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“Nature seems to take advantage of the simple math-

ematical representations of the symmetry laws. When

one pauses to consider the elegance and the beautiful

perfection of the mathematical reasoning involved and

contrast it with the complex and far reaching physical

consequences, a deep sense of respect for the power of

the symmetry laws never fails to develop.”

Chen Ning Yang (楊楊楊振振振寧寧寧).
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Chapter 1

Isospin Symmetry and Its Breaking in Nuclear

Structure

Contents
1.1 Isospin Formalism

1.2 Isospin Symmetry Breaking

1.2.1 Perturbation theory analysis

1.2.2 Exact treatment: Isospin Impurities in Nuclear States

1.3 Physics Motivation

The isospin symmetry is an approximate, but very useful symmetry of atomic nuclei. It takes
advantage of the similarity between a proton and a neutron, considering them as two different
charge states of a nucleon. Indeed the masses of the proton and the neutron are very close,
mp = 938.272013(23)MeV/c2 and mn = 939.565379(21)MeV/c2 [1], and the mass ratio is about
one, i.e., mn/mp = 1.001378. In addition, as we will show later in this chapter, the nuclear
forces are to a good level of approximation charge-independent, i.e. the strong proton-proton,
neutron-neutron and proton-neutron interactions may roughly be considered identical.

For many years, the isospin symmetry has been serving as a stringent guideline for the
construction of the nucleon-nucleon interaction. Some nuclear models (such as the shell model)
explicitly implement the isospin scheme to simplify the calculations. Eigenstates of an isospin-
invariant Hamiltonian can be characterized by additional quantum numbers related to the
isospin. This proposes a classification scheme for nuclear states, as well as for baryons and
mesons in particle physics.

Nevertheless, the isospin symmetry is broken by electromagnetic interactions, isospin non-
conserving component of strong force, and differences in proton and neutron masses. The degree
of the breaking is small compared to the nuclear scale, however, it should be explicitly taken
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Chapter 1. Isospin Symmetry and Its Breaking in Nuclear Structure

into account for the description of isospin-forbidden phenomena. In this thesis, we develop
isospin non-conserving shell-model Hamiltonians capable to precisely describe the experimen-
tally measured isospin-symmetry breaking effects.

In this chapter we first briefly sketch the isospin formalism, then we explain how the isospin
symmetry in a many-nucleon system (nucleus) is broken and we indicate the physics motivation
for the theoretical study of isospin-symmetry breaking.

1.1 Isospin Formalism

The isospin formalism was proposed by Heisenberg [2], soon after discovery of the neutron
by Chadwick [3]. Assuming that the proton and the neutron have very similar masses, he
proposed to consider them as two different charge states of the same particle, a nucleon. To
distinguish between them he introduced a new variable, tz, assigning tz = +1/2 to the neutron
and tz = −1/2 to the proton. The mathematical formalism of the isospin used by Heisenberg
is analogous to the formalism of the intrinsic spin devised by Pauli.

There is nowadays a lot of experimental evidence for the validity of the isospin concept
in nuclear physics. The nucleon-nucleon interaction possesses a genuine isospin symmetry
confirmed by experiment.

First, experimental data on 1S0 scattering lengths in two-nucleon isospin-1 system (proton-
proton, proton-neutron and neutron-neutron) are not very different after electromagnetic effects
are removed [4]:

aNpp = −17.3± 0.4 fm , aNnn = −18.95± 0.40 fm , aNnp = −23.740± 0.020 fm . (1.1)

Indeed, if the Coulomb interaction between two protons is ignored, the strong nuclear inter-
action in a neutron-neutron and a proton-proton system is the same. This property is referred
to as charge symmetry of the nuclear force. At a higher level of approximation, the strong
nuclear neutron-neutron, proton-proton, and neutron-proton interactions can be considered the
same, leading to the charge independence of the nuclear force [5, 6, 7].

These properties of the nuclear interaction are confirmed by experimental nuclear spectra.
Let us consider mirror nuclei, i.e. a pair of nuclei which transform into each other by inter-
changing their proton and neutron numbers. In general, they have very similar energy level
schemes relative to their ground states. The difference in their binding energies is mainly due to
the different Coulomb energy in two mirror systems. As an example, we present the low-lying
energy spectra of 33

16S17 and
33
17Cl16 in Fig. 1.1. Thus, substitution of all neutron-neutron bonds

by proton-proton bonds and vice versa almost does not alter the energy levels. This is the
manifestation of the charge symmetry of the nuclear force.

14



1.1. Isospin Formalism

Figure 1.1: Comparison of the level schemes of the mirror nuclei 33
16S17 and 33

17Cl16.
This plot shows only positive-parity levels. The excitation energies of the states with the same total angular
momentum J and parity π exhibit close similarity in mirror nuclei.

Similarly, we can consider the low-energy spectra of three isobars, which include an N = Z
nucleus and a neighboring mirror pair. As an example, excitation energies of low-lying states
in 34

16S18,
34
17Cl17, and

34
18Ar16 are shown in Fig. 1.2. As was discussed above, the spectra of mirror

nuclei are similar, but in addition we find analogous states (of the same spin and parity and
similar excitation energy) among the low-lying states in 34Cl (only these analogue states are
shown in Fig. 1.2). The difference in the binding energies of the isobars is mainly due to the
different Coulomb energy. The similarities of the spectra allow us to conclude that the total
nuclear interaction energy of the many-nucleon system is (almost) invariant under interchange
of neutron-neutron, neutron-proton, and proton-proton interactions. This is the confirmation
of the charge independence of the nuclear force.
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Chapter 1. Isospin Symmetry and Its Breaking in Nuclear Structure

Figure 1.2: Comparison of the level schemes of 34
16S18 and 34

18Ar16, and partial level schemes of 34
17Cl17.

The excitation energies of the states with the same total angular momentum J and parity π exhibit close
similarity in these three nuclei.

The isospin space (isospace) is an abstract space, spanned by the vectors (isospinors) rep-
resenting proton and neutron states. In a matrix representation,

|p〉 =
(

0
1

)

, |n〉 =
(

1
0

)

. (1.2)

The isospin operator is a vector ~t, defined by its three components

tx =
1

2

(

0 1
1 0

)

, ty =
1

2

(

0 −i
i 0

)

, tz =
1

2

(

1 0
0 −1

)

, (1.3)

where tx, ty, and tz, respectively, project the nucleon state on the x-, y-, and z-axis in the
isospace. These tx, ty, and tz operators obey the SU(2) commutation relations,

[tx, ty] = itz , (1.4)
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1.1. Isospin Formalism

with cyclic permutations; whereas the SU(2) Casimir operator1 ~t 2 = t2x+ t
2
y+ t

2
z commutes with

the SU(2) generators,

[

~t 2, ti
]

= 0 , for i = x, y, z . (1.5)

The eigenvalue of ~t 2 is t(t + 1). Acting with tz on a proton state or on a neutron state given
in Eq.(1.2), we obtain

tz |p〉 =
1

2

(

1 0
0 −1

)(

1
0

)

= −1
2
|p〉 , tz |n〉 =

1

2

(

1 0
0 −1

)(

1
0

)

=
1

2
|n〉 . (1.6)

The eigenvalues of tz are thus −1/2 for the proton and +1/2 for the neutron. High-energy
physicists use opposite signs for the eigenvalues of tz for the proton and the neutron. Other
than tx, ty, and tz operators, we may introduce ladder operators t+ and t− defined as

t+ ≡ tx + ity , t− ≡ tx − ity , (1.7)

which obey the commutation relations:

[tz, t±] = ±t± , [t+, t−] = 2tz . (1.8)

These isospin ladder operators t+ and t− are also called raising and lowering operators, respec-
tively. They transform a proton state into a neutron state and vice versa,

t+ |p〉 = |n〉 , t− |p〉 = 0 ,

t− |n〉 = |p〉 , t+ |n〉 = 0 . (1.9)

These operations are useful to describe the β-decay.

The electric charge operator in the isospin formalism reads Q = e(1 − 2tz)/2, and acquires
the following form in matrix representation :

Q = e

(

0 0
0 1

)

, (1.10)

with e denoting the proton charge. This charge operator is deduced from the relations below

1

2
(1− 2tz) |p〉 = |p〉 ,

1

2
(1− 2tz) |n〉 = 0 . (1.11)

The isospin operator and its z-component of a many-nucleon system can be constructed
from nucleonic isospin operators as

~Ttotal =

A
∑

i=1

~ti , Tz =

A
∑

i=1

tzi , (1.12)

1 A Casimir operator (or a Casimir invariant) is an operator which commutes with all elements of a Lie
algebra [8]. Eq.(1.4) shows that isospin operators tx, ty, and tz form a Lie algebra τ , and ~t 2 commutes with all
operators of τ . A Casimir operator can be a linear, quadratic, cubic, quartic, ..., form in the elements ti.
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Chapter 1. Isospin Symmetry and Its Breaking in Nuclear Structure

where A is the nuclear mass number or the total number of nucleons in a nucleus. The com-
ponents of ~T obey similar commutation relations as those given in Eq.(1.5). The eigenvalue of

the ~T 2 operator is T (T + 1). If A is even, the total isospin quantum number T is an integer, if

A is odd, T is half-odd-integer. For each value of T , there are (2T +1) eigenstates of ~T 2, char-
acterized by different Tz values. They form a so-called isospin multiplet (or isobaric multiplet)
of states with

Tz = −T,−T + 1, . . . , T − 1, T . (1.13)

An isospin multiplet with T = 1/2, T = 1, T = 3/2 and T = 2 is a doublet, a triplet, a quartet
(or a quadruplet) and a quintet of states, respectively.

For a nucleus with Z protons and N neutrons, Tz =
1
2
(N − Z), while the total isospin can

have the following values compatible with Tz:

T = |Tz|, |Tz|+ 1, |Tz|+ 2, . . . ,
1

2
A . (1.14)

Generally, ground states of all nuclei have the isospin T = |Tz|, except for some N = Z odd-odd
nuclei.

If the Hamiltonian H0 of an A-nucleon system is isospin-invariant (it does not include the
Coulomb interaction and nucleon-nucleon interactions are assumed to be charge-independent),
i.e.

[H0, ~T ] = 0 , (1.15)

its eigenstate states can be characterized by the isospin quantum number T and its projection
Tz. Thus, the isospin formalism can be used in the classification of nuclear states. Denoting
the Hamiltonian eigenstates as |α, T, Tz〉, where α defines other relevant quantum numbers (J ,
π, etc, including A), we get

~T 2 |α, T, Tz〉 = T (T + 1) |α, T, Tz〉 ,
Tz |α, T, Tz〉 = Tz |α, T, Tz〉 . (1.16)

States in the isobars, having the same α and T quantum numbers, but different Tz values are
called isobaric analogue states (IAS). As an example, let us return to isospin triplets of states
in A = 34 nuclei, illustrated above. The states of the same Jπ and excitation number are T = 1
states (IAS). In the spectrum of 3417Cl17, there are also T = 0 states which do not have analogues
in neighboring isobars. In principle, at higher excitation energy one can find states with higher
T -values, i.e. T = 2 which are members of an isobaric quintet of states. These states are not
shown in the figure.

All member states of an isospin multiplet can be transformed to one another by the total
isospin raising and/or lowering operators

T± ≡ Tx ± iTy =

A
∑

i=1

(tx(i)± ity(i)) , (1.17)
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1.2. Isospin Symmetry Breaking

which are given by the summation of single-nucleon isospin raising and lowering operators
Eq.(1.7). These total isospin ladder operators satisfy the following commutation relations

[Tz, T±] = ±T± , [T+, T−] = 2Tz . (1.18)

Applying these ladder operators to a nuclear state |α, T, Tz〉 we get

T± |α, T, Tz〉 =
√

T (T + 1)− Tz(Tz ± 1) |α, T, Tz ± 1〉 . (1.19)

To conclude, let us remark that the fact that the Hamiltonian commutes with the Tz operator
implies that the electric charge is conserved ([H0, Q] = 0).

1.2 Isospin Symmetry Breaking

The isospin symmetry is only an approximate symmetry of a nuclear Hamiltonian due to
the presence of electromagnetic interactions, isospin non-conserving strong force, and difference
in nucleonic masses. The largest source of the isospin symmetry breaking is the Coulomb
interaction between protons.

Isospin-symmetry breaking (ISB) in nuclear states can be explained by the idea of dynamical
symmetry breaking2 [9].

1.2.1 Perturbation theory analysis

Coulomb interaction

The Coulomb force acting between protons is the main source of the isospin-symmetry
breaking in an atomic nucleus. The Coulomb interaction represented in the isospin formalism
has the form:

Vcoul =
∑

i<j

QiQj

|~ri − ~rj |
= e2

∑

i<j

(

1

2
− tz(i)

)(

1

2
− tz(j)

)

1

|~ri − ~rj|
, (1.20)

2 The physical meaning of dynamical symmetry breaking in this context is different from the one described in
condensed matter and particle physics. The latter symmetry breaking is a special form of spontaneous symmetry
breaking.
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Chapter 1. Isospin Symmetry and Its Breaking in Nuclear Structure

and can be expanded as a sum of isoscalar, isovector, and isotensor operators [9, 10],

Vcoul =
∑

q=0,1,2

V
(q)
coul

= V
(0)
coul + V

(1)
coul + V

(2)
coul

= e2
∑

i<j

(

1

4
+
1

3
~t(i) · ~t(j)

)

1

|~ri − ~rj|

− e2

2

∑

i<j

(tz(i) + tz(j))
1

|~ri − ~rj|

+ e2
∑

i<j

(

tz(i)tz(j)−
1

3
~t(i) · ~t(j)

)

1

|~ri − ~rj|
. (1.21)

where q corresponds to the rank of tensor in isospace. All these operators are 0-components of
rank-q isotensors, since the electric charge is conserved.

The effect of the Coulomb interaction can be treated within perturbation theory. In the
lowest-order approximation, the isospin symmetry turns out to be broken in a dynamical way [9].

The isoscalar term V
(0)
coul is invariant with respect to isospin SU(2) group, whereas the isovector

term V
(1)
coul and the isotensor term V

(2)
coul are invariant with respect to isospin SO(2), a subgroup

of SU(2). V
(1)
coul and V

(2)
coul contain the operators Tz and T

2
z , respectively.

In the lowest order of perturbation theory, the energy shift of a given member of an isobaric
multiplet due to the Coulomb interaction is expressed by the expectation value of the Coulomb
interaction in this state, namely,

Ecoul(α, T, Tz) = 〈α, T, Tz|Vcoul |α, T, Tz〉 . (1.22)

Applying the Wigner-Eckart theorem [11], we can factor out the Tz dependence, to obtain the
following expression:

Ecoul(α, T, Tz) = 〈α, T, Tz|
∑

q=0,1,2

V
(q)
coul |α, T, Tz〉

=
∑

q=0,1,2

(−1)T−Tz
(

T q T
−Tz 0 Tz

)

〈α, T‖V (q)
coul ‖α, T 〉

= E
(0)
coul(α, T ) + E

(1)
coul(α, T )Tz + E

(2)
coul(α, T )(3T

2
z − T (T + 1)) , (1.23)

where

E
(0)
coul(α, T ) =

1√
2T + 1

〈α, T‖V (0)
coul ‖α, T 〉 ,

E
(1)
coul(α, T ) =

1
√

T (2T + 1)(T + 1)
〈α, T‖V (1)

coul ‖α, T 〉 ,

E
(2)
coul(α, T ) =

1
√

T (2T + 3)(2T + 1)(T + 1)(2T − 1)
〈α, T‖V (2)

coul ‖α, T 〉 . (1.24)
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1.2. Isospin Symmetry Breaking

The matrix elements with two bars denote reduced matrix elements (in isospin space).

Thus, in lowest-order perturbation theory, the diagonal matrix elements of the Coulomb
interaction 〈α, T, Tz| Vcoul |α, T, Tz〉 are given by a quadratic form of Tz, c.f. Eq.(1.23), while the
off-diagonal isospin mixing matrix elements of the Coulomb interaction 〈α, T, Tz|Vcoul |α, T ′, Tz〉
are neglected. In this case, Vcoul is assumed not to mix states |α, T, Tz〉 having different values of
T (T = Tz, Tz+1, . . .), and isospin T is still a good quantum number. However, the (2T+1)-fold
degeneracy is now removed. The isobaric multiplet is thus splitted in (2T + 1) components.

We make use of Eq.(1.23) to obtain the mass excess of an isospin-T multiplet member in a
specific state defined by α:

M(α, T, Tz) =
1

2
(Mn+MH)A+(Mn−MH)Tz+〈α, T, Tz|H0 |α, T, Tz〉+Ecoul(α, T, Tz) , (1.25)

where Mn and MH are the neutron mass and hydrogen mass, respectively. From hereon, H0

represents the isospin-invariant nuclear Hamiltonian (having charge-independent interactions
only). Therefore, Eq.(1.25) can be recast as

M(α, T, Tz) = a(α, T ) + b(α, T )Tz + c(α, T )T 2
z , (1.26)

which is the famous isobaric multiplet mass equation (IMME) [12, 13], where

a(α, T ) =
1

2
(Mn +MH)A

+ 〈α, T, Tz|H0 |α, T, Tz〉
+ E

(0)
coul(α, T )− T (T + 1)E

(2)
coul(α, T ) ,

b(α, T ) = ∆nH −E
(1)
coul(α, T ) ,

c(α, T ) = 3E
(2)
coul(α, T ) . (1.27)

The expressions for the coefficients a(α, T ), b(α, T ), and c(α, T ) for T = 1/2, 1, 3/2, 2 are given
in the next chapter. The neutron-hydrogen mass difference is ∆nH =Mn −MH = 782.347 keV
(c.f. Table A.2 of Appendix A). Experimentally, the values of a(α, T ), b(α, T ), and c(α, T ) are
∼100 MeV, 3–15 MeV, and ∼200–300 keV, respectively.

Charge-dependence of the NN interaction

The discussion above is also valid if instead of the Coulomb interaction we consider two-
body charge-dependent nuclear forces. Evidence for the charge-symmetry breaking and charge-
independence breaking in the NN interaction comes from scattering experiments. First, there
is a small difference between vNpp and vNnn (e.g., different scattering lengths in 1S0 channel:
aNpp − aNnn = 1.65± 0.60 fm [4]) which implies charge-symmetry breaking (or charge-asymmetry)
of the NN interaction. Second, there is an even more substantial difference between vNpp and
vNnn from one side and vNpn from the other side (e.g., different singlet scattering lengths: (aNpp +
aNnn)/2 − aNnp = 5.6 ± 0.6 fm) which corroborates the charge-independence breaking of the NN
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Chapter 1. Isospin Symmetry and Its Breaking in Nuclear Structure

interaction. Detailed consideration and theoretical studies of these effects can be found in
Refs. [4, 14, 15, 16]

The existence of non-vanishing charge-dependent NN forces may result in a non-negligible
isospin-symmetry breaking component of the effective NN interaction, which should be taken
into account when solving a many-body problem. Similar to the Coulomb interaction, isospin-
symmetry breaking two-body nuclear forces are tensors of rank 1 and 2 in isospin space. Since
their magnitude is even smaller than that of the Coulomb interaction, we can exploit the same
technique of the perturbation theory as explained in the previous section. Therefore, instead of
Vcoul in Eq.(1.23), we can use a charge-dependent part of the nuclear Hamiltonian, which may
include both the Coulomb interaction and charge-dependent forces of nuclear origin, VCD, i.e.

HCD = Vcoul + VCD .

1.2.2 Exact treatment: Isospin Impurities in Nuclear States

The Coulomb interaction and charge-dependent nuclear forces do not commute with the
isospin operator,

[H0 +HCD, ~T ] 6= 0 , [H0 +HCD, ~T
2] 6= 0 . (1.28)

Therefore the total Hamiltonian is not invariant under rotations in isospace and the isospin
is not conserved. Furthermore, the isospin symmetry is also violated if we take into account
the neutron-proton mass difference, ∆M = Mn −Mp, which causes the kinetic operator for

nucleons not to commute with ~T and with ~T 2 [7].

Let us call this total Hamiltonian the isospin non-conserving (INC) Hamiltonian HINC . Its
charge-dependent part, HCD, is due to the Coulomb interaction between protons, the neutron-
proton mass difference and effective nuclear charge-dependent interactions. The eigenstates of
an INC Hamiltonian are admixture of different isospin eigenstates. Therefore, we speak about
isospin impurities in nuclear states.

1.3 Physics Motivation

The degree of isospin non-conservation due to the Coulomb interaction and charge-dependent
nuclear forces is small compared to nuclear effects. However, a precise description of the ISB
in nuclear states is crucial when the nucleus is considered as a laboratory to test the funda-
mental symmetries underlying the Standard Model of the electroweak interaction. One of the
important applications is the calculation of so-called nuclear-structure corrections to the nu-
clear β-decay. These corrections arise due to isospin mixing in nuclear states which should be
evaluated within a nuclear many-body model.

22



1.3. Physics Motivation

In particular, high-precision theoretical values of nuclear structure corrections to superal-
lowed 0+ → 0+ β-decay rates are of major interest. Combined with various radiative corrections,
they serve to extract an absolute F t-value from observed ft-values of these purely Fermi tran-
sitions for nuclear beta decay. The constant F t would confirm the conserved vector current
(CVC) hypothesis and would allow one to deduce the nuclear weak-interaction coupling con-
stant, GF . The ratio of the latter to the weak-interaction coupling constant extracted from the
muon decay results in Vud, which is the upper-left matrix element of the Cabibbo-Kobayashi-
Maskawa (CKM) quark-mixing matrix. The upper row of the CKM matrix is the one which
provides a stringent test for the unitarity, with Vud being the major contributor (around ∼94%).
The breakdown of the unitarity would signify a possibility of new physics beyond the Standard
Model, see Ref. [17] for a recent review.

Nowadays, ft-values for thirteen 0+ → 0+ β+-transitions among T = 1 analogue states
are known with a precision better than 0.1%. The largest uncertainty on the extracted F t
value (which is about 0.4%) is due to the ambiguous calculation of the nuclear-structure cor-
rection [18]. Therefore, an accurate theoretical description of isospin mixing in nuclear states
is of primary importance.

Similarly, theoretical calculations of nuclear-structure corrections to Fermi β-decay are nec-
essary to extract the absolute F t value and Vud matrix element from mixed Fermi/Gamow-
Teller transitions in mirror T = 1/2 nuclei [19].

Moreover, nuclear-structure corrections to Gamow-Teller β-decay matrix elements are re-
quired in studies of asymmetry of Gamow-Teller β-decay rates of mirror transitions with the
aim to constrain the value of the induced tensor term in the axial-vector weak current [20, 21].

Apart from these applications for studies of fundamental interactions, precise modelling of
the Coulomb and charge-dependent nuclear forces is required to describe observed mirror energy
differences (MED)3 [22] and splittings of the isobaric multiplets, amplitudes of experimentally
measured isospin-forbidden processes, such as β-delayed nucleon emission [23], Fermi β-decay
to non-analogue states, E1-transitions in self-conjugate nuclei [24] or isoscalar E1-components
extracted from E1-transitions between analogue states [25] and so on. The charge-dependent
effective interaction is indispensable for understanding the structure of proton-rich nuclei with
important consequences for astrophysical applications.

At the same time, the theoretical calculation of the isospin-symmetry breaking within a
microscopic model represents a great challenge. Various approaches have been developed to
deal with the problem.

The first shell-model estimations of isospin mixing date back to the 60’s [26, 27], including
its implication for a nuclear β-decay [20, 26, 28]. The most recent work within the shell
model related to the construction of realistic INC effective Hamiltonians constrained by the
experimental data (mass splittings of isobaric multiplets) [29, 30]. Another approach based on

3 The difference in excitation energy between excited IAS states of a pair of mirror nuclei.
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Chapter 1. Isospin Symmetry and Its Breaking in Nuclear Structure

the analysis of the MED in pf -shell nuclei is given in Ref. [31].

The common feature of the shell-model approaches is that the transition matrix elements cal-
culated within the INC scheme are divided into two parts. First, there is a contribution from the
isospin-symmetry breaking effects in the configuration mixing of basis states, constructed from
spherical harmonic-oscillator single-particle wave functions within the model space (valence
space). This is obtained via the diagonalization of an effective one- plus two-body Hamiltonian
that does not conserve the isospin. Second, in the calculation of transition rates one has to
change the single-particle harmonic-oscillator wave functions to realistic spherically-symmetric
wave functions obtained from a finite-well nuclear potential plus Coulomb potential (to account
for the isospin violation outside the model space). Applications of the shell model to super-
allowed beta decay can be found in Refs. [17, 18, 32] and references therein, while corrections
to Gamow-Teller β-decay in mirror systems have been evaluated in Refs. [20, 21]). Numerous
applications to the isospin-forbidden proton emission and to the structure of proton-rich nuclei
can be found in the literature (e.g. Refs. [33, 34, 35]).

The problem of the ISB was intensively studied in the framework of self-consistent mean-field
theories within the Hartree-Fock + Tamm-Dankoff or random-phase approximation (RPA) in
90’s [36, 37, 38, 39]. Recently, more advanced studies have been performed within the relativistic
RPA approach [40], as well as within the angular-momentum-projected and isospin-projected
Hartree-Fock model [41, 42].

Some other many-body techniques have recently been applied to deal with the isospin non-
conservation. In particular, the isospin mixing in nuclei around N ≈ Z ≈ 40 has been evaluated
by variation-after-projection techniques on the Hartree-Fock-Bogoliubov basis with a realistic
two-body force in Ref. [43]. Isospin-symmetry violation in light nuclei, applied to the case of
superallowed β decay of 10C has been calculated within the ab-initio no-core shell model [44],
while effects of the coupling to the continuum on the isospin mixing in weakly-bound light
systems were studied in the Gamow shell-model approach [45]. The relation between the isospin
impurities and the isovector giant monopole resonance was explored by Auerbach [46], with
consequent application to the calculation of nuclear-structure corrections to superallowed β-
decay [47].

Up to now, the approaches mentioned above do not agree on the magnitude of isospin
impurities in nuclear states and predict largely different values for the corrections to nuclear
β-decay. Given the importance of the problem we have decided to revise the existing INC
shell-model Hamiltonians. First, since the work of Ref. [30], more experimental data of higher
precision have been accumulated on the properties of isobaric multiplets (mass-excess data and
level schemes), on isospin-forbidden particle emission, on nuclear radii and so on. Development
of the computer power and shell-model techniques allows us to access larger model spaces [48].
In addition, more precise new nuclear Hamiltonians have been designed (e.g. Refs. [49, 50, 51]),
as well as new approaches to account for short-range correlations [52, 53]. The purpose of
this thesis is to present an updated set of globally-parametrized INC Hamiltonians for sd-shell
nuclei, and to show their quantitative implication to calculations of isospin-forbidden processes
in nuclei.
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1.3. Physics Motivation

Chapter 2 is devoted to the shell-model formalism and explains the scheme to construct an
isospin non-conserving Hamiltonian. The compilation of the database on experimentally deter-
mined coefficients of the isobaric-mass multiplet equation is presented in Chapter 3. Chapter 4
contains the results obtained in the sd-shell. Staggering effects of IMME coefficients are shown
and explained in Chapter 5. In Chapter 6 we explore the extension of the IMME beyond the
quadratic form in T = 2 multiplets. In Chapter 7, we present a new set of nuclear structure
corrections for superallowed 0+ → 0+ Fermi β-decay, as well as a few cases of Fermi transitions
to non-analogue states (configuration-mixing part). In Chapter 8 we calculate proton widths
for several cases of isospin-forbidden proton emission. The thesis is summarized in the last
chapter.
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Chapter 2

Nuclear Shell Model and the Construction of

Isospin Non-Conserving Hamiltonian

Contents
2.1 Nuclear Shell Model

2.1.1 The Eigenvalue Problem

2.2 Large Scale Shell Model Calculations

2.3 Second Quantization

2.4 Residual Interaction

2.4.1 Schematic Interactions

2.4.2 Microscopic Interactions

2.4.3 Empirical Interactions

2.5 Construction Formalism of Isospin Non-Conserving Hamiltonian

2.5.1 TBME’s of the Coulomb and Yukawa-type potentials

2.5.2 Remarks

In this chapter, the basics of the nuclear shell model is briefly presented. We discuss the fun-
damental concepts of the nuclear shell model in tackling truncated many-body problems. Then,
we concentrate on the formalism of constructing the isospin non-conserving Hamiltonian and
discuss possible candidates for the isospin-symmetry breaking terms in the charge-dependent
Hamiltonian. Furthermore, we illustrate the implementation of recently developed short-range
correlation (SRC) schemes in adjusting the harmonic-oscillator wave functions used in the cal-
culation of the two-body matrix elements of the isospin-symmetry breaking terms.
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Chapter 2. Nuclear Shell Model and the Construction of Isospin Non-Conserving Hamiltonian

2.1 Nuclear Shell Model

The nuclear shell model was introduced by Mayer [54] and by Jensen et al. [55] in 1949, to
solve the puzzle of observed regularities of the nuclear properties related to N and Z numbers,
i.e., 2, 8, 20, 28, 50, . . . , the so-called magic numbers. The set of magic numbers obtained in
the shell model matches the experimental data. Since then, the shell model has continued to
be developed [48, 56]. The shell model provides a precise description of low-energy nuclear
structure of light, medium-light and medium-mass nuclei, and their decay modes.

The shell model assumes that in first-order approximation, every nucleon in an A-nucleon
system moves independently in an average potential. This mean potential is produced by
A(A − 1)/2 pairs of NN interactions in the nuclear medium. Usually, NNN and higher-body
interactions are effectively described by in-medium NN interactions. The NN interaction in
a nuclear medium is different from the free NN interaction [57, 58]. The free nuclear NN
interaction is strongly repulsive at short distances and is attractive at larger distances; and
it includes non-central and spin-dependent forces. It strongly binds two nucleons to around
a constantly balanced distance, ∼1 fm. Fig. 2.1 schematically displays the hierarchy of scales
determining the type of NN potentials. If the distance between the two nucleons is larger than
∼1.5 fm, the NN interaction can be described by the one-pion exchange potential (OPEP);
whereas, at distances ∼0.8 – 1.5 fm, the two-pion exchange potential (TPEP) dominates the
NN interaction [59, 60]. For distances below ∼0.5 fm, the NN interaction becomes a hard-core
potential, and a non-relativistic formalism is not applicable anymore in this region, because the
interaction energies are very high. Multi-pion exchange or a heavy-meson exchange potential is
needed, and/or the NN interaction at this short distance is given as a parametrized form fitted
to experimental data [60].

Figure 2.1: Schematic plot of meson exchange theories describing the NN potentials in different regions.

The NN distance r is given in units of the pion’s Compton wavelength µ−1 ≈ 1.4 fm. Adapted from
Ref. [59, 60].
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2.1. Nuclear Shell Model

If A(A − 1)/2 pairs of nucleons form a nuclear system, the binding energy per nucleon of
this nuclear system, BE/A, may naively be estimated as

BE

A
∝ ENN

A− 1

2
, (2.1)

where ENN is the binding energy of two nucleons. Experimentally, however, the BE/A values
throughout the whole nuclear chart are roughly constant, ∼8 MeV [61], except for light nuclei.
We may accept that the estimate BE/A ≈ 8 MeV is applicable to most nuclei. When all
nucleons in a nucleus are at the equilibrium distance, the density of the nucleus saturates inside
the nucleus. Within the interaction range (∼1 fm), a nucleon bound in the nucleus receives NN
interactions from the adjacent nucleons. Since the nuclear density is roughly the same inside the
nucleus, the mean effect of such NN interactions should be constant causing the mean potential
to become constant too. At the same time, nucleons at the nuclear surface should feel less the
mean effect, since they are surrounded by fewer neighboring nucleons. Hence, in the vicinity of
nuclear surface, the mean potential should decrease.

A number of physics arguments support the idea of the mean field in an atomic nucleus.
Indeed, the empirical mean free path of nucleons is larger than 3 fm [57]. Hence, a non-
relativistic form of NN interaction is applicable for the derivation of the mean potential. In
addition, the ratio of the volume occupied by nucleons of a given nucleus to the total volume
of the nucleus is low

Vocc
Vnucleus

≈
(

rcore
2r0

)3

≈ 0.5× 10−2 , with rcore ≈ 0.4 fm, and r0 ≈ 1.2 fm. (2.2)

Consequently, a nucleus is almost transparent for nucleons.

There are a number of experimental facts that confirm the existence of shell structure in
nuclei.

• Nuclear masses, plotted as a function of N or Z, exhibit a pattern of deviations from
predictions of the liquid-drop model indicating more binding for Z,N = 2, 8, 20, 28, 50, 82
and N = 126 and less binding for nuclei in the middle of the regions between two of these
numbers (Fig. 2.2).

• Even-even nuclei near the β-stability valley with Z = 8, 20, 28, 50, 82, and an appropriate
corresponding number of neutrons N = 8, 20, 28, 50, 82, 126, possess substantially higher
excitation energies for the first-excited state compared to other nuclei (Fig. 2.3). The
similar situation occurs in atomic physics: the atoms with fully filled electronic (sub)shells
have higher-lying first-excited states compared to atoms with partially filled electronic
shells, giving rise to a corresponding set of magic numbers.

• Shell structure is evidenced in the discrete strength distribution in nucleon-transfer reac-
tions, for example, the pick-up reaction 208Pb(3He,d)209Bi shown in Fig. 2.4, in nucleon
(two-nucleon) separation energies and so on.
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At the same time, nuclear shell structure is different from atomic shell structure, because (i)
the nuclear mean field is different from the Coulomb potential in an atom; (ii) protons and
neutrons (two different types of fermions) coexist; and (iii) there is only the center-of-mass and
no specific central point in a nucleus, whereas an atom has the central Coulomb field produced
by the atomic nucleus.

Figure 2.2: Deviation of nuclear masses from their mean (liquid drop) values as a function of Z or N .

Adapted from Ref. [57, 62].

The nuclear shell model uses solutions from a spherically symmetric potential to construct
many-body basis states. This helps us to study nuclear properties with the advantage of
spherical symmetry. Suppose that a nucleon propagates in a spherically symmetric potential.
The propagation is described by the one-body Schrödinger equation

(K + U(r))φa(~r) = ǫaφa(~r) , (2.3)

where a represents a set of quantum numbers; K is the kinetic energy operator; U(r) is a
spherical mean potential governing this single nucleon; and ǫa are the discrete single-particle
energies. The single-particle wave functions φa(~r) are the solutions of the one-body Schrödinger
equation. Although the single-particle motion seems to resemble electrons in the potential well
of a hydrogen-like atom, we have to keep in mind that it does not possess a central charge. The
wave functions φa(~r) form a complete set of orthonormal states

∫

φ∗a′(~r)φa(~r)d~r = δa′a =

{

1, for a′ = a ,

0, for a′ 6= a .
(2.4)

For a non-interacting A-particle system, the Hamiltonian is given by a sum of independent-
particle Hamiltonians Eq.(2.3), i.e.

H0 =

A
∑

i=1

(Ki + U(ri)) =

A
∑

i=1

h0(i) . (2.5)
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2.1. Nuclear Shell Model

Figure 2.3: The neutron magic numbers.

The average excitation energies of the first-excited states in doubly-even nuclei (mainly a Jπ = 2+ level)
plotted as a function of the neutron number N . Adapted from Ref. [57, 63].

However, a nucleus is a system of strongly interacting fermions, therefore the Hamiltonian
should consist of nucleonic kinetic energies and nucleonic interactions

H =

A
∑

i=1

Ki +
1

2

A
∑

i,j=1

Vij , (2.6)

and 1
2
is inserted at the two-body interaction terms to avoid double counting. Three-body and

higher-body terms are neglected here. We may formally introduce a single-particle potential
U(r) and rewrite the Hamiltonian as

H =

A
∑

i=1

[Ki + U(ri)] +

(

1

2

A
∑

i,j=1

Vij −
A
∑

i=1

U(ri)

)

= H0 +Hresidual

=

A
∑

i=1

h0(i) +Hresidual , (2.7)

where Hresidual denotes the residual interaction. One can use the Hartree-Fock (HF) method to
obtain the best mean field U(r). Instead, in the shell model, one chooses U(r) to be a simple
schematic potential. Then the residual interaction is diagonalized in the basis given by the
eigenfunctions of H0.
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Figure 2.4: Single-nucleon states in 209Bi.
The upper figure displays the proton single-nucleon states corresponding to the spectra in the figure below.
The lower figure shows the spectra obtained from the pick-up reaction 208Pb(3He,d)209Bi. Adapted from
Ref. [57].

For example, one may employ an often called realistic Woods-Saxon (WS) potential,

UWS(r) =
V0

1 + e(r−R0)/a
, (2.8)

where V0 ≈ −50 MeV is the potential well depth, R0 = r0A
1/3 with r0 = 1.2 fm, and a is

the diffuseness, a ≈ 0.7 fm. We can obtain the eigenstates of the WS potential by numerical
calculation.

In practice, the potential U(r) of choice is the analytically solvable harmonic oscillator (HO)
potential (due to its numerous symmetries and characteristic properties),

UHO(r) =
1

2
MNω

2r2 , (2.9)

where MN is the nucleon mass, and ω is the oscillator frequency.

