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Résumé 

Les mutations de résistance génotypiques constituent un problème majeur pour l’optimisation du 
traitement antirétroviral chez les patients infectés par le VIH-1 naïfs au traitement ou prétraités. 
Cependant, l’analyse de l’impact des mutations sur la réponse au traitement est compliquée par i) le 
nombre élevé de mutations, ii) la colinéarité possible entre ces mutations, iii) le faible nombre de 
patients inclus dans les études et iv) la définition du critère de jugement. Les objectifs de cette thèse 
sont 1) de donner une vue d’ensemble et de discuter, en collaboration avec le réseau européen NEAT 
(European AIDS treatment network), les critères de jugement utilisés dans les essais cliniques récents 
et ceux utilisés lors de l’analyse des mutations de résistance, 2) d’évaluer l’impact des mutations 
génotypiques sur la réponse au traitement chez les patients naïfs dans le cadre d’une grande 
collaboration Européenne (EuroCoord-CHAIN) et 3) de comparer des méthodes adaptées pour les 
données à haute-dimension dans le but de construire un score génotypique pour la prédiction de la 
réponse virologique chez les patients prétraités. Les critères de jugement composites sont les plus 
utilisés dans les essais cliniques récents mais un critère purement virologique devrait être utilisé pour 
l’analyse de l’impact des mutations génotypiques. Les mutations de résistance transmises impactent 
sur la réponse à la première ligne de traitement si le traitement antirétroviral n’est pas adapté au 
génotype du virus du patient. L’analyse en composantes principales et l’analyse partial least square 
avaient une bonne capacité à prédire la réponse virologique mais étaient guère meilleures que le score 
génotypique. Nous allons continuer à travailler sur la comparaison des ces méthodes utilisant des 
critères de jugement différents dans le cadre de notre collaboration avec le Forum for collaborative 
HIV research. 

Summary 

Genotypic resistance mutations are a major concern for antiretroviral treatment optimisation in HIV-1 
infected treatment naïve and treatment experienced patients. However, the analysis of the impact of 
genotypic mutations on treatment outcome is hampered by methodological issues such as the i) high 
number of possible mutations, ii) the potential collinearity between mutations, iii) the low number of 
patients included in those studies and iv) the definition of a virological endpoint. The objective of this 
thesis are 1) to give an overview and to discuss endpoints used in recent clinical trials in collaboration 
with European AIDS treatment network (NEAT) and those used in the context of drug resistance 
analysis, 2) to investigate the impact of genotypic resistance mutations on treatment outcome in 
treatment naïve patients in a huge European collaboration EuroCoord-CHAIN and 3) to compare 
methods adapted for high-dimensional data in order to construct a genotypic score to predict treatment 
outcome in treatment experienced patients. We saw that most of the endpoints used in recent clinical 
trials are composite endpoints but pure virological outcomes should be used for the evaluation of drug 
resistance mutations. Transmitted drug resistance mutations impact on virological outcome of initial 
antiretroviral therapy if the treatment of the patient is not adapted to the viral genotype the patient is 
harbouring. Principal component analysis and partial least square showed a good performance but had 
only a slightly better predictive capacity for a virologal outcome compared to the genotypic score. We 
continue working on the comparison of these and other methods using different endpoints in the 
context of a collaboration with the Forum for collaborative HIV research. 
 
Mots clés : VIH-1, mutations génotypiques, résistances au traitement antirétroviral, définition du 
critère de jugement, analyse statistique  
Key words: HIV-1, genotypic mutations, antiretroviral drug resistance, endpoint definition, statistical 
analysis 
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ISPED, Institut de Santé publique d’épidémiologie et de développement 
146, rue Léo Saignat 33076 Bordeaux Cedex 
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Résumé substantiel 
Introduction 

Depuis 1996 la thérapie antirétrovirale combinée (combination antiretroviral therapy, 

cART) combinant au moins trois médicaments antirétroviraux est le traitement de référence 

pour les patients infectés par le virus d’immunodéficience humaine (VIH). A ce jour, 24 

molécules sont disponibles et sont divisées en 6 classes : les inhibiteurs nucléosidiques de la 

transcriptase inverse (INRT), les inhibiteurs non nucléosidiques de la transcriptase inverse 

(INNRT), les inhibiteurs de la protéase, les inhibiteurs de fusion, les inhibiteurs de l’intégrase 

et les inhibiteurs de chémokine co-recepteur 5 (CCR5). 

La thérapie antirétrovirale n’est pas capable d’éradiquer l’infection par le VIH. Le but 

principal de la thérapie antirétroviral est d’empêcher une progression de l’infection. Pour cela, 

la thérapie antirétrovirale a comme objectif de baisser l’ARN VIH (charge virale) au dessous 

de 50 copies/ml (limite de détection pour la plupart des techniques de mesure disponibles 

dans le commerce) et de maintenir la charge virale au dessous de cette borne aussi longtemps 

que possible [1-3]. Ceci permet d’une part une meilleure restauration immunitaire et d’autre 

part empêche la sélection des virus potentiellement résistants au traitement. Les CD4 infectés 

quiescents et d’autres types cellulaires à durée de vie longue constituent un réservoir qui est la 

cause de la persistance à vie du virus [4-6]. Ce réservoir contient aussi des mutants archivés 

pendant les phases de réplication virale [7-12].  

Mutations génotypiques et résistance antirétrovirale 
Les échecs thérapeutiques peuvent être liés à différentes causes (défaut d’adhérence, 

concentration plasmatique insuffisante…). La conséquence est une suppression incomplète de 

la réplication du virus. Cette dernière facilite le développement des résistances contre les 

antirétroviraux : c’est le résultat d’une sélection de mutations génotypiques qui permet au 

virus de se répliquer en présence du traitement. 

Les mutations pertinentes peuvent apparaître dans les gènes de la transcriptase inverse, 

de la protéase, de la gp41 ou de l’intégrase. Les mécanismes de résistance sont différents 

selon les classes des antirétroviraux et peuvent aussi être différents selon l’antirétroviral dans 

une même classe [13]. Le plus souvent, seule une combinaison de certaines mutations 

provoque une résistance : cela dépend des positions des mutations et leur impact sur la 

structure de la protéine (encodé par le gène). De plus, les mutations rencontrées n’ont pas 

toutes la même importance. Par exemple, les mutations génotypiques de la protéase virale 

peuvent être distinguées en des mutations primaires sélectionnées en premier lieu lors d’un 
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échappement au traitement et des mutations secondaires qui s’accumulent à la suite d’une 

mutation primaire. Une mutation primaire se développe sous la pression d’un médicament et 

se trouve le plus souvent dans le centre actif de la protéase [14, 15]. Une mutation secondaire 

seule est rarement la cause d’une résistance mais elle peut aggraver la résistance lorsqu’elle 

est combinée avec une mutation primaire [16].  

Epidémiologie des mutations de résistance antirétrovirale 
La résistance acquise pendant le traitement antirétroviral est répandue chez des 

patients traités avec une charge virale détectable. La probabilité d’avoir une résistance contre 

au moins une molécule antirétrovirale (selon l’algorithme d’interprétation de l’ANRS) était de 

88% chez des patients traités avec une charge virale >1000 copies/mL utilisant des données 

de 24 centres en France et un centre de Suisse [17]. Dans une étude réalisée en Royaume-Uni 

80% des patients traité avec un test génotypique avaient au moins une mutations majeure de 

la liste IAS (une liste de mutations de référence internationale) [18].  

