Partitions aléatoires et théorie asymptotique des groupes symétriques, des algèbres d'Hecke et des groupes de Chevalley finis
Auteur / Autrice : | Pierre-Loïc Méliot |
Direction : | Philippe Biane |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques |
Date : | Soutenance le 17/12/2010 |
Etablissement(s) : | Paris Est |
Ecole(s) doctorale(s) : | École doctorale Mathématiques, Sciences et Technologies de l'Information et de la Communication (Champs-sur-Marne, Seine-et-Marne ; 2010-....) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique de l'Institut Gaspard Monge (1997-2009) |
Jury : | Président / Présidente : Philippe Bougerol |
Examinateurs / Examinatrices : Philippe Biane, Ashkan Nikeghbali, Jean-Yves Thibon | |
Rapporteur / Rapporteuse : Alexei Borodin, Cédric Lecouvey |
Mots clés
Résumé
Au cours de cette thèse, nous avons étudié des modèles de partitions aléatoires issus de la théorie des représentations des groupes symétriques et des groupes de Chevalley finis classiques, en particulier les groupes GL(n,Fq). Nous avons démontré des résultats de concentration gaussienne pour :- les q-mesures de Plancherel (de type A), qui correspondent à l'action de GL(n,Fq) sur la variété des drapeaux complets de (Fq)^n, et sont liées à la théorie des représentations des algèbres d'Hecke des groupes symétriques.- l'analogue en type B du modèle précédent, correspondant à l'action de Sp(2n,Fq) sur la variété des drapeaux totalement isotropes complets dans (Fq)^2n.- les mesures de Schur-Weyl, qui correspondent aux actions commutantes de GL(N,C) et Sn sur l'espace des n-tenseurs d'un espace vectoriel de dimension N.- et les mesures de Gelfand, qui correspondent à la représentation du groupe symétrique qui est la somme directe sans multiplicité de toutes les représentations irréductibles de Sn.Dans chaque cas, nous avons établi une loi des grands nombres et un théorème central limite tout à fait semblable à la loi des grands nombres de Logan-Shepp-Kerov-Vershik (1977) et au théorème central limite de Kerov (1993) pour les mesures de Plancherel des groupes symétriques.Nos résultats peuvent presque tous être traduits en termes de combinatoire des mots, et d'autre part, les techniques employées sont inspirées des techniques de la théorie des matrices aléatoires. Ainsi, on a calculé pour chaque modèle l'espérance de fonctions polynomiales sur les partitions, qui jouent un rôle tout à fait analogue aux polynômes traciaux en théorie des matrices aléatoires. L'outil principal des preuves est ainsi une algèbre d'observables de diagrammes de Young, qu'on peut aussi interpréter comme algèbre de permutations partielles. Nous avons tenté de généraliser cette construction au cas d'autres groupes et algèbres, et nous avons construit une telle généralisation dans le cas des algèbres d'Hecke des groupes symétriques. Ces constructions rentrent dans le cadre très abstrait des fibrés de semi-groupes par des semi-treillis ; dans le même contexte, on peut formaliser des problèmes combinatoires sur les permutations, par exemple le problème du calcul des nombres de Hurwitz