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Glossary

MR: Magnetic resonance
MRI: Magnetic resonance imaging
US: Ultrasound
HIFU : High intensity focused ultrasound
GPU : Graphics processing unit
RF : Radio frequence
FOV : Field of view
TR: Repetition time
TE: Echo time
EPI: Echo planar imaging
PRF : Proton resonance frequency
B0: Magnetic field strength
T1: Longitudinal relaxation time
T2: Transversal relaxation time
ECG: Electrocardiogram
TD: Thermal dose
SNR: Signal to noise ratio
ROI: Region of interset
MSE: Mean square error
TSD: Temperature standard deviation
OFCE: Optical flow constraint equation
BHTE: Bio heat transfer equation
EKF : Extended Kalman filter
AEKF : Auto-calibrated extended Kalman filter
∇: Gradient operator
∂x/∂t: Partial derivative of x with respect to t
x̄: Mean of x
σ(x): Standard deviation of x
I: MR-magnitude image
ϕ: MR-phase image
I(x, y): Image intensity at pixel coordinates of (x, y)
I(x, y, t): Image intensity at pixel coordinates of (x, y) and time t
I(P ): Image intensity in the pixel P
Iα: Partial derivative of I with respect to α
Iref : MR-magnitude reference image
FIR: Finite impulse response
IIR: Infinite impulse response
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Preface

Thermal ablation is already a clinically accepted routine to treat certain types of cancer
and atrial fibrillation. These interventions generally employ a mini or non invasive heat-
ing device that induces localized hyperthermia in order to destroy pathological tissues.
However, the lack of control during the intervention may lead to insufficient or exces-
sive heating. In the first case, this may lead to disease reappearance and in the second
case this can lead to the destruction of adjacent healthy tissue. As an example, 30%
of the thermal ablations for atrial fibrillation treatment result in therapeutic failure. At
present, the tissue temperature is not controlled during the intervention. Therefore, a
control during the intervention may be highly advantageous. MRI, that has been largely
employed for diagnostic purposes since the eighties, shows a great potential for guidance
of such interventional therapeutic procedure. Modern MRI scanners allow rapid acqui-
sition of high spatial resolution images with good tissue contrast. Moreover, in addition
to anatomical information, MRI also provides temperature information that contributes
to make this imaging modality very attractive for online ablation monitoring. However,
MR-thermometry in mobile organ remains challenging.

This thesis focuses on new developments for MR-guided thermal ablations of mobile
organs such as the liver, the kidney and the heart. The manuscript is structured as follows:

• A first part presents the clinical issues and the potential of MR-guided thermal
ablations for the treatment of cancer and atrial fibrillation (see chapter 1). Then,
chapter 2 describes the state-of-the-art and the challenges of MR-guided thermal
ablations of mobile organs.

• In the second part, the feasibility of real time control of the intervention is shown,
together with an interventional pipeline, which takes advantage of GPGPU program-
ming. Developments for the feasibility in real time of MR-image reconstruction,
MR-thermometry and MR-dosimetry are presented in chapters 4 and 5. In-vivo
validations in both abdominal organs and in the heart are presented and further
extensions of these methods are shown for the special case of HIFU ablation (see
chapter 6).

• In a last part, methodological developments are presented, where several limits of
existing methods are addressed. In particular, chapter 7 presents advances for the
problem of motion estimation in presence of structures appearing transiently in the
images (which can be encountered with reduced field of view imaging or with the
presence of out-of-plane motion). Chapter 8 proposes a robust approach to address
the problem of motion estimation with high intensity variations, which can occur
during hyperthermia. In chapter 9, a criterion to assess the quality of the motion
estimation process is proposed and its application for the autocalibration of a mo-
tion estimation algorithm is presented. The correction of motion induced magnetic
susceptibility variation is also improved for the specific case of spontaneous mo-
tion and is presented in chapter 10. Finally, the management of temperature noise

3



is addressed in chapter 11 where a novel temporal filter is introduced that allows
improving the precision while controlling the resulting temperature accuracy.
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Chapter 1

Problem description

1.1 Localized hyperthermia in medicine

1.1.1 Therapeutic applications

1.1.1.1 Treatment of cancer

Cancer can be seen as an uncontrolled growth of cells into healthy tissues. The resulting
cells can create a tumor or spread to other locations in the body to form metastasis.
Several treatments exist such as surgery (to remove the cancerous tissue), chemotherapy,
radiotherapy, etc. A combination of these approaches are often used [1]. Surgery aims
to remove the cancerous tissue but is not always a viable therapeutic option, depending
on the location of the tumor. Chemotherapy uses drugs that aim to impair mitosis (cell
division) or to cause cell death by apoptosis (programmed cell death). These drugs show
generally also a high toxicity for healthy tissue and are thus limited in the therapeutic dose.
A number of side effects are generally induced such as depression of the immune system,
fatigue, gastrointestinal problem, hair loss, etc. Radiotherapy uses ionizing radiations that
induces DNA damage which in turns leads to apoptosis. Similarly, the side effects of the
absorbed radiation usually limit the therapeutic possibilities for this modality.

As a consequence, ongoing research in oncology continuously aims to improve efficiency
of the treatment, decrease associated side effects, and accelerate patient recovery. A variety
of novel strategies have been proposed in the recent years. Among them, thermotherapy
appears to be a very promising candidate. Several approaches of thermotherapy have been
suggested, such as direct tissue ablation through hyperthermia [2, 3, 4] or local delivery of
therapeutic agents with localized mild hyperthermia as the triggering mechanism [5]. For
direct tissue ablation a temperature elevation of typically 50-80◦C is applied during a short
amount of time in order to achieve the lethal dose leading to cell death of the tumorous
tissues [6]. In the case of hyperthermia triggered local drug delivery, which is under active
investigation, the therapeutic agent is encapsulated in thermosensitive nanocarriers and
released in the target area by mild hyperthermia (typically few degrees of temperature
increase). This approach opens great perspectives to increase the drug concentration with
an effect limited to the tumorous area.

Direct tissue ablation through local hyperthermia can be achieved using different heat-
ing modalities such as laser [2], radio frequency [3] or high intensity focused ultrasound [4]
ablators. The clinical potential of all three treatment modalities are under investigation
for the ablation of cancer in various organs such as the breast [7, 8, 9, 10], in the prostate
[11], in abdominal organs (the kidney or the liver) [12], and the brain [13]. The possibility
to achieve a localized lesion in a mini- or non-invasive way makes these approaches very
attractive. However, the success of these therapeutic processes require a precise monitor-
ing and control in real time of the delivered energy. Magnetic resonance imaging (MRI)
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has been suggested as a promising candidate for this role. MR-guided ablation has been
evaluated for laser heating [14, 15], radio frequency (RF) heating [16, 17] and high inten-
sity focused ultrasound (HIFU) heating [18, 19, 20, 21, 22, 23]. Since HIFU allows a non
invasive treatment, this ablation modality appears particularly attractive. HIFU based
ablation therapy has already matured into clinical routine for a variety of tumor types such
as uterine leiomyoma [24, 25]. MR-guided HIFU ablation is also under investigation and
shows promising results for prostate cancer [26], palliative treatment of bone metastases
[27] or treatment of brain tumor / cerebral glioma [28] and in abdominal organs such as
the kidney and the liver [22, 23].

1.1.1.2 Treatment of heart arrhythmia and atrial fibrillation

Another clinical application of localized hyperthermia concerns the treatment of heart
arrhythmia such as atrial fibrillation. Heart arrhythmia refers to abnormal electrical stim-
ulation of the heart muscle leading to ineffective contraction. Normally, the heart beat is
triggered by an electrical impulse produced by a small area in the right atrium of the heart
called the sinus node. The signal “travels” from one side of the heart (right atrium) to the
other (ventricle) where it stops (see figure 1.1.a). A disturbance of the propagation speed
of this signal can lead to bradycardia (a slow signal from this sinus node) or tachycardia
(a high rhythm that is not necessary an arrhythmia since this effect is the normal response
to physical exercises or emotional stress). Abnormal electrical activity of the heart can
also be caused by the electrical impulse generated from a group of fibers outside the sinus
node. This effect can lead to chaotic electrical impulses in the heart generating irregular
and fast heart beats (see figure 1.1.b). The generalization of this phenomenon to an entire
chamber is referred to as fibrillation. This can affect the atrium (atrial fibrillation (AF))
and the ventricle (ventricular fibrillation). Atrial fibrillation usually generates a number
of symptoms such as palpitations, higher fatigability, shortness of breath and can results
in long term to heart failure.

Figure 1.1: Electrical activity of the heart: (a) normal electrical activity, (b) electrical
activity in presence of arrhythmia.

The two main therapeutic approaches to treat atrial fibrillation are the use of antiar-
rhythmic drugs and cardioversion. Antiarrhythmic drugs aim to restore a normal rhythm
but are often accompanied by serious side effects. Cardioversion consists in administering
an electrical discharge to the heart wall to change the electrical impedance of the tissue
and thus to remove the cause of the fibrillation. Cardioversion allows to return to normal
sinus rhythm immediately after the procedure in 86% of the cases and the success rate in-
creases to 94% when antiarrhythmic medications are given before cardioversion. However,
the long term therapeutic success is for 77% of the treated cases limited to the first year
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and additional treatment may be needed [29]. Therefore, clinical research in the field of
cardiology aims to develop new therapeutic approaches to improve the success rate of atrial
fibrillation treatment. One of the most promising strategies is based on tissue ablation in
order to change the electrical impedance of the problematic tissue of the heart [30, 31].
The intervention is usually accomplished with a catheter that applies radio frequency in
the desired area. This induces a necrosis that renders the tissue electrically inactive and
thus incapable to conduct the electrical impulse. This treatment is already in clinical
routine [32, 33, 34, 35] but a therapeutic failure rate of 30 % is observed likely due to
insufficient or excessive temperature exposure. In this thesis, the potential of MR-guided
catheter ablation is investigated in order to monitor and control delivered energy during
the intervention.

1.1.2 Heating devices

Hyperthermia can generally be generated by several devices such as laser, microwave,
radio frequency or high intensity focused ultrasound. In this thesis, we focus on both
radio frequency and HIFU ablation.

1.1.2.1 Radio frequency

Radio frequency ablation (RFA) is a mini invasive approach that uses high frequency
electrical current through a needle electrode to induce resistive heating in the target region
which leads either to direct cauterization or apoptosis.

1.1.2.2 High Intensity Focused Ultrasound

Figure 1.2: Principle of HIFU ablation

Ultrasound is an acoustic sound wave with a frequency beyond the audible spectrum of
the human ear (typically greater than 20 kHz). As the acoustic waves propagate through
the tissue, part of it is absorbed and converted to heat. In order to obtain a localized
ablation, transducers composed of several ultrasound elements can be used to achieve a
focused beam onto the ablation area in a non-invasive way. By adjusting the relative
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phases of each element, converging wavefronts are created, which add their energy in the
beam focus due to constructive interference (see figure 1.2). Each sonication treats a
precisely defined portion of the targeted tissue. The entire therapeutic target is treated
by successively focusing at several locations.

1.2 MR-guided thermal ablation

A variety of imaging modalities are available for medical imaging purposes. In the last
decades, several 3D imaging techniques have been employed such as computed tomogra-
phy (CT), magnetic resonance imaging (MRI) and ultrasound (US) imaging. Recently,
the potential of these techniques for planning, monitoring and controlling a surgical in-
tervention has been extensively investigated in the research community. In this thesis, we
focus on MRI as the imaging modality of choice.

1.2.1 Introduction to MRI

A brief introduction to the mechanism of MR-acquisition and MR-reconstruction is pre-
sented in appendix A from the signal theory point of view. MR-scanners acquire complex
data and store the digitized signal in k-space (see appendix A.1), which is a matrix of
spatial frequencies that can be seen as an extension of the Fourier domain. The recon-
structed image in the spatial domain is calculated using an inverse Fourier transform. The
reconstructed data is a complex-value image (see figure 1.3) where its module corresponds
to anatomical information (such as position and composition of the tissues) and the phase
is directly proportional to the local proton resonance frequency.

Figure 1.3: Image reconstruction from k-space data

1.2.2 MR-thermometry

MRI can be used to obtain temperature information since several tissue magnetic prop-
erties are temperature dependent. The tissue specific longitudinal relaxation time T1 and
the transversal relaxation time T ∗2 as well as the resonance frequency of water proton are
directly dependent on the tissue temperature [36]. In this thesis, all MR-thermometry
experiments are based on the dependence of resonance frequency of water proton which
is referred as proton resonance frequency (PRF) shift technique [37]. The PRF equation
describes the temperature variation ∆T as being proportional to a phase variation ∆ϕ in
gradient echo pulse sequence as follows:
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∆T =
∆ϕ

γ · α ·B0 · TE
(1.1)

where C = γ ·α ·B0 ·TE is often called the PRF constant, with γ the gyromagnetic ratio,
α the temperature dependent water chemical shift, B0 the static magnetic field strength
and TE the echo time.

This technique allows to obtain temperature information on each individual pixel.

1.2.3 MR-dosimetry: the thermal dose concept

Temperature elevation induces cell death but the relationship between the required tem-
perature elevation and the time exposure regards to cell death is not straightforward. For
these reasons, Sapareto et al. [38] have introduced the concept of thermal dose (TD)
which can be formulated mathematically as follows:

TD =

{∫ t
0 2T (t)−43dt, if T < 43◦C∫ t
0 4T (t)−43dt, if T > 43◦C

(1.2)

The tissue destruction is achieved when the equivalent thermal dose exceeds the lethal
thermal dose. The lethal thermal dose related to cell death is achieved for a tempera-
ture elevation of 43◦C during 240 mn. The thermal dose thus represents a good way to
determine the therapy endpoint.
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Chapter 2

Challenges of MR-guided ablation
of mobile organs

This chapter presents the main limitations and challenges of MR-guided ablation on mo-
bile organs and a brief state of the art is given for each of them in order to clarify the
contribution of this thesis.

2.1 Organ motion

2.1.1 Introduction to motion estimation

To understand the challenge introduced by organ motion, a first description of encoun-
tered motion is given that is followed by a presentation of the associated effects on the
interventional process. Then, a brief overview of existing methods to handle and correct
organ motion artifacts is detailed.

2.1.1.1 Characterization of organ motion

In our applications, three different organs are targeted: the kidney, the liver and the heart.
Each of these organs has specific 3D displacement properties that are now described.

The kidney
The displacement of this organ is mainly subject to the influence of the respiration. The

kidney is rather rigid and its motion can be roughly represented by a 2D periodic linear
displacement.

The liver
The liver motion is also mainly influenced by the respiration and is thus periodic. There-

fore, the main contribution of the motion is a linear displacement. However, some elastic
deformation can be observed, especially in the upper part of the organ.

The heart
The heart displacement is subject to a more complex motion induced by the respira-

tory and the cardiac activities. The respiration induces a large linear displacement and
the cardiac activity generates an elastic deformation. Note that these two physiological
activities and their associated motion are asynchronous.
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In top of of these periodic physiological mechanisms such as the respiration and the
cardiac activity, a second potential source of motion is related to spontaneous motion. It
corresponds to the displacement of the patient into the scanner. This type of event are
unpredictable and by definition not periodic.

2.1.1.2 Effects of organ motion

Organ motion leads to several types of artifacts on MR-images that can be separated into

• a direct effect that corresponds to the displacement of the target in the image and
is detailed in this section.

• indirect effects such as the modification of the local magnetic susceptibility or heating
of undesirable area. These effects are presented in the sections 2.2.0.4 and 2.6.1,
respectively.

The effect of the organ motion can be categorized into two parts which are generally
referred to as intra-scan motion and inter-scan motion.

Intra-scan motion Intra-scan motion, corresponds to motion occurring during the MR-
acquisition itself. This generally leads to image motion artifacts such as blurring and
ghosting on images (see figure 2.1.c).

Several strategies have been suggested to avoid intra-scan motion artifacts: Respira-
tory (or cardiac) gated sequence monitor physiological activity with external sensors (such
as respiratory bellows, or electrocardiogram) and synchronize the data acquisitions. Al-
though this is efficient to cope with motion artifacts, this reduces the temporal resolution
of the acquisition which, depending on the heating modality, might be insufficient to follow
temperature elevation.

Optical camera can also be integrated into the MR-scanner to identify patient motion
[39]. This system was first designed for functional MRI to cope with patient head motion
and correct imaging plane position in real time. Although this approach is very attractive
for functional MRI to remove intra-scan motion (since long acquisition schemes are often
used), this is not suitable to estimate organ motion since only patient surface motion can
be recorded.

Therefore, for MR-thermometry on mobile organs, fast MR-acquisition schemes are
generally preferred to minimize intra-scan motion. In addition, for the particular case
of MR-guided HIFU ablation, a very fast adjustment of the focal position is required in
order to follow the organ motion. The combination of high frame-rate MRI with fast
MR-acquisition schemes appear desirable in this case. Consequently, 3D MR-acquisition
on mobile organs is hard to achieve due to the inherent problem of intra-scan motion. For
these reasons, 2D acquisition or multislice acquisition (with a small amount of slices) are
generally preferred where only 2D in-plane motion estimation is feasible.

Inter-scan motion Motion occurring between two acquisitions (see figure 2.1.a,2.1.b),
generally referred to as inter-scan motion, is composed by an inplane component and out-
of-plane component leading to a mis-alignment of MR-images and to strong artifacts on
temperature and thermal dose measurement.

Out-of-plane motion yields structures that appear transient in the temporal series of
MR-images. This effect is caused by organ motion in the third dimension perpendicular
to imaging plane. Even with a perfect co-registration of inplane motion, this leads to
the observation of different tissues over time. Therefore, the temperature and thermal
dose information will be strongly artifacted. Although a 3D MR-acquisition would help to
resolve this issue, another approaches have to be considered since 2D MR-acquisitions have
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to be employed to get rid of intra-scan motion. Since for abdominal organs, respiratory
induced motion causes predominantly a linear displacement in head-foot direction and
to a lesser extend in anterior-posterior direction, a coronal or sagittal orientation of the
slice positioning can help to minimize through-plane motion and reduce the problem to
a 2D in-plane motion. Alternatively, tracking of the slice position can be employed for
this purpose and can be achieved using a pencil beam navigator echo [40] or ultrasound
images [41]. This also allows to reduce the 3D motion to a 2D in plane motion. A detailed
description of available techniques to handle and correct inplane motion on MR-images is
now presented.

(a) (b) (c)

Figure 2.1: Illustration of motion artifact: (a) reference image, (b) image acquired at
different positions of the object, (c) image acquired with a longer acquisition (intra-scan
motion) leading to blurring and ghosting.

2.1.2 In-plane motion estimation

The term of in-plane motion estimation can be defined as the estimation of the displace-
ment and of the deformation of image structures from one image to another. For this, a
variety of methods have been suggested [42]. To summarize the main methods or class
of methods, several classifications using various criteria have been proposed in the past.
Here, we use the criteria proposed by Maintz and Viergever [42] that was specifically de-
signed for the classification of medical image registration methods. This classification was
recently took up by Markelj et al. [43] for a review of 2D and 3D registration methods
designed for image-guided interventions. The classification relied on nine criteria:

• Dimensionality

• Nature of registration basis

• Nature of transformation

• Domain of transformation

• Interaction

• Optimization procedure

• Modalities involved

• Subject

• Object

We now present the constraint imposed by our application on these criteria.
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2.1.2.1 Dimensionality

As previously stated, we focus in this section on 2D motion estimation since the motion
in the third dimension is generally addressed using a slice tracking technique.

2.1.2.2 Nature of registration basis

This defines the type of information employed for the motion estimation process. Three
types of information can be used for this purpose.

Non image based information
Navigator echoes can be used for motion estimation purpose. It corresponds to the ac-

quisition of one or several lines crossing the k-space center which are Fourier transformed
to obtain a 1D projection of the 2D image [44]. Each of these projected profiles can then
be used to estimate the translational motion of the object along one direction. The acqui-
sition of this information is very fast (few milliseconds) and thus not prone to intra-scan
motion. However, only one dimensional translation displacement can be obtained. Several
navigator echoes can then be positioned in the three dimensions to obtain translational
displacement in the three dimensions. Although this approach may be useful for organ
describing very simple displacement, this is not sufficient for the motion estimation of
organ with complex deformation such as abdominal organs or the heart.

Ultrasonic echoes can also be employed to estimate the displacement of a target. It
corresponds to the emission of a sound wave on a reflecting target and to the measure of
the reflected ultrasound wave. An object will reflect a certain amount of the sound wave
and a signal peak will be recorded along the time by the transducer. The amount of time
necessary for the wave to go from the object to the transducer can then be calculated.
Finally, the distance between the transducer and the object can be computed multiplying
this time by the speed of the sound [45]. The acquisition of this information is very
fast but suffer from the same limits that those presented for navigator echoes. Only one
dimensional translational information is available. Even if the estimation can be performed
in 3D using also three perpendicular transducer, the result will be insufficient to cope with
the complexity of the deformation of our targeted organs. However, the acquisition of an
ultrasonic echo is not synchronized with the MR-acquisition and can thus be realized in
parallel to regular MR-acquisition which is a substantial advantage compared to navigator
echoes.

Extrinsic information
Extrinsic information such as invasive or non invasive markers can be employed for

motion estimation purpose [46, 47, 48]. However, the implantation of invasive markers
appears undesirable for clinical routine since the presented therapeutic procedure are mini-
or non-invasive. However, in the specific case of RF ablation, the presence of the catheter
can be used for motion estimation. This approach consists of integrating an active tracking
coil into a mini invasive heating device (here the catheter). The position of the active
tracking coil is then detected with a receiver coil. This allows to obtain a 3D information
of the displacement of a single point (corresponding to the heated tissue) [49].

Non invasive markers has gained a great interest for motion detection of the bulk (with
markers directly positioned on the patient skin) but appears highly limited for mobile
organ motion estimation. However, MR-imaging can be used to artificially generate non
invasive markers such as tagged imaging, where images have horizontal and vertical black
lines that deform along the time with the target motion. This was initially proposed
for cardiac imaging in order to study the contractile function of the heart. However,
temperature information cannot be estimated in area where the signal has been canceled
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(i.e. on the black lines) which is limiting for monitoring and control of the whole heated
area.

Intrinsic information
It corresponds to either feature based, segmentation based or voxel based motion esti-

mation algorithms.
Feature based methods [50], often referred to as indirect approaches, try to estimate

correspondences of specific areas or pixels and are then used to obtain the parameters of a
motion model. Manual selection of feature points has been suggested but is not adapted to
a real time therapeutic application. Therefore, feature detection algorithms are required
in order to extract feature points. A large number of automatic solutions have been pro-
posed in the literature for this purpose where a comparison can be found in [51]. One of
the most famous are the Harris’s points [52] or the SIFT algorithm [53]. Once estimated
in both the reference image and the image to register, a matching process is required
to pair each detected feature point. In order to remove outlier in the matching process,
several approach have been proposed such as RANSAC [54]. After the matching process,
the parameter estimation of a transformation model (generally rigid or affine model) that
map each matched point is performed (since this problem is over-determined, a singu-
lar value decomposition is generally employed). This type of approach directly depends
on the ability to identify anatomical structures, and thus on segmentation performance.
However, segmentation is often complicated in interventional imaging on moving organs
where images are generally hampered by low SNRs.

Segmentation based methods [55] extract anatomical structures on both the reference
image and the image to register and try to match/fit them in order to detect the motion
between both images. Segmentation algorithms generally require a priori knowledge of
targeted organ such as its structure, its intensity, the surrounding tissues or the presence
of fat, which are variant over the patients and thus might be limiting for a robust clinical
routine. In addition, since segmentation methods are also usually hampered by low SNR,
which is inherent to the employed fast MR-imaging sequences, we did not investigate so
far the potential of such approaches.

Voxel-based methods [56, 57] directly rely on the voxel intensities over the whole image
and several criteria has been proposed to estimate the motion such as the minimization of
the squared intensity difference, the maximization of the cross correlation, the maximiza-
tion of the mutual information, the Fourier domain based cross correlation, etc. These
approaches are under active investigation and the main types of algorithms are presented
in section 2.1.3.

2.1.2.3 Nature of transformation

A transformation model has to be defined in order to characterize the targeted organ mo-
tion or in other words to relate the image to register to the reference image. Therefore,
the choice of the transformation model has to be realized in accordance with the organ
motion characteristics. A transformation model is usually defined by a limited number of
parameters which depends on the type of the transformation. The most popular trans-
formation models are the translation model (two translation parameters), the rigid model
(two translation and one rotation parameters), the affine model (two translations, one
rotation, two scaling and one shear parameters) or more sophisticated models as shown in
Figure 2.2.
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Figure 2.2: Examples of transformations

2.1.2.4 Domain of transformation

The transformation model can be global (over the whole image or a part of an image),
at block level (group of pixels) or even at pixel level. For motion estimation on mobile
organs, it was shown that a global model (affine) can be employed to retrieve the global
motion of the target, followed by a voxel-based model (translational) to refine the solution
[58].

2.1.2.5 Interaction

User interaction has to be minimized in order to make the procedure suitable for use in
clinical routine. Nevertheless, small interactions such as a prior masking of the targeted
organ in a reference image (that only requires few seconds) are often proposed in current
works.

2.1.2.6 Optimization procedure

The search method of the transformation parameters is generally determined by motion
estimation problem formulation. Further refinement and acceleration of parameter search
can also be obtained using a coarse-to-fine strategy (based on estimation at lower reso-
lution). Sub-sampled images have a better SNR with smaller displacement than native
resolution images. The parameter of the transformation model are first estimated at the
lower resolution and used as initialization for superior resolution. This process is repeated
for each resolution level toward the native resolution [59].

2.1.2.7 Modalities involved

Multimodal imaging is under active research for motion estimation purpose [60, 61]. How-
ever, only MR-scanner was available in our laboratory, therefore this thesis focused on
monomodal motion estimation based on MRI.

2.1.2.8 Subject

The motion estimation and compensation is fulfilled individually for each patient which is
called intra-subject registration.
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2.1.2.9 Object

The targeted organ (the kidney, the liver and the heart) and their characteristic motion
have been presented in the introduction of this chapter (see section 2.1.1.1).

2.1.3 Voxel-based motion estimation using intrinsic image information

2.1.3.1 Global transformation model estimation

Non spatial domain based methods
Based on the properties of the Fourier transform (Fourier shift theorem, Fourier rota-

tion theorem or Fourier scale property), several estimation methods conduct the motion
estimation in the frequency domain [62, 63].

The Fourier shift theorem states that a translation displacement in the spatial domain
corresponds to a phase shift in the frequency domain. If we consider an image to register
that is translated from a vector x0, y0 from the reference image, then the inverse Fourier
transform of the cross power spectrum will be a Dirac delta function centered in (x0, y0).
This method is often referred to as phase correlation technique [62].

If images differ from translation, rotation, a more sophisticated strategy is required.
The Fourier rotation theorem states that a rotation in the spatial domain corresponds
to a rotation in the frequency domain. Therefore, by taking polar coordinates of the
image in the Fourier domain, the rotation will be transformed into a translation. Then
the phase correlation technique is used to get the rotation parameter. Once rotation has
been removed, translational parameters can be estimated using the same phase correlation
technique [63].

In case where images differ with respect to translation, rotation and scale, the process
is even more complex. The rotation and scaling are first estimated using the modulus
of the Fourier transform in logarithmic-polar representation (where a rotation is always
a translation in polar coordinate and a scaling is a translation in logarithmic represen-
tation). Both translations are then estimated using the phase correlation technique and
corrected. Finally, the translational parameters are estimated using the direct phase cor-
relation technique [63].

Note that several alternatives data representation have been suggested for motion
estimation purposes such as the wavelet transform [64] or the Hough transform [65, 66, 67].

Intensity based methods
Here, the motion model is defined as a geometric transformation T over a whole image

I or a part of an image. This type of model generally has a limited number of parameters
θ (translation, rotation, scaling, shears, etc) compared to the number of pixel where the
model is expected to be valid. This leads to an over-determined system that is gener-
ally resolved using minimization approaches S such as gradient descent, Gauss Newton,
Marquardt-Levenberg, etc. The associated cost function F to minimize is often based on
image intensity criterion such as mean square error, correlation coefficient, inter-correlation
coefficient, or mutual information, etc. The optimal transformation parameters θoptimal
can thus be obtained as follows:

θoptimal = argmax
θ∈T |S

F (Iref , T (I, θ)) (2.1)

with Iref the reference image.
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2.1.3.2 Local transformation model estimation

Pel-recursive methods
Pel-recursive methods are based on the hypothesis of intensity conservation of a point

along its trajectory, which is expressed by the following expression:

DFD(x, y, t) = I(x+ dx, y + dy, t+ dt)− I(x, y, t) = 0 (2.2)

where DFD stands for displacement frame difference. Here, the problem of motion esti-
mation is ill posed since only one equation is provided, but with two unknowns (dx and
dy). Pel-recursive algorithm predicts recursively the displacement of each pixel from its
neighbor pixels. This approach relies on estimators of the iterative form:

dk+1(x, y, t) = dk(x, y, t) + up(x, y, t) (2.3)

where dk(x, y, t) is one dimensional estimation motion vector at the location (x, y) and time
t at the kth iteration and up(x, y, t) is the update term. The first Pel-recursive algorithm
was proposed by Netravali-Robbins [68] that aims to minimize iteratively the DFD2 using
the steepest descent technique. A modified version was proposed by Cafforio-Rocca [69]
to obtain an adaptive gain as a function of the gradient amplitude (i.e. a high gradient
value generates a small step factor).

Variational techniques
Variational techniques, often referred in the literature to as “optical flow techniques”,

also rely on the hypothesis of intensity conservation of a point along its trajectory. The
minimization of the DFD2 (see equation (2.2)) is here derived from the following Taylor
approximation of the image signal:

I(x+ dx, y + dy, t+ dt) = I(x, y, t) + Ixdx+ Iydy + Itdt+ ... (2.4)

with (Ix, Iy, It) = ( ∂I∂x ,
∂I
∂y ,

∂I
∂t ).

By ignoring high order derivative terms of the Taylor approximation in equation (2.4),
the DFD is then reduced to:

DFD = Ixdx+ Iydy + Itdt = 0 (2.5)

leading to the famous optical flow constraint equation:

Ixu+ Iyv + It = 0 (2.6)

where (u, v) = (dx/dt, dy/dt) represents the displacement vector
The motion estimation problem is then reduced to the minimization of the functional:

E =

∫∫
xy

[Ixu+ Iyv + It]
2 dxdy (2.7)

However, the existence of a solution cannot be guaranteed (especially if ∇I = 0).
Moreover,the uniqueness of the solution cannot be ensured since we only have one equation
with two unknowns (referred to as the aperture problem). To overcome these limitations,
additional constraints are required and a variety of algorithms has been proposed in the
literature and are now presented.
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Initial approach
The first approach was presented by Horn & Schunck [70]. An additional regularization

term was proposed in order to impose the motion field to be locally smooth expressed by
the following minimization:

Ereg =

∫∫
xy

(‖∇u‖22 + ‖∇v‖22)dxdy (2.8)

where ‖∇u‖22 = u2
x + u2

y and ‖∇v‖22 = v2
x + v2

y , with (ux = ∂u/∂x, uy = ∂u/∂y,
vx = ∂v/∂x, vy = ∂v/∂y)

Therefore, the general minimization problem proposed by Horn & Schunck is described
with the following function:

Ehs =

∫∫
xy

(
[Ixu+ Iyv + It]

2 + α2
[
‖∇u‖22 + ‖∇v‖22

])
dxdy (2.9)

where α2 is a weighting factor designed to link the two individual metrics (intensity vari-
ation and motion regularity).

This functional is then minimized solving the system provided by the calculus of vari-
ations and the Gauss Seidel method that provides the following iterative scheme:

un+1 = un − Ix
unIx + vnIy + it
(I2
x + I2

y ) + α2

vn+1 = vn − Iy
unIx + vnIy + it
(I2
x + I2

y ) + α2

(2.10)

with u and v the mean values of the velocity field on the neighborhood of each estimated
point. Details of the derivation of the numerical scheme are included in Appendix C.

Intensity variations modeling
Since the main idea of optical flow technique relies on the assumption of intensity con-

servation, some approaches tried to relax this constraint, integrating into the variational
framework a model of the intensity variation. The first proposition was presented by Cor-
nelius and Kanade [71] where the intensity variation was modeled as a constant variation
as follows

I(x+ dx, y + dy, t+ dt) = I(x, y, t) + c(x, y, t) (2.11)

They also imposed c to be locally smooth since an intensity variation is usually spatially
smooth. The minimization problem became:

Eck =

∫∫
xy

(
[Ixu+ Iyv + It − c]2 + α2

[
‖∇u‖22 + ‖∇v‖22

]
+ β2‖∇c‖22

)
dxdy (2.12)

where u, v and c were the three unknown parameters to be estimated. The minimization
problem was reduced to an iterative scheme using the same strategy as for Horn & Schunck
approach.

Another method was proposed by Gennert and Negahdaripour [72] and modeled the
intensity variation in a linear way such as

I(x+ dx, y + dy, t+ dt) = m(x, y, t)I(x, y, t) + c(x, y, t) (2.13)

where m(x, y, t) is the linear coefficient. The solution can also be computed using the
variation calculus and the Gauss Seidel approach.
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Oriented smoothness approach
Discontinuities in optical flow at object boundary can occur and are hard to estimate

with the previous formulations since the smoothness of the motion field is imposed in
the whole image. To overcome this limitation Nagel proposed a novel formulation that
proposed an oriented-smoothness constraint on the motion field [73]. In its proposition,
motion field smoothness is not imposed across high intensity gradients. This work was
proposed in order to model occlusions. The variational framework was as follows:

En =

∫∫
xy

(
[Ixu+ Iyv + It]

2

+
α2
[
(uxIy − uyIx)2 + (vxIy − vyIx)2 + δ

(
‖∇u‖22 +

[
‖∇v‖22

])]
‖∇I‖22 + 2δ

)
dxdy

(2.14)

with δ a constant.

Robust optical flow estimation
In the presented variational framework, the estimation tries to fit a model using data

hampered by noise. However, the influence of pixels depicting high intensity variation due
to the noise (that can be considered as outlier) may deteriorate the model fitting process.
In robust statistics, a robust estimator is designed to give less importance to outliers. As
demonstrated by Hampel et al. [74], the influence function, that characterizes the bias that
a measurement has on the solution, can be determined by the derivative of the estimator
function. For example a quadratic function, which is used in all previously presented
model, ρ(x) = x2 has a derivative Σ(x) = 2x that means that outliers influence increases
linearly with their distance to the true value. In order to decrease outlier influence, an
estimator must give less importance to values far from the true value. For these reasons,
several propositions were made such as the Lorentzian estimator (represented in Figure
2.3) defined as

ρσ(x) = log(1 +
1

2
(
x

σ
)2) (2.15)

and its derivative as

Σσ(x) = (
2x

2σ2 + x2
). (2.16)

Note that the derivative of the Lorentzian tends to 0 for infinity values.

Figure 2.3: Illustration of the Lorentzian estimator: (a) Lorentzian function (with σ=0.2),
(d) derivative of the Lorentzian function (with σ=0.2).
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Using this robust estimator, Black and Anandan proposed a robust estimator for opti-
cal flow estimation [75]. Assuming that the motion is constant in a region, they proposed
the following minimization:

Eba =

∫∫
xy
ρ ([Ixu+ Iyv + It]) dxdy (2.17)

where all the previously presented regularization terms could have been added.

Other algorithms
A large number of optical flow approaches has been proposed in the last three decades.

Combinations of the different ideas has also been intensively investigated as for example
robustness principle and intensity variation (Kim et al. [76]).

2.1.3.3 Discussion

To register time series of MR-images to a reference position, two approaches can be em-
ployed using either absolute motion estimation (where the motion in each frame is esti-
mated to a common reference frame) or additive relative motion estimation (by summing
estimated motion on each successive frame). A relative estimation takes benefits of the
small displacement present between two successive frames (under fast MR-acquisition
scheme). However, the summation of each estimated motion, required to register each
frame to a common position, also implies the error/uncertainty summation of each esti-
mation. Therefore, absolute motion estimation is generally privileged.

For the specific application on mobile organs, it was shown that a good solution was the
combination of two direct methods using a global motion estimation (estimating a global
affine model) combined with a local motion estimation (based on optical flow approach)
[58]. However, these algorithms suffer from their high computation time for real time ap-
plications. Recently, Denis de Senneville et al. [77] have shown that GPU implementation
can substantially reduce this time offering new opportunities to real time applications.
Another limit is the number of free parameters present in the different models that rep-
resents an open question for clinical use of these methods where a manual calibration of
the parameters in function of the type of images (SNR, resolution, organ, etc) is hardly
feasible.

2.2 Correction of motion induced B0 variation

2.2.0.4 Introduction to motion induced magnetic field variation

An indirect consequence of organ motion concerns the induction of magnetic field suscep-
tibility variation (see figure 2.4). The magnetic susceptibility is a property of an object to
generate a magnetic field when positioned into an exterior magnetic field. In such a case,
the global magnetic field is modified. As the temperature variation, this effect generates a
local additional shifts on MR-phase images. Although this effect is negligible on assumed
static target, with mobile target it induces an apparent temperature modification, which
can bias or even completely mask the true temperature evolution induced by the energy
deposition.

Therefore, the determination of the reference phase image (φref , from equation (1.1))
for PRF-based MR-thermometry is not straightforward and would require a precise mod-
eling of the inhomogeneous magnetic field. Although this is hard to achieve under real
time conditions, several alternative strategies have been proposed to correct motion related
errors in PRF-based MR thermometry.
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(a) (b)

Figure 2.4: Illustration of motion induced phase variation: (a) and (b) are two images
acquired at two different time points in the respiratory cycle.

2.2.1 Multi-baseline based correction

Multi-baseline approaches are based on a learning step (prior to heating) where the relation
between motion and phase variation is “learned”.

2.2.1.1 Atlas-based approach

In atlas-based approach (see figure 2.5) [58, 78], a set of N images are acquired before
hyperthermia. Magnitude together with co-registered phase images are stored in a look-
up table. During hyperthermia, a reference phase image is obtained for each new acquired
image using this reference collection dataset. For this purpose, the current magnitude
image is compared to each magnitude image of the collection by computing the list of
inter-correlation coefficients. Finally, the phase image associated to the magnitude of the
collection with the maximal inter-correlation value is selected and used as the reference
phase for PRF-thermometry computation.

This approach is designed to correct MR-thermometry artifacts on organs that are
subject to a periodic displacement due to the respiratory cycle. Since phase variations
are “learned” in a preceding learning step and subsequently applied to correct the MR-
thermometry during the intervention, the method can intrinsically not correct for MR-
thermometry artifacts associated with spontaneous motion. If during hyperthermia new
positions are observed, a recalibration of the phase correction data is required. This task
can be completed in the relatively short time of two to five respiratory cycles because of
the high imaging frame-rate. However, for the case of low frame-rate imaging a complete
re-calibration leads to long interruptions of the temperature measurements and thus to
potentially unacceptable interruptions of the intervention. Finally, this method allows an
accurate correction of susceptibility related phase changes even in regions with complex
susceptibility distributions or signal discontinuities such as organ boundaries.

2.2.1.2 Linear fit modeling approach

An extension of the atlas-based approach has been proposed that aims to model before
hyperthermia a linear relation between phase variations and motion variations in a pixel
by pixel basis (see figure 2.6 [79, 80]. For this, a set of N images are acquired before
hyperthermia where magnitude, registered phase images and estimated motion descriptors
are stored in a look-up table.

Temporal phase unwrapping A temporal unwrapping is performed on phase images
to prevent jump of 2π due to the periodicity of the phase. For this, phase images are first
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Figure 2.5: General scheme of the atlas-based approach.

reordered over time in function of their corresponding displacement vector amplitude and
subsequently phase unwrapped.

Motion descriptor extraction Motion descriptors T t are generally associated with a
motion representation basis. For example, motion estimation algorithm based on para-
metric model decomposes the motion into M different components. In the case of an
affine model, M = 6 components are estimated (two translations, one rotation, two scale,
one shear). In this case, motion descriptors could be represented by these 6 components.
However, this type of representation basis is limited to global motion representation. To
obtain a more refined and optimal decomposition, a principal component analysis (PCA)
can be applied to the N motion fields (estimated with any motion estimation algorithm).
This allows to decompose any series of N motion fields into an optimal basis of M motion
fields (with M � N). Consequently, each motion field can be decomposed as a linear
combination of each basis element and the M linear coefficients can be used as motion
descriptors.

Linear model estimation For each individual voxel, a system of N equations ex-
pressing the unwrapped registered phase (φt) as a linear combination of the M motion
descriptors (noted T ti , 0 ≤ i < M is the index of the basis component, and 0 ≤ t < N is
the index of each image of the pre-treatment step) is given by:

φt(x, y) =
M−1∑
i=0

T ti Pi(x, y) + PM (x, y), ∀t, 0 ≤ t ≤ N − 1 (2.18)

where (x, y) denotes pixel coordinates, Pi, (0 ≤ i < M) are the unknowns and can be
intuitively seen as a parameterized magnetic field model. This results in an overdetermined
system resolved using a Singular Value Decomposition (SVD) .
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Figure 2.6: General scheme of the linear model approach.

Determination of the reference phase image during hyperthermia For each
image acquired during the learning phase, the motion descriptors are calculated and used
with the Pi (calculated from equation (2.18)) to compute a synthetic reference phase map
(φref ) as follows:
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φref (x, y) =
M−1∑
i=0

T ti Pi(x, y) + PM (x, y), ∀t, 0 ≤ t ≤ N − 1 (2.19)

This reference phase map is then used with the current acquired registered phase image
for PRF-thermometry computation.

The linear fit modeling approach extends the atlas based approach and allows to im-
prove the results with respect to the three following aspects. First, the correction is not
constrained to positions present in the collection, but can also be interpolated to intermedi-
ate positions, which significantly reduces discretization errors and the required number of
images in the correction data set. Second, while the atlas based correction can intrinsically
not correct for motion amplitudes higher than the ones observed in the learning phase,
the phase model allows extrapolation and can still provide an estimate of the reference
phase. Finally, since the reduced set of Pi coefficients is derived from the resolution of an
overdetermined system of 50-100 reference images, noise will be reduced on the synthetic
reference phase images. Ideally, the noise contribution on temperature uncertainty can
thus be reduced by a factor of 2 (as optimally σ(φref )=0).

On the other hand, the linear fit modeling approach introduces several new problems
compared to the atlas based approach: The magnetic field perturbation is estimated as-
suming a simple linear magnetic field variation with organ displacement. Although this
assumption holds in general for small displacements, the precision of this simple model
must be carefully evaluated in regions displaying large motion amplitudes or large suscep-
tibility variations, such as in the vicinity of the digestive tubes, or at the lung/liver/heart
interface. This can in practice be achieved by simply mapping, during the learning step,
the fitting error ε(x,y), which can be obtained by subtracting the measured phase from
the reference image computed from the linear model. This also allows to discard regions
where low signal levels in conjunction with large susceptibility variations that may prevent
a successful temporal phase unwrapping that is required to adjust the linear model to the
phase data.

2.2.2 Referenceless based correction

In this approach, a reference phase image is obtained by fitting a polynomial function from
a region of interest (ROI) outside the heated area of the measured phase image (see figure
2.7) [81]. In order to avoid fitting problems due to spatial phase wraps, phase-unwrapping
is applied in the ROI before fitting. The appropriate size and location of the ROI as well
as the optimal polynomial order for the phase fit are determined before heating.

This correction is only based on the current image and do not require any learning
phase. Therefore, this method can correct susceptibility related phase changes induced by
any type of motion (even non-periodic such as spontaneous motion).

This approach requires an a priori choice of a ROI to estimate a polynomial fit of the
phase in order to derive the reference phase. The performance of this approach depends
largely on optimal ROI placement, size, and shape. Ideally, the fitting ROI should en-
compass the ablation area and should be sufficiently close to allow a precise estimation of
the background phase in the target area. On the other hand, the fitting ROI should also
be sufficiently far to avoid contamination of the fit due to heat diffusion/conduction, and
should not encompass areas displaying strong local susceptibility variations.

The limitations of this approach become evident when application scenarios do not
permit to fulfill all four conditions simultaneously, such as minimally invasive ablation, or
interventions at the boundary of organs:

• In the first case of minimally invasive ablation, strong localB0 variations are typically
present in the ablation area when invasive ablation devices such as RF-electrodes,
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Figure 2.7: General scheme of the referenceless approach.

laser-fibers or cryo-ablators are employed. These local variations cannot be modeled
by a polynomial fit based on far field data. This in turn leads to incorrect estimates
of the background phase and consequently to temperature offsets in the vicinity of
the device. Therefore, due to the exponential dependence of the thermal dose on
the temperature, these systematic offsets have a large impact on the accuracy of the
time estimate when the necrosis occurred.