La prévalence de résistance aux antirétroviraux transmise est très variable selon les 

pays, le groupe à risque d’infection par le VIH et le moment de la réalisation d’un test 

génotypique après l’infection. En Europe, la prévalence de la résistance transmise (avoir au 

moins une mutation de résistance) chez les patients naïfs de traitements antirétroviraux est 

estimée entre 10 à 15% [19-25]. Des études en Amérique du Nord décrivent des prévalences 

jusqu’à 25% [26, 27]. L’impact potentiel de la résistance transmise reste controversé. La 

proportion des patients avec succès virologique (suppression de la charge virale) [26, 28] ainsi 

que le temps jusqu’au succès virologique [19, 29, 30] et la réponse immunologique [19, 26, 29, 

30] ne sont pas significativement différents entre les patients avec et sans mutations transmises 

dans la plupart des études. Toutefois, il y a une tendance à une meilleure réponse virologique 

chez les patients sans résistance transmise [19, 30] et le temps jusqu’à la suppression 

virologique était plus court chez les patients infectés par des souches virales susceptibles [31, 

32]. Cependant, dans toutes ces études, la proportion de patients avec une résistance transmise 

était restreinte, limitant la puissance statistique de ces études. L’impact des mutations de 

résistance sur la réponse clinique au long terme reste incertain en particulier dans des 

populations spécifiques (enfants, personnes âgées). Seule une étude avec une taille 

d’échantillon suffisamment grande pourrait répondre à ce type de question.  
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Impact de la résistance antirétrovirale sur la prise en charge 
thérapeutique 

Méthode de détermination de la résistance antirétrovirale 

Deux types de test sont utilisés pour déterminer la résistance antirétrovirale utilisée en 

pratique clinique : les tests génotypiques et les tests phénotypiques. Les premiers consistent 

en un séquençage des gènes du VIH concernés (e.g. protéase) pour détecter des mutations 

conduisant à une résistance antirétrovirale. Les tests phénotypiques mesurent la réplication du 

virus en culture cellulaire en présence ou absence d’une molécule antirétrovirale donnée. Les 

tests génotypiques ne permettent que l’analyse de la population virale majoritaire soit la 

population qui représente au moins 20% à 30% de la population virale totale circulante dans 

le plasma. Les populations minoritaires ne sont pas détectées en routine. Il y a des techniques 

permettant de les analyser mais pour l’instant l’analyse des populations minoritaires est 

réservée aux protocoles de recherche. Les tests phénotypiques sont plus chers, nécessitent 

plus de temps et sont pas utilisés en pratique clinique. 

Aujourd’hui, il est fortement recommandé de réaliser un test génotypique avant la 

mise en place d’un traitement ou avant le début d’un nouveau traitement pour que les patients 

puissent être traités de façon adéquate [1, 3, 13]. Le traitement est ainsi adapté aux souches 

virales circulantes afin d’assurer une efficacité optimale.  

Interprétation des données de tests génotypiques 

Il existe plusieurs algorithmes habituellement utilisés pour interpréter le génotype, 

notamment ceux de l’ANRS [33], de HIVdb Stanford [34] et de Rega [34, 35]. Ils sont utilisés 

pour classer le virus comme ‘susceptible’, ‘possiblement résistant’ ou ‘résistant’. Un score 

génotypique construit à partir des informations in vitro et une combinaison des informations 

donnée par les mutations génotypiques avant la mise sous traitement et la charge virale après 

l’initiation d’un nouveau traitement antirétroviral [36, 37] est calculé pour établir la 

classification. Il existe aussi des systèmes d’interprétation utilisant des méthodes 

bioinformatiques telles que le SVM (Support Vector Machine) [38] ou une combinaison de 

plusieurs méthodes bioinformatiques [39] construites en utilisant les informations 

génotypiques en combinaison avec des données phénotypiques ou des données cliniques.  

L’activité d’une combinaison de plusieurs molécules peut aussi être déterminée en 

utilisant les algorithmes et est généralement exprimée en termes de GSS (genotypic sensitivity 

score) représentant le nombre de molécules actives dans la stratégie thérapeutique.  
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Méthodes de détermination de la susceptibilité du virus à un 
traitement donné 

Données 

Pour pouvoir associer les mutations détectées à une molécule donnée, les patients 

inclus dans une étude pour déterminer par exemple un score génotypique ou pour valider des 

algorithmes existants ont une molécule en commun. Par exemple, tous les patients 

commençant une nouvelle molécule (par exemple l’inhibiteur de protéase darunavir) en 

combinaison avec différentes autre molécules sont inclus. Les mutations de la protéase 

déterminées avant la mise en place du darunavir sont corrélées avec la réponse au traitement 

pour déterminer les mutations de la protéase associées à un échec au traitement sous 

darunavir. Ces données peuvent être issues d’essais cliniques ou des cohortes de patients 

infectés par le VIH. 

Les données utilisées pour étudier l’impact des mutations de résistance sur la réponse 

virologique sont constituées des résultats de test génotypiques déterminés avant la mise en 

place d’un traitement ou avant le début d’un nouveau traitement. Les mutations sont codées 

comme variables binaires. Si la mutation sur une position donnée, par exemple I47A, est 

présente, la variable prend la valeur 1 et 0 sinon. Les variables à expliquer sont soit des 

résultats d’un test phénotypique soit la réponse virologique mesurée par la charge virale.  

Les résultats d’un test phénotypique représentent la concentration médicamenteuse 

nécessaire pour inhiber la réplication du virus du patient (la valeur donnée est soit la 

concentration nécessaire pour inhiber 50% ou 90% de la réplication). Il s’agit d’une variable 

quantitative. La réponse virologique peut être considérée soit comme variable quantitative 

(e.g. la différence de la charge virale entre deux dates) ou comme variable binaire (e.g. le 

succès est codé 1 si la charge virale descend au dessous d’un certain seuil).  

Difficultés méthodologiques 

L’analyse de données est complexe d’une part à cause du nombre élevé de mutations 

possibles par rapport au nombre de patients habituellement inclus dans les études cliniques et 

d’autre part à cause de la colinéarité possible entre des mutations (par exemple la présence 

d’une mutation seulement en présence d’une ou plusieurs autres mutations pour compenser 

une capacité réplicative diminuée). Le nombre élevé de variables/mutations en comparaison 

avec le faible nombre de patients peut mener à un sur-ajustement conduisant à une mauvaise 

validité externe du modèle statistique (capacité à prédire la réponse virologique chez un 
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patient en dehors de l’étude). De plus, toutes les mutations ne contribuent pas de la même 

façon et avec le même poids à la résistance.  

Score génotypique  

Une méthode simple pour gérer les difficultés citées précédemment est de résumer 

l’information des mutations génotypiques dans un score génotypique. Ce score est 

normalement lié à une molécule donnée. Un score génotypique est la somme des mutations de 

résistance observées chez un patient donné. Par la suite, nous allons décrire la construction 

d’un score génotypique simple, i.e. sans pondération des mutations pour le calcul du score. La 

liste des mutations servant à déterminer le score génotypique peut être obtenue par des 

stratégies différentes. Normalement deux étapes principales sont nécessaires. D’abord les 

mutations issues d’une liste constituée par un groupe d’experts internationaux (e.g. IAS-USA) 

sont évaluées en analyse univariable si elles ont une prévalence entre 10% et 90%. Une 

mutation est sélectionnée si le degré de significativité statistique est <0,25 [36, 37]. Avec les 

mutations ainsi sélectionnées un premier score est déterminé pour chaque patient dans la base 

de données. Par exemple, la première sélection contient 6 mutations V32I, I47A, I50V, V77I, 

I84V et L90M. Le score est égal à S = V32I + I47A + I50V + V77I + I84V + L90M. Une 

mutation prend la valeur 1 s’il est présent est 0 sinon (le score peut varier de 0 à 6). Dans cet 

exemple, un patient avec les mutations I47A, I50V et L90M aura un score de 3. Dans un 

deuxième temps, les mutations à inclure dans la sélection finale sont déterminés par des 

méthodes de sélection pas à pas. Chaque mutation de la première sélection est éliminée une 

par une pour calculer de nouveau des scores génotypiques pour chaque patient. Ainsi pour 

chaque sélection de 5 mutations, l’association entre le score (variable ordinale) et la réponse 

virologique est analysée en utilisant des tests statistiques. La seléction finale est la liste 

conduisant à l’association la plus forte avec la réponse virologique [37]. Dans cette approche 

les mutations considérées pour le score ont toutes le même poids. Un score prenant en compte 

le fait qu’il y avait des mutations associées avec une meilleure réponse virologique a déjà été 

considéré [40, 41]. Il a été proposé que les mutations associées à l’échec virologique 

contribuent au score par +1 et les mutations associées avec succès virologique contribuent au 

score par -1 [40, 41].  

