollet et al. 2010) and that the oNP group functionally substitutes for the xylosyl moiety 

that binds in subsite +1. Therefore, assuming i = 3 and n = 4, equation (1) can be transformed 

into equation (2), which is suitable to calculate the binding energy of -3 subsite.  
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Gi: Gibbs free energy (binding energy) of subsite i 

kcat/KM of Xn: specificity constant for reducing end-labeled XOS with DP n 

BCF(Xn-i) of Xn: bond cleavage frequency for (n-i)-mer end-labeled product from all 

hydrolysis products of DP n end-labeled XOS  

R: universal gas constant (8.314 J mol-1 K-1) 

T: Temperature, in °K (273.15 + degree Celsius) 

The kinetic assays for the hydrolysis of oNP-X2 and oNP-X3 were determined at six different 

substrate concentrations in the range of 1 – 8 mM and 0.5 – 6 mM respectively. The final 

concentrations of both xylanases were 35 nM and 15 nM for reactions with oNP-X2 and oNP-

X3 respectively. The hydrolysis reaction was conducted in a quartz cuvette at 60°C, in 500 µl 

of 50 mM NaOAc buffer, pH 5.8. Liberated oNP was measured by continuous detection (Cary 

100 spectrophotometer, GE healthcare) at 380 nm and quantified using a standard curve of 

free oNP (0.1 – 1 mM). The kcat and t KM values were deduced by SigmaPlot V10.0.  

 III.2.8 Evaluation of xylanase-mediated hydrolysis on Dpl-WS and In-

WS 

Finely milled (0.5 mm diameter in average) wheat straw (Triticum aestivum, cv. Apache, 

France), denoted In-WS, was prepared as previously described (Song et al. 2010). Xylanase-

depleted wheat straw (Dpl-WS) was prepared by incubating In-WS with Tx-Xyl (150 BWX U g-

1 biomass) for 72 hours at 60°C in 50 mM sodium acetate buffer, pH5.8 (containing 0.02% 

NaN3) . After, the solid residue was recovered by filtration (Whatman® No.4 filter paper), 

washed and dried at 45°C. 

 

To measure xylanase activity using In-WS or Dpl-WS as substrates, a reaction mixture in 50 

mM NaOAc buffer, pH 5.8 was prepared that contained 2 % (w/v) biomass, 0.1 % (w/v) 

bovine serum albumin (BSA), 0.02 % (w/v) NaN3 and an aliquot (final concentration of 10 

nmol enzyme g-1 biomass) of Tx-Xyl or Tx-Xyl-NTfus thereof. Hydrolysis was performed at 

50°C for 24 h with continuous stirring (250 rpm) in a screwed-capped glass tube, and then 

arrested by heating at 95°C for 5 min. To analyze the combined effect of xylanase and 

cellulases on In-WS, reactions were conducted as described above, except that Accellerase 

1500 (Genencor, Rochester, NY) (0.2 ml cocktail per g-1 biomass) was added to the reaction 

mixture and reactions were buffered at pH 5.0 (i.e. the optimal pH for the Accellerase 1500 
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cocktail). Control reactions (buffered at pH 5.0) using either Accellerase 1500 or xylanase 

alone were also performed. For the analysis of monosaccharides, the supernatants were 

adjusted to 2 M H2SO4 and incubated for 2 hours at 95°C. The carbohydrate content in 

hydrolysis samples was determined by high performance anion exchange chromatography 

with pulsed amperometric detection (HPAEC-PAD) using a Dionex ICS 3000 chromatography 

system (Sunnyvale, CA, USA). Monosaccharides were separated on a Dionex CarboPac PA-1 

column, working at a concentration of 4.5 mM NaOH and a flow rate of 1 ml min-1 at 30°C 

over 25 min. Determination of xylo-oligosaccharides (XOS) was achieved on a Dionex 

CarboPac PA-100 column thermostated at 30°C, using a linear gradient of NaOAc (5 to 85 

mM NaOAc) over 30 min, in a 150 mM NaOH solution, at a flow rate of 1 ml min-1. 

Appropriate standards such as L-arabinose, D-xylose, D-glucose and D-galactose and XOS 

displaying DP 2 to 6 between 2 to 25 mg l-1 were used to provide quantitative analyses. 

The amount of monosaccharide or polymers released during hydrolysis was expressed as a 

percentage of theoretical yields according to the following equation: 

. 
average solubilized 

Conversion %  =   100% ( / )
theoretical total tot N

N
w w

N
×  

‘‘N’’ represents any monosaccharide (e.g. xylose, glucose) in the straw, and the ‘‘theoretical 

total N’’ is the total amount of sugar N in the straw which is derived from composition 

analysis. 

 III.2.9 Compositional analysis of substrates 

The sugar composition of BWX, LVWAX, In-WS and Dpl-WS were performed according to the 

standard method proposed by NREL (Sluiter et al. 2008). Monosaccharide separation and 

quantification was performed using a Dionex CarboPac PA-1 column as described above. 

 III.2.10 Modelling of hybrid xylanase 

A model of the Tx-Xyl-NTfus was constructed using the 3D structures coordinates of Tx-Xyl 

(Harris et al., 1997) and Np-Xyl (PDB code 2C1F) as starting points. The modelling work was 

carried out using the CFF91 force field implemented within the DISCOVER module of the 

Insight II software suite (Accelrys, San Diego, CA, USA). For minimization, the CFF91 cross 

terms, a harmonic bond potential, and a dielectric of 1.0 were used. An initial minimization 

with a restraint on the protein backbone was performed using a steep descent algorithm, 

followed by conjugated gradient minimization steps, until the maximum RMS value was less 
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than 0.1. In subsequent step the system was fully relaxed. Additionally, the Tx-Xyl crystal 

model was optimized using the same procedure. A model of the hybrid Tx-Xyl-NTfus in 

complex with the xylohexaose was constructed based on the previously developed Tx-Xyl-

xylohexaose (Paës et al., 2007), and optimized using the same procedure described above. 

Structural visualization and superposition were performed using PyMol software (DeLano, 

2002).  

 III.3 Results 

 III.3.1 Design and production of the N-terminal modified xylanase, Tx-

Xyl-NTfus 

Examination of an alignment of mature (i.e. without signal peptide) amino acid sequences of 

516 GH11 xylanases (ID PF00457 in Pfam database), including those of Tx-Xyl and Np-Xyl 

sequences, clearly illustrates that both of these enzymes are atypical, with Tx-Xyl displaying 

an exceptionally short N-terminal region, while Np-Xyl possesses an extended N-terminal 

extremity (Figure III-1). Similarly, the superposition of the 3D structures of Tx-Xyl and Np-Xyl 

further highlights these variations and reveals that the N-terminal extension in Np-Xyl 

constitutes two extra N-terminal β-strands (A1 and B1) (Figure III-2.A). 

 

 

 

Figure III-1. Partial alignment of the N-terminal sequences of GH11 xylanases. All protein sequences 

were obtained from Swiss-Prot database of which the signal peptides are eliminated. The Np-Xyl and Tx-

Xyl are represented by their organism names of N. patriciarum and T. xylanilyticus respectively. The 

positions of secondary structure elements are indicated on the top according to the structure of Np-Xyl 

(PDB 2C1F). The red colour letters represent highly conserved residues. Alignment is prepared by ESPript 

2.2 utility (Gouet et al. 2003) 
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The structural superposition of Tx-Xyl and Np-Xyl was used to design a fusion protein, Tx-Xyl-

NTfus that is composed of the Tx-Xyl amino acid sequence combined with the N-terminal 

extension from Np-Xyl, which represents approximately 17 amino acids (51 nucleotides). 

Briefly, the DNA sequence encoding the first 18 amino acids of Np-Xyl (Met1 to Gly18) was 

linked to the Tx-Xyl encoding DNA sequence, starting at codon 2 (encoding Thr2) (Figure III-

2.B). Regarding the 51 bp DNA extension, compared to the wild type sequence two changes 

were made. First, in order to ensure the correct processing of the resultant recombinant 

fusion protein by the E. coli methionyl aminopeptidase, the second codon (encoding Lys2 in 

Np-Xyl) was altered to encode alanine and, second, the overall codon usage was optimized 

for expression in E. coli. 

 

 

           

Figure III-2. (A) Superposition of 3D structures of Tx-Xyl (orange) and of Np-Xyl (blue). The four N-

terminal β-strands from A1 to B2 are indicated, with only Np-Xyl showing A1 and B1 strands; (B) 

Alignment of N-terminal sequences among Np-Xyl, Tx-Xyl, and Tx-XylNTfus. Secondary structure motifs 

of Np-Xyl sequence are indicated, where β and L represent strands and loops respectively. 

 

 

After construction, cloning and expression of Tx-Xyl-NTfus in E. coli, it was found that the 

protein was soluble and could be purified using the standard protocol, previously established 

for wild type Tx-Xyl. Analysis of the purified Tx-Xyl-NTfus by SDS-PAGE clearly indicated an 

increase in molecular weight compared to Tx-Xyl, indicating that the fusion was successful 

(Figure III-3). 

(A) (B) 
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Figure III-3. SDS-PAGE gel electrophoresis of Tx-Xyl (Mw = 20.6 kD, lane 1), Tx-Xyl-NTfus (Mw = 22.3 kD, 

lane 2) and protein ladder (lane 3).  

 

 III.3.2 Characterization of Tx-Xyl-NTfus 

The specific activity of Tx-Xyl-NTfus at 60°C on birchwood xylan was 1170 U/mg protein, 

which is approximately 80% that of Tx-Xyl (Table III-1). Measurement of the pH optimum of 

Tx-Xyl-NTfus revealed that this enzyme was optimally active at pH 6.2 and displayed quite 

stable activity (3.5% variation) over 0.8 pH units, from pH 5.8 – 6.5. Similarly, rather like the 

parental enzyme, Tx-Xyl-NTfus displayed good pH activity over the range pH 5.0 to 7.5, with 

residual activities being 90% (pH 5.0) and 85% (pH 7.5) of that measured at pH 6.2.  

 

Table III-1. Enzyme characteristics of Tx-Xyl and Tx-XylNTfus. 

Enzyme 
 ε 

(M-1 cm-1) 

Mw  

(kDa) 

SA 

(U mg-1) 
pHopt 

Topt 

(°C)  

Tm  

(°C) 

60°C t1/2   

(hour) 

70°C t1/2   

(hour) 

Tx-Xyl 102790 20.65 1450 5.8 - 6.0 ~ 67 75.9 5.4 0.32 

Tx-Xyl-NTfus 102790 22.30 1127 ~ 6.2 ~ 67 70.9 4.1 0.16 

ε: Extinction coefficient; SA: specific activity measured on 5 g l-1 birchwood xylan at 60°C; Tm: melting 

temperature; t1/2 : half-life  

 

Concerning thermoactivity, Tx-Xyl-NTfus displayed a temperature dependency that is very 

similar to that of Tx-Xyl, with a Topt °C situated at approximately 67°C (Figure III-4.A). Over 

the temperature range 50 – 60°C, activity increased progressively, with measured specific 

activity at 50°C being 60% of the value determined at 60°C. Above 60°C, the specific activity 

rose rapidly until highest specific activity was reached in the range 65 to 70°C. However, 
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above 70°C, activity was sharply decreased, with the decline being apparently faster than 

that observed for Tx-Xyl. Above 75°C, the activity of xylanase could not be measured, 

because of rapid inactivation. 

 

 

 

Figure III-4. Thermoactivity (A) and thermostability at 60°C and 70°C (B) of Tx-Xyl and Tx-Xyl-NTfus.   