• Another limit of the method appears when the ablation area is in the vicinity of
an organ boundary and does not allow the fitting ROI to encompass the ablation
area. In this case, the polynomial fit can not be used to interpolate the background
phase, but to perform an extrapolation. This leads to reduced precision of the fit, in
particular since the susceptibility variations on the organ boundaries lead to large
B0 fluctuations.

2.3 Temporal drift of the magnetic field

Although recent MRI designs have excellent spatial magnetic field homogeneity, their
field is not entirely stable over time when sustained high frame-rate imaging is applied.
Sustained high frame-rate imaging may lead to spatio-temporal fluctuations of the external
magnetic field. These fluctuations have been observed due to frequency drifts of the
exciter/receiver system, or by temperature changes in the shimming material of the scanner
due to the high load on the gradient coils. Therefore, temporal drift of phase images
can be observed and the subtraction of phase images acquired at different times can be
affected with a different bias for each pixel [82, 83]. This effect has to be removed prior
to temperature estimation.
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2.4 Image noise and temperature precision

Noise mainly comes from two sources: thermal noise (coming from patient body and its
thermal motion) and different scanner elements (coils, electronics, wire, etc). Noise can
be quantified using the signal to noise ratio (SNR) defined as follows:

SNR =
ĪS

σ(IN )
(2.20)

where ĪS denotes the average of the signal in the target area and σ(IN ) is the standard
deviation of the signal in the noise. To manage the SNR, a lot of MR-parameters can
be modulated such as the voxel size (the higher the voxel signal, the higher the SNR),
signal averaging (repetition of the acquisition to average the signal), etc. Noise can also be
reduced in post processing using imaging processing techniques such as spatial or temporal
filtering. Note that the theoretical minimal temperature precision (Ttheo) achievable for a
given SNR is given by the following equation [84]:

Ttheo =

√
2

SNR.γ.α.B0.TE
(2.21)

where C = γ.α.B0.TE defines the PRF constant described in 1.2.2.

2.5 The rib obstacle

In the case of HIFU heating, the beam path goes through a number of different tissues.
In particular, one of the main limiting factors of an HIFU experiment in an organ such as
the liver, arises from the rib obstacle. Here, the HIFU beam has to go through the ribs
in order to reach the liver. However, ribs have the propriety to heat more or less 7 times
faster than a regular tissues. Therefore, a strategy to decrease rib heating is required. For
this, elements of the transducer responsible for undesired heating are either switched off
or modulated in their amplitude or phase [22, 85, 86].

2.6 Spatio-temporal control of delivered power

The control of the intensity and the location of the applied power is an important issue for
HIFU ablation. With an insufficient heating, abnormal cells will survive leading to disease
reappearing. On the other hand, an uncontrolled heating may lead to the destruction
of healthy tissue. In the case of mobile organs, the spatio-temporal control of the HIFU
beam may be required in order to

• follow the organ motion to prevent heating of undesired area.

• perform volumetric heating strategy to treat larger volume.

2.6.1 Beam steering for motion compensation

Previous studies on MR-target tracking of abdominal organs in the field of radiation ther-
apy [87, 88] and HIFU-beam steering [58] have been realized. In this study, the aggregated
time of the MR-image acquisition, the data transport, the image analysis and the final
beam correction was in the order of 150-250 ms. Nevertheless, the kidney of a healthy adult
volunteer moves under free-breathing conditions at rest with a period of 3-5 s and a motion
amplitude of 10-20 mm. Assuming an ideal sinusoidal motion pattern this allows the peak
velocity to be estimated between 6 and 20 mm/s. Therefore, a tracking error of more
than 5 mm is expected due to the latency of the calculation. Since such an error margin
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is for therapeutic purposes in general not acceptable, sophisticated algorithms for trajec-
tory prediction have to be employed to compensate for this latency. Since most of these
algorithms rely on the periodicity of the respiratory cycle, they require stable breathing
patterns of several seconds of adaptation before they can provide robust predictions. This
condition is generally well full-filled for the case of mechanically assisted ventilation for
patients undergoing an intervention under general anesthesia. However, currently most
HIFU-interventions are carried out under free-breathing conditions. For free-breathing
patients the respiratory cycle is subject to variations in frequency and amplitude and
to spontaneous fluctuation/deviations due to non-nutritive swallowing or coughing. Since
such events are intrinsically hard to predict, they firstly can lead to large short-term track-
ing errors and secondly to a destabilization of the prediction algorithm. Therefore, the
minimization of the latency is one the main concern to improve the robustness of beam
steering.

2.6.2 Beam steering for volumetric heating strategy

Several works attempted to control the energy deposition in space and in time. The
feasibility of an automatic control of the temperature based on an automatic proportional,
integral, and derivative (PID) temperature feedback loop has been first demonstrated
[89, 90] without MRI. The help of fast MR-thermometry for temperature control have been
then demonstrated in a single point [91] and for several points [92]. A spatio-temporal
control over a predefined volume was then proposed by Mougenot et al. [93] where the
strategy was to heat the voxel depicting the larger difference from the desired target
temperature.

2.7 Clinical aspects and feasibility of the intervention

To make the therapy suitable for clinical use, a number of technical challenge have to be
addressed.

Real time feasibility

This interventional procedure can be seen as a real time system. Therefore, a common
constraint to all presented challenges is the real time feasibility of the proposed solution.
This aspect is developed in part II.

Security control / Patient safety

The patient safety is part of the main concerns of the intervention. The minimization of
the risk for the patient is mandatory. Therefore, prior modeling of the intervention [94, 95,
96, 97, 98], automatic control during the intervention [22, 93] and physician supervision
appear necessary for clinical use of the system.

Simple and automated process

The part of user interaction is a tedious problem. For example, many signal processing
methods use a set of free parameters that has to be tuned prior the execution. In this
case, a highly user dependent system makes it sensible to user error and may increase
the intervention duration. On the other hand, a fully automated system has to be highly
robust and repeatable in order to be run independently but makes the system much more
simple to use. Generally, a good trend can be to use a highly automated system combined
with a user supervision to correct for possible error on the automated system.
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Fast intervention

The intervention duration is also critical from a cost point of view and resource/material
access. For these reasons, the duration of the intervention has to be minimized.
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Conclusion

In this part, an introduction to the targeted medical applications together with the as-
sociated challenges were presented. Although several methodological solutions have been
proposed to perform MR-guided thermal ablation of mobile organs, their applications in
a real case still require further developments to guarantee the patient safety and the effi-
ciency of the therapeutic intervention. In particular, the current frequency of 1 Hz used to
observe organ motion and temperature evolution has to be increased to improve the perfor-
mance of HIFU beam steering applications and volumetric ablation strategies. Therefore,
in the next part of this thesis, solutions to address these limitations are proposed using
very fast MRI combined with computationally efficient strategies for the reconstruction
of MR-images and the correction of temperature artifacts (induced by motion, magnetic
field drift, noise, etc).
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Part II

Feasibility of real time
MR-guidance of thermal ablation

of mobile organs
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Chapter 3

Introduction to real time
computing

3.1 The time constraint of a real-time system

The time constraint of a real-time system corresponds to the available time to compute a
given task. For MR-guided thermal ablation on mobile organs, two different systems have
to be considered:

• Update of the heating device power, which is based on previous thermometry and
dosimetry information. Note that this system is also in charge to detect the therapy
endpoint.

• Update of the HIFU beam position, which is based on organ motion displacement.

As mentioned in the introduction, both of these systems are updated based on MR-images.
Therefore, the time constraint is defined by a processing framerate above the framerate of
the MR-acquisition associated with a low overall processing latency in order to guarantee
the service quality of the feedback control. If this constraint is not respected, congestion
is expected in the process introducing additional latency of the output which can possibly
lead to life threatening effects such as heating of an undesired area, etc.

To give a rough idea of the time constraint, a first presentation of the system timing
is given. Then, solutions to handle real time computing are presented.

3.2 Required computation time for MR-guided ablation

The choice of the imaging framerate depends on the observed system variation speed and
the required precision of the feedback controller. Therefore, to better understand the
choice of the imaging framerate, it is important to clearly identify the mechanism of each
feedback controller and their characteristics.

3.2.1 Retro control systems and choice of the imaging framerate

Here, we present the constraints of each system.

• Update of the heating device power: This system is a closed loop feedback controller,
therefore the stability of the system has to be considered. For this the analysis of
the close loop transfer function of the controller allows to define the condition of
stability and convergence. The required precision is in the range of a degree Celsius,
and temperature variations of a degree Celsius are approximatively observed over a
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period of a range of a second. In this context, assuming no latency in the temperature
estimation process, a system update every second appears sufficient to keep the
temperature estimation below an error of one degree.

• Update of the HIFU beam position: This system is an open-loop feedback controller.
Therefore, this system does not have stability issue. The information of motion is
used to update the beam position of the HIFU transducer. Previous study showed
the impact of latency on tracking error [58]. The free breathing period at rest in
generally in the range of 3-5 s on a healthy adult and an organ such as the kidney
depict a motion amplitude of 10-20 mm. This result in a peak velocity of 6-20
mm.s−1 if we assume the motion pattern as an ideal sinusoid. In this condition, it
was shown that a latency of more than 150-250 ms can induce a tracking error of
more than 5 mm [58] which is not acceptable for a therapeutic process. Recently,
it was shown that a framerate of 10 Hz combined with a short latency inferior to
114 ms was demonstrated to allow the deposition of more than 90% of the delivered
energy in the target area [99].

3.2.2 Latency effect

In addition to the system update frequency, this is important to investigate the latency
effect of each update. Latency of a process corresponds to the interval of time between an
event and the response to this event. In our case, the event is the acquisition of new data.
After this, the response can be the data reconstruction, the thermometry or dosimetry
computation or even the update of heating device (position or power). For these reasons,
several latencies are defined in this thesis, as shown in Fig 3.1.

Figure 3.1: Latency of the main interventional steps

As mentioned in section 2.6.1, the latency introduces an additional error in the update
process and has thus to be minimized. The effect of latency can also be compensated
using a prediction algorithm. However, the performance of prediction algorithms gener-
ally decreases for long time prediction, showing the need to minimize latencies and thus
computation times. In addition, they cannot anticipate spontaneous events.

3.3 Choice of adapted hardware for efficient parallel com-
puting

3.3.1 Choice of an adapted parallel computing hardware

At the beginning of this thesis, the employed solution in the laboratory for parallel com-
puting was based on symmetric multiprocessor (SMP). This type of hardware contains
multiple identical processors that use a shared memory and are connected via a bus.
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SMPs generally have a limited number of coprocessors in order to avoid bus contention
which thus appears limited for massive parallel computing. In our algorithm, a lot of pro-
cessing steps are realized independently in a pixel by pixel basis making a parallelization
level to the pixel level desirable. In such condition, alternatives to SMP were investigated
in order to improve the number of parallel running threads.

One of the main requirement was to guarantee a high framerate processing to satisfy
the time constraint of the real time system and also to ensure a short latency. Therefore, all
the hardwares that connect a group of computers via a network communication interface,
such as grid computing or cluster computing were not suitable since the overhead imposed
by the distribution of the data at the beginning and the collection of the data at the end
will introduce substantial latency.

Another requirement for the choice of hardware was the possibility to exploit several
level of parallelization that we referred in the scope of this thesis as: inter processing task
level (to execute several tasks in parallel) and intra processing task level (to parallelize a
given task). Based on all presented conditions, specialized parallel computer such as Field-
programmable gate array (FPGA) or General-purpose computing on graphics processing
units (GPGPU) were considered. A FPGA is a computer chip that can rewire itself for
a given task and can be programmed using hardware description languages. A GPU can
be seen as a massive parallel coprocessor capable of executing a very high number of
threads in parallel. The recent GPUs contain 128-480 basic arithmetic processing units
and are pretty cheap (few hundreds of dollars). Parallel computing architecture have been
developed by GPU manufacturers to make GPU programming easier based on a well known
programming model. For example, ATI stream, Chronos group with OpenCL or NVIDIA
with CUDA proposed C-style languages and do not require hardware knowledge as for
a FPGA. For these reasons, GPGPU appeared as an interesting solution for a real time
implementation of the interventional process. Principles of GPGPU are now presented.

3.4 GPGPU principles

A GPU is constituted by a large number of basic arithmetic processing units that are
organized into groups of multi-processors containing fast shared on-chip memory and a
slower global memory shared across multiprocessors.

The GPU allows running a batch of threads to execute the same program (called
kernel) independently on different data (see figure 3.2). Each kernel is organized into a
grid of Nblock blocks. Each block contains a set of Nthread threads executed in parallel by
one multiprocessor.

Figure 3.2:

Threads of the same block can share information (via the shared memory) (see Figure
3.3). Synchronization barriers also exist at the block level (for the threads of one block).

Data is exchanged between the dynamic random access memory (DRAM) of the GPU
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Figure 3.3:

and the RAM of the hosting computer via direct memory access (DMA) of the PCI-
express bus, which is bandwidth limited to 3-4 GB/s. In addition the GPU DRAM
memory access has a high latency (400-600 clock cycles). Therefore, in order to obtain
a maximal processing performance on this particular GPU architecture, implementations
have to conform the following guidelines:

• Excessive exchange of data between the RAM of the hosting computer and the GPU
has to be avoided.

• The large memory latency of the global GPU DRAM can be hidden by designing
the kernels to solve the mathematical problems with a high density of arithmetic
operations per memory access and designing the execution configuration to exploit
the dimensionality of the given problem to maximize Nblock and Nthread.

• Memory intensive processing has to be implemented so that cooperation takes place
between threads within the same block and not between different blocks.

• Multi-dimensional data in the DRAM should be organized so that memory access
from the individual threads results in contiguous memory access by the memory
controller.

3.5 Discussion and conclusion

In this chapter, a definition of the time constraint imposed by our real-time system was
given. However, this time constraint can be seen as an upper bound of the time available to
compute all necessary processing steps. It is important to note that further improvements
of computation times below this upper bound, would allow to reduce the overall latency
and thus to improve the quality of the output information / decision. As mentionned in
the previous section, GPGPU appeared simple to use and to program, cheap and well
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suited for our application. Therefore, in this thesis the potential of GPGPU, as a solution
for a real time implementation of the interventional process, was evaluated.
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Chapter 4

Real-time MR-reconstruction

4.1 Fast MR-acquisition

As seen in section 2.1.1.2, organ motion occurring during the MR-acquisition process
(referred to as intra-scan motion) causes blurring and ghosting artifacts. Optimized fast
MR-acquisition schemes represent an established way to minimize this effect, before more
sophisticated correction schemes have to be employed. The data acquisition has to be
rapid enough to resolve physiological motion such as respiratory or cardiac motion, and
the signal changes from the interventional process itself. In addition, the employed data
acquisition and reconstruction schemes must not introduce long image latencies, since this
degrades the value of the image data for feedback control.

4.1.1 Parallel imaging methods

Parallel MRI allows to increase the speed of the MR-acquisition by skipping a number
of phase-encoding lines in k-space during the acquisition (see figure 4.1). However, as
defined in appendix A (section A.2.2), the field of view is directly proportional to the
samples density in k-space. Therefore, as detailed in appendix A.3, the reduction of the
number of k-space lines leads to a reduction of the FOV in the corresponding direction,
and thus to aliasing artifacts on reconstructed images (as illustrated again in figure 4.1b).

Figure 4.1: Effect of k-space undersampling: (a) is a image obtained with a full k-space
sampling, (b) is an image from a two-fold undersampled k-space in up-down direction.

In this example, only every other line in phase encoding direction were acquired. There-
fore, the two pixels P1 and P2 appear superimposed in the position Q of the reconstructed
aliased image. In this case:

Ialiased(Q) = S(P1) ∗ I(P1) + S(P2) ∗ I(P2) (4.1)
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where I(P ) and Ialiased(P ) denotes respectively the intensity of pixel P in the unaliased
and aliased image and S(P ) is the sensitivity of the receiver coil in the real space at the
spatial position which corresponds to the position P in the image. Equation (4.1) denotes
the relation of pixels intensities for a sampling reduction of a factor 2. In the general case,
the relation becomes

Ialiased(Q) =
n∑
i=1

S(Pi) ∗ I(Pi) (4.2)

where n denotes the number of superimposed pixels Pi in the pixel Q.
The principle of parallel imaging relies on the simultaneous acquisition of the signal

with several different receiver coils with different spatial sensitivities (see figure 4.2). The
signal acquired by a specific coil is weighted by the coil sensitivity. Reconstruction methods
exploit the difference of the spatial sensitivity of each coil to compensate for the effect of
the undersampled k-space.

Figure 4.2: Illustration of parallel imaging: (a) acquisition of the MR-signal with several
receiver coils (4 in this example), (b) coil sensitivity maps of each coil used to reconstruct
the final image.

Several parallel imaging methods have been proposed in the last decade among those
SMASH [100], GRAPPA [101] or SENSE [102]. A rapid overview of the mechanism of one
of these methods (SENSE) is now presented.

4.1.2 SENSE reconstruction

Since, each receiver coil has it own sensitivity, equation (4.2) can be formulated for each
coil leading to the following system of equations:

Ialiased,c1(Q) =
∑n

i=1 Sc1(Pi) ∗ I(Pi)
Ialiased,c2(Q) =

∑n
i=1 Sc2(Pi) ∗ I(Pi)
...

Ialiased,cm(Q) =
∑n

i=1 Scm(Pi) ∗ I(Pi)

(4.3)

where m is the number of coil, Ialiased,cj (Q) denotes the reconstructed aliased signal from

the jth coil in the pixel Q and Scj (Pi) is the sensitivity of the jth coil in the pixel Pi.
The undersampling factor is often referred as the SENSE factor. In the case of an integer
value, n is uniformly equal to the SENSE factor for each voxel. In the case of a real value,
n will be equal to either Ent(SENSEfactor) or Ent(SENSEfactor)+1 for each voxel with
Ent(x) a function that rounds x down to the nearest integer. Note that this system has
a unique solution as long as the number of coil m exceeds the SENSE factor.

42



This system can be rewritten using linear form as follows:

Ialiased = SI (4.4)

The solution can be found by inverting S as follows:

I = (STS)−1ST Ialiased (4.5)

Therefore, the SENSE reconstruction requires coil sensitivity data as prior knowledge,
which depends on the coil type and position. However, since the SNR of a receiver coil im-
proves with the loading factor, optimized coil-arrays for abdominal imaging are generally
designed as flexible surface coils, which are directly placed on/around the patient body.
As a consequence, during the long acquisition times of interventional imaging procedures,
displacements of the coils are frequently encountered. This leads to increased image arti-
facts over time rendering this approach unsuitable. Therefore, methods such as TSENSE
[103] have been proposed to overcome this problem.

4.1.3 TSENSE reconstruction

TSENSE reconstruction collects high-resolution calibration data in order to update coil
sensitivity data during the acquisition.

However, the additional computational overhead leads to reconstruction times that
often exceed the MR-acquisition time, in particular if large coil arrays are used, and are
therefore in practice hard to exploit for real-time therapy guidance.

Guttman et al. demonstrated the feasibility of a real-time reconstruction for adaptive
TSENSE on a four channel receiver system with an image latency of 0.3 s [104]. Hansen
et al. [105] showed that a Cartesian SENSE reconstruction can be significantly accelerated
- by up to two orders of magnitude - if the massively parallel architecture of commodity
graphics hardware (GPU) is used [106].

Here, both approaches are combined to demonstrate the ability to reconstruct adaptive
TSENSE data in real-time with low image latencies on affordable commodity hardware
[107, 108]. For this, a detailed performance comparison of the TSENSE reconstruction
steps for the GPU and CPU implementation is presented and the image latency and
throughput of the full reconstruction under different typical interventional work-loads are
benchmarked. Finally, the benefit of the proposed online reconstruction for therapy guid-
ance is demonstrated with two in-vivo imaging experiments imitating typical conditions
for MR-guided thermotherapy on abdominal regions and cardiovascular catheterization
under real-time MRI guidance.

4.2 Real time TSENSE reconstruction

4.2.1 Reconstruction implementation

The detailed overview of the implementation of a reconstruction pipeline is shown in
figure 4.3. The acquisition system streams raw k-space data of dynamic image n to a
communication thread (CPU-thread #1) on the reconstructor, which feeds - over a buffer
queue - a second preparatory reconstruction thread. Here k-space ordering and Fourier-
reconstruction in readout-direction are carried out and the resulting mixed image/k-space
data is buffered to a shared-memory, which is accessible by all further reconstruction
processes. The shared-memory is implemented as a round-robin to allow CPU-threads
#3 and #4 to complete the reconstruction of dynamic image n, while threads #1 and #2
are immediately ready to receive and process new incoming data of the subsequent image
n+1. Since for high frame-rate imaging occasional data backlog can not be fully excluded,
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this mechanism also allows to detect a violation of the real-time condition and to provide
the option to either buffer or to discard new incoming data.

The main image reconstruction is carried out by CPU-thread #3 which applies a 1D
EPI-phase correction, which is based on a non phase-encoded reference scan [109], and the
Fourier transformation of the image data in phase encoding direction.

For non-SENSE encoded images the image reconstruction would be complete at this
point. SENSE encoded images require an additional unfolding step. Furthermore, adaptive
TSENSE requires a continuous recalculation of the sensitivity maps and subsequently the
SENSE matrix, which in itself is very time consuming. As Hansen et al. have shown, the
highly linear nature of the reconstruction steps required for SENSE are well-suited for GPU
offloading [105]. The presented architecture takes advantage of the linearity by offloading
all adaptive TSENSE calculations to a GPU. For this, the CPU-thread #4 sends a copy
of the undersampled k-space to the GPU. Subsequently, the GPU Fourier-transforms this
data, applies a temporal low pass filter, calculates the corresponding sensitivity maps and
recalculates the SENSE matrix as described by Kellman et al. [103].

Simultaneously, the CPU-thread #3 finalizes the Fourier-reconstruction of the folded
image and sends the result to the GPU for the final SENSE reconstruction step. Finally,
an optional temporal filter used for residual artifact suppression can be applied. Upon
completion of the reconstruction, the image is taken over by a CPU-thread #5 which
dispatches the images to one (or several) viewing station(s).

Figure 4.3: Overview of the thread architecture of the reconstruction pipeline. In order
to achieve high throughput and short image latencies, as many independent data han-
dling/reconstruction steps as possible are carried out in parallel: CPU-threads one and
two handle/reconstruct k-space data from the dynamic image n+1, while CPU-threads
three and four finalize simultaneously the reconstruction of dynamic image n. The time-
consuming processing steps for the adaptive TSENSE reconstruction are offloaded to
GPU-hardware which in itself uses up to 128 threads in parallel. A separate thread for
dispatching the data to a visualization and an archiving system is used.

The reconstructor was a dual processor (INTEL 3.1 GHz Penryn, four cores) work-
station with 8 GB of RAM and dual 1 Gb/s network interface cards. The GPU was a
NVIDIA 8800GTX card with 768 MB of DRAM connected over a PCIe x16 link. For
the data transport from the MR-acquisition system to the reconstructor and from the
reconstructor to the viewing station(s) a real-time implementation of the common object
request broker architecture (CORBA) known as The Ace Orb (TAO) [110, 111] was used.
For Fourier reconstruction and all linear algebra operations on the CPU, the ACML math
package [112] was employed. The package contains linear algebra packages BLAS [113] and
LAPACK [114]. The GPU implementation of the adaptive TSENSE method was realized
using CUDA ([106]), with in-house developed linear algebra routines based on methods
presented in Numerical Recipes in C++ [115].
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4.2.2 Detailed GPU implementation

Since the potential of GPU-hardware for SENSE reconstruction has been evaluated by
Hansen et al. [105], the description of GPU implementation is limited in this thesis to the
minimum required to understand the presented TSENSE implementation.

Since the storage order of the MR-data is reorganized during the reconstruction (in
order to obtain contiguous memory access from the individual threads and thus to speed
up DRAM memory access), the following reconstruction-related denotations apply within
the scope of this chapter: The MR-signal S is referred to as S(r, p, s, c). The order of
the indices reflects the ordering of the data in the computer memory, r being the fastest
varying component (r the index in read-out direction, p the index in phase direction, s
the slice index and c the coil index). Let Nr, Np, Npsense, Ns and Nc define the number
of elements in the read-out direction, the number of phase encoding steps, the number of
phase encoding steps reduced by SENSE acceleration, the number of slices and the number
of coils, respectively.

4.2.2.1 Fourier Reconstruction in phase encoding direction

Since for the most of the GPU reconstruction steps Nblock = NrNcNs, and Nthread=Np, the
data is first reordered from data organization S(r, p, c, s) to S(p, r, c, s) to allow coalesced
memory access by the threads (Nthread=16×16 in our implementation, Nblock=NrNpNcNs/Nthread).
This step also prepares the Fast Fourier Transformations (FFTs) in phase encoding direc-
tion by applying the required frequency shifts. Subsequently, the CUDA programming API
[106] provided FFT is applied in the p-dimension (using Nthread=Np, Nblock=NrNcNs),
resulting in an unaliased image for each receiver coil and slice.

4.2.2.2 Temporal Filtering

All coil images Ialiased,ci(∀0 ≤ i < Nc) have periodic aliasing with a frequency equal to
1/SENSEfactor. Therefore, in order to suppress this artifact, all coil images Ialiased,ci are
temporally low pass filtered with an infinite impulse response filter (IIR) using a SENSE
factor dependent bandwidth of 1/SENSEfactor as described in details by Maclair et al.
[116]. The resulting unaliased coil images Iunaliased,ci are thus obtained as follows:

Iunaliased,ci(t) =

T∑
k=0

ak · Ialiased,ci(t− k)−
T∑
j=l

bj · Iunaliased,ci(t− j) (4.6)

where ak and bl are the filter coefficients and T is the temporal window size of the filter.
The principle of this type of filter is described in detail in appendix F.1. The GPU
implementation of this filter employed the following configuration: Nthread=Np, Nblock =
NrNcNs.

4.2.2.3 Sensitivity Map Update

First, the calculation of the synthetic reference Iref image is performed. This can be, for
the case of TSENSE, provided by the Sum-of-Square of the coil images as follows:

Iref =

√√√√ m∑
k=1

I2
unaliased,ck

(4.7)

using the following GPU settings:Nthread = Np, Nblock = NrNs. Subsequently, the coil
sensitivities are calculated (Nthread = Np, Nblock = NrNs) and a receiver coil noise decor-
relation step [117] is performed. For the decorrelation step, the first Nc threads load each

45



one element of the pre-calculated matrix L−1
⊗
Id, where L is derived from the receiver

noise matrix (ψnoise) using a Cholesky decomposition LLH = ψnoise (with LH the con-
jugate transpose of L) and Id is the identity matrix. After a mutual barrier point each
thread loads the reference image value for the position associated with the thread and
calculates the spatial coil sensitivity map Sci for all coils as follows:

Sci =
Iunaliased,ci

Iref
(4.8)

Then, the noise decorrelated sensitivity maps Sdecorrci are obtained as follows:

Sdecorr,ci = (L−1 × Id)Sci (4.9)

The result is stored in S(c, p, r, s) order to prepare the SENSE-matrix recalculation.

4.2.2.4 SENSE-matrix Recalculation

The unfolding matrix U is calculated for each slice position (usingNthread=Nr, Nblock=NpsenseNs)
as follows:

U = (SHdecorrSdecorr +R−1)−1SHdecorr (4.10)

where R is a diagonal matrix with the regularization term along the diagonal [118].
Each thread calculates the matrix inversion for one pixel using an adapted version of
the Cholesky decomposition algorithm [119].

4.2.2.5 SENSE-Reconstruction

This step (performed usingNthread=Npsense, Nblock=NrNs) begins with a noise-decorrelation
of folded image (Ialiaseddecorr = (L−1

⊗
Id)Ialiased, where Ialiased and Ialiaseddecorr are the

aliased and the noise decorrelated aliased image, respectively). Then, the unfolding process
is performed as follows:

Iunaliased = UIaliaseddecorr (4.11)

where Iunaliased is the unaliased image. Note that superimposed voxel indices are precal-
culated in both data organizations S(r, p, c, s) and S(p, r, c, s) to speed up this step. In
our implementation, Ialiased is computed on the CPU in parallel with the SENSE-matrix
recalculation step explained above.

4.3 Evaluation experiments

4.3.1 In-vivo applications

All in-vivo experiments were performed on a Philips Achieva 3.0 T X-series scanner
equipped with a Philips 16-channel torso coil. The wrap-around coil consists of an ante-
rior and a posterior segment with two lateral ladder-shaped arrangements of four elements,
respectively. The following acquisition parameters were used:

4.3.1.1 Abdominal thermometry imaging

A gradient-echo EPI (GE-EPI) sequence, using an echo-train of 67 echoes (33 for two-fold
and 17 for four-fold acceleration, respectively), a fixed TE of 15 ms and TR of 50 ms for all
acceleration factors, a flip angle of 35◦, a bandwidth in phase-encoding direction of 4.1 kHz
(1.5 kHz for two-fold and 0.7 kHz for four-fold acceleration), was used to acquire a single
slice placed on the right kidney of a healthy volunteer. The resulting image resolution was
3.13×3.13×5 mm3. Fat suppression with spectral pre-saturation with inversion recovery
(SPIR) was used (one excitation per TR cycle, bandwidth 135Hz).
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4.3.1.2 Cardiac imaging

A single short axis view of the heart of a healthy volunteer was acquired using a balanced
steady-state free precession (TrueFISP) [120] sequence (TR = 4.0 ms, TE = 2.0 ms, flip
angle = 41◦) with an image matrix of 128×88 (128×44 for SENSE 2; 128×30 for SENSE
3) and a dynamic scan time of 800 ms ( 427 ms for SENSE 2; 300 ms for SENSE 3) leading
to an image resolution of 2.8×2.8×7 mm3.

Figure 4.4: Real-time reconstructed MR-images using a combined CPU/GPU reconstruc-
tion (left-right: foot-head, up-down: anterior-posterior direction): (a-c) : Fully sampled
gradient recalled EPI image centered on the kidney (a) and TSENSE accelerated by factor
of 2 (b) and 3 (c). (d-f) : short axis view obtained with balanced SSFP, with full sampling
(d) and with a TSENSE acceleration factor of 2 (e) and 3 (f).

Figures 4.4 shows a fully sampled (4.4a), two-fold accelerated (4.4b) and three-fold
accelerated (4.4c) abdominal image of the right kidney of a healthy volunteer obtained
under free-breathing conditions. An imaging frame-rate of 20 images/s was maintained
online for 300 seconds of MR-imaging. The center of the image depicting the kidney was
artifact-free over the entire imaging duration and is hence suitable for continuous MR-
thermometry. Similarly, figures 4.4.d, 4.4.e, and 4.4.f show a T2/T1-weighted short axis
view of a healthy volunteer obtained under free-breathing conditions.

4.3.2 Real-time benchmarking and latency

The GE-EPI sequence used for real-time benchmarking was similar to the sequence used for
“abdominal imaging” but used no SPIR preparation and the shortest TE/MR-acquisition
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time achievable (reported in Table 2).
Table 4.1 compares the computation time for each TSENSE reconstruction step for a

two-fold accelerated image (resolution 128×128, six and sixteen receiver channels) between
the implementation using the CPU only and the CPU/GPU implementation. The two
most time consuming tasks, the temporal filtering of coil images and the SENSE matrix
recalculation, were accelerated by a factor of 14.7 and 16.3, respectively and lead to an
overall eight-fold increase of the reconstruction speed despite the additional data transfer
to the GPU.

Table 4.1: Computation time in ms for all TSENSE reconstruction steps for a single slice
of resolution 128×128 pixels with an acceleration factor of 2 using a six receiver coils and
a sixteen one.

Treatment
6 receiver coils 16 receiver coils
CPU GPU CPU GPU

k-space data transfer from CPU to GPU - 0.37 - 0.83

Phase encode FFTs 1.83 0.52 5.77 1.35

Temporal low-pass filtering 17.24 1.04 53.24 2.68

Sum of squares 0.23 0.15 1.05 0.49

Sensitivity maps update 1 0.23 2.14 0.56

SENSE matrix recalculation 10.61 0.62 11.53 1.54

Folded image transfer from CPU to GPU - 0.37 - 0.83

SENSE reconstruction 0.57 0.22 2.11 0.59

Optional temporal low-pass filtering 1.7 0.4 1.7 0.4

Unfolded data transfer from GPU to CPU - 0.13 - 0.13

Total 33.18 4.05 77.54 9.4

Figure 4.5 compares the computation time measured for various TSENSE acceleration
factors (2, 3 and 4) and different image resolutions (128×128, 256×256 and 512×512
pixels) using the CPU/GPU approach (4.5a) and using the CPU only (4.5b).

Figure 4.5: Computation time measured for various TSENSE acceleration factors (2, 3
and 4) and different image resolutions (128 ×128, 256×256 and 512×512 pixels) using
the CPU/GPU approach (a) and using the CPU only (b). Acceleration factors around
7-8 were measured with the proposed CPU/GPU approach for each tested resolution.
Computation times remain identical using the proposed CPU/GPU approach for each
tested TSENSE acceleration factor.

Table 4.2 reports the data transfer time, the reconstruction time and the resulting
image latency (as defined in figure 3.1) under real-time conditions for coil setups with 4,
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6, 8, and 16 elements, and TSENSE acceleration factors of 2, 3, and 4 (resolution 128×128,
two-fold read-out oversampling). Since computation times for multi-slice acquisitions are
almost linear with the slice number, only results measured with a single slice are reported.

Table 4.2: Reconstruction time and image latency in ms with TSENSE factor 2 (a), 3 (b),
4 (c) for a single slice reconstruction of resolution 128×128 for 4, 6, 8, 16 coil channels.
With the proposed CPU/GPU implementation, total computation times are far below the
TR on all tests demonstrating that real-time reconstruction is feasible.

TSENSE factor 2

MR-acquisition time 44

TE 22

Channel number 4 6 8 16

Data transport time 31 31 76 76

CPU only
Reconstruction 23.4 33.2 42.3 82.2

Latency 54.4 64.2 118.3 158.2

CPU/GPU
Reconstruction 3 4.1 5.2 9.8

Latency 34.0 35.1 81.2 85.8

(a)

TSENSE factor 3

MR-acquisition time 31

TE 15

Channel number 4 6 8 16

Data transport time 19 24 44 59

CPU only
Reconstruction 23.7 33.6 42.5 83

Latency 42.7 57.6 86.5 142.0

CPU/GPU
Reconstruction 3.1 4.2 5.4 10.2

Latency 22.1 28.2 49.4 69.2

(b)

TSENSE factor 4

MR-acquisition time 23

TE 11

Channel number 4 6 8 16

Data transport time 17 22 27 47

CPU only
Reconstruction 22.4 33.9 42.7 83.2

Latency 39.4 55.9 69.7 130.2

CPU/GPU
Reconstruction 3.3 4.5 5.7 10.7

Latency 20.3 26.5 32.7 57.7

(c)

Data transport varies between 17 ms (four-fold accelerated, four channels, ∼135 kB
per image) to 76 ms (two-fold accelerated, 16 channels, ∼1 MB per image) depending
on the data size. The reconstruction itself has a theoretical peak performance between
75 images/s (SENSE 4, 16-channels) to 330 images/s (SENSE 2, 4-channels). However,
in practice the achievable peak data-throughput was found to be limited by the I/O
subsystem of the acquisition system to ∼2.1 MB/s, which corresponds to an image frame-
rate of 20 images/s for a two-fold TSENSE accelerated data set (128×128, two-fold read-
out oversampling, 16 receiver channels) with an overall image latency of 90 ms, or 40
images/s and an image latency of 60 ms for a four-fold acceleration.

49



4.4 Discussion and conclusion

The usefulness of a reconstruction pipeline for real-time MR-guidance of interventional
procedures can be characterized by the reconstruction speed and the achievable image
latency. Fundamentally, the reconstruction time of the pipeline has to be comparable
to, or preferably shorter as, the acquisition time of the MR-system, in order to maintain
the real-time condition for sustained imaging. Table 4.2 shows that a purely CPU-based
reconstruction limits MR-acquisition to only 4-6 coils elements and SENSE acceleration
factor to 2-3. Since the proposed CPU/GPU implementation of the TSENSE reconstruc-
tion achieves in average an eight-fold acceleration, these limits are virtually removed. In
practice, this means that imaging speed is now limited by the boundaries imposed by
the MR-sequence, the specific absorption rate, the desired signal-to-noise ratio and the
I/O-bandwidth of the acquisition system.

For the case of MR-guided surgical interventions, large image latencies introduce a
significant lag between the action and its observable consequence and thus limit the accu-
racy and speed of the procedure. The proposed CPU/GPU reconstruction achieves image
latencies from 20 to 90 ms for all coil configurations and acceleration factors, and is thus
well-suited for manual feedback.

Depending on the application, potential data backlog can either be discarded to prevent
a sustained desynchronization between acquired and reconstructed images, or be buffered
to preserve the temporal continuity of the image data.

The presented work shows that a reconstruction pipeline for real-time reconstructed
adaptive TSENSE imaging, which is suitable for interventional MR-guidance, is realizable
on affordable commodity hardware. However, multiple channel coil are required to use such
reconstruction method. The Philips Sonnalleve HIFU platform already has an integrated
multiple channel coil composed of three coils. However, in our experiment, two of the three
channels usually provided very poor signal quality which is highly limiting for parallel
imaging. For these reasons, the construction of a multiple channel coil with a higher
number of channel was planned in the laboratory and by Philips. This project is still
in work and progress, therefore, the TSENSE reconstruction was not employed in the
following studies presented in this thesis.
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Chapter 5

Real time feasibility of
MR-thermometry and dosimetry
on mobile organs

5.1 Introduction

As described in the introduction, a number of challenges has to be addressed in order to
achieve MR-thermometry and MR-dosimetry on mobile organs (see section 2). For this,
we proposed in this chapter a whole processing pipeline extending the work of Denis de
Senneville et al. [58] where the frequency of the MR-thermometry was limited to 1 Hz. In
our contribution, a very fast (10-15 Hz) strategy for motion compensated MR-thermometry
and dosimetry of mobile organs is proposed. Here, fast MR-acquisition schemes have been
employed to minimize intra-scan motion together with an efficient processing pipeline
for MR-thermometry and dosimetry calculations [121, 122]. In this processing pipeline,
the problem of motion (including motion estimation and the correction of motion related
susceptibility variation) is addressed with algorithms presented in [58]. Therefore, since
all temperature maps are registered to a common reference position, a temporal filtering
is proposed to reduce the noise of the MR-thermometry measures. Finally, to remain
compatible with the time constraint of the real time system and to ensure a short latency,
a GPU implementation of all computational intensive calculations (especially the motion
estimation process) was added.

The potential of the real-time pipeline to remove MR-thermometry artifacts dynam-
ically is evaluated in-vivo on the abdomen of 11 healthy volunteers under free-breathing
conditions and in the heart of 9 healthy volunteers under free-breathing conditions.

5.2 A real time correction pipeline

The general scheme of the correction pipeline employed for the calculation of MR-thermometry
and dosimetry is presented in figure 5.1. The intervention is separated into a pre-treatment
step and a hyperthermia step. The pre-treatment step is performed prior to the interven-
tion to calibrate the multi-baseline method addressing the problem of motion related
phase variations (see section 2.2.1). During the subsequent hyperthermia step, all incom-
ing images are first co-registered to the common position of the reference image [123].
For this, the motion estimation process is composed by two step process where the prin-
cipal displacement component (PDC, see global motion estimation in section 2.1.3.1) is
first estimated and followed by an optical flow registration algorithm (see section 2.1.3.2).
Subsequently, the phase image is corrected for motion related phase variations based on
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Figure 5.1: Data processing sequence. The intervention is separated into a pre-treatment
step (dark grey arrow) and a hyperthermia step (light grey arrow). Computation times for
a single image (resolution 128×128) are reported in milliseconds for each processing step
with the CPU/GPU implementation (bold) and CPU only implementation (brackets).
The most time consuming task, the image registration, was accelerated by a factor of 3 for
the global motion estimation estimation and a factor of 10 for the local motion estimation
using the CPU/GPU implementation. All others tasks, being in the range of a millisecond,
have been substantially reduced below 0.1 ms.

the multi-baseline strategy and the temperature is calculated. A drift correction is applied
to remove temperature artifact caused by magnetic field drift. Then, temporal filtering
based on an infinite impulse-response (IIR) filter [124] is applied to the temperature maps
to increase the Signal-To-Noise ratio (SNR) and finally the thermal dose is calculated.

The proposed approach takes benefit of a combined CPU/GPU architecture by of-
floading computational intensive calculations to the GPU and thus freeing the CPU for
pipeline management and data preparation. The parallelization level was always set to
the pixel level and in this case Nblock was equal to the image pixel number divided by
Nthread with Nthread=16×16.

5.2.1 Organ displacement estimation

In the presented work, a global motion estimation is initially performed on the magnitude
images. This method serves also for preconditioning the more complex local motion esti-
mation. Note that all corrections are estimated on the magnitude images but applied to
the complex MR-images to avoid interpolation problems with spatial phase wraps.

Global motion estimation: An affine transformation model (see section 2.1.3.1) is
used where the free parameters are estimated using a differential Gauss-Newton approach
[125]. The model is defined as follows:(

dx
dy

)
=

(
tx
ty

)
+

(
a1 a2

a3 a4

)(
x− xg
y − yg

)
(5.1)
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where (dx, dy) are the horizontal and vertical components of the estimated displacement
in the pixel of coordinates (x, y). θ = (a1, a2, a3, a4, tx, ty) is the affine model parameter
vector, xg, yg are the pixel coordinates of the point used as reference for the transformation
estimation (e.g. the rotation center). This reference point is chosen as the gravity center
of the ROI in our case.

Since the complexity of the estimated deformation is limited, the algorithm is unsuit-
able to cope with fold-over MR-artifacts, mixtures of static/dynamic parts of the entire
field-of-view and complex motion patterns. Therefore it is restricted to a region of inter-
est (ROI), which is manually set at the beginning of the intervention containing the full
path of the targeted organ. Here, the transformation model is global, therefore the GPU
implementation is not straightforward. Only steps that relied on pixel by pixel basis were
thus offloaded to the GPU. The others steps remained on the CPU.

Local motion estimation: An optical flow approach (see section 2.1.3.2) using the
variational framework proposed by Cornelius and Kanade [71] was implemented. This
algorithm estimates the motion on a pixel by pixel basis using an iterative numerical
scheme (similarly to the Horn & Schunck algorithm described in appendix D). The final
iterative numerical scheme can be obtained from different resolution approaches such as
the Gauss Seidel method or the Jacobi method (see appendix E). The resulting iterative
scheme for one pixel requires the knowledge of neighboor pixel intensities. Using the
Jacobi method, only neighboor pixel intensities from the previous iteration are required
(contrary to the Gauss Seidel method; for details, see appendix E.1 and E.2). Therefore,
the Jacobi method was employed and the parallelization was set to the pixel level. In
order to optimize the computation time and to stabilize the convergence of the algorithm,
a multi-resolution scheme was used [59] that iterates the registration algorithm from a
four-fold down-sampled image step-by-step to the full image resolution.

5.2.2 Correction of motion related phase variations

Precise modeling of the inhomogeneous magnetic field in-vivo and under real-time con-
ditions is difficult to achieve and thus several alternative simplified strategies have been
proposed to allow to correct motion related errors in PRF-based MR thermometry (see sec-
tion 2.2.0.4). In this study, both multi-baseline approaches, the atlas based approach and
the linear model approach, presented in section 2.2.1, have been implemented. A training
step of N dynamic acquisitions (typically N=100) was acquired prior to MR-thermometry
for both methods.

During hyperthermia, the atlas based approach compares each incoming magnitude
image with each magnitude image present in the collection in order to find the most
similar one (using an intercorrelation coefficient as criterion) and to return the associated
phase image. This step was not offloaded to the GPU since this can be done in parallel
with the motion estimation process. Therefore this step remained on the CPU (run by an
independent thread) in order to take interest of a parallelization level between CPU and
GPU.

For the linear model approach, this is different since the method needs the transfor-
mation model parameter as input. Therefore, since the computation of equation (2.19) is
done independently on each pixel, this method was implemented on the GPU.