The Schrödinger equation for a nucleon in the harmonic oscillator potential is

h0φ(r) =

(

− ~
2

2MN

∇2 +
1

2
MNω

2r2
)

φ(~r) = ǫφ(~r) ; (2.10)
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2.1. Nuclear Shell Model

Figure 2.5: The single-nucleon potential U(r) for A = 29.
The Woods-Saxon potential UWS(r) is shown by the solid line; whereas the dashed line is the harmonic
oscillator potential UHO(r). Both potentials are calculated to produce the same depth at r = 0. Adapted
from Ref. [63].

and the single-nucleon wave functions φ(r) (without considering intrinsic spin) can be written
as a product of a radial wave function Rnl(r) and a spherical harmonics Ylml

(θ, ϕ)

φ(~r) ≡ φnlml
(~r) =

Rnl(r)

r
Ylml

(θ, ϕ) , (2.11)

where n is the number of nodes of the radial wave function, l is the orbital angular momentum
and ml is its projection on the z-axis. The spherical harmonics Ylml

(θ, ϕ) are normalized

eigenfunctions of the squared orbital angular momentum operator ~l2 and its projection on the
z-axis lz

~l2Ylml
(θ, ϕ) = l(l + 1)Ylml

(θ, ϕ) ,

lzYlml
(θ, ϕ) = mlYlml

(θ, ϕ) . (2.12)

The radial wave functions are the solutions of
(

− ~
2

2MN

d2

dr2
+

~
2

2MNr2
l(l + 1) +

1

2
MNω

2r2
)

Rnl(r) = ǫRnl(r) , (2.13)

with the radial quantum number refering to the number of nodes n = 0, 1, 2, 3, . . ., and have
the form

Rnl(r) = Nnlr
l+1exp

(

− r2

2b2

)

Ll+1/2
n

(r

b

)

. (2.14)

Nnl is the normalization factor which can be determined from the normalization condition

∞
∫

0

R2
nl(r)dr = 1 ; (2.15)

b =
√

~

MNω
is the harmonic oscillator length parameter and L

l+1/2
n

(

r
b

)

are the generalized

Laguerre polynomials.
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The parity operator P transforms the space (r, θ, ϕ) spanned by single-nucleon wave func-
tions as

(r, θ, ϕ)
P−→ (r, π − θ, π + ϕ) ,

Pφnlml
(~r) = P

(

Rnl(r)

r
Ylml

(θ, ϕ)

)

= (−1)lφnlml
(~r) . (2.16)

All spherical harmonics have definite parity. The parity of single-nucleon wave functions is
positive (negative), if l is even (odd). The eigen-energies corresponding to Eq.(2.10) are given
by

ǫ = ~ω(2n+ l +
3

2
) = ~ω(N +

3

2
) , (2.17)

where

N = 0, 1, 2, 3, . . . ;

l = N,N − 2, . . . , 1 or 0 ;

n =
N − l

2
.

Each N number corresponds to a harmonic oscillator shell with definite eigen-energy. The
distance between two consecutive oscillator shells is ~ω ≈ 41A−1/3 MeV, and the lowest eigen-
energy is 3

2
~ω. Using the notation from atomic spectroscopy, states with orbital angular mo-

mentum l = 0, 1, 2, 3, 4, . . ., are labeled as s, d, p, f, g, . . .. For each value of l, there are (2l+ 1)

eigenstates of ~l2. Taking into account spin-1
2
of the nucleons, the total degeneracy of the Nth

oscillator shell for identical nucleons is

N
∑

l=0 or 1

2(2l + 1) = (N + 1)(N + 2) . (2.18)

Every oscillator shell possesses either even or odd l, therefore the parity of the shell is respec-
tively either even or odd.

The number of nucleons in each shell predicted by Eq.(2.18) does not match with experi-
mental magic numbers. Mayer [54] and Jensen et al. [55] introduced a spin-orbit coupling term

Uls(r) = f(r)
(

~l · ~s
)

, (2.19)

in Eq.(2.10). The orbital angular momentum operator is ~l and the spin operator of a nucleon
is denoted as ~s; and the radial function can be evaluated as [64]

f(r) = −Vls
∂

∂r
V (r) . (2.20)

Vls is a strength constant, and V (r) is the chosen mean potential. The spin-orbit term peaks
at the nuclear surface because the nuclear density changes most rapidly at the surface.
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2.1. Nuclear Shell Model

The Hamiltonian h0 can be rewritten in spherical coordinates with the added spin-orbit
coupling term

h0 = −
~
2

2MN

d2

dr2
+

~
2

2MNr2
l(l + 1) +

1

2
MNω

2r2 + f(r)
(

~l · ~s
)

. (2.21)

Fig. 2.6 shows degeneracies of different orbits obtained from UHO(r), UWS(r), and UWS(r) +

Uls(r) potentials. Let us remark that adding a centrifugal term to the HO potential, g(r)(~l ·~l),
results in a splitting of the harmonic oscillator orbitals according to different values of l, similar
to that given by the WS potential.

In an orbital angular momentum and spin coupled form, the single-nucleon wave functions
are

φnlsjm(~r, ~s,~t) =
Rnl(r)

r

[

Yl(θ, ϕ)⊗ χ 1
2
(~s)
](j)

m

=
Rnl(r)

r

∑

mlms

(

lml
1

2
ms

∣

∣

∣

∣

jm

)

Ylml
(θ, ϕ)χ 1

2
ms
,

(2.22)

where s is the intrinsic spin (s = 1
2
), and ms is its projection on the z-axis, χ 1

2
ms

is the spin-1
2

spinor, the
(

lml
1
2
ms

∣

∣ jm
)

are Clebsch-Gordan coefficients, and ~j = ~l + ~s is conserved.

The Pauli exclusion principle requires that only one nucleon can be in a specific quantum
state. The quantized spherical mean potential enables us to label a nucleon state by quantum
numbers n, l, j,mj . We can differentiate those orbits by using the z component of j, namely
mj (or jz); and for every j, it generates 2j + 1 magnetic substates. In other words, an orbit
of j in a quantized spherical mean potential has 2j + 1 degenerate substates. However, in the
absence of spin-orbit interaction, states with j = l ± 1

2
are degenerate.

The spin-orbit potential Eq.(2.19) removes the degeneracy inherent to the WS potential or
HO plus centrifugal term potential, according to the values of the total angular momentum
j = l± 1

2
. For example, for the orbit “1f7/2” the integer “1” is the number of nodes plus one; the

character “f” is the notation of l, here, l = 3; and the half-integer “7/2” represents the value of
j. The energy splitting caused by the spin-orbit potential is approximately proportional to l,
c.f. Eq.(2.19). For larger l, the spin-orbit splitting effect is more pronounced.

The single-particle level structure shown in the right column in Fig. 2.6 represents groups
of close lying states (orbits), called shells, separated by larger energy gaps.

The existence of shells and shell gaps gives rise to the magic numbers discussed above. A
neutron (proton) closed shell is formed if all orbits in the given shell are fully occupied by
neutrons (protons). The number of neutrons (protons) in each closed shell is given by the sum
of occupations of individual orbital, comprising the shell. Magic numbers predicted by the right
column in Fig. 2.6 perfectly agree with the experimental magic numbers, c.f. Fig. 2.7.
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0s1/2

0p1/2

0p3/2

0d3/2

0d5/2

1s1/2

0f7/2

1p3/2

1p1/2
0f5/2

0g9/2

1d5/2

1d3/2
2s1/2

0g7/2

0h11/2

0h9/2

1f7/2

1f5/2

2p3/2

2p1/2
1i 13/2

1i 11/2
1g9/2

Figure 2.6: Approximate sequence of single-nucleon states.
(a) The single-nucleon energies described by UHO(r) as a function of the oscillator quantum number N ;
(b) A schematic plot of the single-nucleon energies produced by a Woods-Saxon potential UWS(r);
(c) Level splittings caused by the spin-orbit coupling term are schematically shown;
(d) The degeneracies of the number Nj = 2j + 1 of identical nucleons in each shell;
(e) The spectroscopic notation of the single-nucleon quantum numbers n, l, and j;
(f) The parity of each shell;
(g) The magic numbers are shown to be equal to the subtotals of the number of nucleons at the energy gaps.
Adapted from Ref. [63].

Nuclei having closed proton and neutron shells are called closed-shell nuclei, e.g., 16
8 O8 and

40
20Ca20. Nuclei with partially occupied shells are called open-shell nuclei. A partially occupied
shell is called valence shell.

In a closed shell, a nucleon occupying one of the orbits cannot move to another orbit of the
closed shell because of the Pauli exclusion principle since all orbits are fully occupied. However,
nucleons from a closed shell can be excited to the next partially occupied shell, creating holes
in the closed shell. These excitations are called particle-hole excitations.
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2.1. Nuclear Shell Model

Figure 2.7: The protons’ and neutrons’ single-nucleon spectra.
Magic numbers are shown at the left side (first column). Splitting due to harmonic oscillator potential
UHO(r) plus a centrifugal term is illustrated in the second column. Degeneracies due to the spin-orbit term
Uls(r) are at the right side of each level scheme. Adapted from Ref. [65].

For heavy nuclei, a shell-model calculation assumes a closed shell that is inert, and looks
for degrees of freedom in valence shells; or all shells are considered, and looks for degrees of
freedom in all shells. The latter approach is named as no-core shell model [66].

However, for no-core shell model framework, only for very light nuclei shell model calcu-
lations can be performed for all A nucleons in little truncated model space (including many
HO shells). At present, light nuclei, such as 13

6 C7 and
16
8 O8 are still calculated with important
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Chapter 2. Nuclear Shell Model and the Construction of Isospin Non-Conserving Hamiltonian

truncation [66].

For many-nucleon systems, shell-model calculations are performed only for valence nucleons
situated in a valence shell beyond the closed-shell core, which is assumed to be inert, and do
not take into account higher-lying unoccupied orbitals (excluded space). Sometimes, in the
calculations within two major oscillator shells, cross-shell particle-hole excitations can be taken
into account.

In the present work, we focus on the sd-shell space which consists of the 0d5/2, 1s1/2, and 0d3/2
valence orbitals, and we assume that the 0s1/2, 0p3/2, and 0p1/2 shells are closed, so that there
are no particle-hole excitations from the lower shells. Furthermore, we assume that the valence
nucleons will not be promoted to the higher pf -shell space which consists of 0f7/2, 1p3/2, 0f5/2,
and 1p1/2. The nucleons are confined to the sd-shell space, therefore, only positive-parity levels
are considered in an sd-shell space calculation. The valence space defined in such a way is
named as model space. The inert core is represented as a vacuum state, |0〉.

Including the spin-orbit term, c.f. Eq.(2.21), the radial wave functions are solutions of the
following second-order differential equation

− ~
2

2MN
R′′(r) +

~
2

2MN

l(l + 1)

r2
R(r) + [U(r)R(r) + alsf(r)]R(r) = ǫR(r) , (2.23)

which contains dependence on j via als, the expectation value of the (~l · ~s) operator in a state
with definite l, s, and j quantum numbers:

als =
1

2
[j(j + 1)− l(l + 1)− s(s+ 1)] =

{

1
2
l , for j = l + 1

2
,

−1
2
(l + 1) , for j = l − 1

2
.

(2.24)

Now, we explicitly give the full single-nucleon wave functions, including their isospin repre-
sentation,

φnlsjm,ttz(~r, ~s,~t) =
Rnlj(r)

r

[

Yl(θ, ϕ)⊗ χ 1
2
(~s)
](j)

m
Θ 1

2
tz

=
Rnlj(r)

r

∑

mlms

(

lml
1

2
ms

∣

∣

∣

∣

jm

)

Ylml
(θ, ϕ)χ 1

2
ms
Θ 1

2
tz ,

(2.25)

where Θ 1
2
tz is the isospinor, and it resembles proton and neutron states in Eq.(1.2)

Θ 1
2
,− 1

2
≡ |p〉 =

(

0
1

)

, Θ 1
2
, 1
2
≡ |n〉 =

(

1
0

)

. (2.26)
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2.1.1 The Eigenvalue Problem

Many-nucleon states, which form the basis to diagonalize the residual interaction Hresidual,
are constructed from the single-nucleon wave functions shown in Eq.(2.25). Two methods are
used to construct basis states, namely the m-scheme and J(T )-coupled methods. In the present
work, we employ the m-scheme. Its brief description is given below, whereas the explanation
of J(T )-coupled method is provided in Refs. [57, 63].

The basis in the shell model is given by the many-body Slater determinants:

Φϑ(~r1, ~r2, . . . , ~rA) = Φϑ1,ϑ2,...,ϑA(~r1, ~r2, . . . , ~rA) =
1√
A!

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

φϑ1(~r1) φϑ1(~r2) . . . φϑ1(~rA)
φϑ2(~r1) φϑ2(~r2) . . . φϑ2(~rA)
· ·
· ·
· ·
· ·

φϑA(~r1) φϑA(~r2) . . . φϑA(~rA)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (2.27)

where ϑi represents the set of quantum numbers ni, li, ji, mi, and ϑ denotes a set of single-
nucleon configurations {ϑ1, ϑ2, . . . , ϑA}. Thus, the basis states are given by normalized and
antisymmetrized products of A single-nucleon wave functions φnlsjm,ttz(~r, ~s,~t). Slater determi-
nants in Eq.(2.27) can be characterized by a definite value of M :

M =
A
∑

i=1

mi . (2.28)

To solve the Schrödinger equation for H = H0 +Hresidual, we calculate the matrix elements
of the Hamiltonian in the basis of many-body states, which are eigenfunctions of the eigen-
equation for an independent-nucleon Hamiltonian H0, and diagonalize it to get the eigenvalues
and eigenvectors (coefficients of linear expansion of the eigenstates in terms of basis states). The
Hamiltonian H0 in Eq.(2.21) is rotationally invariant in space (and isospace). Therefore, the Jz
and J are conserved for all eigenstates. In practice, it is preferable before the calculation of the
Hamiltonian matrix to project all basis states onto states with good total angular momentum
J (and isospin T ). We will label the projected basis states as [Φ(~r1, ~r2, . . . , ~rA)]JT,k where
k = 1, . . . , d; d is the number of different basis states with the same J and T (the dimension
of the model space). [Φ]JT,k is constructed from the Slater determinants where particles are
distributed among a fixed set of single-particle orbitals n, l, j. [Φ]JT,k is the eigenfunction of H0

with eigenvalue (E0)JT,k given by a sum of single-nucleon energies expressed as

(E0)JT,k =

A
∑

i=1

ǫi . (2.29)

The eigen-energies (E0)JT,k correspond to [Φϑ(~r1, ~r2, . . . , ~rA)]JT,k. To shorten the notation, we
will omit J and T , and refer to the set of [Φ(~r1, ~r2, . . . , ~rA)]JT,k as |Φk〉. To find the set of
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Chapter 2. Nuclear Shell Model and the Construction of Isospin Non-Conserving Hamiltonian

eigenstates of the complete Hamiltonian H , |Ψp〉,

H |Ψp〉 = Ep |Ψp〉 , (2.30)

we express |Ψp〉 in terms of basis functions,

|Ψp〉 =
d
∑

k=1

akp |Φk〉 , (2.31)

with the normalization condition

d
∑

k=1

a2kp = 1 , p = 1, . . . , d . (2.32)

Substituting Eq.(2.31) into equation Eq.(2.30), we get

(H0 +Hresidual)

d
∑

k=1

akp |Φk〉 = Ep

d
∑

k=1

akp |Φk〉 . (2.33)

Multiplying this equation from the left-hand side by |Φk′〉 and making use of the orthonormality
of the basis functions |Φk〉, we get a system of equations

d
∑

k=1

Hk′kakp = Epak′p , (2.34)

where the matrix elements of the Hamiltonian H are

Hk′k ≡ 〈Φk′|H |Φk〉 = (E0)kδk′k + 〈Φk′ |Hresidual |Φk〉 . (2.35)

The second term at the right-hand side of Eq.(2.35) are the matrix elements of the two-body
interaction between many-body Slater determinants or two-body matrix elements (TBME’s).
They can be expressed in terms of the matrix elements between two-nucleon states.

To obtain the eigenvalues Ep and the coefficients akp, we have to diagonalize the matrix
Hk′k. As the basis is orthogonal and normalized, the eigenvectors of different eigenvalues must
be orthogonal and can be normalized in such a way that

d
∑

k=1

akpakp′ = δpp′ for Ep 6= Ep′ . (2.36)

If Ep = Ep′, but p 6= p′, the corresponding eigenvectors Ψp and Ψp′ can be made orthonormal
by some orthogonalization procedure.

There are a number of different numerical algorithms for matrix diagonalization, e.g. the
Jacobi method for small matrices (d ≤ 50), the Householder method for matrices with 50 ≤
d ≤ 200, the Lanczos method for dimensions d ≥ 200 and for giant matrices [48].
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The dimension of the configuration space in m-scheme is proportional to the product of
two combinatorial numbers of Np active protons in the model space of total occupation Ωp =
∑

jp
(2jp+1) and Nn active neutrons in the model space of total occupation Ωn =

∑

jn
(2jn+1),

(

Ωp
Np

)(

Ωn
Nn

)

. (2.37)

Therefore, if the number of nucleons and the total occupation of a model space increase, the
dimensions of the matrices drastically increase to a colossal size. This is the reason why,
presently, with actual computing power, only light nuclei can be described by the no-core shell
model [66]. For heavier nuclei, we assume that the closed shell is inert, and we take all allowed
configurations of Np valence protons and Nn valence neutrons in the valence space.

For the present work, we treat 16
8 O8 as an inert core and define 0d5/2, 1s1/2, and 0d3/2 as

valence shells, the orbits lying energetically higher than the valence space, i.e., 0f7/2, 1p3/2, 0f5/2,
1p1/2 and above, are always kept free, however, part of the low-lying excitations of valence
nucleons to those free orbits, as well as core excitations, should be effectively incorporated in
the residual interaction. Then, taking 29

14Si15 as an example, the numbers of valence protons
and neutrons are 6 and 7, respectively. The dimension of the configuration space for 29

14Si15 is
(

12
6

)(

12
7

)

= 924× 792 = 731808 . (2.38)

2.2 Large Scale Shell Model Calculations

A few very powerful computer programs which incorporate the m-scheme for large-scale
shell-model calculations have been developed recently in the world. Among them are AN-
TOINE by Caurier and Nowacki [67], OXBASH by Brown et al. [68], NuShell by Rae [69],
MSHELL by Mizusaki [70], REDSTICK by Ormand and Johnson [71] for no-core shell model,
the Oslo code [72], etc. The technical problem of SM is to diagonalize an enormous matrix with
limited computer memory. Great efforts have been made to develop algorithms to improve the
performance of SM codes. At present, only ANTOINE and MSHELL can handle giant matrices
up to one billion dimension. The diagonalization is performed by the Lanczos algorithm.

We have used ANTOINE to carry out the diagonalization in this work. The description of
ANTOINE is briefly given below.

ANTOINE was written based on the idea of Glasgow group [73]. Each Slater determinant
is represented by a word of integers, every bit of the word corresponds to a given single-nucleon
state |nljm; ttz〉. Every bit has a binary value to indicate whether the state is occupied or
empty. A two-body operator a†ϑa

†
ηaβaα will search the word having the bits ϑ, η, β, α in the

configuration 0011 and change it to the new word of 1100. The generated new word will be
placed in the lists of all the words by the bi-section method.
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In ANTOINE, a further improvement on Glasgow code has been implemented as given
below. We simplify the notation for Slater determinants for protons and neutrons in a given
model space as

[Φπϑ]Mpi
≡
[

Φπϑ(~r1, ~r2, . . . , ~rNp)
]

Mpi

,

[Φνϑ]Mnj
≡ [Φνϑ(~r1, ~r2, . . . , ~rNn)]Mnj

,

respectively. i is the running index for proton blocks of Slater determinants having the same
Mp, and j is for neutron blocks of Slater determinants having the same Mn. In the m-scheme,
the total M is

M =Mpi +Mnj
. (2.39)

Hence, [Φπϑ]Mpi
and [Φνϑ]Mnj

will only be selected if their respective Mp and Mn fulfill Eq.(2.39).

Then, we obtain a basis state which is the product of the selected Slater determinants of protons
and neutrons,

|I〉 = [Φπϑ]Mpi
· [Φνϑ]Mnj

(2.40)

with I = 1, 2, 3, . . .. We take the example shown in Fig. 2.8, and all proton and neutron Slater
determinants are grouped according to their respective Mp and Mn. There are 7 proton Slater
determinants in the“Mp”block, whereas the“Mn”block contains 2 neutron Slater determinants.
If we run a loop on [Φπϑ]Mpi

in the Mp block, and then on [Φ
ν
ϑ]Mnj

in the Mn block, the proton

Slater determinant i = 1 is associated with the neutron Slater determinant j = 1 and j = 2 to
form states labeled as I = 1 and I = 2. Next, the proton Slater determinant i = 2 is associated
with the neutron Slater determinant j = 1 and j = 2 to form states labeled as I = 3 and I = 4.
After the first loop finishes, we obtain I = 1, 2, 3, 4, . . . , 14, for the first block (Mp,Mn). Then
the second loop will run on the “Mp+1” and “Mn− 1” blocks. States I = 15, 16, 17, . . . , 26 will
be generated for the second block (Mp+1,Mn−1). After the third loop finishes, eventually, we
obtain states I = 1, 2, 3, . . . , 38, for blocks (Mp,Mn), (Mp + 1,Mn − 1), and (Mp + 2,Mn − 2).

(a a )

(a a )

Mp Mp + 1 Mp + 2

Mn
Mn - 1 Mn - 2

[ ]Mp1
[ ]Mp2

[ ]Mp3
[ ]Mp4

[ ]Mp5
[ ]Mp6

[ ]Mp7
[ ]Mp8

[ ]Mp9
[ ]Mp10

[ ]Mp11
[ ]Mp12

[ ]Mp13
[ ]Mp14

... (Jz)p

[ ]Mn1
[ ]Mn2

[ ]Mn3
[ ]Mn4

[ ]Mn5
[ ]Mn6

[ ]Mn7
[ ]Mn8

[ ]Mn9
... (Jz)n

Figure 2.8: Schematic representation of the shell-model basis of m-scheme.
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Then, we numerically construct an array R(i) as

I = R(i) + j . (2.41)

For the example shown in Fig. 2.8, we have

for the first block: (Mp,Mn)

1 = R(1) + 1 ,

2 = R(1) + 2 ,

3 = R(2) + 1 ,

. . . ,

. . . ,

. . . ,

14 = R(7) + 2 ,

for the second block: (Mp + 1,Mn − 1)

15 = R(8) + 3 ,

16 = R(8) + 4 ,

17 = R(8) + 5 ,

18 = R(9) + 3 ,

. . . ,

. . . ,

. . . ,

26 = R(11) + 5 ,

for the third block: (Mp + 2,Mn − 2)

27 = R(12) + 6 ,

28 = R(12) + 7 ,

29 = R(12) + 8 ,

30 = R(12) + 9 ,

. . . ,

. . . ,

. . . ,

38 = R(14) + 9 ,

(2.42)

With i, j, and R(i), we obtain I. For proton-proton and neutron-neutron matrix elements,
all (R(i), R(i′), 〈i|H |i′〉) and (j, j′, 〈j|H |j′〉) are precalculated and stored. In the Lanczos
algorithm, a loop on i and j will produce all the proton-proton and neutron-neutron matrix
elements, (I, I ′, 〈I|H |I ′〉).
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2.3 Second Quantization

We rewrite the Hamiltonian H of Eq.(2.33) in second quantization (occupation number)
formalism. Suppose that a fermionic creation operator a†ϑ and an annihilation operator aϑ,
creates and annihilates a single-nucleon state |ϑ〉 ≡ |n, l, j,m, ttz〉,

|ϑ〉 = a†ϑ |0〉 , (2.43)

|0〉 = aϑ |ϑ〉 , (2.44)

respectively. Following the previous discussion, we treat closed shells as the vacuum states. aϑ

is the Hermitian conjugate of a†ϑ, aϑ =
(

a†ϑ

)†

. These creation and annihilation operators obey

the anti-commutation relations,

{

a†ϑ, aη

}

= a†ϑaη + aηa
†
ϑ = δϑη , (2.45)

{

a†ϑ, a
†
η

}

= {aϑ, aη} = 0 . (2.46)

The coordinate representation of the single-nucleon state ϑ is
〈

~r, ~s,~t
∣

∣ ϑ
〉

≡ φϑ(~r). Then an
A-nucleon antisymmetric state is given by

|ϑ1, ϑ2, . . . , ϑA〉 = a†ϑAa
†
ϑA−1

a†ϑA−2
. . . a†ϑ2a

†
ϑ1
|0〉 . (2.47)

Using the second quantization formalism,H0 and the residual interactionHresidual in Eq.(2.33)
(or Eq.(2.7)) are represented by a symmetric one-body operator

Ô =
A
∑

i=1

Ô(~ri) ; (2.48)

and a symmetric two-body operator

T̂ =

A
∑

i<j

T̂ (~ri, ~rj) , (2.49)

respectively. These operators act on a system of A identical fermions. Ô is described by its
matrix elements between one-body states

〈ϑ| Ô |η〉 =
∫

φ∗ϑ(~r)Ô(~ri)φη(~r)d~r ; (2.50)

whereas T̂ is described by its matrix elements between normalized and anti-symmetric two-body
states

〈ϑη| T̂ |αβ〉 =
∫

φ∗ϑ(~r1)φ
∗
η(~r2)T̂ (~r1, ~r2)

(

1− P̂12

)

φα(~r1)φβ(~r2)d~r1d~r2 , (2.51)
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with P̂12 an exchange operator. Then the one-body operator and the two-body operator can
be written in the second-quantized form as

Ô =
∑

ϑη

〈ϑ| Ô |η〉 a†ϑaη , and (2.52)

T̂ =
1

4

∑

ϑηαβ

〈ϑη| T̂ |αβ〉a†ϑa†ηaβaα , (2.53)

respectively. The factor 1
4
is inserted to avoid four-fold counting. The shell-model Hamiltonian

in Eq.(2.33) is rewritten in the second-quantization formalism as

Ĥ =
∑

ϑη

〈ϑ| Ô |η〉 a†ϑaη +
1

4

∑

ϑη

〈ϑη| V̂ |αβ〉a†ϑa†ηaβaα , (2.54)

or compactly as

Ĥ =
∑

ϑ

ǫϑa
†
ϑaϑ +

1

4

∑

ϑηαβ

Vϑηαβa
†
ϑa
†
ηaβaα . (2.55)

2.4 Residual Interaction

The residual interaction is the NN interaction in the nuclear medium. The general assump-
tions on the nature of the NN potential include

• nucleons are non-relativistic particles and their substructure does not play the role in NN
potential;

• nucleons interact through a potential;

• and only two-body effects are considered.

Generally, there are three approaches to obtain the effective shell-model interactions (residual
interaction):

(a) schematic interactions with a few parameters fitted to experimental data, with a local
descriptive power only;

(b) microscopic interactions derived from the NN experimental data via a renormalization
procedure (G-matrix [74, 75, 76, 77, 78] or Vlow−k plus corrections for the model-space
restriction [79]);

(c) empirical interactions (fitted to the experimental data).
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2.4.1 Schematic Interactions

Schematic interactions are parametrized functions of nucleon coordinates. These functions
are used to calculate all TBME’s in a given model space

Vijkl;JT ≡ 〈ij; JT | V̂ (1, 2) |kl; JT 〉 , (2.56)

here i ≡ ni, li, ji represents quantum numbers of a nucleon state. For instance, an interaction
between two nucleons can be a zero-range (δ-type)

V̂ (1, 2) = V0δ(~r1 − ~r2)(1 + α~σ1 · ~σ2) , (2.57)

where V0 and α are the two parameters governing the schematic interaction. These two param-
eters are adjusted to reproduce low-energy spectra of a few given neighboring nuclei. These
parameters may be different from one region of the nuclear chart to another.

Another example is the pairing interaction between alike nucleons. For a constant pairing
force, it is defined as an extra attraction between pairs of nucleons coupled to J = 0, T = 1,
which results in TBME’s that are non-zero for

〈ii; 01| V̂pairing(1, 2) |kk; 01〉 = −(−1)li+lk
1

2
G
√

(2ji + 1)(2jk + 1) , (2.58)

where G is the strength, and zero matrix elements otherwise.

The other example is the quadrupole-quadrupole interaction, which is necessary for the
proton-neutron part, to describe rotation of deformed nuclei. This is a λ = 2 component of the
general (proton-neutron) multipole-multipole interaction (a separable interaction) of the type

V̂ (1, 2) =
∑

λ

χλ(Qλ ·Qλ) =
∑

λ

χλr
λ
πr

λ
νYλ(Ωπ) · Yλ(Ων) , (2.59)

Schematic interactions are simple to handle, but their predictions (parameters) are only valid
for a small region in the nuclear chart.

2.4.2 Microscopic Interactions

For many years, microscopic interactions were based on the so-called G-matrix, which is a
scattering matrix for two nucleons in a nuclear medium [74, 75, 76] . G-matrix appears as a
solution of the Bethe-Goldstone equation [80]

Ĝ(ω) = V̂ + V̂
Q̂2p

(ω − Ĥ(0)2p)
Ĝ(ω) , (2.60)

where Ĥ(0)2p is an unperturbed Hamiltonian of the intermediate two-particle system, the Pauli

operator Q̂2p produces a non-vanishing result only if it acts on a pair of particles, both of
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which are above the Fermi level. The parameter ω represents the starting energy at which G-
matrix is evaluated. It is considered as a softer interaction compared to the bare NN potential.
Evaluations of the G-matrix for finite nuclei can be found in Refs. [76, 77]. As a second step,
the G-matrix is used to calculate the effective interaction for the model space to be used in the
shell-model calculations

V̂eff = Ĝ+ Ĝ
Q̂′

(Ev − Ĥ(0)v)
V̂eff

= Ĝ+ Ĝ
Q̂′

(Ev − Ĥ(0)v)
Ĝ+ Ĝ

Q̂′

(Ev − Ĥ(0)v)
Ĝ

Q̂′

(Ev − Ĥ(0)v)
Ĝ+ . . . , (2.61)

where the prime on the projection operator Q̂′ indicates that the ladder diagrams are excluded.
Thus the effective interaction is given as a perturbation expansion in orders of G. The leading-
order term in this expression is given by the G-matrix itself. Calculations for finite nuclei in
valence spaces show the necessity to go beyond leading order, taking into account higher-order
terms, such as core polarization and so on, see Ref. [78]. More details and the current status can
be found in Ref. [76]. In spite of much progress in the development of techniques to get Veff ,
numerical evaluation of Eq.(2.61) is very complicated. In addition, it is not clear whether the
series converges, i.e. whether a next-order term in the expansion is smaller than the previous
one. It is very difficult to go beyond the second-order term in perturbation and it is hard to
incorporate three-nucleon interactions.

Recently, a new approach to get a soft interaction has been developed. The high-momentum
component of the bare NN-interaction is integrated out down to a given cut-off momentum Λ
within the renormalization group approach, resulting in a so-called Vlow−k [79]. For a cut-off
Λ ∼2.1 fm−1, low-momentum interactions derived from different bare NN potentials are very
similar to each other. The soft interaction brings promising results in studies of nuclear matter
properties. It is possible to incorporate three-body forces provided by effective-field theory
potentials [81, 82, 83, 84, 85], very important for application in nuclear spectroscopy within the
shell-model approach.

To be applied in shell-model calculations for heavy nuclei in a given valence space, core-
polarization and other diagrams should be added to Vlow−k. For first applications within the
shell model see [86] and references therein. Up to now, a microscopic interaction based on
the G-matrix or on Vlow−k, derived from the bare two-nucleon potential, leads to a reasonable
description of nuclei with two or a few valence nucleons beyond a closed-shell core in a one-
oscillator shell valence space. As soon as the model space increases, the agreement deteriorates.
A possible reason is the absence of many-body forces, in particular, the lack of a three-body
force. As shown in systematic analyses, it is always mainly the monopole part of the interaction
which requires modification [87]. This is why, to arrive at a successful description, microscop-
ically obtained TBME’s are subjected to an adjustment to known experimental data in the
model space. This can be performed either by minimal monopole changes [87, 88, 89], or by a
least-square fit to all TBME’s [90, 91] of which the fitting procedure is illustrated in the next
section.
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2.4.3 Empirical Interactions

The descriptive and predictive power of these interactions is very high (see [48] for numerous
examples). Practically, empirical corrections can be imposed to the two-body matrix elements
Vijkl,JT of Hresidual in a given model space. All TBME’s and single-particle energies (SPEs)
are treated as free parameters. The diagonalization of 〈Φk′ |H |Φk〉, c.f. Eq.(2.35), produces
the eigen-energies which are represented by linear combinations of these parameters with the
coefficients being scalar two-body transition densities and occupation numbers. Therefore,
the TBME’s can be iteratively fitted by a least-squares method to reproduce experimental
low-energy spectra of nuclei from the model space. The iterations stop when convergence for
the final set of Vijkl,JT and SPEs is reached. To reach convergence, we may employ the linear
combination method [91, 92], which chooses the most important linear combinations of TBME’s
to be determined in a least-squares fit. Fig. 2.9 displays the iteration of this fitting procedure.
The interactions obtained by this method describe the experimental data very accurately. The
SPEs are typically taken from the experimental spectra of the closed-shell-core plus a valence
nucleon. However, if the number of valence shells of the given model space increases, the number
of free parameters grows drastically. Therefore, a microscopic effective interaction serves as a
starting point to get a good empirical interaction.

Figure 2.9: The procedure to deduce the best set of TBME’s Vijkl,JT .
Vijkl,JT are fitted to experimental excitation energies (and electromagnetic properties) in a given model
space using an iterative least-squares fit. Adapted from Ref. [63].

The universal-(1s0d) interaction (USD) proposed by Wildenthal and Brown [92] for the
sd-shell model space is a good example which accurately reproduces low-lying excited levels
and transition probabilities. It consists of 63 TBMEs and 3 SPEs. The starting values of
the TBME’s are taken from those calculated by the G-matrix interaction of Kuo [93]. Other
examples are the (0p)-shell interaction of Cohen and Kurath [94], which comprises 15 TBME’s
and 2 SPEs; and the (1p0f)-shell GXPF1 interaction [50, 90], which have 195 TBME’s and 4
SPEs.

We use the USD interaction and its recent variations, i.e., USDA and USDB [49], for the
present work.
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2.5 Construction Formalism of Isospin Non-Conserving Hamil-

tonian

In this section we develop the formalism to construct realistic isospin-nonconserving (INC)
Hamiltonians for the shell-model calculations of high precision.

As we introduced in the previous section, the shell-model Hamiltonian is given by SPEs
εi, and TBME’s of the residual interaction in the harmonic oscillator basis. We suppose that
proton-proton, neutron-neutron and proton-neutron matrix elements may all be different. Sim-
ilarly, proton and neutron SPEs are not the same. The goal is to find an interaction which
describes well both nuclear structure and the splitting of isobaric multiplets of states.

In principle, charge-dependent effective interaction may be derived microscopically from
the bare charge-dependent NN force (e.g., CD-Bonn potential) by applying a renormalization
technique [76, 79]. However, such interactions, obtained from a two-body potential only, should
still be adjusted, in particular, to get correct monopole properties [48, 87]. This is done by
a least-squares fit of the monopole part of the Hamiltonian or of the whole set of TBME’s to
experimental data. Since the number of the matrix elements is huge, it is not feasible for the
moment to get a realistic charge-dependent effective interaction in this way.

An alternative approach to the problem is first to get a reliable effective shell-model in-
teraction in the isospin-symmetric formalism adjusted to describe experimental ground- and
excited-state energies, and then to add a small charge-dependent part within the perturbation
theory, and to constrain its parameters to experimental data. Diagonalization of the total INC
Hamiltonian in the harmonic oscillator basis will lead to isospin mixing.

In the sd-shell model space (consisting of 0d5/2, 1s1/2, and 0d3/2 orbitals), the most precise
isospin-conserving Hamiltonian, which is denoted below asH0, is either the USD interaction [92]
or its two more recent versions — USDA or USDB [49]. First, we obtain its eigenvalues and
eigenvectors:

H0|α, T, Tz〉 ≡ (H0 + V0)|α, T, Tz〉 = E(α, T )|α, T, Tz〉 .

E(α, T ) is independent from Tz. H0 is the independent-particle harmonic oscillator Hamiltonian
which defines the (isoscalar) single-particle energies ε(0) = (εpi + εni )/2, and V0 are TBME’s in
sd shell.

Then, we construct a realistic isospin-symmetry violating term to get the total INC Hamil-
tonian. In general, we consider a charge-dependent interaction, which includes the Coulomb
interaction acting between (valence) protons, and also charge-dependent forces of nuclear origin.
The Coulomb interaction reads

Vcoul(r) =
e2

r
, (2.62)
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while the charge-dependent nuclear forces are represented in this work either by a scaled T = 1
component of the isospin-conserving interaction V T=1

0 or by a linear combination of Yukawa-
type potentials:

Vπ(r) =
exp (µπr)

µπr
,

Vρ(r) =
exp (µρr)

µρr
, (2.63)

where µπ = 0.7 fm−1 and µρ = 3.9 fm−1, corresponding to the exchange of pion or ρ-meson,
respectively, and r being the relative distance between two interacting nucleons. The Coulomb
interaction contributes only to the proton-proton matrix elements, while the charge-dependent
nuclear forces may contribute to all nucleon-nucleon channels. Thus, we can express the charge-
dependent part of the two-body interaction as

V = V pp + V nn + V np = λcoulVcoul(r) +
∑

q=pp,nn,pn

(

λqπV
q
π (r) + λqρV

q
ρ (r) + λq0V

q
0

)

, (2.64)

where V0 denotes V
T=1
0 , while λcoul, λ

q
π, λ

q
ρ, λ

q
0 are strength parameters characterizing the contri-

bution of charge-dependent forces. These parameters can be established by a fit to experimental
data.

The two-body charge-dependent interaction V in Eq.(2.64) can alternatively be decomposed
in terms of tensors of ranks 0, 1, and 2 in isospin space, i.e.

V = V (0) + V (1) + V (2) ,

where the two-body matrix elements are related to those in proton-neutron formalism by the
following relations:

V
(0)
ijkl,J =

1
3

(

V pp
ijkl,J + V nn

ijkl,J + V
pn(T=1)
ijkl,J

)

,

V
(1)
ijkl,J = V pp

ijkl,J − V nn
ijkl,J ,

V
(2)
ijkl,J = V pp

ijkl,J + V nn
ijkl,J − 2V

pn(T=1)
ijkl,J .

(2.65)

In addition, the charge-dependent Hamiltonian may contain a one-body term, H1b
CD. We

define it to have a pure isovector character and thus it gives rise to the isovector single-particle
energies (ISPE’s), defined as ε

(1)
i = εpi − εni , to account for the Coulomb effects in the core

nucleus. Thus, the most general charge-dependent part of the effective Hamiltonian reads

HCD = H1b
CD + V .