 

Regarding the thermostability of Tx-Xyl-NTfus and Tx-Xyl, both xylanases were highly stable 

at 50°C, retaining 100% activity after 6-hour incubation. At 60°C, the thermostability of both 

enzymes appeared to be concentration dependant (data not shown). At higher protein 

concentration (100 µM in stock solution), Tx-Xyl showed better thermostability than Tx-Xyl-

(A) 

(B) 
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NTfus (Figure III-4.B), and the half-lives were determined as 5.4 and 4.1 hours respectively 

(Table III-1). At 70°C, both enzymes were subject to rapid inactivation (> 90% activity after 1 

h) (Figure III-4.B), and half-lives were estimated to be 0.16 h (Tx-Xyl-NTfus) and 0.32 h (Tx-

Xyl) respectively. Overall, Tx-Xyl-NTfus appeared to be less thermostable than Tx-Xyl. This 

postulate was corroborated by results from a protein melting experiment performed by 

differential scanning fluorimetry, which indicated that the Tm value of Tx-Xyl-NTfus was 

70.9°C, while that of Tx-Xyl was 75.9°C (Table III-1).  

 

Taking into account the different results, it was decided to conduct further experiments 

using a reaction temperature of 60°C, because this temperature represents a good 

compromise between thermoactivity and thermostability of Tx-XylNTfus. 

 III.3.3 Determination of kinetic parameters using soluble xylans  

The activity of Tx-Xyl-NTfus was investigated using two soluble polymeric xylan substrates, 

whose composition is markedly distinct with respect to the amount of arabinose content 

(Table III-2). The compositional analysis of the birchwood xylan (BWX) used in this study did 

not reveal any arabinose after acid hydrolysis, whereas the low viscosity wheat arabinoxylan 

(LVWAX) is highly substituted by arabinose with an A/X ratio of 0.54 (Table III-2). 

 

 

Table III-2. Sugar composition of the different xylanase substrates (% of dry matter, w/w).  

Substrate Glucose% Xylose% Arabinose% Galactose% A/X ratio 

BWX 2.99±0.41% 97.01±0.41% - - - 

LVWAX 0.95±0.02% 64.13±0.42% 34.92±0.43% - 0.543 

In-WS 44.51±0.08% 26.16±0.14% 2.37±0.03% 0.44±0.06% 0.091 

Dpl-WS 45.69±0.94% 21.92±0.17% 2.05±0.07% 0.46±0.05% 0.093 

BWX: birchwood xylan; LVWAX: low viscosity wheat arabinoxylan; In-WS: intact wheat straw; Dpl-WS: 

xylanase-depleted wheat straw; A/X ratio: Arabinose to Xylose ratio 

 

 

When acting on BWX, both Tx-Xyl and Tx-Xyl-NTfus displayed very similar Michaelis-Menten 

constants (kcat and KM app) (Table III-3). Compared to Np-Xyl, both enzymes displayed a 

lower turnover rate, but very similar values for KM app. However, in the case of LVWAX, Tx-
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Xyl-NTfus displayed a slightly higher turnover rate (14%) than Tx-Xyl, although the Michaelis 

constant remained highly similar (Table III-3). 

 

 

Table III-3. Kinetic parameters of Tx-Xyl and Tx-Xyl-NTfus  

 Tx-Xyl * Tx-Xyl-NTfus * Np-Xyl †  

 
kcat 

(s-1)‡ 

KM 

(g.l-1)‡ 

kcat/KM 

(l.s-1.g-1)‡ 

kcat 

(s-1)‡ 

KM 

(g.l-1)‡ 

kcat/KM 

(l.s-1.g-1)‡ 

kcat 

(s-1) 

KM 

(g.l-1) 

kcat/KM 

(l.s-1.g-1) 
 

BWX 610.5±19.6 2.5±0.2 240.4 573.7±2.9 2.3±0.1 245.2 939.2±51.2 2.5±0.3 374.2  

LVWAX 1699.4±95.9 5.1±0.1 333.1 1944.3±111.5 5.0±0.3 388.4 ND  

oNP-X2 74.4±3.4 10.1±0.2 7.4 51.1±0.1 8.7±0.5 5.9 ND  

oNP-X3 141.2±19.3 5.2±1.0 27.3 124.2±10.0 5.7±0.9 21.7 ND  

* Measured in 50mM NaOAc buffer, pH 5.8, at 60°C 

† Measured in 50mM K2HPO4, 12mM citric acid, pH 6.5 at 37°C 

‡ Units for polysaccharides are KM in g.l-1 and kcat/KM in l.s
-1.g-1, for oNP substrates units are expressed in 

mM for KM and in s-1 mM-1 for kcat/KM. 

oNP-X2: o-nitrophenyl-β-D-xylobioside; oNP-X3: o-nitrophenyl-β-D-xylotrioside; ND: not determined 

 

 

 III.3.4 Probing the presence of a -3 subsite in Tx-Xyl and Tx-Xyl-NTfus  

To probe for extended substrate binding, two synthetic substrates, oNP-X2 and oNP-X3, 

were employed. For both Tx-Xyl and Tx-Xyl-NTfus, the specificity constant (kcat/KM) for oNP-

X3 was 3.7-fold greater than for oNP-X2, though the overall performance of Tx-Xyl-NTfus 

was slightly inferior to that of Tx-Xyl (Table III-3). Calculation of the additional binding energy 

revealed a value of -0.86 kcal mol-1 for both xylanases, indicating a similar weak contribution 

of the -3 subsite. 

 III.3.5 Hydrolysis of wheat straw and synergy with commercial 

cellulases 

Regarding the initial wheat straw samples, In-WS and Dpl-WS, compositional analysis (Table 

III-2) revealed that Dpl-WS was characterized by less xylose (4.3% dry weight) and arabinose 

(0.3% dry weight) than In-WS, but the Xyl/Ara ratio in both samples was highly similar. 

 

To assess the catalytic potency of Tx-Xyl and Tx-Xyl-NTfus on In-WS and Dpl-WS, reactions 

were performed in two conditions (pH 5.0 or pH 5.8) using xylanases alone or in combination 
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with a commercial cellulase cocktail, Accellerase 1500 (Figure III-5). Analyses showed that 

Tx-Xyl-NTfus solubilised more xylose than Tx-Xyl in both pH conditions, and as expected 

neither of the xylanases released glucose. Tx-Xyl solubilised 12.8% tot. xyl and 16.7% tot. xyl of In-

WS at pH 5.0 and 5.8 respectively, whereas Tx-Xyl-NTfus released 15.0% tot. xyl (pH 5.0) and 

19.2% tot. xyl (pH 5.8) (Figure III-5). Monosaccharide sugar analysis of hydrolytic products 

(obtained for reactions performed at pH 5.8 only) revealed that Tx-Xyl-NTfus also released 

slightly more arabinose (Xyl/Ara = 8.97±0.13) than Tx-Xyl (Xyl/Ara = 9.70±0.21). Moreover, 

analysis of similar reactions using Dpl-WS as substrate showed that Tx-Xyl-NTfus released 

29.1% more xylose yield than Tx-Xyl (Table III-4). 

 

 

Table III-4. Yields of soluble xylose and glucose equivalents in xylanase-mediated hydrolyses of In-WS or 

Dpl-WS. 

Sugar yield (g.kg-1 biomass) 

Dpl-WS  In-WS 

pH 5.8  pH 5.8  pH 5.0 
Enzymes employed in 

hydrolysis 
xylose* glucose   xylose* glucose   Xylose* glucose  

Tx-Xyl 2.5±0.1 0  43.7±2.1 0  33.5±4.6 0 

Tx-Xyl-NTfus 3.2±0.1 0  50.1±3.8 0  39.2±3.7 0 

Accellerase ND  ND  19.2±1.1 84.3±4.7 

Tx-Xyl + Accellerase ND  ND  64.2±2.9 105.0±3.4 

Tx-Xyl-NTfus + 

Accellerase 
ND  ND  73.3±5.4 110.5±3.2 

* The amount of xylose in hydrolysis product equals to the number of xylose detected in HPAEC-PAD plus 

the weight of equivalent xylose converted from detected xylo-oligosaccharides; ND: not determined 

 

 

When an enzyme mixture of Tx-Xyl and Accellerase was used to hydrolyze In-WS, 24.5% tot. xyl 

and 23.6% tot. glu were released into the aqueous reaction medium (Figure III-5), indicating 

that both arabinoxylans and β-1,4 glucans had been targeted. Regarding glucose, this was 

always detected as a monosaccharide, probably because Accellerase 1500 displays β-

glucosidase activity. When a similar experiment was performed using Tx-Xyl-NTfus, the 

amount of xylose and glucose that was solubilised increased, reaching values of 28.0% tot. xyl 

and 24.8% tot. glu respectively. In comparison, when Accellerase 1500 alone was used, 7.3% tot. 

xyl and 18.9% tot. glu were solubilised respectively.  
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Figure III-5. Hydrolysis of In-WS and Dpl-WS using various enzyme combinations. The nature of the 

enzyme combination used is indicated on the X-axis. The letters A – C refer to reaction conditions: A is the 

hydrolysis of Dpl-WS at pH 5.8, B is the hydrolysis of In-WS at pH 5.8 and C is the hydrolysis of In-WS at pH 

5.0. 

 

 

 II.3.6 Model of Tx-Xyl-NTfus  

Since the 3D structures of Np-Xyl (PDB code: 2C1F) and Tx-Xyl (Harris et al., 1997)are 

available, it was possible to construct a 3D model of Tx-Xyl-NTfus. Briefly the β-strands A1 

and B1 from Np-Xyl were excised in silico and pasted on to the N-terminal extremity of Tx-

Xyl and residue 2 was mutated in silico, thus procuring a model of Tx-Xyl-NTfus. As expected, 

the energy minimized Tx-Xyl-NTfus was globally similar to that of the parental enzymes, with 

the N-terminal region displaying a conformation and position highly similar to that found in 

Np-Xyl (Figure III-6.A and B). Nevertheless, one major difference in the N-terminal region 

was the absence of β-strand B1, which was replaced by a long loop (denoted L1) (Figure III-

6.A).  
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Figure III-6. 3D model of Tx-XylNTfus. (A) Superposition of the N-terminal regions of Tx-Xyl-NTfus 

(violet) and Np-Xyl (blue.). (B) Overall superposition of the 3D structures of Tx-Xyl-NTfus (grey) and Tx-

Xyl (orange). The N-terminal extension in Tx-Xyl-NTfus is shown in violet. (C) Putative H-bonding in the 

N-terminal region (Ala1 – Gln36) of Tx-Xyl-NTfus. The H bonds formed by main chains and side chains are 

indicated by red and blue dashed lines respectively. The aromatic rings of Trp20(4) and Tyr22(6) (Tx-Xyl 

numbering in brackets) create steric hindrance in the vicinity of the loop L1. The Tyr22(6) and Tyr29(13) 

are identified as ‘sticky patches’ residues in original Tx-Xyl structure 

 

Regarding β-strand A1 in Tx-Xyl-NTfus (from Phe2 to Val4), this appears to be suitably 

configured to allow the formation of three hydrogen (H) bonds with the anti-parallel β-

strand A2. In contrast, only one H bond is feasible between the loop L1 and strand B2, 

mainly because of steric hindrances linked to the presence of Trp20 and Tyr22, which are not 

(C) 

(B) (A) 
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present in Np-Xyl. Moreover, this lack of H-bonding explains why the region that composes 

L1 cannot adopt β-sheet conformation. However, three possible backbone H bonds were 

identified in the β-turn that links L1 to B2, in addition to the other three side chain H bonds 

that involve Lys12 - Tyr19, Asn15 - Gln36 and Asp16 - Gln36 (Figure III-6.C), these 

interactions strongly contribute to the stabilization of conformation adopted by L1. 