Le score génotypique a aussi l’inconvénient de ne pas pouvoir prendre en compte 

l’interaction possible entre les mutations. Par exemple, il est possible que l’effet d’une 

mutation soit plus fort ou plus faible en présence d’une autre mutation. 
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Une fois le score génotypique établi, un seuil est déterminé pour prédire la réponse 

virologique (par exemple avoir un score >5 signifie résistant, 4 signifie possiblement résistant 

et <4 signifie pas d’évidence de résistance). Sa valeur prédictive doit aussi être testée en 

ajustant sur les facteurs de confusion probables comme le taux de CD4 initial, etc.. 

Méthodes alternatives 

Il existe des méthodes alternatives permettant de résumer l’information des mutations, 

d’allouer des poids différents ou de prendre en compte les interactions entre les mutations.  

L’analyse en composantes principales (ACP) et la régression partial least square (PLS) ont été 

proposées pour la réduction du nombre des variables prédictives corrélées [42-44]. L’objectif 

de l’analyse en composante principale est de trouver des variables dites latentes utilisant une 

transformation linéaire des variables prédictives. Les variables latentes sont aussi appelées des 

composantes principales et elles peuvent par exemple être utilisées dans un modèle de 

régression comme variable prédictive. L’analyse en composantes principales a déjà été 

utilisée pour déterminer des groupes de mutations corrélées [45] et pour prédire le phénotype 

[46]. La régression PLS cherche également des variables dites latentes, les composantes PLS. 

La différence principale entre la régression PLS et l’analyse en composantes principales est 

que la régression PLS utilise aussi la variable à expliquer (e.g. la réponse virologique) pour 

déterminer les composantes. Les composantes peuvent également être utilisées comme 

variables explicatives dans un modèle de régression. Les mutations ainsi résumées dans une 

composante principale ou une composante PLS sont représentées par des poids différents dans 

le calcul de celles-ci. 

D’autres méthodes pour prédire la réponse au traitement ou le phénotype à partir des 

informations génotypiques ont été testées ou comparées, notamment les réseaux neuronaux 

[47, 48], la méthode Lasso [46], les arbres de décision [49], les random forests [50]. Une 

méthode globale (superlearner) a été proposée, combinant plusieurs des méthodes statistiques 

citées [51]. Rabinowitz et al. ont montré que des machines à vecteur de support et la méthode 

Lasso (least absolute shrinkage and selection operator) avaient la meilleure performance en 

utilisant le génotype pour prédire le phenotype in vitro [46] par rapport à la ridge regression, 

aux réseaux neuronaux, l’analyse en composantes principales, les arbres de décision et la 

sélection pas à pas. L’avantage de la méthode Lasso est que les résultats sont faciles à 

interpréter car les coefficients estimés sont directement liés aux variables prédictives (et pas 

au vecteur de support).  
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Définition de la réponse virologique 

La définition de la réponse virologique utilisée d’une part pour déterminer les 

mutations liées à la réponse virologique mais aussi pour construire un système 

d’interprétation à l’aide des méthodes bioinformatiques est très variable. Les définitions 

utilisées sont par exemple, 1) la différence entre la charge virale à 3 mois (ou 6 mois) et la 

charge virale à la mise sous traitement, 2) avoir une charge virale en dessous de la limite de 

détection, 3) avoir une décroissance de la charge virale d’au moins 1 log10 jusqu’à 3 mois ou 

un critère composite basé sur une chute d’au moins 1 log10 ou une charge virale au dessous du 

seuil de détectabilité. La charge virale est censurée due au seuil de détectabilité. Le plus 

souvent une imputation de la valeur seuil ou la moitié de la valeur seuil est utilisée pour 

calculer par exemple la différence entre la charge virale à 3 mois et la valeur de la charge 

virale à la mise sous traitement. Il a été démontré que ces méthodes d’imputation simple 

conduisent à des estimations biaisées [52-54].  

Plan et objectifs 
L’analyse de l’impact des mutations génotypiques sur la réponse au traitement chez les 

patients prétraités et les patients naïfs est importante car le choix d’un traitement optimal est 

crucial. Cependant, l’analyse des données génotypiques est compliquée à cause de problèmes 

méthodologiques. Premièrement, la définition d’un critère de jugement n’est pas simple. 

Deuxièmement, la définition de la résistance et en particulier la création des algorithmes 

génotypiques pour des nouvelles molécules est très souvent compliquée par le nombre élevé 

des mutations et le faible nombre des patients inclus dans ces études. 

Le premier objectif était de décrire la définition des critères de jugement utilisé dans 

les essais cliniques du VIH et de discuter leurs limites méthodologiques. Le chapitre 4.1 décrit 

des problèmes méthodologiques en particulier pour des critères de jugement composites. Ce 

travail a été publié dans Clinical Trials 2010. Le travail est le résultat des discussions avec le 

groupe de travail des statisticiens du réseau européen NEAT (European AIDS treatment 

network) pendant la conception de l’essai NEAT001/ANRS143 (NCT01066962 [55]). Le 

chapitre 4.2 donne un vue d’ensemble sur les critères de jugement utilisés dans les études 

évaluant l’impact des mutations transmises sur la réponse virologique et les critères utilisés 

dans des études déterminant un score génotypique. 

Le deuxième objectif était d’analyser l’impact des mutations de résistance transmises 

sur la réponse au traitement pendant la première année de traitement antirétroviral. Pour ce 

travail nous sommes particulièrement intéressés aux effets des mutations transmises chez les 
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patients traités avec une combinaison de traitement prédite comme non affectée par les 

mutations présentes. Un manuscrit (chapitre 5) de ce travail est en cours de finalisation et une 

soumission au Lancet est prévue. Le projet a été réalisé comme projet pilote entre les réseaux 

européens EuroCoord (méta-collaboration de cohortes européennes de patients infectés par le 

VIH) et CHAIN (réseau d’experts européen de résistance du VIH au traitement). 

Le troisième objectif était d’évaluer des méthodes alternatives à la construction d’un 

score génotypique pour l’analyse des mutations génotypiques chez les patients prétraités. En 

particulier, nous nous sommes intéressés à l’utilisation de méthodes permettant de résumer 

l’information génotypique et à la question si l’information résumée peut-être utilisée pour 

prédire la réponse virologique au traitement. Le chapitre 6.1 résume l’application d’ACP et 

PLS en comparaison avec la construction d’un score génotypique et a été publié dans BMC 

Medical Research Methodology 2008. De plus, l’adaptation de la méthode Lasso pour la prise 

en compte de la censure à gauche des marqueurs virologiques est un projet en cours et 

présenté dans le chapitre 6.2. Cette méthode va être appliquée en collaboration avec le Forum 

for collaborative HIV research (plateforme internationale pour faciliter la recherche sur le 

VIH).  
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Preamble 
The human immunodeficiency virus (HIV) is a lentivirus belonging to the family of 

retroviruses [56]. Main target cells of HIV are cells of the human immune system such as CD4 

positive T lymphocytes (CD4 cells), macrophages and dendritic cells. Over time HIV 

infection leads to the deterioration of the immune system which is indicated by a progressive 

decrease of the CD4 cell count. HIV ultimately leads to the acquired immunodeficiency 

syndrome (AIDS) and death. 

First cases of AIDS were described since 1981 and HIV was first isolated from a patient with 

lymphadenopathy by Francoise Barré Sinoussi and Luc Montagnier in 1983 [57]. Since then 

more than 25 million people died from HIV infection and in December 2008 33.4 million 

people were living with HIV, most of them in resource limited settings [58]. The current 

standard regimen for initial treatment of HIV infected patients is the combination 

antiretroviral therapy (cART) introduced in 1996.  

The general treatment goal is to suppress HIV RNA load (viral load) to less than 50 

copies/mL in naïve and in treatment experienced patients [1-3, 13]. The choice of an initial 

treatment is important as it can have long standing consequences for future therapy. The 

selection of the drugs depends on factors like viral load, number of CD4 cells, toxicity and 

compliance etc. Furthermore, genotypic testing is now recommended for treatment 

experienced patients [1-3, 13] but also for treatment naïve patients as prevalence of transmitted 

drug resistance is between 10% and 15% in Europe [19, 21, 23, 24, 28, 59-61] and up to 25% in 

North America [26, 27]. 