The charge-dependent part of the effective interaction is well known to be small and to
be mainly of two-body type. The shift of isobaric multiplets due to the presence of charge-
dependent Hamiltonian, HCD, in the lowest order of the perturbation theory is given by its
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expectation value in the states having good isospin: 〈α, T, Tz|HCD|α, T, Tz〉. Application of the
Wigner-Eckart theorem leads to the following expression similar to that discussed in the first
chapter for the Coulomb interaction alone:

〈α, T, Tz|HCD|α, T, Tz〉 = E(0)(α, T ) +E(1)(α, T )Tz +E(2)(α, T )
[

3T 2
z − T (T + 1)

]

, (2.66)

where the isoscalar part contributes only to the overall shifts of the multiplet, the isovector
part and ISPE’s (ε

(1)
i ) results in E(1)(α, T ), while the isotensor part is the only contributor to

E(2)(α, T ). The latter two terms lead to isospin-symmetry violation which includes the splitting
of the isobaric multiplet and to the isospin mixing in the states.

Since only the isovector and isotensor part of HCD could lead to isospin-symmetry violation,
we will be interested in these two terms only. Futhermore, in the fit of nuclear TBME’s in the
isospin-symmetric formalism, part of the isoscalar Coulomb term has been taken into account
by an empirical correction to the experimental binding energies (see [49] and references therein).
Therefore, we add the isospin-conserving Hamiltonian with a charge-dependent Hamiltonian,
which contains isovector (iv) and isotensor (it) terms only, namely,

H iv+it
CD =

∑

q=1,2

(

λ
(q)
coulV

(q)
coul(r) + λ(q)π V (q)

π (r) + λ(q)ρ V (q)
ρ (r) + λ

(q)
0 V

(q)
0

)

+
∑

i

ε
(1)
i

=
∑

ν

λ(q)ν V (q)
ν +

∑

i

ε
(1)
i , (2.67)

where q now denotes the isotensor rank of the operators and labels the corresponding strength
parameter, while the indice ν is used to list all separate terms.

The isovector E(1)(α, T ) and isotensor E(2)(α, T ) contributions to the expectation value of
H iv+it
CD (orHCD), can be either extracted from the energy shift due to the isovector V (1) (orH1b

CD)
and isotensor V (2) parts of the charge-dependent Hamiltonian, respectively, or from calculations
of the energy shifts of all multiplet members. Following the latter method, we represent the
TBME’s of Vν in terms of the proton-proton matrix elements only and then we calculate its
expectation value in each state of the multiplet Eν(α, T, Tz) = 〈α, T, Tz|Vν |α, T, Tz〉. Then, the
isovector and isotensor contributions to a given multiplet of states are respectively expressed
as

E(1)
ν (α, T ) =

3

T (T + 1)(2T + 1)

T
∑

Tz=−T

(−Tz)Eν(α, T, Tz) ,

E(2)
ν (α, T ) =

5

T (T + 1)(2T − 1)(2T + 1)(2T + 3)

T
∑

Tz=−T

[

3T 2
z − T (T + 1)

]

Eν(α, T, Tz) .

(2.68)

Summing over all contributions to the HCD, we get theoretical IMME b and c coefficients of
the quadratic IMME Eq.(1.26) as

bth(α, T ) =
∑

ν

λ
(1)
ν E

(1)
ν (α, T ) ,

cth(α, T ) = 3
∑

ν

λ
(2)
ν E

(2)
ν (α, T ) .

(2.69)
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ISPE’s are only included into the expression for bth values. Fitted b and c coefficients are
presented in Appendix B.

To find the best strengths λ
(q)
ν , we have performed a least-squares fit of theoretical bth and

cthcoefficients to experimental IMME b and c coefficients : bexpi ±σi (i = 1, . . . , Nb) and c
exp
j ±σj

(j = 1, . . . , Nc). Implying that they have a Gaussian distribution, we have minimised the χ2

deviation (e.g., for b coefficients):

χ2 =

Nb
∑

i=1

(bexpi − bthi )
2

σ2
i

, (2.70)

with respect to the parameters λ
(1)
ν , i.e.

∂χ2

∂λ
(1)
ν

=
∂

∂λ
(1)
ν

Nb
∑

i=1

(bexpi − bthi )
2

σ2
i

= 0 , (2.71)

which has lead us to a system of linear equations for λ
(1)
ν :

Nb
∑

i=1

[

E
(1)
µi b

exp
i

σ2
i

−
∑

ν

λ
(1)
ν E

(1)
νi E

(1)
µi

σ2
i

]

= 0. (2.72)

In matrix form, this system looks like

ΛW = Q or
∑

ΛνWνµ = Qµ , (2.73)

with

Λν = λ(1)ν ,

Wνµ =

Nb
∑

i=1

E
(1)
νi E

(1)
µi

σ2
i

,

Qµ =

Nb
∑

i=1

E
(1)
µi b

exp
i

σ2
i

. (2.74)

Since theoretical b and c coefficients are linear functions of unknown parameters λ
(q)
ν in Eq.(2.69),

the fitting procedure is reduced to solving linear equations. Solution of these equations with
respect to Λ results in the set of the most optimal strength parameters λ

(1)
ν :

Λ = QW−1 . (2.75)

To get uncertainties of the strength parameters found, we evaluate the root mean-square
(rms) deviation from the error matrix W−1 as

∆λ(1)ν =

√

〈(λ(1)ν − λ
(1)
ν )2〉 =

√

(W−1)νν . (2.76)
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A similar procedure holds for the adjustment of c coefficients.

After adjusting the interaction, we solve the eigenproblem for a thus constructed INC Hamil-
tonian in the proton-neutron formalism: [HINC , T ] 6= 0:

HINC |αp, αn〉 ≡ (H +H iv+it
CD )|αp, αn〉 = E|αp, αn〉 .

As a result, the Hamiltonian eigenstates do not possess good isospin quantum number anymore
and thus are mixtures of different T values.

2.5.1 TBME’s of the Coulomb and Yukawa-type potentials

Harmonic oscillator parameter

The TBME’s of the Coulomb and Yukawa-type potentials Eq.(2.62) and Eq.(2.63), used
to calculate the energy shifts, were evaluated using the harmonic-oscillator wave functions for
mass A = 39 and the subsequent scaling

S(A) =

(

~ω(A)

~ω(A0 = 39)

)1/2

. (2.77)

The scaling factor incorporates the A-dependence of the TBME’s. In Ref. [30], ~ω was taken
in its most commonly used parameterization expressed by the Blomqvist-Molinari formula [95]:

~ω(A) = 45A−1/3 − 25A−2/3; (2.78)

For the sd shell, an additional scaling factor was imposed (see Eq.(3.7) in Ref. [30]) to improve
the agreement with the data at the beginning and at the end of the sd shell.

However, recent empirical values of ~ω, derived from updated experimental nuclear charge
radii in Ref. [96], differ significantly from the values predicted by Ormand and Brown in Ref. [30],
especially in the middle of the sd shell, not considered in Ref. [30]. The comparison is shown in
Fig. 2.10. Some improvement is reached by a recent global parametrization of the Blomqvist-
Molinari formula for the whole nuclear chart (A = 1, . . . , 248) performed by Kirson [97].

However, none of these approaches resulted in sufficiently low root-mean-square (rms) de-
viation values in our fit for b and c coefficients. This may be due to the fact that all proposed
parameterizations for ~ω values in the sd shell are not close to the values extracted from exper-
imental nuclear charge radii. To overcome this difficulty, in this work we scaled the TBME’s
as given by Eq.(2.77), using however directly experimentally-based values for ~ω values in sd
shell, mentioned above and shown in Fig. 2.10. The ISPE’s were also evaluated for A = 39 and
then scaled as given by Eq.(2.77).
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Figure 2.10: Harmonic-oscillator energy spacing, ~ω.
Blomqvist-Molinari formula [95] (solid black line), Blomqvist-Molinari formula refitted by Kirson [97] (dashed
red line), ~ω calculated by using ~ω = ~

2/(mb2) and ~
2/m = 41.458 MeV fm2 Ref. [97] and measured nuclear

charge radii from [96] (black dots). In present work, we refitted ~ω from A = 18, . . . , 39 based on the formalism
of [97] (red triangles), and the refitted ~ω values are very close to [97] until they coincide with black dots.
Obviously, parameterized ~ω with an additional factor from Eq. 3.7 in [30] deviates from the recently adopted
experimental values (double-dot-dashed blue line).

Short-range correlations

Since the TBME’s of Coulomb or meson-exchange potentials are calculated by using harmonic-
oscillator wave functions in a restricted model space, it is important to account for the presence
of SRC’s. We have carefully studied this issue by two different methods. First, the Jastrow-type
correlation function, which modifies the relative part of the harmonic oscillator basis, φnl(r), to

φ′nl(r) = [1 + f(r)]φnl(r) ,

(2.79)

with f(r) being parametrized as

f(r) = −γe−αr2
(

1− βr2
)

. (2.80)
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Then the radial part of the TBME’s of the Coulomb and of Yukawa type potentials between
the modified harmonic-oscillator wave functions φ′nl(r) and φ

′
n′l(r) becomes

∞
∫

0

φ′nl(r)v(r)φ
′
n′l(r)dr =

∞
∫

0

φnl(r)v(r) [1 + f(r)]2 φn′l(r)dr . (2.81)

We used three different sets of parameters α, β and γ in Eq.(2.80): those given by Miller and
Spencer [98] and two alternative sets recently proposed on the basis of coupled-cluster studies
with Argonne (AV18) and CD-Bonn potentials [53] (see Table 2.1). For brevity, we will refer
to the two latter sets as CD-Bonn and AV18.

Table 2.1: Parameters for Jastrow-type short-range correlation functions.

α β γ

Miller-Spencer 1.10 0.68 1.00
CD-Bonn 1.52 1.88 0.46
Argonne-V18 1.59 1.45 0.92

Besides, we have also used another renormalization scheme following the unitary correlation
operator method (UCOM) [99]. Since we need to correct only central operators, the UCOM
reduces to application of central correlators only, i.e. the radial matrix elements are of the form

∞
∫

0

φn′l(r)v (R+(r))φnl(r)dr , (2.82)

where two different R+(r) functions have been used in S = 0, T = 1 and S = 1, T = 1 channels,
namely,

RI
+(r) = r + α

(

r

β

)η

exp

[

− exp
(

r

β

)]

, (2.83)

with α = 1.3793 fm, β = 0.8853 fm, η = 0.3724 in S = 0, T = 1 channel, and

RII
+(r) = r + α

(

1− exp

(

− r
γ

))

exp

[

− exp
(

r

β

)]

, (2.84)

with α = 0.5665 fm, β = 1.3888 fm, γ = 0.1786 in S = 1, T = 1 channel [99].

The modifications of Vcoul and Vρ brought about by different approaches to the SRC issue
are shown in Fig. 2.11 and Fig. 2.12, respectively.

Although UCOM renormalization scheme differs from the Jastrow-type correlation func-
tions, we can easily notice that either of the R+(r) functions does not strongly affect the
original potentials. Somewhat stronger modifications are brought about by the CD-Bonn based
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parametrization. Miller-Spencer parameterization of the correlation function induces the high-
est suppression of the potentials at short distances and leads to the vanishing at r = 0. Similar
conclusions are reported in Ref. [100] in the context of the double-beta decay studies. Strong
modifications are clearly seen for AV18 as well.
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Figure 2.11: Vcoul(r) adjusted by different SRC’s.
Vcoul(r) without SRC (dotted black line), Vcoul(r) with proposed parameters for Jastrow type SRC on the
basis of coupled-cluster calculation with CD-Bonn (double-dashed red line) or with Argonne V18 [53] (solid
blue line), Vcoul(r) with Miller-Spencer parameterized Jastrow type SRC [98] (dashed purple line); Vcoul(R

I
+(r))

with UCOM SRC (dot-dashed green line), Vcoul(R
II
+ (r)) with UCOM SRC (double-dot-dashed brown line). The

inset enlarges the left-hand part of this figure.

To illustrate the effect from different approaches to the SRC on later results, we present
in Table 2.2 the ratios of the Coulomb expectation values in the ground and several low-
lying excited states of a few selected nuclei from the bottom, top and the middle of the sd
shell-model space, i.e. 18Ne (2 valence protons), 38K (2 proton holes), and 30S and 26Mg,
respectively. The second column of Table 2.2 contains absolute expectation values of the bare
Coulomb interaction, while the other columns show the ratios to it from Coulomb interaction
expectation values which include SRC.

It is seen that the Miller-Spencer approach to SRC quenches Coulomb matrix element (as
well as that of Yukawa ρ-exchange potential) and thus reduces Coulomb expectation values
more compared to other SRC schemes. Interestingly, the CD-Bonn parametrization and in
some cases the AV-18 parametrization show even a small increase of the Coulomb expectation
value.
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Figure 2.12: Vρ(r) adjusted by different SRC’s.
Vρ(r) without SRC (dotted black line), Vρ(r) with proposed parameters for Jastrow type SRC on the basis of
coupled-cluster calculation with CD-Bonn (double-dashed red line) or with Argonne V18 [53] (solid blue line),
Vρ(r) with Miller-Spencer parameterized Jastrow type SRC [98] (dashed purple line); Vρ(R

I
+(r)) with UCOM

SRC (dot-dashed green line), Vρ(R
II
+ (r)) with UCOM SRC (double-dot-dashed brown line). The inset enlarges

the left-hand part of this figure.

2.5.2 Remarks

The effect of quenching imposed by various SRC approaches on Coulomb matrix elements
(and on matrix elements of Yukawa ρ-exchange potential) are not very close to one another,
c.f. Fig. 2.11 and Fig. 2.12. However, the differences of the ratios of expectation values shown
in Table 2.2 from unity for Miller-Spencer, CD-Bonn, Argonne V18, and UCOM, are indeed
just 0.027, 0.008, 0.004, 0.014, respectively.

In order to verify the implication of various SRCs, we establish two methods in chapter 4.
First, we compare the root mean square deviation values produced from a shell-model fit with or
without an SRC approach. Besides, we also compare the average Coulomb strength parameters
affected by different SRC approaches.

The third method is to compare physical observables calculated by INC Hamiltonian (with
or without an SRC approach) with experimental ones. For example, the branching ratios of
isospin-forbidden proton emission. However, this work is reserved in perspective.
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Table 2.2: Ratios of Coulomb expectation values of 18Ne, 38K, 30S, 26Mg, pro-
duced from various SRC approaches to Coulomb evaluation without SRC.

〈ψ|Vcoulwithout SRC|ψ〉 〈ψ|Vcoulwith SRC|ψ 〉/〈ψ|Vcoulwithout SRC|ψ〉
(MeV) Miller-Spencer CD-Bonn Argonne V18 UCOM

Mass 18, 18Ne
0+ g.s. 0.531 0.900 1.008 0.978 0.958
2+ 0.449 0.961 1.010 0.997 0.981
4+ 0.389 0.984 1.007 1.001 0.991
0+ 0.412 0.952 1.005 0.990 0.979
2+ 0.380 0.993 1.006 1.003 0.994
0+ 0.425 0.980 1.011 1.004 0.987
Mass 38, 38K
0+ g.s. 16.402 0.986 1.007 1.003 0.991
2+ 16.316 0.986 1.007 1.003 0.992
Mass 30, 30S
0+ g.s. 10.721 0.984 1.007 1.002 0.990
2+ 10.696 0.985 1.007 1.002 0.991
2+ 10.704 0.985 1.007 1.002 0.991
1+ 10.632 0.987 1.007 1.003 0.992
Mass 26, 26Mg
0+ g.s. 2.518 0.967 1.008 0.998 0.984
2+ 2.480 0.974 1.008 1.000 0.986
2+ 2.491 0.972 1.008 0.999 0.986
0+ 2.491 0.972 1.008 0.999 0.986
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Chapter 3

Experimental Isobaric Multiplet Mass Equation

Coefficients

Contents
3.1 IMME Fitting Procedure

3.2 IMME b and c Coefficients

3.2.1 IMME b Coefficients

3.2.2 IMME c Coefficients

3.3 Tabulation of the IMME Coefficients

We have compiled a new set of isobaric multiplet mass equation (IMME) b and c coefficients
for 648 experimentally available T = 1/2, 1, 3/2, and 2 multiplets. Compared to the old com-
pilation [101], 218 new data points have been added, most of them for nuclei in the pf -shell.
The new compilation profits from the experimental advances in the spectroscopy of proton-
rich nuclei around the N = Z line, in particular those with very low production cross section.
Moreover, the progress in atomic mass measurements [102] lead to a considerable improvement
of the precision of ground state (g.s.) mass excess data for IMME multiplets. These improved
and new experimental data may help us to analyze the exchange symmetry between neutrons
and protons that is important for the nuclear structure at the vicinity of the N = Z line. In
this chapter, we present the fitting procedure and the resulting database of IMME coefficients
for nuclei with A = 1, 3, 5, 6, 7, . . . , 71, considering all experimentally identified multiplets.
Based on this new compilation, we analyze the correlation of IMME b and c coefficients, with
A

2
3 and A−

1
3 , respectively. Plots of these correlations show discontinuities at closed shells. The

b coefficients tend to increase with the average excitation energy Eexc of the multiplet.
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3.1 IMME Fitting Procedure

Recently, more experimental data of higher precision on nuclear mass excess and level
schemes have been accumulated for most of the N ≈ Z sd-shell nuclei. The recently ex-
tended experimental data enable us to revise the database of experimental IMME coefficients
used to adjust the isovector and isotensor strength parameters in the HCD, c.f. Eq.(2.67) of
chapter 2.

As the latest evaluation of experimental isobaric mass multiplet splittings by Britz et al. [101]
is already 13 years old, we have revised it and built up our own data base by incorporating all
recent mass measurements from the evaluation [103] (or some particular references) and from
experimental level schemes [104]. Some excited levels in Ref. [101] have been excluded from our
compilation because they disappeared from Ref. [104]. Only data for nuclei with experimentally
measured masses are adopted. This new set of compiled IMME a, b, c (and d, e) coefficients
is described below and is listed in Appendix A. It includes recent pf -shell space experimental
data points and will be published as Ref. [105]. The amount of newly added data points is
shown in Table 3.1.

Table 3.1: Comparison of the amount of old and new IMME multiplet data points

Isospin, T Number of data points
Present work Previous work [101]

1/2 (doublet) 334 289
1 (triplet) 127 109
3/2 (quartet) 23 26
2 (quintet) 7 6

We perform an error-weighted least-squares fit to the IMME Eq.(1.26) by considering the
experimental mass excesses and their error bars, M

exp
i ± σi, by assuming that they have a

Gaussian distribution, and by minimising the χ2 deviation, to find the best a, b, c; or a, b, c,
d; or a, b, c, e coefficients,

χ2 =
N
∑

i=1

(M exp
i −M IMME

i )2

σ2
i

, (3.1)

with respect to IMME coefficients,

∂χ2

∂κν
=

∂

∂κν

N
∑

i=1

(M exp
i −M IMME

i )2

σ2
i

= 0 , ν = 1, 2, · · · , 5. (3.2)

Here, κ1, κ2, . . . , κ5 correspond to the IMME coefficients a, b, c, d, and e; ν is the index of
coefficients to be fitted, i.e., ν = 1, 2, and 3 for quartets and quintets with a, b, and c coefficients;
whereas ν = 1, 2, 3, and 4 or 5 for quintets with a, b, c, d or e coefficients. The index i labels
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3.1. IMME Fitting Procedure

the members of a multiplet; N = 4 for quartets and N = 5 for quintets. Eq.(3.2) leads to a
system of linear equations for κν :

N
∑

i=1

[

TziM
exp
i

σ2
i

−
∑

ν

κνT
2
zi

σ2
i

]

= 0. (3.3)

Putting the linear equations into matrix form, one obtains

KX = Y or
∑

ν

KνXνµ = Yµ , (3.4)

with

Kν = κν , Xνµ =
N
∑

i=1

T 2
zi

σ2
i

, Yµ =
N
∑

i=1

TziM
exp
i

σ2
i

. (3.5)

As the IMME is a linear function of the unknown coefficients κν (a, b, c, . . . coefficients) in
Eq.(1.26), the fitting procedure is reduced to solving linear equations. Solution of these equa-
tions with respect to K results in the set of the optimized coefficients κν ,

K = Y X−1 . (3.6)

Error Estimate for the mass excess of excited states. The uncertainty of the mass
excess of excited states that appear in higher lying multiplets is obtained by combining the
uncertainty of the ground-state mass excess σA,Tz ,g.s. and the uncertainty of excitation energy
σA,Tz ,Jπ of the the excited state (e.s.)

σA,Tz ,Jπ =
√

σ2
A,Tz ,g.s.

+ σ2
A,Tz ,Jπ

. (3.7)

Uncertainties computed from Eq.(3.7) become the input to Eq.(3.1).

Error Estimate for Fitting Procedure. To get uncertainties of the fitted IMME coeffi-
cients, we evaluate the root mean-square deviation from the error matrix X−1 in Eq.(3.6) as

∆κν =
√

〈(κν − κν)2〉 =
√

(X−1)νν . (3.8)

The definition of average excitation energy. We may average the excitation energy, Eexc,
of a multiplet by defining the Eexc relative to the lowest-lying multiplet of the same T treated
as Eexc = 0. For example, the average excitation of the lowest-lying multiplet 5

2

+
of the quartet

A = 21 is set to zero. The average excitation of the next higher-lying multiplet, 1
2

+
, is

E 1
2

+ =
E( 1

2

+
, Tz=3/2) + E( 1

2

+
, Tz=1/2) + E( 1

2

+
, Tz=−1/2) + E( 1

2

+
, Tz=−3/2)

4

=
279.93 + 289.7 + 241 + 200

4
= 253 keV
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Chapter 3. Experimental Isobaric Multiplet Mass Equation Coefficients

3.2 IMME b and c Coefficients

The IMME is given in Eq.(1.26). We may rearrange the a, b, and c coefficients in Eq.(1.27)
as

a = M0 + E
(0)
coul − T (T + 1)E

(2)
coul , b = ∆nH −E

(1)
coul , c = 3E

(2)
coul , (3.9)

where E
(0)
coul, E

(1)
coul, and E

(2)
coul are respectively the expectation values of isoscalar, isovector, and

isotensor parts of the Coulomb interaction. They replace E
(q)
coul(α, T ) in Eq.(1.24) and Eq.(1.27).

The ingredients of this expression are the charge-free nuclear mass

M0 =
1

2
(Mn +MH)A+ (Mn −MH)Tz + 〈α, T, Tz|H0 |α, T, Tz〉 .

If we assume that the Coulomb interaction is the only contribution shifting the IAS of an
isobaric multiplet and treat a nucleus as a uniformly charged sphere of radius R = r0A

1/3, the
total Coulomb energy of a nucleus is given by

Ecoul =
3e2

5R
Z(Z − 1) =

3e2

5r0A
1
3

[

A

4
(A− 2) + (1− A)Tz + T 2

z

]

. (3.10)

This extremely simplified expression, Eq.(3.10), when put into the IMME, provides an estimate
of the IMME coefficients [22, 106]

a =
3e2

20r0

A(A− 2)

A
1
3

, b = −3e
2

5r0

(A− 1)

A
1
3

, c =
3e2

5r0

1

A
1
3

. (3.11)

A comparison of this crude estimation with experimental b and c coefficients is shown in Fig. 3.1
and Fig. 3.3, respectively.

Equation (3.9) shows that the expectation values of isovector and isotensor operators are
related to IMME b and c coefficients, respectively. To extract these two expectation values, we
need at least two Coulomb energy differences (CED)1 of the same A and T . In other words, an
extraction is still possible even when the nuclear mass excess data of the given multiplet are
not complete. However, we impose a more stringent principle, i.e., an isobaric multiplet will
only be adopted if every member’s nuclear mass excess has been measured. Using the extended
experimental data base, we have compiled more sets of complete isobaric multiplet, particularly
in pf -shell nuclei, and also have updated sd-shell nuclei isobaric multiplets, which are used to
deduce experimental expectation values of isovector and isotensor operators that will be used
later on for our fit of strength parameters in Eq.(2.67).

1 A Coulomb energy difference is the difference in excitation energy between excited IAS states. It is obtained
by normalizing the absolute binding energies of the ground states of all members of a given isobaric multiplet.
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3.2. IMME b and c Coefficients

3.2.1 IMME b Coefficients

Other than the relation of b with A2/3 and A−1/3 given in Eq.(3.11), we also consider the
expression [107]

b = −3e
2

5r0
A2/3 . (3.12)

The b coefficients in both Eq.(3.11) and Eq.(3.12) are deduced assuming a uniformly charged
sphere. The only difference between Eq.(3.12) and the b in Eq.(3.11) is that Z is neglected in the
term of Z(Z−1) in Eq.(3.10) in comparison to Z2, causing Z(Z−1) ≈ Z2. The plot of Eq.(3.12)
is added to Fig. 3.1, which depicts −b as a function of A2/3 for 491 multiplets. The crude
estimation of b coefficients from a uniformly charged sphere, Eq.(3.11) and Eq.(3.12), predicts
correctly the overall trend of the b coefficients. However, it underestimates the magnitude
of b by about ∼1 MeV. Bethe and Bacher [106] proposed that the effect of antisymmetrisation
should be considered instead of a purely classical estimation of the Coulomb energy in a nucleus.
Based on this idea, Sengupta calculated the Coulomb energy of mirror nuclei with A = 3, · · · , 39
using a statistical model [108]. Nolen and Schiffer wrote an extensive review on the calculation
of Coulomb energies. In their comparison of theoretical models, which included Sengupta’s
calculation, with experimental results, they showed that there is a reduction between 5% – 10%
in theoretical Coulomb energies of nuclei in p, sd and pf -shell spaces [109]. Therefore, instead
of the Coulomb interaction, the energy from non-Coulomb charge-dependent forces may fill the
gap between theoretical b coefficients and experimental ones.

The weighted fit (solid line) function of all b coefficients of all multiplets is
b = −691.39(±90)A2/3 + 1473.44(±95). Most of the lowest-lying multiplets’ b coefficients have
a lower error bar than the higher-lying multiplets’ b. Hence, the weighted fit line is closer to the
b coefficients of the lowest lying multiplets. However, the unweighted fit (dashed line) function,
b = −723.4A2/3 + 1927.9, presents a more even description of b coefficients. The discrepancy
between the weighted fit and the unweighted one shows that b coefficients tend to increase with
excitation energy for higher lying multiplets. The unweighted fit is less influenced by the few
low-A nuclei which have more precise measurements on nuclear mass and energy level schemes.
A method of systematically analyzing the behavior of b coefficients of doublets (Coulomb energy
difference) was given by Everling [110]. However, pursuing such analysis is beyond the scope
of this thesis.

Figure 3.2 presents b coefficients of the lowest-lying doublets of A = 1, · · · , 71, and the
lowest-lying quartets of A = 7, · · · , 41. We found that there are a few separately best fitted
lines in Fig. 3.2. Discontinuities of these fitted lines occur at the closed (p, sd, pf) shells at
A =4, 16, and 40. These shell effects are not described by the uniformly charged sphere
assumption. Such discontinuities were already noticed by Jänecke and were indicated in Fig. 2
of his Ref. [107]. In the present study, we find that there is a discontinuity at A = 56; it
points toward 0f7/2 subshell gap which was not indicated in Ref. [107]. Jänecke did not show
the discontinuity at A = 12, because his plot included the lowest-lying triplets in the fitted
line, and he fitted from the region of mass A = 5 to A = 15. Furthermore, we also find that
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there is a discontinuity for T = 3/2 quartets, which was not shown in Ref. [107] due to limited
experimental data.

One can notice small-amplitude oscillations of b coefficients about the fitted lines which can
be related to Coulomb pairing effects. The oscillatory behavior of b coefficients is explored in
chapter 5.

 0

 2000

 4000

 6000

 8000

 10000

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

-b
ex

p
 (

k
eV

)

A
2/3

Figure 3.1: The b coefficients as a function of A2/3 for all T = 1/2, 1, 3/2, 2 multiplets.
These b coefficients are obtained by fitting a quadratic IMME, c.f. Table A.2, A.3, A.4, and A.5 in Appendix A.
(Black) circles are doublets. Triplets are represented by down (red) triangles, whereas up (blue) circles are quar-
tets. Down (blue) triangles are quintets. A weighted fit to b coefficients, b = −691.39(±90)A2/3+1473.44(±95)
is displayed by solid line. Dashed line shows the unweighted fit to b coefficients, b = −723.4A2/3 + 1927.9.

(Black) dotted-dash line is b = 3e2(A−1)
5r0A1/3 . (Black) double-dotted-dash line is b = 3e2

5r0
A2/3.
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Figure 3.2: Plot of the lowest-lying doublets and quartets of −b coefficients as a function of A2/3.
These b coefficients are fitted according to the quadratic IMME. Up (red) triangles are doublets with 4n + 3;
whereas down (red) triangles are doublets with 4n + 1. Quartets with 4n + 1 are represented by filled (blue)
circles, and open (blue) circles are quartets with 4n + 3. (T = 1/2) doublets and (T = 3/2) quartets refer to
the left y-axis, and to the right y-axis, respectively. Unweighted fit within various shell spaces are depicted by
lines:
T = 1/2:
(Black) dotted-dash line, s shell space, b = −707.12A2/3 + 1489.5, A = 1, 3.
(Black) dotted-short-dash line, p shell space, b = −444.31A2/3 + 823.29, A = 5, 7, 9.
(Blue) double dotted-dash line, p shell space, b = −676.9A2/3 + 1416.8, A = 11, 13, 15.
(Red) solid lines, sd shell space, b = −756.1A2/3 + 2152.3, A = 17, 19, . . . , 39.
(Black) dashed line, f shell space, b = −824.51A2/3 + 3296.4, A = 41, 43, . . . , 55.
(Blue) dotted line, pf shell space, b = −592.77A2/3 − 94.754, A = 57, 59, . . . , 71.

T = 3/2:
(Blue) dotted-dash line, p shell space, b = −767.76A2/3 + 2167.6, A = 7, 9, 11, 13.
(Blue) solid lines, sd shell space, b = −744.76A2/3 + 2044.4, A = 17, 19, . . . , 37
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Figure 3.3: The c coefficients as a function of A−1/3 for all T = 1, 3/2, and 2 multiplets.
These c coefficients are fitted according to the quadratic IMME. (Red) up triangles are the lowest-lying
triplets, whereas (black) circles are higher-lying triplets. (Blue) down triangles are quartets, and (red)
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3.2.2 IMME c Coefficients

All experimental c coefficients are plotted in Fig. 3.3 as a function of A−1/3 together with a
straight line deduced from the idea of classical homogeneously charged sphere, Eq.(3.11). For
the lowest-lying triplets’ and quintets’ c coefficients, indicated as red triangles and red squares,
respectively, this classical assumption is roughly valid. However, higher-lying multiplets’ c
coefficients, mainly from triplets, do not show any trend related to A−1/3, c.f. Fig. 3.3.

We separately replot the lowest-lying triplets, quartets, and quintets in Fig. 3.4 and Fig. 3.5
as a function of A and A−1/3, respectively. The triplets’ c coefficients form two families for
A = 4n and A = 4n + 2. A staggering effect between these two families of triplets is clearly
visible. Quintets in the sd-shell space also show a small staggering behavior when they are
plotted as a function of A−1/3 in Fig. 3.5. However, this effect is not noticeably seen when
quintets are plotted as a function of A in Fig. 3.4. Quartets’ c coefficients do not exhibit
any staggering effect. The details and theoretical description of these effects can be found in
chapter 5.
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Figure 3.4: The c coefficients as a function of A for the lowest lying triplets, quartets, and quintets.
These c coefficients are fitted according to the quadratic IMME. (Red) squares in the upper figure are
the lowest-lying triplets, whereas (red) squares in the lower figure are the lowest-lying quintets. (Blue)
triangles are quartets. The solid (blue) line is c = −2A+ 273, which is an unweighted fit upon quintets of
A = 24, 28, 32, and 36.
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Figure 3.5: The c coefficients as a function of A−1/3 for the lowest-lying triplets, quartets, and quintets.
These c coefficients are fitted according to the quadratic IMME. (Red) squares in the upper figure are the
lowest-lying T = 1 triplets, whereas (red) squares in the lower figure are the lowest-lying T = 2 quintets. (Blue)
triangles are T = 3/2 quartets. The solid (blue) line is c = 643.852A−1/3 + 5.097, which is an unweighted fit to

the quintets of A = 20, 24, 28, 32, and 36. The dashed lines in the upper and the lower figures are c = 3e2
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3 .
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The sd-shell space quintet’s c coefficients exhibit a more pronounced linear proportional
relation to A−1/3 than A, c.f. Fig. 3.4 and Fig. 3.5. It is because they are more aligned to the
fitted line, c = 643.9A−1/3 + 5.097 in Fig. 3.5, and this fitted line is close to the dashed line,
which is the expression of c in Eq.(3.11). Overall, this crude estimation fairly predicts the trend
of c coefficients of the lowest-lying triplets and quintets.

The updated experimental data shows that the plot of A = 8 triplet in Fig. 3.4 and Fig. 3.5
is different from Fig. 3 in Ref. [107]. This anomaly of the A = 8 triplet in our plots is due to
strong isospin mixing of T = 0 and T = 1 states in 8Be.

3.3 Tabulation of the IMME Coefficients

All IMME coefficients are tabulated in Appendix A. Table A.2 lists the a and b coefficients
for all T = 1/2 doublets in p, sd, and pf shells. There is no c coefficient for a doublet. Table A.3
presents the b and c coefficients for T = 1 triplets. The IMME least-squares fit indicates that
the a coefficient is equal to the mass excess of the Tz = 0 nucleus, hence a coefficients are listed
in column seven.

Table A.4 shows the a, b, and c coefficients deduced from the quadratic IMME fit to T = 3/2
quartets. A non-zero d coefficient plays a key role to indicate an IMME beyond the quadratic
form, they are listed as well in the last column. If first-order perturbation theory is insufficient
to account for the charge dependence of the interaction or if isospin mixing of nearby states
causes the isospin impurity of quartets and quintets, a non-zero d of ≈1 keV [111] would be a
signature. For instance, the lowest-lying d coefficient for the A = 32 quintet is 0.89± 0.22 keV.
All masses of this A = 32 quintet were measured with high precision [112]. However, most of the
d coefficients of quartets are larger than 1 keV (from ∼2 keV to ∼100 keV), c.f. Fig. 3.6. These
values are one to two orders higher than the theoretical prediction. More precise measurements
of the mass excess and of excited levels may be required to verify these high d coefficients.

Table A.5 lists the fitted IMME coefficients for experimentally available T = 2 quintets.
The table include results of IMME fits where cubic and/or quartic terms are considered. From
the normalized χ2 value of quadratic IMME fit for A = 8 (quintet), there is a strong indication
for the need of the cubic term. This quintet has the smallest A of all known quintets, but it
has the highest d value. It may be due to non-perturbative effect which is caused by the less
tightly bound nature and small Coulomb barriers of those states [113].
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Figure 3.6: The d coefficients as a function of A for all quartets and quintets.
These d coefficients are fitted according to the cubic IMME. (Blue) circles and (red) squares are d coefficients
of the lowest-lying quartets and quintets, respectively; whereas (blue) triangles are d of higher-lying quartets,
c.f. Table A.4 and A.5 in Appendix A.
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“To see a world in a grain of sand,

And a heaven in a wild flower,

Hold infinity in the palm of your hand,

And eternity in an hour.”

《《《Auguries of Innocence》》》
William Blake (1757-1827).
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Chapter 4

Fit of INC Hamiltonian to Experimental b and c
Coefficients

Contents
4.1 Fitting procedure

4.1.1 Experimental data base of b and c coefficients

4.1.2 Selected Data Range for b and c coefficients

4.2 Results of the Fit of INC Hamiltonian to Experimental b and c
Coefficients

4.2.1 INC Hamiltonian and Coulomb strength

4.2.2 Root Mean Square Deviation Values and Strength Parameters

4.3 Remarks

In this chapter we present the results of the fit of the theoretical b and c coefficients of
the IMME to the experimentally deduced b and c coefficients for sd-shell nuclei, which allowed
us to find the best set of the parameters Eq.(2.67) of the charge-dependent part of the shell-
model Hamiltonian. We found that the parameters are quite sensitive to the isospin-invariant
interaction, to the composition of the charge-dependent Hamiltonian and to the approach of
SRC’s, as well as to the number of data points selected.

In the first section we describe the fitting procedure and the experimental data selection.
In the second section we discuss the results of the fit (the values of parameters) and explore
their physical meaning.
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Chapter 4. Fit of INC Hamiltonian to Experimental b and c Coefficients

4.1 Fitting procedure

We have followed the fitting strategy proposed in Ref. [30]. First, we construct theoretical
b and c coefficients described in Eq.(2.69) by using properly obtained INC Hamiltonian, as
described in the previous section (using experimentally based ~ω and accounting for the SRC
by one of the approaches mentioned in chapter 2). Then, we separately fit theoretical b and c
coefficients to newly compiled experimental b and c coefficients to get the most optimal values
of λ

(1)
ν and λ

(2)
ν , respectively. The isovector and isotensor Coulomb strengths obtained in both

fits are averaged (λcoul = (λ
(1)
coul + λ

(2)
coul)/2) and are kept constant. We assume here that the

isovector and isotensor Coulomb strengths are equal. Then the rest of the strength parameters
are refitted with this fixed Coulomb strength.

In order to verify our method, we performed a direct comparison with the results of Ref. [30].
We have followed their setting exactly by adopting the experimental values from Table 51 of
Ref. [30], the parameterization of the ~ω and the scaling factors (see Eqs. (3.5) –(3.7) of Ref. [30])
for TBME’s of V and ISPE’s, as well as the Jastrow-type function to account for the SRC effects
of Miller and Spencer [98]2. In Ref. [30], selected experimental data only consisted of the bottom
(A = 18 − 22) and the top (A = 34 − 39) of sd-shell space and included 42 experimental b
coefficients and 26 experimental c coefficients. We have also imposed certain truncations on
calculations for A = 22 and A = 34, as was done in that work [30]. In this way, we have
successfully reproduced the strength parameters given in TABLE 2 of Ref. [30].