 III.4 Discussion 

The rationale behind this work is based on the fact that the GH11 xylanase from N. 

patriciarum was previously reported to be highly active on oat spelt xylan. The authors 

suggested this elevated activity might be correlated to the presence of an extensive active 

site, comprised of six subsites, from -3 to +3, and significant substrate binding in the -3 

subsite (-2.1 kcal/mol) (Vardakou et al. 2008). On the other hand, Tx-Xyl is an exceptionally 

short enzyme among GH11 members. Compared to the majority of GH11 enzymes, Tx-Xyl 

appears to be truncated at the N-terminal extremity and lacks at least one β-strand. 

Inevitably, this implies that the active site is shorter, and makes the existence of a -3 subsite 

uncertain (Paës et al. 2007). Therefore, to probe the functional consequences of this 

difference, an N-terminal extended version of Tx-Xyl has been created, using the N-terminal 

sequence of Np-Xyl. 

 

The initial construction of Tx-Xyl-NTfus met with immediate success, leading us to assume 

that the addition of 17 amino acids was structurally coherent and that overall side-chain 

packing is adequate for stability. This result is gratifyingly surprising, because it is well-

established that the N-terminal region of GH11 xylanases is a “hot spot” for protein 

unfolding (Hakulinen et al., 2003; Purmonen et al., 2007). Therefore, the fact that Tx-Xyl-

NTfus is only moderately less stable than Tx-Xyl can be considered to be a success. 

Nevertheless, it is interesting to consider the factors that might be responsible for the loss of 

stability. Firstly, it is important to underline the fact that Np-Xyl is not thermostable, thus 

one might assume that the N-terminal region of this enzyme is not adapted to higher 

temperatures. Indeed, the examination of the 3D structure of Tx-Xyl-NTfus model reveals 

that β-strand A1 is only loosely associated with L1, and that the main interactions between 

these appear to be mediated by His11 (numbering of Tx-Xyl-Ntfus sequence), which can 
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potentially establish electrostatic interactions with Phe3 and Val5. However, there does not 

appear to be any extensive hydrophobic interactions, disulphide bonds or salt bridges, the 

latter being significant features in protein stabilization (Kumar et al., 2000; Vogt et al., 1997). 

In addition, in Tx-Xyl-NTfus, the newly introduced N-terminal region fails to adopt β-strand 

conformation and thus does not extend the original β-sheet, a factor that might contribute 

its lowered thermostability, because in GH11 xylanases the two rather rigid β-sheets tend to 

stabilize the protein structure (Hakulinen et al., 2003).  

 

Previously, it was suggested that the thermostability of Tx-Xyl is protein concentration 

dependant and determined by inter-molecular hydrophobic protein-protein interactions, 

which mediate the formation of protein oligomers in solution (Harris et al., 1997). Based on 

crystallographic observations it was hypothesized that surface exposed aromatic side-chains 

form sticky patches, which allow pair-wise association of xylanase monomers. Among these 

residues, Tyr6 and 13 are located on β-strands B2 and A2, which correspond to Tyr22 and 

Tyr29 respectively in Tx-Xyl-NTfus. Clearly, in the 3D structure of Tx-Xyl-NTfus model, Tyr22 

is completely buried inside the structure and Tyr29 presents an altered exposure (Figure III-

6.C), and thus a modified ability to engage in thermostabilizing intermolecular hydrophobic 

interactions. 

 

The enzyme engineering presented in this work failed in its primary objective. At the outset, 

it was thought that the addition of two extra β-strands to Tx-Xyl might create a -3 subsite or 

reinforce an existing one. However, this is apparently not the case, because both the wild 

type and the extended enzymes display a similar -3 subsite binding energy. Nevertheless, 

this study has revealed a moderately favourable energy for the putaive-3 subsite that results 

in higher activity when oNP-xylotriose is used as the substrate in place of oNP-xylobiose. 

Therefore, this represents the first experimental evidence for the existence of a weak -3 

subsite in Tx-Xyl, which is coherent with our previous prediction based on substrate docking 

(Paës et al. 2007). 

 

Presumably the failure to reinforce the -3 subsite is due to an imperfect mimicking of the 

Np-Xyl -3 subsite. According to Vardakou et al. (2008), three amino acid side chains (Gln11, 

Ile151 and Tyr194 might contribute to substrate binding in the distal glycon subsite via water 
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mediated hydrogen bonds. In Tx-Xyl-NTfus, the equivalent of these residues are Gln11, 

Ile132 (116) and Ser178(162) (original Tx-Xyl numbering in brackets). Ile 132 is located at the 

tip of the thumb and its position is not affected by the N-terminal fusion, and Gln11, 

contained within the N-terminal extension, is also correctly positioned in the model 

structure of Tx-Xyl-NTfus. However, Ser178, though capable of entering into a H bond 

network, is relatively distant (8.55 Å) from the endocyclic oxygen of the -3 xylosyl moiety, 

whereas to make a water-mediated contact the distance between these should be no 

greater than approximately 5.1 Å (assuming an average H bond length of 1.97 Å and a 

maximum dimension for H20 of 1.18 Å). Encouragingly, the in silico mutation of Ser 178 to 

tyrosine reduces the overall distance to 5.5 Å, which suggests that a simple site-directed 

mutagenesis experiment could be sufficient to complete the creation of a -3 subsite. This 

experiment is currently underway. 

 

Intriguingly, though a -3 subsite was not reinforced, the activity and selectivity of Tx-Xyl-

NTfus was altered. Although both enzymes exhibited an almost equivalent kcat/KM app value 

on birchwood xylan, on the more arabinose-substituted LVWAX, Tx-Xyl-NTfus revealed a 

17% increase in catalytic efficiency compared to the parental enzyme. Moreover, on highly 

complex biomass such as wheat straw a similar difference was observed, since Tx-Xyl-NTfus 

released more soluble sugars that Tx-Xyl, indicating that it was better able to hydrolyze a 

wider range of arabinoxylans. Interestingly, this result recalls a previous observation made 

by Paës and O’Donohue (2006) that was linked to the introduction of disulphide bonds into 

Tx-Xyl. These authors reported that the modified enzyme, which notably contained a 

disulphide bond linking the N- and C- extremities, could better hydrolyze destarched wheat 

bran. Likewise, Moers et al (2007) have shown that mutation of the C-terminal Trp185 in the 

GH11 xylanase from Bacillus circulans alters specificity towards wheat water-unextractable 

arabinoxylans (Xyl/Ara = 1.96). More recently, Vandermarliere et al (2008) have linked this 

latter observation to the existence of a secondary substrate binding site, which could play a 

role in selectivity. Nevertheless, in the case of Tx-Xyl-NTfus, the careful comparison of its 

structure with that of Tx-Xyl indicates that the residues that are homologous to Trp185 of 

the B. circulans xylanase (i.e. Trp198 in Tx-Xyl-NTfus and Trp182 in Tx-Xyl) occupy identical 

positions, though the surrounding environment is different. In this respect, the most 

prominent change concerns a shallow groove that is located to one side of Trp182 in Tx-Xyl. 
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Accounting for the fact that homologous grooves in other GH11 xylanases (Ludwiczek et al., 

2007) have been described as SBS, it is likely that the aforementioned groove in Tx-Xyl is also 

a SBS. In this regard, the fact that this groove becomes deeper and wider in Tx-Xyl-NTfus 

allows us to speculate that ligand binding in the SBS is improved Figure III-7. Furthermore, 

examination of the surface of Tx-Xyl-NTfus in the vicinity of Trp198(182) reveals an adjacent 

residue, Thr18(2) (Figure III-7), whose homologues in other GH11 xylanases have been 

designated as SBS determinants (Ludwiczek et al., 2007). In Tx-Xyl-NTfus, the proximity of 

Trp198 and Thr18 might also lead to greater binding in the SBS. Overall, we hypothesize that 

the presence of an N-terminal extension in Tx-Xyl-NTfus alters a putative SBS, which in turn 

improves ligand binding and alters substrate selectivity. 

 

 

    

Figure III-7. Protein surface comparison between Tx-Xyl-NTfus (left, grey) and Tx-Xyl (right, orange). The 

relevant residues Trp198 (182) and Thr18 (2) are indicated in yellow and red respectively. 

 

In conclusion, the straightforward addition of 17 amino acids to the N-terminal of Tx-Xyl did 

not lead to the creation of a more extensive catalytic cleft. However, this experiment clearly 

demonstrated that the creation of hybrid enzymes via the N-terminal addition of peptides 

capable of adopting a coherent structure is a viable method for the engineering of the 

properties of GH11 xylanases. Moreover, this work gives clues to how one might improve 

the activity of GH11 xylanases on complex substrates and increase synergy with cellulase 

cocktails. The next step in this strategy is to further engineer the distal glycon region of the 
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active site and optimize the hybrid enzyme, perhaps through the targeted optimization of 

the range between β strands A1 and B2. 
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This doctoral thesis deals with two key challenges, which are the rational design and the 

random engineering of catalytic properties in GH11 xylanases. From a fundamental point of 

view, this work aimed to provide original structure-function data that will serve in the future 

for more precise engineering. On the other hand, from an applicative point of view, a major 

part of this study was geared towards the engineering of useful properties for biorefining 

purposes into GH11 xylanases. In both cases, the results obtained are encouraging and a 

certain number of conclusions and perspectives can be drawn from these, thus forming a 

rich collection of knowledge that provides the basis for future experimentation. 

 How has this thesis contributed to state of the art in screening? 

The discovery and engineering of biomass-degrading enzymes using techniques such as 

functional metagenomics or in vitro enzyme evolution, is fraught with difficulties. This is 

because biomass-degrading enzymes act on an incredibly complex substrate that is difficult 

to deploy in screening protocols. Nevertheless, in order to account for the truism ‘‘you get 

what you screen for” (Schmidt-Dannert and Arnold, 1999), screening using biomass appears 

to be a necessity if one wishes to efficiently detect variants that display targeted properties 

on lignocellulosic material (Wilson, 2009; Zhang et al., 2006). From this point of view, in this 

doctoral work, we chose to embrace this challenge and develop a screen that would allow 

the detection of xylanase variants that display improved activity in wheat straw. 

 

To develop a wheat straw-based screen was not simple, because this substrate is insoluble. 

Therefore, the first challenge was linked to reproducible substrate delivery into the wells of 

microtitre plates. Ideally, we wanted to avoid the purchase of sophisticated apparatus and 

procedures that involved pipetting slurries using manually prepared pipette tips. Fortuitously, 

early discussions with Dr. Jean-Marc Nicaud (CNRS-INRA Micalis), allowed us to identify a 

rather simple device, a Microscreen® Column Loader, which is designed to deliver powder 

into microtitre plates. 

 

Overall the procedure that we devised is simple and robust, displaying a tolerably low error 

rate that provides a means to detect variants that display 15% more activity than the 

reference xylanase sample. The relative simplicity of the technique allowed a screening rate 
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of approximately 2000 clones per week, which is reasonable for medium sized enzyme 

engineering projects. Interestingly, the method is adaptable and so we expect that it can be 

employed in the future using other biomass sources and other enzymes, such as cellulases. 