5.2.3 Correcting for local temperature aliasing

Since the 2π periodicity of the image phase can lead to aliasing artifacts in the tempera-
ture maps, a temporal phase unwrapping on a pixel-by-pixel basis is applied. This process

53



is valid under the condition that the temperature variation between two successive acqui-
sitions does not create a phase variation greater than 2π. Note that on mobile targets,
each phase image is registered to a common reference position and subsequently phase cor-
rected, before temporal unwrapping is performed. Therefore, background-phase changes
do not contribute to this limitation. This step was also implemented on the GPU.

5.2.4 Correcting for magnetic field drift

As described in the introduction of this thesis (see section 2.3), magnetic field of recent
MRI scanners are not entirely stable over time when sustained high frame-rate imaging is
applied. This may introduce a temporal drift of the magnetic field leading to a temporal
drift of phase images. Therefore, subtraction of phase images acquired at different times
(as realized with the multi-baseline approach) can be affected with a different bias for
each pixel [82, 83], resulting in undesired temperature offsets on temperature maps. In
this study, this perturbation is corrected by subtracting a global temperature offset (a
magnitude-weighted average is used to give less importance in poor signal area) obtained
from a region of interest, which is chosen in the moving organ, adjacent to the ablation
area. The calculation of the global temperature offset was realized on the CPU since this
step requires a summation over a small amount of pixels that do not takes advantage of
a GPU implementation. On the other hand, the subtraction of the global temperature
offset from each pixel of the temperature map can be easily parallelized at the pixel level
and was offloaded to the GPU.

5.2.5 Temporal filtering of the temperature

Since the temperature maps are registered to a reference position, a temporal filter was
applied to reduce the measurement noise of the thermometry. An infinite impulse-response
(IIR) low-pass filter of 5th order was used. It employed an elliptic approximation in the
denominator of the transfer function (also referred to as a Cauer filter), which offers
steeper rolloff characteristics than others IIR designs such as Butterworth or Chebyshev
filters [126]. An IIR filter relies on the combination of past and current measured signal
with past filtered signal, and has been already presented in section 4.2.2.2 (note that a
detailed description of IIR filtering can be found in appendix F.1). Output of this type of
temporal filter often contain a delay that can be considered as an additional latency of the
temperature information. With this filter, the introduced latency is directly proportional
to the period of time between two successive dynamics. Therefore, high frame rate imaging
appears much more appropriate to minimize this latency effect.

The filter coefficients were designed using the signal processing toolbox of MATLAB
with the following characteristics: fpass−band=1.5 Hz to 8 Hz, fstop−band=4.5 Hz to 8.5 Hz,
ripple pass-band: 3 dB, ripple stop-band: 50 dB. Pass-band and stop-band were adjusted
depending on the dynamic scan-time of the employed sequence to result in an overall
temporal resolution of 2 Hz.

Since this filter is computed on a pixel by pixel basis, its was implemented on the GPU
as well.

5.3 Real time benchmarking and latency

Figure 5.1 details the computation time of each processing step of the two proposed
pipelines for an image resolution of 128×128 pixels between the CPU only and the CPU/GPU
implementation. The most time consuming task, the image registration, was accelerated
by a factor of 3 for the PDC estimation and a factor of 10 for the optical flow computation.
The resulting overall latency for the entire pipeline (including 13 ms for data transport
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and 1.2 ms for image reconstruction) was reduced from 95 ms (CPU only) to 27.3 ms
(CPU/GPU).

5.4 Experimental validation of the MR-thermometry pipeline

The temperature stability achieved with the presented pipeline is presented in both ab-
dominal organs and the heart of healthy volunteers under free breathing condition (without
heating). For this, the temporal standard deviation of the temperature, referred to as TSD
in the scope of this thesis, was computed for each pixel and for each volunteer and serves
as a measure of the achieved temperature precision.

5.4.1 Temperature stability study on abdominal organs

A first study was conducted to evaluate the performance of the processing pipeline in the
abdomen of healthy volunteers [121, 122].

5.4.1.1 Experimental set up

Dynamic MRI was performed under free-breathing conditions on the abdomen of 11
healthy volunteers under real-time conditions. An imaging frame-rate of 10 images/s
was maintained for 300 seconds of MR-imaging while MR-Thermometry was performed
in real-time. The MR sequence employed the following parameters: 3000 dynamic sagit-
tal images, one slice, TR=100 ms, TE=26 ms, bandwidth in readout direction=2085 Hz,
flip angle=35◦, FOV=256×168 mm2, slice thickness=6 mm, matrix=128×84, using a four
element phased array body coil. Statistical evaluation of the temperature stability was
performed on the kidney and the liver of each volunteer individually by averaging the
TSD over a ROI, which was manually set in an area with maximal SNR and avoiding
areas showing a complex susceptibility distribution (such as organ boundaries or major
vessels).

5.4.1.2 Experimental results

Figure 5.2 details the precision improvement of each separate phase correction step for
kidney and liver. Over the 11 human volunteers, the SNR was evaluated to 9.64 ± 2.4
(min=7.2, max=14.3) in the kidney and 7.5 ± 3.1 (min=4.5, max=14.3) in the liver.

On average over all volunteers, the TSD is improved from an initial value of over 8
◦C to 2.12 ◦C (kidney) and 2.66 ◦C (liver) using the atlas based approach, and to 1.5
◦C (kidney) and 2.16 ◦C (liver), when the linear phase model is used. This precision can
be furthermore improved by over 20 % if a drift correction is applied: While a TSD of
1.51 ◦C (kidney) and 2.07 ◦C (liver) were obtained with the atlas based correction, the
correction based on a linear phase model achieves a further reduction to 1.26 ◦C (kidney)
and 1.77 ◦C (liver). Additional temporal filtering results in a final precision of 0.86 ◦C
(atlas based), 0.79 ◦C (linear model) in the kidney and 1.05 ◦C, 0.98 ◦C in the liver.

Figure 5.3 shows as an example the least precise result of the examined volunteer
group. Even in this case, both correction strategies ensured 2 ◦C of temperature stability
in 70 % of all pixels of both the kidney and the liver.

5.4.1.3 Discussion

The proposed approach for 2D motion compensated MR-thermometry and dosimetry ad-
dresses both, inter-scan and intra-scan motion artifacts on abdominal organs, by applying
high framerate MRI coupled with real-time image registration and multi-baseline phase
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Figure 5.2: Box-and-Whisker plot of the group analysis of the temperature precision over
the 11 volunteers obtained in the kidney (a) and the liver (b), with the multi-baseline
approach (dash line) and with linear phase modeling approach (solid line). Plotted values
correspond to the minimum (lowest point), the average (cross), the maximum (highest
point) and the standard deviation (box height) values across the group, before drift cor-
rection (1), after drift correction (2) and after temporal filtering (3).

Figure 5.3: Temperature stability obtained in the abdomen of a healthy volunteer with
each proposed correction method: (a) anatomical image depicting the ROI used for drift
correction, (b) the TSD map obtained with the multi-baseline method, (c) the TSD map
corrected with the linear phase model. White arrows indicate regions where large sus-
ceptibility variations render the temperature correction difficult: vicinity of the digestive
tube (1), vicinity of the quadratus lumborum muscle (2), vicinity of the vertebral column
(3) and upper part of the liver (4).

correction of all incoming MR-images. This, in conjunction with the use of parallel pro-
cessing on affordable commodity graphics hardware, allows to achieve a sub-second tem-
poral resolution with very short image latencies over sustained imaging periods of several
minutes that is purely limited by the constraints of the MR-acquisition.

The temperature artifacts related to the periodic respiratory motion of the abdominal
organs were reduced to the boundary imposed by the SNR of the employed sequence in
both, kidney and liver. Additional temporal filtering of the temperature maps allows
to freely readjust the balance between temporal resolution and additional precision of
MR-Thermometry.
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5.4.2 Temperature stability study in the heart

The processing correction pipeline has then be evaluated in the heart of healthy volunteers
[127, 128].

5.4.2.1 Experimental set up

Healthy volunteers (N=9) were positioned head first in supine position in a 1.5 Tesla scan-
ner (Philips Achieva/Intera). A 5 elements cardiac coil was used for image acquisition,
with three rigid elements located in the bottom part and 2 flexible elements positioned on
the top of the thorax, near the heart. The electrocardiogram was recorded continuously
using MR-compatible electrodes provided by the MR manufacturer. After the initial plan-
scan (see Figure 5.4), the short axis of the heart was localized on true-fisp images. This
geometry was used to investigate the precision of the thermometry in the left ventricle
of the cardiac muscle. The acquisition sequence for MR thermometry was triggered on
the cardiac signal to acquire one data set per cycle. Six contiguous adjacent slices were
acquired sequentially to cover a volume of interest within a single heart beat with the
following parameters: 250×166 mm2 rectangular field of view, 96×96 matrix (resulting in
an in-plane resolution of 2.6 mm for an acquisition time per slice of 37 ms), slice thick-
ness=7 mm, TE=20 ms, TR equals to the period of the cardiac cycle, single shot EPI
(echo train of 43 echoes), parallel imaging with SENSE acceleration factor of 1.6. Satura-
tion slabs were positioned on each side of the imaging stack to reduce the intensity of the
blood signal on the MR images [129]. The slice location was dynamically adjusted using a
pencil-beam navigator positioned at the liver/lung interface (slice tracking technique [40])
in order to compensate for respiratory related out-of-plane motion induced by breathing.
The triggering delay was adjusted to acquire the last slice in the mid or end diastole. No
arrhythmia rejection criteria nor slice tracking limits were applied to ensure a systematic
acquisition of a complete stack independently of potential jitter in the period of the cardiac
cycle and/or variations of the respiratory amplitude. For each volunteer, the volume was
continuously acquired 200 times to cover a period of time of 3 to 5 minutes (depending on
the period of the volunteer cardiac cycle).

5.4.2.2 Experimental results

The respiratory and cardiac cycles durations on the 9 volunteers ranged between 6-8 s and
0.8-1.5 s, respectively. Representative MR images of the thermometry sequence at two
extreme positions in the respiratory cycle are displayed in Figure 5.5. The SNR of the
magnitude image on the left myocardium (19.8 ± 6, min=14, max=32) was sufficient on all
volunteers to apply the motion correction algorithm. The local phase variations associated
with respiratory induced susceptibility changes were observed during respiratory cycle (see
figure 5.5c and 5.5.d).

TSD maps obtained without and with the multi-baseline correction (atlas based correc-
tion) in the worst case are reported in figure 5.6a and 5.6b, respectively. The temperature
evolution in a single pixel located in the septum displayed periodic oscillations associated
with the respiration, with a maximal amplitude without correction of 50◦C (Figure 5.6c).
After correction, the oscillations were reduced leading to a TSD lower than 5◦C in 75% of
the pixels included in a ROI covering the left ventricle.

The TSD was first evaluated on the myocardium (blue area in figure 5.5a) of the 9
volunteers. The TSD reached a value up to 20◦C in absence of specific corrections. The
use of the multi-baseline correction methods resulted in reduction of the TSD for all cases.
Over the 9 volunteers, the TSD on the left ventricle was 3.6◦C ± 0.94 (min=2.48, max=
5.44) with the atlas based correction and 3.67◦C ± 1.03 (min=2.66, max=5.58) with the
linear phase model approach. No magnetic field drift has been observed, thus the magnetic
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Figure 5.4: Experimental setup used for MR temperature imaging of the short axis on
the left ventricle. a: MR anatomical image obtained in a coronal plan. Slices used
for temperature imaging are reported in red. Slice position is adjusted on-line using a
navigator positioned on the liver/lung interface (reported in green). Saturation slabs
positioned on each side of the imaging stack are reported in blue. b: Respiratory and
electro-cardiogram signal recorded on-line. c: The complete stack is acquired in the mid
or end diastole cardiac phase. The volume was acquired to cover a period of time of at
least 2 minutes in order to evaluate the precision and the stability of the thermometry
sequence.

(a) (b) (c) (d)

Figure 5.5: Example of MR images obtained in the short axis of the heart at two different
instants of the respiration process. a, b: anatomical images. The six segments defined by
the standardized myocardial segmentation and nomenclature are reported in a [130]. The
region of interest manually set on the myocardium for the temperature stability study is
reported in blue. This region of interest is reported in dash line in b to show the motion
of the ventricle. c, d: corresponding phase images. Large phase changes induced by local
susceptibility variations related to lung volume modifications and liver displacements are
observable especially at the heart/lung interface (red ellipse).

field correction was not employed in the presented results. In this experiment, no temporal
filtering was used since the dynamic scan time is equal to the period of the cardiac cycle
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Figure 5.6: Worst temperature stability obtained on the left ventricle of the examined
volunteer group (volunteer 6 in Figure 4). a: the TSD map obtained without motion
correction, b: the TSD map obtained with motion correction, c: the temperature temporal
evolution in a pixel located in the septum (white arrow on (b)) without (dashed line,
SD=15.4 C) and with motion correction (dot line, SD=3.3 C).

and would introduce substantial latency of several seconds.

(a) (b)

Figure 5.7: Temperature stability for each volunteer obtained with the atlas based ap-
proach (a) and linear phase model approach (b). Box and Whisker plot of the TSD for
each tested volunteer in the myocardium of the left ventricle. Temperature level values
corresponding to 10% (lowest point), first quartile (lower box limit), median (cross), third
quartile (higher box limit) and 90% (highest point) of the distribution of TSD are plotted
for each volunteer. Pixel number in the region of interest is also reported.

Figure 5.8 shows a Box and Whiskers graphical representation of the TSD for each
segment of the left ventricle, defined by the standardized myocardial segmentation and
nomenclature [130] (see figure 5.5). In this representation, 5 temperature levels were
reported, corresponding to first decile (T10) of the distribution of the TSD values, the
first quartile (T25), the median value (T50), the third quartile (T75) and the last decile
(T90), respectively. For both multibaseline corrections, all the volunteers revealed similar
distributions for segments #1, #2, #3 and #6, with T50 values around 3◦C and T75
below 3.5◦C (see Figure 5.8a,b). Segments #4 and #5 showed a T50 of approximately
4◦C, and T75 ranging between 4.3◦C and 5.5◦C.

5.4.2.3 Discussion

MR thermometry of the human heart was shown feasible with an accuracy of 3.6◦C±0.88
(min=2.48, max= 5.44) and at an update rate of 5 images/cardiac cycle. Stability was
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(a) (b)

Figure 5.8: Temperature stability obtained in each segment with the atlas based approach
(a) and linear phase model approach (b). Box and Whisker plot of the TSD evaluated
for each region of the standardized myocardial segmentation and nomenclature. Tempera-
ture levels values corresponding to T10(lowest point), T25(lower box bound), T50(cross),
T75(upper box bound), T90(highest point) of TSD distribution over all volunteers are
plotted.

better in the septum (region #2 and #3) and in the regions #1 and #6. The two regions
(#4 and #5) depicting a higher temperature standard deviation were much more prone
to susceptibility artifacts since they are at the liver/heart/lung interface and thus suffer
from important spatial and temporal susceptibility variations. Since the lower precision
boundary of PRF-based MR-thermometry on static targets is directly proportional to the
inverse of the SNR of the employed sequence, it is possible to evaluate the effectiveness
of the correction strategies for dynamic phase artifacts by a direct comparison. On the 9
human volunteers the SNR study leads to a minimal achievable temperature standard de-
viation of 1.06◦C±0.27 (min=0.64, max=1.39). The experimental study converge toward
those theoretical values when the multi-baseline correction was used. However, remaining
residual motion artifacts and image distortions inherent to EPI acquisitions prevented to
reach those theoretical values experimentally. The resulting TSD in each analyzed region
on the volunteers was approximately 50% higher than those reported by [131] on animals
under mechanical ventilation, but remained acceptable for efficient monitoring of the tem-
perature evolution in the myocardium and at an update rate at least 10 times higher.
Major advance as compared to recently published results [131] is the improved temporal
resolution and volume coverage, since 5-6 slices were acquired at each heart beat (∼1
sec) instead of a single slice every 10 to 20 sec. Typical RF ablation duration remains in
the range of 1 min, and therefore, acquiring only 3 to 6 temperature images during the
ablation process may appear insufficient to characterize the temperature evolution and
render the evaluation of the thermal dose difficult. To overcome this major limitation,
we proposed to accelerate the acquisition sequence using EPI in combination with ECG
triggering, navigator based slice tracking and image processing for compensation of mo-
tion related susceptibility artifacts. This method reduces the 3D complex motion of the
heart to a 2D in-plane motion, for which in-plane image registration algorithms can be
applied. The resulting standard deviation of the temperature was acceptable in view of
local temperature increases achieved during cardiac catheter ablation.

5.5 Discussion & conclusion

In this chapter, an efficient processing pipeline has been presented for very fast MR-
thermometry and dosimetry. The different steps of this processing pipeline are now dis-
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cussed.

5.5.1 Real time feasibility of the correction

MR-acquisition times of typically 100 ms per slice or less are required to avoid intra-
scan artifacts. Combined with high frame rate such as in abdominal experiments, it
places severe restriction on the available processing time for image reconstruction, image
registration and all MR-thermometry related calculations in order to maintain sustained
real-time MR-thermometry.

Figure 5.1 shows that the motion estimation step remains the most time consuming
step. GPU based implementation allows to reduce the computation time for all image
processing steps below the used MR-acquisition time. This provides a theoretical achiev-
able image processing frame-rate of 30 images/s maintaining the real-time condition. This
renders the method purely limited by the MR-acquisition time.

The proposed correction pipeline ensures a latency of 27.3 ms (image matrix of 128×128),
which is suitable for interventional MR-guidance and is realizable on affordable commodity
hardware.

5.5.2 Organ displacement estimation

5.5.2.1 Global motion estimation

A global motion estimation using an affine image registration was found to be well suited
for targets that show only little plastic deformation during the respiratory cycle, such as
the kidney. However, since such targets are in general in the vicinity of either elastic soft-
tissue, such as digestive tubes or liver, or static tissue, such as the quadratus lumborum
muscle or the vertebral column, the algorithm needs to be confined to a ROI encompassing
only the full path of the selected target and excluding such problematic areas. For targets
that display a complex spatially variant deformation such as the liver, this approach was
unsuitable since a global adaptation of only six free transformation parameters leads to a
poor representation of the complex deformation. The main advantages of this approach are
the short computation times and its robustness against noise and local intensity variations.

5.5.2.2 Local motion estimation

This technique allows to estimate complex organ deformations with sub-pixel precision
on a voxel-by-voxel basis. Furthermore, the underlaying regularity constraint [70] that
assumes a continuous differentiable motion field was found well suited for elastic targets
that display local deformations during the respiratory cycle such as the liver or the heart.

However, these algorithms require a prior calibration of few parameters which makes
the method performance dependent on the calibration and thus on the data. In clinical
context, this imposes an additional manual calibration step that complicates and extends
the intervention. In order to make this type of approach suitable for clinical use, an
autocalibration approach of local motion estimation algorithms is proposed in chapter 9.

The Cornelius and Kanade approach [71], relaxing the global regularity constraint
suggested by Horn and Schunck [125], limits mis-registration caused by small contrast
changes. However, this condition can still be violated during hyperthermia as several MR
relevant tissue properties, such as T1 and T2 relaxation times, can change during heating
process, leading to strong local signal intensity variations in the heated region. The impact
of this mis-registration effect on large ablation areas, which may be used for advanced
ablation strategies such as spatial volumetric temperature feedback [93], requires further
investigation and a novel approach to improve robustness of local motion estimation in
presence of T1 and T2 variations, which is presented in chapter 8.
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For heart experiments, it should also be noticed that the presence of saturation slabs
positioned on each side of the imaging stack (see Figure 1) may induce appearance and
disappearance of surrounding tissue in the image field of view which may disturb the
registration process based on conservation of local image intensities [129]. This impact on
mis-registration is studied in chapter 7 and a novel approach is proposed to remain robust
against appearance and disappearance of tissue surrounding our target.

5.5.3 Susceptibility related phase changes with motion

Organ motion in MR-images is reduced to the influence of the breathing activity in both
the heart (due to ECG triggering) and abdominal organs. The proposed multi-baseline
correction for susceptibility related phase changes is designed to correct MR-thermometry
artifacts on organs subject to a periodic displacement, which is caused by the respiratory
cycle. Since phase variations are “learned” in a preceding learning step and subsequently
applied to correct the MR-thermometry during the intervention, the method can intrin-
sically not correct for MR-thermometry artifacts associated with spontaneous motion. If
during hyperthermia new positions are observed, a recalibration of the phase correction
data is required. In abdominal organs, the employed high imaging frame-rate allows to
complete this task in the relatively short time of two to five respiratory cycles. However,
this represents a disadvantage compared to other correction approaches such as reference-
less correction approaches [81]. For the heart, a recalibration requires much more time
since the frame rate is equal to the cardiac frequency. Alternative strategies such as hybrid
methods between multibaseline and referenceless approaches as proposed by Grissom et
al. in [132] may be of interest.

However, compared to the latter, the proposed multi-baseline correction allows an
accurate correction of susceptibility related phase changes even in regions with complex
susceptibility distributions or signal discontinuities such as organ boundaries (for example
at the heart/liver interface (region 4 and 5 of the heart)), since it requires neither a uniform
susceptibility distribution in the target nor time-consuming 2D spatial phase-unwrapping
steps [133].

To take advantages of both strategies, a hybrid approach is proposed and presented in
chapter 2.2.

5.5.4 Noise consideration and subsequent temporal filtering

Commonly, MR-thermometry is considered to be limited by the precision penalty imposed
by the associated low SNRs on the temperature measurements. Since all MR temperature
images in the time series are registered to the same reference position, temporal filtering
using a low pass filter can be applied to improve temperature accuracy prior to thermal
dose calculation. This, in turn, allows to choose a balance between temporal resolution
and the precision of the MR-thermometry that can be freely adjusted according to the
employed interventional modality and the available SNR of the target area. Theoretically,
a perfect co-registration allows to double the SNR, and thus the precision of the tempera-
ture measurements, by reducing the bandwidth by a factor of 4. In the volunteer study of
the abdominal experiments, a filter with a transition band between 0.15 and 0.45 resulted
in an improvement of the precision of MR-thermometry by a factor 1.85 which corresponds
well to the expected theoretical result. Although this type of filter allows to improve the
thermometry precision, the resulting thermometry accuracy may be biased by the intro-
duced latency of the filter. However, the quantification of the introduced accuracy bias is
hard to achieve. Although the temperature accuracy can be evaluated using temperature
probe on ex-vivo experiment, only sparse true temperature information is available. In
addition, the quantification for in vivo experiment appears limited by the invasiveness of
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the method. However, the control of both the accuracy and the precision appears neces-
sary for a temporal filter employed for clinical use. Therefore, a study on accuracy and
precision of spatio-temporal filter has been conducted and had lead to the proposition
of a novel filtering method that aims to improve the MR thermometry precision while
guarantying its accuracy. This study is presented in the chapter 11.
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Chapter 6

Real time MR-guided thermal
ablation of mobile organs

In this chapter, a presentation of applications of MR-guided thermal ablation of mobile
organs using the presented MR thermometry and dosimetry processing pipeline is given
in both abdominal organs and the heart. All experiments in this chapter were performed
on a 1.5 T Achieva MR-scanner (Philips Healthcare, Best, the Netherlands).

6.1 MR-guided HIFU ablation of mobile organs

For all presented HIFU experiments, ablations have been realized using the Philips Sonnal-
leve HIFU platform containing a 256-element phased array ultrasound transducer. MR-
signal was recorded using the integrated multiple channel coil of the HIFU platform.

6.1.1 Fix point ablation

The presented MR-thermometry and dosimetry pipeline has been directly evaluated in vivo
on a porcine kidney under general anesthesia during MRI guided HIFU ablation [121, 122].
This experiment was part of a joint study with Dr. Mario Ries and Dr. Baudouin Denis
de Senneville as the principle investigators.

6.1.1.1 Experimental set up

In this first experiment, no focal point position adjustment with respect to target dis-
placements was performed. The MR sequence employed the following parameters: 1500
dynamic sagittal images, one slice, TR=100 ms, TE=41 ms, bandwidth in readout direc-
tion=2085 Hz, flip angle=35◦, FOV=320×140 mm2, slice thickness=6 mm, matrix=128×56.
The data processing sequence designed for the linear phase modeling approach was used
to perform the MR-thermometry and dosimetry in real-time.

6.1.1.2 Experimental results

The overall temperature accuracy over the whole kidney was 0.65 ◦C ± 0.11 (min=0.4,
max=0.99) with a measured SNR of 6 (although a SNR of 6 provides a theoretical tem-
perature standard deviation of 1.47 ◦C, the temporal filtering reduces the initial temporal
resolution of 10 Hz down to 2 Hz improving the temperature precision by a factor of

√
5).

Figure 6.1a shows the temperature image after 39 seconds of sonication corrected with the
linear phase model approach. The evolution of the temperature at the focal point position
is reported on figure 6.1b. An hyperthermia of 12 ◦C was reached, which leads to a final
thermal dose of 10 % of the lethal dose as shown in figure 6.1c.
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Figure 6.1: MR-Thermometry results obtained on a porcine kidney during HIFU heating,
corrected using the linear phase model: (a) the temperature distribution obtained after
39 seconds of heating and the ROI used for drift correction overlayed on the anatomical
image, (b) the temporal evolution of the temperature at the focal point position (note
that the baseline precision of 0.65 ◦C decreases during hyperthermia due to a change of
the T1 relaxation [84]), (c) the thermal dose map obtained at the end of the experiment.

6.1.1.3 Discussion

The method was found robust and artifact free in all examined cases and well able to
follow the temperature evolution of an in-vivo HIFU ablation. This renders the method
well suited for the MR-guidance of hyperthermia ablation in abdominal organs under
free-breathing conditions and as the basis for more advanced automatic spatial and tem-
poral temperature control algorithms used in conjunction with dynamic ultrasound beam-
steering.

6.1.2 Beam steering ablation

A further joint project with Dr. Mario Ries and Dr. Baudouin Denis de Senneville as
principal investigators, evaluated the potential of the combination of a real time MR-
thermometry pipeline with a dynamic ultrasound beam-steering [134, 40, 99]. In this
study, my contribution was on the development of real time methods for 2D in-plane
displacement estimation and 2D thermometry calculation (which are presented in chapter
5).

The aim of this work was to explore the possibility to have a 2D MR-thermometry
information and to track the target in 3D space in order to adapt the beam position
with a sufficiently high temporal resolution and a sufficiently low tracking latency so that
sophisticated modeling of the target trajectory is not required.

6.1.2.1 Method description

In the presented work, MRI is used for two tasks: Target tracking and MR-thermometry.
Since both tasks do not require the same temporal resolution, the following strategy is
employed to optimize the tracking accuracy as well as the precision of MR-thermometry.

3D Target tracking This is achieved by tracking the target position in the image
plane with 2D motion estimation algorithm (see section 5.2.1), while out-of-plane motion
is estimated based on 2D selective navigator data positioned in the direction perpendicular
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Figure 6.2: Scheme of the data processing pipeline: The tracked slice is used to detect
2D in plane motion and extract thermometry information while the navigator allows to
obtain the motion information in the third dimension. Finally, based on the 3D motion
information, the beam position can be adjusted.

to the imaging plane as originally suggested by Hardy et al. [135] and refined by Nehrke
et al. [136]. The 3D target location is obtained by combining the current 2D in-plane
displacement vector field with the current slice position obtained by the pencil beam
navigator.

The latency arising from the image transport and the data processing is compensated
by using the linear predictor of an Kalman filter employing a physical model of the motion
(see appendix F.2 for a detailed description of the Kalman filtering formalism). This
motion model A is given by the linear equation of motion in absence of external forces
and is then defined as:

A =



1 0 0 ∆ti 0 0
0 1 0 0 ∆ti 0
0 0 1 0 0 ∆tn
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (6.1)

where ∆ti and ∆tn are the latencies for the image based measurement and the naviga-
tor based latency, respectively. The state variable of the Kalman filter is then defined
as xk = (x1, x2, x3, ∂x1/∂t, ∂x2/∂t, ∂x3/∂t)

T expressed in the coordinates of the HIFU-
system, where (x1,x2,x3) denote the 3D target location and (∂x1/∂t, ∂x2/∂t, ∂x3/∂t) is
the velocity. The anticipated future target state which is sent to the HIFU-generator is
thus xt+1 = Axt.

2D MR-thermometry 2D MR-thermometry is achieved using an extension of the pro-
cessing pipeline presented in chapter 5. The slice position is hereby continuously adjusted
to the current target location using fast pencil beam navigator echoes. Therefore, the
multi-baseline approach was extended to use both navigator information and magnitude
image for the research in the look up table. The first order matching criteria is the slice
position obtained from the pencil beam navigator. Subsequently, magnitude image match-
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ing is used on the non-realigned magnitude images to find the correction with the most
similar in-plane position.

6.1.2.2 Experimental validation

Beam steering on a moving phantom A physiological phantom with relaxation times
matched to the human kidney was mounted on a motorized platform to simulate an ab-
dominal organ (displacement 15 mm peak-to-peak, motion period 5 s to match the human
respiratory cycle). Data acquisition was performed using a gradient recalled single shot
echo-planar sequence with the following parameters: TE=46 ms, image matrix=128×84,
flip angle=35◦, voxel size=2×2×5 mm3. The following repetition times were used: 66 ms,
92 ms, 150 ms, 300 ms, 600 ms, whereby the experiment with 66 ms used a reduced ma-
trix size of 128×64 with a TE of 32 ms. The Kalman filter was calibrated as follows: The
measurement noise covariance R was set to the nominal MR-resolution and the process
noise covariance Q was directly determined from the harmonic motion pattern to a value
of 0.2 mm.

Figure 6.3 shows the temperature map after 60 s of sonication overlayed over the
corresponding magnitude image. Figure 6.3a shows the effect of a sonication using a
static beam position on the moving phantom. In this case the beam energy is spread over
the entire trajectory of the target, whereby the majority of the energy is deposited in the
two turning points of the oscillatory motion, where the target speed is lowest. The fully
motion compensated HIFU experiment shows that the beam energy is deposited at the
predefined location (see figure 6.3b). Similar results can be achieved if the acquisition
slice is rotated by 90◦ (see figure 6.3c). In this case in-plane and through-plane motion
are compensated.

(a) (b) (c)

Figure 6.3: Temperature distribution obtained after 60 s of a HIFU application on a
phantom subjected to periodical motion. The temperature distribution of (a): non-
compensated HIFU application, (b): The fully motion compensated HIFU experiment
and (c): fully motion compensated HIFU experiment with an acquisition slice is rotated
by 90◦.

Beam steering on invivo experiments A total of three pigs were anesthetized by an
initial intramuscular injection of propofol (10 ml) and subsequent administration of propo-
fol (1 ml/min) through a dorsal ear vein. The volume and the frequency of the mechanical
ventilation (45 to 100 % O2, respirator paraPac, ResMed SA, France) was adjusted so
that the motion of the kidney induced by the respiratory cycle was found to be between
8 mm and 12 mm with a period of 6 s. The animals were placed in right lateral decubi-
tus position so that the right kidney was accessible through an unobstructed beam-path
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directly below the rib-cage. One single slice was acquired using a gradient recalled single
shot echo-planar sequence with the following parameters: TE=46 ms, TR=92 ms, image
matrix=128×84, flip angle=35 ◦, water-selective binomial 121 excitation pulse, 1.5 kHz
readout bandwidth, voxel size=2.3×2.3×5 mm3. After completion of the experiments the
animals were euthanized by intravenous injection of Pentobarbital. The animal experi-
ments were conducted in agreement with the French law on animal experimentation and
in compliance with institution’s rules for animal care and use.

Motion compensated MR-thermometry was performed for a duration of two minutes
on the right kidney. After an initial baseline sampling of 30 s, a HIFU sonication of 80 W
acoustic power and 60 s duration was performed on the first animal. In the subsequent two
animals experiments, 30 s of sonication with and acoustic power of 100 W were used. The
experiments were repeated on each animal two times, first with dynamic beam-steering
enabled and then with a fixed beam for comparison.

The Kalman filter was calibrated as follows: Since a direct measurement of R and Q is
hard to achieve in-vivo, both have been optimized empirically based on preparatory image
data obtained under the same experimental conditions. A value of 0.1 mm was found to
be a good compromise for the process noise covariance Q and the nominal MR-resolution
of 2.3 mm was used as an upper bound for the measurement noise covariance R.

Representative for the results obtained in all three animals, figure 6.4 shows an overlay
of the temperature map after 30 s of sonication with 100 W acoustic power for both,
the uncompensated and the motion compensated experiment. Since the kidney has a
very high perfusion rate, a “line” effect similar to the results from the uncompensated
phantom experiments was not observable in any of the in-vivo experiments. However, the
uncompensated experiments reached in all three experiments a lower final temperature
than the experiments performed with full motion compensation (compensated: 25.3 ◦C,
10.1 ◦C and 8.8 ◦C; non-compensated: 19.3 ◦C, 7.2 ◦C and 8.1 ◦C for animal 1,2 and 3,
respectively) and shows fluctuations in the temperature rise which correlate the recorded
displacement of the target area.

6.1.2.3 Discussion and conclusion

The aim of the presented study was to demonstrate the feasibility of real-time HIFU beam
steering on moving targets. The presented study shows that it is possible to perform
3D Real-Time MRI guidance of a HIFU intervention on abdominal organs in vivo over
sustained periods of several minutes. During the intervention both, the target location
and the target temperature are continuously available with a high temporal resolution
and precision. This allows HIFU interventions using a high duty cycle while minimizing
undesired tissue damage and presents therefore a step towards clinical non-invasive HIFU
therapies of kidney and liver tumors under free-breathing conditions.

The suggested Kalman-predictor evaluates the velocity of a Kalman filtered target tra-
jectory to anticipate the future target position. The predictor is robust against noise and
changes of the respiratory cycle and stabilizes rapidly after typically 2-3 datapoints, even
if fluctuation/deviations in the respiratory cycle have occurred. However, the predictor is
not suitable for parts of the motion pattern which are subject to high accelerations, since
it will produce overshoots and deviations from the true trajectory. However, due to the
high frame-rate and the low latency, the predictor is only required to anticipate the target
position over short epochs of 50-100 ms before newly measured data is available, which
limits the impact of such events.

Furthermore, since the target temperature and the thermal dose are continuously up-
dated, it open the possibility to combine beam steering for both 3D target motion com-
pensation and efficient volumetric heating strategy.
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(a)

(b)

Figure 6.4: Magnitude images of the kidney of the uncompensated (a, right) and the
motion compensated HIFU-ablation experiment (a, left), overlayed with the temperature
maps obtained after 30 s of sonication of the third animal experiment. The inlay shows a
four-fold zoom of the temperature map of the target area. The temperature evolution of
the voxel with the maximal temperature rise with the uncompensated (red line) and the
motion compensated (green line) HIFU-ablation experiment are plotted in (b).

6.1.3 Volumetric control strategies

As treatment volumes are generally larger than the focal point size, strategies for volu-
metric sonication are required. In this work, the method proposed by Mougenot et al.
[93] was further developed to include thermal dose control using a proportional controller
based on real time MR-thermometry and dosimetry information. Then, this information
is combined with the 3D motion of the target in order to dynamically control the focal
point position.

This study was realized as a joint project with Dr. Silke Hey and Dr. Mario Ries as
the principal investigators and my contribution was on the real time implementation of
the employed processing pipeline.

The feasibility of the proposed method was tested experimentally ex vivo under con-
ditions simulating respiratory motion of abdominal organs.
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6.1.3.1 Method description

3D volume coverage In order to ensure sufficient volume coverage while maintaining a
high temporal resolution, the acquisition of a static image slice for 2D motion estimation
was combined with a sweep of a second slice covering the target area. For this purpose, one
slice was translated by ∆s for every image acquisition, thus covering a total range of Sz =
n∆s in the slice encoding direction for a slice sweep comprising n slice positions (Fig. 6.5).
While the static slice was updated for every image acquisition and served for 2D motion
estimation, an update of the entire image volume took n.tdyn where tdyn is the dynamic
scan time of the acquisition. In general, arbitrary displacement schemes are possible,
allowing for example to oversample a certain spatial position. For the implementation
presented here, however, the slice was continuously translated from −Sz/2 to Sz/2 with
∆s equal to the sequence slice thickness.

Figure 6.5: Principle of the slice sweep to increase the volume coverage. While one slice
remains static, the second slice is moving continuously to cover the whole target area.

Image processing pipeline For 2D motion compensation in combination with the de-
scribed trajectory optimization, a dedicated image processing pipeline has been developed
(Fig. 6.6). My contribution in this pipeline was the development of the real time im-
plementation of both the motion estimation and the PRF-thermometry pipeline steps.
Motion estimation for the adaptation of the focal point position was carried out on the
static slice only (left side in Fig. 6.6) in order to reduce the latency. For this a two step
approach based on a global motion estimation followed by a local motion estimation was
employed as described in detail in section 5.2.1. The retrieved position updates were di-
rectly forwarded to a dedicated thread controlling the ultrasound transducer. In a second
independent pipeline, both acquired slices were motion compensated and temperature and
thermal dose were calculated using the MR-thermometry and dosimetry pipeline presented
in chapter 5. Subsequently, the calculated 2D temperature and thermal dose maps were
gridded into an imaging volume aligned with the physical axis of the ultrasound trans-
ducer. Trajectory optimization was carried out on the 3D temperature and thermal dose
maps and the resulting position updates of the trajectory were forwarded to the trans-
ducer control thread. This implementation allowed the treatment of a slice sweep covering
n=11 slice positions which were gridded into a 3D volume of 96 × 96 × 30 with isotropic
resolution of 2.5 mm3 within a total dynamic scan time of 140 ms for both slices.
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Figure 6.6: Scheme of the data processing pipeline. The static slice is directly processed in
a separate thread (left) which calculates the displacement with respect to the transducer
in order to adapt the focal point position accordingly. The sweep slice on the other hand
is used to calculate 3D motion compensated temperature and thermal dose maps which
are then used to optimize the trajectory of sonication points.

6.1.3.2 Evaluation experiments

Imaging protocol PRF MR-thermometry was performed based an a RF-spoiled sin-
gle shot gradient recalled EPI sequence(TR=125 ms, TE=41 ms, matrix= 128 × 75,
voxel size= 2.5 × 2.5 × 5 mm3, 2 image stacks (both coronal), bandwidth in readout
direction= 1561 Hz). Experiments were carried out on an agarose phantom. A trajec-
tory of 5 sonication points was optimized and the sonication duration for each point was
set to 25 ms and 60 W electronic power were applied. For 2D control, the volume sweep
covered 5 different slice positions with a displacement of 5 mm. For 3D control, in order
to achieve a higher volume coverage, the slice thickness was increased to 6 mm and the
volume sweep was extended to cover 11 slice positions with a displacement of 6 mm.

Figure 6.7: 2D thermal dose control experiment with target thermal dose of TDT = 24 EM
(10% of the lethal thermal dose) and a circular target area of 15 mm diameter. a) Overlays
of the thermal dose maps for different points in the motion cycle. The theoretical position
of the target area without motion compensation is depicted by the dashed-dotted black
circle. b) Thermal dose map at the end of the treatment. The target area is depicted by
a black dashed-dotted circle.
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Two-dimensional thermal dose control with motion One dimensional physiolog-
ical motion was simulated (peak-to-peak amplitude of 4.5 mm with a period of 3 s) by a
motorized MR-compatible platform which was attached to the agarose platform to create
periodical displacements during the treatment. A circular target area of 15 mm diameter
was chosen with a target thermal dose of TDT = 24 EM. Figure 6.7a shows the achieved
thermal dose map at the end of the treatment. The resulting thermal dose distribution
shows good correspondence with the target area without any motion related effects. All
voxels within the target area received a thermal dose TD ≥ TDT . Only one voxel outside
the target area was heated to that extent (TD = 41.6 EM). The overall heating duration
was 88 s.

Three-dimensional thermal dose control An ellipsoidal target volume (short axis
7.5 mm, long axis 15 mm along the beam axis, 123 voxels) was chosen for thermal dose
control with a target value of TDT = 24 EM. Figure 6.8 shows the thermal dose profiles
in the three orthogonal planes for four different time points as well as the thermal dose
profile at the end of the treatment for the three directions. In order to reduce overheating
due to the near-field effect, heating starts in the areas with the largest distance from the
transducer surface with a preference of the central voxels of the target ellipsoid. In the
radial view (xy), good agreement between the final thermal dose distribution and the
target area is visible. Parallel to the beam axis, overheating in adjacent voxels occurred.
This is also visible in the thermal dose profile in z which indicates overheating along the
beam axis. As a result, 124 voxels outside the target area received a thermal dose above
the target value (TD = 25.2− 600.7 EM).

6.1.3.3 Discussion

Volume coverage and 3D control The implementation of a slice sweep made it possi-
ble to combine volume coverage with frame rates compatible with the real time constraints
of motion compensation and temperature control. As the slice positions covered by the
slice sweep can be chosen for each application, volumetric temperature and thermal dose
information can be used to monitor the near field or critical areas in the beam path in
order to prevent extensive heating. Alternatively, a 3D imaging volume can be constructed
using the integrated gridding algorithm. By choosing the displacement ∆s inferior to the
slice thickness, the principle of superresolution [137] can be used to increase the spatial
resolution in the sweep direction. An example of the feasibility of static 3D control using
such 3D volume has been presented and evaluated. It is possible to achieve a pre-defined
thermal dose within the 3D target area, but the control precision is reduced compared to
2D control. Deviations are mainly visible along the beam axis as a result of the elongated
focal point and the near-field heating which increases with treatment time.

Motion compensation and latency In the presence of periodical displacements com-
parable to physiological motion, similar precisions for the thermal dose algorithm were
found with no evidence of motion-induced broadening of the heated area. The separation
of image processing necessary for real-time beam tracking and the calculations required
for temperature monitoring and trajectory optimization led to a lower latency in the adap-
tation of the beam position. For the current implementation, a refresh-rate of 125 ms was
sufficient to reliably follow the periodic motion with period 3 s. A further latency reduction
is mainly limited by signal considerations as minimum two slices have to be acquired. The
latency for the trajectory optimization mainly depends on the number of slice positions
covered by the slice sweep. For 2D control, this delay could be reduced by applying a
sweep pattern which oversamples the slice containing the area to be heated with the other
slices serving as safety control to prevent overheating in adjacent voxels.
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Figure 6.8: 3D thermal dose control experiment with target thermal dose TDT = 24 EM
(10% of the lethal thermal dose) and an ellipsoidal target area of 7.5 × 7.5 × 15 mm3.
Top: Thermal dose profiles along x (blue line), y (red line), and z (green line) through
the center of the target volume. The target thermal dose TDT is depicted by a black solid
line. Bottom: Color overlay of the thermal dose for different time steps and the xy-plane
(first row), xz-plane (second row), and the yz-plane (third row). The borders of the target
area are visualized by a black dashed-dotted line.

The spherical phased-array transducer used in this work offered only limited possibili-
ties in terms of electronic displacement of the focal point position (±1.2 cm in x/y and
+1.5/−2.5 cm along z) coupled to a comparably large focal point size of ≈ 1.2×1.2×8 mm.
For the treatment of larger target volumes, a transducer with a higher ratio of focal length
to the size of the single elements may allow to benefit more from the possibilities of volu-
metric control.
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6.2 MR-guided RF ablation in the heart

6.2.1 Ablation in the heart of a sheep

The MR-thermometry and dosimetry pipeline has also been evaluated in vivo on the
ventricle of the heart of a sheep under general anesthesia during MRI guided RF ablation
[128, 138]. Although atrial fibrillation treatment requires the ablation in the atrium, this
experiment was a first test to demonstrate the feasibility of MR-guided RF ablation in
the heart. This experiment was part of a joint study with Dr. Pierre Jäıs and Dr. Bruno
Quesson as the principle investigators.

6.2.1.1 Experimental set up

The experimental protocol was in compliance with the rules for animal care of the insti-
tution and with the French law on animal experimentation. Each animal (N=2) weighing
55kg± 4 was sedated by intramuscular injection of 0.1mg/kg of acepromazine (Calmivet,
Vetoquinol, Lure, France) and anesthetized by IV injection of 0.1mL/kg of pentobarbital
(Ceva sant animale, Libourne, France) before being instrumented in an XRay room. The
animal was ventilated with a 40 % humidified oxygen via a tracheostomy and general anes-
thesia was maintained using continuous IV perfusion of sodium pentobarbial (6mg/kg/h).
The right femoral artery was cannulated with an 8 FR sheath. The MRI compatible RF
ablation catheter was advanced into the left ventricle with a retro aortic approach. The
animal was then moved to the MR Lab for MR temperature imaging of the RF ablation.
After completion of the experiment, the animal received a lethal IV injection of Dolethal.