Chapter 1 introduces some basic virological and biological information for better 

understanding of antiretroviral treatment targets and resistance testing. Additionnally, the 

epidemiological background of drug resistance in HIV-1 infected patients is described. 

Chapter 2 describes methodological issues involved in the analysis of virological response 

according to genotypic data. It presents an overview on the methodological literature applied 

to analyse genotypic data for the sake of predicting treatment outcome. Additionally, methods 

we used to interprete genotypic data in treatment naïve patients and methods we used for 

analysing genotypic data in treatment experienced patients are outlined. 
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1 Antiretroviral treatment and drug resistance 

1.1 Biology of the human immunodeficiency virus 

The description of the structure and the life cycle of HIV in the following chapters are far 

from being complete but aim at giving a short overview of the molecular biology of the virus 

for a better understanding of antiretroviral treatment targets and emergence of antiretroviral 

drug resistance. 

1.1.1 Structure 
The HIV is a spherical particle with a diameter of approximately 100 nm. The outer surface 

“envelope” is formed by a lipid bilayer (originating from the host cell membrane) in which 

the viral glycoprotein gp41 is embedded. The viral glycoprotein gp120 is attached to gp41 

(see Figure 1).  

 
Figure 1: Simplified structure of the human immunodeficiency virus (adapted from  [62, 63]). 
At the inner side of the envelope there is a layer of the matrix protein p17. The capsid is formed by the capsid 
protein p24 and found inside of a mature HIV particle. The capsid contains two copies of the viral RNA 
(ribonucleic acid) encoding for all necessary proteins of the virus (e.g. viral enzymes reverse transcriptase and 
protease). Nucleocapsid proteins (p7 and p6) are bound to the viral RNA. The functional viral proteins, i.e. 
reverse transcriptase, protease and integrase are also located inside the viral capsid. 

1.1.2 Genome 
The genome of HIV is composed of two copies of positive single-stranded ribonucleic acid 

(RNA) with a length of approximately 9500 base pairs. The genome harbours nine open 

reading frames encoding three structural genes called group antigen (gag), polymerase (pol) 
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and envelope (env), two regulatory genes (tat and rev) and four accessory genes (nef, vif, vpu 

and vpr) [62-64] (see Figure 2).  

 
Figure 2: Simplified genomic organisation of human immunodeficiency virus 1 (adapted from [65]). 
Depicted are the nine open reading frames gag, pol, env, vif, vpr, vpu, rev, tat and nef that are flanked by two 
long terminal repeats (LTRs). gag (group antigen) encodes the structural proteins of the virus, i.e. the matrix 
protein (MA), the capsid protein (CA) and the nucleocapsid proteins (NC). pol (polymerase) encodes three viral 
enzymes, i.e. protease (PR), reverse transcriptase (RT) and integrase (IN). env (envelope) encodes for two 
envelope proteins, i.e. the glycoproteins gp120 and gp41.  
 

The gag gene encodes the matrix protein (MA) p17, the capsidprotein (CA) p24 and nucleo-

capsid protein (NC) p7 and protein p6. The pol gene encodes the viral enzymes, i.e. protease, 

reverse transcriptase and integrase, and the env gene encodes the glycoproteins (gp) 120 and 

gp41 envelope. The products of the regulatory and accessory genes are involved in different 

processes during the life cycle of the virus, e.g. nuclear export or regulation of transcription 

[62-64]. Both ends of the HIV genome are flanked by so-called long terminal repeats (LTRs), 

which play a regulatory role during the transcription of the viral genetic material into viral 

proteins by interacting with host cell enzymes of the transcriptional machinery [66]. 

1.1.3 HIV life cycle  
The HIV replication cycle can be summarised in several steps (see Figure 3) [62-64]. First, 

HIV binds with its envelope protein gp120 to at least two specific receptors, to the CD4 

receptor and to the chemokine co-receptors CCR5 or CXCR4 (Figure 3A). The binding to the 

co-receptor CCR5 triggers the protein gp41 mediated fusion of the HIV envelope with the 

host cell membrane (Figure 3B). After the envelope has been fused the HIV capsid containing 

the HIV genome and viral proteins are released into the cytoplasm. The capsid and 
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nucleocapsid are then dissolved, a feature called “Uncoating”, so that the genetic material and 

viral proteins are released into the cytoplasm (Figure 3C).  

 

Figure 3: Overview of the HIV life cycle (adapted from [67, 68]). PIC: preintegration complex. 

 

The viral genetic material – the RNA – must be converted into DNA (desoxyribonucleic acid) 

to be replicated in the host cell. This process is mediated by a viral enzyme called reverse 

transcriptase (Figure 3D). In the next step the viral DNA is transported to the nucleus as part 

of a so-called pre-integration complex (PIC) consisting of the viral DNA, the integrase and 

cellular proteins. The viral DNA is then inserted into the host DNA by the viral enzyme 

integrase. Once integrated in the host genome, the cellular RNA polymerase transcribes the 

viral genetic material into viral messenger RNA (mRNA, Figure 3F). This mRNA is exported 

to the cytoplasm where again host proteins translate the viral mRNA into the viral subunit 

proteins e.g. GAG, POL (Figure 3G).  
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The virus subunits are assembled and viral RNA packed before new particles are released 

from the cell surface. The outer envelope contains parts of the host cell membrane in which 

the viral envelope proteins gp120 and gp41 are embedded. The viral subunits must be 

separated to form a mature virus, i.e. GAG protein must be separated from POL protein and 

further GAG protein must be divided into the matrix, capsid and nucleocapsid proteins. This 

separation, or cleavage, is accomplished by the viral enzyme called protease and is necessary 

for the production of mature virus particles (Figure 3H). The typical conical form of the HIV 

capsid is only found in mature capsid and therefore the protease needs to cleave the GAG 

protein in its different sub-proteins (amongst others in the Matrixprotein, Capsidprotein and 

nucleocapsid protein). This step takes place after budding (not distinguished in Figure 3). 

1.1.4 Genetic diversity 
Even in absence of antiretroviral treatment, several mechanisms lead to the huge diversity and 

variability of HIV. First, the reverse transcriptase of HIV presents a high error rate because it 

lacks a proof reading mechanism [69]. Errors during the transcription process entail that the 

DNA copy of the virus is not an exact mirror of the RNA. This mechanism leads to permanent 

evolution of the HIV genome and also plays an important role in the emergence of HIV drug 

resistance mutations, which will be described in more details in section 1.3. Second, if a 

patient is infected with two different HIV strains then one RNA strain of each virus can be 

packed in one viral particle. A virus containing RNA strains from two different HIV strains 

can then infect new cells and lead to retroviral recombination during the reverse transcription 

step. Retroviral combination occurs because the reverse transcriptase can switch between the 

two strains and form one DNA strain containing genetic material of the two different strains 

[70-72]. A large variety of HIV subtypes and so-called circulating recombinant forms (CRFs) 

have been described. 

1.1.4.1 HIV types, groups and subtypes 

There exist two major types of HIV: HIV-1 and HIV-2. HIV-1 is the predominant HIV virus 

worldwide. HIV-2 is mainly found in West Africa and in countries with immigrants from this 

region [73]. 

HIV-1 can be divided into at least three groups: group M (major), group O (outlier), and 

group N (nonmajor, nonoutlier). Group M is the predominant circulating HIV-1 group and 

over 90% of the HIV infections are due to infections with a group M virus [74]. Group O is 

mainly found in central Africa and was first identified in Cameroon as was Group N, which is 
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very rare [75, 76]. Another new virus that is distinct from virus belonging to group M, O and N 

was found in Cameroon in 2009 and was classified in group P [77]. 

HIV-1 group M can be further subdivided into subtypes denoted with letters and sub-subtypes 

(or clades) denoted with numbers and so called circulating recombinant forms (CRFs). To 

date the following subtypes have been described A1, A2, A3, A4, B, C, F1, F2, G, H, J and K 

[74].  