For curiosity, besides the USD interaction, we have also tested USDA and USDB [49],
keeping the setting of Ormand and Brown, but skipping their truncations for masses 22 and
34. The newly found strength parameters are summarized in Table 4.1. The uncertainties on
the strength parameters have been deduced from Eq.(3.8). They are significantly smaller than
the values published in Ref. [30] due to the fact that the authors used some folding with the
rms deviation [114]. It is remarkable that there is not much difference between different nuclear
interactions for the small data set and all strength parameters are in agreement with the range
of values found by Ormand and Brown (uncertainties included).

4.1.1 Experimental data base of b and c coefficients

In the present study an extended and updated experimental data base is used where all
the latest relevant experimental mass measurements and excited states have been taken into
account in the fit. As we aim to have a global parameterization, we include all the newly
compiled lowest-lying IMME multiplets and all available isobaric doublets (T = 1/2), triplets
(T = 1), quartets (T = 3/2) and quintets (T = 2) for masses between A = 18 and A = 39,
which are well described by the sd-shell model, c.f. chapter 3 and Appendix A.

1 In Table 5 of Ref. [30], the experimental values of the b coefficients for A = 18 (2+, T = 1) and A = 20
(3+, T = 1) should be 3.785 MeV and 4.197 MeV, respectively. 2 In Ref. [30], however, a [1 + f(r)] factor
required in Eq.(2.81) was used without being squared.

76



4.2. Results of the Fit of INC Hamiltonian to Experimental b and c Coefficients

Table 4.1: Fitted strength parametersa to experimental values used in Ref. [30].

USD USDA USDB

rms (keV): b coefficients 23.3 30.0 27.3
rms (keV): c coefficients 6.9 8.9 8.9

λcoul 1.0109 (1) 1.0234 (2) 1.0210 (2)

λ
(1)
0 × 100 -1.5336 (60) -1.3311 (64) -1.5193 (64)

λ
(2)
0 × 100 -4.5291 (162) -5.0809 (171) -4.8639 (167)

ε
(1)
0d5/2 3.4028 (2) 3.4014 (2) 3.3983 (2)

ε
(1)
0d3/2 3.3118 (6) 3.2668 (6) 3.2736 (6)

ε
(1)
0s1/2 3.2622 (5) 3.2751 (5) 3.2703 (5)

a All strength parameters are given in the unit of MeV.

4.1.2 Selected Data Range for b and c coefficients

In this work we have used three different ranges of data in a full sd-shell model space.

• Range I. It includes all ground states (g.s.) and a few low-lying excited states throughout
the sd-shell (note that the middle of sd-shell was not considered in Ref. [30]). This range
consists of 81 b coefficients and 51 c coefficients. Only excited states with the discrepancy
between the energy calculated by the isospin-symmetry invariant Hamiltonians (USD,
USDA, and USDB) and experimental excitation energy below ∼200 keV are included.

• Range II. It represents an extension of Range I, which includes more excited states. It
contains 26 more T = 1/2 doublets, an additional triplet and an additional quartet of
states resulting in 107 b coefficients and 53 c coefficients.

• Range III. The widest range, which tops up Range II with 32 more excited states from
25 doublets, 6 triplets, and an additional quartet, resulting altogether in 139 b coefficients
and 60 c coefficients.

These three ranges of selected experimental data points are the same for each fit with either
USD, or USDA, or USDB interactions. They are presented and discussed in the section below.

4.2 Results of the Fit of INC Hamiltonian to Experimental

b and c Coefficients

All calculations have been performed in a full (untruncated and from A = 18 to A = 39)
sd shell. The TBME’s of schematic interactions (Coulomb and meson exchange) have been
evaluated for A = 39 and scaled using experimentally obtained ~ω. The fit procedure is stated
in section 4.1.
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Chapter 4. Fit of INC Hamiltonian to Experimental b and c Coefficients

4.2.1 INC Hamiltonian and Coulomb strength

We have tested five different combinations of INC forces: (i) Vcoul, (ii) Vcoul and Vπ, (iii) Vcoul
and Vρ, (iv) Vcoul and V0. The main criterium for the choice of the best Hamiltonian structure
was the value of the rms and the value of the Coulomb strength. It turned out that almost all
combinations gave similar rms values (within 2 keV). However, on the basis of the Coulomb
strength parameter we could make a selection. We suppose here that the Coulomb strength
should be close to unity. Indeed, higher-order Coulomb effects which are not taken into account
here may be responsible for some deviations of the Coulomb strength from unity. However, we
suppose that this may be within 1-2% and any stronger renormalization (5% or more) should
be avoided.

The Coulomb strengths from various combinations of the INC Hamiltonians are summarized
in Fig. 4.1, Fig. 4.2, and Fig. 4.3. The calculations correspond to the USD, USDA, and USDB
interactions, respectively, and a fit to the data from Range I, Range II, and Range III, while
all approaches to the SRC were taken into account. The figures show that USD, USDA, and
USDB, with three data selections, produce similar trends and results.

First, using the Coulomb interaction as only source of the isospin-symmetry breaking force
produces a reasonable value of the isovector strength (around 1.00), but the isotensor strength
largerly deviates from unity (up to 1.19). This is the manifestation of the so-called Nolen-
Schiffer anomaly first evidenced in T = 1/2 mirror energy shifts [109], and later also found
in T = 1 displacement energies (c.f. Ref. [115] and references therein). We find that the
Coulomb potential alone satisfactorily describes the mirror energy differences, possibly due
to the fact that the Coulomb effects of the core are taken into account through empirical
ISPE’s (established by the fit as well). However, the Coulomb force alone does not reproduce
experimental isotensor shifts. The average Coulomb strength, λcoul is therefore larger than
unity (around 1.10) and results in an rms deviation for b coefficients of between 65 – 85 keV

(after averaging λ
(1)
coul and λ

(2)
coul) and an rms deviation for c coefficients of around 22 keV, c.f.

Table 4.2. Since the sd-shell model wave functions include configuration mixing fully within
0~ω model space, this may be evidence of the necessity for the charge-dependent forces of
nuclear origin.

Table 4.2: Fitted strength parametersa for Coulomb as an only source of the ISB force.

USD
without SRC Miller-Spencer CD-Bonn Argonne V18 UCOM

rms (keV): b coefficientsb 64.9 85.5 64.8 70.6 72.6
rms (keV): c coefficients 19.8 26.1 19.7 21.4 22.2

λcoul 1.077 1.116 1.070 1.082 1.095

ε
(1)
0d5/2

3.228 3.208 3.228 3.223 3.221

ε
(1)
0d3/2

3.047 2.941 3.044 3.014 3.008

ε
(1)
0s1/2

3.281 3.279 3.281 3.281 3.280

a All strength parameters are presented in 4 significant figures and in the unit of MeV.
b Before averaging λ

(1)
coul and λ

(1)
coul, the rms deviations for b coefficients are around 36 keV.
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Figure 4.1: Average Coulomb strength parameter, λcoul, obtained from the fit with the USD interaction to
the Range I, Range II, and Range III data.

(i) The λcoul of the fit with Vcoul alone are represented by down (blue) triangles.
(ii) The λcoul obtained from the fit with Vcoul and Vπ combination are depicted by (purple) circles.
(iii) The λcoul fitted from Vcoul and Vρ combination are shown by up (black) triangles.
(iv) The λcoul of the fit with Vcoul and V0 combination are displayed as (red) squares.
The y-axis tic labels: 1, “without SRC”; 2, Miller-Spencer; 3, CD-Bonn; 4, AV-18; 5, UCOM.
Please see section 4.1.2 for the description of data range.
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Figure 4.2: Average Coulomb strength parameter, λcoul, obtained from the fit with the USDA interaction to
the Range I, Range II, and Range III data.

Please refer to Fig. 4.1 for further descriptions.
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Figure 4.3: Average Coulomb strength parameter, λcoul, obtained from the fit with the USDB interaction to
the Range I, Range II, and Range III data.

Please refer to Fig. 4.1 for further descriptions.

Next, it turns out that the Coulomb interaction combined with the pion-exchange potential
Vπ also requires a strong renormalization of the Coulomb strength. This was noticed already by
Ormand and Brown in Ref. [30]. The Coulomb strength reduces to about 0.8 for Miller-Spencer
parametrization of the Jastrow function and to around 0.9 − 0.95 for other SRC approaches.
Due to these reasons, we do not use pion exchange as an INC nuclear force model in this work.

A better fit is provided by the exchange of a more massive meson, e.g. ρ-meson. Following
theoretical studies [116, 117, 118], we use in the present work an 85% reduction in the mass of
ρ-meson. A better agreement with the exchange of a meson heavier than the pion meson may
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Chapter 4. Fit of INC Hamiltonian to Experimental b and c Coefficients

signify a shorter range of a charge-dependent force of nuclear origin.

We confirm also the conclusion of Ref. [30] that a combination of the pion and ρ-meson
exchange potential to model nuclear charge-dependent forces does not allow one to improve
the value of the rms deviation. This is why we present here strength parameters only for two
combinations of the ISB forces from the list above, namely, (iii) Vcoul and Vρ and (iv) Vcoul
and V0. The resulting rms deviations based on these two combinations and the corresponding
Coulomb strengths are indeed rather close, in agreement with the conclusion of Ref. [30]. We
discuss both cases in the next section.

4.2.2 Root Mean Square Deviation Values and Strength Parameters

Table 4.3 gives an overview of strength parameters for two types of INC Hamiltonian: (iii)
Vcoul and Vρ (columns 3,5,7) and (iv) Vcoul and V0 (columns 2,4,6). Calculations have been
performed for the USD, USDA, and USDB nuclear Hamiltonians and for each of the three data
ranges. All four approaches to SRC (Jastrow type function with three different parametrizations
or UCOM) from section 2.5.1 have been tested and the intervals of parameter variations are
indicated in the table.

As seen from Table 4.3, the rms deviation changes little for various types of the SRC (within
1 keV) and for both INC Hamiltonians.

The rms deviation turns out to depend mainly on the number of data point used in a fit.
It is remarkable that although Range I contains almost twice the number of data points of
Ref. [30], the rms deviation increases only by ∼ 5 keV. Overall, the rms deviation of Range II

is ∼30% higher compared to Range I, while the rms deviation value for Range III is about
twice as large as that of Range I. It should also be remembered that low-lying states calculated
with the isospin-conserving USD/USDA/USDB interactions are in general in better agreement
with experiment than high-lying states.

We notice that the USD interaction always produces slightly lower rms deviations than
USDB and USDA. This happens even in the fits to Range III data, although the USD was
adjusted to a smaller set of excited levels as compared to the later versions USDA and USDB.

Variations in the values of the parameters indicated in each entry of the table are due to the
different SRC approaches. In general, a narrower range of values of a parameter corresponds to
a higher strength of this parameter. The most crucial role is played by the Coulomb potential
as it is the major contribution to isobaric mass splittings. The Coulomb strength can be slightly
greater or less than unity for different combinations of ISB forces.

To reduce the discrepancy of the Coulomb strength from unity, the strengths of the charge-
dependent forces of nuclear origin, λ

(q)
ν 6=coul, are adjusted in the fit to patch up their contributions

to theoretical isobaric mass splittings led to match with experimental isobaric mass splittings.
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4.2. Results of the Fit of INC Hamiltonian to Experimental b and c Coefficients

We keep the isovector and isotensor strengths of the charge-dependent forces of nuclear origin
as two independent parameters.

Vcoul and V0 combination. These combinations almost always produce the lowest rms devi-
ations for b and c coefficients. Fitted to the smallest range of data, the isovector and isoten-
sor strengths of the nuclear isospin-violating contribution represent about 0.7–1.7% and 2.9
– 4.2%, respectively, of the original isospin-conserving sd interaction. We notice that the
charge-asymmetric part of the interaction increases in a fit to the Range III data, amounting
to 2.3–3.2% of the nuclear interaction.

The Miller-Spencer parameterization and UCOM SRC schemes quench the Coulomb ex-
pectation values more than the AV-18 and CD-Bonn parameterizations (see Table 2.2 as an
example). This is why the highest values of λcoul in columns 2, 4, and 6 belong to UCOM SRC
and λcoul of Miller-Spencer parameterization SRC are very close to them. At the same time,
those parameterizations result in the most negative values of λ

(q)
0 in columns 2, 4, and 6 to

compensate for the Coulomb effect.

Vcoul and Vρ combination. For the combination of the Coulomb and Yukawa ρ-exchange type
potentials as the isospin-symmetry breaking forces, it should be noted that typical expectation
values of Vρ are about 3 to 4 orders of magnitude smaller than the expectation values of Vcoul.
Therefore, small variations in the Coulomb strength (of the order of 1-2%) require a factor

of up to 20 variation in the corresponding strength λ
(q)
ρ (e.g., ranging from 5 to 102 MeV for

an isovector ρ-exchange strength with USD interaction in Range I of the data selection). So,
the ρ-exchange potential strength is very sensitive to the SRC procedure. The lowest λcoul
and, therefore, the highest absolute λ

(q)
ρ in columns 3, 5, and 7 belong to the Miller-Spencer

parameterization SRC. The lowest absolute λ
(q)
ρ in Range III are from SRC with the CD-Bonn

parameterization. The highest values of the λcoul and, thus, closest to unity, are for the CD-
Bonn and UCOM SRC schemes for the three ranges of data (see also Fig. 4.1).

We also notice an increase of the isovector parameter λ
(1)
ρ in a fit to the Range III data.

Regarding the ISPE’s, their values stay consistent within certain intervals. Amazingly, the
value of ε

(1)
0d5/2 stays almost constant, without showing any dependence on the particular SRC

approach, because most probably, it is the orbital which is most constrained by the data. At the
same time, the value of ε

(1)
0d3/2 depends somewhat on the SRC procedure. The highest value in

column 2 always corresponds to the Miller-Spencer parameterization. The value of ε
(1)
0d3/2 stays

constant for the Vcoul and Vρ combination, but changes slightly for the Vcoul and V0 combination.
As a general trend we notice a reduction of the values of ISPE’s when we increase a number of
data points in a fit.

The values of parameters given in Table 4.3 lie outside the intervals obtained by Ormand
and Brown who considered the Vcoul and V0 combination. In particular, we get systematically
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Chapter 4. Fit of INC Hamiltonian to Experimental b and c Coefficients

lower values of the isotensor strength parameter λ
(2)
0 , as well as a lower values of ε

(1)
0d5/2, even for

the Range I of data. The inclusion of nuclei from the middle of the sd-shell space, combined
with the latest experimental data and with the newly developed approaches to SRC allowed
us to construct a set of high-precision isospin-violating Hamiltonians in the full sd-shell model
space. The applications of this result will be discussed in the next chapters.

Table 4.3: Various combinations of INC potential and their strength parametersa.

Data Range USD USDA USDB
Vcoul Vcoul Vcoul Vcoul Vcoul Vcoul
V0 Vρ V0 Vρ V0 Vρ

Range Ib

rms (keV): b coefficients ∼34.4 ∼35.3 ∼37.5 ∼37.2 ∼36.5 ∼36.5
rms (keV): c coefficients ∼9.0 ∼10.5 ∼10.2 ∼10.8 ∼9.6 ∼10.6

λcoul 1.005 - 1.015 0.9847 - 1.003 1.007 - 1.016 0.9864 - 1.005 1.008 - 1.017 0.9855 - 1.003

λ
(1)
0 × 100 -1.520 - -0.7174 — -1.691 - -0.7714 — -1.743 - -0.8625 —

λ
(2)
0 × 100 -3.871 - -2.631 — -4.225 - -2.904 — -4.126 - -2.847 —

−λ
(1)
ρ — 7.536 - 102.1 — 1.258 - 81.81 — 3.546 - 90.25

λ
(2)
ρ — 48.26 - 209.2 — 50.79 - 216.3 — 50.88 - 216.2

ε
(1)
0d5/2

3.277 - 3.278 3.288 - 3.290 3.269 - 3.272 3.290 - 3.293 3.264 - 3.269 3.287 - 3.290

ε
(1)
0d3/2

3.279 - 3.304 3.287 - 3.295 3.271 - 3.298 3.293 - 3.308 3.265 - 3.288 3.289 - 3.300

ε
(1)
0s1/2

3.356 - 3.377 3.369 - 3.372 3.359 - 3.368 3.386 - 3.395 3.356 - 3.378 3.383 - 3.388

Range IIb

rms (keV): b coefficients ∼45.3 ∼46.9 ∼47.7 ∼48.7 ∼46.7 ∼48.2
rms (keV): c coefficients ∼9.1 ∼10.4 ∼10.2 ∼10.8 ∼9.6 ∼10.5

λcoul 1.006 - 1.016 0.9902 - 1.005 1.008 - 1.017 0.9829 - 1.007 1.008 - 1.018 1.006 - 1.016

λ
(1)
0 × 100 -1.496 - -1.175 — -2.083 - -1.158 — -2.209 - -1.325 —

λ
(2)
0 × 100 -3.856 - -2.617 — -4.220 - -2.900 — -4.118 - -2.839 —

−λ
(1)
ρ — 11.51 - 123.8 — 7.290 - 103.3 — 9.326 - 113.5

λ
(2)
ρ — 33.70 - 212.2 — 35.38 - 219.0 — 35.58 - 219.3

ε
(1)
0d5/2

3.269 - 3.270 3.284 - 3.287 3.263 - 3.267 3.286 - 3.291 3.257 - 3.261 3.284 - 3.287

ε
(1)
0d3/2

3.278 - 3.301 3.278 - 3.286 3.273 - 3.300 3.286 - 3.300 3.266 - 3.288 3.280 - 3.290

ε
(1)
0s1/2

3.317 - 3.339 3.325 - 3.330 3.324 - 3.347 3.341 - 3.353 3.320 - 3.342 3.337 - 3.346

Range IIIb

rms (keV): b coefficients ∼65.5 ∼66.5 ∼68.1 ∼68.5 ∼66.4 ∼67.4
rms (keV): c coefficients ∼10.0 ∼10.4 ∼11.1 ∼10.7 ∼10.4 ∼10.4

λcoul 1.015 - 1.025 0.9734 - 1.004 1.018 - 1.027 0.9772 - 1.008 1.018 - 1.028 0.9743 - 1.005

λ
(1)
0 × 100 -3.215 - -2.359 — -3.515 - -2.540 — -3.595 - -2.669 —

λ
(2)
0 × 100 -3.658 - -2.409 — -4.014 - -2.684 — -3.922 - -2.633 —

−λ
(1)
ρ — 40.57 - 240.4 — 35.51 - 219.7 — 38.71 - 231.4

λ
(2)
ρ — 33.52 - 215.6 — 34.98 - 211.7 — 35.44 - 223.0

ε
(1)
0d5/2

3.239 - 3.240 3.247 - 3.248 3.228 - 3.232 3.252 3.224 - 3.229 3.250

ε
(1)
0d3/2

3.232 - 3.257 3.161 - 3.178 3.228 - 3.255 3.174 - 3.185 3.221 - 3.245 3.167 - 3.179

ε
(1)
0s1/2

3.200 - 3.219 3.160 3.195 - 3.216 3.164 - 3.167 3.201 - 3.222 3.165 - 3.168

a All strength parameters are given in the unit of MeV.
b Please see section 4.1.2 for the data range.
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4.3 Remarks

The rms deviations of the fit of Vcoul alone without any other charge-dependent force, as
well as the respective Vcoul strengths (c.f. Table 4.2 and Table 4.3), show that Vcoul should
be coupled with another charge-dependent force in order to decrease rms deviations and to
renormalize Vcoul strengths near to unity. In addition, the Vcoul and V0 combination produces
lower rms deviations and the respective Vcoul strengths are closer to unity compared to other
charge-dependent force combinations. In addition, the Yukawa ρ-meson exchange potential,
which is used to model the nuclear origin charge-dependent force, produces rms deviations
and Vcoul strengths which are comparable with what had been produced by the Vcoul and V0
combination. In the following chapters, we present the applications of the INC Hamiltonian
which is based on the Vcoul and V0 combination. We compare the effect of various SRC’s in
applications like isospin-mixing correction to superallowed β decay and isospin-forbidden proton
emission discussed in chapter 7 and chapter 8, respectively.
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Chapter 5

Staggering Effects in b and c Coefficients

Contents
5.1 Fitted b and c coefficients

5.1.1 Fitted b coefficients

5.1.2 Fitted c coefficients

5.2 Staggering Effects of b and c Coefficients

5.2.1 Perspective of Empirical INC Hamiltonians

5.2.2 Jänecke’s schematic Model

5.2.3 Hecht’s formalism: Wigner’s supermultiplet

5.3 Remarks

Nowadays, there is a large amount of experimental data on isobaric doublets, triplets, and
quartets in sd-shell nuclei. In addition, all the lowest-lying quintets are experimentally accessi-
ble. This amount of data in sd shell is the richest among p-, sd-, and pf -shell nuclei. Therefore,
we devote this chapter to discuss b and c coefficients fitted with shell-model INC Hamiltonians
and to present the extracted isovector and isotensor Coulomb and charge-dependent nuclear
forces’ contribution to the staggering effects in isobaric doublets and quartets, as well as triplets
and quintets in sd-shell nuclei. These staggering effects are regular oscillatory deviations of the
b and c coefficients from the prediction of the uniformly charged sphere model, see Eq.(3.11).
A few systematic plots following Jänecke’s schematic model [107] reveal these nuclear struc-
ture effects. Moreover, we will update the parameters of Jänecke’s schematic model. Besides,
we revisit Hecht’s formalism in elucidating the staggering effects via Wigner’s supermultiplet
theory [119].
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Figure 5.1: Experimental |b| coefficients compared with their values obtained in a shell-model fit.
All b coefficients are from Range I data in sd-shell space. Minor x-axis tics are J states, which are arranged
in an increment of 0.05 for every 1

2 step. The coefficients are plotted in accord with Table B.1, Table B.2,
Table B.3 and Table B.4. The b coefficients of shell-model fit are produced from Vcoul and V0 (USD)
combination, and the UCOM SRC scheme.

5.1 Fitted b and c coefficients

5.1.1 Fitted b coefficients

The newly constructed INC Hamiltonians, i.e., the Vcoul and V0 combination, and the Vcoul
and Vρ combination, adjusted with various SRC approaches, reproduce the experimental b and
c coefficients with very low rms deviations, c.f. Table 4.3. The ratios of the rms deviations of
various SRCs, with USD, USDA, and USDB to the average |b| coefficients in sd-shell space are
less than ∼0.01. Overall, the deviations of b coefficients obtained in a shell-model fit from the
experimental ones are less at the top and the bottom of sd-shell space than the deviations in
the middle shell, c.f. Table B.1, except for the 1

2

+
of A = 39 doublet, c.f. Table B.1. However,
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5.1. Fitted b and c coefficients

if we refit according to the smaller data range selected in Ref. [30], this deviation reduces from
142 keV to 47 keV. The big deviation may be due to the inclusion of data from the middle
shell. On the other hand, if we refit with Range II data and with Range III data, this deviation
reduces to 116 keV and to 49 keV, respectively. It is because the addition of more data points
renormalizes the discrepancies of the fit. Although the inclusion of the b coefficient of 1

2

+
of

A = 39 doublet reduces the quality of the fit, we retain it in the data set to adjust the ISPEs’
strengths, ε

(1)
i in Eq.(2.67).

One of the factors causing the deviation is due to how accurate the USD interaction is
capable to reproduce ground states and excited states for each nucleus in sd-shell space, like
the low deviations of b coefficients of the doublets of mass A = 35, c.f. Table B.1. These
low deviations may be related to the ability of the USD interaction to reproduce the low lying
excited levels of A = 35, T = 1/2 with just a few tens keV different from the respective
experimental values.

The other reason is due to the characteristic property of the error-weighted least-squares
fit, and this reason plays the major role in renormalizing the fit. Experimental b coefficients
with very low error bars are well described by shell model fitted b coefficients with very low
deviations. This is the reason why most of the lowest-lying multiplets’ b coefficients are very
close to experimental values. For example, the deviation of the b coefficients of mass A = 32
quintet from the experimental value is the lowest among the five quintets. Therefore, advances
in mass measurements and nuclear spectra determinations deducing data points with low error
bars may influence the data, which are dominant in adjusting the fit of the strengths of charge-
dependent forces in INC Hamiltonian; particularly, data from the top and from the bottom of
sd-shell space, which are used to calibrate the ISPEs. Similar trends of deviations happen at
other combinations of charge-dependent forces, as well as USDA and USDB. For USDA and
USDB interactions (with either Vcoul + V0 or Vcoul + Vρ, and with different SRC schemes), the
deviations are a few keV higher than USD.

In Fig. 5.2, the shell model fitted b coefficients follow the experimental data trend exactly,
as well as b coefficients from the uniformly charged sphere model. However, the b coefficients
calculated by the uniformly charged sphere model in the lower mass region deviate more than
those in the higher mass region. The prediction of uniformly charged sphere model based on
Z(Z − 1) (c.f. Eq.(3.10)) is about ∼300 keV closer to experimental values as compared to the
model based on the assumption Z(Z − 1) ≈ Z2, which gives

b =
3e2

5r0
A2/3 . (5.1)

The ratio 1/Z for sd-shell space is in the range from 5.3×10−2 (Z = 19) to 12.5×10−2 (Z = 8),
that means Z is still comparable with Z2 for nuclei at the bottom of sd-shell space. This reason
causes the latter model produces higher deviation than the first one at the bottom of sd-shell
space.

Although it is not seen in the scale of Fig. 5.2, in fact, the b coefficients of sd-shell space
exhibit oscillating behavior around the linear line as a function of A2/3, which is fitted to the
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Figure 5.2: The |b| coefficients in sd-shell space as a function of A2/3.

(Black) dotted-dash line is b = 3e2(A−1)
5r0A1/3 . (Black) double-dotted-dash line is b = 3e2

5r0
A2/3. Please refer to

Fig. 5.1 for further descriptions.

data points.

5.1.2 Fitted c coefficients

For c coefficients, overall, the rms deviation values are seen to be small, c.f. Table 4.3.
It is because the ratio of these rms deviation values to c coefficients are around ∼0.045. The
deviations at the top and at the bottom of sd-shell space are higher than the deviations in the
middle shell, c.f. Fig. 5.3. Possible reasons of such deviation are similar to the factors causing
deviations between shell model fitted and experimental b coefficients. Based on the uniformly
charged sphere assumption, c.f. Eq.(3.11), we replot c coefficients as a function of A−1/3 in
Fig. 5.4.

Both plots of c coefficients exhibit oscillatory patterns, c.f. Fig. 5.3, Fig. 5.4. We distinguish
four groups of data in this plot.
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5.1. Fitted b and c coefficients

• The first group consists of the lowest-lying triplets’ points connected by the solid line in
Fig. 5.4, which produce oscillations with the largest amplitude. These points are always
the highest or the lowest c coefficients, except for A = 20, 24, 28, and 32, for which their
higher-lying levels’ c coefficients are smaller than the lowest-lying levels’ c values.

• The second group consists of the first higher-lying triplets’ c coefficients which have mag-
nitudes different from the lowest-lying triplets’ c coefficients about ∼2 keV to ∼90 keV.

• The third group is formed by all quartets and other higher-lying triplets which are dis-
tributed in between the maxima and minima points. The quartets’ c coefficients do not
display any staggering effect.

• All quintets form the last group. Their c coefficients are also more aligned with the dashed
line, c = 3e2

5r0
A−1/3, c.f. Eq.(3.11).
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Figure 5.3: Comparison of experimental and shell-model c coefficients.
All c coefficients are from Range I data of sd-shell space. Minor x-axis tics are J states, which are arranged
in an increment of 0.05 for every 1

2 step. The c coefficients are plotted in accord with Table B.2, Table B.3
and Table B.4. The c coefficients obtained in a shell-model fit are produced from Vcoul and V0 (USD), and
the UCOM SRC scheme.

The lowest-lying and the first higher-lying triplets’ c coefficients exhibit pronounced oscil-
latory behaviors with similar trend, but of different amplitudes, c.f. Fig. 5.4. The uniformly
charged sphere model, the black dashed line in Fig. 5.4, which nicely describes the overall trend
of c coefficients, can not predict the oscillatory behavior of c coefficients.
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5.2 Staggering Effects of b and c Coefficients

The oscillatory effects in IMME b and c coefficients were noticed by Jänecke in the 1960’s,
c.f. Refs. [10, 107], and references therein. At that moment, the available experimental data
was limited to T ≤ 1 multiplets, and empirical interactions capable to accurately reproduce
low-lying excited levels and transition probabilities, like USD, had not been developed yet. In
addition, at that time it was not feasible to perform exact numerical calculation which requires
computational power and also sophisticated coding. There were, however, a few analytical
models proposed to explain the oscillatory effect. One of them was the Wigner’s supermultiplet
scheme suggested by Hecht [119]. The other explanation was given by the empirical approach
based on a schematic model introduced by Jänecke [10, 107].

As now we have USD (and its variants USDA, and USDB) empirical interactions as input
to the shell model, better computational codes, like ANTOINE, to diagonalize all matrices in
the sd-shell space that were too large in the 1960’s, and also updated experimental data, which
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5.2. Staggering Effects of b and c Coefficients

fully cover the lowest-lying doublets, triplets, quartets, and quintets, it would be interesting to
revisit the staggering effect of the b and c coefficients of sd-shell nuclei with the empirical INC
interactions. First, we present our numerical analysis, then we give updated parameters for the
schematic model suggested by Jänecke, and finally we compare our results with the Wigner’s
supermultiplet scheme.

5.2.1 Perspective of Empirical INC Hamiltonians

The b coefficients obtained from experiment and from a shell-model fit for the lowest-lying
doublets and quartets in sd-shell nuclei are presented in the main figure (a) in Fig. 5.5. Shell
model calculation have been performed with the Vcoul and V0 combination. The oscillatory
behavior of the b coefficients of doublets and quartets is clearly seen. The data points form
two families for A = 4n + 1 and A = 4n + 3 multiplets. There is no staggering effect in the
b coefficients of T = 1 triplets, c.f. small figure (d) in Fig. 5.5, and T = 2 quintets. These
conclusions about the staggering effects in the b coefficients of doublets and quartets, and of
triplets agree with what had been noticed by Jänecke [107] and by Hecht [119]. Jänecke’s simple
model showed that there was no staggering effect for the b coefficients of T = 1 triplets [107].

Figure 5.5 shows that the b coefficients obtained in a shell-model fit for doublets and quartets
closely follow the experimental trend. The oscillations of doublet b coefficients has a higher
amplitude compared to quartets’ oscillatory amplitude. These amplitudes are shown in two
small figures (b) and (c) in Fig. 5.5 as deviations from the experimental values from a fitted
line. The staggering effects of doublets and quartets are in opposite direction. This opposite
tendency is naturally manifested in Wigner’s supermultiplet theory, which will be discussed in
the last section of this chapter.

The charge-dependent term in the Hamiltonian was obtained by fitting combinations of Vcoul
and V0 (or Vcoul and Vρ), and ISPEs ǫi. We sum over all contributions in Vcoul, V0 or Vcoul, Vρ
and ISPEs to obtain the b (and c) coefficient of a given multiplet, c.f. Eq.(2.69). Therefore, we
can break down various contributions from the components of charge-dependent Hamiltonian
accordingly. Contributions of these terms to the b coefficients obtained in a shell-model fit for
doublets and quartets are depicted in Fig. 5.6 and Fig. 5.7, respectively. The contribution to
the b coefficient from V0 is amplified by a factor of 20.

The isovector Coulomb force V
(1)
coul is the main contribution to the staggering effects of the

b coefficients of doublets and quartets, c.f. Fig. 5.6. However, ISPEs ǫ
(1)
i do not exhibit any

oscillatory behavior. It is interesting to note that the isovector nuclear Hamiltonian V
(1)
0 follows

the same oscillatory trend as V
(1)
coul, but with a smaller amplitude.
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Figure 5.5: Staggering effect of |b| coefficients of the lowest-lying doublets and quartets in sd-shell nuclei.

Figure (a): the |b| coefficients of the lowest-lying doublets and quartets. The |b| coefficients obtained in a shell-
model fit are produced with Vcoul and V0 (USD), and the UCOM SRC scheme. The presented b coefficients
are plotted in accord with Table B.1 and Table B.3 – Range I. The linearly fitted upper solid (blue) line of
T = 1/2 is b = 0.7447A2/3 − 1.2552, the dashed (black) line is 0.7442A2/3 − 1.1987, and the dotted-dash
(black) line is 0.7463A2/3 − 1.3329. The linearly fitted lower double-dotted dash (black) line of T = 3/2 is
b = 0.7441A2/3 − 1.2547. These linear fits are based on experimental lowest-lying multiplets. The doublet b
coefficients are plotted with respect to the left y-axis, while the right y-axis is used for the quartet b coefficients.
Figure (b): the deviations of experimental b coefficients (T = 1/2) from the solid (blue) line.
Figure (c): the deviations of experimental b coefficients (T = 3/2) from the double-dotted dash (black) line.
Figure (d): the deviations of experimental b coefficients (T = 1) from the solid (blue) line.
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Figure 5.6: Contributions of the various charge-dependent forces to doublet b coefficients.

The |b| coefficients of the g.s. of doublets in sd-shell nuclei (Table B.1 – Range I data). All charge-dependent
contributions obtained in a shell-model fit (Vcoul and V0 (USD), and the UCOM SRC scheme) are plotted as

a function of A2/3. The |b| values refer to the left y-axis. Plots of the total ISPE
∑

i ǫ
(1)
i , V

(1)
coul, and V

(1)
0

contributions refer to the right y-axis. The V0 contribution is multiplied with a factor of 20.
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Figure 5.7: Contributions of the various charge-dependent forces to quartet b coefficients.
The |b| coefficients of the lowest-lying quartets in sd-shell nuclei (Table B.3 – Range I data). Please refer
to Fig. 5.6 for further descriptions.
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The c coefficients of the lowest-lying triplets and quintets in sd-shell nuclei are presented
in Fig. 5.8. The c coefficients obtained in a shell-model fit for triplets follow the experimental
trend closely, whereas three fitted quintets are slightly off from the experimental values, i.e.,
A = 20, 28 and 36.

The experimental and shell model fitted c coefficients of triplets clearly form two different
families of A = 4n and A = 4n + 2 multiplets, respectively. However, this behavior is not
obvious in the c coefficients of quintets. The oscillation of c values of the lowest-lying triplets
has a higher amplitude compared to quintets’ oscillatory amplitude (if quintets have oscillatory
behavior).

Contributions of different terms of the charge-dependent Hamiltonian to c coefficients are
shown in Fig. 5.9. One can see that the isotensor Coulomb force V

(2)
coul is the main contributor.

Furthermore, the plot also indicates that Vcoul alone does not reproduce the experimental c
coefficients. For the 4n+2 family, the deviation is about ∼40 keV; whereas for the 4n family, it
is around ∼5 keV. This is the evidence showing that V

(2)
coul should be supplemented by another

two-body interaction of nuclear origin, which we model as V
(2)
0 (or V

(2)
ρ ) in this thesis.

The contribution of the empirical isotensor nuclear Hamiltonian V
(2)
0 follow the same oscil-

latory trend as the contribution of V
(2)
coul, and V

(2)
0 contribution to c values is about ∼40 keV

for A = 4n multiplets and ∼5 keV for A = 4n + 2 multiplets. V
(2)
0 supplements a negative

contribution to the c coefficient of triplet A = 36, c.f. Fig. 5.9.

Nonetheless, the V
(2)
0 contribution to quintets’ c coefficients shows a noticeable oscillatory

effect, c.f. Fig. 5.10. However, the Vcoul contribution does not have staggering behavior and does
not resemble a straight line either. The differences between the V

(2)
0 contributions and quintets’

experimental c coefficients for A = 20 and 24 are about 25 keV and 20 keV, respectively.

If V0 is replaced by Vρ, or USD is supplemented by USDA or USDB, or the other SRC
scheme is used to supersede UCOM, the staggering effects of the contributions from different
components of the charge-dependent Hamiltonian HCD to b and c coefficients have similar
trends as what have been presented here.
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Figure 5.8: Staggering effect of c coefficients of the lowest-lying triplets, quartets and quintets.

The c coefficients are plotted as a function of A−1/3 (Table B.2, Table B.3 and Table B.4 – Range I data).
The main figure shows c coefficients of the lowest-lying quartets and quintets. The c coefficients obtained
in a shell-model fit are produced from Vcoul and V0 (USD) combination, and the UCOM SRC scheme. The
dotted-dash (black) line, c = 643.852A−1/3+5.097, is an unweighted fit to experimental c values. The solid
(blue) line, c = 520.846A−1/3 + 43.975, is an unweighted fit to the c coefficients obtained in a shell-model
fit.
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Figure 5.9: Contributions of the various charge-dependent forces to the lowest-lying triplet c coefficients.

The c coefficients of the lowest-lying triplets (Table B.2) and all charge-dependent contributions obtained in a
shell-model fit (Vcoul and V0 (USD), and the UCOM SRC scheme) are plotted as a function of A−1/3.
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Figure 5.10: Contributions of the various charge-dependent forces to the lowest-lying quintet c coefficients.

The presented c coefficients are quoted from Table B.4 – Range I data. Only plot of V
(2)
0 refer to the right

y-axis. Please refer to Fig. 5.9 for further descriptions.
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5.2.2 Jänecke’s schematic Model

Jänecke’s model is based on an approximate formula for the Coulomb energy proposed by
Carlson and Talmi [120]. By considering effective two-body interaction between Z ′ valence
proton(s) outside a closed shell, Carlson and Talmi derived that the total Coulomb energy of a
nucleus is

Ecoul = Z ′χ+
1

2
Z ′(Z ′ − 1)α +

⌊

1

2
Z ′

⌋

β , (5.2)

where
⌊

1
2
Z ′

⌋

is the largest integer less than or equal to 1
2
Z ′, α and β relate to the Coulomb

interaction between two protons in the j shell, and χ defines the long-range Coulomb interaction
of the inert core with a single proton. This expression is approximately valid when the j shell is
occupied with protons only, but holds fairly well when both protons and neutrons are present
in the j shell, or when protons occupy more than one shell. In order to match Eq.(5.2) with
Eq.(1.26), Jänecke proposed to replace the pairing term

⌊

1
2
Z ′

⌋

β by a quadratic term in Tz [107].
This quadratic term is itself a quadratic term of Z = 1

2
A− Tz, and is also a quadratic term of

Z ′ = Z − Zcore. This modification yields

⌊

1

2
Z ′

⌋

→ a+ bTz + cT 2
z = (µ− ν [A− 2Zcore])Z

′ + νZ ′2 , (5.3)

where the coefficients µ and ν are defined as

µ =

{

1
2
, for even-A nuclei,

1
2

(

1− 1
2T
(−1)A/2−T

)

, for odd-A nuclei,
(5.4)

and

ν =

{

1
4T

(

1 + 1
2T−1

(−1)A/2−T
)

, for even-A nuclei,
1
4T
, for odd-A nuclei, T > 1/2 .