MRI guided RF-heating was performed in vivo in the left ventricle of a sheep under
general anesthesia (see above for details in animal preparation). Real-time MR ther-
mometry was performed during RF ablation with a similar acquisition protocol as for
the volunteer study, by acquiring 400 dynamic images in the short axis orientation. The
acquisition was ECG triggered and respiratory compensated with navigator based slice
tracking, using 5 slices, TR/TE=650/16ms, bandwidth in readout direction=2085Hz, flip
angle=35◦, FOV=320×140mm2, slice thickness=6mm, matrix=128×56.

6.2.1.2 Experimental results

The cardiac cycle duration was approximately 650 ms. The SNR on the magnitude image
was 20 and a TSD (evaluated on the 50 dynamics prior to RF ablation) of 1◦C was
measured on the whole myocardium. This value rose to 2◦C at the tissue electrode interface
(figure 6.9c and 6.9f). MR-guided RF ablation of the left myocardium showed consistent
evolution of the tissue temperature, with a progressive increase near the catheter tip
during 60 sec energy delivery, followed by spontaneous tissue cooling by heat conduction
and perfusion. Temperature images acquired at the end of the RF energy delivery showed a
larger heated area for a heating performed at 10W RF power than for a heating performed
at 5 W (figure 6.9a and 6.9d). The maximum increase of temperature in the pixel at the
contact with the catheter tip for 5 W/10 W RF power were 9◦C (figure 6.9b) and 16◦C
(figure 6.9e), respectively. No heating was observed in the adjacent slices. Temperature
elevation higher than 5◦C were achieved in ellipsoidal regions of dimension 7×17 mm2

(5W RF) and 10×20 mm2 (10 W RF).

6.2.1.3 Discussion and conclusion

The precision of the temperature estimate on animal during catheter RF ablation was
better than those observed on healthy volunteers (approximately a factor of 2). This could
be attributed to the well controlled breathing conditions due to mechanical ventilation of
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Figure 6.9: MR-Thermometry results obtained on the left ventricle of a sheep heart dur-
ing RF-heating. a: the temperature distribution obtained after one minute of 5W RF
heating overlayed on the anatomical image, b: corresponding temporal evolution of the
temperature at the extremity of the catheter (up to 8◦C of temperature evolution were
measured), c: corresponding TSD map obtained before hyperthermia, d: the temperature
distribution obtained after one minute of 10W power heating overlayed on the anatomical
image, e: corresponding temporal evolution of the temperature at the extremity of the
catheter (up to 16◦C of temperature evolution were measured), f: corresponding TSD map
obtained before hyperthermia.

the animal, which lowered both the amplitude and speed of heart displacement along the
feet-head axis, reducing the risks of uncompensated out-of plane motion associated to
imperfect slice tracking. The use of fast and motion compensated thermometry allowed
for visualization of the temperature evolution with a temporal resolution lower than 1 sec.
Minimal artifact of the catheter on temperature images was observed and the increase in
temperature was consistent with the RF energy deposition. These results demonstrate
the feasibility of online cardiac tissue temperature monitoring during RF ablation with a
MRI compatible catheter.

6.2.2 Discussion and conclusion

In this chapter, several applications and extensions of the MR-thermometry and dosimetry
processing pipeline, proposed in chapter 5, have been presented. The feasibility of real
time MR-guidance of a thermal ablation has been shown in-vivo in both the abdomen
(using HIFU heating) and the heart (using RF-heating) of animals. Methodological ex-
tensions have been successfully proposed for HIFU ablations, especially to optimize the
energy deposition using 3D HIFU beam steering for target tracking and 3D volumetric
control of the delivered energy. However, several methodological challenges still remained
to be developed, as discussed in chapter 5, in order to improve the robustness of the inter-
ventional procedure and thus the patient safety. Therefore, based on this analysis, novel
methods have been developed and are presented in the next part of this thesis.
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Conclusion

In this part, very fast MRI (using frame-rate in the order of 10 Hz) has been employed for
MR-guided HIFU ablations. Real time implementations of an efficient MR-reconstruction
method and a MR-thermometry and dosimetry pipeline have been proposed. These meth-
ods have been demonstrated to ensure the time constraint imposed by our real time system
and have been validated in typical clinical scenarios. The MR-thermometry and dosimetry
processing pipeline has been successfully employed for in-vivo MR-guided HIFU experi-
ments. This method has been extended in further studies where for example the feasibility
of very fast MR-thermometry and HIFU beam steering was demonstrated.

This processing pipeline has also been evaluated in the heart and promising results
were obtained. The feasibility of real time MR-guided RF-ablation has also been shown
in-vivo.

However, as presented in section 5.5, several artifacts may still be encountered during
the intervention, which could hamper the reliability of the therapeutic process and thus
the patient safety. Therefore, several methodological developments have been carried out
in this thesis to improve the robustness of the existing pipeline. These works are now
presented in the next part of this manuscript.
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Advances in methodological
development for MR-guided
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Chapter 7

Motion estimation with structures
appearing transients

7.1 Introduction

As we have seen in chapter 5 and 6, interventional procedures are usually restricted to
a part of the organ/tissue under study. In these conditions, the acquisition of large field
of view is time consuming and thus not always necessary. Therefore, reduced field of
view imaging may be useful to restrain the imaged area around the target and accelerate
the MR-acquisition. The gain in time may thus be invested for the improvement of the
spatial and / or temporal resolution in order to decrease partial volume effects (undesir-
able for quantitative analysis) and increase imaging framerate (required to observe rapid
phenomena).

Several strategies have been proposed to achieve a reduction of the field of view such as
saturation slabs, which can be set around the imaging targeted area. Alternatively, outer
volume suppression [139] can be used or more recently, the transmit SENSE technology
[140] would also allow the acquisition of reduced FOV. For the particular application of
cardiac function analysis and guidance of interventional procedures, Schaeffter et al. [141]
also proposed a strategy for interactive reduced FOV imaging.

Although a reduced FOV may improve spatial or temporal resolution, it introduces a
new challenge for the target motion estimation. Indeed, structures close to the target that
would appear similar in all images using full FOV imaging (since FOV is usually centered
on the target), may appear transient in the case of reduced FOV due to the respiratory
motion and the limited spatial coverage. This effect is illustrated in figure 7.1.

(a) (b)

Figure 7.1: Illustration of structures appearing transient in the field of view: in this case,
the upper part of the liver is present in a first image (a) and totally disappeared in a
second image (b) acquired at a different time points of the respiratory cycle.
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In such a case, an optical flow algorithm might be expected to fail locally to recover
the real motion since the assumption of energy conservation is violated. In detail, if a
structure is only present in the reference image, the algorithm might try to take signal
from the target (in the image to register) to regenerate the structure. Alternatively, if a
structure only appears on the image to register, the algorithm might try to register the
structure inside the target. In addition, this effect is expected to be higher if intensity
levels of both target and structure are comparable. Note that a similar problem can also
occur in the case of out of plane motion produced near the target (that can occur in both
full FOV and reduced FOV imaging). To improve robustness of the algorithm against this
effect, one can increase α2 value to decrease the influence of intensity gradient. However,
this will also decrease the ability of the algorithm to estimate complex motion since it
gives more importance to the motion field smoothness.

To overcome this limitation, Loncaric et al. [142] proposed to constrain the iterative
scheme of the Horn & Schunck algorithm (described in chapter 2, section 2.1.3.2) by
introducing constraint points. However, their algorithm was designed to obtain a final
motion field that exactly fits, for each constraint point j, its initial estimated displacement
(uj , vj). They proposed to directly modify the iterative scheme of the Horn & Schunck
functional (see equation (2.10)) as follows:

un+1 = βun+1
hs + (1− β)uif

vn+1 = βvn+1
hs + (1− β)vif

(7.1)

with

uif =

∑
j∈F

uj

d(i,j)2∑
j∈F

1
d(i,j)2

vif =

∑
j∈F

vj

d(i,j)2∑
j∈F

1
d(i,j)2

(7.2)

where uhs and vhs corresponds to the iterative scheme of the Horn & Schunck approach, F
denotes the region of influence of each constraint point and d(i, j) is the distance between
the pixel i and the pixel j. β is a weighting factor designed to balance the influence
of each constraint point in its neighborhood (β=0 at constraint point location and rises
to 1 for pixels outside the neighborhood constraint region). This method requires the a
priori exact knowledge of each constraint point displacement. An attempt to integrate
feature points into the optical flow formulation was proposed by Becciu et al. [143] for
cardiac contraction analysis using tagged MRI. In their work, feature points were extracted
from the tags. However, MR tagged images are generally unsuitable for interventional
or diagnostic MRI, since images are tagged by regular lines where the signal has been
removed. Recently, a variational approach, integrating segmented region motion, was
proposed for large displacement estimation [144]. This method uses a linearized OFCE
deviation together with regularization terms which include the correspondence of region
displacements in the image plane. Despite the interest of such an approach in general
purpose of video sequences, its application to MRI sequences is not straightforward due
to the inherent difficulties of segmentation of frames into spatially coherent regions.

In our approach, a global motion compensation was first employed as described in
chapter 5 (see section 5.2.1), to overcome the problem of large displacement estimation
which is mainly due to respiratory motion. Hence only residual optical flow has to be
estimated as precisely as possible. To do this, we integrate additional displacement infor-
mation of feature points (referred to as constraint point in the scope of this thesis) into
the formulation of optical flow Horn & Schunck functional. Furthermore, to fulfill the
real time condition and ensure short latency, all computationally intensive calculations
were off-loaded to a dedicated graphics processing unit (GPU). The proposed algorithm
[145, 146] (referred to as constrained motion estimation (CME), in the scope of this thesis)
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was compared with the Horn & Schunck approach on both synthetic data and cardiac &
kidney MR-images.

7.2 Motion estimation with constraint point regularization

The proposed CME algorithm is a two-step procedure (see Fig. 7.2). During a preparation
step, constraint points are selected (step 1 in Fig. 7.2). For this, a mask manually set
around the target (heart or kidney in our case) on the reference image is drawn and its
edge is extracted and sampled. To refine the positioning of each sample point, a feature
point detection is realized on the reference image. Then, the closest feature point for each
sample point is selected. In a second step (lower block in Fig 7.2), the motion is estimated
for each image as follows: A global translational motion estimation is performed and used
to initialize a local estimation of the displacement of constraint points. Non physiologi-
cal constraint point displacements are identified and corresponding constraint points are
discarded. The displacements of the constraint points are then integrated into the con-
strained optical flow algorithm (using the global estimated motion as preconditioning) to
obtain the final motion field. As mentioned in chapter 5 isotropic 3D images on mobile
organs are hard to achieve due to technical limitations of fast MR acquisition sequences.
The proposed technique has thus been evaluated in 2D case.

Figure 7.2: General scheme of the algorithm. Prior to the intervention, constraint points
are automatically extracted from a reference image and its associated mask (step 1). Then,
during the procedure, the motion field is estimated for each frame (step 2).

7.2.1 Step 1: Constraint point selection

Anatomical points are localized and tracked over the time in order to guide and constrain
the motion estimation of the target. For this, anatomical structures such as organ bound-
aries, which remain present during the acquisition and follow the target, represent good
candidates for this role. Although a precise automatic segmentation of the target is achiev-
able [147], these methods are typically hampered for rapid MRI by low SNR (typically
from 5 to 20). Instead, we use a region of interest (ROI) manually set around the target

83



of the reference image. The edge of the ROI is first extracted and then regularly spaced
sampled to obtain a set of N points surrounding the target.

Nevertheless, if considering the future application of the method as an interactive tool
to be used by a staff physician, it is mandatory to allow a certain degree of freedom on the
ROI drawing. Hence the regularly spaced sampled constraint points could not and surely
will not be very precise. We therefore propose to “move” them to the nearest feature
point computed on the reference image. Typically a small neighborhood of regularly
spaced sampled points is chosen to search for a closest feature point (e.g. 3×3 pixels
neighborhood). Due to the abundance of works in stereo matching and image retrieval,
a large amount of feature point detectors has been tested and reported in literature [51].
The critical point is the stability of these methods with respect to affine transformations
of image plane, lightening and scale variations and noise. In the case of MR images, the
noise and deformable motion are the main factors. According to the evaluation in [51], the
Harris-Stephens detector [52] appeared to provide a good compromise between robustness
and computation time. The feature point detection is based on the following response
function:

R(x, y) = Det(Mx,y)− k · Tr(Mx,y)
2 (7.3)

with

Mx,y =
∑
i,j∈S

wi,j

(
I2
x IxIy

IxIy I2
y

)
i,j

(7.4)

where (x, y) denotes the space coordinates, Det denotes the determinant of a matrix,
Tr is the trace of a matrix, w is a weighting factor (Gaussian kernel over a region S) and
k is a sensitivity parameter set to 0.04 in our study. The response is positive in a corner
region, negative in an edge region and close to zero in a flat region.

7.2.2 Step 2: motion estimation algorithm

An optical flow based algorithm is more efficient when it is initialized near the global
optimum solution. Therefore, to initialize it, a global motion estimation is first performed
with a simple translational model, as described in section 5.2.1 by setting a1, a2, a3, a4

(defined in equation (5.1)) to 0. The translation parameters (horizontal and vertical)
are estimated using a sign-gradient-descent with fixed step inspired by Netravali-Robbins
method [148]. The estimation is restricted to a ROI defined in section 7.2.1.

Then, constraint point displacements are individually estimated (two translation pa-
rameters) using the global estimated displacement as initial estimate. This estimation is
restricted to a small patch centered on each constraint point intersected with the initial
ROI to allow a local refinement of the global displacement. The estimation is resolved
by a simple region matching using an inter-correlation coefficient as the cost function F
(as described in equation (2.1)) for the registration quality assessment. We experimen-
tally found that a patch size of 10 × 10 pixels is satisfactory. To remove occasional non
physiological estimates, a simple outliers rejection was added. The displacement vector
(dx, dy)

T of a constraint point was supposed to follow bivariate Gaussian distribution with
independence of dx and dy coordinates. A constraint point is rejected if at least one of its
coordinates violates the marginal 3-sigma rule.

The idea of the presented approach is to constrain the Horn & Schunck formulation
by locally estimated displacements of feature points. Hence, we propose the following
extension of the Horn & Schunck formulation with an additional regularization term:
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Ec(u, v) =

∫∫ (
[Ixu+ Iyv + It]

2

+ α2
([
‖∇u‖22 + ‖∇v‖22

])
+ λ2

N∑
i=0

(
ρ(di, R)

[
(u− ui)2 + (v − vi)2

]))
dxdy (7.5)

where (ui, vi) are the horizontal and vertical components of the displacement estimated
for the ith constraint point. λ2 is the regularization parameter that allows balancing
between the initial behavior of the Horn & Schunck algorithm and the constraint influence.
ρ is a distance function, defined as

ρ(di, R) = exp (−d2
i /R

2) (7.6)

where di represents the Euclidean distance between the pixel of coordinates (x, y) and the
ith constraint point, R is a bandwidth parameter. Obviously, the quality of the estimated
motion of the constraint points and the bandwidth influence the resulting optical flow.
These settings will be discussed in the experimental part of this study.

The minimization of Ec(u, v) is obtained based on the resolution of the associated
Euler Lagrange equations and the Gauss Seidel method and is detailed in appendix D.2.
This resulted in the following iterative scheme:


un+1 =

α2(I2y+α2+λ2S)ūn−α2IxIy v̄n−α2IxIt+λ2((I2y+α2+S)Sui−IxIySvi−IxItS)
(α2+λ2S)(I2x+I2y+α2+λ2S)

vn+1 =
α2(I2x+α2+λ2S)v̄n−α2IxIyūn−α2IyIt+λ2((I2x+α2+S)Svi−IxIySui−IyItS)

(α2+λ2S)(I2x+I2y+α2+λ2S)

(7.7)

with S =
∑N

i=0 (ρ(di, R)), Sui =
∑N

i=0 (ρ(di, R) · ui) and Svi =
∑N

i=0 (ρ(di, R) · vi)
Note that with a zero λ2, the iterative scheme is identical to the initial one proposed

by Horn & Schunck.

7.2.3 Implementation

As described in chapter 5 (section 5.2.1), a multi-resolution approach [59] was added
to both the Horn & Schunck and the CME implementations, which iterates the motion
estimation algorithm from the 3rd level of sub-resolution to the full resolution. Again, as
also described in chapter 5, the most time consuming task, i.e. the iterative numerical
scheme of the optical flow algorithms, was offloaded to a dedicated GPU.

The overall algorithm was implemented in C++ and evaluated on a dual processor
(INTEL 3.1 GHz Penryn, two cores) workstation with 8 GB of RAM and dual 1 GB/s
network interface cards. The GPU implementation was based on Compute Unified Device
Architecture (CUDA) framework [106] using a NVIDIA GTX280 card with 1 GB of DRAM
connected over a PCIe x16 link.

7.2.4 Experimental setup

The proposed algorithm was evaluated on both synthetic and in vivo datasets:

7.2.4.1 Simulated experiment

A sequence of T (= 100) images was created. To simulate respiratory motion typically
encountered on mobile organs, a “ground truth” periodic translational displacement field
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Dgt(t) (maximum amplitude=7 pixels, step size=1.5 pixels) was synthesized. The SNR
of 20 was chosen to simulate a realistic acquisition. A rectangular structure appearing
only for the three largest displacement amplitudes (thus present in half of the images) was
added. The synthetic sequence is presented in figure 7.3a,b.

7.2.4.2 In vivo experiments

In vivo experiments were conducted on 13 healthy volunteers under free breathing condi-
tions. Cardiac imaging was performed on the first six volunteers using saturation slabs
and thus introducing problems typically encountered when zoom imaging is used (there-
fore the use of saturation slabs is referred to as zoom imaging conditions in the scope of
this paper). The seventh volunteer underwent another cardiac experiment where the slice
geometry was chosen so that out-of-plane motion was present. Finally, a study on the
kidney was realized on the remaining 6 volunteers under zoom imaging conditions. For all
of these experiments, the volunteer was positioned in head first in supine position in a 1.5
Tesla scanner (Philips Achieva/Intera).

In-vivo study on the heart under zoom imaging conditions: Dynamic MRI
was performed under free-breathing conditions on the heart of six healthy volunteers.
The acquisition sequence was ECG-gated (i.e. triggered on the cardiac signal) using a
five element phased array cardiac coil. Five contiguous adjacent slices were acquired per
cycle (200 cycles per experiment), in short axis view, in the mid or end diastole of each
cardiac phase. A slice tracking technique [40] was used to compensate for respiratory
motion in the third dimension perpendicular to the imaging plane and thus decrease
related out-of-plane motion. Nevertheless, the residual in-plane respiratory motion still
remains. Blood signal reduction was obtained using saturation slabs positioned on each
side of the imaging stack. The single shot EPI sequence employed the following parameters:
FOV=260× 260 mm2, acquisition matrix=96× 96, reconstruction matrix=96× 96, voxel
size=2.7 × 2.7 × 7 mm3, echo time=20 ms, repetition time=40 ms, SENSE acceleration
factor=1.6 [102]. A saturation slab was positioned underneath the extreme position of the
heart (corresponding to the position at maximum respiratory displacement) to simulate
zoom imaging conditions.

In-vivo experiment on the heart, demonstrating out-of-plane motion: The
same cardiac protocol was used in this experiment except the saturation slabs were re-
moved to acquire a larger signal area.

In-vivo study on the kidney under zoom imaging conditions: A single coronal
slice was acquired during 200 dynamics using a four element phased array body coil.
A dual shot EPI sequence employed the following parameters: FOV=200 × 400 mm2,
acquisition matrix=84 × 118, reconstruction matrix=176 × 176, voxel size=2.3 × 2.3 × 6
mm3, echo time=26 ms, repetition time=52 ms, flip angle=35◦. Zoom imaging conditions
were achieved using a saturation slab positioned on the top of the extreme position of the
kidney. In such conditions, the typical amplitude of the heart and kidney motion is about
8 pixels in imaging plane between two extreme images in the respiratory cycle.

7.2.5 Assessment of motion estimation quality

Commonly, criteria based on the difference of motion compensated images are used to
assess the accuracy of motion estimation [149]. However, these criteria are biased with
“noise registration” and do not necessary reflect the accuracy of a motion field since they
only rely on pixel intensities. Therefore, as demonstrated further in chapter 9, since our
data are generally hampered by low SNRs, these criteria are not appropriate in our context.

To assess the quality of the estimated motion on synthetic images, a criterion based
on the direct comparison between estimated motion field (D) and ground truth motion
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field (Dgt) was evaluated as follows:

GSE =
1

T

T∑
t=1

 1

N

∑
(x,y)∈m

‖D(x, y, t)−Dgt(x, y, t)‖2

 (7.8)

where t is the image index in the time series, m is a binary mask that allows to restrain
the computation to a ROI and N the number of elements set to 1 in m. This criterion is
referred to as gold standard error (GSE) in the scope of this paper.

To assess estimated motion in in vivo images, a manual segmentation of the target
organ was realized on each registered image. The covering percentage (CP) between these
ROI and the reference ROI was then analyzed and used as an in vivo motion estimation
quality criterion.

CP (t) =
ROIref ∩ROIt
ROIref ∪ROIt

(7.9)

where ROIref and ROIt are respectively the ROI in the reference image and the ROI
manually set around the target in the tth registered image of the time series. A CP value
of 1 denotes an ideal matching of the ROIs and thus a good registration. A CP value of
0 denotes no correspondence between the ROIs. We note that in manual segmentation
of ROI for benchmarking purposes, a fine rotoscoping technique on a pixel-by-pixel basis
was applied by a specialist. Obviously, some errors are possible because of aliasing effects,
but we consider them negligible.

7.3 Results

7.3.1 Simulated experiment

The comparison between both algorithms was first realized on a synthetic dataset where
the reference image and an example of image at a different position of the cycle are
displayed respectively in Fig. 7.3a and b. The appearing rectangle, located at the bottom
of Fig. 7.3b, is expected to hamper the motion estimation at the bottom of the object
(in the red ROI displayed in Fig. 7.3a). Therefore, the gold standard error was computed
for each dynamic, over this ROI and the results are plotted in Fig. 7.3c. The Horn
& Schunck algorithm showed very poor performance on this area where the appearing
rectangular structure biased the accuracy of the algorithm (three repetitive high values).
On the other hand, the proposed CME approach remains stable over the time and provides
a more accurate motion field.

7.3.2 In vivo experiments

Similar results were obtained in vivo on several experiments in both the heart and kidney
of volunteers.

7.3.2.1 In-vivo study on the heart under zoom imaging conditions

The first analysis was realized on a short axis view of the heart of a healthy volunteer
(SNR=12) (Fig. 7.4a). The area with low signal intensity in the lower part of the image
corresponds to a saturation band that may allow reduction of the FOV without additional
fold-over artifacts. This image was used as a reference for the in vivo sequence. A ROI
was first manually set around the left ventricle (LV) (contour shown in Fig. 7.4b) and the
constraint points were derived from the combination of a subsampled contour of this ROI
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(a) (b) (c)

Figure 7.3: Gold Standard Error on a synthetic sequence, (a): reference image, (b): ex-
ample of image to register, (c): motion field error calculated over the red ROI (shown in
(a)) using both methods.

(a) (b) (c)

Figure 7.4: Constraint selection. (a): reference image, (b): reference image and the
corresponding ROI manually set around the target, (c): constraint points.

and a feature detection (see Fig. 7.4c). These points precisely match the contour of the
LV. The motion estimation algorithm was then evaluated on the time series images.

In order to accurately estimate the displacement of each constraint point, a global mo-
tion estimation step is used as initialization of the constraint point motion estimation. The
interest of such combined approach is illustrated in figure 7.5. Here, the inter-correlation
coefficients obtained over a region centered on a constraint point was computed before and
after the global motion estimation step and after the constraint point motion estimation
step. Although the global motion estimation step (red curve) clearly improved the initial
intercorelation value (black curve), a further refinement of the solution was achieved with
the constraint point motion estimation step (blue curve).

The overall performance of the CME is now presented. An example of an image from
the same sequence acquired at a different position in the respiratory cycle is displayed in
Fig. 7.6a. A large inferior displacement of the heart is observed compared to the reference
position (Fig. 7.4a). The position of the liver (below the heart) is also very different
and its signal almost disappeared in Fig. 7.6a, due to the displacement induced by the
respiration.

The Horn & Schunck method (with α2=0.1) resulted consequently in a poor motion
estimate in the lower part of the LV (the white ellipse in Fig. 7.6b) where the myocardium
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Figure 7.5: Typical time evolution of inter-correlation coefficients obtained over a region
centered on a constraint point. Values obtained without correction (black curve), after
global motion estimation (red curve) and after constraint point motion estimation (blue
curve) are plotted.

(a) (b) (c)

Figure 7.6: Registration results obtained with Horn & Schunck approach and the proposed
one on volunteer #3 (a): image to register, (b): registered image using Horn & Schunck
method, (c): registered image using the CME approach.

is deformed. In such a case, the algorithm takes pixels from the myocardium (in the
image to register) to regenerate the transient structure present in the reference image and
thus failed to recover the real motion. Using the proposed CME approach (with α2=0.1,
λ2=0.05, R=

√
5, N=20), the LV (see Fig. 7.6c) visually matched the reference image.

The algorithm was not disturbed by the disappearance of the liver. These findings are
typical for the entire image sequence as shown in Fig. 7.7a where CP is plotted (see red
and black curves). Due to the respiratory cycle, the transient structure present in the
reference image appeared periodically on the time series. In these conditions, the Horn
& Schunck approach periodically failed to register images that do not contain the non
persistent structure. A reliable registration was achieved using the proposed CME which
provided over time a stable CP value (around 0.92%) similar to the one obtained with the
Horn & Schunck algorithm in images containing the transient structure.

The behavior of the proposed CME was also tested for the influence of the number
of constraint points N and the bandwidth parameter R (see equation (7.6)). Exhaustive
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(a)

(b)

Figure 7.7: Behavior of the proposed CME using different configurations: for several values
of R with N=20 (a) and several values of N with R =

√
5 (b).

assessment of the quality criterion is rather tedious as it requires manual tracking of ROI
in all registered frames of the sequence. Hence, we sparsely sampled the N parameter
space and R parameter space.

Furthermore, a precise evaluation of the quality criterion requires ideally set ROIs on
the registered frames. Hence the manual error at this evaluation stage will bias the result.
Furthermore, very low variations are expected with closed parameter values. Hence in
Fig. 7.7, we plot the CP quality criterion for a limited number of parameter values (see
Fig. 7.7a,b). As expected, a performance decrease is observed with a small bandwidth
(when R=1) and with a small number of constraint points (when N=6).

Similar results were obtained in the study over six volunteers (see Fig. 7.8). The mean
CP was found always better with the proposed CME. The plot shows that minimal CP
values are very low for certain dynamics using Horn & Schunck approach, whereas the
proposed CME allows to maintain reliable performance for all dynamics. This tendency is
confirmed with the CP standard deviation values that are also significantly reduced with
the proposed constrained optical flow.

Constraint point filtering allowed the rejection of constraint points with non physio-
logical estimated displacement. A temporal average of less than 0.37 % of the constraint
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Figure 7.8: Analysis of motion estimation performance in the heart of six volunteers using
Horn & Schunck approach and the CME approach. Box and Whisker plot of CP where
displayed values correspond to the minimum (upper point) and maximum (lower point)
CP values obtained on a dynamic, the averaged CP value (point inside the box) and the
standard deviation of CP values (box size).

points were rejected with a maximum of two points for a dynamic.

7.3.2.2 In-vivo experiment on the heart demonstrating out-of-plane motion

Since out-of-plane motion is frequently encountered in MR-guidance application, this ex-
periment investigated the potential of the method to this complex situation. In Fig. 7.9
the reference image and an image acquired at different positions in the respiratory cycle
(13th of the time series) are shown (see Fig. 7.9a and 7.9b respectively). It can be observed
that a structure which was present on the reference image (indicated by a white arrow)
had totally disappeared in the second image, due to out-of-plane motion. The registered
images using both the Horn & Schunck and the CME approaches are displayed in Fig.
7.9c and 7.9d. The Horn & Schunck approach tries to regenerate this structure using the
surrounding signal in the image, i.e. the signal of the myocardium of the LV (see the white
ellipse in Fig. 7.9c). Using the CME, the registered image visually matches the reference
image (see Fig. 7.9d). This observation is confirmed by the CP analysis in Fig. 7.9e. The
Horn & Schunck approach periodically failed to register those images that do not contain
the underneath structure, whereas the CME provided reliable registration for all images.

7.3.2.3 In-vivo study on the kidney under zoom imaging conditions

Since many intervention procedures are conducted on abdominal organs, a third experi-
ment was realized on the kidney. Images obtained on a healthy volunteer (volunteer #
3) are displayed in Fig. 7.10. The reference image and an image acquired at a different
position of the respiratory cycle are shown respectively in Fig. 7.10a and 7.10b. Two
perturbations are observed in the top part of the kidney: The liver, on the top of the
kidney, partially disappears in the second image and the intensity of the upper of the kid-
ney depicts a high variation. As expected, the Horn & Schunck approach registered pixels
with similar intensity and the upper part of the kidney was deformed (see Fig. 7.10c).
Using the CME, the constraint allows to conserve the initial shape of the kidney (see Fig.
7.10d). The CP value variations over time shows that the CME provides a better stability
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(a) (b)

(c) (d)

(e)

Figure 7.9: Analysis on experiment #2 (a): reference image, (b) image to register (13th of
the time series), (c): registered image using the Horn & Schunck approach, (d): registered
image using the CME approach, (e) CP comparison between both the CME and the Horn
& Schunck approaches.

and a better performance than the Horn & Schunck method (see Fig.7.10e.
These results were representative for the registration quality obtained across the entire

volunteer group. The performance of both algorithms was evaluated over six volunteers
and is shown in Fig. 7.11. Temporally averaged CP values were always improved with
the proposed CME approach except on volunteer #2 where both algorithms showed com-
parable performance. On this particular volunteer, the contrast between the kidney and
the intrusive structure which is the boundary of the liver was very strong. Therefore, the
Horn & Schunck method performed similar to the CME approach.

Performance of the constraint point filter were slightly different to the results obtained
in the heart. A temporal average of less than 2.67 % of the constraint points were rejected
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(a) (b)

(c) (d)

(e)

Figure 7.10: Analysis of experiment #3 (a): reference image, (b) image to register (10th of
the time series), (c): registered image using the Horn & Schunck approach, (d): registered
image using the CME approach, (e) CP comparison between both the CME and the Horn
& Schunck approaches.

with a maximum of three points for a dynamic.

7.3.3 Real time benchmarking

The GPU based implementation allows a significant reduction of the whole computation
time. Benchmarking was realized for each different processing steps for an image sequence
of spatial resolution 128 × 128 (see Table 7.1). The computation time of the proposed
approach was evaluated to 85 ms (CPU only implementation) and reduced to 22 ms using
the CPU/GPU. A reduction factor of 10 was achieved for the computation time of the
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Figure 7.11: Analysis of motion estimation performance in the kidney of six volunteers
using the Horn & Schunck approach and the CME approach. Box and Whisker plot of CP
where displayed values correspond to the minimum (upper point) and maximum (lower
point) CP values obtained on a dynamic, the averaged CP value (point inside the box)
and the standard deviation of CP values (box size).

iterative numerical scheme of the optical flow algorithm (see equation (7.7)).

Algorithm steps Computation times

Global motion estimation 5 ms

Motion estimation of constraint points 10 ms

Optical flow iterative scheme 7 ms (70 ms)

Total 22 ms (85 ms)

Table 7.1: Computation times of the different steps of the proposed algorithm for one image
of resolution 128×128 pixels. Computation times obtained with CPU only implementation
are presented in bracket.

7.4 Discussion and conclusions

7.4.1 Validation of the proposed method on synthetic dataset and in
vivo experiments

The results of the proposed CME on a synthetic dataset showed a superior performance
compared to the Horn & Schunck approach that failed to estimate the real motion.

Furthermore, the volunteer studies confirmed the feasibility of the CME in in vivo
experiments in both the heart and the kidney. For almost all cases, the Horn & Schunck
method was very disturbed by the intrusive structures, whereas the CME provided good
performance for all dynamics. It is important to note that the CME and the Horn &
Schunck approaches show comparable performance for images and regions not affected by
non persistent structures.

The robustness of the proposed method against out-of-plane motion was also experi-
mentally shown. Appearing and disappearing structures of surrounding tissues were found
to biased the Horn & Schunck approach. For the same sequence, the CME performed well
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for all dynamics and demonstrated its potential usefulness for broader types of image
sequences.

7.4.2 Real time feasibility of the method

MR-guidance of interventional procedures relies on the instantaneous availability of the
processed images. Therefore, this limits the available computation time. In addition,
Denis de Senneville et al. demonstrated in [58] that large latencies have to be compensated
with the help of accurate motion prediction. However, prediction algorithm performance
greatly increases with short latencies. Recently, in the particular case of a HIFU ablation
on mobile organs, it was demonstrated that a latency inferior to 100 ms was required
for the adjustment of the beam position in order to ensure an energy deposition similar
to a static experiment [134]. Here, the demonstrated CPU/GPU implementation allows
the acceleration of the required processing time by a factor of four and thus facilitates to
ensure real time conditions with low latency.

7.4.3 General discussion on the proposed method

Contrary to previous works using constraint points, a comprehensive formulation of the
minimization problem was proposed. The confidence into the predetermined displacement
of the selected constraint points can be freely adjusted with the regularization parameter
λ2. The quality of the obtained optical flow depends on the quality of initial constraint
point vectors, the number of constraints and the ρ function parameters:

• For the motion estimation of the constraint points, only a translational model was
considered as it was the most robust for small patch sizes surrounding constraint
points. The optimal patch size in 128×128 MRI sequences was found to be 10×10
for our images.

• In order to control optical flow, the constraint points have to be placed near even-
tual occlusion (or problematic area). The manual choice of constraint points is not
realistic during an interventional procedure, and we can only encourage the staff
physician to approximately trace the contour of the ROI. Hence the subsampling
has to be sufficient in order to get a good coverage of problematic area. On the
other hand, a too large number of constraint points will slow down the computa-
tional process. Therefore, for the demonstrated application, N=20 was found to be
a good compromise.

• The bandwidth of the ρ function regulates the influence of remote points. The large
bandwidth yields a quasi interpolation of constraint point displacements over the
whole image. An optimal experimental value was R=

√
5.

• Outliers rejection for constraint point vectors was found particularly useful for small
patch sizes where estimations are more sensible to out-of-plane motion, noise, etc.

7.4.4 Conclusion

In this chapter a new regularization constraint of the energy functional of the Horn &
Schunck method was presented. This extension renders optical flow well suited to provide
motion estimation for interventional MRI on mobile organs. This approach represents a
flexible solution to integrate constraint point displacement into the optical flow estimation.
It opens great perspectives to integrate other motion information such as navigator echoes
or ultrasonic echoes. Although the proposed method was validated in vivo in both the
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heart and the kidney, its feasibility on other organs such as the liver should be investigated
in future study.

Although the Horn & Schunck approach is a popular method for motion estimation,
several extensions, such as [73, 71, 72] have been proposed in the past. Here, the proposed
formulation can be extended to any of these methods and should be investigated in future
studies. We think, that using our method in conjunction with more sophisticated global
motion initialization such as in [150] could also improve the overall performance. We
intend to investigate it in the future as well.

Finally, the use of parallel processing on affordable commodity graphics hardware
demonstrates the feasibility of the algorithm in real time with very short latency required
for interventional procedures.
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Chapter 8

Motion estimation during
hyperthermia

8.1 Introduction

Local hyperthermia introduces tissue modifications that lead to a variation of the local T1

and T2 relaxation time and thus to local intensity modifications on magnitude images, as
illustrated in figure 8.3. Consequently, the condition of energy conservation of the OFCE
(equation (2.6)) is locally violated and might thus lead to incorrect motion estimates.

As presented in section 2.1.3.2, one way to cope with the problem of intensity changes
was first suggested by Cornelius and Kanade [71] for the registration of images obtained
under a varying illumination. They proposed to model the illumination variation, indi-
vidually for each pixel, as a constant variation. A further refinement was proposed by
Gennert and Negahdaripour [72] which models the illumination variation as a linear func-
tion of brightness values (see section 2.1.3.2). However, these approaches may be limited
to model strong intensity variations typically encountered in our case. Another solution
was proposed by Maclair et al. [151] that imposed severe restrictions on the periodicity
of the organ motion which is thus limited by potential spontaneous motion.

Alternatively, here the physical cause of the intensity perturbation, the local temper-
ature change, is integrated in the motion estimation algorithm [152]. This is achieved
by using the temperature map of the most recently acquired data set to adapt the local
weights of confidence in the intensity conservation (left part of equation (D.1)) of the
subsequently acquired new image.

8.2 Motion estimation with temperature regularization

Since for a motion estimation during a hyperthermia procedure, all images have to be reg-
istered to a common reference position, the proposed approach is divided into two steps:
First, the heated area is identified using registered temperature maps obtained from the
previous dynamics. Then, a new optical flow algorithm is used where the assumption of en-
ergy conservation is locally relaxed in the heated area. For this, temperature information
is introduced into a modified formulation of the Horn & Schunck’s formulation. Although
temperature maps can be computed in real time [122], this information is only available
after the image registration process is terminated. Therefore, in order to integrate temper-
ature information into the registration process of the most recent image, it is necessary to
use the temperature maps obtained from the preceding image. In principle this approach
would limit the permissible temperature variations between two successive acquisitions,
however, for rapid subsecond MR-sequences and typical power output of clinically used
ablation devices, this is generally not the case.
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8.2.1 Proposed optical flow formulation

Since the assumption of energy conservation, as proposed originally by Horn & Schunck,
is locally violated for imaging hyperthermia, a temperature dependent weighting function
(called β(x, y) in the scope of this paper) is introduced. This function allows to attribute
for each pixel at the coordinate (x, y) a level of confidence in equation (2.6) (a value of 1
denotes a high confidence and 0 denotes no confidence). The resulting new formulation of
the optical flow constraint equation can be written as:

Etr =

∫∫ (
β(x, y) [Ixu+ Iyv + It]

2 + α2
[
‖∇u‖22 + ‖∇v‖22

])
dxdy (8.1)

This functional is minimized based on the resolution of the Euler Lagrange equations
and the Gauss Seidel method. A detailed description of the derivation of the solution is
given in appendix D.3 and provides the following iterative scheme:

un+1 = un − β(x, y)Ix
unIx + vnIy + it

β(x, y)(I2
x + I2

y ) + α2

vn+1 = vn − β(x, y)Iy
unIx + vnIy + it

β(x, y)(I2
x + I2

y ) + α2

(8.2)

To cope with large displacement, a multi-resolution approach was used which iterates
the registration algorithm from a four-fold down-sampled image step-by-step to the full
image resolution.

8.2.2 Heated area identification

The region prone to high local intensity variations is updated in real time during the hy-
perthermia procedure. The weighting function β is directly derived from the temperature
maps T (x, y) using a temperature threshold Tthreshold to classify pixels (x, y) inside the
heated area (T (x, y) > Tthreshold) and outside the heated area (T (x, y) < Tthreshold). To
decrease instabilities of the numerical scheme, the β function was designed as a continuous
function as follows:

β(x, y) =

{
1 , if T < Tthreshold

exp −(T−Tthreshold)2

k2
, if T ≥ Tthreshold

(8.3)

where k2 allows to define the speed of convergence to 0 for the weighting function β.
k2 and α2 were empirically set to 5 and 0.3, respectively. Note that Tthreshold has to
be small enough, since intensity variations can arise with low temperature variations,
depending on the employed sequence. On the other hand, Tthreshold has to be higher
than the temperature measurement noise to prevent instabilities and undesired effects on
the weighting function β. Therefore, a value of two times the standard deviation of the
temperature (measured prior hyperthermia) was employed.

8.2.3 Implementation

Implementation was realized in C++ and evaluated on a dual processor (INTEL 3.1 GHz
Penryn, two cores) workstation with 8 GB of RAM. Since a high framerate is required,
the registration process was off loaded to a GPU, using the Compute Unified Device
Architecture (CUDA) framework [106]. For this, a NVIDIA GTX280 card with 1 GB of
DRAM was employed.
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8.2.4 Experimental setup

The proposed algorithm was evaluated on a synthetic dataset and in an ex vivo heating ex-
periment. Although a temperature variation induces a phase variation, additional effects,
such as local magnetic susceptibility variations induced by motion, can create additional
unwanted shifts on phase images. These position dependent effects on the phase have been
removed prior to the temperature computation using a multi-baseline phase correction as
described in detail in [122].

Simulated experiment: An ellipsoidal object was simulated for N=200 frames. In
order to evaluate the ability of our algorithm to estimate complex deformations in presence
of strong intensity variations, a complex vertical displacement d was empirically created
for each frame i, as follows:

di(x, y) = imod3 + 2 ∗ sin((2 ∗ π ∗ y/YRESOL) + (imod3) ∗ π) (8.4)

where YRESOL was the image resolution in the vertical dimension. Local signal loss was
simulated by reducing the initial overall signal-to-noise ratio (SNR) of 13 for the last 100
images in a small area (size: 5 × 5 pixels) to zero (100 % signal loss in the center area
and 70 % in the periphery). Since for this simulation no actual temperature change was
present, an artificial β function with a value of 0 in the signal decrease area and 1 elsewhere
was used.

Heating experiment: Dynamic MR temperature imaging was performed on a Philips
Achieva 1.5 T MRI-system (Philips Healthcare, Best, The Netherlands) using a dual-
shot, gradient recalled echo-planar acquisition sequence. N = 3000 images were acquired
with the following parameters: Image dimension=128 × 58, echo time=15 ms, repetition
time=30 ms, flip angle= 20◦, field of view=256 × 104 × 5 mm3. A porcine muscle was
positioned on a motorized platform, which generated a periodic displacement. For an
independent assessment of the object displacement, an additional navigator echo (0.5
mm precision) was positioned parallel to the displacement on the apex of the muscle
in order to get the reference displacement. Since a navigator echo only provides a one
dimensional displacement information, the created displacement was purely translational
(amplitude=10 pixels and frequency=0.5 Hz). RF heating was performed using a clinical
MR-compatible RF device (Radionics, Burlington, MA) with 8 W of RF-power during 75
seconds.

8.2.5 Assessment of motion estimation accuracy

The proposed algorithm is compared to the Horn & Schunck’s algorithm (setting uni-
formly β(x, y) = 1, ∀(x, y)). To assess the motion estimation accuracy, the gold standard
error (GSE), as defined in chapter 7 (see equation (7.8)), was employed. This criterion
corresponds to the spatial average of the Euclidean distance between the estimated motion
and the true motion (the created displacement for synthetic dataset experiment and the
navigator value for the heating experiment). The GSE was computed in our case over a
mask m positioned around the heated region.

8.3 Experimental validation

8.3.1 Simulated experiment

Synthetic images are displayed in Fig. 8.1. The reference image is shown in Fig. 8.1a.
The last image of the time series, depicting a local signal variation, with its associated
true displacement, are shown in Fig. 8.1b. The corresponding registered images and
estimated motion fields (in the area with simulated signal decrease) obtained with the
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(a) (b)

(c) (d)

Figure 8.1: Results obtained on synthetic datasets: (a) reference image (b) last image of
the time series with the real input displacement. Registered images and corresponding
motion field (of the area with the simulated signal decrease) obtained with the Horn &
Schunck’s approach (c) and the proposed approach (d).

original Horn & Schunck’s approach and the proposed method, are respectively shown in
Fig. 8.1c and 8.1d. The motion field obtained with the Horn & Schunck’s algorithm does
not represent the true displacement as shown in Fig. 8.1b, and the area containing the
simulated signal decrease was significantly reduced on the corresponding registered image.
With the proposed approach, the estimated motion field (see Fig. 8.1d) corresponds to the
simulated displacement and intensities are well conserved in the area with the simulated
signal decrease.

To confirm these results over the entire sequence, a temporal analysis of the motion
accuracy (Fig. 8.2a) and the registered image intensity conservation (Fig. 8.2b) was
performed in a pixel (indicated by a red arrow in Fig. 8.1a) located in an area subject to
signal variations. Both algorithms provide the same results for the first 100 dynamics since
no signal decrease was present. However, on the last 100 dynamics, the Horn & Schunck’s
algorithm displays large errors on the estimated motion fields and the pixel intensity on
the registered images was found biased. In comparison, the proposed approach provides
an accurate motion field estimate throughout the entire image sequence and the resulting
image intensity remained similar to the true intensity. Note that the precision of the
estimated motion field appears also improved in areas with decreased signal.