CRFs are the result of genetic recombination of different HIV strains. Recombination occurs 

if a patient is co-infected with different strains or more likely if a patient becomes super-

infected with a second strain. At least three patients without direct epidemiological linkage 

must be infected to define a strain as a CRF. The name reflects the sequence of discovery and 

the subtype composition, e.g. CRF02_AG was the second CRF found and is a recombination 

between subtypes A and G. To date 48 CRFs have been discovered [78]. 

 

Figure 4: Overview of HIV-1 groups and subtypes  

 

Of note, the nomenclature and classification of HIV subtypes is an evolving process, e.g. the 

former “subtype E” does no longer exists as it was found to be a circulating recombinant form 

containing components from subtype A [79, 80]. 

1.1.4.2 Distribution of HIV-1 subtypes worldwide 

 

Subtype B accounts for 12% of the worldwide HIV infection but is the predominant virus in 

Western Europe, North and Middle America and Australia (see Figure 5). The most prevalent 

subtype is subtype C, which accounts for 50% of the worldwide HIV infection and is mainly 

found in India, China, and South and East Africa [81]. 

The most common CRFs are CRF01_AE and CRF02_AG with a prevalence of around 5% 

worldwide [81].  
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Figure 5: Global distribution of HIV subtypes and Circulating recombinant forms (CRFs) (from 
[74]).  

1.2 Antiretroviral treatment 

Antiretroviral treatment has remarkably decreased disease progression and mortality [82-86]. 

The following chapter gives an overview of currently available drugs, drug targets, the 

standard of care therapy and general aims of antiretroviral therapy. 

1.2.1 Antiretroviral drug targets – Different classes of drugs available 
Antiretroviral drugs target different steps during the HIV life cycle. Drugs targeting the same 

step during the life cycle are summarised into a drug class. Antiretroviral drugs targets are the 

host cell co-receptor CCR5, the envelope protein gp41, the reverse transcriptase, the integrase 

and the protease (see Figure 6). CCR5 antagonists block the co-receptor CCR5 and thus 

prevent the HIV virus from entering the cell because gp41 mediated fusion cannot take place 

(Figure 6A).  



  Chapter 1 

  25   

 
Figure 6: Antiretroviral targets in the virus life cycle (adapted from [67, 68]). 
 

Fusion inhibitors disrupt the interaction of gp41 with the host cell membrane and thus inhibit 

the fusion of the virus with the cell membrane and ultimately inhibit the entry of the virus into 

the host cell (Figure 6B). 

Reverse transcriptase inhibitors can be divided into two classes, NRTIs and NNRTIs. Both act 

as terminator of the DNA chain elongation via different mechanisms during the reverse 

transcription process (Figure 6C). HIV-integrase catalyses amongst others the insertion of the 

viral DNA into the host genome (‘strand transfer’). The integrase strand transfer inhibitors 

block this process (Figure 6D). The HIV protease is an essential enzyme for virus maturation 

and thus inhibition of the protease leads to the production of immature, non-infectious HIV 

(Figure 6E). 
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1.2.2 Currently approved drugs   
 

Zidovudine was the first antiretroviral drug approved by the United States Food and Drug 

Administration (FDA) in 1987. Today 26 drugs from six drug classes are approved by the 

FDA or the European Medicines Agency (EMEA) (see Table 1) and available for 

antiretroviral treatment [87, 88]. Further, fixed dose combinations of 2 or 3 NRTIs exist since 

1997 and 2000, respectively. The first fixed dual drug class combination containing 2 NRTIs 

plus 1 NNRTI was approved in 2006 by the FDA and 2007 by the EMEA.  

The protease inhibitor ritonavir is not recommended to be used as a single protease inhibitor 

anymore. However as ritonavir inhibits a particular liver enzyme cytochrome P450-3A4 that 

metabolizes protease inhibitors, a low dose of ritonavir can be used to enhance other protease 

inhibitors. A protease inhibitor plus ritonavir is also referred to as a boosted PI regimen.  

Table 1: Overview of antiretroviral drugs used in the treatment for HIV infection.  
Approval (FDA or EMEA) Generic Name 

Nucleoside Reverse Transcriptase Inhibitors (NRTIs) 

1987 zidovudine (ZDV, AZT) 

1991 didanosine (ddI) 

1992 zalcitabine (ddC) (no longer marketed) 

1994 stavudine (d4T) 

1995 lamivudine (3TC) 

1997 lamivudine + zidovudine 

1998 abacavir (ABC) 

2003 emtricitabine (FTC) 

2000 abacavir + zidovudine + lamivudine 

2000 enteric coated didanosine (ddI EC) 

2001 tenofovir (TDF) 

2004 abacavir + lamivudine 

2004 tenofovir + emtricitabine 

Nonnucleoside Reverse Transcriptase Inhibitors (NNRTIs) 

1996 nevirapine (NVP) 

1997 delavirdine (DLV) 

1998 efavirenz (EFV) 

2008 etravirine 

Protease Inhibitors (PIs) 

1995 saquinavir mesylate (SQV) 

1996 indinavir (IDV) 

1996 ritonavir (RTV) 

1997 saquinavir (no longer marketed) 

1997 nelfinavir mesylate (NFV) 

1999 amprenavir (APV) 

2000 lopinavir + ritonavir (LPV/RTV) 

2003 Fosamprenavir Calcium (FOS-APV) 
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Table 1 (continued) 
Approval (FDA or EMEA) Generic Name 

2003 atazanavir sulfate (ATV) 

2005 tipranavir (TPV) 

2006 darunavir 

Fusion Inhibitors 

2003 enfuvirtide (T-20) 

Entry Inhibitors - CCR5 co-receptor antagonist 

2007 maraviroc 

HIV integrase strand transfer inhibitors 

2007 raltegravir 

Multi Drug Class combination (2NRTI + 1NNRTI) 

2006 efavirenz + emtricitabine + tenofovir 
FDA: U.S. Food and drug administration; EMEA: European Medicine Agency. 

1.2.3 Combination antiretroviral therapy 
Since 1996 combination antiretroviral therapy (cART) is recommended as standard of care 

regimen. CART consists of at least three antiretroviral drugs from two different treatment 

classes. 

The choice of an initial treatment is very important as a life long treatment must be considered 

[1, 3] and the selection can have consequences for future therapy. The initial cART should be 

chosen appropriately based on resistance testing, previous disease history, social and 

demographic status, virological and immunological markers etc. to give the patient the highest 

chance for a successful treatment. 

The most common treatment combinations for the initiation of cART recommended by recent 

treatment guidelines [1-3] are 

1) 2 NRTIs + 1 NNRTI  
2) 2 NRTIs + 1 ritonavir boosted PI. 
 

The most recent recommendations for antiretroviral treatment of Adult HIV infection of the 

International AIDS Society-USA panel recommend also the combination 2 NRTIs + 1 INSTI 

for initial cART [3]. In Europe, this combination is to date only recommended as an 

alternative initial regimen because of the limited data on long-term tolerance and the more 

rapid selection of resistant variants in the case of virological failure compared to initial 

combinations containing ritonavir boosted PIs [1, 2, 89]. 

Treatment combinations for treatment experienced patients can be more sophisticated and 

contain for example three class treatments such as 2 NRTIs + 1 NNRTI + 1 Fusion inhibitor 

or regimen composed of PIs and NNRTIs. 
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1.2.4 Goals of antiretroviral therapy and monitoring treatment efficacy 
HIV can not be eradicated and thus the main goal of antiretroviral therapy is to prevent 

disease progression, the development of AIDS and to prolong the patient’s life. There are two 

main clinical markers used as surrogate markers to judge the status of the patient and the 

efficacy of treatment: 1) the viral load - the number of free virus per mL of patient’s plasma -

and 2) CD4 cell count - the number of CD4 cells per µL of patient’s blood. After initiation of 

cART, viral load should be suppressed below 50 copies/mL (detection limit of current 

standard of care tests) after 6 months of therapy in treatment naïve and treatment experienced 

patients [1-3]. Further, antiretroviral therapy aims also at restoring the immune system and 

maintaining the CD4 cell count above 500 cells/µL [1]. 

Other treatment goals are for example a good tolerability of the treatment, a good quality of 

life and the reduction of mother to child transmission.  

