Thèse soutenue

Etude probabiliste et statistique des grandes bases de données.

FR  |  
EN
Auteur / Autrice : Cécile Low-Kam
Direction : André MasMaguelonne Teisseire
Type : Thèse de doctorat
Discipline(s) : Mathématiques appliquées et applications des mathématiques
Date : Soutenance le 07/12/2010
Etablissement(s) : Montpellier 2
Ecole(s) doctorale(s) : Information, Structures, Systèmes (Montpellier ; École Doctorale ; 2009-2014)
Partenaire(s) de recherche : Laboratoire : Institut Montpelliérain Alexander Grothendieck (Montpellier ; 2003-....)
Jury : Président / Présidente : Gilles Ducharme
Examinateurs / Examinatrices : André Mas, Maguelonne Teisseire, Gilles Celeux, Nicolas Brunel, Mathieu Roche
Rapporteurs / Rapporteuses : Catherine Matias, Patrick Gallinari

Mots clés

FR  |  
EN

Mots clés contrôlés

Résumé

FR  |  
EN

Cette thèse se situe à l'interface de la statistique et de la fouille de données. Elle est composée de trois parties indépendantes. Dans la première, nous cherchons à estimer l'ordre (le nombre d'États cachés) d'un modèle de Markov caché dont la distribution d'émission appartient à la famille exponentielle. Nous nous plaçons dans le cas où aucune borne supérieure sur cet ordre n'est connue a priori. Nous définissons deux estimateurs pénalisés pour cet ordre, l'un basé sur le maximum de vraisemblance et l'autre sur une statistique de mélange bayésien. Nous montrons la consistance forte de ces estimateurs. Dans la deuxième partie, nous extrayons des motifs séquentiels dont la fréquence est exceptionnellement élevée par rapport à un modèle de Markov. L'approche consiste à dénombrer dynamiquement toutes les positions possibles d'un motif au sein d'une séquence. Puis la fréquence observée est comparée à la fréquence attendue à l'aide d'un test binomial. Une procédure est utilisée pour tenir compte des tests multiples. Des expérimentations sont menées sur des bases synthétiques et des séquences de protéines. Enfin, dans la troisième partie, nous nous intéressons au calcul de l'estimateur à noyau de la densité. Les observations sont regroupées dans des structures hiérarchiques d'arbres binaires. Les calculs sont réalisés sur les nœuds, plutôt que sur les points, pour une plus grande efficacité. Nous effectuons le calcul sur un Échantillon de points de chaque nœud, au lieu de sa totalité, en utilisant des inégalités de concentration non-paramétriques pour contrôler l'erreur. Puis, nous proposons un nouveau parcours de l'arbre pour effectuer ces échantillonnages sur un nombre réduit de nœuds. Nous testons notre approche sur des jeux de données synthétiques.