 

In this work, we only targeted a xylanase and we chose to probe the limits of enzyme 

engineering with regard to the improvement of a single enzyme on biomass. Nevertheless, 

the screening method that we developed could have been used in a multi-enzyme 

improvement strategy or in a single enzyme improvement strategy, but including the use of 

partner enzymes such as cellulases. In this case, cellulases could be easily added into the 

reaction mixture at the start of the hydrolysis reaction. Clearly, in the light of our results, this 

could be a promising avenue for future work. 

 Was the experimental strategy adapted towards the aim of 

finding more potent biomass-degrading xylanases? 

To develop a xylanase able to solubilise more xylan from wheat straw, we used a 

combinatorial approach that associated both random mutagenesis, in vitro enzyme 

evolution and site-saturation mutagenesis. In the initial phase of this project, In-WS (intact 

wheat straw) was used as the substrate for two main reasons: (i) it was expected that 

enzyme engineering could accelerate the initial phase of the reaction and thus considerably 

reduce enzyme loadings and (ii) it was anticipated that certain variants would significantly 

increase the overall yield of hydrolysis. In fact, the analysis of mutants from the 1st and 2nd 

generation libraries revealed that neither aim was clearly attained, because instead we 

achieved increased protein expression (the case of Tx-Xyl-AF7) and just small increases in 

xylan solubilisation. Therefore, after the 2nd generation, we decided to use Dpl-WS assay, 

thus attempting to avoid the detection of variants that were simply better expressed and 

rather isolate high-performance mutants that go beyond the normal hydrolysis endpoint. 

 

Overall, the analyses of our screening data revealed that the fitness of library clones 

increased in an incremental way from one generation to the next, in accordance with 

generic trends that have already been described for such experiments (Cirino et al., 2003; 

Zhao and Zha, 2006). Ultimately, nine of the best-performing mutants were identified, that 
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pinpointed four mutated positions, involving amino acids 3 (Y3W), 6 (Y6H), 27 (S27T) and 

111 (Y111H, Y111S, Y111T). Compared to the wild-type Tx-Xyl, all of the mutants showed 

increased hydrolytic activity towards recalcitrant wheat straw (i.e. Dpl-WS), which was 

coherent with the screening assay. Therefore, overall we can consider that the strategy that 

was devised was appropriate and that the initial aim of the work was achieved. Nevertheless, 

even the best mutants, S27T and Y111T, only improved performance by a modest increment, 

since xylan solubilisation using In-WS as substrate only increased from 16.7%tot. xyl for Tx-Xyl 

to 18.6 – 20.4%tot. xyl for the mutant enzymes. 

 

The reasons for the modest improvements observed in this work are ineluctably linked to 

the complexity of the substrate. When acting on wheat straw, Tx-Xyl is confronted with a 

multitude of challenges, including substrate accessibility, substrate chemical complexity and 

various types of inhibition mediated by different biomass components. Regarding 

accessibility, this is particularly flagrant when one considers the results obtained when 

reactions were performed in the presence of the cellulase cocktail, Accellerase 1500. Here, 

the action of the xylanases was enhanced by cellulase action and, reciprocally, cellulase 

action was enhanced by the presence of xylanase. This indicates that the degradation of 

biomass is a complex process that involves the ‘peeling off’ of alternating ‘layers’ of xylan 

and cellulose. In principle, the xylan that was solubilised in our experiments probably arose 

from the pith lining of the lumen and perhaps parenchyma cells, which possess mainly 

primary (unlignified) cell walls. Clearly, the more lignified structures were recalcitrant, which 

is unsurprising since no pretreatment (apart from milling) had been operated. To further 

investigate this, it would be interesting to perform ultra-structural studies aimed at 

specifically tracking the impact of xylanases on wheat straw. Ideally, to achieve this, one 

should identify a non-destructive technique that would allow semi-continuous assessment of 

xylanase action. In this respect, electron microscopy is unsuitable, because it requires 

complex sample preparation and can alter cell structures. 

 

To go further with xylanase engineering, our results indicate that it will probably be 

beneficial to co-engineer several enzymes or, at least, perform screening in the presence of 

cellulases. For co-engineering of several enzymes, the actual number of genes to engineer 

could be limited by focusing, for example, on just a xylanase and an endoglucanase. The 
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other essential activities, such as cellobiohydrolase and glucosidase, could be simply 

incorporated into the hydrolysis reaction. 

 Were any new structure-function data obtained from the 

random mutagenesis / in vitro enzyme evolution experiments? 

One of the interesting facts revealed by the analysis of our data was the independent nature 

of the mutations that were created. Although multiple mutations were obtained, in most 

cases these did not appear to provide additive effects, which is a little disappointing for a 

multi-generation experiment, where one would expect an accumulation of beneficial effects. 

Nevertheless from a purely analytical point of view, the lack of additivity simplifies the 

conclusions.  

 Does Tx-Xyl possess a SBS?  

In recent years, two teams have provided evidence for secondary binding site (SBS) in three 

GH11 xylanases (Ludwiczek et al., 2007; Vandermarliere et al., 2008) from different microbial 

origins. In two xylanases from the evolutionarily-related species B. circulans and B. subtilis, 

the amino acids that define the SBS are highly conserved. Interestingly, the comparison of 

the sequence of Tx-Xyl with that of the B. circulans xylanase, reveals a global amino acid 

identity of 73% and, specifically regarding the SBS determinants, an identity of 81%. Only the 

two N-terminal SBS residues in B. circulans xylanase are absent in the Tx-Xyl sequence, 

basically because Tx-Xyl displays a shorter N-terminal region. Therefore, taking into account 

these observations, it is probable that Tx-Xyl also possesses a SBS, although so far this has 

not been shown experimentally. 

Interestingly, in this work we have generated a mutation, S27T, whose improved hydrolytic 

performance might constitute a first piece of experimental evidence for a SBS in Tx-Xyl. 

Residue 27 lies on the putative SBS pathway and is probably one of the SBS determinants. 

The mutation of serine to threonine will logically increase local hydrophobicity, and thus the 

mutation S27T is probably beneficial for secondary xylan binding. To probe this hypothesis 

further, it could be interesting to perform gel retardation studies using xylan and an inactive 

variant of S27T. 
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 What did we learn about thermostability? 

Regarding thermostability, our results also provide some support for a previous hypothesis 

that links the thermostability of Tx-Xyl to the presence of numerous surface-exposed 

aromatic residues. According to this hypothesis, surface-exposed aromatic residues mediate 

intermolecular associations between xylanase monomers, thus producing oligomerization in 

solution. Among the surface-exposed residues that supposedly participate in the 

hydrophobic sticky patches, are amino acids 6 and 111, both of which were mutated in this 

study. As predicted, the mutation of Y6 and Y111 led to lower thermostability, although an 

exception to this was the mutation Y111T. Taken together, this work provides experimental 

support for the sticky patch hypothesis, although the isolated case of Y111T requires further 

consideration. 

 

Intriguingly, the mutant S27T was actually more thermostable than the parental Tx-Xyl. It is 

gratifying to note that this is in perfect agreement with a trend among GH11 xylanases that 

was first underlined by Hakulinen et al (2003). Therefore, this result adds further credence 

to this postulate and could serve in future experiments, where one could perform a 

‘Threonine scanning’ approach, creating a library where all of the different surface exposed 

serine residues are substituted one by one with threonine. Moreover, the link between 

surface-exposed threonine residues and improved thermostability might explain the 

behaviour of the mutant Y111T. In this case, the loss of an aromatic residue that participates 

in a sticky patch might be counterbalanced by an increase in the surface Thr/Ser ratio. 

 Do mutations at position 111 alter the movement of thumb loop? 

The mutation of Tyr111 is particularly interesting, because this residue is located in the 

functionally important thumb loop, which is involved in both substrate binding and catalysis 

in GH11 xylanases. Being at the base of the loop, it has been proposed that residue 111 will 

have a strong impact on thumb movement, the precise details of which are still unclear. In 

our work, mutations that reduce spatial occupancy at position 111 were selected as 

improved biocatalysts, and we concluded that reduced spatial occupancy is probably the 

driver for smoother thumb movement and faster turnover rates. Interestingly, the alignment 

of 222 different GH11 sequences, including those of enzymes of both bacterial and fungal 

origin, reveals that the most frequent occupants of position 111 (or its equivalent in other 
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GH11 xylanases) are Tyr, Val and Thr (Fig. a), the latter being among the substitutions that 

we created. 

 

Thumb loop

 
Fig. a: A MEME motif (generated at http://meme.nbcr.net/) showing the frequency of occurrence of 

various amino acids in GH11 xylanases. The motif is derived from an alignment of 222 GH11 xylanase 

sequences. The amino acids involved in the thumb loop are indicated by a blue box and Tyr111 (Tx-Xyl 

numbering) is marked with a blue star. 

 

Beyond the fact that the mutation of Y111 could lead to a more efficient thumb movement, 

it is also interesting to speculate that the loss of an aromatic moiety at position 111 might 

lower the inhibition of Tx-Xyl by phenolic molecules and, perhaps, even lignin. Indeed, a 

recent study has shown that Tx-Xyl is inhibited by phenolic compounds that act in a non-

competitive mode, which would be consistent with an interaction at the base of the thumb 

loop. Binding of aromatic molecules to the thumb could slow down or prevent its movement, 

thus preventing catalysis. To test such a hypothesis, it will be interesting to test the mutants 

Y111H, T and S for inhibition by phenolic compounds and perhaps attempt to ascertain their 

propensity for lignin binding. 

 

 Is it possible to create -3 subsite binding in Tx-Xyl? 

In attempt to probe and/or, perhaps, create -3 subsite biding in Tx-Xyl, we have extended 

the N-terminal of Tx-Xyl with two β-strands, representing 17 amino acids, that come from 
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the GH11 xylanase produced by the fungus N. patriciarum xylanase (Np-Xyl). Although this 

experiment was technically straightforward and the approach quite routine, the result was 

nevertheless exceptional, because predicting the production of a stable and active hybrid 

enzyme is still a feat that currently remains out of the scientist’s reach. 

 

In contrast, regarding the aims of this work, the creation of hybrid Tx-Xyl-NTfus did not 

produce the expected improvement in -3 subsite binding. Indeed, Tx-Xyl-NTfus appeared to 

display similar binding to the wild type Tx-Xyl. However, this work did allow us to show that 

Tx-Xyl does weakly bind a xylosyl moiety in the -3 subsite, a fact that had, up until now, not 

been established experimentally. Moreover, in the light of our experimental results and 

analyses performed a posteriori via molecular modelling, it is possible to offer a rational 

explanation for the failure of the experiment. In Np-Xyl, it has been proposed that three 

amino acids, Gln 11, Ile 151 and Tyr 194, whose equivalents in Tx-Xyl-NTfus are Gln 11, Ile 

132 and Ser 178, are involved in indirect interactions with the -3 xylosil group. Regarding Tyr 

194 (Np-Xyl), this amino acid supposedly forms an indirect H bond with the endocyclic 

oxygen of the -3 xylosyl moiety via a water molecule. Examination of the 3D model of Tx-Xyl-

NTfus reveals that Ser 178 is too far away to perform this role, because the distance that 

separates its hydroxyl group oxygen from the sugar endocyclic oxygen is 8.55 Å, whereas a 

water-mediated contact can be no longer than approximately 5.1 Å (assuming that the 

average H bond length is 1.97 Å and that the longest dimension of H2O is 1.18 Å). 

Interestingly however, modelling also reveals that the replacement of Ser178 by a tyrosine 

would reduce this distance to about 5.5 Å, thus making a water-mediated H bond much 

more plausible. Therefore, this experiment should definitely be attempted in the near future 

in order to further investigate the possibility of increasing -3 subsite binding. 