Treatment success should be monitored by regularly measuring the viral load and CD4 cell 

count. Assessment of antiretroviral toxicity depends on specific drugs and underlying co-

morbidities (i.e. renal insufficiency) and intervals are two to four weeks after initiation and six 

to 12 months after stabilisation of the disease.  

1.2.5 Viral load evolution and persistence of HIV after start of 
antiretroviral therapy  

After treatment start the HIV viral load declines to below the detection limit after 3 – 6 

months. First, there is a rapid decline of viral load followed by a slower decline that 

ultimately leads to viral load levels below the detection limit. The first decline can be 

attributed to the clearance of short living CD4 cells (t1/2 = 1.2 days) and the second phase 

probably due to long-lived productively infected cells (t1/2 = 27.2 days), activation of latently 

infected cells and release into the blood of virions from sanctuary sites (Figure 7, [90, 91]). 

In patients with a viral load below the detection limit for several years, low level viremia can 

still be detected by more sensitive assays [93]. Blips are transient episodes of detectable 

viremia (by standard assays) and can occur even after long term suppression of viral load 

(Figure 7) [94].  

Resting memory CD4 cells serve as a cellular viral reservoir and no virus is produced by these 

cells unless they are activated [4, 95, 96]. The half life of HIV infected memory CD4 cells was 

estimated to be 44 months and eradication would need over 60 years of suppressive cART [97-

99].Other cell types, e.g. monocytes or dentritic cells and anatomical sites, e.g. the central 

nervous system, may also constitute a reservoir for HIV (for a review see [4]).  
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The viral reservoir serves as an archive for all forms of virus, i.e. wild-type and resistant 

mutants [7-12] and see section 1.5.3). 

 

 
Figure 7: Evolution of plasma viral load after the start of cART (adapted from [92]). cART: 
combination antiretroviral therapy, t1/2: half life of infected cells. 
 

1.3 Antiretroviral drug resistance  

Antiretroviral drug resistance is characterised by the need of higher concentrations of 

antiretroviral drugs to achieve viral suppression. Finally, antiretroviral drug resistance leads to 

the loss of the ability of the treatment to inhibit the viral replication. Mutations (changes in the 

genome in comparison with a wild type strain of the virus) in the viral genome, especially in 

regions targeted by antiretroviral drugs, e.g. reverse transcriptase, are the cause of 

antiretroviral drug resistance. 

We can distinguish between primary/transmitted drug resistance and secondary/acquired drug 

resistance. Transmitted drug resistance is detected in treatment naïve patients and is due to the 

infection of the patient with a virus already carrying drug resistance mutations. Acquired drug 

resistance is detected in antiretroviral experienced patients. Antiretroviral drug resistance can 
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be specific for a given drug or can also affect drugs of the same drug class, so-called “cross-

resistance”. 

Drug resistance is an inevitable consequence of antiretroviral therapy. Drug resistance is 

influenced by many factors such as the ability of the regimen to suppress replication, the 

adherence to and tolerability of antiretroviral treatment, pharmacokinetics, the availability and 

continuity of drug supply and access to care. Virological factors also play a role for the 

development of drug resistance, for example the so-called “genetic barrier” of a drug to 

develop resistance (number of mutations required to reduce the antiretroviral activity) and the 

relative fitness (replicative capacity under drug exposure) of resistant variants. The genetic 

barrier is different for each drug, and the higher the genetic barrier of a given drug the more 

rare the development of drug resistance. 

1.3.1 Pathogenesis of drug resistance 
The reverse transcriptase of HIV is error-prone and this leads to a high mutation rate with, in 

average, one error per progeny virion [100]. Given the high replication rate of approximately 

10 million new viral particles [101] and the high error rate of the HIV reverse transcriptase, 

any single mutant could be generated per day [101]. Thus, HIV infection in a single individual 

is characterised by a heterogenous viral population called “quasipecies” [102], this means that 

the circulating viruses are not represented by a unique virus genotype but by heterogenous 

genotypes that are genetically related. 

Most mutations are dead ends for the virus as they result in a considerable loss of replicative 

capacity. Some mutations have no effect or even a beneficial effect on the replicative capacity 

of the virus. In the absence of therapy the wild type virus is the virus with the better ability to 

replicate and is thus the most abundant one.  

Viruses that represent more than 20% are the so-called major virus population whereas 

viruses that represent < 20% of the whole virus population constitute the minor virus 

population. 

Viral mutants with a fitness advantage under therapy can rapidly overgrow the wild type 

virions in the presence of this therapy (see Figure 8). Under drug selection pressure, complete 

replacement of wild type virus by drug resistant virus can occur within 14-28 days [103]. 

Persistent viral replication under antiretroviral therapy can lead to the accumulation of more 

mutations resulting in an increased resistance or an improved fitness. 
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Figure 8: Simplified schematic illustration of selective drug pressure. After treatment initiation the 
drug susceptible quasispecies (in black) are declining. Incomplete suppression of viral replication leads to the 
selection of a drug resistant quasispecies (in red) able to replicate in the presence of antiretroviral drug. cART: 
combination antiretroviral therapy. 

1.4 Resistance testing 

Genotypic and phenotypic resistance tests are available to determine the sensitivity of HIV for 

a specific drug. For optimal assay performance, a minimum vial load of 500-1,000 copies/mL 

is required for genotypic and phenotypic testing.   

1.4.1 Phenotypic testing 
Phenotypic resistance tests quantify drug sensitivity directly. They are based on viral 

replication in cell culture in the presence of different drug concentrations. The most common 

summary measure of a phenotypic test is the 50% inhibitory concentration (IC50) that is the 

drug concentration needed to reduce viral replicative activity by 50%. The IC50 of the test 

strain is compared to the IC50 of a reference strain and reported as fold change. The fold 

change reflects thus the difference in drug concentration needed to obtain a 50% suppression 

of viral activity. Phenotypic testing however takes a long time and is expensive. In clinical 

routine genotypic resistance tests are used to determine resistance mutations in the viral 

genome.  

1.4.2 Genotypic testing 
After amplification by a technique called polymerase chain reaction (PCR), the nucleotide 

sequences of regions encoding the molecular targets of antiretroviral therapy from the 
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patient’s viral population are determined by population sequencing. This implies that their 

detection requires an abundance in mutants of at least 20 to 30% in the total viral population.  

The nucleotide sequence of the patient’s viral population is compared to a reference wild-type 

sequence. This alignment allows the determination of differences in the genome. Mutations in 

a patient's virus population, when they are not silent (i.e. a silent mutation is a change in the 

nucleotide sequence without impacting on the amino acid sequence), lead to amino acid 

changes on the protein encoded by the portion of the genome that was sequenced, e.g. 

protease or reverse transcriptase (see Figure 9). 

The amino acid of the reference strain is reported first, followed by the codon and the amino 

acid of the tested virus strain. The example from Figure 9, in which the aminoacid Methionin 

(M) at position 46 is replaced by Leucin (L), would be reported as protease mutation M46L. 

 

 

Figure 9: Overview of genotypic testing. The viral RNA of the patient’s major population is amplified 
using reverse transcriptase polymerase chain reaction (RT PCR) and the nucleotide sequence of the DNA is then 
obtained. The viral DNA is then aligned (compared) to a wild type (WT) reference strain (positions 43 to 50 of 
the protease are used for the example). Finally, the encoded protein sequence is determined. In the above 
example, the amino acid Leucine (L) is found at position 46 of the protease on the viral DNA instead of a 
Methionin (M) at the same codon on the WT reference strain. 

1.4.3 Minority resistance testing 
New techniques such as ultradeep 454 sequencing, allele-specific polymerase chain reaction 

or single genome sequencing allow the detection of minority resistant variants going down to 
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a detection sensitivity of ≤1% [104, 105]. However, the use of these techniques is limited to 

research protocols and is not implemented in routine care so far. 

1.4.4 Limitations of genotypic testing 
One main limitation of genotypic testing is the complexity of interpretation, especially in the 

presence of multiple mutations where complex interactions between mutations cannot be 

excluded. Therefore, the impact of mutations on the replication capacity and on the impact of 

treatment outcome is constantly evaluated by panels of experts as e.g. the French ANRS 

AC11 Resistance group or the International AIDS society USA panel [16, 33]. Current 

interpretation algorithms are regularly updated as are guidelines for antiretroviral resistance 

testing and management of HIV drug resistance [13, 106].  