(5.5)

These two expressions for µ and ν are obtained within an independent-particle model assuming
that the states under consideration are the lowest possible states for given A and T , and every
single-particle level is fourfold degenerate with at most two protons and two neutrons in one
level of a Nilsson-like model. The values of µ and ν coefficients for T = 1/2, 1, 3/2, and 2 quoted
from [107] are listed in Table 5.1.

By inserting Eq.(5.3) into Eq.(5.2), the total Coulomb energy of a nucleus reads

Ecoul = Z ′χ+
1

2
Z ′(Z ′ − 1)α +

[

(µ− ν [A− 2Zcore])Z
′ + νZ ′2

]

β . (5.6)

Introducing E1 = α, E2 = χ − 1
2
α (2Zcore + 1), E3 = β, we get for isovector and isotensor

contribution:

E
(1)
coul =

1

2
E1A+ E2 + µE3 , (5.7)
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Table 5.1: Magnitudes of µ and ν coefficients in Eq.(5.3), quoted from Ref. [107]

µ ν
Isospin, T A = 4n A = 4n+ 1 A = 4n+ 2 A = 4n+ 3 A = 4n A = 4n+ 1 A = 4n+ 2 A = 4n+ 3

1
2

– 0 – 1 – 0 – 0

1 1
2

– 1
2

– 0 – 1
2

–

3
2

– 2
3

– 1
3

– 1
6

– 1
6

2 1
2

– 1
2

– 1
6

– 1
12

–

and

E
(2)
coul =

1

6
E1A+ 2νE3 , (5.8)

respectively. The coefficients Ei with i = 1, 2, and 3, are related to the expectation value of 1/R,
because the average distance between protons should increase with the nuclear volume [107].
Therefore, defining E1 = Ê1/A

1/3, with Ê1 being constant values, which are different from shell
to shell, the isovector Coulomb energy becomes a linear function of A2/3.

Isovector Coulomb Energies

Using Eq.(5.4) and Eq.(5.7), we may derive the isovector Coulomb energies for T = 1/2
doublets, T = 1 triplets, T = 3/2 quartets, and T = 2 quintets

E
(1)
coul (T=1/2) =

1

2
E1A + E2 +

1

2
E3 + (−1)(A+1)/2E3

2
, (5.9)

E
(1)
coul (T=1) =

1

2
E1A + E2 +

1

2
E3 , (5.10)

E
(1)
coul (T=3/2) =

1

2
E1A + E2 +

1

2
E3 + (−1)(A−1)/2E3

6
, (5.11)

E
(1)
coul (T=2) =

1

2
E1A + E2 +

1

2
E3 , (5.12)

respectively. The last terms of Eq.(5.9) and Eq.(5.11) determine the amplitude of the oscillations
of the b coefficients of doublets and quartets. Comparison of the last term of Eq.(5.9) and
Eq.(5.11) shows that the amplitude of quartets is less than doublets’ amplitude. Eq.(5.10)
and Eq.(5.12) indicate that there is no oscillatory behavior in triplets’ and quintets’ isovector
Coulomb energies (b coefficients).
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Isotensor Coulomb Energies

Applying Eq.(5.5) and Eq.(5.8), we can obtain the isotensor Coulomb energies for T = 1
triplets, T = 3/2 quartets, and T = 2 quintets

E
(2)
coul (T=1) =

1

6

(

E1 +
1

2

[

1− (−1)A/2E3

]

)

, (5.13)

E
(2)
coul (T=3/2) =

1

6

(

E1 +
1

3
E3

)

, (5.14)

E
(2)
coul (T=2) =

1

6

(

E1 +
1

4

[

1− 1

3
(−1)(A−2)/2E3

])

, (5.15)

respectively. Like the isovector Coulomb energy, the last term of Eq.(5.13) and Eq.(5.15) shows
that the amplitude of the oscillations of the triplets’ c coefficients is greater than the quintets’
amplitude. Eq.(5.14) shows that the quartet isotensor Coulomb energy E

(2)
coul (T=3/2) is merely a

constant which is different from shell to shell. Hence, an oscillatory behavior is not predicted
for quartet c coefficients (c = 3E

(2)
coul, see Eq.(2.69)).

Table 5.2: Magnitudes of fitted E1, E2, and E3 in Eq.(5.7) to Eq.(5.15), c.f. Fig. 3.2.

E1 E2 E3

Shell Space (keV) (keV) (keV)

0p3/2 467 799 46
0p1/2 577 1377 79

1s1/20d5/20d3/2 487 1199 134
0f7/2 454 3089 254
1p3/2 298 858 398

The Ei values have been refitted from the presently compiled experimental lowest-lying
multiplet b coefficients in chapter 3. We deduce the Ei values using linear equations given in
the description of Fig. 3.2 and Eq.(5.7). The Ei coefficients are listed in Table 5.2. The value of
E3 deduced from the fit to b coefficients predicts the 1

2
E3 amplitude for c coefficients in T = 1,

which is in very good agreement with the experimental amplitude, see Fig. 5.9 or Fig. 5.12.
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5.2.3 Hecht’s formalism: Wigner’s supermultiplet

Hecht proposed two approaches to calculate the Coulomb interaction energy for nuclei with
protons and neutrons in the valence space [119, 121, 122, 123, 124]. One approach is based on
Wigner’s supermultiplet scheme [5, 119, 121], whereas the other exploits the low-seniority limit
of the jj-coupling scheme [122, 123, 124]. The latter formalism may give poor results for nuclei
having both protons and neutrons in the same shell, while the former one may not be valid in
heavier nuclei. Here, we discuss the first algebraic approach.

In this approach, Wigner’s supermultiplet quantum numbers – the total spin S and the
isospin T – are assumed to be good quantum numbers. We need to establish the favoured spin-
isospin U(4) representation, which is consistent with a given isospin of a nuclear state. This
isospin T corresponds to the favoured ground-state U(4) representation of the Tz = ±T members
of a given isobaric multiplet. A U(4) representation is described by a four-rowed Young tableau
[

f̃1, f̃2, f̃3, f̃4

]

and it has a conjugate Young tableau [f1, f2, f3, f4], which determines the spatial

symmetry of all the members of a given isobaric multiplet. Generally, a U(4) representation
contains many states that are all degenerate.

Using first-order perturbation theory and assuming that the Coulomb energies are indepen-
dent of the spatial quantum numbers, Hecht showed that the dominant part consists of the
matrix elements of that part of the Coulomb interaction which is a full space scalar. More-
over, other than S and T , these matrix elements depend also on the supermultiplet labels
[

f̃1, f̃2, f̃3, f̃4

]

. Only this part of the Coulomb matrix element is considered [119].

The results given by Hecht for isospin doublets (T = 1/2), triplets (T = 1) and quartets
(T = 3/2) are listed below.

Isospin Doublets

For isospin doublets the number of valence nucleons N must be odd. There are two cases,
namely N = 4k + 1 and N = 4k + 3, with k = 0, 1, 2, . . ., which correspond to 4n + 1 and
4n+ 3 nuclei, respectively. The isovector coefficients for isovector Coulomb energy are

Case (A): N = 4k + 1 :
The favoured supermultiplet is [k + 1, k, k, k] in U(4) or (100)1 in SU(4). This supermultiplet
has (S, T ) = (1/2, 1/2). The isovector coefficients is

E
(1)
(100)T=1/2 = 3a′c + 3(N − 1)b′ . (5.16)

1 We use here the notation (λµν) for SU(4) irreducible representations defined as
(λ = f1 − f2 µ = f2 − f3 ν = f3 − f4).
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Figure 5.11: Comparison of V
(1)
coul contribution obtained in a shell-model fit with V

(1)
SU(4) contribution calculated

by Wigner’s supermultiplet formalism, to |b| coefficients for the lowest-lying T = 1/2 doublets in sd-shell nuclei.

Figure (a): The V
(1)
coul contribution is produced from Vcoul and V0 (USD), and the UCOM SRC scheme. Both

linearly fitted upper solid (blue) line and (black) dotted-dash line are b = 0.8056A2/3 − 5.3049. These lines are

fitted according to the V
(1)
coul obtained in a shell-model fit. (Black) dashed line is b = 0.8268A2/3 − 5.4717, and

is fitted according to the V
(1)
SU(4) contribution calculated by Wigner’s supermultiplet formalism. (Red) squares

and (blue) triangles at the vicinity of solid (blue) lines are plotted with respect to the left y-axis, but the right
y-axis is used for (red) squares and (blue) triangles at the vicinity of dotted-dash and dashed line. Although
(red) square values refer to the right y-axis, they should be shifted down 1 MeV.

Figure (b): the deviations of V
(1)
coul contribution obtained in a shell-model fit from the solid (blue) line.

Figure (c): the deviations of V
(1)
SU(4) contribution calculated by Wigner’s supermultiplet formalism from the

double-dotted dash (black) line.
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Figure 5.12: Comparison of V
(2)
coul contribution obtained in a shell-model fit with V

(2)
SU(4) contribution calculated

by Wigner’s supermultiplet formalism, to c coefficients for the lowest-lying T = 1 triplets in sd-shell nuclei.

All experimental c coefficients are from Range I data in sd-shell nuclei, c.f. Table B.2 in Appendix B.
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Case (B): N = 4k + 3 :
The favoured supermultiplet is [k + 1, k+ 1, k+ 1, k] in U(4) or (001) in SU(4), and it also has
(S, T ) = (1/2, 1/2). The isovector coefficient is

E
(1)
(001)T=1/2 = 3a′c + 3(N − 1)b′ + 36c′ . (5.17)

The coefficients a′c, b
′ and c′ are given by Ref. [119] as

a′c =
∑

J,jc

(2J + 1)

(2j + 1)
〈(jjc)J |

e2

3rij
|(jjc)J〉 =







1
192
c2
√

MNω
2π~

, for p-shell multiplets,

7
4608

c2
√

MNω
2π~

, for sd-shell multiplets,

b′ =
1

24
(α + 3β) ,

c′ =
1

48
(α− β) , (5.18)

respectively, where,

α =
19

12
, β =

4

3
, for p-shell multiplets, and (5.19)

α =
119

96
, β =

7

6
, for sd-shell multiplets. (5.20)

The staggering behavior of the b coefficients from N = 4k + 1 to N = 4k + 3 is 36c′, which
is also the amplitude of the oscillatory effect. Eq.(5.16) and Eq.(5.17) do not determine the c
coefficient, since 3T 2

z − T (T + 1) = 0 for T = 1/2 doublets.

We compare the prediction from Wigner’s supermultiplet formalism with our current shell
model fitted b coefficients in Fig. 5.11.

Isospin Triplets

For isospin triplets the number of valence nucleons N must be even. There are two cases,
i.e., N = 4k + 4 and N = 4k + 2, with k = 0, 1, 2, . . ., which correspond to 4n and 4n + 2
nuclei, respectively.

Case (C): N = 4k + 4 :
The favoured supermultiplet is [k+2, k+1, k+1, k] in U(4) or (101) in SU(4). The supermultiplet
contains (S, T ) = (0, 1), (1, 0) and (1, 1). The isovector and the isotensor coefficients are

E
(1)
(101)T=1 = 3a′c + 3(N − 1)b′ + 18c′ , (5.21)

and

E
(2)
(101)T=1 = b′ − c′ − [5− 4S(S + 1)]c′ , (5.22)
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respectively.

Case (D): N = 4k + 2 :
The favoured supermultiplet is [k+1, k+1, k, k] in U(4) or (010) in SU(4). The supermultiplet
contains only (S, T ) = (0, 1) and (1, 0). The isovector and the isotensor coefficients are

E
(1)
(010)T=1 = 3a′c + 3(N − 1)b′ + 18c′ , (5.23)

and

E
(2)
(010)T=1 = b′ + 6c′ , (5.24)

respectively.

We remark that the (101) representation of SU(4) contains both (S, T ) = (0, 1) and (1, 1),
hence S can be either 0 or 1, whereas the (010) representation with T = 1 must have S = 0.
Eq.(5.21) and Eq.(5.23) indicate that T = 1 triplets do not show any staggering effect in the b
coefficient, whereas oscillation from N = 4k + 4 and N = 4k + 2 happens in the c coefficient,
and its amplitude is given as 12c′ (if we assume S = 0), c.f. Fig. 5.12.

Isospin Quartets

For isospin quartets the number of valence nucleons N must be odd. There are two cases,
i.e., N = 4k + 5 and N = 4k+ 3, with k = 0, 1, 2, . . ., which correspond to 4n+ 1 and 4n+ 3
nuclei, respectively.

Case (E): N = 4k + 5 :
The favoured supermultiplet is [k+2, k+ 2, k+ 1, k] in U(4) or (011) in SU(4). The supermul-
tiplet contains (S, T ) = (1/2, 1/2), (1/2, 3/2) and (3/2, 1/2). The isovector and the isotensor
coefficients are

E
(1)
(011)T=3/2 = 3a′c + 3(N − 1)b′ + 24c′ , (5.25)

and

E
(2)
(011)T=3/2 = b′ + 2c′ , (5.26)

respectively.
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Figure 5.13: Comparison of V
(1)
coul contribution obtained in a shell-model fit with V

(1)
SU(4) contribution calculated

by Wigner’s supermultiplet formalism, to |b| coefficients for the lowest-lying T = 3/2 quartets in sd-shell nuclei.

Figure (a): Both linearly fitted upper solid (blue) line and (black) dotted-dash line are b = 0.8101A2/3−5.3514.

These lines are fitted according to the V
(1)
coul contribution to the |b| coefficients obtained in a shell-model fit.

(Black) dashed line is b = 0.82568A2/3 − 5.4635, and is fitted according to the V
(1)
SU(4) contribution calculated

by Wigner’s supermultiplet formalism. Please refer to Fig. 5.11 for further descriptions.
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Figure 5.14: Comparison of Vcoul from a shell-model fit and VSU(4) from Wigner’s supermultiplet.

The Vcoul values are represented by (red) squares, whereas the VSU(4) are displayed as (blue) triangles.

Figures (a), (b), and (d) are the deviations of V
(1)
coul and V

(1)
SU(4) contributions.

Figures (c) and (e) are V
(2)
coul and V

(2)
SU(4) contributions to the c coefficients.
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Case (F): N = 4k + 3 :
The favoured supermultiplet is [k + 2, k + 1, k, k] in U(4) or (110) in SU(4). The supermul-
tiplet contains (S, T ) = (1/2, 1/2), (1/2, 3/2) and (3/2, 1/2). The isovector and the isotensor
coefficients are

E
(1)
(110)T=3/2 = 3a′c + 3(N − 1)b′ + 12c′ , (5.27)

and

E
(2)
(110)T=3/2 = b′ + 2c′ , (5.28)

respectively.

Eq.(5.25) and Eq.(5.27) show that T = 3/2 quartets do show staggering in the b coefficient.
Oscillation between N = 4k+5 and N = 4k+3 happens in the b coefficient, and its amplitude
is given as 12c′. This amplitude is smaller than the amplitude of oscillation in T = 1/2
doublets. Comparing Eq.(5.25) and Eq.(5.27) with Eq.(5.16) and Eq.(5.17), the differences in
the amplitudes of multiplets of N = 4k+1 and N = 4k+3, and N = 4k+5 and N = 4k+3
shows that the oscillations of T = 1/2 doublets and T = 3/2 quartets progress in the opposite
direction. However, Eq.(5.26) and Eq.(5.28) indicate that T = 3/2 quartets have no staggering
effect in the c coefficient.

We conclude that staggering in b and c coefficients are naturally manifested in Wigner’s
supermultiplet theory [5]. The trend is correctly predicted by Wigner’s supermultiplet scheme,

although the amplitudes are smaller than the Coulomb contribution V
(q)
coul obtained in a shell-

model fit, c.f. Fig. 5.11, Fig. 5.13, and Fig. 5.12. We summarize of the comparisons of the V
(q)
coul

and V
(q)
SU(4) oscillatory trends in Fig. 5.14.

5.3 Remarks

This chapter has presented a detailed study of the staggering behavior of the b and c
coefficients. For the first time, we provide a true microscopic description of these subtle effects
within the shell model. Moreover, we could even successfully separate the contributions from
various charge-dependent forces to the respective mirror energy difference and tensor energy
difference in terms of the isovector and isotensor energies, c.f. Fig. 5.6, Fig. 5.7, Fig. 5.9,
and Fig. 5.10. Two additional models explaining the staggering effect have been revised: (i)
Jänecke’s schematic model and (ii) Coulomb energy contributions within the SU(4) Wigner
supermultiplet theory, which was developed by Hecht. The quintet staggering effect is not as
pronounced as triplet’s one, c.f. Fig. 5.8. Experimental mass measurements with high precision
may shed light on proving the existence of quintet staggering effect.
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Chapter 6

Masses and extension of the IMME beyond the

quadratic form

Contents
6.1 Introduction

6.2 Extended IMME for quintets: case of A = 32

6.3 Analysis of other sd-shell quintets

6.4 Remarks

The fit and analysis in the previous chapters were based on the assumption of the quadratic
form of the IMME. Indeed, it is a very good approximation, valid at present for the majority
of experimentally measured isobaric multiplets. However, in a few cases there is experimental
evidence of the breaking of the quadratic IMME. In this chapter, we go beyond the perturbation
analysis of the isospin-symmetry breaking effect. We exploit the results of the exact diagonal-
ization of the INC Hamiltonian to get theoretical mass differences in the isobaric multiplets
and to test the validity of the quadratic IMME for the sd-shell T = 2 quintets. As an example,
we choose the mass A = 32, T = 2 quintet, which has recently been measured with high pre-
cision, with the purpose to quantitatively probe our new parametrization of HINC (described
in chapter 4). We calculate nuclear mass excesses of all five members of this quintet and fit b,
c, d, and e coefficients (in different combinations) from these theoretical mass excesses to look
for the best description. Comparison of our results with the recent analysis of Signoracci and
Brown [125], who used the strength parameters of Ref. [30] to calculate the mass excesses, is
presented as well.
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6.1 Introduction

Recent experimental advances in producing and in transporting nuclei with very short half-
lives, and in ion-trapping techniques enable experimentalists to determine atomic masses with
unprecedented high precision, c.f. [102]. Consequently, many more mass excesses of isobaric
quartets and quintets can be accessed to test the IMME of Eq.(1.26). The main question
is whether the IMME should remain in its quadratic form or whether the IMME should be
extended to a cubic or a quartic form.

The cubic and quartic IMME are given as

M(α, T, Tz) = a(α, T ) + b(α, T )Tz + c(α, T )T 2
z + d(α, T )T 3

z , (6.1)

and

M(α, T, Tz) = a(α, T ) + b(α, T )Tz + c(α, T )T 2
z + d(α, T )T 3

z + e(α, T )T 4
z , (6.2)

respectively. A non-zero d (and/or e) coefficient can be due to the presence of ISB three- (or
four-body) interactions among the nucleons [9], and/or may arise due to the isospin mixing
in excited states of isobaric multiplets with nearby state(s) of the same Jπ, but different T
value. Theoretical estimations of d coefficients from isospin mixing predict values around ≈1
keV [111]. To probe such low values, recent experimental improvements become crucial in
providing precise mass measurements of quartets and quintets. Various measurements of the
mass A = 32 quintet (ground-state masses and excitation energies of the multiplet members)
have been undertaken by different experimental groups [112, 113, 126]. These measurements
indicate rigorous improvements in reducing relative mass uncertainties from as low as 10−8

further to 3× 10−9 [102, 112, 113, 126]. These results point toward the presence of a non-zero
d coefficient (see Table 6.4).

In the shell model the direct evaluation of absolute binding energies is possible with the
isospin-conserving Hamiltonian, provided a certain algorithm is followed in the subtraction
of empirical Coulomb energies from experimental binding energies used in the fit. Then the
subtracted Coulomb energy should simply be added to the shell-model binding energy to get
the full theoretical binding energy of a nucleus. In fitting the USD interaction, the subtraction
of the Coulomb energy has been done in a kind of average way [127, 128].

In particular, an unknown amount of residual isoscalar Coulomb energy may remain in the
charge independent nuclear Hamiltonian [127, 128]. Adding an INC term in the Hamiltonian
requires the precise knowledge of the isoscalar Coulomb contribution and this prohibits the
evaluation of the binding energies [34]. In spite of this fact, we can well describe theoretical
mass differences of isobaric multiplets, which is sufficient to study the b, c, d, and e coefficients of
the IMME, as is shown in the present chapter. The a coefficient however remains undetermined.

116



6.2. Extended IMME for quintets: case of A = 32

6.2 Extended IMME for quintets: case of A = 32

Using Eq.(6.2), we can express the mass excess for each member of a given T = 2 quintet
in terms of a, b, c, d, and e coefficients as

M(α, 2, Tz = 2) = a(α, 2) + 2b(α, 2) + 4c(α, 2) + 8d(α, 2) + 16e(α, 2) ,

M(α, 2, Tz = 1) = a(α, 2) + b(α, 2) + c(α, 2) + d(α, 2) + e(α, 2) ,

M(α, 2, Tz = 0) = a(α, 2) ,

M(α, 2, Tz = −1) = a(α, 2)− b(α, 2) + c(α, 2)− d(α, 2) + e(α, 2) ,

M(α, 2, Tz = −2) = a(α, 2)− 2b(α, 2) + 4c(α, 2)− 8d(α, 2) + 16e(α, 2) . (6.3)

Then, the IMME a, b, c, d, and e coefficients are given as

a =MTz=0 , (6.4)

b =
1

12
[(MTz=−2 −MTz=2) + 8(MTz=1 −MTz=−1)] , (6.5)

c =
1

24
[16(MTz=1 +MTz=−1)− (MTz=2 +MTz=−2)− 30MTz=0] , (6.6)

d =
1

12
[(MTz=2 −MTz=−2) + 2(MTz=1 −MTz=−1)] , (6.7)

e =
1

24
[−4(MTz=1 +MTz=−1) + (MTz=2 +MTz=−2) + 6MTz=0] . (6.8)

Here, we have shortened the notation for a, b, c, d, and e coefficients and the notation for mass
excess of each member. Eq.(6.5) and Eq.(6.7) show that b and d are related to the difference
between MTz=−2 and MTz=2 and to the difference between MTz=1 and MTz=−1 Note that b
and d are not linked to a (or MTz=0). Meanwhile, c and e are defined by the sum of MTz=2

and MTz=−2 and the sum of MTz=1 and MTz=−1. These coefficients are independent of a, if
the parametrization Eq.(6.3) is used (then a enters in each mass member and cancels in the
expressions Eq.(6.6)-Eq.(6.8)). This set of relations is kept for least-squares fits on the cubic
IMME, or on the quartic (without d) IMME, or on the quartic IMME, as long as every input
mass excess has the same uncertainty, e.g., ±1 keV.

In this section we consider in detail the A = 32 quintet of 0+ states. If we assumed all
uncertainties on the experimental mass excesses of A = 32 in Table A.5 were 1 keV, the
a, b, c, d, and e coefficients would be as listed in Table 6.1. The b coefficients in the first and
the third column are the same, when d is not considered in the fit presented in these two
columns, whereas the b coefficients in the second column and the last column are the same,
when d is included in both fits. In short, the presence of the d coefficient adjusts the respective
b coefficient in the fit. The c and e resemble the similar situation as b and d. However, the
inclusion of e only influences c about 0.0096544× 10−2 compared to the inclusion of d, which
adjust b about 0.0557596× 10−2. c.f. Table 6.1.

Mass excesses calculated in the shell model do not have uncertainties. To obtain a theo-
retically fitted b coefficient, which is close to the experimental one, the theoretical values of
(MTz=−2−MTz=2) and (MTz=1−MTz=−1) should be close to the experimental mass differences.
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Chapter 6. Masses and extension of the IMME beyond the quadratic form

Similarly, c and e coefficients are determined by the a-removed sum of the mass excesses of
Tz = ±1 and Tz = ±2 isobaric members of the multiplet.

Table 6.1: The experimental a, b, c, d, and e coefficientsa of the A = 32, Jπ = 0+, T = 2 quintet.

Quadratic Fit Cubic Fit Quartic Fit (without d) Quartic Fit
(keV) (keV) (keV) (keV)

a −13967.56 −13967.56 −13967.58 −13967.58
b −5469.91 −5472.96 −5469.91 −5472.96
c 207.16 207.16 207.18 207.18
d — 0.90 — 0.90
e — — −0.01 −0.01

a The least-squares fit of IMME coefficients assumes every mass excess has similar uncertainty, ±1 keV.

Table 6.2: Mass differences and mass summations of M−2 and M2; and M1, M−1, and M0.

M−2 −M2 M1 −M−1 M1 +M−1 − 2M0 M2 +M−2 − 2M0

(keV) (keV) (keV) (keV)

Exp. values -21877.48 -10944.24 414.22 1657.26
quoted in Ref. [125]

Theoretical values
in Ref. [125]:
USD -21669.83 -10837.25 418.11 1673.09

USDA -21669.62 -10836.63 404.98 1653.43

USDB -24802.19 -12402.79 417.24 1667.38

Deduced from Table A.5 -21877.48 -10944.12 414.34 1657.26

Present worka:
USD -21857.65 -10927.76 415.00 1661.46

USDA -21858.35 -10927.30 404.55 1649.76

USDB -21856.66 -10927.93 416.24 1664.32

a Present calculations use Vcoul (UCOM) and V0 combination.
b Shorthand notations for MTz=i ≡Mi, i = −2,−1, 0, 1, 2.
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6.2. Extended IMME for quintets: case of A = 32

Table 6.3: Comparison of b, c, d, and e coefficients of the A = 32, Jπ = 0+, T = 2 quintet.

b, c b, c, d b, c, e b, c, d, e
(keV) (keV) (keV) (keV)

Exp. values b −5471.9 (3) −5473.1 (3) −5471.1 (3) −5473.0 (5)
quoted in Ref. [125] c 208.6 (2) 207.2 (3) 205.5 (5) 207.1 (6)

d — 0.93 (12) — 0.92 (19)
e — — 0.61 (10) 0.02 (16)

χ2/n 64.282 0.005 4.525

Theoretical values
in Ref. [125]:
USD b −5417.7 −5419.0 −5417.7 −5419.0

c 209.1 209.1 209.0 209.0
d — 0.39 — 0.39
e — — 0.03 0.03

USDA b −5417.6 −5418.6 −5417.7 −5418.6
c 207.3 207.3 201.1 201.1
d — 0.30 — 0.30
e — — 1.40 1.40

USDB b −6200.7 −6201.7 −6200.7 −6201.8
c 208.4 208.4 208.7 208.7
d — 0.28 — 0.28
e — — −0.07 −0.07

Present worka:
Exp. values b −5471.7 (3) −5472.9 (3) −5471.0 (3) −5473.0 (5)
taken from Table A.5 c 208.5 (2) 207.2 (3) 205.7 (5) 207.2 (6)

d — 0.89 (22) — 0.90 (19)
e — — 0.57 (10) −0.01 (16)

χ2/n 27.617 0.001 21.602

USD b −5464.3 −5463.7 −5464.3 −5463.7
c 207.7 207.7 207.4 207.4
d — −0.18 — −0.18
e — — 0.06 0.06

USDA b −5464.4 −5463.3 −5464.4 −5463.3
c 206.8 206.8 201.0 201.0
d — −0.31 — −0.31
e — — 1.31 1.31

USDB b −5464.1 −5463.9 −5464.1 −5463.9
c 208.0 208.0 208.1 208.1
d — −0.07 — −0.07
e — — −0.03 −0.03

a Present calculations use Vcoul (UCOM) and V0 combination.
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Chapter 6. Masses and extension of the IMME beyond the quadratic form

Table 6.2 summarizes mass differences (or sums) of ±Tz multiplet members as obtained from
experimental or theoretical mass excesses. Table 6.3 shows the values of the IMME coefficients
obtained for each set of mass excesses by a least-squares fitting procedure, c.f. section 3.1.
Two sets of experimental values are taken as evaluated in Ref. [125] (first entry of the tables)
and from Table A.5 (fifth entry of the tables). Theoretical results correspond to two sets of
calculations. In the upper parts of the tables (entries 2-4), we show the results from Ref. [125],
who performed their calculations based on the parameters from Ref. [30], which used an old
data set and did not include A = 32, on top of the USD, USDA or USDB interaction. The
second set of theoretical results is our work (entries 6-8 in the lower parts of these tables). The
mass differences have been obtained from the diagonalization of the presently constructed INC
Hamiltonian HINC using the combination of Vcoul (with UCOM) and V0, c.f. section 2.5.

The isobaric multiplet consists of 0+ ground state for 32Ar and 32Si, the third 0+ for 32P and
32Cl, and the 10th 0+ for 32S (for USDA, it is the 11th 0+). To identify the IAS’s in Tz = 0,±1
nuclei, we calculated the corresponding Fermi matrix elements and compared it to the model
independent value

Mf0 =
√

T (T + 1)− Tz(Tz ± 1) . (6.9)

The mass differences (MTz=−2−MTz=2) obtained by Ref. [125] for USD, USDA, and USDB
deviate from experimental values by 207.65 keV, 207.86 keV, and 2924.71 keV, respectively.
Meanwhile, the mass differences (MTz=1 −MTz=−1) for USD, USDA, and USDB are different
from experimental value by 106.99 keV, 107.57 keV, and 1458.55 keV, respectively. Conse-
quently, the produced b coefficients deviate about ∼50 keV to ∼730 keV, c.f. Table 6.3. This
discrepancy should be kept in mind when comparing the values of the predicted d coefficient
with the experimental value.

At the same time, theoretical mass differences (MTz=−2 −MTz=2) and (MTz=1 −MTz=−1)
obtained in the present work, are much closer to experimental values. The deviations are
at most ∼20 keV only. These mass differences result in a very accurate set of theoretical b
coefficients, which are about ∼10 keV different from the experimental b values, c.f. Table 6.3.
Note that the theoretical b coefficients almost coincide with the b coefficient listed in Table B.4,
which is calculated during fitting procedure (within the perturbation theory). That means, the
perturbation theory used in section 2.5 provides a very good approximation to the b coefficients.

Overall the c coefficients are close to experimental values, with only an offset of ∼2 keV.

Our theoretically deduced ratio of (MTz=−2 −MTz=2) to (MTz=1 −MTz=−1) is higher than
2, leading to a negative value of the d coefficient (see Eq.(6.7)).

Deviations of nuclear mass excesses from the best IMME fit values (with coefficients from
Table 6.3) are plotted in Fig. 6.1 and Fig. 6.2, assuming a quadratic and cubic form of the
IMME, respectively. These figures include different experimental data sets and two different
theoretical calculations of mass excesses (Ref. [125] and present work). It is obvious that the
best fit is produced by a cubic form of the IMME (Fig. 6.2). The values of d coefficients from
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6.2. Extended IMME for quintets: case of A = 32

various experimental results and theoretical calculations are listed in Table 6.4. Both theoretical
d coefficients have been calculated without error-weighted fit (which is equivalent to assuming
1 keV error on each mass excess). As is seen from Table 6.3 and the figures, the quartic IMME
provides the best description of the isobaric mass quintet for A = 32 nuclei. The quartic IMME
with d = 0 is worse than the cubic one.

Our empirical approach cannot identify uniquely the reason for a non-zero d. The empirical
effective interaction is of a two-body type, so three- or four-body interactions are not considered
explicitly in our work. Certainly, the value of d coefficient relates to the degree of the isospin-
mixing in the nuclear states. The detailed study can be found in Ref. [125].

However, the uncertainty of mass measurement of 32Ar may affect both experimental results
and theoretical description. So, direct re-measurement of 32Ar mass would shed light on the
issue.
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Figure 6.1: Quadratic fit of quintet mass 32.
(Purple) open and filled squares are quoted from Ref. [113] and Ref. [126], respectively. (Green) circles are
quoted from Ref. [112], TABLE I, set A; (green) filled circles are from set B; up (blue) open and filled triangles
are from set C and set D, respectively; down (black) triangles are from set E; down (black) filled triangles are
from set F. The theoretical work of Signoracci and Brown [125] is presented as (red) pentagons; whereas (red)
filled pentagons are present calculation. The experimental error bars are the respective mass excess error bars.
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Figure 6.2: Cubic fit of quintet mass 32.

Please refer to Fig. 6.1 for further description.

6.3 Analysis of other sd-shell quintets

Besides the mass A = 32 quintets, there are four other quintets known experimentally in
sd-shell nuclei, e.g. mass 20, 24, 28, and 36 listed in Table A.5. The A = 20 and A = 36 quintets
must be taken with caution, because of cross shell effect. So, we concentrate our analysis on
the A = 24 and A = 28 quintets. Although experimental mass excesses have a large error bar,
we can still explore the predictions given by the theory.

The experimentally deduced and theoretically calculated IMME parameters are shown in
Table 6.5. We notice that our calculated b and c coefficients deviate from the experimentally
deduced values for A = 28 quintet. For this reason, we do not discuss possible d and/or e
coefficients.

However, the description is very good for A = 24 quintet. Theoretical b and c coefficients
are in very good agreement with the experimental values. The description of experimental or
theoretical mass excesses with a cubic or quartic (with d = 0) IMME shows an unambiguous
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6.3. Analysis of other sd-shell quintets

Table 6.4: Comparison of theoretical d coefficients with experimental values for A = 32 quintet.

Experimental and Theoretical Works d (keV) χ2

nquadr.

χ2

ncubic

Triambak S. et. al. [113] 0.54 (16) 13.1 0.77
Kwiatkowski S. et. al. [126] 1.00 (9) 31 0.48
Set A from Kankainen A. et. al. [112] 0.52 (12) 9.9 0.86
Set B Ibid. 0.60 (13) 12.3 0.31
Set C Ibid. 0.90 (12) 28.3 0.002
Set D Ibid. 1.00 (13) 30.8 0.09
Set E Ibid. 0.51 (15) 6.5 0.74
Set F Ibid. 0.62 (16) 8.3 0.28
Signoracci A. & Brown B. A. [125] (USD)a 0.39 2.18 0.003
Present worka −0.18 0.485 0.016

a χ2

nquadr.
and χ2

ncubic
for theoretical works are calculated by assuming uncertainty ±1 keV for every mass excess.

Table 6.5: Theoretical b, c, d, and e coefficients of T = 2 quintets in two sd-shell nuclei.

b, c b, c, d b, c, e b, c, d, e
(keV) (keV) (keV) (keV)

A = 24 b −4179.00 −4178.95 −4179.00 −4178.95
c 224.31 224.31 219.71 219.71
d — −0.02 — −0.02
e — — 1.039 1.039

χ2/n = 8.882 χ2/n = 4.439 χ2/n = 0.00076

A = 28 b −4869.74 −4869.57 −4869.74 −4869.57
c 216.84 216.84 204.53 204.53
d — −0.05 — −0.05
e — — 2.78 2.78

χ2/n = 63.570 χ2/n = 31.767 χ2/n = 0.0070

a Present calculations use Vcoul (UCOM) and V0 combination.
b All χ2

n are calculated by assuming uncertainty ±1 keV for every mass excess.

evidence for the presence of a non-zero e-value. The quality of the corresponding fit is much
better. To check these predictions, a more precise measurement of A = 24 mass excesses is of
high interest.
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Chapter 6. Masses and extension of the IMME beyond the quadratic form

6.4 Remarks

The relationship between b and d coefficients is presented, c.f. Eq.(6.5) and Eq.(6.7). The
magnitude of the d coefficient is sensitive to the INC Hamiltonian, which can be constructed
from different isospin-conserving Hamiltonian e.g. USD, USDA, USDB. The existence of a non-
zero d coefficient is confirmed. Most probably, the degree of isospin-mixing in nuclear states
is related to the existence of d coefficient. In addition, our theoretical study shows that the e
coefficient may exist in A = 24 and 28 quintets. More experimental proofs are needed to affirm
the existence of the e coefficient. We plan to pursue the analysis of the non-diagonal Coulomb
matrix elements and level splittings to explain the existence of d and e coefficients.
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Chapter 7

Corrections to Superallowed 0
+ → 0

+ beta Decay

Contents
7.1 CKM Quark-Mixing Matrix

7.2 Unitarity Test on CKM Matrix – Test the Normalization of rows

and columns

7.3 Corrected ft Values

7.4 Isospin-Mixing Correction and Fermi β-decay

7.5 The Determination of Vud

7.6 Remarks

With the INC Hamiltonian, we perform theoretical calculations of isospin-mixing correc-
tions to the experimental ft values for 0+ → 0+ β-transitions. Although the isospin-mixing
corrections are just around ∼0.01% to ∼0.1%, after summing up all corrections, we see notice-
able changes to the absolute F t values compared to the previous results. The determination of
the Cabibbo-Kobayashi-Maskawa (CKM) matrix element Vud is reviewed with this new isospin-
mixing correction.
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Chapter 7. Corrections to Superallowed beta Decay

7.1 CKM Quark-Mixing Matrix

In the Standard Model, the leptons and quarks are grouped in generations. The charge-0
and charge-−1 lepton fields and charge-2

3
and charge-−1

3
quark fields are written as

νh = (νih) = (νe,h νµ,h ντ,h . . .) ,

lh = (lih) = (eh µh τh . . .) ,

uh = (uih) = (uh ch th . . .) ,

dh = (dih) = (dh sh bh . . .) . (7.1)

The subscript h is the helicity (L or R) and the superscript i is the generation. For instance,
the helicity-projected electron states are eR = 1

2
(1 + γ5) and eL =

1
2
(1 − γ5). However, in the

Standard Model, neutrinos are assumed as massless and only left-handed neutrinos exist.