 

In conclusion, the establishment of a reliable and robust high-throughput screening 

approach using crude lignocellulosic biomass as substrate was the prerequisite to a vast 

series of combinatorial engineering experiments performed on Thermobacillus xylanilyticus 

GH11 xylanase. In combination with more rational approach, such as the design of a 

chimeric protein, our work led to mutant enzymes with improved activity towards the 

hydrolysis of recalcitrant AXs in wheat straw. Through this, we have gained useful insights 

into detailed structure-activity relationships for our xylanase, but yet, this work, depending 
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tightly on a quite straightforward protein engineering strategy, could not lead to overcome 

significantly the biomass architectural complexity. To reach this objective, future works will 

need to thoroughly investigate the function of ‘hot spot’ positions identified in this work, 

and to enlarge screening methodology via the development of multi-enzymatic approaches. 
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Abstract 1 

Due to the fact that cellulose represents up to 60% of the dry weight of plant-derived biomass, 2 

so far R&D efforts have mainly focused on the extraction and conversion of cellulose into 3 

added value products. Consequently, abundant heteroxylans have been somewhat neglected in 4 

current biomass-to-fuel concepts. The “glucocentric” approach to biorefining means that 5 

extraction technologies are sub-optimal and non-specific with regard to pentose sugars, the 6 

development of hemicellulases as biorefining enzymes has been slow and pentose-specific 7 

conversion technologies for the production of value-added products are relatively scarce. 8 

Nevertheless, xylan-related biocatalysis has continued to make steady progress in many areas, 9 

including the discovery and characterization of a wide range of hemicellulases, which are 10 

important enzymes for biomass hydrolysis. Similarly, the development of high-performance 11 

ethanol producing yeast has focused for many years on the recruitment of pentose isomerases 12 

or, alternatively, pentose reductases and pentitol dehydrogenases. However, similar efforts are 13 

being made to develop microorganisms for alternative bioconversion processes that are 14 

widening the range of chemicals that can be derived from pentoses. Finally, progress is also 15 

being made in the area of glycosynthesis, which is opening new prospects for the use of 16 

pentose sugars as building blocks for engineered pentosides, which will have quite different 17 

applications, such as non-ionic surfactants or prebiotic food/feed ingredients. This review 18 

provides an overview of these different development areas and discusses future prospects for 19 

discovery and impact on biorefining.  20 

 21 
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Introduction  23 

Although industrial, or white biotechnology, is well established in some specific industrial 24 

sectors [1], the idea of its wider deployment, especially in the fields of fuels and chemicals, is 25 

a recent one. Nevertheless, industrial biotechnology is now high on policy agendas, because it 26 

is considered to be one of the most promising routes towards the hoped-for sustainability of 27 

Man’s future industrial activities. In the so-called bio-based economy, it is expected that 28 

industrial biotechnology will play a key role in the development of biorefining, a term which 29 

describes the integrated conversion of plant biomass into a wide array of fuels, chemicals and 30 

materials [2-4]. Already, the production of first generation bioethanol is a bio-based industrial 31 

process, relying on enzymes to produce glucose syrups from starch [5,6] and on yeast-32 

mediated fermentation of glucose for the production of ethanol. 33 

Unlike starch-to-ethanol processing, which has benefited from the considerable experience 34 

gained from the food industry, the biotechnological conversion of lignocellulosic biomass is a 35 

fledging activity that is complicated by the intrinsic structural and chemical complexity of the 36 

biomass feedstock and the diversity of the intermediate platform compounds, which include 37 

D-glucose (and other hexoses), pentoses, lignins and derivatives thereof. Therefore, current 38 

and future developments in industrial biotechnology need to account for this complexity, 39 

developing a wide variety of tools, some of which should be versatile and others specific for 40 

certain biomass components. Cellulose extraction and deconstruction have been the focus of 41 

major research efforts over the last few decades, mainly because its component sugar, D-42 

glucose, is a sought after commodity that can be used in a wide variety of well-established 43 

bioconversion processes. Nevertheless, in the economically important graminaceous plants 44 

such as cereals and non-food crops (e.g. Switchgrass, Miscanthus), hemicelluloses are also 45 

major components, representing up to 30% of the dry weight of harvested biomass [7-11]. 46 

However, less emphasis has been accorded to hemicelluloses, notably arabinoxylans, which 47 
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are highly abundant plant polysaccharides that yield D-xylose and, to a lesser extent, L-48 

arabinose as sugar intermediates. Although current uses for these sugars are limited, partly 49 

due to the fact that high quality D-xylose and L-arabinose are not yet produced as commodity 50 

chemicals, their future use as platform intermediates will be necessary in order to ensure the 51 

sustainability of lignocellulosic biomass value chains and to avoid excessive non-food use of 52 

D-glucose. Likewise, less attention has been paid to the development of pentose-specific 53 

bioconversion processes aimed at the production of tailored products, despite the fact that the 54 

transformation of pentoses is not only economically necessary, but useful in terms of product 55 

diversification. Therefore, in this review we concentrate on the state of the art in this area, 56 

first describing some of the key enzymes that are used for the extraction of pentose-based 57 

polymers from biomass and then focusing on the current and future tools that can be used to 58 

convert pentose sugars into useful products. 59 

Arabinoxylan-degrading enzymes 60 

Xylans, composed of β-1,4-linked D-xylosyl subunits, are the most abundant xylose-based 61 

plant polymers and the second most abundant repository of biomass-based carbon after 62 

cellulose. Xylans are widely distributed among dicotyledons and in grassy species, though 63 

their amount (10-30% dry weight) and structures are variable from species to species, and 64 

notably between these two major groups. In dicotyledons, xylans are generally decorated with 65 

α-1,2-linked D-glucuronosyl and 4-O-methyl-D-glucuronosyl groups, whereas xylans from 66 

grasses are frequently modified by α-1,2- and/or α-1,3-linked L-arabinosyl residues [10,12]. 67 

However, these descriptions are necessarily simplistic, because xylans are irregular structures 68 

displaying a wide diversity of main-chain modifying residues (Fig. 1). Therefore, the array of 69 

enzymes that are active on xylans is equally diverse. 70 
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In addition to the chemical and structural complexity described above, most heteroxylans, 71 

especially those from dicotyledon secondary cell walls, are modified to various extents by 72 

acetyl groups that are generally linked to main-chain D-xylosyl moieties via O-3 or O-2 73 

linkages [7]. Likewise, ferulate esters are a major feature of grass heteroxylans [13]. 74 

However, in this case ferulic acid is ester-linked to side-chain L-arabinofuranosyl moieties, 75 

commonly via the O-5 position. The presence of ferulic acid in heteroxylans is important for 76 

overall cell wall integrity and resistance, because studies have revealed that in grass cell walls 77 

ferulate esters crosslink cell wall heteroxylans through the formation of intermolecular 78 

diferulic dimers [14-16]. Similarly, the oxidative crosslinking of ferulates to lignin contributes 79 

to cell wall cohesion, covalently linking hemicelluloses to lignins. 80 

 81 

Xylanases and xylosidases 82 

Endo-1,4-β-xylanases (EC 3.2.1.8), or more commonly xylanases, randomly hydrolyze the 83 

backbone of β-1,4-linked heteroxylans and produce xylo-oligosaccharides. Some rarer 84 

xylanases possess endo-1,3-β-xylanase activity [17], catalyzing the hydrolysis of β-1,3-xylan, 85 

which is typically found in marine algal species [18,19]. Examination of the CAZy 86 

classification [20-23], which defines enzyme families based on structural and amino acid 87 

sequence similarity, reveals that xylanases are mainly found in GH families 5, 8, 10 and 11 88 

(Table 1). Nevertheless, the two major xylanase families are GH10 and 11 families, which 89 

have been extensively investigated due to their industrial interest [24,25]. While GH10 and 90 

GH11 enzymes share a similar retaining mechanism [26,27], they are quite different from a 91 

structural point of view. A representative structure of GH10 members is that of the GH10 92 

xylanase of Thermoascus aurantiacus [28]. This displays a catalytic domain that shows 93 

(β/α)8-barrel architecture, which can be associated with other functional domains, such as 94 
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carbohydrate binding modules. The molecular weight of the catalytic domain of GH10 95 

xylanases is usually ≥ 30 kDa and the pI value is often low [24,25]. In contrast, GH11 96 

xylanases are characterized by a smaller catalytic domain (Mw ≥ 20 kDa) and higher pI 97 

values. A large number of structures are available for GH11 members [29,30]. These show 98 

that the catalytic domain of GH11 xylanases displays a typical β-jelly roll fold and an overall 99 

structure that has been likened to a partially closed right hand [31]. 100 

Beyond differences in structure, pH optima or thermostability, it is important to note that 101 

xylanases also display quite different substrate specificities [32]. This fact is well illustrated 102 

by GH10 and 11 xylanases, enzymes that basically cleave xylosidic bonds using the same 103 

catalytic mechanism and via a catalytic dyad composed of two glutamate residues. However, 104 

GH10 xylanases are generally considered to have wider substrate selectivity than GH11 105 

xylanases, especially regarding decorated xylo-oligosaccharides (Fig. 2). Studies of certain 106 

family members has indicated that GH10 xylanases can accommodate α-1,2-subtituted D-107 

xylosyl residues at the +1 and −3 subsites, although this is much less likely to occur at the −1 108 

and −2 subsites. Likewise, structural and experimental data indicate that GH10 xylanases are 109 

likely to accommodate α-1,3-subtituted D-xylosyl residues at the -2, +1 and +2 subsites 110 

[32,33]. Generally, this is not true in the case of GH11 xylanases, which show a clear 111 

preference for less substituted regions, with α-1,2- and α-1,3-substituted D-xylosyl moieties 112 

being excluded from the -2, -1, +1 (α-1,2) and −1 and +1 (α-1,3) subsites respectively [30]. 113 

As a consequence, GH10 xylanases tend to release shorter linear xylo-oligosaccharides (and 114 

in some cases xylose) of the type XX, A3X or U4m2XX (nomenclature based on Fauré et al., 115 

http://axonym.cermav.cnrs.fr) [34], whereas GH11 xylanases will typically produce XX, 116 

XXX, XA 3X, XA3XX and XU4m2XX [32,35-37]. 117 

Exo-1,4-β-xylosidases (EC 3.2.1.37), or generally speaking β-xylosidases, hydrolyze short 118 

xylo-oligosaccharides and produce xylose, thus complementing the action of xylanases on 119 
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xylans. The CAZy classification reveals that β-xylosidases belong to families GH3, 30, 39, 43, 120 

52, 54, 116 and 120 (Table 1). Regarding structures, models based on crystallographic data 121 

are available for many of the families (except GH52, 116 and 120), although the known 122 

structures do not necessarily relate to family members that posses β-xylosidase activity. 123 

Families GH3, 30 and 39 are characterized by catalytic domains that display a (β/α)8 or TIM-124 

barrel fold, with GH30 and 39 belonging to the same clan GH-A [38,39]. The catalytic 125 

domains of GH43 members display a β propeller fold [40], while those in GH54 possess a β-126 

sandwich, or β-jelly fold, that is reminiscent of the β jelly fold of enzymes in clan GH-B (i.e. 127 