1.4.5 Drug resistance mutations and mechanisms 
As already mentioned earlier, mutations in the reverse transcriptase gene may result in 

resistance against NRTIs or NNRTIs. Accordingly, mutations in the protease gene, the 

integrase gene, and the envelope protein gp41 may result in resistance against PIs, INSTIs, 

and the fusion inhibitor enfuvirtide, respectively (see Figure 10).  

 
Figure 10: Drug resistance mutations in the HIV genome (adapted from [65]). The current drug 
targets of the HIV genome are the protease (PR), the reverse transcriptase (RT) and the integrase (IN) encoded 
by the pol gene as well as the envelope protein gp41 encoded by env gene. The positions of four targets on which 
drug resistance mutations occur are depicted (IAS-USA, December 2009, only major mutations are depicted). 
gag, group specific antigen, LTR, long terminal repeats. vif, vpr, vpu and vef encode viral accessory proteins; tat 
and rev encode viral regulatory proteins. Numbers in the figure correspond to amino acid positions in the 
encoded protein.  
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The envelope protein gp120 may be sequenced to determine the tropism of the virus (i.e. 

CCR5, CXCR4, or a mixture of both) and to predict the susceptibility to CCR5-inhibitors 

[107]. Only resistance mutations in the reverse transcriptase and protease genes are described 

in more details in the following sections because most regimens are still based on NRTIs, 

NNRTIs and PIs. Further, for studies presented in chapter 5 and 6 we analysed genotypic data 

of reverse transcriptase and protease sequences.   

The protease gene encodes the 99 amino acids forming the viral enzyme protease and nearly 

all positions of the protease should be sequenced for clinical purposes [14, 15]. The reverse 

transcriptase gene encodes approximately 560 amino acids of which standard sequencing 

should cover amino acids in positions 41 to 236 [14, 15]. Theoretically, each wild type amino 

acid can be changed into 19 different amino acids. For example, the Methionine in position 46 

of the protease (see example Figure 9) can be replaced not only by Leucine but also by 

Isoleucine, a different amino acid.  

1.4.5.1 Protease gene mutations and protease inhibitor resistance 

Protease gene mutations are divided into primary (major) and secondary (minor) mutations 

[16]. Primary/major mutations are selected under drug selective pressure and are highly 

specific because they are often located in the substrate cleft (active centre) of the enzyme [14, 

15]. Primary mutations affect binding affinity of the inhibitor drug to the active site without 

totally inhibiting the physiologic protease substrate-interaction. Secondary/minor/accessory 

mutations are located outside the active site and usually occur later than the primary 

mutations. Secondary mutations may play a compensatory role for the initial decrease of viral 

fitness and are thought to cause an active site re-shaping through structural changes of the 

protease [14, 15]. Protease inhibitor resistance is characterised by the accumulation of multiple 

mutations, and in order to develop clinically relevant resistance typically more than one 

mutation is necessary [16, 108]. Currently major mutations are defined for 14 codons of the 

protease and minor mutations for 20 codons of the protease by the International AIDS society 

USA mutation list (an internationally used reference list) [16].  

1.4.5.2 Reverse transcriptase inhibitor mutations and resistance to NRTIs and 
NNRTIs 

1.4.5.2.1 NRTIs 

NRTI resistance mutations consist in thymidine analog mutations (TAMs), non thymidine 

analog regimen mutations, multi-NRTI resistance mutations, M184V and other accessory 
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mutations. NRTI resistance mutations act either by blocking incorporation of the NRTI into 

the DNA chain or by removing the NRTI from the DNA chain [109-112]. TAMs and multi-

NRTI resistance mutations affect all NRTIs currently approved by the FDA and EMEA and 

are found on 6 codons of the reverse transcriptase, respectively [15, 16].  

1.4.5.2.2 NNRTIs 

NNRTIs have a low genetic barrier to develop resistance, i.e. only one or two mutations are 

required for resistance. NNRTI resistance mutations reduce susceptibility to multiple NNRTIs 

implying a high risk for cross-resistance. NNRTI resistance mutations occur close to the 

active site of the reverse transcriptase at the NNRTI binding pocket [113]. Shafer et al. 

classified NNRTI resistance mutations in four classes: primary, secondary, minor non-

polymorphic and polymorphic accessory mutations [15].  

1.4.6 Interpretation of genotypic tests and genotypic mutations 
Interpretation algorithms are designed to assist the physician in choosing an optimal drug 

combination for a given patient using information from drug-resistance testing. In this 

context, `interpretation' refers to the task of predicting a parameter of treatment response (i.e. 

drug activity or virological response) from genotypic data and additional characteristics.  

A variety of interpretation algorithms that predict either the in vivo activity of a specific drug 

or the in vitro activity, i.e. the replicative drug activity measured by a phenotypic test (see 

Table 2), are available. Further, more recent interpretation algorithms allow for predicting the 

in vivo activity of drug combinations, i.e. THEO or EuResist [39, 114]. All lists and algorithms 

are mainly developed on knowledge based on HIV-1 infection and more specific for infection 

with a subtype B virus. 

Genotyping is widely used in clinical practice and therefore algorithms predicting in vivo drug 

activity from genotypic data are of great interest to support the clinician in antiretroviral drugs 

selection. The main limitations in relating the viral genotype to drug activity are a lack of 

studies with monotherapy data and the high diversity of mutations as well as the complexity 

of mutational patterns.  

1.4.6.1 Genotypic sensitivity score 

Interpretations systems currently used in clinical practice evaluate each drug separately 

(beside THEO and EuResist) and therefore a genotypic sensitivity score (GSS) for a given 

combination of drugs is usually calculated. The GSS reflects the number of active drugs in the 

regimen of a patient and is calculated based on the result of a genotypic interpretation 
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algorithm. Usually, it is calculated by assigning a score of 1 for susceptible/potential low level 

resistance, 0.5 for low-level/intermediate resistance and 0 for high-level resistance. Therefore, 

a standard of care combination antiretroviral therapy consisting of three drugs would attain a 

total GSS of 3 if no resistance for a prescribed drug is present. 

Table 2: Selection of freely available interpretation algorithms (for a complete overview please see 
[106, 115, 116]) 
System and 
Reference Description Output 
In vivo activity of single drugs 

ANRS AC11 
[33] 
 

A rule-based algorithm established by a panel of experts. 
Table of rules combining mutations conferring drug 
resistance (i.e. from clinical studies, observational 
studies) and studies correlating clinical outcome and 
genotypic mutations 

3 categories: 
Resistant, intermediate 
resistant, susceptible 
 

HIVdb, Stanford 
HIV drug resistance 
database 
[34, 117] 

A rule-based algorithm combining information from (i) 
Published studies and data linking mutations to ARV 
therapy; (ii) Published studies and data linking 
mutations to decreased ARV susceptibility; (iii) 
Published studies linking pre-therapy mutations with the 
virological response to a new ARV treatment regimen 

5 categories: 
1) susceptibel 
2) potential low-level resistance 
3) low-level resistance 
4) intermediate resistance 
5) high level resistance 

Rega algorithm 
[118, 119] 

A rule-based algorithm established by a panel of experts. 3 categories: 
Resistant, intermediate 
resistant, susceptible 
 

In vitro phenotypic resistance of single drugs 

geno2pheno 
[38, 120] 

Database derived algorithm based on information from 
1100 genotype-phenotype training pairs. The algorithm 
is based on support vector machines. 

Fold-changes in IC50% result 

Virological response to combination therapy 

THEO (THErapy 
Optimizer) 
[114, 121] 

Database derived algorithm based on genotypic 
resistance data linked to treatment outcome using 
logistic model trees for prediction. Links the data also to 
phenotypic resistance data and calculates the genetic 
barrier based on mutagenetic trees to add information 
for prediction. 

Amongst others: Probability of  
virologic success over 24 or 
more weeks for selected 
combination therapies 

EuResist 
[39, 122, 123] 

Database derived algorithm based on information from 
more than 39,000 patients combining three statistical 
learning engines. Allows for inclusion of baseline 
characteristics such as viral load, age, sex and CD4 cell 
count for prediction.  