8.3.2 Heating experiment

The results of the heating experiment are displayed in Fig. 8.3. The reference image is
displayed in Fig. 8.3a, while an image after 50 seconds of sonication is shown in Fig.
8.3b. A strong signal decrease form the initial SNR of 18 is visible in the heated area
(see enlarged areas in Fig. 8.3a and 8.3b). The corresponding registered images, motion
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(a)

(b)

Figure 8.2: Analysis of registration accuracy in a point subject to large intensity variations
(shown by the arrow in Fig. 8.1a): (a) GSE, (b) intensity evolution on registered image.

fields and temperature maps which are obtained using the navigator based registration,
the Horn & Schunck’s algorithm and the proposed modified optical flow are shown in Fig
8.3c, 8.3d and 8.3e. The estimated motion field and the temperature map of the Horn
& Schunck’s algorithm (Fig. 8.3d) show significant differences to the results obtained
with the navigator based image registration, which served as the reference result (Fig.
8.3c). The proposed modified optical flow image registration provides motion fields and
a temperature maps (Fig. 8.3e) which are similar to the reference results. To confirm
the robustness of the presented method, an analysis over the temporal evolution of the
estimated motion field accuracy is presented in Fig. 8.4a. Here, the gold standard error
is computed in a pixel located in the heated area (indicated by the red arrow in Fig.
8.3a). The Horn & Schunck’s approach provides poor results as soon as the hyperthermia
procedure starts while the proposed method remains stable and accurate over the time.
Fig. 8.4b shows the resulting temperature evolution obtained for each method. Contrary
to the Horn & Schunck’s approach, the temperature evolution obtained with the proposed
method is close to the reference results.
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(a) (b)

(c) (d) (e)

Figure 8.3: Results obtained on the heating experiment: (a) reference image, (b) image
obtained after 50 seconds of sonication, corresponding registered image, temperature and
estimated motion field using: (c) navigator based registration, (d) Horn & Schunck’s
approach, (e) the proposed approach.

(a) (b)

Figure 8.4: Temporal analysis of the registration accuracy in a pixel located in the heated
area (red arrow in figure 8.3.a) of the gold standard error of the estimated motion field
(f) and the corresponding temperature evolution (g).
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The GPU based implementation allows reduction of the computation time for an im-
age of 128 × 128 pixel of 60 ms (CPU only) to 5 ms. Therefore, the computation time is
compatible with the required framerate (10-15 Hz) for real time MR-guidance of hyper-
thermia.

8.4 Discussion and conclusions

Motion compensated MR-guidance of hyperthermia requires a robust and precise image
registration throughout the entire intervention. The original Horn & Schunck’s algorithm
was found to be very susceptible to intensity variations due to the heating process. An es-
timation error of up to 2-3 pixels (≡ 4-6 mm) of mis-registration was observed. This limits
the usefulness of the algorithm for applications where the image and temperature data
is used for retroactive control of the interventional device. In comparison, the proposed
approach, which integrates a priori knowledge of temperature and thus intensity variations
directly in the registration process, resulted in a much improved performance: The accu-
racy of estimated displacement corresponds well to the true displacement throughout the
entire intervention. Since for this approach the spatio-temporal shape of the weighting
function β, and in particular the temperature threshold, have a large influence on the
displacement estimation, an automatic calibration appears advisable. Furthermore, the
estimated motion field in the heated area is only computed from surrounding pixels using
a diffusion process. As a result, the precision of the estimated motion appears improved.
However, complex deformation in the heated area might be not well represented. The pro-
cessing time was found below 5 ms for an image of 128 × 128 pixels, which demonstrates
the ability to perform this algorithm in real time while maintaining short latency.

Since for MR-guidance of hyperthermia the method was found well suited to cope with
strong signal decrease due to the heating process, it can potentially be applied to other
application scenarios of dynamic MR-image data which contain problematic areas such
as arteries with blood pulsation, bolus passage, or minimally invasive devices such as a
catheters or laser guides.
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Chapter 9

Autocalibration of a motion
estimation algorithm using a
physical motion model

9.1 Introduction

Motion estimation algorithm generally employs a set of free parameters. In general, their
optimal calibration depends on several factors (such as the target motion amplitude, noise,
the complexity of the deformation, the image resolution, ...) and thus depends on the
application (targeted organ, location of the tumor, slice orientation, ...). However, a
manual calibration where the physician would have to select the best set of parameters
appears infeasible for two reasons:

• It would be user controlled. The parameter tuning would be based on apparent
registration quality and not on the accuracy of the estimated motion field. Therefore,
only regions with geometric structures would be evaluated by the physician. In this
case the estimated motion field of flat area will not be considered.

• It would be time consuming. For each set of parameters, the physician would have to
control the quality of the registration for different images corresponding to different
positions in the respiratory cycle. It would require several dozens of minutes and
severely increase the cost and thus the feasibility of the intervention.

For these reasons, an autocalibration of the motion estimation algorithm appears neces-
sary. Then, this requires to define an optimization strategy to converge to the optimal set
of parameters and a motion estimation quality criterion for the optimization function.

In this chapter, an autocalibration method for a motion estimation algorithm is pro-
posed. For this, a cost function, which relates the quality of the registration, is required.
Here, we show that existing magnitude based criteria are highly limited with low SNR
and a novel criterion based on MR-phase images is proposed. Then, this criterion is used
to assess, for a set of positions observed before the interventional procedure, the optimal
configuration of the registration algorithm. Since for most therapeutic applications within
the human body, motion is caused by the respiratory or the cardiac cycle and is thus
periodic, this optimal configuration can be used during the interventional procedure. To
demonstrate the usefulness of this criteria, an optical flow based image registration algo-
rithm (derived from the Horn and Schunck algorithm) is optimized using both existing
criteria and the proposed criteria for abdominal organs subjected to respiratory motion.

The potential of the method was evaluated in a phantom experiment. Results of
the optimal image registration were compared with gold standard positions given by an
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external sensor. Then, the method was demonstrated in-vivo in the abdomen of twelve
volunteers under free breathing, with conditions similar to a thermo-ablation. Results
of the optimal image registration were compared with manually defined gold standard
positions.

9.2 Image registration quality criteria

9.2.1 Existing criteria

The strategy to assess the performance of a motion estimation algorithm, depends on the
availability of the real motion knowledge. For the case where the real motion (Mreal) is
known, several criteria such as the angular error or the absolute error can be used. The
angular error represents the angle between the real motion flow and the estimated motion
flow (Mest) [153]. However, this criterion penalizes much more errors in small flows that
errors in large flows. Therefore, in this thesis, we employed the absolute error (see chapter
7 and 8) which is defined as the spatio-temporal average of the Euclidean distance between
Mest and Mreal. This criterion is referred to as Gold standard error (GSE) in the scope
of this chapter.

However, the knowledge of the true motion is generally limited for in vivo imaging.
Navigator echoes or ultrasonic can provide independent measure of the displacement but
cannot represent elastic deformations. A manual registration of a given set of landmark
points can be realized and used as true motion in each specific landmark point but is not
feasible for real time applications.

Alternatively, the video coding area has proposed several solutions. However, motion
estimation objectives for video coding and MR-guidance are slightly different. While
MR-guided thermal ablations require the estimation of the true motion, video coding
tries to find the best pixel match from one frame to another in order to minimize the
differences between the reference frame and the registered current frame. One of the most
famous proposed criterion employed in the video coding area is the mean squared error
between the registered image and the reference image. As mentioned in chapter 7, this
criterion may be disturbed with low SNRs since the motion estimation and the assessment
of the registration quality rely on the same magnitude information. Unfortunately, as
described in chapter 2 (see section 2.1.1.2) and chapter 5, real-time MRI of mobile organs
is frequently hampered by low SNR values, generated by fast MR-acquisition schemes
employed to minimize intra-scan motion. Therefore, motion estimation assessment could
be improved if the criterion could be based on additional information which is independent
of the information used for motion estimation.

9.2.2 Proposed quality criterion on image registration

9.2.2.1 Physical background

A promising way to provide this information is to exploit the phase information of the MR-
image (here it is proposed to exploit the phase component of the complex magnetization
vector associated with each voxel in the image domain, not the phase associated with the
Fourier representation of the anatomical image (see section 2.1.3.1). While the magnitude
of an MR-image reflects the underlaying anatomy, the MR-phase ϕ in gradient recalled
echo images is mainly determined by the local susceptibility distribution χ and the local
magnetic field strength H:

ϕ (~r) ∝ γµ0 (1− σ (T (~r))) (1 + χ (~r))H (~r) (9.1)
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whereby the gyromagnetic ratio γ and the magnetic constant µ0 represent material
constants, ~r the spatial position and σ the temperature (T ) dependent screening constant
of the water protons. Since the susceptibility of biological tissue varies little, it is mainly
the magnetic field strength H which determines the spatial variation of ϕ. Furthermore,
since modern MR-systems achieve a good homogeneity of the magnetic field strength H
across the field-of-view, ϕ is a spatially slowly varying function which is differentiable
within homogeneous tissue. These characteristics appear advantageous for a basis of tis-
sue displacement detection. Therefore, a new criterion to quantify the quality of the
registration of MR-images based on the MR-phase image similarity (PIS) is presented
[154, 155].

9.2.2.2 Principle of the proposed criteria

As shown in equation (9.1) the phase of the MR-signal represents the susceptibility dis-
tribution and the magnetic field variation in the magnet. Since both change due to organ
motion, we propose to use this physical information to assess the accuracy of an estimated
motion field. However, as presented in chapter 2, two main factors, related to organ
displacement, may disturb the similarity between two phase images [156]:

1. The spatial mismatch due to the displacement, which leads to a spatial mismatch of
the respective magnetic susceptibility distribution χ (~r).

2. Additional phase shifts generated by a modified local demagnetization field, which
is caused by a modified magnetic susceptibility distribution[156] [157] [158]. To
account for these phase shifts, a precise modeling of the inhomogeneous magnetic
field in-vivo is required. For that purpose, the recently suggested linear phase model
approach (see section 2.2.1.2), assuming a simple linear relation between magnetic
field variation (phase variations) and the target displacement, can be employed.

Each variation of the object position leads thus to a unique phase image. If phase vari-
ations with motion have been modeled, a synthetic phase map (ϕreco) can be constructed,
as presented in chapter 2 (see section 2.2). In this study, the linear model, described
in detail in figure 2.6, was employed. This model requires the estimation of its parame-
ters before hyperthermia. Then, the model is employed during hyperthermia to provide
synthetic phase maps (from a motion descriptors) which are subtracted to the current
phase images to get the temperature information. In this study, the model is employed
to generate synthetic phase maps before hyperthermia, which are then compared to the
corresponding registered MR-phase images to quantify registration errors.

The only required intervention of the user is to define before hyperthermia, on the
reference image, a region of interest encompassing the area where the registration must be
optimized (we note m the associated binary mask). A reference data set was created to
sample the susceptibility perturbations with motion. For most therapeutic applications,
motion is caused by the respiratory or the cardiac cycle and is thus periodic. Thus, a
set of K images (K = 50 was chosen in the scope of this study) covering several motion
cycles of the target with a sufficient sampling density to avoid discretization errors (5-10
images per second) was acquired. A collection of registered phase images, encoding local
magnetic susceptibility variations and noted ϕr, was built and used to assess the quality of
the registration. For that purpose, all phase images were registered to a common reference
position on a pixel by pixel basis using the implemented registration algorithm applied on
the anatomical (i.e. magnitude) image information. Registration errors were quantified
by evaluating the phase similarity between any new acquisition (ϕr) and a synthetic one
(ϕreco). This synthetic phase map was computed assuming a linear relation between phase

107



variation and motion. Since the 2π periodicity of the phase would lead to a severe bias of
the similarity measure, a temporal phase unwrapping on a pixel-by-pixel basis was applied
between ϕr and ϕreco. A temporal analysis was performed to reflect the accuracy of the
registration algorithm with various amplitudes and deformations likely to be encountered.
For that reason, the accuracy of each estimated motion was quantified for each image of
the reference dataset, and averaged to obtain the PIS criterion, defined as:

PIS =
1

K

K∑
k=1

 1

N

∑
(x,y)∈m

(ϕr(x, y, k)− ϕreco(x, y, k))2

 (9.2)

Where (x, y) denotes pixel coordinates, k the image index in the time series, and N the
number of pixels set to 1 in the binary mask m. ϕreco was evaluated for each individual
pixel assuming a linear phase variation along the target displacement D as follows:

ϕreco(x, y, k) = a(x, y).D(x, y, k) + b(x, y) (9.3)

where D(x, y, k) is a scalar relating the displacement amplitude and orientation along
the principal axis of the estimated target motion computed as follow:

D(x, y, k) = ∆X(x, y, k).V1 + ∆Y (x, y, k).V2 (9.4)

where ∆X and ∆Y denotes horizontal and vertical components of the estimated dis-
placement, and ~V = (V1, V2) is the eigen vector associated with the highest eigen value of
the matrix µ defined as follows:

µ =



. .

. .

. .

∆X(k − 1) ∆Y (k − 1)

∆X(k) ∆Y (k)
. .
. .
. .


(9.5)

where ∆X(k) and ∆Y (k) denote the displacement vector averaged over the mask m.
a and b are the slope and the intercept of the simple linear regression between the

registered phase value ϕreg and the target displacement D computed as follow: a(x, y) =
D(x,y).ϕreg(x,y)−D(x,y).ϕreg(x,y)

D(x,y)2.D(x,y)
2

b(x, y) = ϕreg(x, y)− a(x, y).D(x, y)
(9.6)

9.3 Automatic calibration of the registration

The PIS criterion was used to autocalibrate the Horn & Schunck algorithm. This method
has a free parameter α2, a weighting factor designed to link the two individual metrics
(intensity variation and motion regularity): while low α2 values allow estimation of large
motion amplitude, high α2 values increase robustness against noise or possible local inten-
sity variations not attributed to motion. Therefore, α2 value optimization was performed
in a preparative calibration step. For that purpose, an exhaustive enumeration of α2 were
performed (30 α2 values were tested between 0 and 0.75) and the value minimizing the
PIS criterion was selected as the optimal parameter.
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9.3.1 Implemented image registration algorithm

The Horn and Schunck algorithm (presented in chapter 2) was thus applied to anatomical
(i.e. magnitude) images [70]. In order to stabilize the convergence of the algorithm, a
multi-resolution scheme was used [59] which iterates the registration algorithm from a 4-
fold downsampled image (where displacements are small and the SNR is increased by the
low-pass filtering inherent to the down-sampling process) step-by-step to the full image
resolution, as realized in chapter 5, 7 and 8.

The optical-flow algorithm, applied on magnitude images, provides a motion field with
a sub-pixel precision and an interpolation was required to obtain registered phase images.
Due to the 2π periodicity of the phase, the spatial transformation could not be directly
applied on phase images. Although this problem could be circumvented by employing a
2D phase-unwrapping step to the phase images, this remains a computationally intensive
processing step which is often unstable in areas with signal discontinuities and strong
susceptibility changes frequently encountered in abdominal imaging. Therefore, we applied
the estimated motion to the complex MR images, to obtain registered phase images,
avoiding spatial phase wraps problems.

As previously mentioned (see chapter 5), it is difficult to acquire on-line 3D isotropic
images because of the technical limitations, spatial and temporal resolution trade-offs, and
low SNR associated with fast 3D acquisition sequences. Therefore, the method was thus
evaluated in 2D.

All computationally intensive calculations were offloaded to a dedicated graphics pro-
cessing unit.

9.3.2 Experimental setup

The potential of the method to calibrate optical flow based image registration algorithms
was first evaluated on a phantom experiment. Subsequently, the improved performance
for the on-line estimation of organ displacements is demonstrated in-vivo on abdominal
imaging of twelve volunteers. Dynamic MR imaging was performed on a clinical Philips
Achieva 1.5 T MR-system (Philips Healthcare, Best, The Netherlands). All calculations
were performed on a dual processor (3.1 GHz Penryn; four cores, INTEL Santa Clara,
CA, USA) workstation with 8 GB of RAM. The GPU was a NVIDIA GTX280 card with
1 GB of DRAM. The GPU implementation was realized using CUDA.

9.3.2.1 Criterion comparison

The PIS criterion was compared with the following criteria:

Magnitude image similarity (MIS) The temporal average of the mean square error
between each registered magnitude image (Mr) acquired during the second step and the
reference one (Mref ) was computed as follows:

MIS =
1

K

K∑
k=1

 1

N

∑
(x,y)∈m

(Mr(x, y, k)−Mref (x, y, k))2

 (9.7)

Gold standard error (GSE) The spatio-temporal average of the Euclidean distance
between the estimated motion field and a gold standard motion information was evaluated.
Since in the phantom experiment, the target undergoes a translational motion, the motion
was fully characterized using a navigator echo [44]. For the in-vivo study, validation of the
alignment was based on 10 landmark points, which were manually positioned and tracked
over the K images in the targeted region by a staff scientist with the precision of a pixel.
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9.3.2.2 Phantom study

A physiological sample with relaxation times matched to the human kidney was mounted
on a motorized platform to simulate an abdominal organ moving due to respiration. The
applied motion pattern consisted of a periodic sinusoidal translational displacement of 20
mm of amplitude with a period of 2 s. The object displacement was monitored by an
independent measure obtained by a navigator echo (0.5 mm precision), positioned parallel
to the displacement, in order to get the reference displacement for the evaluation of the
GSE criterion. Dynamic MR imaging was performed with a dual shot gradient recalled
echo-planar sequence, which employed the following parameters (TR=30 ms, TE=15 ms,
voxel size= 2×2×5 mm3, FOV=256×104×5 mm3, echo train length=25, echo spacing=1.1
ms, flip angle=20◦, bandwidth in readout direction per pixel=1777 Hz). The study was
investigated for different noise levels by adding an additional Gaussian noise to the initial
complex data in a separate post processing step, in order to achieve series of images with
an SNR of 5 to 15.

9.3.2.3 In-vivo study

Dynamic MRI was performed under free breathing conditions on the abdomen of 12
healthy volunteers under real-time conditions. The single shot gradient recalled echo-
planar (EPI) sequence employed the following parameters: 3000 dynamic sagittal images
acquired with an imaging frame-rate of 10 images/s, single slice, TR=100 ms, TE=26
ms, voxel size 2.3×3.1×6 mm3, FOV=300×197×6 mm3, echo train length=63, echo spac-
ing=0.8 ms, flip angle=35◦, bandwidth in readout direction per pixel=2085 Hz, using a
four element phased array body coil. The proposed calibration method was evaluated
both in the kidney and the liver individually.

9.3.2.4 Statistical Analysis

The significance between the optimal α2 values obtained with the MIS, the PIS and the
GSE for a variety of noise input has been evaluated for the ex-vivo experiment using an
ANOVA (Analysis of Variances) in form of a F-test with significance threshold p=0.05. If
the test was found significant, additional paired t-tests were applied to the data of all pairs
of criteria. A significance of p=0.05 was used and corrected with the Bonferroni method.

The same statistical study was performed to assess the significance between GSE
obtained with the MIS and the PIS criteria for both phantom and in-vivo experiments.

9.4 Experimental validation

9.4.1 Phantom study

Magnitude and phase images obtained for two different phantom positions are displayed
in Fig. 9.1. It can be observed in 9.1c and 9.1d that, contrary to magnitude images, phase
images are not only shifted with the target displacement (shown by the red dashed lines),
but also prone to an additional perturbation generated by a modified local susceptibility
distribution (see red arrows in Fig 9.1c and 9.1d).

Figure 9.2 depicts the quality of the registration evaluated for each α2 value with the
MIS (Fig. 9.2a) and the PIS (Fig. 9.2b) criteria. TheGSE criterion is reported in dashed
lines for comparison. Although the units are not the same, curve shapes can be compared.
With both criteria it can be observed that the quality of the registration turned to be very
poor for extreme α2 values (close to 0 or to 1 in this example). An optimal configuration
of the implemented registration algorithm was found with both criteria: the minimum of
the MIS criterion was obtained for α2=0.175, and the minimum of the PIS criterion was
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(a) (b)

(c) (d)

Figure 9.1: Magnitude (a,b) and phase (c,d) images obtained for two different positions
of the phantom with a SNR of 10. Note that the phase is a smooth function in space and
the visible phase wraps are due to the 2π periodicity of the arctan function.

obtained for α2=0.475. However, while the error of the estimated displacement was 1.16
millimeters for α2=0.175, this value was 0.65 millimeters for α2=0.475.

Motion fields estimated with α2=0.175 and α2=0.475 are reported in Fig. 9.3b and
9.3c, respectively. Only the motion field estimated with an optimal α2 value evaluated
using our PIS criterion matched visually the real target motion measured with the trans-
mission line (see Fig. 9.3a).

Results observed in Fig. 9.2 were confirmed for all tested SNR levels. Optimal α2

values obtained using each tested criteria are displayed in Fig. 9.4a. Those results were
confirmed for all tested SNR levels. α2 values optimizing each criteria, are displayed
for all tested SNR in Fig. 9.4a. A statistically significant difference of the optimal α2

values obtained with the MIS, the PIS and the GSE for a variety of noise input could
be observed (p<0.05). However, only the α2 optimized with the PIS did not show a
significant difference with the GSE optimization (p>0.05). As observed in Fig. 9.2, the
MIS criterion provided lower α2 values compared to the PIS criterion for each tested
SNR. α2 values optimizing our criterion and the GSE were similar and was found to
increase from 0.4 to 0.6 with the SNR.

The error of the estimated displacement obtained with an α2 value optimized using
the PIS, the MIS and the GSE criteria for several values of SNR, are reported in Fig.
9.4b. While the criteria based on anatomical image similarity led to a maximal error
on the estimated displacement higher than one millimeter, the proposed PIS criterion
reduced this value in the range of half a millimeter. The proposed PIS criterion provides
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(a)

(b)

Figure 9.2: Automatic determination of the α2 value for the phantom experiment (SNR
was set to 10). The registration quality was assessed with the GSE (dashed line) and
compared to the MIS (a) and the PIS criteria (b).

(a) (b) (c)

Figure 9.3: (a): Gold standard motion obtained from the transmission line, (b): motion
field obtained with an α2 value optimized by the MIS criterion (α2 = 0.175), (c): motion
field obtained with an α2 value optimized by the PIS criterion (α2 = 0.475).
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(a)

(b)

Figure 9.4: (a): α2 values optimizing each criteria, for all tested SNR, (b): Gold standard
errors obtained with optimal α2 values obtained with each criteria.

an accurate motion field for all tested SNR levels. It can be observed that the motion
field accuracy was identical when the α2 value was optimized using the PIS or the GSE
criterion.

9.4.2 In-vivo study

Over the 12 human volunteers, the motion amplitude peak-to-peak obtained from the
landmark points was 10 mm ± 4.5 (min=4, max=18) in the kidney and 11 mm ± 4.5
(min=6, max=18) in the liver. The SNR was evaluated to 10 ± 2.5 (min=7, max=14) in
the kidney and 7 ± 3 (min=4, max=14) in the liver.

Fig. 9.5 shows a subset of the results obtained from the in-vivo experiments. Figure
9.5a and 9.5b show the magnitude and the phase image of the liver and kidney in their
reference position. The two manually chosen masks m on the kidney and the liver (in-
dicated in Fig. 9.5a by the red and blue dashed lines, respectively) were used to restrict
the calibration procedure to both organs. A second set of images show magnitude and
phase at a different point of the respiratory cycle (9.5c and 9.5d), with the contours of
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 9.5: Typical findings of the in-vivo study: The magnitude (a) and phase (b) image
acquired at the reference position are displayed with the associated processing masks
m (red and blue overlays for the kidney and the liver, respectively). The corresponding
shifted/deformed magnitude and phase images taken at a different point of the respiratory
cycle are shown in (c) and (d). Masks m at the reference position are added as dashed
line to illustrate the displacement. The spatial distribution of the estimated displacement
amplitude obtained with the MIS and the PIS are displayed in (e) and (f), respectively.
Registration results for both calibration approaches are shown as registered masks of the
shifted image overlayed to the reference image (solid lines in (g) and (h)).
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the reference position indicated by a dashed contour line. The maximum displacement
between both images sets is in this case 9 mm. This second set was registered to the
reference position with both the MIS and the PIS calibrated registration process. The
spatial distribution of the estimated displacement amplitude is reported for the MIS and
the PIS criteria in Fig. 9.5e and 9.5f, respectively. As expected, larger displacements
were observed in the upper part of the liver, close to the lung. A maximal error on the
estimated displacement of 8 millimeters was measured on the landmark points with the
MIS in the bottom and the center of the kidney and the upper part of the liver. This
maximal error decreased to 4 mm when the proposed PIS criterion was used. Another
convenient way to visualize the quality of the result is to subject the masks, manually set
on Fig. 9.5c, which depicts the anatomical contours, to the same transformation. This is
shown in figure 9.5e and 9.5f respectively, where the realigned masks are overlayed as a
contours over the original reference image of 9.5a. Note, in the two zoomed regions, the
registration errors arising from the low α values of the MIS-based calibration (≈ 8 mm
of mismatch were observed), which are absent when the PIS was used for the calibration.

(a) (b)

Figure 9.6: Box-and-whisker plot of α2 values optimizing the MIS and the PIS criteria
for each volunteer in the kidney (a) and the liver (b). Plotted values correspond to
the minimum (lowest point), the average (cross), the maximum (highest point), and the
standard deviation (box height) of the optimized α2 values across the volunteers.

The statistical analysis over the tested volunteers of α2 values optimizing each criteria
is reported for the kidney and the liver in Fig. 9.6.a and 9.6.b, respectively. Similarly to
the ex-vivo experiment, the MIS criterion provided lower α2 values compared to the PIS.
The error of the estimated displacement obtained with an α2 value optimized using the
PIS, the MIS and the GSE criteria are reported in Fig. 9.7.a (kidney) and Fig. 9.7.b
(liver). For both kidney and liver, a statistically significant difference of the GSE could
be observed for the MIS and PIS criteria in comparison with the acquisition without
image registration (p<0.05). The PIS criterion performed significantly better than the
MIS (p<0.05), as confirmed in the Box-and-Whisker plots in Fig. 9.7, which represents
the GSE evaluation over all volunteers in both kidney (9.7.a) and liver (9.7.b).

While the criteria based on anatomical image similarity led in average to a maximal
error on the estimated displacement higher than 4-5 mm, the proposed PIS criterion
reduced this value below 2 mm. In both kidney and liver, the proposed criterion provided
motion field accuracy in the range of the best achievable provided by the GSE criterion
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(a)

(b)

Figure 9.7: Box-and-whisker plot of the gold standard errors (averaged over the K images)
obtained with α2 values optimizing each criteria over the 12 volunteers in the kidney (a)
and the liver (b). Plotted values correspond to the minimum (lowest point), the average
(cross), the maximum (highest point), and the standard deviation (box height) values
across the 12 volunteers.

(≈ 0.8 mm).

9.5 Discussion and conclusions

Using the implemented Horn and Schunck algorithm, a poor estimation of the displacement
is performed when α2 decreased toward 0, due to instabilities of the numerical scheme.
Identically, for α2 increasing toward infinity, tested criteria indicated a poor estimation of
the displacement, as the smoothness of motion constrains the velocity amplitude estima-
tion. The GSE criterion, as a function of α2, reflected these properties, as reported on
Fig. 9.2a and 9.2b. It depicted a global minima, corresponding to an optimal registration
calibration. Only the PIS matched properly this curve (see Fig. 9.2b).

The criterion based on anatomical image similarity was shown to be inefficient to
evaluate the quality of the non-rigid registration, since up to several millimeters of dis-
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placement error were found in both ex-vivo and in-vivo experiments. With the proposed
PIS criterion, the metric used for motion estimation (magnitude signal) and the metric
used to evaluate the registration accuracy (phase signal) are independent. In the ex-vivo
study, the optimal α2 value was systematically lower with the MIS criterion compared
to the PIS criterion (see Fig. 9.4a). This is explained by the fact that registration of
the noise on magnitude images improved the MIS criterion. Although this may not be a
limitation for video encoding in which SNR is generally very high, this can be problematic
in the case of fast MRI sequences which show generally a lower SNR, in particular for
high framerates. On the other hand, the proposed PIS criterion was demonstrated to
provide an optimal estimated motion similar to the best achievable one given by the GSE
for all tested SNR levels in the ex-vivo study (see Fig. 9.4) and in both kidney and liver
on the in-vivo study (see Fig. 9.7a and 9.7b).

Similarly, it can be observed for the in-vivo study that the optimal α2 value was as
well systematically lower with the MIS criterion compared to the PIS criterion (see
Fig. 9.6a and 9.6b). Several application dependent factors require an accurate calibration
of the registration. With the implemented registration model, high α2 values increased
robustness against noise or possible local intensity variations not attributed to motion, but
limited estimation of strong motion amplitude. In practice, the SNR was found to vary a
lot between volunteers due to different coil positioning. α2 value optimizing both the PIS
and the GSE criterion decreased for low SNR values (see Fig. 9.4a), since less importance
had to be given to grey level intensity variations in equation (D.1). Identically, in the in-
vivo study, more importance was given to the displacement field regularity constraint in
equation (D.1) for small target motion amplitudes: while α2 values higher than 0.7 were
systematically found for displacement amplitudes lower than 6 mm (2 kidneys and 1 liver
were concerned), α2 values lower than 0.25 were required for displacement amplitudes
higher than 15 mm (2 kidneys and 3 livers were concerned).

It is interesting to observe in Fig. 9.2 that both the PIS and the GSE, as a function
of α2, exhibits a flat zone. A range of values for α2 allowing an accurate registration could
thus be determined. This interval was similar for both the PIS and the GSE. This opens
great perspectives to adjust freely α2 in this interval, depending on the interventional
application: in the present study, we used the optimal configuration of the registration
algorithm for positions observed during the calibration step. Although this should be a
good solution for patient under artificial breathing or for a post-processing study, α2 may
be set to the lower bound of this range for patients under free breathing, in order to allow
the registration of possible larger motion amplitudes than observed during the calibration
step. However, in case of a huge decrease of the SNR or increase of the target displacement
amplitude, this lower bound may still be too high. In such a case, the therapeutic process
should be stopped and a recalibration is needed.

The implemented magnetic field perturbation model assumed a simple linear magnetic
field variation with organ displacement. However, although this assumption holds in gen-
eral for small displacements, the precision of this simple model showed several limitations
in regions displaying large susceptibility variations, such as in the vicinity of the digestive
tube or in the upper part of the liver. Those effects explains the small difference between
the PIS and GSE curves in Fig. 9.2b and 9.4a. In addition, the linear model could be
limited in the presence of through plane motion. In this case, the measured phase signal
over time will not be consistent with a given tissue, and the linear relation may become
inconsistent in such area. Therefore, the PIS computation may be biased in such area.
However, the spatial distribution of the linear model relevance can in practice be achieved
by simply mapping the fitting error ε(x, y) from equation (9.3). This also allows one to
remove from the mask m regions where low signal levels in conjunction with complex
susceptibility variations may prevent adjustment of the linear model to the phase data.
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The proposed calibration method reduced the user intervention to the determination
of the mask m encompassing the targeted region. The computation time required for
one image registration was 5 ms with the used material. The calibration process required
the observation of thirty α2 values, and, for each, the registration of K = 50 images and
the PIS computation with equation (9.2). As an indication, less than ten seconds were
required before the intervention for the whole calibration process. The proposed method
can thus be conveniently performed just before the hyperthermia procedure to optimize
an optical-flow based registration algorithm.

The proposed criterion based on phase MRI images is based on a physical parame-
ter (i.e. the magnetic field variation with displacement) and was demonstrated to allow
automatic calibration of an image registration algorithm for real-time MR-intervention.
Estimated displacement in the ex-vivo and in-vivo experiments was comparable to the real
target displacement. Although the proposed criterion was tested with a simple registration
algorithm derived from the Horn and Schunck approach, it should be possible to extend
to more complex image registration algorithms such as [73] or [71]. Results obtained also
open great perspectives for an evaluation of the method with different slice positioning
and orientations, and other targeted organs such as in the heart.
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Chapter 10

Correction of motion related
magnetic susceptibility variation
for spontaneous motion

The correction of motion related susceptibility variations are generally corrected by either
a multi-baseline approach or a referenceless approach (see section 2.2.1). However, each
of these methods shows substantial limits that are reported in section 5.5.3. For this
reason, an hybrid approach is presented in this chapter that aims to take advantages of
both methods [159, 160]. This hybrid correction is compared to existing methods and
show significant improvement in presence of spontaneous motion. This study was mainly
carried out by Baudouin Denis de Senneville and Mario Ries. My contribution was the
development of real time algorithms for motion estimation and compensation and for
multi-baseline based MR-thermometry.

10.1 An hybrid correction method

The hybrid approach employs initially the multi-baseline algorithm to continuously provide
temperature maps across the entire field of view. In addition, these temperature maps are
also used to dynamically update the preparation parameters of the referenceless algorithm:

1. The fitting ROI is continuously adjusted: For this, the multi-baseline temperature
map is thresholded (all values above 2.0 ◦C are discarded) and subsequently eroded
by one voxel.

2. This ROI is used to calculate a referenceless temperature estimate. The difference
between the temperature maps obtained with multi-baseline and with referenceless
is retained as an offset correction map.

Should a spontaneous movement occur during the intervention, for which no reference
phase is pre-recorded, the processing pipeline switches dynamically from multi-baseline
to referenceless MR-Thermometry using the most recent fitting ROI and offset correction
map. The criteria used to detect spontaneous motion is based on the observed two trans-
lations and the rotation of the PDC-estimation: Any currently detected translation or
rotation exceeding the value range observed during the preparation phase by more than
0.5 voxel (translation) or 0.5 ◦ (rotation) is considered as a spontaneous movement and
leads to the algorithm transition.
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10.2 Experimental validation

Experimental protocol

A calf liver was positioned on a motorized platform inside the MR-scanner to simulate
physiological motion. A periodic purely in-plane displacement in read-out (frequency
encoding) direction, of an amplitude of 22 mm and a period of 6 seconds, was simulated.
To evaluate the influence of spontaneous motions, the experiment was repeated under
periodical motion and a singular lateral displacement of 1 cm amplitude and 1 s duration
was introduced after 50 s of MR-thermometry, whereby the sample did not return to its
original position.

Dynamic MRI was performed with a gradient recalled EPI sequence using a 121-
binomial water-selective excitation pulse. The following acquisition parameters were used:
3000 dynamic coronal images, single slice, TR=18 ms, TE=8.8 ms, 14 images/s, FOV=256×88×6
mm3, matrix 128×44, multi-shot acquisition with 11 lines per excitation, Band-width per
pixel=1.7 kHz. Three hundred images were acquired prior to hyperthermia to allow pre-
cise sampling of the periodical displacement for the multi-baseline method. Subsequently,
the tissue was heated with 8 W of RF-power during 85 seconds using bipolar electrodes,
placed 1.2 cm apart.

The accuracy of the MR thermometry was evaluated using the readings of a fiber
optic probe as a gold standard. The fiber optic probe (Luxtron STB Medical, LumaSense,
France) was placed between both electrodes, and its position identified by additional high-
resolution spin-echo (SE) imaging. The precision of the MR thermometry was quantified
during the cool-down period (time interval 120-250 s) using the standard deviation between
MR measurements and a fitted exponential decay curve.

Experimental results

Contrary to both multi-baseline and referenceless corrections, the hybrid approach pro-
vided accurate temperature and thermal-dose estimates over the entire duration of the
experiment (see figure 10.1). The transition between “multi-baseline mode” and “refer-
enceless mode” was triggered by the automatic detection of the motion event and did not
introduce any apparent degradation of MR-thermometry except a change in measurement
precision, as shown in figure 10.1f.

10.3 Discussion and conclusion

Due to the fact that the main limitations of multi-baseline and referenceless MR-thermometry
are largely complementary, the presented hybrid approach represents an attempt to over-
come their limits by combining both approaches.

Although multi-baseline MR-thermometry is able to provide accurate temperature and
thermal dose measurements in the presence of periodical motion over the entire field of
view, its main limitation is its inability to cope with spontaneous motion. The hybrid
approach compensates for this inability by switching automatically to a polynomial fit
for background phase estimation when such an event is detected, which is similar to the
approach used for the referenceless method. However, the two main disadvantages of the
referenceless method, its dependence of the accuracy of the selection of the fitting ROI
location and, in particular when mini-invasive interventions are considered, its inability to
provide background phase estimates which include the effect of strong local susceptibility
variations, are thereby avoided: The initial observation of the temperature evolution using
multi-baseline MR-thermometry allows to continuously adapt the fitting ROI in order
to avoid the inclusion of heated or unstable areas and to provide an offset correction
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map which removes the effect of local susceptibility variations. Note that although the
polynomial fit for the background phase estimation is similar to the referenceless method,
the latter correction represents a phase reference (i.e. the hybrid approach is never truly
“referenceless”.

However, the proposed hybrid approach can not eliminate all the limitations of the
multi-baseline and the referenceless methods. The hybrid still requires a lengthy initial
acquisition of a phase correction dataset and inherits the accuracy limitations for long
experiments of both methods, either due to a possible contamination of the fitting ROI
due to heat diffusion, or due to an imperfect spatio-temporal B0 drift correction, depending
on the operation mode.

For the case of generic applications, where the presence of exclusion criteria of either
method are a priori not entirely known, a pragmatic way forward to guarantee accurate
and precise temperature and thermal dose estimates, is to tailor a suitable combination
of multi-baseline and referenceless MR-thermometry. The presented hybrid approach rep-
resents one of several possible solutions for such a combination and demonstrates that it
is possible to achieve accurate and precise PRF-thermometry during periodical displace-
ment even in the presence of spontaneous motion and strong susceptibility variations in
the target area.
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Figure 10.1: MR-Thermometry maps obtained 25 seconds after the occurrence of a spon-
taneous motion event (at t = 50s) of the referenceless (a), the multi-baseline (c) and the
hybrid (e) approaches and the corresponding temporal evolution at the position of the
Luxtron probe (b,d,f). The accuracy of the referenceless approach is limited by its ability
to cope with the local magnetic field variations in the vicinity of the RF-electrodes which
leads to an offset (b). Furthermore, the static ROI choice leads to a discontinuity at the
point of the motion event. As the multi-baseline approach can not cope with this type of
motion, it is not able to provide meaningful temperature readings after the event (artifact
>50◦C). Note that the hybrid approach follows closely the true temperature evolution.
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Chapter 11

Temporal temperature filtering

11.1 Introduction

The precision of real time MR-thermometry is generally limited by both the available
SNR [84] and the influence of physiological motion as described in the introduction of
this thesis (see section 2.4). Consequently, algorithms used for retroactive control are
liable to be biased or rendered unstable by the presence of noise in the temperature
maps. Furthermore, the accuracy of the calculation of the thermal dose used for necrosis
estimation deteriorates for low SNRs due to its exponential dependence on the temperature
(see equation (1.2)). To overcome these problems, as described in chapter 5 (section
5.2.5), temporal filtering has been proposed as a solution to improve the precision of the
temperature maps using an infinite impulse response (IIR) filter [122]. However, the use
of this type of low-pass filters, or alternative designs such as finite impulse response (FIR)
filters, introduces in general additional latency, leading to a reduced accuracy and limits
the achievable temporal resolution of the observation process.

This can be alleviated by using more complex filter designs, which include physical
knowledge of the observed system, such as Kalman filters [161]. Kalman filtering is based
on the combination of both measured data and data derived from a forecast based on a
physical model. Potocki & Tharp [162] proposed the bio heat transfer equation (BHTE)
model [163] for this purpose. In their experiment, temperature information was only
available at four different locations (obtained from optical fibers). The filter was essentially
not designed for noise removal (since only four measurement points were available) but
to estimate both blood perfusion and temperature information at unmeasured locations
(spatial extrapolation). More recently, Ye et al. [164] employed Kalman filtering for
improved model-based ultrasound temperature visualization. The predictor model was
based on the construction of isothermal ellipsoids around the heated area. Although the
precision of the resulting temperature maps was clearly improved (due to a high confidence
placed in the model), the accuracy of the method was not evaluated.

Here, we propose a novel spatio-temporal filter based on Kalman filtering theory that
aims to improve MR-thermometry precision while controlling its accuracy [165, 166]. For
this, an extended Kalman filter is employed with the BHTE as a predictive model. How-
ever, the combination of the predicted data and the measured data is not a simple problem.
A too large influence of the model would lead to a high noise reduction, but may introduce
severe bias on the output accuracy if the model is not properly configured. With increas-
ing emphasis on measured data, the noise removal will not be efficient, however the filter
will tolerate imprecise calibration without giving rise to systematic error. Therefore, the
filter has to be tuned as a function of the model accuracy which is a priori not known and
may vary in time. For this, a dynamic evaluation of the model accuracy was added to the
filtering process in order to adjust in real time the confidence in the model and thus the
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balance between measured and predicted data. Finally, an outlier rejection was added to
the filter to cope with strong temperature artifact. The proposed filter was evaluated on
simulated datasets and its feasibility is demonstrated on MR-guided HIFU experiments
on an agarose gel phantom and in-vivo on a porcine kidney. It showed significant improve-
ment compared to non-adaptive temporal filter designs without giving rise to additional
filtering latency.

11.2 An adaptive extended Kalman filtering for real time
MR-thermometry

11.2.1 Temperature modeling using the Bio Heat Transfer Equation
(BHTE) model

The BHTE model can be used to predict the temperature T from time t−1 to time t, based
on the applied acoustic power P and a priori knowledge of the absorption rate (α), the
heat diffusion coefficient (D) and the perfusion value (w) [163]. Note that this simplified
model assumes these coefficients as spatially and temporally invariant. The BHTE in the
voxel of coordinates −→r = (x, y, z) is defined as follows:

∂

∂t
T(−→r ,t) = α.P(−→r ,t) +D.∆T(−→r ,t) − w.T(−→r ,t) (11.1)

where ∆ denotes the Laplace operator. In the absence of large vessels, perfusion effects
are often neglected and thus w is set to 0. The BHTE can be solved in the Fourier domain
since the problem is turned into a linear differential equation as follows:

∂

∂t
T̃

(
−→
k ,t)

+ (D.k2 + w).T̃
(
−→
k ,t)

= α.P̃
(
−→
k ,t)

(11.2)

where T̃ , P̃ denotes the Fourier transform of T and P respectively,
−→
k = (kx, ky, kz) denotes

the frequency coordinates in the Fourier domain and k2 = k2
x + k2

y + k2
z . The solution is

computed based on the variation of constants as follows:

T̃
(
−→
k ,t)

= T̃
(
−→
k ,t−1)

.e−(D.k2+w)t + α.P̃
(
−→
k ,t)

1− e−(D.k2+w)t

D.k2 + w
(11.3)

Since the BHTE models the physical processes of heat diffusion and absorption, it
should be applied in 3D space in order to obtain unbiased results. Unfortunately, the
available acquisition time is typically too limited in interventional imaging to obtain full
3D temperature imaging, especially if physiological motion has to be resolved. As a
consequence, in practice the BHTE has often to be applied to 2D or severely undersampled
3D datasets. This leads to a systematic underestimation of heat evacuation and neglects
potential heat inflow from adjacent slices, in particular for large prediction period. In
order to evaluate the resulting bias on the filtered temperature data, the BHTE was
implemented for both 2D and 3D temperature prediction and the results subsequently
compared on simulated heating experiments.

Furthermore, although MR-thermometry provides coherent temperature information
in areas of high signal (generally with a precision of few degrees), areas with very low signal
level generally display temperature values with variations in the range of several tens of
degrees. Since the BHTE model prediction is based on preceding filtered temperature
maps represented in Fourier space, such areas have to be excluded by manual ROI-based
masking to prevent a bias due to undesired high frequency noise.
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11.2.2 BHTE based extended Kalman filtering

Since the discrete solution of the BHTE represents a non-linear model for data prediction,
the original Kalman filtering theory, which requires a linear predictor, is not directly
applicable. Non-linear predictors are addressed by the extended Kalman filtering (EKF)
formalism. An EKF can be seen as a two step process. In a first pass, the filter computes
a data prediction (at time t) based on the last filtered data point (obtained at time t− 1).
In a second pass, the algorithm optimally combines both predicted data and measured
data to obtain the final filtered data corresponding to time t.

11.2.2.1 First pass: time update equations

The first pass of the filter is often referred to as time update equations. The temperature
prediction T−t at time t and the a priori estimate error covariance P−t are computed as
follows:

T−t = f(Tt−1, ut−1)
P−t = AtPt−1A

T
t +Q

(11.4)

where Tt−1 denotes the filtered temperature at time t− 1, f represents the BHTE model
and ut−1 is the control input parameter (the HIFU delivered power at time t − 1 in our
case). At is the Jacobian matrix of partial derivatives of f with respect to the tempera-
ture T at (Tt−1, ut−1), ATt denotes the transpose of At, Pt−1 is the a posteriori estimate
error covariance at time t− 1 and Q is the process noise covariance related to the model
inaccuracy.

