Techniques non-additives d'estimation de la densité de probabilité
Auteur / Autrice : | Bilal Nehme |
Direction : | Olivier Strauss |
Type : | Thèse de doctorat |
Discipline(s) : | Génie informatique, automatique et traitement du signal |
Date : | Soutenance le 20/12/2010 |
Etablissement(s) : | Montpellier 2 |
Ecole(s) doctorale(s) : | Information, Structures, Systèmes (Montpellier ; École Doctorale ; 2009-2014) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique, de robotique et de micro-électronique (Montpellier ; 1992-....) |
Jury : | Président / Présidente : William Puech |
Examinateurs / Examinatrices : Olivier Strauss | |
Rapporteur / Rapporteuse : Thierry Denoeux, Sylvie Galichet |
Mots clés
Résumé
Dans cette thèse, nous proposons une nouvelle méthode d'estimation non-paramétrique de la densité de probabi lité. Cette méthode d'estimation imprécise combine la théorie de distribution de Schwartz et la théorie de possibilité. La méthode d'estimation que nous proposons est une extension de la méthode d'estimation à noyau. Cette extension est basée sur une nouvelle méthode de représentation de la notion de voisinage sur laquelle s'appuie l'estimation à noyau. Cette représentation porte le nom de noyau maxitif. L'estimation produite est de nature intervalliste. Elle est une enveloppe convexe d'un ensemble d'estimation de Parzen-Rosenblatt obtenus avec un ensemble de noyaux contenus dans une famille particulière. Nous étudions un certain nombre des propriétés théoriques liées à cette nouvelle méthode d'estimation. Parmi ces propriétés, nous montrons un certain type de convergence de cet estimateur. Nous montrons aussi une aptitude particulière de ce type d'estimation à quantifier l'erreur d'estimation liée à l'aspect aléatoire de la distribution des observations. Nous proposons un certain nombre d'algorithmes de faible complexité permettant de programmer facilement les méthodes que nous proposons