Thèse soutenue

Modélisation physique et numérique des interactions sol-structure sous sollicitations dynamiques transverses

FR  |  
EN
Auteur / Autrice : Xiangwei Zhang
Direction : Pierre ForayPhilippe Gotteland
Type : Thèse de doctorat
Discipline(s) : Génie civil
Date : Soutenance le 28/10/2011
Etablissement(s) : Grenoble
Ecole(s) doctorale(s) : École doctorale Ingénierie - matériaux mécanique énergétique environnement procédés production (Grenoble ; 2008-....)
Partenaire(s) de recherche : Equipe de recherche : Sols, Solides, Structures-Risques
Jury : Président / Présidente : Richard Kastner
Examinateurs / Examinatrices : Pierre Foray, Philippe Gotteland, Serge Lambert, Marcello Coppola, Vitalij Pecharsky, Luca Perniola
Rapporteurs / Rapporteuses : Daniel Levacher, Luc Thorel, Joseph Dichy

Résumé

FR  |  
EN

Les travaux effectués dans le cadre de cette thèse portent sur la modélisation physique etnumérique du comportement des fondations superficielles sous sollicitations transverses dynamiques.Deux nouveaux modèles physiques sont développés.Le premier, en chambre d’étalonnage permet de réaliser des expériences sur modèle réduitd’une fondation superficielle encastrée dans un sable sec en respectant les conditions de confinementréelles. Des adaptations prototypes sont spécialement conçues pour permettre unchargement horizontal rapide, le couplage chargement vertical-horizontal, ainsi qu’un libremouvement de la fondation. L’influence des différents paramètres (densité du sable, amplitudedu déplacement horizontal et de la charge verticale, pressurisation du massif) est miseen évidence sur le comportement de la fondation.Le second porte sur l’interaction sol renforcé-fondation superficielle dans une " VisuCuve "de visualisation latérale du comportement. Il est mené sur une argile molle renforcée soit parun système de Colonnes à Module Mixte (CMM) soit par un système d’Inclusions Rigides etmatelas granulaire (IR). Ces modèles physiques en 2D sont soumis à des chargements horizontauxcycliques en quasi-statique et en dynamique pour l’étude de l’effet inertiel. L’efficacitécomparée des systèmes en termes de dissipation d’énergie est présentée.Une modélisation numérique des systèmes CMM et IR correspondant à la configuration expérimentaleet en vraie grandeur est développée à l’aide du logiciel FLAC3D. Les résultatsnumériques nous permettent de confirmer partiellement des tendances constatées lors des expériences.Les calculs des ouvrages en vraie grandeur permettent d’étudier plus précisémentla dissipation d’énergie par le calcul des coefficients d’amortissement dans les différents systèmes.L’effet inertiel et l’effet de la hauteur de la partie supérieure en gravier sont égalementdémontrés par les efforts internes calculés dans les inclusions.