11.2.2.2 Second pass: measurement update equations

In a second pass, the Kalman filter combines both predicted T−t and measured Tmt data to
obtain the final filtered data Tt. The combination is weighted with a parameter Kt, often
referred to as the Kalman gain, while the difference Tmt −HT−t is generally referred to as
the innovation St. H relates the model state to the measurement (here H is the identity
since the measurements are directly obtained in state space). During the second pass, Kt

is first updated based on the new a priori estimate error covariance. Subsequently, the
filtered temperature Tt can be computed from the weighted innovation St. The final step
updates the a posteriori estimate error covariance Pt. The measurement update equations
are summarized as follows:

Kt = P−t H
T (HP−t H

T +R)−1

Tt = T−t +Kt(T
m
t −HT−t )

Pt = (I −KtH)P−t

(11.5)

whereR is the measurement noise covariance that relates to the MR-thermometry precision
of the measure. Note that R can be obtained prior to hyperthermia by evaluating the
standard deviation of the measured temperature.

11.2.3 Autocalibrated extended Kalman filtering (AEKF)

The EKF combines measured and predicted data via the Kalman gain Kt, that allows
to optimally adjust the confidence between the employed model and the measured data.
The Kalman gain is updated dynamically and predominantly influenced by two input
parameters of the filter: The measurement noise covariance (R) and the process noise
covariance (Q). While the measurement noise covariance can be determined from baseline
data in absence of heating, the determination of Q is not straightforward. Q corresponds to
the model accuracy and thus depends on the accurate knowledge of the physical parameters
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of the tissue (absorption coefficient and heat diffusion), which are a priory not exactly
known and thus in general only available as rough estimates.

In addition, heat absorption only occurs during the heating period when the HIFU
system delivers acoustic energy, while heat diffusion is present during both heating and
cooling. Therefore, the BHTE model may have a varying performance over time if not
properly configured (for example using an incorrect absorption coefficient with the true
diffusion coefficient). In such a case, Q would be better chosen as time variant.

This can be achieved using an adaptive EKF (AEKF), where Q is automatically ad-
justed over time based on a dynamic evaluation of the model accuracy for each new
measurement. In the proposed implementation this is based on the assumption that tem-
perature noise is white noise around the real value. The model is considered accurate at
time t if εt, the spatio-temporal sum of the difference between predicted and measured
data, is below a predefined error threshold εthreshold, with

εt =
1

N ∗ card(%)
‖

t∑
i=t−N+1

∑
(x,y)∈%

(T−i (x, y)− Tmi (x, y))‖. (11.6)

Here, the model is evaluated over the temporal window size N and over a voxel perimeter
% around the focal point, which is referred to as the spatial window size M in the scope of
this study. εthreshold is chosen as the maximum acceptable penalty of the filtering process
on the measurement accuracy. Therefore, the autocalibration process selects the smaller
Q value, providing an accuracy εt inferior to εthreshold, using an optimization approach
inspired by the gradient descent approach. Note that the research window for the optimal
value of Q was empirically bounded to the interval [0.0001, 1000] which is sufficient to
represent the process noise covariance Q in our case.

11.2.4 Robust approach of AEKF

The computation of temperature maps requires an image processing pipeline, that can
be rather complex especially in the case of MR-thermometry applied to mobile organs.
Therefore, severe artifacts on temperature maps can be observed for a variety of reasons
such as incorrect phase unwrapping or imperfect motion compensation. This type of error
can have amplitudes much larger than the imprecision caused by low SNRs. Since the de-
termination of the thermal dose corresponds to the integral over time of the temperature
(see equation (1.2)), temperature artifacts introduce a non reversible error bias on the
thermal dose calculation. In addition, due to the exponential dependence on the tempera-
ture, even temporally sparse occurrences of severe temperature artifacts lead frequently to
an apparent thermal dose which is magnitudes off the true value. For HIFU interventions
which use the thermal dose as a criterion for the determination of the therapy endpoint,
this may affect the success of the intervention (overestimation) or patient safety (underes-
timation) and is thus highly undesirable. To detect such occurrences, an outlier rejection
based on the Chauvenet’s criterion [167] was applied to the difference between measured
and predicted temperature, i.e. the innovation St. The outlier rejection considers an in-
novation St for rejection if the probability to obtain its deviation from the mean S̄t is less
than 1/(2 ·NS), NS being the number of measurement samples. Substituting S̄t by εt−1

as defined in equation (11.6), leads to the following robust formulation of the AEKF based
on the Chauvenet’s criterion:

Tt =

{
T−t , if |St − εt−1| > σ(St−1) ∗ emax

T−t +KtSt , if |St − εt−1| ≤ σ(St−1) ∗ emax
(11.7)

where emax is the ratio of the maximum acceptable deviation to precision [167] and
σ(St−1) is the standard deviation of the innovation over theN×M sample points, excluding
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the last innovation St. Note that a rejection of a measured temperature value Tmt leads the
filtered value Tt to depend only on the prediction T−t , which is equivalent to temporarily
setting R=∞ in equation (11.5).

11.3 Experimental validation

11.3.1 Simulations

A 3D reference temperature dataset was simulated using the BHTE model (absorp-
tion=0.02 KJ−1, diffusion=0.1 mm2.s−1, delivered power=100W (between the 20th and
the 70th dynamic images), matrix=32 × 32 × 16, voxel size=1 × 1 × 2 mm3, focal point
size=1.23 × 1.23 × 7.88 mm3, dynamic scan time=1 s). 100 datasets were derived with
added Gaussian noise (σ=5◦C). The proposed AEKF was evaluated using a 3D implemen-
tation of the filter. Since in practical cases, MR-temperature information is often available
in 2D, the impact of a 2D implementation of the filter was also analyzed.

A matched Kaiser Bessel FIR filter was used for comparison and configured to retain
90% of the integrated power spectrum of the original noise free temperature simulation
(pass band cutoff frequency=0.022 Hz, stop-band attenuation>21 Db, window size=15).

To quantify the performance of each filter, the mean square error (MSE) between filter
output and reference data was used as quality criterion of the filter output accuracy.

11.3.1.1 Performance of EKF filtering

Figure 11.1 shows the filter performance on a simulated dataset. The FIR filter (figure
11.1a) introduces a latency inherent to its design, while the EKF (with a 3D implemen-
tation) avoids this effect (figure 11.1b,c,d). When configured with the exact physical
parameters (figure 11.1b) the filter does not introduce any bias on accuracy and improves
the output precision. An emphasis on the measured data (Q=10) leads to some smoothing
of the temperature. On the contrary, a high confidence in the model (Q=0.1) provides an
efficient noise removal in this case. Figure 11.1c shows the influence of an imperfect con-
figuration of the model (in this case with an 50% underestimated absorption coefficient).
Here, a bias on accuracy is observed, especially for Q values giving a large influence to the
model. On the other hand, using small values of Q reduces the penalty on the accuracy
but limits the filter ability to reduce measurement noise. Identically, a 2D implementation
of the BHTE model introduces a bias that can be observed when a high confidence in
the model is employed (Q=10). A lower Q value allows to improve the accuracy while
decrease the precision of the resulting filtered temperature (see figure 11.1d).

These results confirms the necessity to adapt the value of Q in function of the bias of
the input parameters (the absorption and diffusion coefficients) and the dimension of the
employed implementation (2D or 3D). A quantification of EKF accuracy is now given for
a mis-configured BHTE model using a 3D and 2D implementation of the BHTE model.
The resulting improvements provided by the AEKF is showed for each case.

11.3.1.2 AEKF Filtering performance using the 3D implemented BHTE model
with an approximative configuration

The error bias introduced by an approximative configuration of the BHTE based model
was then investigated. With the employed absorption and diffusion coefficients and the
chosen spatial resolution of the simulation, the choice of the absorption coefficient has
a larger impact than the choice of the diffusion coefficient. An illustration of the bias
introduced by an approximative configuration of the BHTE based model, obtained with
several incorrect absorption values, is reported in figure 11.2. For this, the filter was
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(a) (b)

(c) (d)

Figure 11.1: Examples of temporal filtering obtained in the focal point of the simulated
dataset: results obtained using (a) a FIR filter (b) an EKF filter configured with the true
absorption and diffusion values (α = 0.02 KJ−1 and D =0.1 mm2.s−1), (c) an EKF filter
badly configured (wrong absorption (α =0.01 KJ−1) with true diffusion D =0.1 mm2.s−1),
(d) an EKF filtering based on a 2D implementation of the filter. The measurement noise
is significantly reduced with the FIR but leads to undesired latency of the temperature
curve. While this effect is reduced with the EKF, note the strong influence of the process
noise covariance Q on the EKF filtering performance.

tested using different Q values over all 100 datasets with an absorption coefficient varying
over -50% to +50% of its true value. The evaluation of the error bias introduced by
a mis-configuration of the absorption coefficient and the diffusion are plotted in figure
11.2a,b and 11.2c,d respectively. It can be observed that optimal Q values are different
for the heating period (figure 11.2a,c) and for the cooling period (figure 11.2b,d) that
illustrates the time varying accuracy of the BHTE model. However, for all configurations,
even in the case of a mis-configuration of the BHTE model with a bias of ± 50 % of the
input absorption coefficient, a good choice of the Q value can guarantee a better filter
performance compared to the FIR filter. Therefore, an adaptive tuning of Q during the
intervention appears mandatory and is now investigated.

The potential of the proposed AEKF to automatically adapt and optimize the value of
Q was tested on the 100 datasets and the results are plotted in figure 11.3. The influence
of a mis-configuration of both absorption (11.3a,b) and diffusion (11.3c,d) coefficients was
evaluated during the heat-up (11.3a,c) and cool-down (11.3b,d) periods. The resulting
accuracy obtained with the FIR filter was comparable to the accuracy without filtering,
which is mainly due to the latency introduced by the filter and its inability to follow rapid
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(a) (b)

(c) (d)

Figure 11.2: Mean squared error of the filtered signal obtained with a 3D implementation
of the EKF filter in the focal point of the simulated dataset. Influence of absorption (a,b)
and diffusion (c,d) on the mean square error (MSE) of the filtered temperature curve
during heat-up (a,c) and cool-down (b,d) periods.

temperature variation. However, during the cool-down period, the FIR allows to improve
the resulting accuracy by a factor of 3, due to the reduced temperature variation between
two successive temperature points (compared to the heat-up period). Using the AEKF,
the resulting accuracy was reduced in the worst tested case by factors 3 and 15 for the
heat-up and cool-down periods respectively. Therefore, the AEKF outperforms the FIR
even in the case of a mis-configuration of the BHTE model with a bias of ± 50 % of the
input parameters.

11.3.1.3 Performance of the AEKF filtering using a 2D implementation of
the BHTE model

Figure 11.4 investigates the error bias introduced by an approximative configuration of
both absorption and diffusion coefficients in the BHTE model using a 2D implementation
of the EKF. Identically to the 3D evaluation, the filter was tested using different Q values
over all 100 datasets with each parameters varying for -50% to +50% of its true value.
Evaluation of the error bias introduced by a mis-configuration of absorption (11.4a,b) and
diffusion (11.4c,d) on the mean square error (MSE) of the filtered temperature curve during
heat-up (11.4a,c) and cool-down (11.4b,d) is plotted. It can be observed that optimal Q
values are different for the heating period and the cooling period and guarantee a better
performance compared to the FIR filter even in the case of a mis-configuration of the
BHTE model with a bias of ± 50 % of the input parameters.
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Figure 11.3: Temporal filtering performance obtained using several configurations of the
model and a 3D implementation of the filter. Influence of absorption (a,b) and diffusion
(c,d) on the mean square error (MSE) of the filtered temperature curve during heat-up
(a,c) and cool-down (b,d) periods. The AEKF achieves a better filter performance than
the FIR even if the tissue absorption α or the thermal diffusion are deliberately mis-
configured by ±50%. For each method, the MSE average and standard deviation over the
100 datasets are plotted in the empty box and the dashed box respectively.

The influence of a 2D implementation of the filter was then evaluated on the same
simulated datasets. Figure 11.5 shows the impact of a mis-configuration of both absorption
(11.5a,b) and diffusion (11.5c,d) coefficients during the heat-up (11.5a,c) and cool-down
(11.5b,d) periods. The best performance of the AEKF is not achieved with the true
configuration of the absorption and diffusion coefficients. Indeed, in this case, the focal
point size in the third dimension is 7.88mm which is three times larger than the spatial
resolution of the simulation in the third dimension. Under these conditions, all energy
supposed to be delivered above and below the 2D single slice is not considered with this 2D
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Figure 11.4: Mean squared error of the filtered signal obtained with a 2D implementation
of the EKF filter in the focal point of the simulated dataset. Influence of absorption (a,b)
and diffusion (c,d) on the mean square error (MSE) of the filtered temperature curve
during heat-up (a,c) and cool-down (b,d).

implementation. Therefore, an AEKF with either an absorption coefficient overestimated
by +25% of the true value or a diffusion coefficient underestimated by -25% of its true value
allows to compensate for the lack of received energy and in this case outperform an AEKF
with a true configuration. Similarly to the 3D AEKF evaluation, the resulting accuracy
was reduced in the worst tested case by factors 3 and 15 for the heat-up and cool-down
periods respectively. Therefore, with the employed conditions, the AEKF outperforms the
FIR even with a 2D implementation and a mis-configuration of the BHTE model with a
bias of ± 50 % of the input parameters.

11.3.1.4 Convergence of the optimized Q value

The performance of the presented adaptive EKF was then investigated and the obtained
filtered temperature with the time optimized Q values are plotted in figure 11.6. Results
obtained with a 3D implementation of the filter using an incorrect absorption coefficient of
-50% of its true value and with the true diffusion coefficient are reported in figure 11.6a,b.
This configuration is thus similar to the one employed in figure 11.1c and the results are
thus directly comparable. The initial mean square errors of 22.7◦C and 21.9◦C during the
heat-up and cool-down periods were reduced to 8.1◦C and 0.5◦C using the mis-configured
AEKF (see figure 11.6a). The same configuration of the EKF led to a MSE of 26.9◦C
and 1.2◦C with Q = 0.1 and 8.4◦C and 8.5◦C with Q = 10 (see figure 11.1c) for heating
and cooling periods respectively. Therefore, AEKF performance is similar to EKF with
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Figure 11.5: Influence of a 2D implementation of the filter: Similarly to figure 11.3 the
impact of an incorrect choice of the absorption (a,b) or diffusion (c,d) coefficients was
evaluated during both heat-up (a,c) and cool-down (b,d) periods. Again, the AEKF
achieves a better performance than the FIR even using a 2D implementation of the filter
with absorption or diffusion coefficients deliberately miss-configured by ±50%.

Q = 10 during heating and similar to EKF with Q = 0.1 during cooling confirming the
benefit of an adaptation of the Q value. Finally, the AEKF clearly outperforms the FIR
that provides a MSE of 18.3◦C and 11.8◦C for each of the two periods (see figure 11.1a).
The BHTE based model was only incorrect during the heat-up period (since absorption
is only relevant during power delivery). The time optimized Q values increased during
this period in order to give more confidence in the measurements and converged into an
interval of [log(0), log(2)] (figure 11.6b). This corresponds well to the optimum Q values
(global minimum) obtained in figure 11.2a with the blue curve (-50%). Then, the model
being true during the cooling down period, the optimized Q values decreased to improve
the confidence in the model.
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Figure 11.6: Effects of adaptive EKF using a 3D implementation of the BHTE model with
a mis-configured absorption coefficient (of -50% of its true value) and the true diffusion
coefficient (a,b) and a 2D implementation of the BHTE model with the true absorption
and diffusion values (c,d). Filtered temperature curves are shown in (a,c) and the time
optimized Q values are reported in b and d.

The influence of a 2D implementation of the AEKF was then evaluated with the true
absorption and diffusion coefficients. The filtered temperature curve and optimized Q
value are plotted 11.6c,d. This configuration is thus identical to the experiment shown in
figure 11.1c. Similar tendencies, as observed with the 3D implementation, were observed
with the 2D implementation. However, the time optimized Q values show strong fluctu-
ations of the optimal Q value. In this case, the bias introduced by a 2D implementation
(with the true coefficients) is lower than the bias associated with a 3D implementation
(using a mis-configured absorption coefficient of -50% of its true value). Therefore, the
AEKF needs more times (more dynamic images) to accumulate an accuracy bias superior
to the imposed upper bound (εt). Once detected, the AEKF adapts the value of Q (with
a higher value) to improve the confidence in the measurements which in turn allows to
reset, after few images, the baseline bias of the model. Therefore, the AEKF starts again
to improve its confidence in the model. This effect can be observed several times which re-
sults in oscillations in the time optimized Q values. However, when needed, high Q values
correctly belong to the optimum interval [log(-2), log(1)] shown in 11.4a (red curve).

11.3.2 Heating experiment on an agarose gel phantom

The method was evaluated on an agarose gel phantom during a HIFU heating experiment
(see figure 11.7). Dynamic MR-temperature imaging of an agarose gel phantom was
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obtained with a gradient recalled single-shot echo-planar sequence (300 images, single slice,
TR=106 ms, TE=36 ms, flip angle=40◦, voxel size=1.7×1.7×3 mm3, matrix=64×64).
The HIFU heating protocol employed 50 W of electrical power to the HIFU transducer
over a period of 40 s in a fixed point P .

A second HIFU heating was performed 20 mn later (once heat evacuation of the first
experiment was completed) using a modified heating protocol. Here, the focal point po-
sition was electronically updated each TR/4 ms in four different locations (± 0.5 mm on
each axis from the point P ). The AEKF was then applied, using the BHTE configuration
obtained from the first fixed point experiment (which is thus not adapted to the present
case), in order to observe its performance with a deliberately mis-configured BHTE model.

Physical filter parameters (absorption and diffusion) were estimated using [168]. Since
only 2D temperature maps were available, a 2D implementation of the AEKF was em-
ployed and compared with a matched Kaiser Bessel FIR.

(a) (b)

Figure 11.7: Filtering performance of a FIR and the AEKF obtained on an agarose gel
during heating experiments. (a) Temperature evolution obtained during the first heating
experiment in the focal point using a properly configured BHTE based model. (b) Tem-
perature evolution in the same point during the second heating experiment where four
different locations where iteratively heated. The AEKF follows the measurements during
the heat-up period since the model is incorrect but gains confidence during the cool-down
period where the BHTE based model is correct.

The AEKF provided a better reduction of the temperature noise and did not introduce
large latency as obtained with the FIR (see figure 11.7a). A second heating experiment
was then realized with a different heating protocol where the focal point position was
electronically updated on four different locations. The AEKF was run using the same
configuration as in the fixed point experiment, which is thus expected to be incorrect
for this experiment. The results are reported in figure 11.7b and show that the AEKF
considers the model as incorrect during the heating period where the filter has a low
confidence in the model. During the cooling period, the model is correct since only the
heat diffusion is present (and is properly configured) and the filter strongly improves
its confidence in the BHTE based model which results in a substantial reduction of the
temperature noise. Again, the bias introduced by the latency of the FIR is avoided with
the AEKF.

11.3.2.1 Heating experiment on an in-vivo porcine kidney

An MRI guided HIFU heating experiment was finally performed in vivo in the kidney of a
pig under general anesthesia (see figure 11.8). MRI guided HIFU heating was performed
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in vivo in the kidney of a pig under general anesthesia. Since the kidney was static
during the experiment, no focal point position adjustment was required. Dynamic MR-
temperature imaging employed the following sequence: 1500 dynamic sagittal images, one
slice, TR=127 ms, TE=25 ms, flip angle=35◦, FOV=142.5×285 mm2, voxel size=3×3×6
mm3. Heating was performed using 250 W of electrical power during a period of 19 s.
After completion of the experiments the animal was euthanized by intravenous injection
of Pentobarbital. The animal experiment was conducted in agreement with the French
law on animal experimentation and in compliance with institution’s rules for animal care
and use.

(a) (b)

(c)

Figure 11.8: Temperature evolution of the HIFU experiment on an in-vivo porcine kidney
using a (a) FIR filter, (b) the AEKF, (c) the robust AEKF. The robust AEKF allows to
detect this strong temperature artifact as outlier and to replace it by the BHTE model
prediction value.

A temperature elevation of 18◦C was reached in the focal point. In order to evalu-
ate the impact of large temperature artifacts on the filters, a second temperature dataset
was derived from the initial temperature measurement including two large simulated tem-
perature artifacts of 45 ◦C in the focal point. These types of artifact induced a strong
perturbartion of both the FIR filter (figure 11.8a) and the AEKF (figure 11.8b). Note that
the AEKF was much more influenced by the first temperature artifact since the adaptation
of Q provided a higher value in the corresponding dynamic. The robust AEKF approach
allowed to detect these two artifacted measures and the resulting filtered temperature was
not affected (figure 11.8c). As a consequence, a variation of 75 % and 118 % of the mea-
sured thermal dose was observed between both experiments using the FIR and the AEKF
respectively. The robust AEKF provided identical thermal dose values in both cases.
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11.3.3 Real time benchmarking

The computation time of the EKF (using a dual processor, INTEL 3.1 GHz Penryn, two
cores, 8 GB of RAM) was 0.71 ms for a 2D image of resolution 32×32 and 11.4 ms for
a 3D image of resolution 32×32×16. In the AEKF, the additional time required for the
autocalibration of the Q value is defined by the number of steps towards the optimum Q
value. In our approach, an upper bound was imposed to the algorithm and was defined in
order to fulfill the real time constraint.

11.4 Discussion and conclusions

11.4.1 BHTE model based temperature prediction

The performance of the BHTE model relies primarily on the accurate representation of
the physical heating process. For this, it requires a priori knowledge of the exact form
of the focal point P(−→r ,t) and the local absorption and diffusion coefficients. In particular,
the choice of the later two coefficients requires empirical data or a suitable calibration
experiment. However, the spatial resolution of typical MR-sequences for interventional
imaging is of the same order as the observed diffusion phenomena and focal point sizes
leading to partial volume effects [169]. Therefore, a calibration results only in apparent
absorption and diffusion coefficients, which will vary with increasing voxel sizes. Further-
more, although both apparent coefficients can be expected to be sufficiently homogeneous
within large organs such as the liver, this assumption could break down in smaller hetero-
geneous tissues (e.g. tumors), or close to organ boundaries, where both become spatially
variant. Another limitation of the predictor model arises from the negligence of the heat
evacuation due to tissue perfusion. Although this is for the presented experiment on a
gel of no consequence, future work on in-vivo tissue requires a careful assessment of the
corresponding error bias and may have to take the perfusion term in equation (11.3) into
account.

In addition, since the achievable MR-acquisition time severely limits the available
volume coverage, the BHTE has to be in practice applied to 2D or severely undersampled
3D datasets. As shown in figure 11.5 the influence of a 2D implementation of the model
is of little consequence as long as the spatial resolution in slice direction remains much
larger than the characteristic diffusion length for the given temporal resolution of the
MR-sequence.

Finally, the temperature prediction model is also directly influenced by the choice of
the size (in mm) of the prediction area. A large area could prevent the real time use of the
method (especially for the autocalibration that requires several temperature predictions
to adjust the Q parameter). On the other hand, a small area may be insufficient to
encompass the whole heated area introducing undesirable high frequencies in the Fourier
domain that could be further reduced using apodization function. In the presented gel
and in-vivo experiments being typical for clinical ablation, an area of 32×32 pixels with a
pixel size in the range of a millimeter was found to be a good compromise.

11.4.2 Autocalibration performance of the EKF, dynamic evaluation of
the BHTE model accuracy

Although the BHTE model is an efficient way to predict the temperature, the uncertainty
of the model is a priori not known and was shown to vary over time (especially between
heating and cooling). The autocalibration of the parameter Q allows to correctly handle
the model accuracy of the proposed filter. Nevertheless, the autocalibration process is
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influenced by two parameters: the spatial window size (M) and the temporal window size
(N) employed to evaluate the filter accuracy (see equation (11.6)).

The spatial window size has to cover voxels contained in the ablation area and is thus
subject to the influence of heat absorption and heat diffusion. In our experiment, 9 voxels
around the focal point were selected for 2D experiments and 9 voxels of each of the two
adjacent slices were included for 3D experiments (leading to a total of 27 voxels). Although
the number of voxels prone to temperature increase can be limited in a fixed point heating
experiment, this issue is expected to be clearly reduced for volumetric ablation (leading
to a larger ablated area).

The temporal window size directly influences the frequency response of the proposed
adaptation of Q. A large temporal window leads to stable convergence of the Q value,
while introducing a latency on the Q adaptation. A small temporal window allows reactive
adaptation of Q at the price of a reduced statistical sample contributing to equation (11.6).
Consequently, this parameter has to be adjusted depending on the temporal dynamic of
the temperature between two successive acquisitions. The auto-adaptation of Q allows
to dynamically find the smallest Q value that maintains the introduced error bias of
temperature below a predefined threshold defined by the ε parameter. This allows maximal
measurement noise filtering under the condition of a guaranteed accuracy. For the case
of a severely mis-configured filter, the auto-adaptation will give a higher emphasis on
the measured data (high value of Q) in order to limit the introduced accuracy bias. In
practice this means the filter will be less efficient for noise removal, however, a severely
mis-configured filter will not introduce systematic errors in the filtered data.

11.4.3 Robust AEKF approach

In general, artifact detection is complicated by the requirement to find a robust criterion
allowing to differentiate between a measurement artifact and changes due to the dynamic
of the measured process. Since the proposed AEKF formalism employs the BHTE as a
physical model for data prediction of the heating process, it is straightforward to seamlessly
integrate a robust outlier detection without significant additional computational overhead.
This is achieved by examining the innovation St for unphysical changes and to replace
unphysical measurements by the predictor value T−t . Therefore, contrary to temporal
filtering, where the amplitude of the artifacted datapoint still influences the amplitude of
the filtered data (figure 11.8a,b), the proposed approach allows to replace the value entirely
with a prediction based on the physical heating model (figure 11.8c). Furthermore, the
proposed AEKF filter also accounts for the variations of the average model error during
the heating process and thus conveniently allows to adjust the outlier rejection criterion
by using the updated ε(t− 1) and σ(St−1) values.

11.4.4 Clinical aspects of temporal filtering of the temperature

The presented data have shown that due to the use of a physical model of the heating
process, the AEKF performance surpasses the results of more simple filter designs. How-
ever, in order to evaluate the usefulness of the proposed AEKF for clinical applications,
two other categories of requirements have to be considered: Patient safety aspects and
real-world practicability. Since the proposed filter is intended for real-time MR-guidance
of non-invasive HIFU ablations, additional latency and accuracy degradation can directly
affect the success of the intervention and ultimately patient safety. Therefore, despite the
fact that the BHTE model parameters are only available as coarse estimates prior to the
intervention, the AEKF must be able to cope with a severe mis-configuration without
impairing the accuracy of the filtered temperature values, as shown in figure 11.1c for the
EKF. The AEKF filtering process was designed so that even a worst case scenario merely
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results in an ineffective noise removal, without systematic errors introduced by the filter
as shown in figures 11.6a and 11.7b. Furthermore, reliable temperature measurements are
frequently hampered by the effects of occasional spontaneous motion events or instabili-
ties/errors of the employed real-time data processing. As observed in figure 11.8a, a FIR
filter can be severely disturbed by strong temperature artifact. This results in significant
variation of the measured thermal dose (more than 75 % in the presented experiment)
preventing its use as a reliable representation of the real delivered dose. On the contrary,
the robust AEKF reliably identifies and removes such temperature artifacts by a model
based estimate which avoid a systematic error bias of the final thermal dose value.

The proposed filter design is more complex than non-adaptive FIR or IIR filter designs,
as a consequence the second important aspect is the practicability of its use. The main
disadvantage of the proposed BHTE based AEKF is that the filter requires an approximate
estimate of the absorption and the diffusion coefficients prior to the intervention. Both
can be provided on an individual basis based on a low-power test shot as shown in [168].
Alternatively, since an adequate filter performance does not require the exact knowledge
of either parameter, for standardized clinical scenarios such as uterine fibroid ablations,
both values could be supplied based on averaged patient data. All other parameters of
the filter are autocalibrated during the intervention, which reduces the risk of an arbi-
trary/empirical calibration by the user. Finally, although the AEKF implementation has
a higher computational overhead than FIR or IIR designs, the benchmarking results show
that the design is entirely compatible with the requirement of interventional guidance of
high-framerate imaging associated with low processing latencies.

11.4.5 Conclusions

The proposed autocalibrated extended Kalman filter based on the bio-heat transfer equa-
tion was demonstrated to improve both precision and accuracy of MR-thermometry com-
pared to simpler filter designs such as FIR-filters, without introducing undesired latency.
Here, the maximal bias of accuracy introduced by the filter is defined by the choice of
εthreshold and ensured by adapting the parameter Q. Therefore, with a severely mis-
configured BHTE model, the AEKF will simply improve its confidence in the measure,
resulting in a very little smoothing of the temperature, without giving rise to systematic
errors.

In addition, the presence of large artifacts on temperature measurement is shown to
strongly disturbs a FIR filter or an AEKF (especially if the Q optimization led to a
non negligible confidence in the measurement). The resulting thermal dose is, in these
cases, severely affected by a large bias preventing its use as a reliable criterion for the
determination of tissue necrosis. Here, the robust AEKF allows the replacement of these
sparse temperature measurement artifacts with BHTE prediction based estimates. This
thus represents a promising approach to perform sustained MR-dosimetry over the whole
intervention while ensuring and controlling patient safety.
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Conclusion

Methodological developments have been proposed in this part to improve the performance
of the processing steps employed for MR-thermometry and dosimetry calculations. Novel
algorithms have been developed to address the problem of motion estimation with:

• The presence of structures appearing transient in the FOV, potentially occurring
with reduced FOV imaging or out-of-plane motion.

• The presence of high intensity variations, potentially occurring during hyperthermia.

A solution was proposed for the correction of magnetic susceptibility variation in presence
of spontaneous motion. Finally, the use of physical models (the linear model of phase
variations with motion and the BHTE model) as an additional source of information
allowed to propose:

• A novel criterion for motion estimation assessment.

• A novel temporal filter using the Kalman filtering formalism.

In this part, the limitations discussed in part II have been successfully addressed. However,
to improve the reliability of the therapeutic intervention, further methodological develop-
ments should be carried out. Therefore, the potential perspectives of these researches and
a summary of the contributions of this thesis are now discussed in the general conclusion
of this manuscript.
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Part IV

General conclusions and
perspectives
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11.5 Technical and methodological contributions

The objective of this thesis was to improve the existing methodology designed for MR-
guided thermal ablation of mobile organs and to ensure the feasibility in using the new
methods for real time applications. State-of-the-art motion compensated MR-thermometry
and dosimetry strategies were generally limited to a framerate of 1 Hz. However, this
framerate is insufficient to efficiently follow the displacement of an organ for a HIFU
beam steering application. Therefore, prediction algorithms had to be employed for antic-
ipation and interpolation, to increase the sampling of the displacement trajectory. Nev-
ertheless, these algorithms show generally a poor prediction performance when applied
over extended periods above a second. To overcome these limitations, a fast (subsecond)
MR-thermometry and dosimetry pipeline has been developed in this thesis and existing
methodology improvements have been proposed. A brief summary of the contributions of
this thesis together with perspectives are presented in the following.

Real time implementation of state-of-the-art methodology for fast MR-
thermometry and dosimetry

An efficient pipeline designed for very fast (10-15 Hz) motion compensated MR-thermometry
and dosimetry of mobile organs has been proposed. The combination of fast MR-acquisition
schemes to minimize intra-scan motion artifacts, together with an efficient processing
pipeline designed to compensate for inter-scan motion and motion related magnetic sus-
ceptibility variations has been implemented for abdominal organs and the heart. In addi-
tion, the potential of GPU programming has been demonstrated to be well suited for the
parallelization of image processing steps and represents a convenient way to ensure the
real time condition and short latency with affordable commodity hardware. Finally, the
potential of the proposed pipeline has been shown for several applications, such as target
tracking for HIFU beam steering.

Novel approaches for motion estimation and compensation

Two main improvements have been proposed for the motion estimation process.
First, the presence of structures appearing transient (a situation occasionally encoun-

tered using reduced field of view imaging, for example) has been demonstrated to disturb
optical flow algorithms. This problem has been addressed using a constrained motion esti-
mation method. This method has been shown to improve the accuracy of motion estimates
in both the kidney and the heart.

Second, the performance of the motion estimation process during hyperthermia was
found biased by intensity variations induced by the heating process, and more precisely by
the variation of the relaxation time T1 and T2 of the tissue. A solution has been proposed
integrating the temperature, which is the physical cause of the intensity variation, into
the formulation of the motion estimation problem. This method has been found to be well
suited for motion estimation during hyperthermia and showed better performances than
currently employed methods.

Novel hybrid approach for the correction of motion related magnetic
susceptibility variations

Two approaches emerged recently for the correction of motion related magnetic suscep-
tibility variations: the multi-baseline and the referenceless approaches. However, due to
the duration of a typical intervention, spontaneous motion of the patient is likely to occur.
This is problematic for the correction of motion related magnetic susceptibility variations
using a multi-baseline approach. Therefore, a hybrid method, which takes advantage of
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both multi-baseline and referenceless methods, was designed to handle such spontaneous
motion events.

Novel criterion for motion estimation assessment

Automatic assessment of the accuracy of the estimated motion is for in-vivo data a chal-
lenging task. Existing criteria for such an assessment are generally based on the analysis
of the magnitude images. These approaches exploit the similarity of both reference and
registered magnitude images. In this thesis, these approaches have been demonstrated to
be limited, especially for images suffering from low SNR. Therefore, a novel criterion has
been proposed, based on phase image analysis. It relies on a physical model relating organ
motion and magnetic susceptibility variations. Since in clinical practice, amplitude and
complexity of organ motion or the SNR may vary between patients, an auto-calibration
of the adjustable parameters of the motion estimation process has been presented using
the proposed criterion. The resulting motion estimation was significantly improved when
auto-calibrated with the proposed criterion compared to state-of-the-art criteria.

Temporal temperature filtering

With all temperature maps being registered in real time to a common reference position,
the integration of a temporal filter has been proposed to reduce the measurement noise.
However, non adaptive temporal filters such as IIR or FIR, generally introduce a latency
which can generate a (not controlled) penalty of accuracy when a fast varying system is
observed, and may, as a result, impair patient safety. Since this is not acceptable for clinical
applications, a novel temporal filter has been proposed, exploiting the Kalman filtering
theory. It combines temperature measurement and a prediction based on a physical model
of the heat transfer in biological tissues. This filter was designed to improve the precision
while controlling the potentially introduced accuracy penalty, using a dynamic adjustment
of the confidence in the model. Consequently, in the case of a severely mis-configuration
of the physical model, the filter simply follow the measurements without smoothing of the
noise, preventing the introduction of large systematic errors. In addition, sparse artifacts
on the temperature measurements of large amplitude are known to disturb typical FIR
filters. Therefore an outlier detection was added to the filter to identify these artifacts and
replace these values with model predictions. These artifacts were found to be correctly
removed using this robust approach. Therefore, this filter represents an efficient way to
improve the reliability of the thermal dose evaluation which is directly employed for the
prediction of tissue necrosis, and thus to maintain patient safety.

11.6 Perspectives

Methodological aspects

In this thesis, we showed that MR-thermometry on mobile organs can be achieved with
a precision of 1◦C in abdominal organs and 2-3◦C in the heart, which is well suited to
control thermal therapies in the area of interest. However, several methodological aspects
of the intervention may still be improved and are now presented.

Motion estimation improvement

Improvement of the spatial coverage in the third dimension may allow to perform real 3D
motion estimation and compensation. This would be promising to address the problem of
out of plane motion encountered when 2D imaging is used to observe complex 3D motions.
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In addition, the presence of large vessels may also disturb the motion estimation process
and especially local motion estimation algorithms. The proposed criterion designed to
assess the quality of the motion estimation represents a promising way to detect such
problematic areas. Then, the proposed optical flow formulation designed to discard pixels
affected by intensity variation (induced by temperature elevation) could be adapted to
reject such areas from the motion estimation process.

Moreover, in the presented works, the motion information is directly measured with
help of MR-images, which limits the frequency of the measurements. The use of auxiliary
information, that could be obtained for example using multi-modality imaging (such as
MRI combined with ultrasound imaging), may allow to desynchronize the motion esti-
mation process and the temperature mapping. This could allow for example to privilege
the temporal resolution for motion estimation (required for beam steering application)
and the spatial coverage for temperature mapping (required for volumetric control of the
ablation). Auxiliary information could also be used to improve the employed slice tracking
techniques.

Towards a 3D monitoring of the intervention

A 3D monitoring and control of the delivered energy should improve the patient safety
during the intervention. This would allow to prevent undesired heating and to optimize the
spatio-temporal energy delivery. Since MR-systems now allow to modify dynamically the
sequence parameters, this offers new perspectives to achieve a 3D volume coverage using
adaptive imaging methods such as a slice sweep methodology. However, this approach
reduces the temporal resolution of the temperature measurement by the number of slices in
the sweep direction. Results obtained with the proposed autocalibrated extended Kalman
filter open great perspectives to overcome this limitation. The proposed formalism could be
used to simultaneously remove measurement noise (in currently acquired slice) and predict
the temperature at unmeasured locations (other slices). This would allow to achieve a full
3D temperature mapping using a sparse sampling technique.

Improvement of spatial and temporal resolutions

For thermal ablations of thin tissues such as in the heart or the use of high precision HIFU
transducers, partial volume effects are expected to bias MR-thermometry accuracy. There-
fore, the improvement of the spatial resolution appears mandatory and several strategies
could be employed for this purpose.

Among those, reduced field of view imaging techniques can be used. However it im-
poses new challenges on the motion estimation process, due to the potential presence of
structures appearing transient in the field of view. Nevertheless, this problem has been
demonstrated to be efficiently addressed using the proposed constrained motion estima-
tion.

High field MRI allows to improve the SNR. This gain can be invested to increase either
the spatial and / or the temporal resolution while preserving image quality. However,
both inhomogeneities of the magnetic field and distortions are also stronger at high field.
Therefore, the balance between improved SNRs and additional artifacts has to be carefully
evaluated in future studies.

Quality control of the intervention and patient safety

To guarantee patient safety and to improve the reliability of the treatment, quality control
should be developed and integrated into the processing pipeline.
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Prior modeling of the intervention could be used for this purpose. This represents a
promising way to detect abnormal or unexpected situations during the therapeutic treat-
ment. For example, unexpected or undesired spatial deposition of the energy can occur if
secondary lobes are created along the HIFU beam path. This type of event, engaging the
patient safety, could be detected by comparing measured data with model predictions.

The availability of independent measures for a given task and their degree of similarity
may also be used as an indicator of the reliability of the result. Multi-modality imaging
could provide such independent measures. Alternatively, simultaneous corrections of any
processing step using several methods may also furnished such redundant information.
Therefore, the methods developed in this thesis, may also be used for quality control
purpose.

Clinical perspectives

MR-guided HIFU-ablation of abdominal organs

Nowadays, all main obstacles for MR-guided HIFU-ablation of abdominal organs have been
addressed in in-vivo and ex-vivo studies. The main task of the integration of these isolated,
and in some cases contradictory, approaches into a clinical package, now remains to be
developed, including the methods developed in this thesis. For example, the treatment of
the liver would require the integration of methods for inter-costal firing and volumetric
monitoring as well as feedback control of the intervention.

MR-guided RF-ablation in the heart

MR-guided RF-ablation in the heart remains a much more challenging application. The
presented study shows encouraging results of MR-thermometry and dosimetry in the heart
with a precision in the range of 2-3 degrees. Although these experiments were carried out
in the left ventricle, the final target is the atrium which is much more challenging since
its thickness of 1 to 3 mm exceeds the voxel size of current employed sequences. There-
fore, although the spatial resolution will have to be improved, the required spatial and
temporal resolution needed for monitoring/guiding atrial wall interventions still remain
to be investigated. Potential methodological solutions to improve spatial and temporal
resolutions have been previously discussed in this conclusion. Furthermore, the feasibility
of the presented methodology in presence of arrhythmia remains to be investigated before
clinical studies can be anticipated.
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Appendix A

MR-image reconstruction

A.1 MR-acquisition in k-space

MRI is based on the interaction of nuclei magnetic spin with an external magnetic field.
To allow the localization of a spin, magnetic field gradients are applied in each spatial
dimension of the imaging plane/volume [170]. This renders the phase, of the recorded
NMR-signal, spatially dependent. Therefore, the NMR-signal S of infinitesimal small
sample at the point ~r in a MRI-system (referred to as magnetization) is a complex value
that can be defined as follows:

S(~r) = ρ(~r) · e−i2π~k~r (A.1)

where ρ(~r) is called the spin-density function, which describes the macroscopic object,

and ei
~k~r is the spatial dependent phase of the NMR signal. ~k represents the accumulated

phase between excitation (at time t′ = 0) and acquisition (at time t′ = t) and is defined
as follows:

~k(t) = γ

∫ t

0

~G(t′)dt′ (A.2)

where γ is the gyromagnetic ratio and ~G(t′) is the amplitude of the magnetic field gradient
applied at time t′.

An NMR detection coil receives a signal S(~k), which corresponds to the ensemble of
all signal sources S(~r) within the object as follows:

S(~k) =

∫
allspace

S(~r)d~r (A.3)

=

∫
allspace

ρ(~r) · e−i2π~k~rd~r (A.4)

In order to obtain an image of the macroscopic object, we can perform a theoretical exper-
iment where we repeat this measurement under the application of all possible magnetic
field variations ~G. This infinite amount of measurements would result in the complete
description of S(~k), the so called k-space.

148



A.2 Reconstruction from k-space to spatial space

The k-space contains all necessary information for the reconstruction of an image of the
original object. This can be shown by applying an inverse Fourier transformation (FT−1):

FT−1(S(~k)) =

∫
~k
S(~k) · e2πi~k~rd~k (A.5)

=

∫
~k

∫
allspace

ρ(~r′) · e−2πi~k~r′ · e2πi~k~rdr′d~k (A.6)

=

∫
allspace

ρ(~r′)

(∫
~k
e−2πi~k(~r′−~r)d~k

)
dr′ (A.7)

(A.8)

Using the definition of the Dirac delta function,

δ(~r′ − ~r) =

∫
~k
e−2πi~k(~r′−~r)d~k (A.9)

the Fourier transform of the acquired signal can be written as:

FT−1(S(~k)) =

∫
allspace

ρ(~r′)δ(~r′ − ~r)dr′ (A.10)

= ρ(~r) (A.11)

Therefore, the inverse Fourier transform of the acquired NRM-signal provides a spatial
representation of the spin density, which is the mathematical representation of the macro-
scopic object.

Since in practice, an infinite amount of measurements is not possible, only a finite
number of k-space points can be acquired. The resulting imperfect sampling of k-space
Sr(~k) can be mathematically expressed with the help of the optical transfer function O:

Sr(~k) = O(~k) · S(~k) (A.12)

The inverse Fourier transform of Sr(~k) reads:

FT−1(S(~k)) =

∫
~k
O(~k) · S(~k) · e−i~k~rd~k (A.13)

=

∫
~k

∫
allspace

O(~k) · ρ(~r′) · ei~k~r · e−i~k~rdr′d~k (A.14)

=

∫
allspace

ρ(~r′)

(∫
~k
O(~k) · ei~k(~r′−~r)d~k

)
dr′ (A.15)

≡
∫
allspace

ρ(~r′) ·H(~r′ − ~r)dr′ (A.16)

≡ ρ(~r)⊗H(~r) (A.17)

where H(~r′ − ~r) is defined as the pointspread function (PSF) and corresponds to the
inverse Fourier transform of the optical transfer function. This means that in the case of
a real imaging experiment, obtaining a limited amount of discrete sampling points, we do
not obtain the true spin-density function anymore but instead the convolution of the spin
density function with the PSF.
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A.2.1 Finite continuous sampling of k-space

In practical case, one cannot acquire the signal for an infinity of values of k. Therefore,
the k-space coverage is limited and the maximum kmax and minimum values kmin of k are
defined by the maximum gradient amplitude ‖Gmax‖ and the application time tmax of the
gradient as follows:

kmax = −kmin = γ

∫ tmax

0

−−−→
Gmax(t′)dt′ (A.18)

In such case, the optical transfer function O can be represented as a rectangular function
of width W = kmax − kmin and centered in k = 0 as illustrated in figure A.1a. The PSF
function H is thus a sinc function with a full width at half maximum equal to 1/(W ),
which defines the real resolution of the MR-acquisition (see figure A.1b).