GH7 and GH16 members) [41]. It is noteworthy that most β-xylosidases operate via a 128 

retaining mechanism, though GH43 enzymes are inverting enzymes and the mechanism 129 

associated with GH120 members is not yet known. This information is important with regard 130 

to technological applications, because some retaining enzymes have been shown to possess 131 

marked transglycosylation activity, which can be disadvantageous when the goal is hydrolysis 132 

and the production of monomeric syrups [42-44]. 133 

Regarding the technological deployment of xylanases and xylosidases, the former are widely 134 

utilized in paper, food and feed industries [45] and both categories of enzymes are 135 

increasingly recognized as being important components of enzyme cocktails for the 136 

biorefining of lignocellulosic biomass [46,47]. This is particularly true for the refining of 137 

cereal grain residues that are rich in hemicelluloses [48,49] and for lignocellulosic biomass 138 

that has undergone pretreatment at high alkaline pH (e.g. AFEX, ARP etc). In this latter case, 139 

much of the xylans remain in the pretreated fraction, which means that xylan-hydrolyzing 140 

enzymes are required in cellulolytic cocktails in order to achieve optimal sugar yields [50-53]. 141 

Unfortunately, many commercially available cellulolytic cocktails lack adequate β-142 

glucosidase and xylanase activities [54]. Moreover, it is clear that simply boosting xylanase 143 

activity in cocktails is not sufficient, because xylo-oligosaccharides produced by xylanases 144 
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appear to be strong inhibitors of cellulases [52,55]. Therefore, cocktails should also be 145 

supplemented with robust xylosidase activity [53]. 146 

 147 

Arabinofuranosidases 148 

α-L-Arabinofuranosidases (EC 3.2.1.55) are mainly exo-acting enzymes that release arabinose 149 

through the cleavage of the α-1,2 and α-1,3, or α-1,5 bonds that link L-arabinosyl side-chain 150 

decorations to the main chain of polysaccharides such as arabinoxylan, arabinogalactan, and 151 

arabinan [47,56]. Those that act specifically on arabinoxylan are sometimes referred to as 152 

arabinoxylan arabinofuranohydrolases (AXH) [57]. In the CAZy database, enzymes 153 

displaying arabinofuranosidase activity are present in families GH3, 43, 51, 54 and 62 (Table 154 

1). The enzymes in families GH3, 51 and 54 are retaining enzymes, while those in GH43 and 155 

62 are inverting enzymes. Regarding linkage specificity, many arabinofuranosidases that act 156 

on arabinoxylans appear to be active on either α-1,2, α-1,3, although preferences in some 157 

enzymes have been observed [58,59]. 158 

The action of α-L-arabinofuranosidases (Abfs) is particularly important in the deconstruction 159 

of biomass, because L-arabinosyl side chains can both hinder the action of xylanases [35] and 160 

act as substrate specificity determinants [60]. Therefore, arabinofuranosidases can act in 161 

synergy with xylanases, improving the release of xylose when compared to the action of 162 

xylanases alone [61,62], although this is not a general rule for all arabinofuranosidases, 163 

because some appear to be more active on soluble arabinose-substituted xylo-164 

oligosaccharides, which are the logical end products of xylanase activity [63]. 165 

Arabinoxylans are extremely complex polymers because of the intrinsic chemical variability 166 

of side-chain groups, whose overall distribution along the xylan main-chain varies according 167 

to botanical origin and location within plant tissues [12,64]. In arabinoxylans displaying a 168 
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high L-arabinose to D-xylose ratio the frequency of di-substituted D-xylosyl moieties bearing 169 

L-arabinosyl groups at both the O-2 and O-3 positions is increased [65]. These disubtituted D-170 

xylosyl residues constitute a formidable barrier to biomass deconstruction, because most 171 

arabinofuranosidases are unable to release L-arabinose from them. Arabinofuranosidases that 172 

can release an arabinose from disubtituted D-xylosyl residues (designated AXH-d2 or -d3) 173 

have been identified, though these are quite rare [66-69]. Currently, no simple screening 174 

strategies are available to easily detect arabinofuranosidases that act on disubtituted D-xylosyl 175 

residues and no structural data is available. Importantly, some studies have revealed synergy 176 

between arabinofuranosidases from families GH43 and 51, especially between those that act 177 

on disubtituted D-xylosyl residues and those that act on mono-substituted D-xylosyl moieties 178 

[67,70]. When AXH-d2 or AXH-d3 act on arabinoxylan, they increase the amount of 179 

monosubstituted D-xylosyl moieties, which are then substrates for the arabinofuranosidases 180 

that act on monosubstituted D-xylosyl residues. 181 

Bifunctional enzymes displaying arabinofuranosidase and xylosidase activities and possessing 182 

a single catalytic domain are not uncommon in the literature. However, bifunctionality is 183 

often defined using labile synthetic aryl glycosides as substrates and thus certain results 184 

obtained are somewhat debateable [71]. Nevertheless, some true bifunctional enzymes have 185 

been reported, which release arabinose from arabinoxylans and hydrolyse xylo-186 

oligosaccharides [72]. Such dual behaviour has been rationalized by Hövel et al. through the 187 

structural investigation of a GH51 arabinofuranosidase from Geobacillus stearothermophilus. 188 

Basically, D-xylopyranose and L-arabinofuranose share similar spatial conformation allowing 189 

them to bind into the more promiscuous subsites of certain enzymes [73]. Multi-modular 190 

enzymes possessing multiple catalytic domains also occur in Nature and engineering of such 191 

chimeras has been experimented. Notably, Fan et al. have constructed a xylanase-192 

arabinofuranosidase that releases 30% more xylose from wheat arabinoxylan than a mixture 193 
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of the parental xylanase and arabinofuranosidase activities [74]. This result underlines the 194 

importance of synergy between xylanase and arabinofuranosidases. 195 

 196 

Esterases 197 

Specialized variants of carboxylic acid esterases (EC 3.1.1.1) are frequently identified 198 

components in microbial lignocellulolytic arsenals [75,76] and well-studied examples are 199 

those produced by Aspergillus sp. [77-80]. Presumably, these enzymes act in concert with 200 

glycoside hydrolases to deconstruct lignocellulosic structures. Like glycoside hydrolases, 201 

carbohydrate esterases (EC 3.1.1.72) have been grouped into 8 of the 16 carbohydrate esterase 202 

families within the CAZy classification system [81]. However, so far all feruloyl esterases 203 

(EC 3.1.1.73) are grouped into family CE1 (Table 1), although a sub-classification of these, 204 

based on substrate specificity and phylogenetic relationships, has been proposed by Crepin et 205 

al. [82]. According to this scheme, which defines four subclasses A to D, feruloyl esterases of 206 

the subclass A are quite specific for cereal-derived substrates, cleaving the ester bond that 207 

links a feruloyl group to an L-arabinosyl moiety at its O-5 position. Enzymes from subclass B 208 

are more generally associated with the deconstruction of arabinose-containing structures 209 

within the hairy regions of pectin. Therein, they act on ester bonds that link feruloyl groups to 210 

either the C-2 of feruloylated arabinosyl or the C-6 galactosyl moieties [78]. Subclass C 211 

enzymes have been observed to act either on pectin or on cereal-derived xylans [83] and are 212 

generally described as broad specificity enzymes, being active on all four methyl esters of 213 

hydroxycinnamic acids (methyl ferulate, methyl sinapate, methyl p-coumarate and methyl 214 

caffeate). Finally subclass D esterases, which are xylanase-like enzymes, also display broad 215 

specificity on the four methyl esters of hydroxycinnamic acids and, like enzyme from 216 

subclass A, have been reported to release 5,5’-diferulic acid dimers [82,84]. 217 
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Many carbohydrate esterases are multi-modular enzymes, often being associated with one or 218 

more carbohydrate binding modules and/or catalytic domains [85-87]. In the latter case, the 219 

physical proximity of esterases with other catalytic modules favors synergy of action, which 220 

is clearly beneficial with regard to the deconstruction of complex biomass-derived substrates 221 

[88]. The usefulness of esterases in the deconstruction of heteroxylans has been demonstrated 222 

[89]. Interestingly, it has been shown that GH11 xylanases appear to be better partners for 223 

feruloyl esterases than GH10 xylanases, although these latter are better partners for the release 224 

of 5,5’-ferulate dimers [90]. Regarding acetyl xylan esterases, it has also shown that these 225 

enzymes can act in concert with cellulases and/or xylanases to achieve biomass 226 

deconstruction [91,92], especially in substrates such as corn stover, where acetylation of 227 

heteroxylans has been pinpointed as a source of resistance towards hydrolysis by xylanases 228 

alone [93]. Agger et al. have investigated the necessity for both feruloyl and acetyl xylan 229 

esterases in designed or minimal cocktails for the deconstruction of corn bran heteroxylans. 230 

According to these authors, the use of acetyl xylan esterase on insoluble corn bran leads to the 231 

release of acetyl groups, whereas feruloyl esterase appears to be more suited to the release of 232 

ferulic acid from extracted, soluble arabinoxylans. 233 

 234 

Biocatalysts for the conversion of pentose sugars into fuels and chemicals 235 

Enzyme recruitment for the development of ethanol producing microorganisms 236 

Over the last few decades, the development of microbial strains that can produce ethanol 237 

using D-xylose as the carbon source has been a high priority R&D target [94,95]. The reasons 238 

for this are two-fold. Firstly, although D-xylose-utilizing microorganisms are quite 239 

widespread, commonly used strains of Saccharomyces cerevisiae, the preferred industrial 240 

workhorse for bioconversion of glucose into ethanol, have been described as unable to utilize 241 
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D-xylose despite the fact that they can uptake D-xylose using hexose transporters [96]. 242 

Secondly, in the context of lignocellulosic biorefining, the ability to convert D-xylose into 243 

ethanol, or other useful chemicals, is of considerable economic importance, given the high 244 

abundance of this sugar in biomass. 245 

To develop D-xylose-utilizing strains of S. cerevisiae, showing a potential ability to use 246 

lignocellulosic hydrolysates, two approaches have been investigated and extensively reviewed 247 

[94,97]. Both strategies aim to drive D-xylose into the pentose phosphate pathway (PPP) via 248 

the conversion of D-xylose into its ketose derivative, D-xylulose. Once phosphorylated, D-249 

xylulose-5-phosphate can enter the central metabolism of S. cerevisae via the pentose 250 

phosphate pathway [98]. The first approach relies on the recruitment of xylose isomerase 251 

activity, which is absent in S. cerevisiae, whereas the second approach focuses on the 252 

improvement of the two consecutive reduction and oxidation reactions, mediated by xylose 253 

reductase (XR) and xylitol dehydrogenase (XDH) respectively (Fig. 3). For many years both 254 

approaches have disappointed expectations, either because exogeneous xylose isomerases 255 

have proved to be difficult to express in S. cerevisiae, or because attempts to up-regulate the 256 

XR and XDH genes have either failed or have caused redox imbalances [95]. Nevertheless, in 257 

recent years significant progress has been made, though redox imbalances are still an issue. 258 

Regarding rare eukaryotic xylose isomerases, a breakthrough was achieved by Kuyper and 259 

coworkers [99] who succeeded in expressing at a high level a xylose isomerase from 260 

Piromyces sp. in S. cerevisiae. This success in itself was insufficient to improve the growth 261 

rate of the engineered strain on D-xylose. However, subsequent metabolic engineering has led 262 

to some remarkable progress [100-102]. Interestingly, as progress in these well-studied areas 263 

is being made, it is becoming increasingly apparent that a wider system approach will be 264 

needed to obtain highly efficient industrial strains [103]. This is illustrated by the recent 265 

observation that while the transport of D-xylose is not an issue in strains of S. cerevisiae that 266 
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poorly utilize this sugar, it becomes a limiting factor in improved strains [104]. Even so, a 267 

recent study has shown that this particular problem is surmountable, using engineered strains 268 

that have been specifically improved with regard to their ability to uptake xylose [105]. 269 