The quark states in Eq.(7.1) are physically observed mass eigenstates of the Hamiltonian.
However, in the charge-changing weak interaction, the other set of basis states called weak
eigenstates (indicated with a prime) operates in the interaction. The mass eigenstates are a
linear combination of weak eigenstates via a unitary transformation

ujh =
∑

k

(Uu
h)jku

′k
h ,

djh =
∑

k

(Ud
h)jkd

′k
h . (7.2)

The unitary matricesUu
h andU

d
h have dimension n×n, and n denotes the number of generations.

The charge-changing weak interaction is mediated by the W gauge bosons, W µ
±, + and − show

charge-raising and charge-lowering fields, respectively; and they are conjugate to each other,
(W µ

−)
† = W µ

+. The charge-changing Lagrangian of the Standard Model is given as

Lcc = −
g√
2

∑

j

(

u′
j

Lγµd
′j
L + νjLγµl

j
L

)

W µ
+ + h.c. , (7.3)

where g is the coupling constant, and the charge-lowering field is implicitly contained in the
hermitian conjugate (h.c.). Eq.(7.4) can be rewritten in terms of mass eigenstates

Lcc = −
g√
2

∑

jkm

(

ukLγµ(U
u
L)kj(U

d
L)
†
jmd

m
L + νjLγµl

j
L

)

W µ
+ + h.c. . (7.4)

Defining

V = Uu
L(U

d
L)
† , and

Vkm =
∑

j

(Uu
L)kj(U

d
L)
†
jm , (7.5)

the matrix V is an n× n unitary matrix, and n denotes the number of families of quarks. It is
characterized by n2 independent real parameters. Due to orthogonal properties, n× n matrix
will have n(n− 1)/2 independent rotation angles and 1

2
(n− 1)(n− 2) independent phases.
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7.1. CKM Quark-Mixing Matrix

If there were only two families of quarks, there would be only one independent rotation
angle (Cabibbo angle θc) describing the quark-mixing, and all phases of the mixing matrix can
be absorbed through field redefinition, thus, no independent phase survives. The matrix V is
real. Inserting V into Eq.(7.4), the Lcc is

Lcc = −
g√
2
(uL cL) γµ

(

cosθc sinθc
-sinθc cosθc

)(

dL
sL

)

W µ
+ + h.c. . (7.6)

and it is invariant under CP transformations [129].

Kobayashi and Maskawa proposed the existence of the third generation of quarks [130].
Hence, three independent rotation angles and six independent phases are expected in V . As
in the Lagrangian, V resides between the u-type quark fields and d-type quark fields, five of
the six independent phases can be absorbed. Thus six quarks will carry five physically relevant
phases. After absorbing that five phases, the matrix V contains only one complex phase as the
CP violating complex phase of the electroweak sector. The Lagrangian Lcc can be rewritten as

Lcc = −
g√
2

(

uL cL tL
)

γµ





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb









dL
sL
bL



W µ
+ + h.c. . (7.7)

The matrix V is the renowned Cabibbo-Kobayashi-Maskawa matrix, which is the three genera-
tions quark-mixing matrix. In Kobayashi’s and Maskawa’s original article [130], V was written
in terms of three angles, θ1, θ2, θ3, and the phase, δ as below,

V =





cosθ1 −sinθ1cosθ3 −sinθ1sinθ3
sinθ1cosθ2 cosθ1cosθ2cosθ3 − sinθ2sinθ3e

iδ cosθ1cosθ2sinθ3 + sinθ2cosθ3e
iδ

sinθ1sinθ2 cosθ1sinθ2cosθ3 + cosθ2sinθ3e
iδ cosθ1sinθ2sinθ3 − cosθ2cosθ3e

iδ



 . (7.8)

However, the matrix V can also be written as

VCKM =





Vud Vus Vub
Vcd Vcs Vcb
Vtd Vts Vtb



 , (7.9)

or

V =





c12c13 s12c13 s13e
−iδ13

−s12c23 − c12s23s13e
iδ13 c12c23 − s12s23s13e

iδ13 s23c13
s12s23 − c12c23s13e

iδ13 −c12s23 − s12c23s13e
iδ13 c23c13



 , (7.10)

with Vus ≈ sinθc ≈ 0.22, θc is the Cabibbo angle, and Vud ≈ 0.97 [1]; whereas sij = sinθij and
cij = cosθij with Euler angles θij (i and j label quark families). These three forms are physically
equivalent, as well as the other form proposed by Wolfenstein which parameterizes the relative
magnitudes of the different elements [131, 132],

V =







1− λ2

2
− λ4

8
λ Aλ3(ρ− iη)

−λ + A2λ5

2
[1− 2(ρ+ iη)] 1− λ2

2
− λ4

8
(1 + 4A2) Aλ2

Aλ3
{

1−
[

1− λ2

2

]

(ρ+ iη)
}

−Aλ2 + Aλ4

2
[1− 2(ρ+ iη)] 1− Aλ4

2






, (7.11)
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with neglecting terms of O(λ6), Vus = s12c13 = λ ≈ sinθc, Vub = s13e
−iγ = Aλ3(ρ − iη),

Vcb = s23c13 = Aλ2. The unitarity of the CKM matrix in the form proposed by Wolfenstein
is evident to the order λ3. Despite different forms of the CKM matrix, the mixing between
the first two families is approximated by the Cabibbo angle, whereas that between the second
and third, and the first and third families is of the order of the square and cube of the angle
respectively. In addition, the phase may be represented and may exist in different elements of
those matrices. However, those matrices are physically equivalent as interference of CP conserv-
ing amplitude and CP violating amplitude will reveal all physically observable measurements.
Those amplitudes of any process will consist of more than one term involving various CKM
elements, whereby the phase, even though located differently in different conventions, will show
up identically through interference terms.

The CKM matrix can be tested either on its orthogonality or on its normalization of rows
and columns. The description of the first testing approach can be found in Ref. [129]. We use
the latter approach to test the CKM matrix.

7.2 Unitarity Test on CKM Matrix – Test the Normaliza-

tion of rows and columns

Although the Standard Model does not specify the values of the CKM matrix elements, it
dictates that the CKM matrix must be unitary. The normalization test of the CKM matrix
does not verify the CP violating phase, however, the test is less complicated than orthogonality
one. Six constraints read as

∑

j

VijV
†
ji =

∑

j

|Vij|2 = 1 ,

∑

i

VjiV
†
ij =

∑

i

|Vij|2 = 1 , (7.12)

and these constraints seek for either a row or a column of the measured CKM matrix elements.
As the contribution from the third quark family to |Vub|2 is insignificant, of the order of λ6, c.f.
Eq.(7.11), the first column or the first row of CKM matrix is the easiest to be tested. Nowadays,
the consequence of experimental advances in measuring mass excess and decay rates allow us
to have the best precision for the top row of CKM matrix,

|Vud|2 + |Vus|2 + |Vub|2 = 1 . (7.13)
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7.3 Corrected ft Values

The nuclear β-decay is one of the examples of a baryon decaying into another baryon in a
nuclear medium, with the emission of two leptons. The β-decay rate, Γ [17], can be expressed
as

Γ =
1

τ
=
ln 2

t
=
G2
F g

2
Vm

5
e

2π3
V 2
ud

(

fV |M0
F |2 + fAλ

2|M0
GT |2

)

, (7.14)

where τ is the mean life time, GF is the fundamental weak interaction coupling constant, gV
is the vector coupling constant, me is the electron mass, Vud is the upper-left CKM matrix
elements, fV is the phase-space integral for Fermi transitions, fA is the phase-space integral
for Gamow-Teller transitions, MF and MGT are the Fermi and Gamow-Teller matrix elements,
respectively. The superallowed 0+ → 0+ β-decay is purely vector, therefore, the decay rate is

characterized by the Fermi matrix element only
(

|M0
GT |

2
= 0

)

. If the isospin symmetry holds,

the Fermi matrix element has a model-independent value

∣

∣M0
F

∣

∣

2
= T (T + 1)− Tz(Tz ± 1) . (7.15)

This value should be corrected for possible ISB in nuclear states. Then, formally, we can express
the corrected Fermi matrix element as

|MF |2 =
∣

∣M0
F

∣

∣

2
(1− δC) , (7.16)

where δC is the correction.

Besides δC , a decay process should be corrected for radiative effects. The radiative correction
is usually divided into two parts, a nucleus-dependent part, δR, and a nucleus-independent
part, ∆V

R. δR can be in turn separated into two terms: δNS, which needs a detailed nuclear
structure calculation, and δ′R, which depends on Z and the maximum total electron energy of
the transition only.

In practice, the β-decay is characterized by ft-values. From the measured half-lives, branch-
ing ratio andQ-values, one can extract an ft-value of a given transition. Starting from Eq.(7.14)
and imposing nuclear structure and radiative corrections, one can extract the absolute F t value
for a superallowed 0+ → 0+ beta decay as [17]

F t = ft(1 + δ′R)(1 + δNS − δC) =
K

G2
Fg

2
V

× 1

V 2
ud

× 1

|M0
F |2(1 + ∆V

R)
, (7.17)

where

K =
2π3ln2

m5
e

,
K

(~c)6
=
2π3

~ln2

(mec2)5
= 8120.2787(11)× 10−10GeV−4s . (7.18)

The subscript V at the phase-space integral for Fermi transitions is dropped.
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Chapter 7. Corrections to Superallowed beta Decay

The constancy of the absolute F t value of superallowed 0+ → 0+ β transitions would
validate the conserved vector current (CVC) hypothesis. Provided the CVC holds, the Vud
CKM matrix element can be extracted and used to test the unitarity of the CKM matrix. The
nuclear structure correction (δC) due to the ISB in nuclear states is the one which provides the
largest uncertainty to the unitarity test.

7.4 Isospin-Mixing Correction and Fermi β-decay

The common feature of the shell-model approaches is that the transition matrix elements
calculated within the isospin-symmetry breaking scheme is divided into two parts. First, there
is a contribution from the ISB effects in the configuration mixing of the spherical harmonic-
oscillator basis functions. This is obtained via the diagonalization of an effective Hamiltonian
which does not conserve the isospin. The parameters can be adjusted to describe experimental
splittings of isobaric multiplets. Second, in the calculation of transition rates one has to change
the harmonic-oscillator single-particle wave functions to realistic spherically-symmetric wave
functions obtained from a better suited finite-well plus Coulomb potential (to account for the
isospin nonconservation outside the model space).

Within the shell model, the Fermi matrix element for the transition between the initial state
|i〉 and the final state |f〉 has a form

MF = 〈f |T+ |i〉 =
∑

α

〈f | a†αbα |i〉 =
∑

αθ

〈f | a†α |θ〉 〈θ| bα |i〉 , (7.19)

where a†α creates a neutron (bα annihilates a proton) in a state with quantum numbers α, and
|θ〉 represents the complete set of states in (A− 1) nucleus. If a Hamiltonian obeys Eq.(1.15),
then

〈f | a†α |θ〉∗ = 〈θ| bα |i〉 , (7.20)

states |i〉 and |f〉 are isospin analogues, and the Fermi matrix element is

M0
F =

∑

αθ

| 〈f | a†α |θ〉 |2 . (7.21)

As the INC Hamiltonian does not commute with the isospin operators, then |i〉 and |f〉 are
not isospin analogue, and a correction for M0

F in Eq.(7.16) is proposed. Besides, the δC can
be represented as a sum of (i) the isospin-mixing correction δIM , and (ii) the radial overlap
correction δRO [17],

δC = δIM + δRO . (7.22)

The δIM does not include corrections from nodal mixing
∑

αβθ

〈

f
∣

∣ a†α |θ〉 〈θ| aβ
∣

∣i
〉

=M0
F

√

1− δIM , (7.23)
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where
∣

∣i
〉

and
∣

∣f
〉

are not the exact eigenstates in Eq.(7.21). They are the shell-model eigen-
states of INC Hamiltonian. Meanwhile, the δRO include corrections from nodal mixing for M0

F

∑

αθ

∣

∣

〈

f
∣

∣ a†α |θ〉
∣

∣

2
rθα =M0

F

√

1− δRO , (7.24)

where every rθα is a radial overlap integral of proton and neutron radial functions. If the proton
and neutron radial functions are similar, rθα = 1 and δRO = 0. Contrary, non-identical radial
functions of both nucleons yield proton radial functions ψp(r) expanded in terms of a complete
set of neutron radial functions ψn(r)

ψp(r) =
∑

N

aNψ
n
N (r) , (7.25)

where N are all possible radial nodes, and aN describes the ISB correction δRO.

We have calculated the contribution to δC from configuration mixing of the shell-model basis
states, referred as δC1 in [32] or δIM in [133], see Table 7.1. Discrepancies between the present
results and those from the previous work [32, 133] may be ascribed to different fitting strategies
and updated values of experimental IMME b and c coefficients. The difference between our
method and that of Ref. [133] was already noted before. The authors of Ref. [32] adjusted
strength parameters locally for each multiplet under consideration (case by case).

7.5 The Determination of Vud

According to the CVC, gV = 1, and the experimental ft value of superallowed β-decay
can be directly related to the fundamental weak-interaction coupling constant, GF . The best
experimentally studied cases incorporate only T = 1 emitters, for which the model independent
Fermi matrix element equals to

√
2. Then Eq.(7.17) can be further simplified to

F t = ft(1 + δ′R)(1 + δNS − [δIM + δRO]) =
K

G2
FV

2
ud

× 1

2(1 + ∆V
R)
. (7.26)

From δIM values calculated with different parametrizations of the INC Hamiltonian for sd-shell
nuclei (Table 7.1), we have calculated the average values with error bars corresponding to the
standard deviations (see Table 7.2). Using these new average δIM corrections and the other
corrections from Ref. [17], we propose new F t values for four well known emitters from sd-
shell. These values are given in Table 7.2 in comparison with the values obtained by Towner and
Hardy [17]. We notice non-negligible changes of the F t values of 34Cl and 34Ar. Experimental
ft-values of the best emitters and theoretically corrected F t values (for sd shell nuclei we have
implemented the results of the present work) are shown in Fig. 7.1.
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Chapter 7. Corrections to Superallowed beta Decay

Table 7.1: δIM calculated from INC nuclear Hamiltonian of combination with Vcoul + V0.

Nuclear Parent Present Work Previous Work
Hamiltonian Nucleus

UCOMa Jastrow type SRC function Ormand & Towner &
Argonne V18a CD-Bonna Miller Brownb Hardyc

Spencera

USD
22Mg 0.025 0.024 0.024 0.026 0.017d 0.010 (10)
26mAl 0.016 0.016 0.015 0.017 0.01b 0.025 (10)
26Si 0.053 0.053 0.052 0.053 0.028d 0.022 (10)
30S 0.024 0.023 0.022 0.026 0.056d 0.137 (20)
34Cl 0.031 0.030 0.030 0.030 0.06b 0.091 (10)
34Ar 0.007 0.007 0.007 0.008 0.008d 0.023 (10)

USDA
22Mg 0.025 0.024 0.023 0.027
26mAl 0.016 0.016 0.015 0.019
26Si 0.047 0.047 0.046 0.049
30S 0.019 0.018 0.017 0.021
34Cl 0.028 0.027 0.027 0.028
34Ar 0.007 0.007 0.007 0.008

USDB
22Mg 0.025 0.025 0.024 0.027
26mAl 0.017 0.017 0.016 0.019
26Si 0.051 0.050 0.050 0.053
30S 0.023 0.022 0.021 0.025
34Cl 0.031 0.030 0.030 0.030
34Ar 0.006 0.007 0.006 0.007

a Strength parameters are implemented from Table 4.3, Range I (full sd-shell).
b δIM in TABLE I. of Ref. [133].
c Unscaled δC1 in TABLE III. of Ref. [32].
d In present work, we calculated without truncation, with Miller-Spencer parameterized Jastrow type SRC
function, [1 + f(r)]2, and with strength parameters from [30].

Table 7.2: δIM calculated with strength parameters fitted from full sd-shell space.

F t values
Parent Exp. ftc Corrections (%) Present Towner &
Nucleus δIM

a δRO
b δ′R

b δNS
b worka Hardyc

22Mg 3052 (7) 0.0244 (11) 0.370 (20) 1.466 (17) −0.225 (20) 3077.6 (72) 3078.0 (74)
26Alm 3036.9 (9) 0.0148 (10) 0.280 (15) 1.478 (20) 0.005 (20) 3072.9 (14) 3072.4 (14)
34Cl 3049.4 (12) 0.0313 (3) 0.550 (45) 1.443 (32) −0.085 (15) 3072.8 (22) 3070.6 (21)
34Ar 3053 (8) 0.0070 (4) 0.635 (55) 1.412 (35) −0.180 (15) 3070.7 (84) 3069.6 (85)

a Present calculations with Vcoul and V0 (USD). The error bars are provided from the standard deviation based
on different SRC schemes.
b Table II, V, VI in Ref. [32].
c Table 4 in Ref. [17].
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Figure 7.1: Experimental ft values, and comparison of corrected ft values (or F t values).

The upper figure depicts experimental ft values, but the ft value of 38Km, 5051.9(±0.1)s, is not feasible to be
shown. The lower figure shows F t values. Up (red) triangles are F t values with present calculated δIM . Down
(blue) triangles are F t values from Ref. [17]. Horizontal (grey) strip is 1 standard deviation value.

As a result, we obtain a new averaged F t value

F t = 3073.12 (63) s

and a new value of the corresponding |Vud| matrix element:

|Vud|2 =
K

2G2
F (1 + ∆V

R)F t
=
2915.64± 1.08

F t
,

GF

(~c)3
= (1.16637± 0.00001)× 10−5 GeV−2 [1] ,

|Vud|2 = 0.94875± 0.00041 ,

|Vud| = 0.97404± 0.00021 . (7.27)

The value of |Vus| is 0.22521 ± 0.00094, and the value of |Vub| is (3.93 ± 0.36) × 10−3 [17].
Finally, the unitarity of the first row of the CKM matrix,

|Vud|2 + |Vus|2 + |Vub|2 = 0.99949± 0.00059 , (7.28)

which shows the satisfactory of the unitarity test with a precision of 0.06%.
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Chapter 7. Corrections to Superallowed beta Decay

7.6 Remarks

Towner’s and Hardy’s unitary test has the result |Vud|2+ |Vus|2+ |Vub|2 = 0.99999±0.00060 .
The present δIM calculation is not based on case by case treatment of strength parameters λ

(q)
ν

and the theoretical values are not scaled by a factor of (∆E)2theo/(∆E)
2
exp, where ∆E denotes

the energy separation of the analogue and non-analogue states [32]. However, the quantitative
implication of the present INC Hamiltonian to the unitary test of CKM quark-mixing matrix
is noticeable. Besides, various SRC approaches lead to very close values of δIM , c.f. Table 7.1.
We keep the calculation of radial overlap correction δRO in perspective.
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Chapter 8

Isospin-Forbidden Proton Emission

Contents
8.1 Introduction

8.2 Spectroscopic Factors

A β-delayed proton is emitted from the IAS populated in a β-decay of a parent nucleus
(precursor). The process goes via the isospin-symmetry breaking and thus, to describe the
proton branching ratios, we need an INC Hamiltonian. This is also one of the applications, as
well as also a test for the newly constructed INC Hamiltonians. The decay of 22Al to 22Mg, then
to 21Na is our example in this thesis. Comparison between presently calculated spectroscopic
factors of the decay of 22Mg to 21Na with Brown’s results [33] is presented.
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8.1 Introduction

Proton-rich nuclei manifest exotic decay modes, such as direct proton or di-proton emission,
as well as β-delayed multi-particle emission. In a β-delayed process, a precursor experiences the
superallowed β-decay to the IAS in a daugther nucleus, followed by (typically isospin-forbidden)
multi-particle decay of the IAS. However, the topic of multi-particle decay is beyond the scope
of the thesis. In this chapter we focus only on the discussion of the isospin-forbidden proton
emission.

A partial decay scheme of 22Al is given in Fig. 8.1. The β+-decay of the parent nucleus 22
13Al

with isospin T = 2 populates the states of the daughter nucleus 22
12Mg lying in the Q-window.

Among those mainly Gamow-Teller transitions, there is a superallowed decay (Fermi/Gamow-
Teller mixed) to the 4+ (T = 2) state (the analogue state of the 22Al ground state). This state
lies at about 14.04 MeV excitation energy in 22

12Mg and it is unbound to many decay channels —
proton emission, di-proton emission, α-emission (the latter decays are not shown in the figure).
The IAS can be easily identified experimentally.

8.2 Spectroscopic Factors

The (multi)-particle emission from the IAS turns out to be isospin forbidden (e.g. of 22Al).
In this work we consider the emission of a proton from a T = 2 IAS which populates (A−1, Z−
2, T − 3

2
) states. Since ∆T = 3/2, the decay proceeds via the isospin symmetry breaking in

the initial and/or final states. To describe the decay modes of the IAS, we need isospin-mixed
nuclear wave functions obtained from an INC Hamiltonian.

A probability for a nucleon emission is characterized by the so-called spectroscopic factors
defined for a nucleon removal as

θ2if (nlj) =
1

2J + 1
〈ΨA−1

f (J ′)||anlj||ΨA
i (J)〉2 , (8.1)

where |ΨA
i (J)〉 is an initial state in mass-A nucleus, characterized by the total angular momen-

tum J , where |ΨA−1
f (J ′)〉 is a final state in mass-(A − 1) nucleus, characterized by the total

angular momentum J ′, anlj is the nucleon annihilation operator. From the angular momentum

selection rule, ~J ′ = ~j + ~J .

The initial state in 22Mg and the final states in 21Na have been calculated from the INC
Hamiltonian developed in this thesis (the USD interaction supplemented by the Vcoul with
different types of the SRC and without SRC as well and V0 as charge-dependent terms). The
spectroscopic factors, θ2, calculated for a proton emission from the 4+ IAS of 22Mg to the low-
lying states in 21Na are summarized in Table 8.1. The results for d5/2 and d3/2 are summed
together to produce a spectroscopic factor for an l = 2-transfer.
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We can notice an overall enhancement of the θ2 obtained in this work compared to the
previous results [33], especially, for the transitions to the lowest 7/2+, 9/2+ and 11/2+ states.
This is due to a slightly higher degree of impurity of the IAS predicted by the new Hamiltonian.
The values of the spectroscopic factors come out to be very sensitive to subtle details of the
ISB part of the Hamiltonian. As a next step of this study, we plan to calculate the branching
ratios for the proton emission to compare with the experimental results. The case of the
proton emission may serve as a stringent test for the INC parametrization. More results will
be published in Ref. [134].

Table 8.1: Calculated spectroscopic factors θ2 for isospin-forbidden proton decay from 4+, T=2, IAS
state in 22Mg to states in 21Na.

104θ2

Jπ Present Worka Previous Work

UCOM Jastrow type SRC function w/o SRC Brown [33]

Argonne V18 CD-Bonn Miller-Spencer

l = 0 l = 2 l = 0 l = 2 l = 0 l = 2 l = 0 l = 2 l = 0 l = 2 l = 0 l = 2

3
2

+
0.08 0.08 0.08 0.08 0.08 0.13

5
2

+
0.38 0.37 0.35 0.47 0.35 0.18

7
2

+
0.00 7.30 0.00 7.01 0.01 6.22 0.00 9.88 0.01 6.20 0.04 1.71

9
2

+
0.00 6.31 0.00 5.76 0.00 4.77 0.00 9.93 0.00 4.85 0.09 0.56

13
2

+
1.03 0.98 0.85 1.48 0.84 0.03

5
2

+
0.92 0.82 0.52 2.16 0.50 0.24

11
2

+
6.12 5.49 4.21 10.67 4.27 1.22

5
2

+
1.43 1.18 0.84 3.04 0.89 1.34

3
2

+
0.17 0.20 0.22 0.12 0.21 0.49

7
2

+
0.34 1.18 0.31 1.06 0.30 0.66 0.40 2.51 0.32 0.65 0.00 0.11

3
2

+
0.27 0.25 0.22 0.40 0.23 0.07

13
2

+
1.66 1.60 1.42 2.17 1.42 0.78

9
2

+
1.28 0.35 1.27 0.32 1.13 0.27 1.62 0.47 1.11 0.27 0.10 0.07

9
2

+
0.76 7.99 0.84 7.96 0.82 7.33 0.79 10.02 0.76 7.17 2.29 5.69

7
2

+
1.49 16.41 1.43 16.50 1.20 15.24 2.22 20.27 1.18 14.81 0.40 11.90

a Present calculations use Vcoul (UCOM) and V0 combination.
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Figure 8.1: Partial decay scheme of 22Al. Comparison of present calculation with Ref. [33].

.
The isospin-forbidden proton spectroscopic factors are calculated with INC Hamiltonian fitted from various
SRCs. The θ2 are averaged values calculated from each SRC, i.e., UCOM, CD-Bonn and AV18.
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Appendix A

Coefficients of the Isobaric Multiplet Mass

Equation

A.1 Notation

Readers may refer to Table A.1 to improve the readability of the following tables in this Appendix.

Table A.1: Notations for Tables A.2, A.3, A.4, A.5.

Notations Description

T Isobaric spin, or isospin, or isotopic spin.

Tz Isospin projection, N−Z
2

, where N is the number of neutrons, and Z is the number of protons for the nucleus
(or the multiplet member).

A Mass number of the nucleus, A = N + Z
2J Two times total angular momentum, J .
π Parity of the isobaric multiplet.
Nucl. Element symbol for the nucleus.
Mass Excess Nuclear mass excess in keV, all nuclear mass excess data are quoted from Ref. [103], unless specified. The mass

excess of an excited level is the sum of the mass excess of the ground state (g.s.) plus the excitation energy.

Eexc The average excitation energy of the higher lying multiplet members above the members of the lowest lying
multiplet, taken as having Eexc = 0. All multiplets in Table A.5 is the lowest lying states having Eexc = 0.

a, b, c, d, e IMME coefficients respectively corresponding to κ1, κ2, . . . , κ5 in Eq.(3.2) Chapter 3.
χ2/n Normalised chi-square value expressing the quality of the least-squares fit, where n is the number of degrees of

freedom, i.e., the number of fitted multiplet members subtracts the number of fit parameters (coefficients), for
example, n = 2 for only fitting a, b, c coefficients in column six of Table A.5; and n = 1 for only fitting a, b, c, d
coefficients in column seven of the same Table.

( ) The number in the parenthesis is the uncertainty in the rightmost digits, for instance, the b coefficient of the

first 1
2

+
of A = 23 doublet, −4024.9(14) = (−4024.9 ± 1.4) keV

For Table A.4 and A.5:
a, b, c a, b, c coefficients of quadratic fit on IMME, these coefficients are respectively arranged in consecutive rows,

followed by χ2/n value.
For Table A.5:
a, b, c, d a, b, c, d coefficients of cubic fit on IMME, these coefficients and χ2/n value are arranged as above.
a, b, c, e a, b, c, e coefficients of quartic fit on IMME, these coefficients and χ2/n value are arranged as above.
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A.2 Experimental Data Base

A.2.1 Properties of T = 1/2 Doublets

Table A.2: Properties of T = 1/2 Doublets

A Jπ Nucl. Mass Excess Nucl. Mass Excess Eexc a b References
(keV) (keV) (keV)

1
1
2

+
n 8071.317 (1) H 7288.971 (1) 0 7680.144 (1) 782.347 (1)

3
1
2

+
H 14949.81 (1) He 14931.22 (1) 0 14940.51 (1) 18.59 (1) [135]

5
3
2

−

He 11231 (20) Li 11679 (50) 0 11455 (27) -448 (54) [136]
7

3
2

−

Li 14907.10 (1) Be 15768.99 (7) 0 15338.04 (4) -861.89 (7) [136]
1
2

−

Li 15384.71 (1) Be 16198.07 (13) 454 15791.39 (6) -813.36 (13) [136]
7
2

−

Li 19537 (9) Be 20339 (50) 4601 19938 (26) -802 (51) [136]
5
2

−

Li 21587 (50) Be 22499 (10) 6706 22043 (26) -912 (51) [136]
5
2

−

Li 22367 (1) Be 22979 (60) 7335 22673 (30) -612 (60) [136]
9

3
2

−

Be 11348.44 (8) B 12416.47 (91) 0 11882.46 (46) -1068.03 (91) [137]
5
2

−

Be 13777.8 (13) B 14761 (11) 2388 14270 (6) -984 (12) [137]
5
2

+
Be 14397 (9) B 15167 (25) 2900 14782 (14) -770 (27) [137]

1
2

−

Be 14128 (12) B 15196 (16) 2780 14662 (10) -1068 (20) [137]
7
2

−

Be 17728 (60) B 19401 (50) 6683 18565 (39) -1673 (78) [137]
7
2

−

Be 22630 (22) B 24056 (50) 11461 23343 (27) -1426 (55) [137]
5
2

−

Be 25828 (9) B 27116 (18) 14590 26472 (10) -1288 (21) [137]
5
2

+
Be 28019 (8) B 29126 (10) 16691 28573 (7) -1107 (13) [137]

7
2

+
Be 28843 (5) B 29956 (10) 17518 29400 (6) -1113 (12) [137]

11
3
2

−

B 8667.93 (42) C 10650.34 (95) 0 9659.14 (52) -1982.41 (104) [138]
1
2

−

B 10792.62 (42) C 12650.3 (11) 2063 11721.5 (6) -1857.7 (12) [138]
5
2

−

B 13112.82 (65) C 14969.1 (16) 4382 14041.0 (8) -1856.3 (17) [138]
3
2

−

B 13688.24 (52) C 15454.5 (16) 4913 14571.4 (8) -1766.3 (16) [138]
7
2

−

B 15410.8 (19) C 17128.5 (16) 6611 16269.7 (13) -1717.7 (25) [138]
1
2

+
B 15459.73 (52) C 16989.5 (17) 6566 16224.6 (9) -1529.8 (18) [138]

5
2

+
B 15953.44 (60) C 17555.1 (17) 7096 16754.3 (9) -1601.7 (18) [138]

3
2

+
B 16645.77 (59) C 18150.0 (18) 7739 17397.9 (9) -1504.3 (19) [138]

3
2

−

B 17228.2 (19) C 18754.8 (20) 8333 17991.5 (14) -1526.6 (27) [138]
5
2

−

B 17588.1 (21) C 19070 (3) 8671 18329 (2) -1482 (3) [138]
7
2

+
B 17852.9 (21) C 19305 (8) 8920 18579 (4) -1452 (8) [138]

5
2

+
B 17942.3 (21) C 19349 (10) 8987 18646 (5) -1407 (11) [138]

7
2

+
B 19265 (9) C 20733 (5) 10340 19999 (5) -1468 (11) [138]

9
2

+
B 19933 (17) C 21329 (5) 10972 20631 (9) -1396 (18) [138]

13
1
2

−

C 3125.01 (1) N 5345.48 (27) 0 4235.24 (14) -2220.47 (27) [139]
1
2

+
C 6214.45 (2) N 7710.4 (7) 2728 6962.4 (4) -1495.9 (7) [139]

3
2

−

C 6809.52 (2) N 8847 (2) 3594 7828 (1) -2038 (2) [139]
5
2

+
C 6978.82 (2) N 8892 (4) 3701 7936 (2) -1914 (4) [139]

5
2

+
C 9989 (3) N 11709 (9) 6614 10849 (5) -1720 (10) [139]

3
2

+
C 10811 (6) N 12231 (8) 7286 11521 (5) -1420 (10) [139]

7
2

+
C 10617 (10) N 12500 (5) 7324 11559 (6) -1883 (12) [139]

5
2

−

C 10672 (3) N 12721 (9) 7462 11697 (5) -2049 (10) [139]
1
2

−

C 11985 (20) N 14263 (11) 8889 13124 (12) -2278 (23) [139]
9
2

+
C 12624.8 (1) N 14345 (10) 9250 13485 (5) -1721 (10) [139]

7
2

−

C 13878 (4) N 15705 (10) 10557 14792 (6) -1827 (11) [139]
1
2

−

C 14205 (5) N 16178 (9) 10957 15192 (5) -1973 (11) [139]
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A.2. Experimental Data Base

continued from Table A.2 Properties of T = 1/2 Doublets

A Jπ Nucl. Mass Excess Nucl. Mass Excess Eexc a b References
(keV) (keV) (keV)

15
1
2

−

N 101.44 (1) O 2855.61 (49) 0 1478.52 (25) -2754.17 (49) [139]
5
2

+
N 5371.59 (2) O 8096.5 (6) 5256 6734.0 (3) -2724.9 (6) [139]

1
2

+
N 5400.26 (2) O 8039 (2) 5241 6719 (1) -2638 (2) [139]

3
2

−

N 6425.22 (2) O 9031.9 (18) 6251 7728.6 (9) -2606.7 (18) [139]
5
2

+
N 7256.49 (2) O 9715.0 (11) 7008 8485.7 (5) -2458.5 (11) [139]

3
2

+
N 7402.27 (2) O 9648.7 (18) 7047 8525.5 (9) -2246.4 (18) [139]

7
2

+
N 7669 (1) O 10131.5 (8) 7422 8900 (1) -2463 (2) [139]

1
2

+
N 8414.06 (3) O 10412.1 (7) 7935 9413.1 (4) -1998.0 (7) [139]

3
2

+
N 8672.84 (12) O 11139.6 (7) 8428 9906.2 (4) -2466.8 (7) [139]

1
2

+
N 9151.15 (7) O 11778 (2) 8986 10464 (1) -2626 (2) [139]

5
2

−

N 9861 (1) O 12344 (3) 9624 11103 (2) -2482 (4) [139]
17

5
2

+
O -808.76 (1) F 1951.70 (25) 0 571.47 (13) -2760.46 (25) [140]

1
2

+
O 61.97 (10) F 2447.03 (27) 684 1254.50 (15) -2385.06 (29) [140]

1
2

−

O 2246.60 (16) F 5056 (3) 3080 3651 (2) -2809 (3) [140]
5
2

−

O 3034.0 (4) F 5809 (4) 3850 4421 (2) -2775 (4) [140]
3
2

−

O 3745.0 (16) F 6592 (20) 4597 5168 (10) -2847 (20) [140]
3
2

+
O 4276.0 (9) F 6952 (20) 5043 5614 (10) -2676 (20) [140]

9
2

−

O 4407.0 (5) F 7172 (10) 5218 5789 (5) -2765 (10) [140]
3
2

−

O 4570.4 (14) F 7440 (11) 5434 6005 (6) -2869 (11) [140]
7
2

−

O 4888.5 (4) F 7624 (20) 5685 6256 (10) -2735 (20) [140]
5
2

−

O 4924.0 (5) F 7634 (20) 5708 6279 (10) -2710 (20) [140]
3
2

+
O 5060.3 (6) F 7772 (20) 5845 6416 (10) -2711 (20) [140]

1
2

−

O 5130 (4) F 7989 (9) 5988 6559 (5) -2858 (10) [140]
1
2

+
O 5547 (8) F 8512 (20) 6458 7029 (11) -2964 (22) [140]

5
2

+
O 6053 (2) F 8649 (7) 6780 7351 (4) -2595 (7) [140]

5
2

−

O 6356.9 (8) F 8979 (20) 7097 7668 (10) -2622 (20) [140]
3
2

+
O 6393 (10) F 9308 (20) 7279 7850 (12) -2914 (23) [140]

7
2

−

O 6879.4 (9) F 9498 (20) 7618 8189 (10) -2618 (20) [140]
19

1
2

+
F -1487.44 (1) Ne 1752.05 (16) 0 132.30 (8) -3239.50 (16) [141]

1
2

−

F -1377.55 (1) Ne 2027.14 (21) 193 324.80 (10) -3404.69 (21) [141]
5
2

+
F -1290.30 (1) Ne 1990.32 (19) 218 350.01 (10) -3280.63 (19) [141]

5
2

−

F -141.77 (13) Ne 3259.61 (34) 1427 1558.92 (18) -3401.39 (37) [141]
3
2

−

F -28.7 (3) Ne 3367.65 (53) 1538 1669.5 (3) -3396.4 (6) [141]
3
2

+
F 66.59 (1) Ne 3288.05 (43) 1546 1677.3 (3) -3221.5 (5) [141]

9
2

+
F 1292.40 (1) Ne 4546.75 (62) 2788 2919.6 (3) -3254.4 (6) [141]

3
2

+
F 2420.73 (20) Ne 5785.0 (24) 3971 4102.8 (2) -3364.2 (3) [141]

7
2

−

F 2511.3 (7) Ne 5949.2 (24) 4098 4230.2 (2) -3437.9 (3) [141]
9
2

−

F 2545.1 (12) Ne 5892 (4) 4087 4219 (2) -3347 (4) [141]
7
2

+
F 2890.26 (5) Ne 6131.2 (22) 4379 4510.7 (11) -3240.9 (3) [141]

5
2

+
F 3062.5 (8) Ne 6352 (4) 4575 4707 (2) -3290 (4) [141]

3
2

−

F 3068.7 (5) Ne 6301 (4) 4553 4685 (2) -3232 (4) [141]
13
2

+
F 3161 (1) Ne 6387 (4) 4642 4774 (2) -3226 (4) [141]

5
2

+
F 3619.2 (9) Ne 6844 (6) 5100 5232 (3) -3225 (6) [141]

1
2

+
F 3850 (2) Ne 7103 (10) 5344 5476 (5) -3253 (10) [141]

21
3
2

+
Ne -5731.78 (4) Na -2184.64 (28) 0 -3958.21 (14) -3547.14 (28) [142]

5
2

+
Ne -5381.05 (4) Na -1852.74 (29) 342 -3616.89 (15) -3528.31 (30) [142]

7
2

+
Ne -3985.86 (5) Na -468.5 (4) 1732 -2227.2 (3) -3517.3 (4) [142]

1
2

−

Ne -2943.55 (10) Na 613.26 (6) 2794 -1165.14 (29) -3556.81 (58) [142]
1
2

+
Ne -2937.62 (6) Na 239.2 (5) 2609 -1349.2 (3) -3176.8 (5) [142]

