Réseaux géométriques aléatoires : connexité et comparaison

par Yogeshwaran Dhandapani

Thèse de doctorat en Mathématiques appliquées

Sous la direction de François Baccelli et de Bartłomiej Błaszczyszyn.

Soutenue en 2010

à Paris 6 .


  • Résumé

    Cette thèse porte sur deux thèmes : 1)Percolation et connexité sur les graphes géométriques aléatoires dits "type AB". 2)Comparaison stochastique directionnellement convexe de processus ponctuels et leurs propriétés de percolation et connexité. Dans le premier sujet, nous définissons un graphe biparti, dit "de type AB", sur deux processus ponctuels de Poisson indépendants. Cet graphe est une extension continue de graphe dit "type AB" sur une grille régulière. Nous montrons l'existence de percolation pour toute dimension supérieure à deux et nous établissons des bornes pour l'intensité critique. Dans le cas de dimensions deux, nous caractérisons exactement l'intensité critique. Pour le problème de connexité, nous étudions le modelé sur les processus ponctuels de Poisson indépendant dans le cube de volume un avec des intensités n et c_n pour une constante c > 0. Nous établissons des bornes asymptotiques presque sûres pour le seuil de connexité. 2) Le but du deuxième sujet de travail est de définir l'ordre directionnellement convexe de processus ponctuels est de lier cet ordre aux propriétés de regroupement des points de processus ponctuels et, dans un contexte applicatif, aux caractéristiques de la performance des réseaux de communication sans fil. La dernière partie de cette thèse porte sur la comparaison des intensités critiques de percolation pour les processus ponctuels ordonnés selon cet ordre et les applications de ces résultats de comparaison pour les réseaux sans fils. Nous concluons en montrant que les processus ponctuels inférieurs, selon cet ordre, à un processus ponctuel de Poisson ont une transition de phase non-triviale dans plusieurs modelés des percolation.

  • Titre traduit

    Stochastic geometric networks : connectivity and comparison


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (XII-152 p.)
  • Annexes : Bibliogr. p. 145-152. [115] réf. bibliogr.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Sorbonne Université. Bibliothèque de Sorbonne Université. Bibliothèque Mathématiques-Informatique Recherche.
  • Consultable sur place dans l'établissement demandeur
  • Cote : T Paris 6 2010 621

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2010PA06A621
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.