Thèse soutenue

Prise en compte des singularités géométriques dans le préconditionnement d'équations intégrales pour le problème de Helmholtz

FR  |  
EN
Auteur / Autrice : Séverine Molko-Daugas
Direction : François AlougesDavid Levadoux
Type : Thèse de doctorat
Discipline(s) : Mathématiques
Date : Soutenance en 2010
Etablissement(s) : Paris 11
Partenaire(s) de recherche : autre partenaire : Université de Paris-Sud. Faculté des sciences d'Orsay (Essonne)
Jury : Examinateurs / Examinatrices : François Alouges, David Levadoux, Houssem Haddar, Florian Méhats, Toufic Abboud, Frédéric Lagoutière
Rapporteurs / Rapporteuses : Houssem Haddar, Florian Méhats

Résumé

FR  |  
EN

Pour la résolution numérique de la diffraction d'une onde par un objet, plusieurs méthodes sont utilisables dont une grande classe consiste à ne poser le problème que sur le bord de l'objet à l'aide d'une formulation intégrale de la solution. Le problème linéaire à résoudre peut néanmoins être de grande taille si le bord de l'objet est finement discrétisé, et l'emploi de méthodes itératives devient incontournable pour résoudre le système linéaire sous-jacent. Ceci conduit naturellement à se poser la question de préconditionner ce système afin d'en accélérer sa résolution. Une technique efficace (la GCSIE) a été développée à l'Onera dans le cas de surfaces lisses. Elle consiste à utiliser une approximation de l'opérateur admittance (Dirichlet-ta-Neumann). Lorsque la surface possède des singularités (arêtes, coins, pointes, etc. ), comme c'est souvent le cas dans les applications, la technique fonctionne sensiblement moins bien, la qualité de l'approximation, fondée intrinsèquement sur une approximation de la surface par son plan tangent, étant mauvaise près de ces endroits. L'idée que nous proposons consiste à garder le schéma numérique de la GCSIE classique, mais en utilisant l'admittance de surfaces canoniques (plan tangent comme pour les surfaces lisses, arête, coin, ou cône). Cela suppose donc de connaître l'admittance de surfaces canoniques, mais aussi de pouvoir étudier les opérateurs sur des surfaces non lisses. Dans cette thèse, nous traitons le cas du problème de Helmholtz en dimension 2. L'admittance du cône infini pour le problème de Laplace se calcule explicitement grâce à la transformée de Mellin. En ce qui concerne le problème de Helmholtz, nous avons utilisé une décomposition spectrale pour donner une expression explicite de l'admittance du cône infini, utilisable en pratique. D'autre part, la théorie pseudo-différentielle de Kondrat'ev et Schulze sur des ouverts singuliers nous permet de faire l'analyse et de montrer le caractère bien posé de la formulation GCSIE. Enfin, nous avons implémenté la nouvelle GCSIE comme définie plus haut. Nous obtenons une amélioration de la vitesse de convergence de l'ordre de 50% par rapport à la GCSIE habituelle sur une pointe (et un facteur 10 par rapport aux équations classiques), ainsi qu'une amélioration de la précision de l'ordre de 75%.