9
2

+
Ne -2865.18 (16) Na 644.5 (6) 2848 -1110.4 (4) -3509.6 (8) [142]

3
2

−

Ne -2069.14 (21) Na 1494.3 (5) 3671 -287.4 (3) -3563.4 (6) [142]
5
2

+
Ne -1996.19 (15) Na 1359.7 (5) 3640 -318.3 (3) -3355.9 (5) [142]

5
2

−

Ne -1847.82 (22) Na 1677.6 (6) 3874 -85.1 (3) -3525.4 (6) [142]
11
2

+
Ne -1299.98 (51) Na 2234 (2) 4426 467 (1) -3534 (2) [142]

5
2

+
Ne -1205.92 (17) Na 2109.7 (7) 4411 451.9 (4) -3315.6 (7) [142]

3
2

+
Ne -1047.22 (16) Na 2283.3 (8) 4577 618.0 (4) -3330.5 (8) [142]

3
2

−

Ne -1006.44 (7) Na 1985.0 (8) 4448 489.3 (4) -2991.4 (8) [142]

23
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Appendix A. Coefficients of the Isobaric Multiplet Mass Equation

continued from Table A.2 Properties of T = 1/2 Doublets

A Jπ Nucl. Mass Excess Nucl. Mass Excess Eexc a b References
(keV) (keV) (keV)

3
2

+
Na -9529.85 (1) Mg -5473.26 (69) 0 -7501.56 (35) -4056.59 (69) [143]

5
2

+
Na -9089.86 (1) Mg -5022.55 (71) 446 -7056.21 (35) -4067.31 (70) [143]

7
2

+
Na -7453.84 (3) Mg -3421.1 (12) 2065 -5437.5 (6) -4032.8 (12) [143]

1
2

+
Na -7139.12 (2) Mg -3114.3 (16) 2375 -5126.7 (8) -4024.9 (16) [143]

1
2

−

Na -6890.00 (4) Mg -2702 (3) 2706 -4796 (2) -4188 (3) [143]
9
2

+
Na -6826.35 (3) Mg -2758.6 (13) 2710 -4792.5 (6) -4067.8 (13) [143]

3
2

+
Na -6547.79 (2) Mg -2565.2 (22) 2946 -4556.5 (11) -3982.6 (22) [143]

3
2

−

Na -5852.25 (4) Mg -1675 (5) 3738 -3764 (3) -4177 (5) [143]
5
2

−

Na -5681.78 (3) Mg -1500 (5) 3911 -3591 (3) -4182 (5) [143]
5
2

+
Na -5615.61 (2) Mg -1609 (5) 3890 -3612 (3) -4006 (5) [143]

1
2

+
Na -5100.21 (8) Mg -1120 (6) 4392 -3110 (3) -3980 (6) [143]

7
2

+
Na -4755.24 (5) Mg -788 (6) 4730 -2772 (3) -3967 (6) [143]

5
2

+
Na -4151.28 (11) Mg -186 (6) 5333 -2169 (3) -3965 (6) [143]

11
2

+
Na -3995.9 (3) Mg -20 (2) 5494 -2008 (1) -3976 (18) [143]

5
2

+
Na -3788.10 (10) Mg 183 (7) 5699 -1803 (4) -3971 (7) [143]

3
2

+
Na -3763.82 (7) Mg 218 (8) 5729 -1773 (4) -3982 (8) [143]

7
2

+
Na -3603.04 (12) Mg 458.7 (61) 5930 -1572.2 (31) -4061.8 (6) [143]

3
2

−

Na -3565.43 (12) Mg 511 (6) 5975 -1527 (3) -4076 (6) [143]
7
2

−

Na -3487.66 (4) Mg 652 (6) 6084 -1418 (3) -4139 (6) [143]
25

5
2

+
Mg -13192.77 (5) Al -8916.17 (48) 0 -11054.47 (24) -4276.60 (48) [144]

1
2

+
Mg -12607.73 (5) Al -8464.5 (7) 519 -10536.1 (4) -4143.3 (7) [144]

3
2

+
Mg -12218.02 (5) Al -7971.3 (7) 960 -10094.6 (4) -4246.7 (7) [144]

7
2

+
Mg -11581.00 (5) Al -7303.7 (7) 1613 -9442.3 (4) -4277.3 (7) [144]

5
2

+
Mg -11228.15 (5) Al -7126.7 (7) 1878 -9177.4 (4) -4101.5 (7) [144]

1
2

+
Mg -10629.41 (7) Al -6430.9 (11) 2525 -8530.1 (5) -4198.5 (11) [144]

3
2

+
Mg -10391.31 (6) Al -6242.9 (8) 2738 -8317.1 (4) -4148.4 (8) [144]

7
2

+
Mg -10455.0 (3) Al -6196.0 (7) 2729 -8325.5 (4) -4259.0 (8) [144]

3
2

−

Mg -9779.40 (5) Al -5854.2 (9) 3238 -7816.8 (5) -3925.2 (9) [144]
9
2

+
Mg -9787.71 (18) Al -5492.0 (9) 3415 -7639.8 (5) -4295.7 (9) [144]

7
2

−

Mg -9222.04 (20) Al -5220.7 (9) 3834 -7221.4 (5) -4001.4 (9) [144]
5
2

+
Mg -9284.9 (4) Al -5057.1 (9) 3884 -7171.0 (5) -4227.8 (11) [144]

9
2

+
Mg -9133.2 (3) Al -4890 (2) 4043 -7012 (1) -4243 (2) [144]

1
2

−

Mg -8915.7 (4) Al -5093 (2) 4051 -7004 (1) -3822 (2) [144]
3
2

+
Mg -8833.16 (15) Al -4724 (4) 4276 -6779 (2) -4109 (4) [144]

9
2

+
Mg -8481.2 (4) Al -4400 (5) 4614 -6441 (3) -4081 (5) [144]

27
5
2

+
Al -17196.70 (11) Si -12384.35 (15) 0 -14790.52 (8) -4812.36 (18) [145]

1
2

+
Al -16352.94 (11) Si -11603.5 (3) 813 -13978.2 (2) -4749.5 (3) [145]

3
2

+
Al -16182.25 (11) Si -11427.0 (3) 986 -13804.6 (2) -4755.3 (3) [145]

7
2

+
Al -14984.69 (15) Si -10220.8 (3) 2188 -12602.7 (2) -4764.0 (3) [145]

5
2

+
Al -14461.8 (7) Si -9736.8 (4) 2692 -12099.3 (4) -4725.1 (8) [145]

3
2

+
Al -14214.7 (2) Si -9518.1 (4) 2925 -11866.4 (2) -4696.7 (4) [145]

9
2

+
Al -14192.5 (8) Si -9474.5 (3) 2958 -11833.5 (5) -4718.1 (9) [145]

1
2

+
Al -13516.3 (9) Si -8844.1 (2) 3611 -11180.2 (7) -4672.2 (2) [145]

3
2

+
Al -13239.9 (5) Si -8580.7 (2) 3881 -10910.3 (6) -4659.2 (2) [145]

1
2

−

Al -13142.1 (5) Si -8246.2 (2) 4097 -10694.2 (8) -4895.9 (2) [145]
5
2

+
Al -12786.5 (5) Si -8095.2 (9) 4350 -10440.8 (5) -4691.4 (10) [145]

11
2

+
Al -12686.4 (5) Si -7937.1 (5) 4479 -10311.7 (4) -4749.4 (7) [145]

7
2

+
Al -12616.7 (8) Si -7909.6 (7) 4528 -10263.1 (6) -4707.2 (11) [145]

5
2

+
Al -12385.1 (5) Si -7680.6 (2) 4758 -10032.8 (6) -4704.6 (13) [145]

5
2

+
Al -11948.7 (6) Si -7322 (2) 5155 -9636 (1) -4626 (2) [145]

3
2

−

Al -12041.1 (8) Si -7157 (5) 5192 -9599 (3) -4884 (5) [145]
9
2

+
Al -11776.8 (9) Si -7122.3 (5) 5341 -9449.6 (5) -4654.5 (10) [145]
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A.2. Experimental Data Base

continued from Table A.2 Properties of T = 1/2 Doublets

A Jπ Nucl. Mass Excess Nucl. Mass Excess Eexc a b References
(keV) (keV) (keV)

29
1
2

+
Si -21895.08 (1) P -16952.62 (60) 0 -19423.85 (30) -4942.45 (60) [145]

3
2

+
Si -20621.68 (2) P -15569.07 (60) 1329 -18095.38 (31) -5052.61 (61) [145]

5
2

+
Si -19866.93 (4) P -14998.71 (63) 1992 -17432.82 (32) -4868.21 (63) [145]

3
2

+
Si -19469.06 (2) P -14529.9 (7) 2425 -16999.5 (4) -4939.1 (7) [145]

5
2

+
Si -18828.05 (4) P -13846.7 (7) 3087 -16337.4 (4) -4981.3 (7) [145]

7
2

−

Si -18270.93 (15) P -13505.0 (7) 3536 -15888.0 (4) -4765.9 (8) [145]
7
2

+
Si -17814.9 (9) P -12872.1 (7) 4081 -15343.5 (6) -4942.8 (2) [145]

9
2

+
Si -17154.1 (7) P -12310.6 (9) 4692 -14732.4 (6) -4843.5 (2) [145]

1
2

+
Si -17054.73 (6) P -12194 (3) 4800 -14624 (2) -4861 (3) [145]

5
2

+
Si -16999.7 (6) P -11998.5 (8) 4925 -14499.1 (5) -5001.2 (10) [145]

3
2

−

Si -16960.52 (2) P -12610 (2) 4639 -14785 (1) -4351 (2) [145]
9
2

−

Si -16640.5 (5) P -11906 (3) 5151 -14273 (2) -4735 (3) [145]
7
2

+
Si -16082.2 (9) P -11127 (4) 5820 -13604 (2) -4956 (4) [145]

3
2

+
Si -15946.0 (2) P -10985 (3) 5959 -13465 (2) -4961 (3) [145]

1
2

−

Si -15514.2 (2) P -11426 (20) 5954 -13470 (10) -4089 (20) [145]
3
2

+
Si -15398.9 (2) P -10625 (5) 6413 -13012 (3) -4774 (5) [145]

5
2

+
Si -15373 (1) P -10448 (15) 6514 -12910 (8) -4925 (15) [145]

1
2

+
Si -15199.15 (14) P -10376 (5) 6637 -12787 (3) -4824 (5) [145]

311

1
2

+
P -24440.54 (1) S -19042.55 (24) 0 -21741.55 (12) -5397.99 (24) [145]

3
2

+
P -23174.39 (10) S -17793.7 (3) 1258 -20484.0 (2) -5380.7 (4) [145]

5
2

+
P -22206.8 (2) S -16807.0 (5) 2235 -19506.9 (3) -5399.9 (5) [145]

1
2

+
P -21306.4 (3) S -15963.55 (27) 3107 -18635.00 (20) -5342.89 (40) [145]

5
2

+
P -21145.5 (2) S -15757.1 (6) 3291 -18451.3 (3) -5388.5 (6) [145]

7
2

+
P -21025.9 (3) S -15691.5 (7) 3383 -18358.7 (4) -5334.5 (7) [145]

3
2

+
P -20934.7 (5) S -15606 (7) 3472 -18270 (4) -5329 (7) [145]

5
2

+
P -20250.2 (4) S -14963 (8) 4136 -17606 (4) -5288 (8) [145]

3
2

+
P -20179.8 (7) S -14839 (7) 4233 -17509 (4) -5341 (7) [145]

7
2

−

P -20009.6 (3) S -14591 (6) 4442 -17300 (3) -5419 (6) [145]
3
2

+
P -19846.9 (8) S -14518 (8) 4560 -17182 (4) -5329 (8) [145]

7
2

+
P -19806.7 (5) S -14463 (6) 4607 -17135 (3) -5344 (6) [145]

5
2

+
P -19657.4 (5) S -14325 (6) 4751 -16991 (3) -5333 (6) [145]

5
2

+
P -19325 (6) S -14021 (12) 5069 -16673 (7) -5305 (14) [145]

1
2

+
P -19184.4 (14) S -13892 (6) 5204 -16538 (3) -5293 (6) [145]

33
3
2

+
S -26585.85 (1) Cl -21003.27 (44) 0 -23794.56 (22) -5582.59 (44) [145]

1
2

+
S -25744.85 (2) Cl -20192.75 (47) 826 -22968.80 (24) -5552.10 (47) [145]

5
2

+
S -24618.67 (4) Cl -19016.8 (6) 1977 -21817.7 (3) -5601.9 (6) [145]

3
2

+
S -24272.41 (2) Cl -18651.5 (6) 2333 -21461.9 (3) -5620.9 (6) [145]

5
2

+
S -23718.22 (2) Cl -18164.3 (6) 2854 -20941.2 (3) -5554.0 (6) [145]

7
2

+
S -23617.3 (1) Cl -18027.9 (6) 2972 -20822.6 (3) -5589.4 (6) [145]

3
2

−

S -23365.16 (2) Cl -18157.0 (6) 3034 -20761.1 (3) -5208.2 (6) [145]
5
2

+
S -22754.3 (2) Cl -17187.2 (6) 3824 -19970.7 (3) -5567.1 (7) [145]

3
2

+
S -22651.12 (6) Cl -17032.1 (5) 3953 -19841.6 (3) -5619.1 (5) [145]

5
2

−

S -22441.53 (6) Cl -17023.97 (48) 4062 -19732.75 (24) -5417.57 (48) [145]
1
2

+
S -22530.50 (11) Cl -16903.9 (7) 4078 -19717.2 (4) -5626.6 (7) [145]

3
2

−

S -22375.01 (2) Cl -16885.8 (8) 4165 -19630.4 (4) -5489.2 (8) [145]
1
2

+
S -22210.5 (3) Cl -16564.3 (5) 4408 -19387.4 (3) -5646.2 (6) [145]

3
2

+
S -22162.12 (5) Cl -16539.1 (6) 4444 -19350.6 (3) -5623.1 (6) [145]

1
2

−

S -21667.98 (4) Cl -16486 (4) 4718 -19077 (2) -5182 (4) [145]
5
2

+
S -21838.6 (7) Cl -16257.1 (6) 4747 -19047.8 (5) -5581.5 (9) [145]

7
2

−

S -21644.1 (10) Cl -16227.9 (11) 4859 -18936.0 (8) -5416.2 (15) [145]
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Appendix A. Coefficients of the Isobaric Multiplet Mass Equation

continued from Table A.2 Properties of T = 1/2 Doublets

A Jπ Nucl. Mass Excess Nucl. Mass Excess Eexc a b References
(keV) (keV) (keV)

35
3
2

+
Cl -29013.52 (4) Ar -23047.39 (75) 0 -26030.45 (37) -5966.13 (75) [145]

1
2

+
Cl -27794.08 (8) Ar -21863.4 (8) 1202 -24828.7 (4) -5930.7 (8) [145]

5
2

+
Cl -27250.37 (6) Ar -21296.8 (8) 1757 -24273.6 (4) -5953.6 (8) [145]

7
2

+
Cl -26367.9 (2) Ar -20446.6 (17) 2624 -23407.3 (9) -5921.3 (17) [145]

3
2

+
Cl -26319.9 (1) Ar -20409.5 (8) 2666 -23364.7 (4) -5910.4 (8) [145]

5
2

+
Cl -26010.78 (9) Ar -20064.58 (76) 2993 -23037.67 (38) -5946.20 (76) [145]

7
2

−

Cl -25850.7 (2) Ar -19854 (10) 3178 -22853 (5) -5996 (10) [145]
1
2

+
Cl -25046.0 (6) Ar -19163 (10) 3926 -22105 (5) -5883 (10) [145]

3
2

−

Cl -24954.3 (3) Ar -19035 (10) 4036 -21995 (5) -5919 (10) [145]
3
2

−

Cl -24835.6 (2) Ar -18905 (10) 4160 -21871 (5) -5930 (10) [145]
9
2

−

Cl -24666 (2) Ar -18688 (3) 4354 -21677 (2) -5977 (3) [146]
11
2

−

Cl -23607 (2) Ar -17663 (3) 5396 -20635 (2) -5943 (3) [146]
11
2

−

Cl -23087 (2) Ar -17433 (3) 5771 -20260 (2) -5653 (3) [146]
13
2

−

Cl -22927 (2) Ar -17281 (3) 5927 -20104 (2) -5645 (3) [146]
15
2

−

Cl -20695 (2) Ar -14938 (3) 8214 -17816 (2) -5756 (3) [146]
15
2

−

Cl -20527 (2) Ar -14835 (3) 8350 -17681 (2) -5691 (3) [146]
19
2

−

Cl -18834 (2) Ar -13142 (3) 10043 -15988 (2) -5691 (3) [146]
23
2

−

Cl -16443 (2) Ar -10771 (3) 12424 -13607 (2) -5671 (3) [146]
37

3
2

+
Ar -30947.67 (21) K -24800.20 (9) 0 -27873.94 (12) -6147.48 (23) [145]

1
2

+
Ar -29537.85 (23) K -23429.35 (10) 1391 -26483.60 (13) -6108.51 (25) [145]

7
2

−

Ar -29336.40 (22) K -23419.95 (10) 1496 -26378.18 (12) -5916.46 (24) [145]
7
2

+
Ar -28730.6 (3) K -22514.96 (15) 2252 -25622.8 (2) -6215.6 (4) [145]

3
2

−

Ar -28457.1 (4) K -22630.02 (16) 2331 -25543.5 (2) -5827.1 (4) [145]
5
2

+
Ar -28151.6 (4) K -22049.93 (12) 2774 -25100.8 (2) -6101.6 (4) [145]

5
2

−

Ar -27673.8 (3) K -21718.21 (13) 3178 -24696.0 (2) -5955.6 (3) [145]
5
2

+
Ar -27776.4 (14) K -21560.9 (3) 3206 -24668.6 (7) -6215.5 (15) [145]

3
2

−

Ar -27429.4 (4) K -21486 (2) 3417 -24458 (1) -5943 (2) [145]
3
2

+
Ar -27345.7 (7) K -21178 (3) 3612 -24262 (2) -6167 (3) [145]

39
3
2

+
K -33807.19 (1) Ca -27282.70 (60) 0 -30544.95 (30) -6524.49 (60) [147]

1
2

+
K -31284.7 (2) Ca -24814.2 (11) 2496 -28049.4 (6) -6470.5 (11) [147]

7
2

−

K -30992.9 (2) Ca -24485.9 (9) 2806 -27739.4 (5) -6507.0 (9) [147]
3
2

−

K -30788.0 (2) Ca -24257 (3) 3023 -27522 (2) -6531 (3) [147]
9
2

−

K -30209.7 (2) Ca -23643.1 (10) 3619 -26926.4 (5) -6566.6 (11) [147]
1
2

+
K -29711.9 (3) Ca -23262.0 (18) 4058 -26486.9 (9) -6449.9 (18) [147]

41
7
2

−

Ca -35137.92 (14) Sc -28642.41 (8) 0 -31890.17 (8) -6495.51 (16) [148]
3
2

−

Ca -33195.16 (21) Sc -26925.96 (12) 1830 -30060.56 (12) -6269.20 (24) [148]
3
2

+
Ca -33128.0 (3) Sc -26546.5 (5) 2053 -29837.3 (3) -6581.5 (6) [148]

3
2

−

Ca -32675.6 (3) Sc -26227.6 (5) 2439 -29451.6 (3) -6448.0 (6) [148]
5
2

−

Ca -32561.4 (6) Sc -26054.31 (11) 2583 -29307.9 (3) -6507.1 (6) [148]
5
2

+
Ca -32532.3 (4) Sc -25975.77 (11) 2637 -29254.0 (2) -6556.5 (4) [148]

1
2

+
Ca -32467.4 (2) Sc -25923.24 (13) 2695 -29195.3 (6) -6544.2 (13) [148]

7
2

+
Ca -32254.0 (7) Sc -25759.94 (11) 2884 -29007.0 (4) -6494.1 (7) [148]

7
2

−

Ca -32178.6 (6) Sc -25670.3 (3) 2966 -28924.5 (4) -6508.3 (7) [148]
9
2

+
Ca -31936.6 (7) Sc -25457.3 (3) 3194 -28697.0 (4) -6479.3 (8) [148]

11
2

+
Ca -31768.33 (20) Sc -25284.3 (7) 3364 -28526.3 (4) -6484.0 (7) [148]

1
2

+
Ca -31737.9 (4) Sc -25230.9 (4) 3406 -28484.4 (3) -6507.0 (5) [148]

3
2

+
Ca -31610.6 (9) Sc -25079.7 (3) 3545 -28345.2 (5) -6530.9 (10) [148]

1
2

−

Ca -31524.4 (3) Sc -25162 (5) 3547 -28343 (3) -6362 (5) [148]
5
2

+
Ca -31643.0 (5) Sc -24952 (13) 3593 -28298 (7) -6691 (13) [148]

7
2

+
Ca -31523.5 (8) Sc -24945.7 (3) 3656 -28234.6 (5) -6577.8 (9) [148]

3
2

−

Ca -31407.3 (4) Sc -24868.4 (3) 3753 -28137.9 (15) -6538.9 (31) [148]
5
2

+
Ca -31397.5 (5) Sc -24861.7 (3) 3761 -28129.6 (3) -6535.8 (6) [148]

1
2

+
Ca -31292.0 (6) Sc -24674 (5) 3907 -27983 (3) -6618 (5) [148]

7
2

−

Ca -30860.6 (10) Sc -24619.6 (4) 4151 -27740.1 (6) -6241.0 (11) [148]
7
2

−

Ca -29989.8 (16) Sc -24612.2 (6) 4590 -27301.0 (9) -5377.6 (17) [148]
43

7
2

−

Sc -36188.14 (187) Ti -29321.2 (69) 0 -32754.7 (36) -6866.9 (72) [149]
3
2

+
Sc -36036.7 (19) Ti -29008.2 (70) 233 -32522.5 (36) -7028.5 (73) [149]

3
2

−

Sc -35715.8 (19) Ti -28846 (13) 474 -32281 (6) -6870 (13) [149]
7
2

+
Sc -34851.3 (19) Ti -27837.7 (70) 1411 -31344.5 (36) -7013.6 (73) [149]

11
2

−

Sc -34358.2 (19) Ti -27463.5 (70) 1844 -30910.9 (36) -6894.7 (73) [149]
9
2

+
Sc -34256.7 (19) Ti -27258.8 (70) 1997 -30757.8 (36) -6997.9 (73) [149]

15
2

−

Sc -33200.7 (19) Ti -26369.5 (70) 2970 -29785.1 (36) -6831.2 (73) [149]
19
2

−

Sc -33064.9 (19) Ti -26254.8 (70) 3095 -29659.9 (36) -6810.1 (73) [149]

continued on next page
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A.2. Experimental Data Base

continued from Table A.2 Properties of T = 1/2 Doublets

A Jπ Nucl. Mass Excess Nucl. Mass Excess Eexc a b References
(keV) (keV) (keV)

45
7
2

−

Ti -39008.31 (81) V -31880 (17) 0 -35444 (9) -7129 (17) [150]
3
2

−

Ti -38971.78 (83) V -31823 (17) 47 -35397 (9) -7149 (17) [151]
5
2

−

Ti -38968.92 (84) V -31823 (17) 49 -35396 (9) -7149 (17) [151]
3
2

+
Ti -38679.8 (9) V -31494 (17) 358 -35087 (9) -7186 (17) [150]

5
2

+
Ti -38265.7 (9) V -31083 (17) 770 -34674 (9) -7183 (17) [150]

7
2

+
Ti -37783.0 (9) V -30608 (17) 1249 -34196 (9) -7175 (17) [150]

9
2

−

Ti -37654.7 (8) V -30556 (17) 1339 -34105 (9) -7099 (17) [150]
11
2

−

Ti -37540.1 (8) V -30418 (17) 1466 -33979 (9) -7122 (17) [150]
9
2

+
Ti -37127.8 (9) V -29963 (17) 1899 -33546 (9) -7165 (17) [150]

11
2

+
Ti -36535.1 (10) V -29391 (17) 2482 -32963 (9) -7144 (17) [150]

13
2

−

Ti -36352.1 (9) V -29254 (17) 2642 -32803 (9) -7098 (17) [150]
15
2

−

Ti -35993.3 (9) V -28875 (17) 3010 -32434 (9) -7118 (17) [150]
13
2

+
Ti -35562.3 (10) V -28436 (17) 3446 -31999 (9) -7127 (17) [150]

17
2

−

Ti -35407.2 (9) V -28275 (17) 3603 -31841 (9) -7132 (17) [150]
15
2

+
Ti -35087.2 (10) V -27970 (17) 3916 -31528 (9) -7117 (17) [150]

19
2

−

Ti -34664.4 (10) V -27488 (17) 4368 -31076 (9) -7176 (17) [150]
7
2

−

Ti -34285 (7) V -27080 (56) 4762 -30683 (28) -7206 (56) [151]
19
2

+
Ti -33368.9 (11) V -26194 (17) 5663 -29782 (9) -7175 (17) [150]

23
2

−

Ti -32846.4 (11) V -25673 (17) 6185 -29260 (9) -7173 (17) [150]
27
2

−

Ti -31866.0 (12) V -24720 (17) 7151 -28293 (9) -7146 (17) [150]
47

3
2

−

V -42005.61 (32) Cr -34559 (14) 0 -38282 (7) -7447 (14) [152]
5
2

−

V -41918.09 (32) Cr -34459 (14) 94 -38189 (7) -7459 (14) [152]
7
2

−

V -41859.79 (32) Cr -34384 (14) 161 -38122 (7) -7475 (14) [152]
3
2

+
V -41746.13 (32) Cr -34087 (14) 366 -37916 (7) -7659 (14) [152]

5
2

+
V -41345.26 (32) Cr -33688 (14) 766 -37517 (7) -7657 (14) [152]

11
2

−

V -40710.65 (33) Cr -33226 (14) 1314 -36969 (7) -7484 (14) [152]
7
2

+
V -40867.06 (32) Cr -33213 (14) 1243 -37040 (7) -7654 (14) [152]

1
2

+
V -40344.99 (34) Cr -32728 (16) 1746 -36536 (8) -7617 (16) [152]

9
2

+
V -40258.65 (32) Cr -32602 (14) 1852 -36430 (7) -7656 (14) [152]

11
2

+
V -39590.6 (5) Cr -31940 (14) 2517 -35765 (7) -7650 (14) [152]

15
2

−

V -39390.6 (6) Cr -31905 (14) 2635 -35648 (7) -7486 (14) [152]
13
2

+
V -38735.3 (6) Cr -31088 (14) 3371 -34912 (7) -7647 (14) [152]

19
2

−

V -37872.6 (8) Cr -30420 (14) 4136 -34146 (7) -7453 (14) [152]
15
2

+
V -38051.3 (7) Cr -30344 (14) 4085 -34197 (7) -7708 (14) [152]

23
2

−

V -36102.6 (10) Cr -28654 (14) 5904 -32378 (7) -7449 (14) [152]
25
2

−

V -34606.7 (11) Cr -27180 (14) 7389 -30893 (7) -7427 (14) [152]
27
2

−

V -34122.2 (11) Cr -26648 (14) 7898 -30385 (7) -7475 (14) [152]
31
2

+
V -32001.0 (13) Cr -24537 (14) 10014 -28269 (7) -7464 (14) [152]

49
5
2

−

Cr -45332.92 (237) Mn -37614.6670 (24) 0 -41474 (12) -7718 (24) [153]
7
2

−

Cr -45061.20 (238) Mn -37353.2870 (24) 267 -41207 (12) -7708 (24) [153]
9
2

−

Cr -44249.3 (24) Mn -36555.4870 (24) 1072 -40402 (12) -7694 (24) [153]
11
2

−

Cr -43770.8 (24) Mn -36073.3570 (24) 1552 -39922 (12) -7697 (24) [153]
13
2

−

Cr -42832.8 (24) Mn -35133.3670 (24) 2491 -38983 (12) -7699 (24) [153]
15
2

−

Cr -42142.8 (24) Mn -34425.3670 (24) 3190 -38284 (12) -7717 (24) [153]
5
2

−

Cr -41281 (6) Mn -33655.6670 (56) 4006 -37468 (28) -7625 (56) [153]
17
2

−

Cr -41114.8 (25) Mn -33364.3670 (24) 4235 -37240 (12) -7750 (24) [153]
19
2

−

Cr -40966.9 (25) Mn -33168.3670 (24) 4407 -37068 (12) -7799 (24) [153]
23
2

−

Cr -39370.5 (25) Mn -31558.2670 (24) 6010 -35464 (12) -7812 (24) [153]
27
2

−

Cr -37325.5 (27) Mn -29534.2670 (24) 8044 -33430 (13) -7791 (25) [153]
31
2

+
Cr -34632.6 (28) Mn -26890.1670 (24) 10713 -30761 (13) -7742 (25) [153]

continued on next page
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Appendix A. Coefficients of the Isobaric Multiplet Mass Equation

continued from Table A.2 Properties of T = 1/2 Doublets

A Jπ Nucl. Mass Excess Nucl. Mass Excess Eexc a b References
(keV) (keV) (keV)

51
5
2

−

Mn -48243.71 (89) Fe -40221 (15) 0 -44233 (8) -8022 (15) [154]
7
2

−

Mn -48006.4 (9) Fe -39968 (15) 246 -43987 (8) -8038 (15) [154]
9
2

−

Mn -47103.9 (9) Fe -39075 (15) 1144 -43089 (8) -8029 (15) [154]
11
2

−

Mn -46755.2 (10) Fe -38705 (15) 1503 -42730 (8) -8050 (15) [154]
1
2

+
Mn -45967.8 (9) Fe -37732 (17) 2383 -41850 (9) -8235 (17) [154]

13
2

−

Mn -45286.4 (11) Fe -37268 (15) 2956 -41277 (8) -8018 (15) [154]
15
2

−

Mn -44992.9 (11) Fe -36946 (15) 3264 -40969 (8) -8047 (15) [154]
17
2

−

Mn -44563.1 (12) Fe -36632 (15) 3636 -40597 (8) -7931 (15) [154]
19
2

−

Mn -44104.0 (12) Fe -36124 (15) 4119 -40114 (8) -7980 (16) [154]
21
2

−

Mn -42603.9 (12) Fe -34613 (16) 5624 -38609 (8) -7990 (16) [154]
23
2

−

Mn -41772.2 (12) Fe -33729 (16) 6482 -37751 (8) -8043 (16) [154]
27
2

−

Mn -41068.1 (12) Fe -32952 (16) 7223 -37010 (8) -8116 (16) [154]
25
2

−

Mn -40351.6 (12) Fe -32288 (16) 7913 -36320 (8) -8063 (16) [154]
29
2

−

Mn -36733.3 (14) Fe -28753 (17) 11490 -32743 (8) -7980 (17) [154]
29
2

−

Mn -36462.2 (14) Fe -28509 (21) 11747 -32486 (11) -7953 (21) [154]
31
2

+
Mn -35451.9 (14) Fe -27571 (19) 12721 -31512 (9) -7880 (19) [154]

53
7
2

−

Fe -50946.71 (171) Co -42658.60 (177) 0 -46802.65 (123) -8288.11 (246) [155]
9
2

−

Fe -49618.70 (173) Co -41331.6 (20) 1328 -45475.1 (13) -8287.1 (26) [155]
11
2

−

Fe -48607.47 (173) Co -40291.6 (20) 2354 -44449.5 (13) -8315.9 (26) [155]
19
2

−

Fe -47906.3 (17) Co -39462 (29) 3119 -43684 (15) -8445 (29) [155]
13
2

−

Fe -47770.8 (18) Co -39397.5 (22) 3219 -43584.2 (14) -8373.3 (28) [155]
15
2

−

Fe -47484.0 (18) Co -39077.5 (25) 3522 -43280.8 (15) -8406.5 (31) [155]
17
2

−

Fe -46941.3 (18) Co -38543.5 (27) 4061 -42742.4 (16) -8397.8 (32) [155]
55

7
2

−

Co -54029.23 (54) Ni -45335.20 (79) 0 -49682.21 (48) -8694.03 (95) [156]
11
2

−

Co -51055.76 (57) Ni -42453.1 (22) 2928 -46754.4 (12) -8602.7 (2.3) [156]
1
2

+
Co -51106.98 (55) Ni -42150 (6) 3054 -46629 (3) -8957 (6) [156]

13
2

−

Co -50292.69 (58) Ni -41752.1 (25) 3660 -46022.4 (13) -8540.6 (25) [156]
15
2

−

Co -50254.62 (58) Ni -41718.1 (25) 3696 -45986.4 (13) -8536.5 (25) [156]
3
2

+
Co -50466.25 (54) Ni -41583 (7) 3658 -46025 (4) -8883 (7) [156]

17
2

−

Co -49515.45 (59) Ni -40852.1 (26) 4499 -45183.8 (14) -8663.4 (27) [156]

57
3
2

−

Ni -56083.19 (67) Cu -47308.22 (62) 0 -51695.71 (45) -8774.96 (91) [157]
5
2

−

Ni -55314.7 (8) Cu -46280 (4) 899 -50797 (2) -9034 (4) [157]
1
2

−

Ni -54970.6 (8) Cu -46202 (4) 1110 -50586 (2) -8768 (4) [157]
5
2

−

Ni -53639.9 (8) Cu -44910 (10) 2421 -49275 (5) -8730 (10) [157]
59

3
2

−

Cu -56357.70 (63) Zn -47214.92 (83) 0 -51786.31 (52) -9142.78 (104) [158]
5
2

−

Cu -55443.69 (64) Zn -46675 (50) 728 -51059 (25) -8769 (50) [158]
7
2

−

Cu -54959.14 (64) Zn -46321 (2) 1147 -50640 (1) -8638 (2) [158]
7
2

−

Cu -54492.48 (64) Zn -45818 (2) 1632 -50155 (1) -8675 (3) [158]
9
2

−

Cu -53966.78 (65) Zn -44882 (3) 2363 -49424 (2) -9085 (3) [158]
13
2

−

Cu -52909.92 (65) Zn -43829 (3) 3417 -48369 (2) -9081 (3) [158]
61

3
2

−

Zn -56343 (16) Ga -47088 (53) 0 -51716 (28) -9255 (55)
63

3
2

−

Ga -56547.1 (13) Ge -46921 (37) 0 -51734 (19) -9626 (37)
65

3
2

−

Ge -56480.61 (257) As -46937 (85) 0 -51709 (43) -9544 (85)
67

5
2

−

As -56585.98 (137) Se -46580 (67) 0 -51583 (34) -10006 (67)
71

5
2

−

Br -56502.4 (54) Kr -46327 (128) 0 -51414 (65) -10175 (129)

1 All g.s. mass excess data are quoted from Ref. [112, 159].
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A.2. Experimental Data Base

A.2.2 Properties of T = 1 Triplets

Table A.3: Properties of T = 1 Triplets

Tz = 1 Tz = 0 Tz = −1 References

A Jπ Nucl. Mass Excess Nucl. Mass Excess Nucl. Mass Excess Eexc b c
(keV) (keV) (keV) (keV) (keV) (keV)

6

0+ He 17592.80 (42) Li 17649.76 (10) Be 18375.03 (545) 0 -391.12 (274) 334.16 (274) [136]

2+ He 19390 (25) Li 19453 (15) Be 20045 (51) 1757 -328 (28) 265 (32) [136]
8

2+ Li 20945.80 (5) Be 21568 (3) B 22921.58 (100) 0 -988 (1) 366 (3) [137]

1+ Li 21926.60 (11) Be 22581.7 (10) B 23691.1 (27) 922 -882.2 (14) 227.2 (17) [137]
10

0+ Be 12607.47 (8) B 13790.78 (39) C 15698.68 (41) 0 -1545.61 (21) 362.30 (44) [137]

2+ Be 15975.50 (9) B 17214.6 (7) C 19052.4 (7) 3382 -1538.4 (4) 299.3 (8) [137]
12

1+ B 13368.9 (14) C 15110 (3) N 17338 (10) 0 -1984.6 (9) 243.5 (32) [137]

2+ B 14322.0 (15) C 16105.8 (7) N 18298 (12) 970 -1988 (6) 204 (6) [137]

0+ B 16092 (11) C 17760 (20) N 19777 (9) 2604 -1843 (7) 174 (22) [137]
14

0+ C 3019.89 (1) N 5176.22 (2) O 8007.46 (11) 0 -2493.78 (6) 337.46 (6) [139]

1− C 9113.7 (2) N 10925.4 (1) O 13180 (10) 5673 -2033 (5) 222 (5) [139]

0+ C 9609.3 (2) N 11481 (2) O 13927 (10) 6272 -2159 (5) 287 (6) [139]

3− C 9748.1 (13) N 11770 (3) O 14279 (10) 6532 -2266 (5) 243 (6) [139]

2+ C 10032 (4) N 12035.67 (12) O 14597 (10) 6821 -2283 (4) 279 (6) [139]

2+ C 11337.8 (8) N 13295 (7) O 15775 (10) 8069 -2219 (5) 261 (9) [139]
16

0− N 5804.1 (26) O 8059 (4) F 10680.3 (84) 41 -2438 (5) 183 (6) [140]

2− N 5683.7 (26) O 8231.6 (4) F 11104 (10) 199 -2710 (5) 162 (5) [140]

1− N 6080.9 (26) O 8353 (8) F 10873 (10) 295 -2396 (5) 124 (10) [140]

3− N 5981.9 (26) O 8522 (2) F 11401 (9) 495 -2710 (5) 170 (5) [140]

1+ N 9037 (4) O 11472 (2) F 14438 (10) 3508 -2701 (6) 265 (6) [140]

2+ N 9207 (4) O 11705.3 (16) F 14550 (10) 3680 -2672 (6) 173 (6) [140]
18

0+ O -782.816 (1) F 1914.66 (47) Ne 5317.624 (364) 0 -3050.22 (18) 352.74 (51) [141]

2+ O 1199.25 (9) F 3934.95 (50) Ne 7204.9 (4) 1964 -3002.8 (3) 267.1 (6) [141]

4+ O 2772.02 (40) F 5525 (2) Ne 8693.8 (6) 3514 -2961 (1) 208 (2) [141]