Logically, because L-arabinose is less abundant than D-xylose, its conversion to ethanol has 270 

received less attention [95]. Nevertheless, it’s almost inevitable presence in lignocellulosic 271 

hydrolysates has driven research aimed at recruiting L-arabinose-acting enzymes into S. 272 

cerevisiae. Like D-xylose, L-arabinose can be introduced into the central metabolism of S. 273 

cerevisiae via D-xylulose-5-phosphate. To convert L-arabinose into this intermediate, two 274 

routes are possible. The first route, present in bacteria, involves the conversion of L-arabinose 275 

into L-ribulose, then L-ribulose-5-phosphate and finally D-xylose-5-phosphate, using L-276 

arabinose isomerase, L-ribulokinase and then L-ribulose-5-phosphate 4-epimerase 277 

respectively. The second route, characteristic of L-arabinose-utilizing fungi, consists of four 278 

alternating reduction–oxidation reactions that sequentially employ L-arabinose reductase, L-279 

arabinitol dehydrogenase, L-xylulose reductase and xylitol dehydrogenase to provide D-280 

xylulose, which is then phosphorylated before entering the pentose phosphate pathway [106]. 281 

The introduction of the enzymes of either pathway into S. cerevisiae has met with limited 282 

success. Sedlak and Ho reported that the presence of the E. coli AraBAD operon in S. 283 

cerevisiae led to the accumulation of L-arabinitol, with no trace of ethanol being detected 284 

[107]. Similarly, the assembly of a fungal-type pathway in S. cerevisiae provided a strain that 285 

produced only low amounts of ethanol [106]. Nevertheless, a recent report has described the 286 

successful cloning of two genes of eukaryotic origin (L-arabinitol dehydrogenase from 287 

Trichoderma reesei and L-xylulose reductase from Ambrosiozyma monospora) into a 288 

previously engineered S. cerevisiae strain that already produces L-xylulose reductase and 289 

xylitol dehydrogenase. When the new strain was grown on L-arabinose as the sole carbon 290 

source, a volumetric ethanol yield of approximately 41% was achieved [108].  291 
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 292 

Reducing carbon catabolic repression in butanol producing microorganisms 293 

Butanol is thought to be a better liquid fuel than ethanol. Therefore, considerable efforts are 294 

focusing on the bioproduction of this alcohol. Several microbial systems are being developed, 295 

among these clostridia such Clostridium acetobutylicum and Clostridium beijerinckii [109]. 296 

Significantly, clostridia have already been used for the industrial production of solvents (ABE 297 

process producing acetone, butanol and ethanol) using starch or molasses as substrate, 298 

although the ABE process is currently uncompetitive [110]. Nevertheless, the fact that solvent 299 

producing clostridia are able to catabolize pentose sugars could be the key to renewed 300 

economic viability in the future. However, to achieve this goal, it will first be necessary to 301 

alleviate the inhibition of pentose catabolism, a phenomenon that is observed when D-glucose 302 

is present in the growth medium [111].  303 

Like Bacillus subtilis, clostridial xylose utilization (xyl) operons appear to be controlled by 304 

the transcriptional regulator, Xyl R and the CcpA-Hpr complex, which are both activated by 305 

the presence of D-glucose [112]. Therefore, these elements are targets for engineering. In a 306 

recent study, the CcpA-encoding gene in C. acetobutylicum was identified and disrupted 307 

[109]. This led to a reduction in D-glucose catabolism and a modest increase in D-xylose 308 

utilization. However, the consequent absence of carbon catabolic repression also produced 309 

collateral effects that were detrimental to the mutant strain’s performance. Likewise, results 310 

obtained by Hu et al. indicate that the disruption of a putative xylR gene in C. acetobutylicum 311 

increased the utilization of D-xylose compared to the wild type ATCC 824 strain. This 312 

increase was accompanied by an increase in the expression of xylB, which encodes a xylulose 313 

kinase [114]. 314 

 315 
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Biocatalysts for sugar alcohol production from pentoses 316 

Xylitol, a hydrogenated derivative of D-xylose, is one of a number of polyols that are used by 317 

the food industry as sugar-free, low calorie sweeteners. In particular xylitol is used in chewing 318 

gums and sweets, basically because it procures a fresh oral sensation, thanks to its negative 319 

heat of solution and good solubility [115]. Other potential applications for xylitol include the 320 

synthesis of polymers [116-118]. Currently, the world market for xylitol is approximately 321 

160,000 T, though this is likely to rise in the future thanks to strong growth in the Asian 322 

market and the development of new applications [119]. 323 

The production of xylitol has so far been dominated by a chemical dehydrogenation process 324 

that uses a Raney Nickel catalyst [120,121]. However, several biotechnological routes exist 325 

and certain strains, notably Candida sp., can achieve high yields [120]. In pentose-growing 326 

yeasts or fungi, D-xylose is reduced to xylitol by a NADPH or NADH-dependant xylose 327 

reductase (XR). Unfortunately, XR often displays quite promiscuous action, converting both 328 

D-xylose to xylitol and L-arabinose to L-arabinitol [122]. This lack of specificity, which is also 329 

an issue for chemical catalysis, is an obstacle to economic viability, because to achieve high 330 

purity (particularly necessary for food applications) one must either use pure D-xylose as 331 

substrate or implement costly downstream purification schemes [123]. Nevertheless, protein 332 

engineering using a combinatorial approach has produced a variant of the Neurospora crassa 333 

XR that displays diminished affinity for L-arabinose and an almost 7 fold increase in (kcat/KM) 334 

D-xylose relative to that of L-arabinose [124]. More recently, Nair et al. have shown that the 335 

combination of smart strain engineering of Escherichia coli, including the introduction of the 336 

mutated XR, provides an efficient route towards the production of nearly 100% pure xylitol, 337 

starting with a mixed carbon source containing D-xylose, D-glucose and L-arabinose [122]. 338 

 339 
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Opportunities for other chemicals 340 

In addition to the two well known catabolic pathways for pentoses, which both rely on the 341 

conversion of D-xylose and L-arabinose into D-xylulose-5-phosphate, there is also a third non-342 

phosphorylative route that produces ketoglutarate or pyruvate and glycolaldehyde via L-/D-2-343 

keto-3-deoxypentanoate intermediates (Fig. 4). This pathway, which appears to be specific to 344 

the bacterial and archaeal domains, employs a series of enzyme activities including pentose 345 

dehydrogenase, pentolactonase, pentonic acid dehydratase and 2-keto-3-deoxypentanoate 346 

dehydratase, which together catalyze reactions that give access to useful chemicals and 347 

intermediates [125,126]. One such chemical is xylonic acid, for which a large volume, 348 

industrial application has been proposed [127]. In a recent report, Toivari et al. have described 349 

the production of xylonic acid by an engineered S. cerevisiae strain [128]. Alternatively, 350 

previous studies have indicated that xylonic acid could also be produced in vitro using 351 

commercially available enzymes such as glucose oxidase [129]. Both D-xylonic acid and L-352 

arabonic acid are also precursors of L-/D-1,2,4-butanetriol. The production of this energetic 353 

compound has been achieved using engineered E. coli cells bearing enzymatic components of 354 

the non-phosphorylative pathway described above. Here the conversion of D-xylonic acid and 355 

L-arabonic acid into D-/L-2-keto-3-deoxypentanoic acids is followed by the synthesis of L-/D-356 

3,4-hydroxybutanal (catalyzed by benzoylformate decarboxylase), which is converted into L-357 

/D-1,2,4-butanetriol via the action of a dehydrogenase [130]. Finally, it is important to 358 

underline the fact that the non-phosphorylative pathway provides a convenient route to 359 

tricarboxylic acid (TCA) cycle-derived compounds, such as fumaric acid [131]. 360 

The quest for modified nucleosides bearing the unnatural L-configuration, is motivated by the 361 

fact that these compounds are potent antiviral agents [132]. The chemical synthesis of L-362 

ribose and its derivatives has been demonstrated using L-arabinose as the starting material 363 

[133]. However, the biotechnological production is perfectly feasible either by converting L-364 
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ribitol into L-ribose via L-ribulose, or by converting L-arabinose into L-ribose via the same 365 

intermediate. Regarding the first option, the bioconversion of L-ribitol into L-ribulose can be 366 

achieved using acetic acid bacteria, such as Gluconobacter oxydans [134]. However, L-ribitol 367 

is itself a rare sugar that is quite expensive. In contrast, it is to be expected that L-arabinose, 368 

which is naturally abundant, will become more readily and cheaply available with the 369 

development of the biorefining industry. Therefore, recent work focused on the bioconversion 370 

of L-arabinose into L-ribose using engineered, ribulokinase-deficient E. coli and Lactobacillus 371 

plantarum strains is noteworthy. Through the introduction of a ribulose isomerase-encoding 372 

gene into these hosts, it was shown that L-ribulose produced by the action of the endogeneous 373 

L-arabinose isomerase (encoded by araA) was efficiently converted into L-ribose [135-137]. 374 

 375 

Hemicellulase-mediated glycosynthesis 376 

Over the last decades enzyme technology has increasingly penetrated organic chemistry, 377 

especially for the synthesis of sugar-based compounds. This is because enzymes present 378 

several advantages when compared to traditional catalysts: they display stereospecificity (i.e. 379 

anomeric specificity), are often regioselective, perform reactions in mild conditions and can 380 

eliminate laborious protection-deprotection steps that are usually required when dealing with 381 

polyhydroxylated carbohydrates. As well as the widely used lipases, glycosyl transferases and 382 

glycoside hydrolases are increasingly being used in glycosynthetic strategies. The latter are 383 

particularly interesting because they can operate either via reverse hydrolysis (thermodynamic 384 

control) or through transglycosylation (kinetic control) using activated substrates, or in less 385 

frequent cases via their innate transglycosidase properties. Likewise, for the enzyme-386 

catalyzed synthesis of pentose-based compounds, α-L-arabinofuranosidases, β-xylosidases 387 

and xylanases are all potentially useful. However, because of the prevalence of hexose in 388 
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Nature and the wide availability of hexose-specific enzymes, the development of other 389 

enzymes for the synthesis of pentose-based compounds is lagging behind. 390 

The possible applications for pentose-specific enzymes are quite diverse. These include the 391 

synthesis or tailoring of xylo-oligosaccharides, especially L-arabinose-substituted xylo-392 

oligosaccharides, which have good potential as prebiotic molecules [138,139] and the 393 

preparation of alkyl polypentosides, which are known to display interesting foaming and 394 

degreasing properties [140,141]. 395 

Several xylanases exhibit the ability to transfer xylotriosyl donor groups (or higher DP xylo-396 

oligosides) to different acceptor molecules [142-149]. In certain cases, high concentration of 397 

substrate leads to reverse hydrolysis that produces oligosaccharides of higher degree of 398 

polymerization compared to the starting substrates. Likewise, β-xylosidases from Bacillus 399 

halodurans [42,150] and from Thermoanaerobacterium sp. [151] have been shown to possess 400 

similar activity when xylobiose concentration is elevated. Other xylanases have also proved to 401 

be good tools for the preparation of hetero-xylosyl derivatives, such as alkyl xylosides, using 402 

birchwood or oat spelt xylan and alcohols as starting materials [152-155]. Similarly, the direct 403 

synthesis of alkyl chain xylosides from heteroxylans has also been achieved using a 404 

combination of xylanase and xylosidase [44,156]. Nevertheless, these reactions are often 405 

limited by the fact that product yield decreases as a function of (i) increasing chain length of 406 

the alcohol acceptor molecule or (ii) increasing number of substituting groups linked to the 407 

alcohol-bearing carbon, with primary alcohols usually being preferred acceptors 408 

