Segmentation et mise en correspondance d'image de stéréovision basée sur la ligne de déclivité : application à la détection de véhicule
Auteur / Autrice : | Yaqian Li |
Direction : | Abdelaziz Bensrhair, Gwenaëlle Toulminet |
Type : | Thèse de doctorat |
Discipline(s) : | Informatique |
Date : | Soutenance le 04/06/2010 |
Etablissement(s) : | Rouen, INSA |
Ecole(s) doctorale(s) : | École doctorale sciences physiques mathématiques et de l'information pour l'ingénieur (Saint-Etienne-du-Rouvray, Seine-Maritime ; ....-2016) |
Partenaire(s) de recherche : | Laboratoire : Laboratoire d'informatique, de traitement de l'information et des systèmes (Saint-Etienne du Rouvray, Seine-Maritime ; 2006-...) |
Jury : | Président / Présidente : Jean Le Bihan |
Examinateurs / Examinatrices : Stéphane Mousset | |
Rapporteurs / Rapporteuses : Fawzi Nashashibi, Majdi Khoudeir |
Mots clés
Mots clés contrôlés
Résumé
Dans le cadre de systèmes d’aide à la conduite, nous avons contribué aux approches de stéréovision pour l’extraction de contour, la mise en correspondance des images stéréoscopiques et la détection de véhicules. L’extraction de contour réalisée est basée sur le concept declivity line que nous avons proposé. La declivity line est construite en liant des déclivités selon leur position relative et similarité d’intensité. L’extraction de contour est obtenue en filtrant les declivity lines construites basées sur leurs caractéristiques. Les résultats expérimentaux montrent que la declivity lines méthode extrait plus de l’informations utiles comparées à l’opérateur déclivité qui les a filtrées. Des points de contour sont ensuite mis en correspondance en utilisant la programmation dynamique et les caractéristiques de declivity lines pour réduire le nombre de faux appariements. Dans notre méthode de mise en correspondance, la declivity lines contribue à la reconstruction détaillée de la scène 3D. Finalement, la caractéristique symétrie des véhicules sont exploitées comme critère pour la détection de véhicule. Pour ce faire, nous étendons le concept de carte de symétrie monoculaire à la stéréovision. En conséquence, en effectuant la détection de véhicule sur la carte de disparité, une carte de symétrie (axe; largeur; disparity) est construite au lieu d’une carte de symétrie (axe; largeur). Dans notre concept, des obstacles sont examinés à différentes profondeurs pour éviter la perturbation de la scène complexe dont le concept monoculaire souffre.