(a)

(b)

Figure A.1: Effect of a finite sampling of k-space: Optical transfer function O is shown in
(a) and the corresponding PSF H is represented in (b).

A.2.2 Finite discrete sampling of k-space

In addition, in practical case a continuous sampling from kmin to kmax is not feasible
and only a discrete sampling of this interval can be realized. This sampling pattern is
illustrated in figure A.2 using ∆k as the period between each k-space measurement and
N as the number of measurements. Therefore, the sampling function can be seen as a
collection of Dirac delta functions. The discrete Fourier transform of the sampling function
thus provides N replications of the sinc function. In such conditions, the period of the
sinc functions is equal to (1/∆k) which in turn defines the field of view (FOV) of the
imaging experiment. In our illustration, we assume ∆k chosen to obtain a FOV equal to
the object size. Therefore, during the convolution process, only one point contained in
the object is used for each convolution kernel computation, which results in N repetitions
of the object. The first period of the reconstructed signal is generally calculated as the
reconstructed image.

A.3 Reconstruction from undersampled k-space to spatial
space

In Chapter 4, we employed parallel imaging techniques for accelerating the MR-acquisition.
These strategies rely on a partial acquisition of k-space. Since a direct reconstruction of
the data would lead to fold-over artifacts, more sophisticated reconstruction methods are
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Figure A.2: Full sampling of k-space and reconstruction. Here 1/∆k is chosen as the
object size, therefore, the distance between two delta peak in H(~r) is equal to the FOV.

employed that use several different receiver coils to acquire the signal simultaneously.
Here, an explanation of the presence of fold-over artifacts in such conditions is explained
using the mathematical formulation of the optical transfer function and the PSF.

The effect of a partial k-space acquisition is illustrated in the special case where only
every other line is acquired (see figure A.3). Compared to figure A.2, the period of the
Dirac delta functions in O is thus increased by a factor 2. Therefore, the resulting PSF
contained a replication of the sinc function with a period reduced by a factor 2. Conse-
quently, during the convolution process, two different points contained in the object are
systematically averaged for each convolution kernel computation, which generates fold-
over artifacts.
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Figure A.3: Partial sampling of k-space and reconstruction. Since the sampling step of
O(~k) is increased by a factor 2, the period of H(~r) is reduced by a factor 2, which leads
after the convolution step to fold over artifacts.
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Appendix B

Statistical hypothesis testing

As described in chapter 9, statistical tests have been employed to determine if the dif-
ferences obtained with several experiments were statistically significant. In the presented
works, means of measurement groups obtained from different experiments have been com-
pared using ANOVA test and Student’s t-test. These statistical tests are now described in
detail in this appendix. They evaluate, with a level of significance p, the null hypothesis
that can be formulated in our case as: “there is no significant difference between the means
of the compared groups”. However, these tests can typically lead to two different types of
errors:

• type I error: The null hypothesis is rejected even though it is true.

• type II error: The null hypothesis is not rejected even though it is false.

These statistical tests are now described.

B.1 Student’s t-test

For the specific case of comparing two different measurement groups, a Student’s t-test
can be employed [171]. This test differs if the two samples are dependent (paired) or
independent. In our application described in chapter 9, we intended to compare the
results of the motion estimation process with different methods over a group of volunteer.
Therefore, there is every reason to suspect that the specific amplitude of the organ motion
or the SNR associated to each volunteer experiment may influence the result. There, the
results for a given volunteer can be considered as dependent, thus the dependent (paired)
t-test has been employed and is now described.

The general form of a paired t-test is defined as follows:

tstat =
Yd

σd ·
√

(n)
(B.1)

where Yd and σd are the average and the standard deviation of the differences between in
each paired values and n is the number of samples of each group. Note that this statistic
has a degree of freedom d = n− 1.

The probability density function of the Student’s t-distribution is defined as follows:

f(t) =
Γ
(
d+1

2

)
√
dπΓ

(
d
2

) (1 +
t2

d

)−(d+1)/2

(B.2)

with Γ the gamma function defined as Γ(x) = (x− 1)!.
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The probability for the acceptance of the null hypothesis is thus given by:

pstat =

∫ ∞
tstat

f(t)dt (B.3)

If pstat < p, the null hypothesis is rejected and the difference between the two groups is
considered as statistically significant. On the other hand, there is no significant difference
between the means of the compared groups if pstat ≥ p.

B.2 ANOVA test

For the comparison of more than two groups of samples, an ANOVA test [172] can be
employed. This test can be seen as a generalization of the t-test, which aims to differentiate
the overall variance σ2 of all measurements into two terms: The inter-group variance σ2

I

and the within-group variance σ2
W . Therefore, with K groups one can write:

σ2 =

K∑
i=1

ni∑
j=0

(
Yij − Ȳ

)2
N

= σ2
I + σ2

W

=

K∑
i=1

ni
(
Ȳi − Ȳ

)2
N (K − 1)

+

K∑
i=1

ni∑
j=0

(
Yij − Ȳi

)2
(N −K)

(B.4)

(B.5)

where Yij is the jth observation in ith group, Ȳi is the sample mean in ith group ,Ȳ is
the sample mean in group, ni is the number of samples in ith group and N is the overall
sample size.

The F -statistic is then defined as follows

Fstat =
σ2
I

σ2
W

. (B.6)

and the probability for the acceptance of the null hypothesis is given by:

pstat =

∫ ∞
Fstat

f(x)dx (B.7)

with f(x) the probability density function of the F-distribution defined as follows:

f(x) =

√
(d1x)d1 dd22

(d1x+ d2)( d1 + d2)

xB (d1/2, d2/2)
(B.8)

where d1 = K − 1 and d2 = N −K are the degrees of freedom under the null hypothesis
and B denotes the Beta function defined as B(x, y) =

∫ 1
0 t

x−1(1− t)y−1dt.
The null hypothesis is thus rejected if pstat < p and additional t-tests between all pairs

of groups have to be realized to determine which differences are statistically significant. If
pstat ≥ p, no significant difference is present between all groups.
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B.3 Bonferroni correction

The risk of committing a type I error increases with the number of tested hypothesis n.
Therefore, correction methods have been developed to address the problem of multiple
comparisons. The Bonferroni method correct this effect by testing each hypothesis with a
significance level reduced by the factor 1/n [173, 174]. This method reduces the risk of a
type I error but increases the probability of committing a type II error.
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Appendix C

Minimization of a functional

The presented variational techniques for motion estimation purpose (as presented in chap-
ter 2, section 2.1.3.2 and used in chapter 5, 7, 8 and 9) often rely in the minimization of
a functional. In this appendix, an introduction to functional minimization based on the
calculus of variation and Euler Lagrange equations [175] is given.

Let note F a functional defined on C2
[a,b] as follows:

F (g(x)) =

∫ b

a
f(x, g(x), g′(x))dx (C.1)

where g(x) : [a, b] 7→ R with g(x) ∈ C1
[a,b]

Calculus of variation is a set of method that aims to find a function g(x) that corre-
sponds to extreme values of F .

C.1 Introduction to calculus of variation & Euler Lagrange
equations

If g(x) minimized F , therefore,

F (g(x)) ≤ F (z(x)) (C.2)

for any other function z(x). The main idea of this approach consist in constructing a
function z(x) as follows:

zε(x) = g(x) + εh(x) (C.3)

where h(x) is a real valued function and h(x) ∈ C2
[a,b] with h(a) = h(b) = 0.

Therefore, the derivative of Fε(zε(x)) for ε = 0 has to be zero (since F (g(x)) is a
minimum of F and has therefore a derivative equal to zero):

∂F (zε(x))
dε

∣∣∣
ε=0

= 0 (C.4)

and is computed as follows:

d

dε
F (zε(x)) =

d

dε

∫ b

a
f(x, zε(x), z′ε(x))dx

=

∫ b

a

∂

∂ε
f(x, zε(x), z′ε(x))dx
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By applying the chain rule law we obtain:

d

dε
F (zε(x)) =

∫ b

a

∂f

∂x

∂x

∂ε
+
∂f

∂zε

∂zε
∂ε

+
∂f

∂z′
ε

∂z
′
ε

∂ε
dx (C.5)

Since ∂x/∂ε = 0, the equation can be reduced to

d

dε
F (zε(x)) =

∫ b

a

∂f

∂zε
h(x) +

∂f

∂z′
ε

h′(x)dx (C.6)

The integration by part rule says that if two function l(x) and m(x) are differentiable
then: ∫ b

a
l(x)m′(x) = [l(x)m(x)]ba −

∫ b

a
l′(x)m(x) (C.7)

Therefore:
∂f

∂z′
ε

h′(x) = [
∂f

∂z′
ε

h(x)]ba −
∫ b

a

d

dx

∂f

∂z′
ε

h(x)dx (C.8)

Since h(a) = h(b) = 0, then, from equation (C.6) and (C.8), we obtain:

d

dε
F (zε(x)) =

∫ b

a
(
∂f

∂zε
− d

dx

∂f

∂z′
ε

)h(x)dx (C.9)

Based on equation (C.4) statement, equation (C.9) for ε=0 becomes:

∂F (zε(x))
dε

∣∣∣
ε=0

=

∫ b

a
(
∂f

∂g
− d

dx

∂f

∂g′ )h(x)dx (C.10)

Moreover, the fundamental lemma of calculus of variation states that, if a function
f(x) is a continuous in the interval [a, b] and for every continuous function h(x) with
h(a) = h(b) = 0 we have: ∫ b

a
f(x)h(x)dx = 0 (C.11)

Then, f(x) is identically zero on [a, b]. Therefore the fundamental lemma and equation
(C.10) lead to

∂f

∂g
− d

dx

∂f

∂g′ = 0 (C.12)

C.2 Generalized form of Euler Lagrange equations

In the presented variational framework designed motion estimation purpose, the functional
F generally has two function u(x, y) and v(x, y) and two variables x and y. u(x, y) and
v(x, y) relates the horizontal and vertical displacement of each pixel of coordinate (x, y).
Therefore, the presented Euler Lagrange has to be extended in this case two higher di-
mension. For this, a generalized version of Euler Lagrange equations has been developed
[176] for a functional F defined by multiple functions G = {g1, g2, ..., gm} with multiple
variables X = {x1, x2, ..., xN}.

The functional F is now defined as:

F (G(X))) = (C.13)∫
...

∫
S
f(x1, ..., xN , g1(x), ..., gm(x), g1x0 , ..., g1xN , ..., gmx0 , ..., gmxN )dx1...dxN (C.14)

where S relates the N dimensional region of the space defined by X and gixj denotes the
partial derivative of gi respect to xj .
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The generalized form of the Euler Lagrange equation is in such a case:

∂f

∂g1
−

m∑
k=0

∂

∂xk

∂f

∂g1′
xk

= 0

∂f

∂g2
−

m∑
k=0

∂

∂xk

∂f

∂g2′
xk

= 0

...

∂f

∂gn
−

m∑
k=0

∂

∂xk

∂f

∂gn′
xk

= 0

(C.15)

These equations are used for the minimization of the presented functionals with M = 2
(for u and v) and N = 2 (for x and y).

158



Appendix D

Optical flow derivation

This appendix describes the iterative scheme derivations of the employed and proposed
variational techniques designed for motion estimation. In the first section, the initial
derivation of the initial Horn & Schunck algorithm [70] (see chapter 2) is presented. In
the last two sections, solution derivations for the motion estimation algorithms proposed
in chapter 7 and chapter 8 of this thesis are developed.

D.1 Minimization of the Horn & Schunck functional

As described in chapter 2 (section 2.1.3.2), the general minimization problem proposed by
Horn & Schunck is described with the following functional:

E =

∫∫
xy

(
[Ixu+ Iyv + It]

2 + α2
[
‖∇u‖22 + ‖∇v‖22

])
dxdy (D.1)

In this functional, we have two functions u and v with two variables x and y. Therefore,
using the formalism developed in appendix C, this functional can be rewritten as follows:

E =

∫∫
xy
f(x, y, u, v, ux, uy, vx, vy)dxdy (D.2)

where ux = ∂u/∂x, uy = ∂u/∂y, vx = ∂v/∂x, vy = ∂v/∂y.
Its minimization can then be obtained using the calculus of variation and the Euler-

Lagrange equations, as described in appendix C. The Euler Lagrange equations associated
with the Horn & Schunck functional are thus:

∂f

∂u
− ∂

∂x

∂f

∂ux
− ∂

∂y

∂f

∂uy
= 0

∂f

∂v
− ∂

∂x

∂f

∂vx
− ∂

∂y

∂f

∂vy
= 0

(D.3)

that gives the following system of equations:{
2Ix(Ixu+ Iyv + It)− 2α2uxx − 2α2uyy = 0
2Iy(Ixu+ Iyv + It)− 2α2vxx − 2α2vyy = 0

(D.4)

where uxx = ∂ux/∂x, uyy = ∂uy/∂y, vxx = ∂vx/∂x and vxx = ∂vx/∂x.
The system can then rewritten as follows:{

I2
xu+ IxIyv = α2∆u− IxIt
IxIyu+ α2v = α2∆v − IyIt

(D.5)
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They proposed to approximate the Laplacian in the discrete domain with ∆u = u−u,
with u the local average of u. This approximation allows to linearized the system as
follows: {

(I2
x + α2)u+ IxIyv = α2ū− IxIt

IxIyu+ (I2
y + α2)v = α2v̄ − IyIt

(D.6)

The determinant D of the system is:{
D = α2(I2

x + I2
y + α2) (D.7)

Solving this system for u and v using the Cramer’s rule (which is described in appendix
E) reads: 

u =
(I2
y + α2)ū− IxIyv̄ − IxIt

I2
x + I2

y + α2

v =
−IxIyū+ (I2

x + α2)v̄ − IyIt
I2
x + I2

y + α2

(D.8)

This equation holds for each pixel of the image and this equation for the ith pixel can
be rewritten as follows:

ui −
(I2
yi + α2)

I2
xi + I2

yi + α2

1

Ni

∑
j∈Si

uj +
IxiIyi

I2
xi + I2

yi + α2

1

Ni

∑
j∈Si

vj = − IxiIti
I2
xi + I2

yi + α2

vi +
IxiIyi

I2
xi + I2

yi + α2

1

Ni

∑
j∈Si

uj −
(I2
xi + α2)

I2
xi + I2

yi + α2

1

Ni

∑
j∈Si

vj = − IyiIti
I2
xi + I2

yi + α2

(D.9)

where ū = 1
Ni

∑
j∈Si

uj , v̄ = 1
Ni

∑
j∈Si

vj with Ni = card(Si) and Si denotes the pixel
area around the pixel i used to compute the average.

Therefore the calculation of ui and vi requires the calculation of all uj and vj and the
general system to solve can be expressed as:

Ax = b (D.10)

with
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A =



1 0 ...
0 1 ...

.
.

.
0...0 UiVi...UiVi 0...0 Ui Vi 1 0 Ui Vi 0...0 UiVi...UiVi 0...0
0...0 UiVi...UiVi 0...0 Ui Vi 0 1 Ui Vi 0...0 UiVi...UiVi 0...0

.
.

.
... 1 0
... 0 1



x =



u1

v1

.

.

.
ui
vi
.
.
.
un
vn



and b =



−Ix1It1/(I2
x1 + I2

y1 + α2)

−Iy1It1(I2
x1 + I2

y1 + α2)

.

.

.
−IxiIti/(I2

xi + I2
yi + α2)

−IyiIti/(I2
xi + I2

yi + α2)

.

.

.
−IxnItn/(I2

xn + I2
yn + α2)

−IynItn/(I2
xn + I2

yn + α2)


(D.11)

with Ui = (I2
y + α2)/(I2

x + I2
y + α2) and Vi = (I2

x + α2)/(I2
x + I2

y + α2)
A is a very large and sparse matrix and Horn & Schunck proposed to use the Gauss

Seidel method (which is described in detail in appendix E.1) in order to solve this system
which is expected to be much more efficient than a Gauss elimination approach.

This approach provides an iteration scheme that leads to the solution as follows:

un+1
i = Ui

1

Ni
(
∑

j∈Si,j<i

un+1
j +

∑
j∈Si,j>i

unj )

−Vi
1

Ni
(
∑
j∈Si

vn+1
j +

∑
j∈Si

vnj )

− IxiIti
(I2
xi + I2

yi + α2)

vn+1
i = Vi

1

Ni
(
∑

j∈Si,j<i

vn+1
j +

∑
j∈Si,j>i

vnj )

−Ui
1

Ni
(
∑
j∈Si

un+1
j +

∑
j∈Si

unj )

− IyiIti
(I2
xi + I2

yi + α2)

(D.12)

Alternatively, one can also use the Jacobi approach (presented in appendix E.1) to solve
the system. The only difference in the resulting iterative scheme will be the calculation of
ū and v̄. In the Jacobi method, ūk and v̄k are computed based only on values obtained
at iteration k− 1. In the Gauss Seidel approach, values of pixels of previous iteration (for
pixels not yet treated at current iteration) and current iteration (for pixels already treated)
are used to compute ū and v̄. This result in a faster convergence of the iterative scheme
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and was privileged for CPU implementation. However, this approach is not parallelized
and the Jacobi approach was employed for the GPU implementation. In order to simplify
the notations, we consider ūn and v̄n the average of u and v compute at iteration n + 1
by any of these two methods. In such condition, the iterative numerical scheme can be
rewritten as follows: 

un+1
i =

(I2
yi + α2)ui

n − IxiIyivin − IxiIti
I2
xi + I2

yi + α2

vn+1
i =

(I2
xi + α2)vi

n − IxiIyiuin − IyiIti
I2
xi + I2

yi + α2

(D.13)

that can be simplified into the famous solution:
un+1 = un − Ix

unIx + vnIy + It
I2
x + I2

y + α2

vn+1 = vn − Iy
unIx + vnIy + It
I2
x + I2

y + α2

(D.14)

D.2 Minimization of the constrained optical flow functional

In this section, a detailed derivation of the iterative solution of the minimization of the
functional proposed in chapter 7 is presented. As defined in equation (7.5), the functional
Ec to minimize is defined as follows:

Ec(u, v) =

∫∫ (
[Ixu+ Iyv + It]

2
)
dxdy

+α2

∫∫ ([
‖∇u‖22 + ‖∇v‖22

])
dxdy

+λ2

∫∫ ( N∑
i=0

(
ρ(di, R)

[
(u− ui)2 + (v − vi)2

]))
dxdy (D.15)

As presented for the derivation of the Horn & Schunck solution, the calculus of variation
is employed in this case. Therefore, the Euler Lagrage equations provide the following
system of equations:

{
2Ix(Ixu+ Iyv + It) + 2λ2

∑N
i=0 (ρ(di, R) (u− ui))− 2α2uxx − 2α2uyy = 0

2Iy(Ixu+ Iyv + It) + 2λ2
∑N

i=0 (ρ(di, R) (v − vi))− 2α2vxx − 2α2vyy = 0
(D.16)

that can be simplified to:{
I2
xu+ IxIyv = α2∇u− IxIt − λ2

∑N
i=0 (ρ(di, R)(u− ui))

IxIyu+ I2
yv = α2∇v − IyIt − λ2

∑N
i=0 (ρ(di, R)(v − vi))

(D.17)

Using the approximation of the Laplacian as suggested by Horn and Schunck (∇u =
u− u) the system can be rewritten as:{

(I2
x + α2 + λ2

∑N
i=0 (ρ(di, R)))u+ IxIyv = α2ū− IxIt + λ2

∑N
i=0 (ρ(di, R)(ui))

IxIyu+ (I2
y + α2 + λ2

∑N
i=0 (ρ(di, R)))v = α2v̄ − IyIt + λ2

∑N
i=0 (ρ(di, R)(vi))

(D.18)
The determinant D of the system is:{

D = (α2 + λ2
∑N

i=0 (ρ(di, R)))(I2
x + I2

y + α2 + λ2
∑N

i=0 (ρ(di, R))) (D.19)
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Solving this system for u and v using the Cramer’s rule reads:


u =

α2(I2y+α2+λ2S)ū−α2IxIy v̄−α2IxIt+λ2((I2y+α2+S)Sui−IxIySvi−IxItS)
(α2+λ2S)(I2x+I2y+α2+λ2S)

v =
α2(I2x+α2+λ2S)v̄−α2IxIyū−α2IyIt+λ2((I2x+α2+S)Svi−IxIySui−IyItS)

(α2+λ2S)(I2x+I2y+α2+λ2S)

(D.20)

Again, this equations holds for each pixel of the image and leads to the same system
as shown in equation (D.10) and (D.11) with:

Ui =
α2(I2y+α2+λ2S)

(α2+λ2S)(I2x+I2y+α2+λ2S)

Vi =
α2(I2x+α2+λ2S)

(α2+λ2S)(I2x+I2y+α2+λ2S)

(D.21)

The resolution of this system is finally achieved using the Jacobi or the Gauss Seidel
method (see appendix E.1) that provides the following iterative scheme:


un+1 =

α2(I2y+α2+λ2S)ūn−α2IxIy v̄n−α2IxIt+λ2((I2y+α2+S)Sui−IxIySvi−IxItS)
(α2+λ2S)(I2x+I2y+α2+λ2S)

vn+1 =
α2(I2x+α2+λ2S)v̄n−α2IxIyūn−α2IyIt+λ2((I2x+α2+S)Svi−IxIySui−IyItS)

(α2+λ2S)(I2x+I2y+α2+λ2S)

(D.22)

D.3 Minimization of the temperature regularized optical
flow functional

In this section, the derivation of the solution to the minimization of the functional proposed
in chapter 8 is detailed. In order to minimize the functional Etr(u, v) (see equation (8.1))
defined as:

Etr =

∫∫ (
β(x, y) [Ixu+ Iyv + It]

2 + α2
[
‖∇u‖22 + ‖∇v‖22

])
dxdy (D.23)

we again use the calculus of variation where the associated Euler Lagrange equations reads:{
2β(x, y)Ix(Ixu+ Iyv + It)− 2α2uxx − 2α2uyy = 0

2β(x, y)Iy(Ixu+ Iyv + It)− 2α2vxx − 2α2vyy = 0
(D.24)

that can be simplified to:{
β(x, y)I2

xu+ β(x, y)IxIyv = α2∇u− β(x, y)IxIt

β(x, y)IxIyu+ β(x, y)I2
yv = α2∇v − β(x, y)IyIt

(D.25)

Using again the same approximation of the Laplacian as employed in the two previous
sections, we obtain the following system:{

(β(x, y)I2
x + α2)u+ β(x, y)IxIyv = α2ū− β(x, y)IxIt

β(x, y)IxIyu+ (β(x, y)I2
y + α2)v = α2v̄ − β(x, y)IyIt

(D.26)

The determinant D of the system is:{
D = α2(β(x, y)(I2

x + I2
y ) + α2) (D.27)

Solving this system for u and v using the Cramer’s rule and dividing equation by α2

reads:
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u =

(β(x, y)I2
y + α2)ū− β(x, y)IxIyv̄ − β(x, y)IxIt

(β(x, y)(I2
x + I2

y ) + α2)

v =
−β(x, y)IxIyū+ (β(x, y)I2

x + α2)v̄ − β(x, y)IyIt
(β(x, y)(I2

x + I2
y ) + α2)

(D.28)

Here, Ui and Vi from equation (D.11) become:
Ui =

(β(x, y)I2
y + α2)

(β(x, y)(I2
x + I2

y ) + α2)

Vi =
(β(x, y)I2

x + α2)

(β(x, y)(I2
x + I2

y ) + α2)

(D.29)

and the Jacobi or the Gauss Seidel method (see appendix E.1) provide the following
iterative scheme:

un+1 =
(β(x, y)I2

y + α2)ūn − β(x, y)IxIyv̄
n − β(x, y)IxIt

(β(x, y)(I2
x + I2

y ) + α2)

vn+1 =
−β(x, y)IxIyū

n + (β(x, y)I2
x + α2)v̄n − β(x, y)IyIt

(β(x, y)(I2
x + I2

y ) + α2)

(D.30)

that can simplified to:
un+1 = un − β(x, y)Ix

unIx + vnIy + It
β(x, y)(I2

x + I2
y ) + α2

vn+1 = vn − Iy
unIx + vnIy + It

β(x, y)(I2
x + I2

y ) + α2

(D.31)
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Appendix E

Solving large and sparse linear
systems

As described in appendix D, the presented variational techniques designed for local motion
estimation often rely in the minimization of a functional using the Euler Lagrange equa-
tions. This approach generally provides large and sparse linear systems to solve. In this
appendix, a rapid presentation of general methods to solve linear systems is given, followed
by specific methods adapted to our problem of spare and linear systems. Nevertheless,
these adapted methods still require intensive computation and could takes advantage of a
GPU implementation. Therefore, the feasibility and the potential of the parallelization of
the solution computation are also presented and discussed.

Several strategies [177] have been proposed to solve a system of linear equations being
of the form:

Ax = b (E.1)

with

A =


a1,1 a1,2 ... a1,n

a2,1 a2,2 ... a2,n

...
am,1 am,2 ... am,n

 , x =


x1

x2

.
xn

 and b =


b1
b2
.
bm

 (E.2)

where we suppose that A is composed by a set of independent lines.
This type of linear system generally have three type of behavior:

• n = m: The system is determined and there is a unique solution. A brief overview
of the methods to solve these type of systems, especially in the case of a large and
sparse matrix A, is given below.

• n > m: The system is under determined. There is more unknowns that equations.
In such a case there is an infinity of solutions.

• n < m: The system is overdetermined. There is less unknowns that equations.
This type of system has no solution and an approximate solution can be found by
minimizing the function f(x) defined as:

f(x) = ‖Ax− b‖ (E.3)

Several approaches exist to minimize a given function f such as the gradient descent
method, the Gauss-Newton method or the Marquardt Levenberg method.
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In this appendix, we focus on methods to solve linear system where n = m. A number
of methods have been proposed for this purpose such as:

• Elimination of variables: The principle is to express x1 in function of the other vari-
ables as f1(x2, x3, ..., xn) from the first equation and to replace x1 by f1(x2, x3, ..., xn)
in all other equations. The process is repeated for x2 that is expressed in function of
the remaining variable as f2(x3, x4, ..., xn) and replaced in all remaining equations.
This process is repeated until xn−1. After that, A is an upper triangular matrix.
One can directly get the solution of xn from the last line of A and then replaced its
values on the previous line to get the value of xn−1, and so on until x1. This is called
a backward substitution. (Note that the same process for lower triangular matrix is
called forward substitution).

• Row elimination: The objective is again to reduce the matrix A in a triangular
matrix with all zero in its lower part. A set of matrix operation are allowed for that.
The most famous algorithm is the Gauss Jordan elimination algorithm.

• The Cramer’s rule: The solution is directly given by:

xi =
det(Ai)

det(A)
(E.4)

where det(A) is the determinant of the matrix A and Ai denotes the matrix A where
the ith column has been replaced by the the vector b.

A number of others approaches have been proposed for specific type of matrices. Now,
we focus on large and sparse matrix that are for example encountered in the minimization
of the variational approach of motion estimation such as the Horn & Schunck functional.

For large systems, iterative methods that start with an initial approximation of the
solution and refine the solution at each iteration are generally preferred. These methods
allow to reduce the computational time of the presented general methods.

E.1 Gauss Seidel method

The Gauss Seidel method [178] decomposes the matrix A into the following form:

A = L+U , with L =


a1,1 0 ... 0
a2,1 a2,2 ... 0
...
am,1 am,2 ... am, n

 , and R =


0 a1,2 ... a1, n
0 0 ... a2, n
...
0 0 ... 0

 (E.5)

that leads to the following relation:

Lx = b− Ux (E.6)

The associated iterative scheme that solve again each diagonal element is of the form:

Lxk+1 = (b− Uxk) (E.7)

that provides the following system:
a1,1x

k+1
1 = b1 −

∑n
j>1 a1,jx

k

a2,1x
k+1
1 + a2,2x

k+1
2 = b2 −

∑n
j>2 a2,jx

k

...

an,1x
k+1
1 + ...+ an,nx

k+1
n = bn

(E.8)
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Since L is a lower triangular matrix, a forward substitution can be applied in order to
obtain the solution of each xk+1

i element as follows:

xk+1
i =

1

ai,i
(bi −

∑
j>i

ai,jx
k
j −

∑
j<i

ai,jx
k+1
j ) (E.9)

At implementation level, each xkj can be overwritten as soon as updated. However,

the computation of the solution of the ith pixel requires the prior computation of the
solution for each jth pixel with j < i. Although this approach allows a fast convergence,
the resolution is sequential and cannot be parallelized (at pixel level). Therefore, in our
problem, this approach is not adapted for a GPU implementation.

E.2 Jacobi method

The Jacobi method [179] is very similar to the Gauss-Seidel method. Here, the matrix
A is decomposed into the sum of a diagonal matrix D and a matrix R containing the
remaining elements as follows:

A = D +R, with D =


a1,1 0 ... 0
0 a2,2 ... 0
...
0 0 ... am, n

 , and R =


0 a1,2 ... a1,n

a2,1 0 ... a2,n

...
am,1 am,2 ... 0


(E.10)

In such condition, one can write:
Dx = b−Rx (E.11)

The Jacobi method provide an iterative scheme that solves each diagonal element of A as
follows:

xk+1 = D−1(b−Rxk) (E.12)

Using a forward substitution (as described above in this appendix, this leads to the
following iterative scheme for the ith element of the diagonal:

xk+1
i =

1

ai,i
(bi −

∑
j 6=i

ai,jx
k
j ) (E.13)

This approach requires to store all xkj from the previous step. Then, it uses two times
more memory than the Gauss Seidel method. However, in our case, we typically deal with
images of resolution of 128 × 128 and this point is thus negligible with current memory
hardware. On the other hand, the resolution of the iterative scheme for one pixel do
not require a priori knowledge of the solution of any neighboor at the current iteration.
Therefore, each iteration of the numerical scheme can be done in parallel for each pixel
which in turns represents a suitable solution for a GPU implementation [77, 122].
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Appendix F

Digital filters

Since several digital filters are used in this thesis, a rapid presentation of the main principle
of a digital filter is given.

A digital filter [180] transforms a discrete input time signal x(t) to reduce or enhance
certain aspects of that signal resulting in an output signal y(t) (see figure F.1).

Figure F.1: General representation of a filter

A filter can be characterized by its impulse response h(t) that corresponds to the filter
response to an impulse signal that consists of a Dirac’s delta.

y(t) = h(t) ∗ x(t) (F.1)

F.1 Frequency filters

Frequency basics filters can be divided into two classes: infinite impulse response (IIR)
and finite impulse response (FIR) filters [180].

An FIR filter (which may only be implemented in discrete time) may be described as
a weighted sum of delayed inputs. For such a filter, if the input becomes zero at any time,
then the output will eventually become zero as well, as soon as enough time has passed
so that all the delayed inputs are zero, too. Therefore, the impulse response lasts only a
finite time, and this is the reason for the name finite impulse response.

For an IIR filter, by contrast, if the input is set to 0 and the initial conditions are
non-zero, then the set of time where the output is non-zero will be unbounded; the filter’s
energy will decay but will be ever present. Therefore, the impulse response extends to
infinity, and the filter is said to have an infinite impulse response.

Both of these filters are defined as follows:

y(t) =

N∑
i=0

aix(t− i)−
M∑
j=1

bjy(t− j) (F.2)

where y(t) is the filter output, x(t − i) are the filter inputs and y(t − j) are the previous
filter outputs. ai and bj are the filter coefficients that defines the filter behavior. In a FIR
filter, all bj are set to zero.

A very efficient way to analyze the filter response is provided by the analysis of its asso-
ciated transfer function H(z) that corresponds to the Z-transform of the impulse response
h(t).
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The z-transform of a signal s(n) is given by:

S(z) = Z
{
s[n]

}
=
∞∑
n=0

s(n)z−n (F.3)

with z a complex number. The z-transform is a generalized representation of the Fourier
transform and allows to represent data into a frequency domain. Therefore, the analysis
of the z-transform of the impulse response allows to determine the relation between the
input and output of a linear time-invariant system in terms of frequency.

The transfer function H(z) is then defined as:

H(z) =
Y (z)

X(z)
(F.4)

where X(z) and Y (z) are the z-transform of the input signal and the output signal respec-
tively.

Now, coming back to the general filter relation, shown in equation (F.2), one can re
arrange this relation into:

N∑
i=0

aix(t− i) =

M∑
j=0

bjy(t− j) (F.5)

with b0 = 1.
Then the z-transform of this equation is:

Z
{∑N

i=0 aix(t− i)
}

= Z
{∑M

j=0 bjy(t− j)
}

(F.6)

Using the linearity property of the z-transform, equation (F.6) can be rewritten as:

N∑
i=0

aiZ
{
x(t− i)

}
=

M∑
j=0

bjZ
{
y(t− j)

}
(F.7)

Based on the shifting property of the z-transform, equation (F.7) becomes:

N∑
i=0

aiz
−iX(z) =

M∑
j=0

bjz
−jY (z) (F.8)

The transfer function H is then derived from equation (F.4) and (F.8) as:

H(z) =

∑N
i=0 aiz

−i∑M
j=0 bjz

−j
(F.9)

with its most traditional form (as b0 = 1) :

H(z) =

∑N
i=0 aiz

−i

1 +
∑M

j=1 bjz
−j

(F.10)

Given the transfer function H(z), the frequency response is obtained by evaluating it
on the unit circle in the complex plane, i.e., by setting z = ejωT , where T is the sampling
interval in seconds, and ω is radian frequency. This frequency response has a magnitude
and a phase for each frequency.

The magnitude of the frequency response is called the amplitude response A and gives
the filter gain at each frequency ω as follows:

A(ω) = ‖H(ejωT )‖ (F.11)
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The magnitude response is generally described in decibel (Db). Note that a gain of 0
Db relates to no attenuation where -3 Db and -20 Db correspond to a gain of 0.707 and
0.1 respectively. Therefore, this gain defines how each signal frequency will be attenuated.

The second element of the frequency response is its phase response that corresponds
to the delay introduced by the filter at each frequency and is defined as:

Θ(ω) = arctan(
IMAG(H(ejωT ))

REAL(H(ejωT ))
) (F.12)

where REAL and IMAG denote the real part and the imaginary part of a complex number.
A more intuitive representation of the effect is generally represented with the phase delay
that correspond to the delay in second introduced for each frequency and is defined as:

P (ω) =
−Θ(ω)

ω
(F.13)

A commonly encountered representation of filter phase response is called the group
delay and refer to the average time delay imposed over the range of frequencies the filter
is designed to pass through. The group delay is defined as follows:

D(ω) = − ∂

∂ω
Θ(ω) (F.14)

F.2 State based filter

An important representation for discrete-time linear systems is the state-space formulation
that aims to model the observations (measurements) (zk) in function of the true state (xk)
of a model. The true state of the model at time k is obtained from the true state of the
model at time k − 1 and optional control input at time k. One of the most famous state
based filter is the Kalman filter [161, 181] that is now detailed.

F.2.1 Kalman filter

In a Kalman filter, the observations zk are related to the true state xk of the model as
follows:

zk = Hxk + vk (F.15)

where H is the observation matrix that maps the state space into the observed space
and vk is the measurement noise which is assumed to be white with a normal probability
distribution and a covariance of R.

The true state of the model at time k is obtained from a linear stochastic equation:

xk = Axk−1 +Buk−1 + wk−1 (F.16)

where A is a matrix that defines the state model. B relates the optional control input
uk to the model state. wk represents the process noise and is also assumed to be white
with normal probability distribution and a covariance of Q. However, the true state of
the model xk cannot be directly computed since both vk and wk are unknown.

The Kalman filter proposes to combine both predicted data (based on filtered data
obtained at time k− 1) and measured data (zk, obtained at time k) to obtain the filtered
data at time k. In order to simplify the mathematical writing, we introduce the notation
T̂i|j that relates to an estimate of the variable T at time i obtained from observations up
to (and including) at time j.

The predicted data(x̂k|k−1) at time k, generally referred as a priori state estimate, is
computed as follows:

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1 (F.17)
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where x̂k−1|k−1 is called the a posteriori state estimate at time k − 1 (that represents the
filtered data obtained at time k − 1).

The Kalman filter relies on the optimal combination (that makes the popularity of the
Kalman filter) of both predicted data and measured data as follows:

x̂k|k = x̂k|k−1 +Kk(zk −Hkx̂k|k−1) (F.18)

where Kk is weighting factor generally called the Kalman gain. In order to have an optimal
combination , Kk is chosen to minimize the mean squared error (mse) of the a posteriori
state estimate, respect to the true state xk:

mse = E((xk − x̂k|k)2) =

N∑
i=0

(cov(xk(i)− x̂k|k(i))) = Tr(Pk|k) (F.19)

where N is the size of the vector xk, Tr is a function that computes the trace of a matrix,
and Pk|k is defined as:

Pk|k = cov(xk − x̂k|k) (F.20)

and is usually referred as the a posteriori estimate error covariance at time k. Therefore,
this comes to find Kk that minimizes the trace of Pk|k.

F.2.1.1 Derivation of the Kalman gain

The a posteriori estimate error covariance Pk|k depends also on the true state xk of the
model and is therefore unknown. Therefore, further mathematical manipulations are re-
quired in order to be able to compute Pk|k.

From equation (F.18), one can do a substitution of x̂k|k that reads:

Pk|k = cov(xk − (x̂k|k−1 +Kk(zk −Hx̂k|k−1))) (F.21)

From equation (F.15), a further substitution of zk gives:

Pk|k = cov(xk − (x̂k|k−1 +Kk(Hxk + vk −Hx̂k|k−1))) (F.22)

that can be simplified into

Pk|k = cov((I −KkH)(xk − x̂k|k−1)−Kkvk) (F.23)

Since the measurement noise vk is uncorrelated from the other terms, equation (F.23) can
be re-written as:

Pk|k = cov((I −KkH)(xk − x̂k|k−1)) + cov(Kkvk) (F.24)

A property of covariance matrix says that cov(AX) = Acov(X)AT with X a random
variable matrix and A a given matrix. Therefore, the a posteriori estimate error covariance
can be formulated as:

Pk|k = (I −KkH)cov(xk − x̂k|k−1)(I −KkH)T +Kkcov(vk)K
T
k (F.25)

that leads to the recursive following form:

Pk|k = (I −KkH)Pk|k−1(I −KkH)T +KkRK
T
k (F.26)

that can be re-written (with (I −KkH)T = (I −HTKT
k ) as:

Pk|k = Pk|k−1 −KkHPk|k−1 − Pk|k−1H
TKT

k +Kk(HPk|k−1H
T +R)KT

k (F.27)
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As Pk|k is now computable in a recursive way, the selection of the optimal Kalman gain
is feasible. As previously mentioned, Kk is chosen to minimize the trace of Pk|k which is
obtained when:

∂Tr(Pk|k)

∂Kk
= 0 (F.28)

Based on the following properties of the derivatives of the trace of a matrix [182] (with
A and X two matrices):

∂Tr(XA)

∂X
= AT

∂Tr(AXT )

∂X
= A

∂Tr(XAXT )

∂X
= XAT +XA

(F.29)

the derivation of Tr(Pk|k) gives:

(HPk|k−1)T + Pk|k−1H
T +Kk(HPk|k−1H

T +R)T +Kk(HPk|k−1H
T +R) = 0 (F.30)

Since Pk|k−1 is a symmetric matrix, Pk|k−1H
T = P Tk|k−1H

T = (HPk|k−1)T and HPk|k−1H
T

is then also a symmetric matrix. R is also a symmetric matrix, therefore, (HPk|k−1H
T +

R)T = (HPk|k−1H
T +R). This thus leads to the following simplifications:

− 2(HPk|k−1)T + 2Kk(HPk|k−1H
T +R) = 0 (F.31)

and can be rearraged to the following equation:

(HPk|k−1)T = Kk(HPk|k−1H
T +R) (F.32)

By the symmetry of Pk|k−1 we have:

(HPk|k−1)T = P Tk|k−1H
T = Pk|k−1H

T (F.33)

The optimal Kalman gain can be finally computed as follows:

Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1 (F.34)

Note that in the condition of an optimal Kalman gain, by multiplying equation (F.34)
with (HPk−1H

T +R)KT
k , we obtain the following equality:

Pk|k−1H
TKT

k = Kk(HPk|k−1H
T +R)KT

k (F.35)

which then leads to a simplification of the recursive form of the a posteriori estimate error
covariance defined in equation (F.27) as:

Pk|k = Pk|k−1 −KkHPk|k−1 = (I −KkH)Pk|k−1 (F.36)

The final calculation of Pk|k requires the calculation of Pk|k−1 often referred in the
literature as the a priori estimate error covariance which is defined as:

Pk|k−1 = cov(xk − x̂k|k−1) (F.37)

and can be re-written by substituting xk and x̂k|k−1 from equation (F.16) and (F.17) as:

Pk|k−1 = cov(Axk−1 +Buk−1 + wk−1 −Ax̂k−1|k−1 −Buk−1) (F.38)

that can be simplified to

Pk|k−1 = cov(A(xk−1 − x̂k−1|k−1) + wk−1) (F.39)

and leads to the general recursive form of the a priori estimate error covariance computa-
tion:

Pk|k−1 = APk−1|k−1A
T +Q (F.40)
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F.2.1.2 The discrete Kalman filter algorithm

Although this filter can be written in one equation, this algorithm is generally divided into
two steps called the “prediction step” and the “update step”.

The prediction step provides estimate of the a priori state and the a priori error co-
variance as follows:

x̂k|k−1 = Ax̂k−1|k−1 +Buk−1

Pk|k−1 = APk−1|k−1A
T +Q

(F.41)

The update step provides estimate of the a posteriori state and the a posteriori error
covariance as follows:

Kk = Pk|k−1H
T (HPk|k−1H

T +R)−1

x̂k|k = x̂k|k−1 +Kk(zk −Hx̂k|k−1)

Pk|k = (I −KkH)Pk|k−1

(F.42)

F.2.2 Extended Kalman filter

The extended Kalman filter (EKF) was proposed to handle non linear models [183]. In
this case the state based model is defined as:

zk = g(xk) + vk (F.43)

and
xk = f(xk−1, uk−1) + wk−1 (F.44)

where g and f are non linear functions.
The a posteriori state estimate is then defined as:

x̂k|k = x̂k|k−1 +Kk(zk − g(x̂k|k−1)) (F.45)

and the a priori state estimate as:

x̂k|k−1 = f(x̂k−1|k−1, uk−1) (F.46)

The a posteriori error estimate covariance Pk|k is computed with the same substitution
scheme used for the Kalman filter derivation with the linearization of g(xk) around x̂k|k−1

that is:

g(xk) ≈ g(x̂k|k−1) +Gk(xk − x̂k|k−1) (F.47)

where Gk is a matrix of the partial derivative of g with respect to x in x̂k|k−1. In this
condition, we can write:

Pk|k = cov(xk − x̂k|k) (F.48)

= cov(xk − (x̂k|k−1 +Kk(zk − g(x̂k|k−1)))) (F.49)

= cov(xk − (x̂k|k−1 +Kk(g(x̂k|k−1) +Gk(xk − (x̂k|k−1) + vk − g(x̂k|k−1))))) (F.50)

= cov((I −KkGk)(xk − x̂k|k−1) + vk) (F.51)

= (I −KkGk)Pk|k−1(I −KkGk)
T −KkRK

T
k (F.52)

(F.53)

The a priori error estimate covariance Pk|k−1 is computed using a linearization of
f(xk−1, uk−1) around x̂k−1|k−1 as follows:

f(xk−1, uk−1) ≈ f(x̂k−1|k−1, uk−1) + Fk−1(xk−1 − x̂k−1|k−1) (F.54)
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where Fk−1 is a matrix of the partial derivative of f with respect to x in x̂k−1|k−1. Therefore,
Pk|k−1 is obtained as follows:

Pk|k−1 = cov(xk − x̂k|k−1) (F.55)

= cov(f(xk−1, uk−1) + wk−1 − f(x̂k−1|k−1, uk−1)) (F.56)

= cov(f(x̂k−1|k−1, uk−1) + Fk−1(xk−1 − x̂k−1|k−1) + wk−1 − f(x̂k−1|k−1, uk−1))

(F.57)

= cov(Fk−1(xk−1 − x̂k−1|k−1) + wk−1) (F.58)

= Fk−1Pk−1|k−1Fk−1 +Q (F.59)

(F.60)

Note that final equation of Pk|k and Pk|k−1 have the same form that in the Kalman filter
except that matrices A and H are replaced by the matrices Fk−1 and Gk respectively. The
optimal gain which minimizes the trace of Pk|k is obtained with the same mathematical
scheme as for the regular Kalman filter. Therefore, the final discrete EKF algorithm can
be sum up identically into two steps:

• prediction step:
x̂k|k−1 = f(x̂k−1|k−1, uk−1)

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 +Q

(F.61)

• update step:
Kk = Pk|k−1G

T
k (GkPk|k−1G

T
k +R)−1

x̂k|k = x̂k|k−1 +Kk(zk − g(x̂k|k−1))

Pk|k = (I −KkGk)Pk|k−1

(F.62)
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Introduction

Cette thèse porte sur le développement de nouveaux outils pour le traitement du cancer
et des arythmies cardiaques par ablation thermique guidée par IRM.