0+ O 2850.94 (11) F 5626 (3) Ne 8893.9 (21) 3641 -3021 (1) 246 (4) [141]

2+ O 3137.62 (14) F 5836.7 (9) Ne 8934.0 (7) 3820 -2898.2 (4) 199 (1) [141]

0+ O 4553.6 (6) F 7009.58 (57) Ne 9908 (8) 5008 -2677 (4) 221 (4) [141]

201

2+ F -17.46 (3) Ne 3231.3 (19) Na 6850.2 (11) 0 -3433.8 (5) 185.1 (20) [160]

3+ F 638.56 (5) Ne 3842.1 (30) Na 7447 (8) 621 -3404 (4) 200 (5) [160]

4+ F 805.27 (5) Ne 4048.1 (30) Na 7652 (7) 814 -3423 (4) 181 (5) [160]
22

0+ Ne -8024.714 (18) Na -4524.36 (21) Mg -399.94 (32) 0 -3812.39 (16) 312.03 (26) [161]

2+ Ne -6750.137 (19) Na -3229.39 (23) Mg 847.08 (32) 1273 -3798.61 (16) 277.86 (28) [161]

4+ Ne -4667.0 (3) Na -1109.96 (30) Mg 2908.28 (32) 3361 -3787.6 (3) 230.6 (4) [161]

2+ Ne -3568.9 (3) Na -8 (2) Mg 4002.1 (5) 4459 -3785 (1) 224 (2) [161]

242

4+ Na -8417.96 (4) Mg -4417.29 (5) Al -48.9 (10) 0 -4184.5 (5) 183.9 (5) [143]

1+ Na -7945.75 (4) Mg -3966.38 (22) Al 376.9 (10) 450 -4161.3 (5) 182.0 (6) [143]

2+ Na -7854.76 (4) Mg -3875.03 (16) Al 462 (4) 539 -4158 (2) 179 (2) [143]
26

0+ Mg -16214.55 (3) Al -11981.81 (7) Si -7140.98 (11) 0 -4536.78 (6) 304.05 (9) [145]

2+ Mg -14405.82 (5) Al -10140.64 (7) Si -5345.1 (3) 1816 -4530.4 (2) 265.2 (2) [145]

2+ Mg -13276.21 (5) Al -9050.223 (65) Si -4357.5 (4) 2885 -4459.4 (2) 233.4 (3) [145]

0+ Mg -12625.99 (10) Al -8456.48 (15) Si -3808.5 (3) 3483 -4408.8 (2) 239.3 (3) [145]

3+ Mg -12273.00 (5) Al -8018.19 (15) Si -3385 (2) 3888 -4444 (1) 189 (1) [145]

2+ Mg -11881.98 (6) Al -7662.19 (9) Si -3003 (1) 4264 -4439 (1) 220 (1) [145]

3+ Mg -11864.47 (6) Al -7610.94 (8) Si -2958 (11) 4302 -4453 (6) 200 (6) [145]

0+ Mg -11242.26 (13) Al -7015.00 (14) Si -2335 (2) 4916 -4454 (1) 226 (1) [145]

2+ Mg -10922.81 (6) Al -6665.55 (10) Si -1912 (12) 5279 -4505 (6) 248 (6) [145]

4+ Mg -10738.44 (8) Al -6483.73 (8) Si -1811 (20) 5435 -4464 (10) 209 (10) [145]

4+ Mg -10498.95 (11) Al -6285.92 (10) Si -1579 (28) 5658 -4460 (14) 247 (14) [145]

0+ Mg -9959 (1) Al -5795.65 (12) Si -1201 (25) 6128 -4379 (13) 216 (13) [145]

2+ Mg -9468.79 (17) Al -5334.38 (9) Si -791 (25) 6582 -4339 (13) 205 (13) [145]

3− Mg -9338.13 (5) Al -5245.63 (11) Si -352 (17) 6801 -4493 (9) 401 (9) [145]

2+ Mg -8843.3 (2) Al -4648.9 (3) Si 9 (13) 7285 -4426 (7) 232 (7) [145]
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Appendix A. Coefficients of the Isobaric Multiplet Mass Equation

continued from Table A.3 Properties of T = 1 Triplets

Tz = 1 Tz = 0 Tz = −1 References

A Jπ Nucl. Mass Excess Nucl. Mass Excess Nucl. Mass Excess Eexc b c
(keV) (keV) (keV) (keV) (keV) (keV)

283

3+ Al -16850.49 (13) Si -12176.87 (10) P -7149.1 (11) 0 -4850.7 (6) 177.1 (6) [145]

2+ Al -16819.85 (13) Si -12111.24 (12) P -7043.4 (11) 68 -4888.2 (6) 179.6 (6) [145]

0+ Al -15878.11 (13) Si -11220.5 (8) P -6272 (3) 936 -4803 (2) 145 (2) [145]

3+ Al -15836.86 (13) Si -11116.55 (12) P -6015.1 (12) 1070 -4910.9 (6) 190.6 (6) [145]

2+ Al -15227.57 (13) Si -10609.34 (14) P -5633 (3) 1569 -4797 (2) 179 (2) [145]

1+ Al -15230.17 (13) Si -10592.37 (15) P -5581 (3) 1591 -4824 (2) 187 (2) [145]

2+ Al -14711.57 (13) Si -10060.16 (18) P -5045 (2) 2120 -4833 (1) 182 (1) [145]

1+ Al -14649.03 (13) Si -10046.79 (16) P -5006 (5) 2159 -4821 (3) 219 (3) [145]

4+ Al -14578.72 (13) Si -10058.29 (22) P -4933 (5) 2203 -4823 (3) 302 (3) [145]

2+ Al -14364.31 (13) Si -9714.2 (7) P -4743 (5) 2452 -4811 (3) 161 (3) [145]

3+ Al -13862.96 (18) Si -9253.4 (3) P -4253 (5) 2936 -4805 (3) 195 (3) [145]

1+ Al -13745 (1) Si -9162.5 (3) P -4176 (5) 3031 -4785 (3) 202 (3) [145]

3+ Al -13554.10 (13) Si -8951.48 (14) P -3985 (5) 3229 -4785 (3) 182 (3) [145]

6− Al -11685 (2) Si -7136 (2) P -2209 (10) 5049 -4738 (5) 189 (6) [145]
30

0+ Si -24432.96 (3) P -19523.60 (32) S -14062 (3) 0 -5185 (2) 276 (2) [162]

2+ Si -22197.639 (28) P -17263.15 (32) S -11851.8 (31) 2236 -5172.9 (15) 238.4 (16) [162]

2+ Si -20934.47 (4) P -16017.80 (32) S -10659.8 (31) 3469 -5137.4 (15) 220.7 (16) [162]

1+ Si -20663.48 (5) P -15698.40 (33) S -10386 (5) 3757 -5139 (3) 173 (3) [162]

324

1+ P -24304.94 (12) S -19013.0 (10) Cl -13334.64 (57) 0 -5485.1 (3) 193.2 (11) [145]

2+ P -24226.88 (13) S -18900.5 (12) Cl -13244.7 (6) 94 -5491.1 (3) 164.7 (13) [145]

0+ P -23792.24 (13) S -18479.8 (8) Cl -12868.5 (6) 505 -5461.8 (3) 149.4 (9) [145]

1+ P -23155.55 (13) S -17890.1 (2) Cl -12166.1 (6) 1147 -5494.7 (3) 229.3 (4) [145]

2+ P -22982.10 (13) S -17672 (3) Cl -12009 (5) 1331 -5487 (3) 176 (4) [145]

3+ P -22549.94 (16) S -17286.2 (6) Cl -11615 (4) 1734 -5467 (2) 204 (3) [145]

1+ P -22075.24 (14) S -16808.0 (7) Cl -11141 (7) 2210 -5467 (4) 200 (4) [145]

2+ P -22087.15 (17) S -16820 (2) Cl -11065 (5) 2228 -5511 (3) 244 (4) [145]

2− P -21040.95 (13) S -15939.0 (8) Cl -10279 (5) 3132 -5381 (3) 279 (3) [145]

3− P -20985.0 (14) S -15792 (1) Cl -10169 (10) 3236 -5408 (5) 215 (5) [145]
34

0+ S -29931.66 (6) Cl -24440.03 (7) Ar -18377.39 (34) 0 -5777.14 (17) 285.50 (18) [145]

2+ S -27804.10 (6) Cl -22282.13 (11) Ar -16286.5 (5) 2126 -5758.8 (3) 236.8 (3) [145]

2+ S -26627.45 (6) Cl -21056.7 (3) Ar -15089.9 (6) 3326 -5768.8 (3) 198.1 (4) [145]

0+ S -26015.25 (6) Cl -20499.9 (3) Ar -14506 (2) 3910 -5754 (1) 239 (1) [145]

2+ S -25816.85 (6) Cl -20292.2 (3) Ar -14249.6 (11) 4131 -5783.6 (5) 259 (1) [145]

0+ S -24703.48 (6) Cl -19430 (13) Ar -13410 (4) 5069 -5647 (2) 373 (13) [145]

2+ S -23503.54 (10) Cl -18070.7 (3) Ar -11852 (9) 6441 -5826 (5) 393 (5) [145]
36

2+ Cl -29521.99 (4) Ar -23620.3 (4) K -17417.33 (35) 0 -6052.3 (2) 150.7 (5) [145]

3+ Cl -28733.55 (4) Ar -22894.4 (9) K -16617 (15) 772 -6058 (8) 219 (8) [145]

1+ Cl -28357.10 (4) Ar -22522.0 (6) K -16304.5 (5) 1126 -6026.3 (3) 191.2 (7) [145]

1+ Cl -27920.88 (4) Ar -22098.8 (9) K -15798.3 (4) 1581 -6061.3 (2) 239.2 (9) [145]

2− Cl -27570.79 (4) Ar -21784 (10) K -15527 (20) 1893 -6022 (10) 234 (14) [145]

2+ Cl -27562.58 (4) Ar -21676.0 (6) K -15147 (30) 2058 -6208 (15) 321 (15) [145]
38

0+ Ar -34714.74 (25) K -28670.3 (4) Ca -22058.47 (25) 0 -6328.1 (2) 283.7 (5) [163]

2+ Ar -32547.10 (25) K -26399.61 (30) Ca -19845.34 (27) 2218 -6350.88 (19) 203.39 (35) [163]
40

4− K -33535.49 (6) Ca -27188.16 (6) Sc -20523.3 (28) 0 -6506.1 (14) 158.7 (14) [164]

3− K -33505.66 (6) Ca -27152.31 (5) Sc -20489.0 (32) 34 -6508.3 (16) 155.0 (16) [164]
2− K -32735.35 (6) Ca -26421.58 (12) Sc -19751.2 (33) 780 -6492.1 (16) 178.3 (16) [164]

5− K -32644.09 (6) Ca -26295.3 (7) Sc -19629.8 (35) 893 -6507.1 (17) 158.3 (19) [164]

1+ K -31245.62 (6) Ca -24977.1 (4) Sc -18238 (9) 2262 -6504 (5) 235 (5) [164]

4− K -31138.33 (6) Ca -24797.01 (7) Sc -18153 (5) 2387 -6492 (3) 151 (3) [164]
42

0+ Ca -38547.28 (15) Sc -32121.18 (17) Ti -25104.70 (28) 0 -6721.29 (16) 295.19 (23) [165]

2+ Ca -37022.58 (15) Sc -30534.87 (17) Ti -23548.7 (9) 1556 -6736.9 (5) 249.2 (5) [165]

0+ Ca -36710.0 (4) Sc -30247.6 (8) Ti -23250.5 (13) 1856 -6729.7 (7) 267.3 (11) [165]

2+ Ca -36123.11 (16) Sc -29634.59 (22) Ti -22708.6 (11) 2436 -6707.3 (5) 218.7 (6) [165]

4+ Ca -35794.87 (16) Sc -29305.81 (18) Ti -22428.1 (9) 2749 -6683.4 (5) 194.3 (5) [165]

6+ Ca -35357.84 (17) Sc -28879 (4) Ti -22061.7 (15) 3159 -6648 (1) 169 (4) [165]

465

0+ Ti -44127.01 (32) V -37074.41 (34) Cr -29474 (20) 0 -7327 (10) 274 (10) [166]

2+ Ti -43237.72 (32) V -36159.48 (35) Cr -28581 (20) 899 -7328 (10) 250 (10) [166]

4+ Ti -42117.16 (32) V -35019.6 (5) Cr -27486 (20) 2018 -7315 (10) 218 (10) [166]

6+ Ti -40828.15 (35) V -33708.7 (9) Cr -26247 (20) 3298 -7291 (10) 171 (10) [166]

8+ Ti -39230.1 (5) V -32230.1 (12) Cr -24656 (20) 4853 -7287 (10) 287 (10) [166]

10+ Ti -37885.1 (5) V -30752 (1) Cr -23294 (20) 6248 -7296 (10) 163 (10) [166, 167]

12+ Ti -35909.5 (5) V -28806.2 (14) Cr -21311 (20) 8217 -7299 (10) 196 (10) [166]
48

4+ V -44476.4 (11) Cr -37028.9 (74) Mn -29323 (112) 0 -7577 (56) 129 (57) [168]

2+ V -44168.2 (11) Cr -36722 (13) Mn -29011 (112) 310 -7578 (56) 132 (57) [168]
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A.2. Experimental Data Base

continued from Table A.3 Properties of T = 1 Triplets

Tz = 1 Tz = 0 Tz = −1 References

A Jπ Nucl. Mass Excess Nucl. Mass Excess Nucl. Mass Excess Eexc b c
(keV) (keV) (keV) (keV) (keV) (keV)

50

0+ Cr -50261.94 (89) Mn -42627.46 (89) Fe -34489 (60) 0 -7887 (30) 252 (30) [169]

2+ Cr -49478.62 (89) Mn -41827.30 (89) Fe -33724 (60) 783 -7878 (30) 226 (30) [169]

4+ Cr -48380.63 (89) Mn -40695.96 (90) Fe -32637 (60) 1889 -7872 (30) 187 (30) [169]

6+ Cr -47098.22 (90) Mn -39371.4 (14) Fe -31329 (60) 3194 -7885 (30) 158 (30) [169]

8+ Cr -45517.41 (92) Mn -37752.4 (14) Fe -29702 (60) 4803 -7908 (30) 143 (30) [169]

10+ Cr -43921.7 (9) Mn -36166.4 (18) Fe -28121 (60) 6390 -7900 (30) 145 (30) [169]
54

0+ Fe -56253.84 (49) Co -48009.29 (51) Ni -39223 (50) 0 -8516 (25) 271 (25) [170]

2+ Fe -54845.65 (53) Co -46563.63 (53) Ni -37831 (50) 1416 -8507 (25) 225 (25) [170]

4+ Fe -53715.7 (6) Co -45357.32 (56) Ni -36603 (50) 2604 -8556 (25) 198 (25) [170]

6+ Fe -53304.6 (7) Co -45097.7 (7) Ni -36152 (50) 2978 -8576 (25) 369 (25) [170]
58

0+ Ni -60226.96 (35) Cu -51462.70 (57) Zn -42298 (50) 0 -8964 (25) 200 (25) [171]

1 The mass excess of 20Na is quoted from TABLE IV, column 4 of Ref. [172].
2 The mass excess of 24Al is quoted from TABLE IV, column 4 of Ref. [172].
3 The mass excess of 28P is quoted from TABLE IV, column 4 of Ref. [172].
4 All g.s. mass excess data are quoted from Ref. [112, 159, 173].
5 The 10+ was only observed in Ref. [167]. Further cross check is needed.
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Appendix A. Coefficients of the Isobaric Multiplet Mass Equation

A.2.3 Properties of T = 3/2 Quartets

Table A.4: Properties of T = 3/2 Quartets

A Jπ Nucl. Tz Mass Excess Eesc a, b, c, χ2/n a, b, c, d References
(keV) (keV) (keV) (keV)

7
3
2

−

He 3
2

26067 (8) 0 26398 (24) 26400 (25) [136]

Li 1
2

26147 (30) −608 (21) −636 (48)

Be − 1
2

26778 (30) 258 (19) 253 (21)

B − 3
2

27871 (71) 0.3993 15 (25)

9
3
2

−

Li 3
2

24954.91 (9) 0 26337.7 (17) 26340.3 (18) [137]

Be 1
2

25740.6 (18) −1318.8 (7) −1332.4 (36)

B − 1
2

27071.5 (27) 264.6 (9) 263.1 (10)

C − 3
2

28909.45 (214) 14.81 6.33 (165)

1
2

−

Li 3
2

27646 (5) 2479 28847 (2) 28849 (3) [137]

Be 1
2

28325.5 (5) −1164 (3) −1168 (5)

B − 1
2

29492 (4) 241 (3) 239 (4)

C − 3
2

31127 (12) 1.221 3.2 (29)

11
1
2

+
Be 3

2
20177.17 (24) 0 21909 (17) 21990 (25) [138]

B 1
2

21225 (16) −1399 (15) −1612 (49)

C − 1
2

22810 (40) 163 (11) 111 (16)

N − 3
2

24304 (46) 21.05 105 (23)

13
3
2

−

B 3
2

16562.2 (11) 0 19257.8 (9) 19257.0 (9) [139]

C 1
2

18233.2 (12) −2177.9 (12) −2176.0 (15)

N − 1
2

20410.1 (5) 254.0 (13) 258.4 (24)

O − 3
2

23114.73 (953) 4.503 −3.66 (173)

17
1
2

−

N 3
2

7870 (15) 0 11647.4 (17) 11647.5 (17) [137]

O 1
2

10269.9 (9) −2875.1 (23) −2874.4 (29)

F − 1
2

13144.6 (23) 240.2 (22) 239.0 (38)

Ne − 3
2

16500.45 (36) 0.1452 −1.06 (279)

19
5
2

+
O 3

2
3333.58 (276) 0 7592.3 (19) 7609.7 (85) [141]

F 1
2

6052.2 (9) −3200.4 (40) −3235.0 (169)

Ne − 1
2

9283 (15) 240.7 (22) 231.6 (49)

Na − 3
2

12928 (12) 4.436 16.41 (779)

3
2

+
O 3

2
3429.6 (28) 106 7717.9 (22) 7712.1 (91) [141]

F 1
2

6173.2 (9) −3205.0 (51) −3193.5 (181)

Ne − 1
2

9368 (16) 230.8 (27) 234.1 (57)

Na − 3
2

13047.8 (156) 0.4397 −5.60 (844)
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A.2. Experimental Data Base

continued from Table A.4 Properties of T = 3/2 Quartets

A Jπ Nucl. Tz Mass Excess Eesc a, b, c, χ2/n a, b, c, d References
(keV) (keV) (keV) (keV)

21
5
2

+
F 3

2
−47.6 (18) 0 4898.3 (13) 4900.2 (17) [142]

Ne 1
2

3127.4 (14) −3662.2 (23) −3665.2 (29)

Na − 1
2

6791 (2) 243.1 (18) 236.6 (42)

Mg − 3
2

10913 (17) 3.016 5.23 (302)

1
2

+
F 3

2
232.32 (181) 253 5170.8 (15) 5168.8 (18) [142]

Ne 1
2

3417.1 (16) −3617.2 (24) −3613.8 (30)

Na − 1
2

7032 (2) 216.8 (19) 223.9 (43)

Mg − 3
2

11113 (17) 3.469 −5.79 (312)

23
5
2

+
Ne 3

2
−5154.04 (11) 0 288.5 (2) 288.7 (9) [143]

Na 1
2

−1638.66 (15) −3967.4 (2) −3967.6 (18)

Mg − 1
2

2328.9 (16) 226.0 (1) 225.9 (4)

Al − 3
2

6748.07 (35) 0.02091 0.11 (79)

25
5
2

+
Na 3

2
−9357.8 (12) 0 −3264.9 (7) −3266.1 (14) [144]

Mg 1
2

−5405.8 (3) −4391.8 (18) −4390.1 (24)

Al − 1
2

−1015 (2) 219.9 (11) 222.4 (26)

Si − 3
2

3827 (10) 1.140 −2.11 (198)

27
1
2

+
Mg 3

2
−14586.61 (5) 0 −8123.3 (12) −8123.1 (24) [145]

Al 1
2

−10382.9 (7) −4624.5 (29) −4624.7 (37)

Si − 1
2

−5758 (3) 210.4 (16) 209.7 (67)

P − 3
2

−716 (27) 0.01071 0.48 (466)

29
5
2

+
Al 3

2
−18215.4 (12) 0 −11141 (4) −11140 (5) [145]

Si 1
2

−13605 (5) −5030 (6) −5033 (7)

P − 1
2

−8574 (3) 209 (5) 202 (13)

S − 3
2

−3157 (50) 0.4641 6.02 (9)

311

3
2

+
Si 3

2
−22949.04 (5) 0 −15465.8 (35) −15468.3 (65) [145]

P 1
2

−18059.7 (17) −5287.6 (87) −5284.1 (116)

S − 1
2

−12775 (10) 199.2 (46) 204.5 (128)

Cl − 3
2

−7067 (50) 0.2025 −4.39 (976)

1
2

+
Si 3

2
−22196.81 (5) 747 −14713.7 (49) −14725.1 (96) [145]

P 1
2

−17299.9 (15) −5264.7 (127) −5248.5 (173)

S − 1
2

−12047 (15) 184.0 (65) 207.4 (181)

Cl − 3
2

−6320 (71) 1.927 −19.42 (1399)
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Appendix A. Coefficients of the Isobaric Multiplet Mass Equation

continued from Table A.4 Properties of T = 3/2 Quartets

A Jπ Nucl. Tz Mass Excess Eesc a, b, c, χ2/n a, b, c, d References
(keV) (keV) (keV) (keV)

33
1
2

+
P 3

2
−26337.3 (11) 0 −18333.5 (5) −18335.2 (7) [145]

S 1
2

−21105.8 (4) −5650.6 (4) −5645.9 (13)

Cl − 1
2

−15459 (1) 210.3 (4) 210.8 (4)

Ar − 3
2

−9384.31 (41) 13.66 −2.26 (62)

3
2

+
P 3

2
−24905.7 (11) 1414 −16898 (3) −16898 (3) [145]

S 1
2

−19681 (3) −5628 (1) −5666 (6)

Cl − 1
2

−14019 (3) 193 (2) 192 (3)

Ar − 3
2

−8025 (2) 64.35 17.39 (217)

5
2

+
P 3

2
−24489.75 (110) 1838 −16480 (2) −16480 (3) [145]

S 1
2

−19249 (4) −5635 (1) −5636 (5)

Cl − 1
2

−13613 (2) 196 (2) 197 (2)

Ar − 3
2

−7586 (2) 0.05883 0.55 (228)

35
3
2

+
S 3

2
−28846.18 (5) 0 −20470.6 (8) −20468.0 (12) [145]

Cl 1
2

−23360 (2) −5891.1 (2) −5884.1 (24)

Ar − 1
2

−17474.68 (77) 204.9 (4) 203.8 (6)

K − 3
2

−11172.90 (52) 8.471 −3.13 (108)

37
3
2

+
Cl 3

2
−31761.55 (5) 0 −22905.5 (9) −22903.1 (34) [145]

Ar 1
2

−25955 (6) −6208.6 (3) −6203.6 (68)

K − 1
2

−19750.5 (8) 203.0 (5) 202.0 (15)

Ca − 3
2

−13135.73 (79) 0.5335 −2.21 (303)

1
2

+
Cl 3

2
−30034.97 (7) 1660 −21260 (10) −21257 (13) [145]

Ar 1
2

−24294 (10) −6171 (6) −6181 (25)

K − 1
2

−18114 (20) 214 (6) 213 (7)

Ca − 3
2

−11523 (17) 0.1432 4.37 (1154)

41
3
2

+
K 3

2
−35559.54 (1) 0 −26059 (2) −26098 (23) [148]

Ca 1
2

−29320.7 (9) −6617 (3) −6592 (16)

Sc − 1
2

−22703 (3) 189 (2) 344 (91)

Ti − 3
2

−15090 (364) 2.887 −102.90 (6057)

1 The mass excess of 31S is quoted from Ref. [112].
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A.2. Experimental Data Base

A.2.4 Properties of T = 2 Quintets

Table A.5: Properties of T = 2 Quintets.

A Jπ Nucl. Tz Mass Excess a, b, c, χ2/n a, b, c, d, χ2/n a, b, c, e, χ2/n a, b, c, d, e References
(keV) (keV) (keV) (keV) (keV)

8 0+ He 2 31609.61 (18) 32434.0 (17) 32435.2 (18) 32435.8 (18) 32435.8 (18) [137]
Li 1 31768.0 (55) -877.6 (39) -897.7 (64) -878.0 (39) -892.3 (74)
Be 0 32435.8 (18) 232.7 (20) 225.7 (27) 208.8 (69) 215.5 (75)
B −1 33541 (9) 9.25 8.4 (21) 0.0 6.03 (261)
C −2 35082 (23) 2.14 5.9 (17) 3.02 (206)

5.33

201 0+ O 2 3796.17 (89) 9692.2 (24) 9691.1 (26) 9691.0 (27) 9691.0 (27) [160]
F 1 6501.5 (30) -3437.0 (41) -3434.9 (47) -3438.7 (46) -3436.0 (86)

Ne 0 9691.0 (27) 244.5 (20) 246.8 (32) 250.3 (69) 248.1 (91)
Na −1 13376 (12) 0.45 -1.5 (17) 0.0 -1.2 (31)
Mg −2 17559 (27) 0.02 -1.1 (14) -0.4 (25)

0.15

242 0+ Ne 2 -5951.64 (52) 1502.2 (6) 1502.7 (6) 1502.8 (6) 1502.8 (6) [143]
Na 1 -2451 (1) -4178.6 (9) -4177.3 (11) -4175.3 (17) -4174.6 (29)
Mg 0 1502.8 (6) 225.8 (4) 222.8 (15) 221.1 (22) 220.7 (27)
Al −1 5900 (4) 2.45 1.1 (6) 0.0 -0.49 (174)
Si −2 10755 (19) 0.94 0.72 (33) 1.00 (103)

0.08

283 0+ Mg 2 -15019 (2) -6266.0 (10) -6265.8 (10) -6265.8 (10) -6265.8 (10) [145]
Al 1 -10858.1 (4) -4807.7 (20) -4800.8 (61) -4797.3 (97) -4807.4 (189)
Si 0 -6266 (1) 215.6 (12) 204.8 (90) 203.2 (114) 209.2 (150)
P −1 -1261 (20) 0.80 3.7 (31) 0.0 8.61 (1375)
S −2 4073 (160) 0.14 1.81 (165) -2.75 (746)

0.39

324 0+ Si 2 -24077.68 (30) -13968.7 (2) -13967.6 (3) -13967.6 (3) -13967.6 (3) [112]
P 1 -19232.46 (15) -5471.7 (3) -5472.9 (3) -5471.0 (3) -5473.0 (5)
S 0 -13967.57 (28) 208.5 (2) 207.2 (3) 205.7 (5) 207.2 (6)
Cl −1 -8288.3 (7) 27.617 0.89 (22) 0.0 0.90 (19)
Ar −2 -2200.2 (18) 0.001 0.57 (10) -0.01 (16)

21.602

36 0+ S 2 -30664.13 (2) -19377.7 (13) -19378.2 (15) -19378.1 (15) -19378.1 (15) [145]
Cl 1 -25222.29 (9) -6046.0 (19) -6047.0 (24) -6047.8 (37) -6044.9 (63)
Ar 0 -19378.1 (15) 201.4 (7) 203.8 (33) 204.1 (47) 202.1 (59)
K −1 -13128 (8) 0.34 -0.89 (120) 0.0 -2.09 (366)
Ca −2 -6451 (40) 0.13 -0.42 (73) 0.77 (217)

0.34

40 0+ Ar 2 -35039.895 (2) -22858.2 (9) -22858.4 (10) -22858.4 (10) -22858.4 (10) [164]
K 1 -29151.5 (3) -6495.9 (15) -6497.8 (28) -6498.6 (43) -6481.6 (145)
Ca 0 -22858 (1) 202.5 (6) 206.0 (43) 206.0 (51) 197.2 (88)
Sc −1 -16155 (9) 1.00 -1.23 (148) 0.0 -16.43 (1341)
Ti −2 -8850 (160) 1.30 -0.53 (75) 7.78 (682)

1.50

1The mass excess of 20Na is quoted from TABLE IV, column 4 of Ref. [172].
2The mass excess of 24Al is quoted from TABLE IV, column 4 of Ref. [172].
3The mass excess of 28P is quoted from TABLE IV, column 4 of Ref. [172].
4The mass excess data and excited states are quoted from TABLE I, set C of Ref. [112]

155



Appendix A. Coefficients of the Isobaric Multiplet Mass Equation

156



Appendix B

Fitted IMME b and c Coefficients

Remarks: All experimental b and c coefficients in this appendix are quoted from Appendix A.
The experimental b coefficients in Table B.1, B.2, B.3, and B.4 are added with neutron-hydrogen
mass difference, ∆nH=782.354 keV [101], c.f. Eq.(1.27). All theoretical b and c coefficients
obtained in a shell-model fit are based on Eq.(2.69).

B.1 Fitted b Coefficients of T = 1/2 Doublets

Table B.1: Fitted T = 1/2 Doublets

mass, A 2Jπ b (exp) b (fit)
(keV) (keV)

192 1+ 4021.85 (16) 4042.91

5+ 4062.98 (20) 4027.08

3+ 4003.8 (4) 3976.6

213 3+ 4329.49 (28) 4306.43

5+ 4310.67 (30) 4300.32

7+ 4299.7 (4) 4307.5

233 3+ 4838.94 (69) 4844.20

5+ 4849.66 (70) 4851.46

7+ 4815.1 (11) 4825.0

253 5+ 5058.95 (48) 5066.56

274 5+ 5594.71 (18) 5566.08

1+ 5531.9 (3) 5558.2

3+ 5537.7 (3) 5563.8

294 1+ 5724.81 (60) 5772.33

3+ 5834.96 (60) 5758.73

314 1+ 6180.35 (24) 6132.49

3+ 6163.1 (3) 6120.2

334 3+ 6364.94 (44) 6329.27

1+ 6334.46 (47) 6342.87

354 3+ 6748.48 (75) 6720.92

1+ 6713.0 (8) 6732.2

5+ 6735.9 (8) 6710.9

3+ 6692.8 (8) 6727.1

5+ 6728.55 (76) 6659.10

1+ 6665 (10) 6652

continued to next page
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continued from Table B.1 Fitted T = 1/2 Doublets

mass, A 2Jπ b (exp) b (fit)
(keV) (keV)

374 3+ 6929.83 (23) 6900.61

1+ 6890.86 (25) 6901.43

5+ 6884.0 (3) 6950.6

395 3+ 7306.84 (60) 7319.56

1+ 7252.8 (11) 7395.3

1 (V T=1
0 )ijkl of nuclear Hamiltonian USD had been used as the ISB term and UCOM SRC scheme was applied on Vcoul.

2 Recently adopted g.s. mass excess data from Ref. [103] and excited levels from Ref. [104, 141]
3

Ibid., except excited levels are from Ref. [104, 142]
4

Ibid., except excited levels are from Ref. [104, 145]
5

Ibid., except excited levels are from Ref. [104, 174]

B.2 Fitted b and c Coefficients of T = 1 Triplets

Table B.2: Fitted T = 1 Triplets

mass, A 2Jπ b (exp) b (fit) c (exp) c (fit)
(keV) (keV) (keV) (keV)

182 0+ 3832.57 (18) 3844.63 352.74 (50) 339.28

4+ 3785.2 (2) 3801.0 267.1 (6) 268.3

203 4+ 4216.5 (6) 4182.5 185.4 (20) 193.6

6+ 4186 (4) 4187 200 (5) 211

8+ 4206 (4) 4169 181 (5) 185

224 0+ 4594.74 (16) 4579.52 312.03 (26) 297.58

4+ 4580.96 (16) 4572.70 277.86 (28) 265.95

8+ 4570.0 (2) 4576.8 230.5 (4) 230.0

4+ 4567.8 (3) 4582.3 224.1 (20) 235.8

245 8+ 4967.63 (55) 4953.27 184.61 (55) 196.81

2+ 4944.4 (6) 4957.6 182.7 (6) 191.4

4+ 4942 (2) 4969 179 (2) 163

266 0+ 5319.14 (6) 5316.15 304.05 (9) 307.97

4+ 5312.7 (11) 5338.4 265.2 (1) 273.7

287 6+ 5633.85 (60) 5666.53 177.88 (61) 191.95

4+ 5671.35 (61) 5662.88 180.39 (62) 186.26

308 0+ 5967.65 (150) 5976.12 275.93 (153) 272.84

4+ 5955.3 (15) 5952.5 238.4 (16) 239.8

4+ 5919.7 (15) 5946.1 220.6 (16) 229.7

329 2+ 6267.5 (3) 6246.9 193.2 (11) 199.7

4+ 6273.4 (3) 6244.2 164.7 (12) 169.5

0+ 6244.2 (3) 6246.8 149.4 (9) 153.1

346 0+ 6559.49 (17) 6560.29 285.50 (18) 271.63

4+ 6541.2 (2) 6544.9 236.8 (3) 234.8

4+ 6551.1 (3) 6573.8 198.1 (4) 204.2

0+ 6537 (1) 6590 239 (1) 230

366 4+ 6834.7 (2) 6859.7 150.7 (4) 147.9

6+ 6840 (8) 6862 219 (8) 220

2+ 6808.6 (3) 6858.3 191.2 (7) 195.9

2+ 6843.6 (2) 6849.0 239.2 (9) 235.7

3810 0+ 7110.5 (2) 7103.4 283.7 (4) 268.5

4+ 7133.23 (19) 7153.19 203.39 (35) 195.20

1 (V T=1
0 )ijkl of nuclear Hamiltonian USD had been used as the ISB term and UCOM SRC scheme was applied on Vcoul.

2 Recently adopted g.s. mass excess data from Ref. [103] and excited levels from Ref. [104, 141]
3

Ibid., except g.s. mass excess of 20Na is from TABLE IV, column 4 of Ref. [172] and excited levels from Ref. [104, 160]
4 Recently adopted g.s. mass excess data from Ref. [103] and excited levels from Ref. [104, 161]
5

Ibid., except g.s. mass excess of 24Al is from TABLE IV, column 4 of Ref. [172] and excited levels from Ref. [104, 143]
6 Recently adopted g.s. mass excess data from Ref. [103] and excited levels from Ref. [104, 145]
7

Ibid., except g.s. mass excess of 28P is from TABLE IV, column 4 of Ref. [172] and excited levels from Ref. [104, 145]
8 Recently adopted g.s. mass excess data from Ref. [103] and excited levels from Ref. [104, 162]
9 All g.s. mass excess data were from TABLE I. of Ref. [112, 159, 173] and excited levels from Ref. [104, 145]
10 Recently adopted g.s. mass excess data from Ref. [103] and excited levels from Ref. [104, ?]
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B.3 Fitted b and c Coefficients of T = 3/2 Quartets

Table B.3: Fitted T = 3/2 Quartets

mass, A 2Jπ b (exp) b (fit) c (exp) c (fit)
(keV) (keV) (keV) (keV)

192 5+ 3982.7 (40) 3930.0 240.7 (22) 233.6

3+ 3987.3 (50) 3931.9 230.8 (27) 231.3

213 5+ 4444.6 (23) 4382.8 243.1 (18) 230.5

1+ 4399.6 (24) 4377.6 216.8 (19) 225.8

234 5+ 4749.73 (12) 4754.66 225.99 (10) 223.77

255 5+ 5174.1 (18) 5171.5 219.9 (11) 224.9

276 1+ 5406.8 (29) 5483.1 210.4 (16) 226.6

296 5+ 5812.5 (55) 5830.2 209.4 (50) 214.1

317 3+ 6070.0 (87) 6056.4 199.2 (45) 207.0

1+ 6047.1 (127) 6056.9 184.0 (65) 210.5

336 1+ 6432.92 (37) 6404.15 210.32 (39) 209.89

356 3+ 6673.41 (17) 6653.74 204.90 (39) 198.97

376 3+ 6990.95 (27) 6980.92 203.03 (48) 198.32

1+ 6953.7 (55) 6983.2 214.2 (56) 211.9

1 (V T=1
0 )ijkl of nuclear Hamiltonian USD had been used as the ISB term and UCOM SRC scheme was applied on Vcoul.

2 Recently adopted mass excess data Ref. [103] and excited states from Ref. [104, 141]
3

Ibid., except excited levels are from Ref. [104, 142]
4

Ibid., except excited levels are from Ref. [104, 143]
5

Ibid., except excited levels are from Ref. [104, 144]
6

Ibid., except excited levels are from Ref. [104, 145]
7

Ibid., except g.s. mass excess of 31S is from Ref. [112] and excited states from Ref. [104, 145]

B.4 Fitted b and c Coefficients of T = 2 Quintets

Table B.4: Fitted T = 2 Quintets

mass, A Jπ b (exp) b (fit) c (exp) c (fit)
(keV) (keV) (keV) (keV)

202 0+ 4219.3 (41) 4179.2 244.5 (20) 234.0

243 0+ 4960.9 (85) 4962.5 225.8 (37) 225.2

284 0+ 5590.1 (20) 5651.9 215.6 (12) 219.0

325 0+ 6254.08 (26) 6245.91 208.45 (14) 208.18

366 0+ 6828.4 (19) 6865.0 201.4 (7) 199.3

1(V T=1
0 )ijkl of nuclear Hamiltonian USD had been used as the ISB term and UCOM SRC scheme was applied on Vcoul.

2Recently adopted g.s. mass excess data from Ref. [103], g.s. mass excess of 20Na is from TABLE IV, column 4 of Ref. [172] and excited states from
Ref. [104, 160]
3
Ibid., except g.s. mass excess of 24Al is from TABLE IV, column 4 of Ref. [172] and excited states from Ref. [104, 143]

4
Ibid., except g.s. mass excess of 28P is from TABLE IV, column 4 of Ref. [172] and excited states from Ref. [104]

5Mass excess data and excited states from TABLE I, set C of Ref. [112]
6Recently adopted mass excess data Ref. [103] and excited states from Ref. [104, 145]
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