[152,153,155]. However, one can expect that protein engineering could provide the means to 409 

surmount these limits. In some cases transxylosylation of polyphenols, such as catechols, or 410 

rare sugars, such as D-psicose, have also been reported [146-148]. The use of activated aryl-411 

xyloside donors is a widely employed approach to achieve transxylosylation by xylanases and 412 

β-xylosidases [42,160,161]. Using this strategy, Eneyskaya et al. have been able to devise an 413 
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efficient strategy for the synthesis of a range of p-nitrophenyl or 4-methylumbelliferyl β-414 

(1,4)-D-xylo-oligosaccharides [162,163] that are useful substrates for the analysis of xylanase 415 

activity. 416 

Although most developments in the area of pentose-based, enzyme-mediated glycosynthesis 417 

have focused on D-xylopyranose-acting enzymes some reports have described the 418 

glycosynthetic activity of L-arabinose-acting enzymes. The first of these employed the α-L-419 

arabinofuranosidase produced by Thermobacillus xylanilyticus. This enzyme is able to 420 

catalyse the transarabinofuranosylation of alcohols using aryl L-arabinofuranosides as donors 421 

and can synthesize both L-arabinofurano- and D-galactofurano-oligosaccharides [164-166]. 422 

The analysis of other α-L-arabinofuranosidases has revealed similar activities using various 423 

acceptors [167-169]. 424 

One major drawback when using glycoside hydrolases for glycosynthetic purposes is that the 425 

enzyme tends to hydrolyze the glycosynthetic products, thus leading to poor yields of the 426 

synthetic coupling products. One solution to this problem is the creation of a glycosynthase, 427 

which is hydrolytically incompetent derivative of the parental enzyme created using site-428 

directed mutagenesis [170]. In the presence of activated sugars (e.g. glycosyl fluorides) that 429 

mimic the glycosyl-enzyme covalent intermediate, such enzymes can promote the formation 430 

of glycosidic bonds while remaining inert with regard to the synthetic product [171,172]. This 431 

approach has been applied to xylanases from Cellulomonas fimi [173,174] and to a β-432 

xylosidase from Geobacillus stearothermophilus [175], all of which were engineered via the 433 

substitution of the active nucleophile residue by an unreactive amino acid. However, so far 434 

the glycosynthase approach has not been applied to arabinofuranose-acting enzymes. 435 

 436 

 437 
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Discovery of new pentose-specific enzymes – developments and perspectives  438 

In recent years the term metagenomics, which describes the culture-independent genomic 439 

analysis of microbial populations, has become familiar to the wider scientific community. 440 

This is because metagenomics is rapidly opening up access to the extensive chemistry present 441 

in microbial diversity [176,177]. The ever wider application of this technology to the study of 442 

biodiversity in many different ecosystems, including the sea [178], soil [179], the human gut 443 

[180-183], the bovine rumen [184] and the termite hindgut [185], is revealing a vast and 444 

hitherto hidden diversity of biocatalysts. 445 

To discover new enzymes or even novel metabolic pathways, two fundamental types of 446 

strategies are being developed, although many elegant variations on these approaches now 447 

exist. Sequenced-based discovery of enzymes requires a minimum amount of knowledge 448 

concerning the targeted enzymes and quite intensive sequencing resources, although “next 449 

generation” technologies such as 454 pyrosequencing and, even more significantly, HiSeq 450 

have considerably decreased the time and cost of sequencing [186] and makes possible the 451 

production of huge amounts of sequence data, which nevertheless needs to be assembled, 452 

annotated and appropriately analyzed [178,180]. Function-based discovery relies on good 453 

knowledge of the chemical reaction under study, which is necessary to elaborate a selection or 454 

screening strategy [187,188]. Both sequence-based and function-based strategies can benefit 455 

from enrichment steps in order to home-in on functional microorganisms in a microbiome 456 

[189-191]. 457 

Hydrolases are widespread in Nature and are key enzymes in catabolic processes breaking 458 

down molecules such as polysaccharides to release energy. For this reason they are prime 459 

targets for enzyme discovery, particularly now that biorefining of plant biomass has become a 460 

major R&D pursuit. In this context, metagenomics has already proved to be extremely 461 



ANNEX  212 

 

powerful, especially to tap into microbial diversity in ecosystems that are expected to be rich 462 

in biomass hydrolyzing activities. A milestone in this area is the work performed by 463 

Warnecke et al., who performed a first large scale metagenomic analysis on the microbiome 464 

of the hindgut of a wood-feeding higher termite [185]. The study led to the identification of 465 

more than 700 glycoside hydrolase-encoding genes, which represent 45 different CAZy 466 

families. More than 100 genes were related to lignocellulose hydrolysis, with (putative) 467 

pentose-acting enzymes from families GH10, GH11, GH26, GH43 and GH51 being 468 

prominent among these. Likewise, genes encoding CE4 and CE34 and xylan esterases were 469 

also identified. Similarly, more recent studies that have employed an initial enrichment step 470 

aimed at specializing the microbial community prior to the metagenomic study, have shown 471 

that compost microbial communities exposed to lignocellulosic biomass share common 472 

features with microbiomes of wood-feeding termites and bovine rumen [192,193]. In 473 

particular, cellulose degradation functions represented over 0.5 % of the annotated genes and 474 

a high proportion of hemicellulases (GH51, 62, 67 and 43) were identified. Finally, a very 475 

recent large-scale study (268 Gb sequence generated), also focusing on a bovine rumen 476 

microbial community modified by enrichment on switchgrass, revealed 27,755 putative 477 

glycoside hydrolase-encoding genes, of which only 5% were more than 75% identical to 478 

sequences currently present in the CAZy database, thus underlining the power of the 479 

metagenomic approach for novel enzyme discovery [194].  480 

Functional screening of metagenomic librairies is an attractive approach because it holds the 481 

potential to reveal hitherto unknown enzymes and guarantees that selected clones will harbor 482 

proteins displaying the targeted activity, thus reducing the overall volume of high-throughput 483 

sequencing [187]. Nevertheless, to implement function-based screening it is essential to use 484 

appropriate screening strategies, typically using chromogenic substrates that can be 485 

incorporated into solid agar medium and be visually detected upon hydrolysis. Hydrolases 486 
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such as lipases, amylases, cellulases and chitinases have often been the target of activity-487 

based screening [195], though examples of functional screening for hemicellulases are less 488 

common [196-198]. The reasons for this are probably twofold: (i) hemicellulases have been 489 

given less priority by researchers seeking to identify efficient cellulolytic systems and (ii) 490 

chromogenic substrates for hemicellulases, such as L-arabinofuranosidases, are not readily 491 

available even though the synthesis of 5-bromo-3-indolyl-alpha-L-arabinofuranoside was 492 

described in 1996 [199]. Noteworthily, Marmuse et al. [200,201] recently described the 493 

development of chromogenic substrates for feruloyl esterases and Fauré et al. has developed 494 

novel chromogenic substrates for the detection of xylanase activity (unpublished results). 495 

When coupled to fosmid library construction, which allows the insertion of large DNA 496 

fragments, function-based approaches also provide access to multigenic clusters whose 497 

components are often complementary to activity that is primarily targeted. This is illustrated 498 

by a recent study by Tasse et al. who used a functional-based approach to mine the human gut 499 

microbiome for dietary fiber catabolic enzymes. Hemicellulases, cellulases, amylases and 500 

pectinases activity were detected in primary screening and 0.84 Mb of non redundant 501 

metagenomic DNA was generated. Sequence analysis revealed 73 glycoside hydrolases, 502 

belonging to 35 GH families, with many of these enzymes grouped into 18 multigenic 503 

clusters, whose apparent functions are related to the degradation of plant cell walls [196]. 504 

Likewise, in very recent work, we have shown that the mining of the digestive microbiome of 505 

the termite Pseudacanthotermes militaris, using hemicellulase detection for primary 506 

screening, is a powerful way to discover components of microbial pathways for 507 

hemicelluloses utilization (unpublished results). 508 

Over the next years, undoubtedly metagenomics research will be a major source of new 509 

enzymes for white biotechnology. However, to fully exploit this technology, it will be 510 

necessary to overcome some of the outstanding difficulties, among which figures protein 511 
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expression bias. To address this problem, one solution will be to develop alternative hosts for 512 

metagenomic libraries, expanding beyond Escherichia coli, which is today’s workhorse. 513 

Moreover it will be necessary to increase the throughput of cloning and expression of DNA, 514 

which is a major bottleneck today, although solutions are now under development [202]. 515 

Beyond these critical technical obstacles, another key to further advancement is the clearer 516 

understanding of how newly discovered enzymes function, especially within the context of 517 

the complex multienzyme systems of natural microbiota. It is only with such precise 518 

understanding of function that it will become possible to better conceive artificial enzyme 519 

systems and/or microorganisms for complex tasks such as the degradation of lignocellulosic 520 

biomass. 521 

 522 

Conclusions 523 

Clearly, the identification and engineering of new pentose-acting enzymes and 524 

microorganisms are prerequisites for a better exploitation of pentose sugars in biorefining 525 

strategies. The development of a varied toolbox of enzymes will provide considerable impetus 526 

for innovation and will move the question of pentose valorization beyond the rather restrictive 527 

D-xylose to ethanol framework. Among the key drivers of this transition, it can be expected 528 

that metagenomics will provide many new enzymes, although major efforts regarding 529 

screening will be required in order to go accelerate the discovery of other pentose-modifying 530 

enzymes, such as isomerases, dehydratases and epimerases. These will be useful for novel 531 

microbial strain engineering strategies, particularly using more ambitious approaches such as 532 

synthetic biology.  533 

Regarding biomass hydrolysis, it is increasingly recognized that hemicellulases are important 534 

components of cellulolytic systems. Therefore, an intensification of research in this area can 535 
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be anticipated. Likewise, it is well recognized that consolidated biorefining provides a highly 536 

optimized solution for biorefining lignocellulosic biomass, with considerable economic gains 537 

expected [203,204]. However, to develop new efficient hydrolytic systems that rely, for 538 

example, on designer cellulosomes, it will be vital to advance of our understanding of the 539 

complex synergies that prevail in natural enzyme systems. Again, metagenomics will be 540 

helpful in this area, but only if it is coupled to high-throughput, in-depth characterization of 541 

the enzymes that are revealed. 542 

Finally, glycosynthetic enzymes could play a future role in expanding the prospects for the 543 

valorization of pentose sugars. In particular, we believe that the development of efficient 544 

glycosynthetic tools could provide the next generation of tailored oligosaccharides and 545 

pentose-based non-ionic detergents, especially if smart strategies involving recyclable, 546 

immobilized enzymes are employed. 547 

 548 
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Table Legend 1127 

 1128 

Table 1 – Summary of classification data related to the principal arabinoxylan-degrading 1129 
enzymes 1130 

 1131 

Figure legends 1132 

 1133 

Figure 1. - Schematic representation of arabinoxylan structures found in graminaceous plants. 1134 

Figure 2 - Subsite tolerance and hydrolytic capability of GH10 and GH11 xylanases on 1135 

ramified arabinoxylan substrates. Arrows indicate potential cleavage sites and circles 1136 

represent β-1,4-linked D-xylosyl subunits. 1137 

Figure 3 - Overview of the initial steps of the phosphorylative pentose utilization pathways 1138 

classically employed by bacteria and fungi. 1139 

Figure 4 - Overview of the steps in the alternative non phosphorylative pentose utilization 1140 

pathway found in certain archaebacteria and bacterial species. 1141 
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