Hyperthermie locale en médecine

Cette section présente les traitements thérapeutiques existants, leurs limites et l’intéret
potentiel d’un traitements par hyperthermie locale.

Traitement du cancer : Plusieurs approches thérapeutiques sont actuellement utilisées
et souvent combinées pour le traitement du cancer, comme la chimiothérapie, la chirurgie
ou la radiothérapie [1]. Cependant, ces techniques ne sont pas toujours utilisables suivant le
type de cancer et peuvent générer de nombreux effets secondaires. Ainsi, le développement
de nouvelles approches visant à améliorer l’efficacité du traitement tout en diminuant ces
effets secondaires est désirable. Dans ce contexte, l’hyperthermie locale apparâıt comme
une alternative thérapeutique très prometteuse. Elle peut être utilisée pour l’ablation
directe des tissus tumoraux [2, 3, 4] mais aussi pour le dépôt local de médicaments [5]. Dans
cette thèse, les travaux ont porté sur l’ablation thermique directe utilisant des élévations
de température autour de 50-80◦C pendant une période de courte durée (plusieurs dizaines
de secondes) afin de générer une nécrose des tissus tumoraux [6].

L’hyperthermie locale peut être réalisée avec différents outils de chauffage mini ou non
invasifs comme le laser [2], la radio fréquences [3] ou les ultrasons focalisés (UF) [4]. Ces
trois modalités sont en cours d’évaluation pour le traitement du cancer du sein [7, 8, 9, 10],
de la prostate [11], des organes abdominaux [12] et du cerveau [13]. Afin d’améliorer
l’efficacité de l’intervention, l’IRM a été suggérée pour contrôler et guider le processus
thérapeutique [18, 19, 20, 21, 22, 23] et a déjà été intégrée en routine clinique comme par
exemple pour le traitement des fibromes utérins [24, 25]. En revanche, l’application aux
organes mobiles n’est pas directe puisque de nouveaux challenges doivent être abordés,
notamment celui du mouvement des organes. Dans cette thèse, des développements tech-
niques et méthodologiques sont proposés pour améliorer le guidage par IRM en temps réel
d’ablations thermiques par ultrasons focalisés sur les organes abdominaux (rein et foie).

Traitement des arythmies cardiaques : Les arythmies cardiaques sont causées par
une ou des stimulations électriques anormales du coeur, entrâınant des contractions ineffi-
caces du muscle cardiaque. Les deux principaux traitements thérapeutiques reposent sur
l’utilisation de drogues anti-arythmiques et la cardioversion (souvent appelée défibrillation).
Cependant, une rechute est observée avec ces traitements dans 77% des cas après un an
[29]. Ainsi, de nouvelles stratégies ont été développées afin d’améliorer le taux de succès du
traitement. L’ablation tissulaire par hyperthermie locale permet de changer l’impédance
électrique des tissus responsables de la pathologie [30, 31] et de rétablir une contraction
cardiaque efficace. Le chauffage par radio fréquences est privilégié pour cette intervention
et est déjà utilisé en routine clinique [32, 33, 34, 35]. Cependant, un échec thérapeutique
est observé dans 30 % des cas, probablement dû à un chauffage insuffisant ou excessif.
Dans cette thèse, la possibilité de guider cette intervention par IRM est évaluée afin de
contrôler le chauffage réalisé.

Contrôle de l’ablation thermique par IRM

L’IRM permet l’obtention d’images avec un excellent contraste tissulaire mais aussi avec
une résolution spatialle et temporelle élevée. Ainsi elle apparâıt comme une modalité
d’imagerie très prometteuse pour le guidage des interventions ciblées.
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Imagerie IRM : L’IRM acquiert les données dans l’espace K, qui peut être vu comme
une extension de l’espace de Fourier. Une transformée de Fourier inverse permet d’obtenir
une image complexe dont le module correspond à l’information anatomique (position et
constitution des tissus) et où la phase est directement proportionnelle à la fréquence de
résonance des protons (pour des séquences IRM en écho de gradient).

Thermométrie par IRM : L’IRM permet aussi l’obtention d’une information de
température pour chaque pixel puisque plusieurs propriétés magnétiques des tissus, comme
la fréquence de résonance des protons de l’eau, sont dépendantes de la température. Ainsi
une variation de température est directement proportionelle à une variation de phase [37].

Dosimétrie IRM : La relation entre l’élévation de température appliquée dans les tissus
et la mort cellulaire résultante a été évaluée et modélisée à travers le concept de la dose
thermique [38], défini comme suit :

DT =

{∫ t
0 2T (t)−43, si T < 43◦C∫ t
0 4T (t)−43, si T ≥ 43◦C

(F.63)

La destruction cellulaire est obtenue lorsque la dose thermique excède la dose thermique
létale qui est définie comme une élévation de température à 43◦C pendant 240mn (avec
une température basale de 37◦C). Ainsi, la dose thermique représente un outil intéressant
pour la prédiction de la nécrose induite et pour la détermination de la fin de la thérapie.

Ablations thermiques guidées par IRM sur organes mobiles : Les chal-
lenges

Le ciblage thérapeutique des organes mobiles comporte de nombreux challenges, dont la
principale source est liée à l’influence du mouvement des organes. Les organes ciblés,
le rein, le foie et le coeur, ont des mouvements spécifiques propres. Le mouvement du
rein et du foie est principalement causé par l’activité respiratoire. Bien que le rein ait
un mouvement rigide linéaire, le foie admet un mouvement plus complexe, composé d’un
déplacement linéaire ainsi que d’une déformation élastique. Enfin, le mouvement du coeur
est sujet à un déplacement linéaire lié à l’activité respiratoire combiné avec une forte
contraction induite par l’activité cardiaque. Les contraintes induites par le déplacement
de ces organes sur les modalités de l’intervention sont maintenant présentées.

Mouvement intra-scan : Il correspond au mouvement des organes durant l’acquisition
d’une image et génère des effets de flou sur les images reconstruites. Les séquences syn-
chronisées sur le cycle respiratoire ou cardiaque (à l’aide d’un capteur externe) permettent
de s’abstraire de ce problème mais diminuent substantiellement la résolution temporelle
de l’acquisition. Ainsi, des acquisitions ultra-rapides sont généralement privilégiées afin
de minimiser les mouvements intra-scan.

Bruit de mesure : L’utilisation de séquences rapides introduit généralement un bruit
de mesure élevé. Le bruit présent sur les images de magnitude reconstruites, peut être
quantifié avec le SNR. Ce dernier définit directement la précision maximale pouvant
être obtenue pour le calcul de la thermométrie [84]. Or, plusieurs traitements durant
l’intervention utilisent les informations de thermométrie comme le calcul de la dose ther-
mique, le contrôle automatique de la température [89, 90] ou des stratégies avancées
d’ablations volumétriques [93]. Par conséquent, ces algorithmes sont susceptibles d’être
biaisés ou de devenir instables à cause de la présence de bruit sur les mesures de ther-
mométrie.
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Mouvement inter-scan : Il correspond au mouvement d’un organe entre deux images.
Il est particulièrement problématique pour l’évaluation de la dose thermique qui requiert
une analyse temporelle pixel par pixel. Ce mouvement peut être dans le plan d’imagerie
(mouvement dans le plan) ou dans la direction perpendiculaire à ce plan (mouvement hors
plan de coupe).

Mouvement hors plan de coupe : L’imagerie 3D qui pourrait permettre de
s’abstraire des mouvements hors plan de coupe est difficilement envisageable sur des or-
ganes mobiles, notamment à cause des mouvements intra-scan. Une solution alterna-
tive consiste à ajuster la position du plan de coupe dans la troisième dimension à l’aide
d’informations sur le mouvement obtenu par un écho navigateur [40] ou un écho ultra
sonore [41].

Mouvement dans le plan : Pour résoudre le problème lié au déplacement des
organes entre les images, des algorithmes d’estimation et de compensation du mouve-
ment sont généralement utilisés. De nombreux algorithmes ont été proposés dans ce
but. Denis de Senneville et al. [58] ont montré qu’un algorithme estimant un modèle
global du mouvement, suivi par un raffinement local du champ de déplacements obtenu
par estimation du flot optique était une solution satisfaisante. L’estimation du flot op-
tique repose sur l’hypothèse de conservation de l’énergie (ici l’intensité) entre deux images.
L’approche la plus populaire a été proposée par Horn & Schunck [70], qui cherche le champ
de déplacements (u, v) minimisant la fonctionnelle suivante:

E =

∫∫ (
[Ixu+ Iyv + It]

2 + α2
[
‖∇u‖22 + ‖∇v‖22

])
dxdy (F.64)

où Ix,Iy,It sont les gradients spatio temporels sur l’intensité et α est une constante permet-
tant la pondération des deux métriques (variation d’intensité et régularité du mouvement).

Modification de la susceptibilité magnétique locale : Cet effet entrâıne une vari-
ation de signal sur les images de phase qui se superpose à la variation de phase induite
par l’hyperthermie. Afin de corriger cet effet avant le calcul de température, plusieurs
méthodes ont été proposées comme les techniques “referenceless” ou “multi-baseline”.
La première extrapole l’information de phase dans la zone chauffée à partir du signal
de phase des tissus non chauffés situés en périphérie. Cette phase synthétique non per-
turbée par l’effet du chauffage peut alors être soustraite à la phase courante pour obtenir
la température. La méthode “multi-baseline” requiert une étape de pré-traitement où
une modélisation des variations de phase en fonction du mouvement. Ainsi, durant
l’hyperthermie, à partir de l’information de mouvement, une image de phase peut être
obtenue par ce modèle et soustraite à la phase courante pour en déduire la température.

Ajustement du point focal en temps réel : Dans le cadre d’un chauffages UF,
la position du point focal doit être dynamiquement ajustée (électroniquement) avec le
mouvement de l’organe afin d’optimiser le dépôt d’énergie dans la zone souhaitée. De
plus, pour l’obtention d’une ablation volumétrique, le point focal peut aussi être déplacé
afin de chauffer une région plus importante. Ces deux mécanismes de contrôle automatique
de la position du point focal requièrent par conséquent des informations de mouvement et
de thermométrie en temps réel, avec une faible latence.

Aspects cliniques : La sécurité du patient doit être garantie. De plus, la procédure
interventionelle doit être simple et automatique de façon à pouvoir être intégrée en routine
clinique. Enfin, le temps total de l’intervention doit être optimisé afin de minimiser le coût
de l’intervention.
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Développements techniques et métodologiques

Les principaux développements réalisés durant cette thése sont maintenant présentés.

Reconstruction des images IRM en temps réel

Introduction : La réduction du temps d’acquisition apparâıt nécessaire pour la min-
imisation des mouvements intra-scan. L’imagerie parallèle permet une réduction du temps
d’acquisition en réalisant une acquisition partielle de l’espace K (par exemple uniquement
chaque kieme ligne, où k est appelé le facteur d’accélération). Dans ce cas, le signal IRM
est acquis par plusieurs canaux (éléments d’antenne) en parallèle. Le signal obtenu par un
élément d’antenne se trouve alors pondéré par sa sensibilité et les méthodes de reconstruc-
tion exploitent la différence de sensibilité spatiale entre chaque élément d’antenne afin de
compenser l’effet du sous échantillonnage de l’espace K. De plus, comme les mouvements
des antennes sont fréquents durant l’intervention, la mise à jour des cartes de sensibilité
apparâıt nécessaire. La reconstruction TSENSE [103] permet cela mais est associée à un
temps de calcul élevé, limitant son utilisabilité en temps réel pour l’IRM interventionelle.
Dans cette étude, une implémentation est proposée, visant à satisfaire les contraintes
temps réel de l’intervention thérapeutique et assurer une latence faible [107, 108].

Matériel et méthode : Une implémentation multi-thread est proposée dans l’objectif
de paralléliser le transport des données, la reconstruction générale des données et la recon-
struction spécifique liée à la méthode TSENSE. La reconstruction TSENSE a été portée
sur carte graphique (GPU) et a nécessité une attention particulière sur la gestion et la
disposition des données en mémoire. Les performances d’une implémentation GPU aug-
mentent fortement si les accès mémoire de chaque thread se font de manière continue.
Ainsi, les données ont été réorganisées en mémoire à plusieurs reprises de façon à opti-
miser les temps d’exécution. Les échanges de données entre CPU et GPU se font via un
bus PCI-express qui ont un débit limité. Ainsi, Ils ont été minimisés dans l’implémentation
proposée.

Le reconstructeur utilisé était un double processeur (INTEL, 3.1 GHz Penryn, quatre
noyaux) avec 8 Gb de RAM et une carte réseau de bande passante 1Gb/s. Le GPU était
une carte NVIDIA 8800 GTX avec 756 MB de DRAM.

Résultats : La reconstruction seule de la méthode TSENSE combinant CPU et GPU
permet de réduire le temps d’exécution, pour une image de résolution 128×128, par un fac-
teur 8 comparé à une implémentation utilisant uniquement un CPU. Dans ces conditions,
la reconstruction seule de la méthode TSENSE a un pic théorique de performance entre 75
images/s (facteur d’accélération 4, 16 canaux) et 330 images/s (facteur d’accélération 2, 4
canaux). Cependant, en pratique, le pic de performance est limité par la bande passante
du système d’acquisition (2.1 MB/s) qui correspond à une fréquence d’imagerie de 20 im-
ages/s (facteur d’accélération de 2 et 16 canaux) et 40 images/s (facteur d’accélération de
4 et 16 canaux). Le temps de transport varie entre 17 ms (facteur d’accélération de 4, 4
canaux, ≈135 KB par image) et 76 ms (facteur d’accélération de 2, 16 canaux, ≈1 MB
par image). La latence totale de la reconstruction ainsi obtenue varie de 20 ms (facteur
d’accélération de 4 et 4 canaux) à 85 ms (facteur d’accélération de 2 et 16 canaux).

Discussion et conclusion : L’implémentation proposée de la méthode de reconstruc-
tion TSENSE permet une fréquence de reconstruction supérieure à la fréquence d’acquisition
IRM, assurant ainsi la condition temps réel avec une latence faible. La vitesse de l’imagerie
est par conséquent limitée par la limite imposée par la séquence IRM utilisée.
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Thermométrie et dosimétrie en temps réel sur organes mobiles

Introduction : Le calcul de la thermométrie et de la dosimétrie requiert une châıne de
traitements complexes afin de corriger les artefacts liés notamment aux mouvements ou
au bruit. Dans cette étude, une extension de la méthode présentée par Denis de Senneville
et al. [58] est proposée et une implémentation combinant CPU et GPU a été ajoutée afin
de garantir la condition temps réel et assurer une latence faible [121, 122].

Matériel et méthode : La châıne de traitement est composée de plusieurs étapes visant
à corriger l’influence du mouvement, les variations de susceptibilité magnétique induites
par le mouvement et la dérive temporelle du signal de phase (lié à l’échauffement des
gradients du scanner IRM). Par la suite, la thermométrie est calculée et le bruit associé
est réduit en utilisant un filtre temporel. Finalement, la dose thermique est évaluée.

La correction du mouvement se compose de deux étapes : Le mouvement global
(modèle affine) est estimé par minimisation d’un critère qualité sur le recalage (inter-
corrélation). Afin de raffiner localement l’estimation, un algorithme d’estimation du flot
optique est appliqué. La correction de la variation de susceptibilité magnétique est réalisée
avec la méthode “multi-baseline”. La dérive temporelle sur l’image de phase est corrigée
en soustrayant un offset global de température (calculé sur une région extérieure à la zone
chauffée). Un filtre temporel à réponse impulsionnelle infinie (RII) est utilisé pour réduire
le bruit sur la température. Enfin, pour permettre la faisabilité de ces traitements en
temps réel, une implémentation combinant CPU et GPU a été réalisée.

Résultats : La méthode proposée a été évaluée dans les organes abdominaux (rein et
foie) de 11 volontaires sains en condition de respiration libre. La précision initiale de la
mesure de thermométrie (de 8◦C) à été réduite à 0.79◦C (dans le rein) et à 0.98 ◦C (dans
le foie). La méthode a également été validée in-vivo dans le rein d’un cochon durant une
ablation par UF. La précision de la température dans l’ensemble du rein était de 0.65◦C et
une élévation de température de 12 ◦C a été mesurée, correspondant à une dose thermique
égale à 10% de la dose létale.

Cette méthode a été par la suite évaluée dans le coeur et plus précisement dans le
ventricule gauche de 9 volontaires sains en respiration libre. Une précision moyenne de
3.6 ◦C sur la mesure de thermométrie a été obtenue. Une ablation par chauffage RF
(puissance RF de 10 W pendant 60 s) a également été réalisée dans le ventricule gauche
d’un mouton où une précision de 1 ◦C et une élévation de 16 ◦C ont été mesurées.

L’implémentation combinant CPU et GPU a permis une réduction du temps total
d’excécution de 81 ms à 13 ms, réduisant la latence totale (qui inclut 13 ms de transport
de données et 1 ms de reconstruction) de 95 ms à 27 ms.

Discussion et conclusion : La châıne de traitements proposée pour la thermométrie
et la dosimétrie sur organes mobiles permet de satisfaire la contrainte temps réel. En
revanche, même si la précision des mesures obtenues apparâıt prometteuse en vue d’une
application clinique, plusieurs questions doivent être encore adressées afin de garantir
la sécurité du patient. Ainsi des développements sont proposés dans cete thèse afin
d’améliorer l’estimation du mouvement en présence de mouvements hors plan de coupe
(entrâınant la présence de structures non persistantes dans les images) ainsi que pendant
l’hyperthermie (où des variations d’intensité sur les images peuvent être observées). Un
nouveau critère qualité sur l’estimation du mouvement est présenté et utilisé pour auto-
calibrer l’algorithme d’estimation du mouvement. De plus, l’utilisation d’un filtre RII (ou
RIF) introduit géréralement une latence additionnelle sur le signal filtré, générant un biais
systématique. Ainsi, un nouveau filtre a été mis au point, afin de réduire le bruit tout en
contrôlant le biais introduit par le filtre.
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Estimation du mouvement en présence de structures non persistantes

Introduction : Afin de réduire le temps d’acquisition et permettre une amélioration
de la résolution spatiale et ou temporelle, l’acquisition d’un champ de vue restreint au-
tour de l’organe apparâıt comme une alternative intéressante [139, 141]. En revanche,
ces techniques, comme les mouvements hors plan de coupe, généralement engendrent la
présence de structures non persistantes dans les images (induite de l’activité respiratoire)
et entrâınent la violation de l’hypothèse de conservation d’énergie faite par les algorithmes
d’estimation du flot optique. Ainsi, une nouvelle approche variationnelle est proposée pour
l’estimation du flot optique qui intègre le mouvement de points caractéristiques comme
terme de régularisation de la fonctionnelle d’erreur [145, 146].

Matériel et méthode : L’algorithme d’estimation du mouvement proposé est composé
de deux étapes. Premièrement, les points caractéristiques sont choisis. Pour cela, un
masque est manuellement dessiné autour de l’organe sur l’image de référence. Son con-
tour est extrait puis régulièrement sous-échantillonné. Pour affiner le positionnement
de chaque point échantillonné, le point caractéristique [52] le plus proche est choisi.
Durant la deuxième étape, le mouvement est estimé pour chaque image de la manière
suivante. Une estimation du mouvement global est réalisée puis utilisée comme initial-
isation de l’estimation du déplacement (ui, vi) de chacun des N points caractéristiques
(1 < i ≤ N). Les déplacements (ui, vi) considérés comme aberrants, sont automatique-
ment rejetés. Le mouvement des points caractéristiques est alors intégré à une nouvelle
fonctionnelle d’erreur Ec :

Ec(u, v) =

∫∫ (
[Ixu+ Iyv + It]

2 + α2
[
‖∇u‖22 + ‖∇v‖22

])
dxdy

+λ2

∫∫ ( N∑
i=0

(
ρ(di, R)

[
(u− ui)2 + (v − vi)2

]))
dxdy (F.65)

où ρ(di, R) = exp (−d2
i /R

2) pondère l’influence de chaque point caractéristique en fonction
de sa distance di au pixel de coordonnées (x, y) (avec R une constante). Une approche
multi-résolution a été rajouté et une implémentation GPU a été réalisée.

Résultats : Cet algorithme a été évalué in-vivo dans le coeur et dans le rein de 13 volon-
taires sains en condition de respiration libre. La séquence cardiaque utilisée était synchro-
nisée avec le cycle cardiaque afin s’abstraire du phénomène de contraction. Pour quantifier
la qualité du recalage, le contour de l’organe sur les images recalées a été manuellement
dessiné et le recouvrement avec la position originale a été calculée. L’algorithme proposé
présente des performances similaires à celles de l’algorithme de Horn & Schunck sur les
images conservant les même structures que l’image de référence. En revanche, en présence
des structures non persistantes, les performances de l’algorithme proposé garantissent un
recouvrement minimal de 91% dans le coeur et 88% dans le rein. Ces résultats surpassent
ceux obtenus avec l’algorithme de Horn & Schunck (72% dans le coeur et 83% dans le
rein). Enfin, l’implémentation GPU a permis la réduction du temps total d’exécution de
85 ms à 22 ms assurant sa faisabilité en temps réel avec une latence faible.

Discussion et conclusion : Dans cette étude, une fonctionnelle d’erreur est proposée
pour l’estimation du flot optique, intégrant le déplacement de points caractéristiques
comme terme de régularisation. Les performances obtenues en présence de structures
non persistentes améliorent nettement celles de la méthode de Horn & Schunck.
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Estimation du mouvement pendant l’hyperthermie

Introduction : Durant l’hyperthermie, le chauffage induit une modification des pro-
priétés tissulaires (temps de relaxation T1, T2 et T ∗2 ) générant des variations locales
d’intensité dans les images de magnitude. Les algorithmes de flot optique, attribuant
une variation d’intensité à un mouvement, sont alors susceptibles d’être perturbés. Dans
cette étude, la cause physique de la perturbation (le changement local de température)
est intégrée à la fonctionnelle d’erreur de Horn & Schunck [70] pour ajuster la confiance
locale sur l’utilisation des variations d’intensités pour l’estimation du flot optique [152].

Matériel et méthode : Une fonction de pondération β(x, y), dépendant directement
de la température, a été introduite dans la formulation de le fonctionnelle d’erreur. Cette
fonction permet d’attribuer à chaque pixel de coordonnées (x, y) un niveau de confiance
dans l’hypothèse de conservation de l’énergie (une valeur de 1 dénote une forte confiance
et une valeur de 0 représente une confiance nulle). La formulation de la fonctionnelle est
exprimée de la manière suivante :

E(u, v) =

∫∫ (
β(x, y) [Ixu+ Iyv + It]

2 + α2
[
‖∇u‖22 + ‖∇v‖22

])
dxdy (F.66)

où la fonction β(x, y) est mise à jour en temps réel en utilisant la dernière carte de
température T (x, y) comme suit :

β(x, y) =

{
1 , si T (x, y) < Tseuil

exp −(T (x,y)−Tseuil)2
k2

, si T (x, y) ≥ Tseuil
(F.67)

où k2 permet de définir la vitesse de convergence vers 0. Enfin, une approche multi-
résolution a été rajouté pour l’estimation de grand déplacement. Une implémentation
GPU de la méthode a également été réalisée.

Résultats : L’algorithme a été évalué et comparé avec la méthode de Horn & Schunck
sur des données simulées et durant une expérience de chauffage sur un muscle porcin
ex-vivo. Sur la simulation, un objet avec un mouvement vertical complexe (amplitude
maximale de 4 pixels) a été généré sur 200 images et une décroissance de signal sur une
région de taille 5×5 pixels a été ajoutée sur les 100 dernières images. Sur les 100 premières
images, l’erreur quadratique moyenne (EQM) entre le mouvement estimé et le mouvement
réel avec les deux algorithmes était de l’ordre de 0.3 pixels. Durant les 100 dernières
images, l’algorithme de Horn & Schunck a vu ses performances diminuer (EQM ≈ 1-2
pixels) alors que la méthode proposée a permis de maintenir une précision de 0.3 pixels.

Une seconde expérience a été conduite où un muscle porcin ex-vivo a été positionné
dans l’IRM sur une plateforme générant un mouvement périodique translationnel (ampli-
tude maximale=10 pixels). Le mouvement était estimé en parallèle avec un écho navigateur
servant ainsi de mesure de référence. L’EQM entre le mouvement estimé et le mouvement
de référence était de l’ordre de 0.4 pixels. Durant le chauffage RF, cette erreur a augmenté
au dessus de 2 pixels pour l’algorithme de Horn & Schunck et est restée constante autour
de 0.4 pixels avec la méthode proposée.

Discussion et conclusion : La méthode de Horn & Schunck est très sensible aux
variations d’intensité liées à l’hyperthermie. L’intégration de la cause physique de la
variation d’intensité (la température) a permis d’améliorer nettement les performances de
l’estimation du mouvement. Cette approche pourrait également être adaptée pour le rejet
de régions problématiques comme des artères, où dans le cas d’IRM de contraste utilisant
des passages de bolus.
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Auto-calibration de l’algorithme d’estimation du mouvement

Introduction : Les algorithmes d’estimation du mouvement ont généralement plusieurs
paramètres libres. Leur calibration optimale dépend de plusieurs éléments comme la com-
plexité de la déformation, l’amplitude du mouvement, le bruit sur les images, etc. Cepen-
dant une calibration manuelle apparâıt difficile car elle serait sujette aux approximations
de l’utilisateur et serait très coûteuse en temps. Pour ces raisons, une méthode automa-
tique de calibration est proposée dans cette étude [154, 155].

Matériel et méthode : Afin d’auto-calibrer un tel algorithme, la définition d’un critère
qualité sur l’estimation du mouvement est nécessaire. Généralement, des critères basés
sur la comparaison des images de magnitude (référence et recalée) sont utilisés mais sont
généralement biaisés par la présence du bruit sur les images, puisque le “recalage du bruit”
améliore ces critères. Dans cette étude, un nouveau critère, basé sur la comparaison
des images de phase est proposé. Cependant, deux effets entrâınent une variation du
signal des images de phase : le déplacement des organes et la variation de susceptibilité
magnétique induite par le mouvement. Ce dernier effet doit donc être enlevé avant le
calcul de similarité. Pour cela une modélisation (relation linéaire [79]) de la variation de
la phase recalée ϕ avec le mouvement D est réalisée comme suit :

ϕ(x, y, k) = a(x, y).D(x, y, k) + b(x, y) (F.68)

pour chaque dynamique k (ici k = 50 pour couvrir plusieurs cycles respiratoires). D(x, y, k)
est la composante principale du mouvement estimée à la dynamique k au pixel de coor-
données (x, y) et a et b sont les coefficients du modèle linéaire, estimés par une régression
linéaire. Une fois a et b estimés, le critère qualité sur l’estimation du mouvement est
calculé comme suit. Pour chaque image de la phase de calibration, la composante du
mouvement est extraite et une phase synthétique est obtenue à partir de l’équation (F.68).
L’erreur quadratique moyenne (EQM) est calculée entre chaque image de phase et sa phase
synthétique associée. Ces valeurs sont alors moyennées temporellement et le résultat peut
alors être utilisé comme critère de qualité sur l’estimation du mouvement.

Résultats : Le critère de qualité basé sur la phase a été comparé avec un critère basé
sur la magnitude pour l’auto-calibration de l’algorithme de Horn & Schunck et plus par-
ticulièrement le paramètre α2 (voir équation (F.64)). Dans une première expérience, un
muscle porcin ex-vivo a été positionné dans l’IRM sur une plateforme générant un mouve-
ment périodique translationnel (amplitude maximale 12 mm). Le mouvement était estimé
simultanément avec un écho navigateur servant ainsi de mesure de référence. L’EQM entre
le mouvement estimé et le mouvement de référence était de l’ordre de 1 pixel et de 0.5
pixel avec une auto-calibration utilisant le critère basé sur la magnitude et sur la phase,
prespectivement. Une étude a été réalisée sur des données in-vivo dans le rein et le foie
de 12 volontaires en condition de respiration libre. Pour chaque expérience, 10 points
dans chacun des organes ont été recalés manuellement et utilisés comme mouvement de
référence. L’auto-calibration utilisant le critère de magnitude et celle utilisant le critère
sur la phase ont respectivement généré des EQM (sur le mouvement estimé sur les 10
points) de 1.5 mm et de 0.8 mm.

Discussion et conclusion : Le mouvement étant estimé sur les images de magnitude
et le bruit entre les images de magnitude et de phase étant indépendant, le critère proposé
n’est par conséquent pas amélioré par le “recalage du bruit”. Il permet ainsi de surpasser
les performances des critères basés sur la magnitude. Enfin, son utilisation pour l’auto-
calibration d’un algorithme d’estimation du mouvement a également été démontrée.
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Réduction du bruit et contrôle de la précision

Introduction : Les algorithmes utilisant la température peuvent être biaisés par la
présence de bruit sur les mesures de thermométrie (comme par exemple pour le calcul
de la dose thermique ou la rétroaction sur l’outil de chauffage dans le cadre de stratégies
d’ablations volumétriques [93]). Le filtrage temporel de la température a été proposé
comme solution, en utilisant un filtre à réponse impulsionnelle infinie (RII) [122]. En re-
vanche ces filtres générent généralement une latence qui entrâıne un biais sur le signal filtré.
Dans cette étude, un filtre est proposé basé sur le formalisme du filtre de Kalman, com-
binant les mesures de température avec des prédictions obtenues par un modèle physique
décrivant le transfert de chaleur dans les tissus biologiques [165, 166].

Matériel et Méthode : Un filtre de Kalman étendu (FKE) combine efficacement les
mesures et les prédiction obtenues à partir d’un modèle (non linéaire), connaissant la
précision du modèle et des mesures. Le modèle utilisé est basée sur la résolution de
l’équation de transfert de chaleur [163] qui permet une prédiction de la température cor-
respondant à l’instant t à partir de la température à l’instant t− 1. Il intègre la puissance
émise et les coefficients d’absorption, de diffusion et de perfusion des tissus. Ainsi la
précision du modèle dépend directement de la précision des coefficients d’absorption et de
diffusion utilisés. Or, ces paramètres ne sont généralement disponibles qu’avec une cer-
taine incertitude. Par conséquent, la précision du modèle n’est a priori pas connue et peut
varier dans le temps (puisque le phénomène d’absorption n’intervient pas durant la période
de refroidissement). Ainsi un ajustement dynamique de la précision du modèle, notée Q,
a été rajouté. En utilisant l’hypothèse que le bruit des mesures est blanc autour des vrais
valeurs, le modèle peut être considéré comme juste si la somme ε entre les prédictions et
les mesures est proche de zéro. Ce critère a été utilisé pour contrôler le biais introduit par
le modèle en ajustant dynamiquement la précision Q du modèle. Pour cela, la plus petite
valeur de Q permettant d’obtenir une valeur ε < εseuil (avec εseuil la tolérance maximale
du biais introduit par le filtre) est sélectionnée. Une approche robuste (basée sur le critère
de Chauvenet appliqué sur la différence entre la mesure et la prédiction) a été rajouté afin
de remplacer des mesures considérées comme aberrantes, par les prédictions du modèle.

Résultats : Le filtre a été évalué sur des données simulées auxquelles un bruit gaussien
a été ajouté. L’erreur quadratique moyenne (EQM) entre le signal filtré et le signal non
bruité a été évalué avec un filtre à réponse impulsionelle finie (RIF) et le FKE. Le RIF
n’a apporté aucune amélioration de l’EQM durant la chauffage dû au biais généré par la
latence introduite. Durant le refroidissement, une amélioration de l’EQM d’un facteur 3
a été obtenue. Le FKE a permis de réduire l’EQM dans le pire cas (avec des paramètres
d’absorption et de diffusion délibérément mal configurés de ± 50%) par un facteur 3 et 15
pour les périodes de chauffage et de refroidissement, respectivement. Le filtre a également
été évalué in-vivo durant le chauffage d’un rein porcin. Le RIF et le FKE ont été appliqué
sur les mesures initiales de thermométrie, ainsi que sur une copie de ces mesures où un
artefact de 45◦C a été simulé sur deux images. Sur la seconde expérience, contrairement
au RIF qui a été fortement perturbé, l’approche robuste du FKE a permis la corrections
des deux artefacts. La dose thermique calculée pour chacune des deux expériences était
identique avec le FKE alors qu’une variation de 75 % a été observé avec le RIF.

Discussion et conclusions : Le filtre proposé permet la réduction du bruit tout en
garantissant un biais maximal de εseuil autour des mesures. Ainsi, si le modèle s’avère
très mal paramétré, le filtre se contentera de suivre les mesures. Enfin l’approche robuste
du filtre permet d’enlever des artefacts qui pourraient rendre instable ou inutilisable les
résultats des algorithmes utilisant la température (comme le calcul de la dose thermique).
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Conclusions générales

L’objectif de cette thèse était d’améliorer la méthodologie existante pour la guidage par
IRM des ablations thermiques sur organes mobiles et d’en assurer la faisabilité en temps
réel.

Développements méthodologiques et techniques:

La méthodologie existante était généralement limitée à une fréquence d’imagerie de 1
Hz [58]. Cependant, une intervention par UF sur organes mobiles nécessite une mise à
jour dynamique de la position du point focal avec le mouvement de l’organe. Dans ces
conditions, une fréquence de 1 Hz est insuffisante pour suivre efficacement le déplacement
d’un organe. Ainsi des algorithmes de prédiction du mouvement devaient être utilisés
pour augmenter la résolution temporelle de l’information de mouvement. Cependant,
ces algorithmes voient généralement leur performances se dégrader rapidement pour des
prédictions sur des périodes de plusieurs centaines de millisecondes.

Dans cette thèse, une châıne de traitements est présentée pour obtenir une information
de thermométrie et de dosimétrie en temps réel avec une fréquence élevée de l’ordre de
10-15 Hz. La combinaison d’une acquisition IRM rapide (pour minimiser les mouvements
intra-scan) avec une châıne de traitements pour la correction des mouvements inter-scan
et des variations de susceptibilité magnétique a été évaluée avec succès dans les organes
abdominaux et dans le coeur. Son potentiel pour l’ajustement dynamique de la position
de point focal du transducteur HIFU avec le mouvement de l’organe a été démontrée.

Des développements méthodologiques ont été réalisés sur plusieurs aspects de la châıne
de traitements. Ainsi, plusieurs solutions ont été proposées pour améliorer l’estimation
du mouvement. Une nouvelle fonctionnelle d’erreur pour l’estimation du flot optique a
été proposée afin d’améliorer l’estimation du mouvement en présence de structures non
persistantes dans les images. Une seconde amélioration a été proposé afin d’améliorer
la robustesse de l’algorithme contre les variations d’intensité induites par l’hyperthermie.
Pour cela, une extension de la fonctionnelle d’erreur a été proposée afin d’integrer di-
rectement la température comme coefficient d’ajustement de la confiance dans l’intensité.
Enfin, comme le choix des paramètres libres des algorithmes d’estimation du mouvement
sont directement dépendant de l’amplitude du mouvement des organes ou du SNR (qui
varient d’un patient à un autre), une méthode d’auto-calibration de ces algorithmes a été
proposée. Un nouveau critère pour l’évaluation in-vivo de la qualité du mouvement estimé
a été développé et a été utilisé pour effectuer cette auto-calibration.

De plus, comme les cartographies de température sont recalées sur une même posi-
tion de référence, l’intégration d’un filtre temporel a permis d’améliorer la précision des
mesures. Cependant, les filtres temporels comme les RIF ou RII introduisent généralement
une latence qui, avec des systèmes variant rapidement, se traduit par un biais systématique
(non contrôlé) qui peut menacer la sécurité du patient. Cela n’étant pas acceptable pour
une application clinique, un nouveau filtre a été proposé, visant à améliorer la précision
tout en garantissant un biais maximal (défini par l’utilisateur).

Enfin, l’utilisation du GPU, pour la parallélisation des algorithmes de traitement
d’images, s’est avérée efficace et représente un moyen peu onéreux pour assurer la com-
patibilité des algorithmes utilisés avec la condition temps réel.

Perspectives

Perspectives méthodologiques: Bien que la thermométrie par IRM permette d’obtenir
une précision de l’ordre du degré dans les organes abdominaux et de l’ordre de 2-3◦C dans
le coeur, plusieurs aspects méthodologiques pourraient encore être améliorés.
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L’estimation du mouvement dans le foie peut être perturbée par la présence de cer-
tains vaisseaux sanguins. Le critère proposé pour l’évaluation de la qualité du mou-
vement pourrait être utilisé pour détecter automatiquement ces zones. L’analyse de
la carte d’erreur du fit obtenue lors de la création du modèle linénaire entre variation
de phase et déplacement pourrait permettre de discriminer de telles regions. Enfin la
méthode proposée pour rejeter des pixels lors de l’estimation du flot optique durant
l’hyperthermie pourrait être étendue afin de rejeter également les pixels appartenant aux
zones problématiques. De plus, l’estimation du mouvement est directement réalisée sur les
images IRM. L’utilisation d’informations auxiliaires (pouvant être obtenues par exemple
avec l’imagerie multi-modale) pourrait permettre de découpler l’estimation du mouvement
du calcul de thermométrie. Cela permettrait de pouvoir choisir des stratégies d’imagerie
différentes (en terme de résolution spatio-temporelle par exemple) pour chacun des deux
processus.

L’amélioration de la couverture spatiale de la thermométrie (vers la 3D) devrait également
permettre d’optimiser les stratégies d’ablations volumétriques. Comme les IRM récentes
permettent maintenant de modifier dynamiquement les paramètres des séquences, le déplacement
dynamique du plan d’imagerie représente une solution prometteuse pour balayer un volume
3D. Cependant ce type de solution réduit la résolution temporelle de la thermométrie. Le
formalisme du filtre de Kalman proposé repésente ainsi une solution interessante pour aug-
menter cette résolution temporelle. Il pourrait être utilisé sur la coupe acquise comme un
filtre (et comme présenté dans notre étude) mais pourrait également être employé comme
prédicteur dans le reste du volume 3D. Cela permettrait d’obtenir une thermométrie 3D
avec une haute résolution temporelle avec un échantillonage réduit de mesures. D’autres
stratégies peuvent être considérées afin d’améliorer la couverture spatialle et temporelle.
L’imagerie avec un champ de vue restreint est une solution interessante mais peut génerer
la présence de structures non persistentes dans les images, pouvant être problématique
pour les algorithmes d’estimation du mouvement. Néamoins, ce problème a été effica-
ment adressé en intégrant le mouvement de points caractéristiques comme paramètre de
régularisation dans l’estimation du flot optique.

Enfin le développement de méthodes pour contrôler le déroulement de l’intervention
thérapeutique devra être réalisé. La modélisation a priori de l’intervention représente une
piste intéressante. De plus, l’utilisation simultanée de différentes méthodes d’acquisition
(image multi-modale) ou de correction pourrait fournir des mesures indépendantes pour
une même tâche et ainsi augmenter la fiabilité des résultats. Par conséquent, les méthodes
développées dans cette thése pourraient être utilisées également à de fins de contrôle.

Perspectives cliniques: L’ablation par UF guidée par IRM sur les organes ab-
dominaux peut être réalisée avec une précision de l’ordre du degré. Des solutions effi-
caces ont été developées pour traiter les principaux problèmes liés à cette intervention
thérapeutique. Cependant le développement d’une châıne incluant l’ensemble des solu-
tions reste à développer. L’ablation par UF guidée par IRM ayant maintenant gagné en
maturité, son transfert vers la clinique devra également être abordé.

L’ablation par RF guidée par IRM dans le coeur reste encore un challenge, même si les
études présentées montrent des résultats encourageants avec une précision de thermométrie
de l’ordre de 2-3 degrés. Bien que ces études aient été réalisées dans le ventricule gauche,
la cible finale est l’atrium qui a une épaisseur de 1-3 mm correspondant à la taille des
voxels des séquences IRM utilisées. Ainsi, des stratégies pour améliorer la résolution
spatiale devront être développées afin de réduire les effets de volume partiel. De plus, les
expériences présentées ont été réalisées sur des volontaires sains et des animaux sains. Par
conséquent, la faisabilité de la méthodologie de thermométrie et de dosimétrie en présence
d’arythmies devra être également évaluée.
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• B. Denis de Senneville, S. Roujol, P. Jäıs, C.T.W. Moonen, G. Herigault, B. Quesson,
Feasibility of fast MR-thermometry during cardiac RF ablation, NMR Biomed, In
press

• S. Roujol, M. Ries, C. Moonen, B. Denis de Senneville, Automatic registration cali-
bration for real time MR-interventional applications, IEEE trans Med Im, In press

• S. Hey, A. Cernicanu, B. Denis de Senneville, S. Roujol, M. Ries, C.T.W. Moonen,
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Résumé

L’ablation des tissus par hyperthermie locale guidée par IRM est une technique promet-
teuse pour le traitement du cancer et des arythmies cardiaques. L’IRM permet d’extraire
en temps réel des informations anatomiques et thermiques des tissus. Cette thèse a pour
objectif d’améliorer et d’étendre la méthodologie existante pour des interventions sur des
organes mobiles comme le rein, le foie et le coeur. La première partie a été consacrée à
l’introduction de l’imagerie rapide (jusqu’à 10-15 Hz) pour le guidage de l’intervention par
IRM en temps réel. L’utilisation de cartes graphiques (GPGPU) a permis une accélération
des calculs afin de satisfaire la contrainte de temps réel. Une précision, de l’ordre de
1◦C dans les organes abdominaux et de 2-3◦C dans le coeur, a été obtenue. Basé sur
ces avancées, de nouveaux développements méthodologiques ont été proposés dans une
seconde partie de cette thèse. L’estimation du mouvement basée sur une approche vari-
ationnelle a été améliorée pour gérer la présence de structures non persistantes et de
fortes variations d’intensité dans les images. Un critère pour évaluer la qualité du mouve-
ment estimé a été proposé et utilisé pour auto-calibrer notre algorithme d’estimation du
mouvement. La méthode de correction des artefacts de thermométrie liés au mouvement,
jusqu’ici restreinte aux mouvements périodiques, a été étendue à la gestion de mouvements
spontanés. Enfin, un nouveau filtre temporel a été développé pour la réduction du bruit
sur les cartographies de température. La procédure interventionnelle apparâıt maintenant
suffisamment mature pour le traitement des organes abdominaux et pour le transfert vers
la clinique. Concernant le traitement des arythmies cardiaques, les méthodes ont été
évaluées sur des sujets sains et dans le ventricule gauche. Par conséquent, la faisabilité de
l’intervention dans les oreillettes mais aussi en présence d’arythmie devra être abordée.

Mots-clés: IRM interventionnelle, thermométrie, système temps réel, estimation du
mouvement, filtrage du signal

Summary

MR-guided thermal ablation is a promising technique for the treatment of cancer and
atrial fibrillation. MRI provides both anatomical and temperature information. The
objective of this thesis is to extend and improve existing techniques for such interventions
in mobile organs such as the kidney, the liver and the heart. A first part of this work
focuses on the use of fast MRI (up to 10-15 Hz) for guiding the intervention in real
time. This study demonstrated the potential of GPGPU programming as a solution to
guarantee the real time condition for both MR-reconstruction and MR-thermometry. A
precision in the range of 1◦C and 2-3◦C was obtained in abdominal organs and in the heart,
respectively. Based on these advances, new methodological developments have been carried
out in a second part of this thesis. New variational approaches have proposed to address
the problem of motion estimation in presence of structures appearing transient and high
intensity variations in images. A novel quality criterion to assess the motion estimation
is proposed and used to autocalibrate our motion estimation algorithm. The correction
of motion related magnetic susceptibility variation was extended to treat the special case
of spontaneous motion. Finally, a novel temporal filter is proposed to reduce the noise
of MR-thermometry measurements while controlling the bias introduced by the filtering
process. As a conclusion, all main obstacles for MR-guided HIFU-ablation of abdominal
organs have been addressed in in-vivo and ex-vivo studies, therefore clinical studies will
now be realized. However, although promising results have been obtained for MR-guided
RF-ablation in the heart, its feasibility in the atrium and in presence of arrhythmia still
remains to be investigated.

Key words: Interventional MRI, thermometry, real time system, motion estimation,
signal filtering
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