 

1.4.7 Definition of drug resistance for the evaluation of prevalence 
Drug resistance can be defined as either having at least one mutation of an established list of 

mutations or being classified as resistant to at least one drug using a current interpretation 

algorithm. 
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Updated lists of drug resistance mutations are available, for example the IAS-USA list, which 

is updated on a regular basis [16]. The IAS-USA list summarises mutations described for each 

currently FDA approved drug but is not an interpretation algorithm. Thus, the list does not 

allow for determining whether a patient harbouring a virus with a given set of mutations is 

resistant or not. The list contains further a lot of polymorphisms that may contribute to 

resistance in the presence of other resistance mutations but can also be found in untreated 

patients because mutation frequency is high at these positions. Polymorphisms are not 

necessarily specific mutations that developed under drug pressure. Assessing the prevalence 

of transmitted drug resistance using this list could lead to an overestimation of drug resistance 

due to these polymorphisms. Therefore, a lot of authors use the definition of at least one 

major resistant mutation of the IAS list. 

The World Health Organisation (WHO) list for surveillance of transmitted drug resistance 

mutations is a more restricted list of mutations that was conceived for drug resistance 

surveillance. The list includes only non-polymorphic mutations. Further, it aims at giving a 

standard list for accurate estimation of transmitted drug resistance from different regions and 

times [124]. To date, the WHO list is the standard list for surveillance of transmitted drug 

resistance mutations. In general, transmitted drug resistance is defined as having at least one 

mutation of this list.  

Genotypic testing can detect different amino acids at one position due to the viral quasispecies 

(i.e. more than one major quasispecies can exist). For example, one major quasispecies can 

harbour a Leucine at position M46 and a second major quasispecies can harbour an Isoleucine 

at the same position. This would be reported in a mixture of mutations at position M46, e.g. 

reported as M46L/I. Mixtures between aan amino acid known to cause drug resistance and the 

wild type amino acid are possible as well, e.g. reported as M46M/L. 

Differences in reported prevalence can thus not only be due to the use of different lists or 

algorithms but also to the way a mixture of mutations or a mixture between mutation and wild 

type on a given position were considered [125].  

1.5  Epidemiology of antiretroviral drug resistance  

1.5.1 Transmitted drug resistance in adults 
Transmitted drug resistance is observed in most countries where antiretroviral drugs are 

available. The first cases of transmitted drug resistance have been reported in the 1990s [126]. 

Transmitted drug resistance varies according to region, study population and other factors 
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[127] and can also vary due to the use of different interpretation systems or surveillance lists 

for transmitted drug resistance [128]. The following sections focus on transmitted drug 

resistance for the commonly used drug classes NRTIs, NNRTIs and PIs. Knowledge about the 

transmission of resistance mutation to newer treatment classes (e.g. INSTIs and Fusion 

inhibitors) is scarce but a first case of transmission of integrase mutations has already been 

reported [127] as has transmitted drug resistance for enfurvitide [129].  

1.5.1.1 Prevalence in Europe and North America 

Prevalence of transmitted drug resistance in Europe ranges between 10% and 15% [19, 21, 23, 

24, 28, 59-61]. In a large European surveillance study the prevalence was found to be stabilising 

around 8% in recent years (data up to 2005 included) in Europe [60]. A peak prevalence of 

transmitted drug resistance of around 15% in the years 2000 to 2002 was found in the UK 

with a decline to a prevalence of around 9% in 2004 [130]. A similar trend was found in the 

European SPREAD study [60]. Higher prevalence especially in earlier time periods can be due 

to various reasons but a selection bias cannot be excluded, given that resistance testing in 

treatment naïve patients was not part of standard care and might have preferentially been 

prescribed in patients at high risk for carrying transmitted mutations. The stabilisation of a 

prevalence of transmitted drug resistance around 10% especially in the latest published 

studies may also be a result of the use of standardised mutation lists for surveillance of 

transmitted drug resistance (e.g. [124, 131]).  

Prevalence of transmitted drug resistance was found to be up to 25% in North America [26, 

27]. The most recent study published by Wheeler et al. found a prevalence of 14.6% using 

data from 10 states and defining transmitted drug resistance with the current surveillance list 

of the WHO [132].  

1.5.1.2 Minority variants  

The prevalence of transmitted drug resistance may be underestimated due to the fact that 

resistance mutations are detected only in the major virus population. Some transmitted drug 

resistance surveillance studies using ultrasensitive resistance test methods suggest that 

prevalence of transmitted drug resistance could at least be two fold higher compared to 

population-based sequencing [105, 133]. In a recent study of Lataillade et al. prevalence of 

transmitted drug resistance was found to be 30.5% using ultra deep sequencing in treatment 

naïve patients included in the CASTLE study. Prevalence of transmitted drug resistance was 

14.9% using population based sequencing in the CASTLE study [134]. 
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1.5.1.3 Prevalence in resource limited settings 

Individual genotypic testing is not recommended in resource limited settings by the WHO. 

However, a need for population-based surveillance of both transmitted and acquired drug 

resistance was acknowledged by the WHO [135]. 

Reports of surveys with small sample sizes of sub-Saharan Africa indicate an overall 

prevalence of transmitted drug resistance of 0% to 14.8% (for an overview see [23]). 

Prevalence reaching such levels in developing countries can be partly explained by genotypic 

testing in a highly selected population but also by the use of unadapted mutation lists. In 

contrast, a WHO HIV drug resistance survey including data from Ethopia, Malawi, South 

Africa, Swaziland, Tanzania, Thailand and Vietnam found a prevalence of <5% using a 

transmitted drug resistance surveillance mutation list [136]. In India, transmitted drug 

resistance was found to be 10% among treatment-naïve patients [137]. 

Access to antiretroviral treatment is steadily growing in the developing world and with a 

higher exposure to antiretroviral treatment the level of acquired resistance is expected to rise. 

Consequently, prevalence of transmitted drug resistance will probably rise at least to levels 

comparable to that in the developed world. A mathematic model published by Blower and 

colleagues predicts that levels of transmitted drug resistance will rise to levels above 5% 10 

years after scaling up antiretroviral treatment or if >30% of all HIV infected patients are 

treated with antiretroviral therapy [138]. 

1.5.1.4 Prevalence of transmitted drug resistance in children 

Prevalence of transmitted drug resistance in children was found to be up to 87% if the mother 

received single-dose nevirapine for prevention of mother to child transmission [139]. In a 

meta-analysis Arrivé et al. found a nevirapine resistance prevalence of 52.6% in 4-6 week old 

children if only single-dose nevirapine was administered to the mothers [140]. The nevirapine 

prevalence was 16.5% when other antiretrovirals had been given besides single-dose 

nevirapine to the mothers or to the children [140]. 

1.5.1.5 Impact of transmitted drug resistance on treatment outcome 

The potential impact of transmitted drug resistance on treatment response remains 

controversial and has not been fully described (see Table 3). Some studies report no 

significant association between the presence of transmitted drug resistance and time to viral 

load suppression, proportions with viral load suppression [19, 29, 30] or with immune response 

[19, 26, 29, 30].  
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Table 3: Overview of studies investigating impact of transmitted drug resistance on treatment 
outcome by descending sample size. 

Reference N* Country Cohort name/Study 
population 

Year TDR Main Results 

Bansi et al. 
[141] 

935 UK  UK-CHIC patients 
with resistance test 
prior to the start of 
cART as part of 
routine care  

1999-
2006 

Stanford 
algorithm 
was used to 
calculate a 
GSS 

Patients with a GSS<3 had 
higher risk to not suppress 
VL below 50 copies/mL 
within the first year 

Chaix et al. 
[142] 

350 France  ANRS CO 06 
PRIMO,  Genotype 
was not used for 
treatment selection 

1996-
2005 

Resistant to 
≥1 drug - 
ANRS 

% of patients with a VL 
<400 cp/mL was lower in pts 
with resistance (at week 12 
and 24) 

Bannister et 
al. 
[19] 

277 Europe  EuroSIDA, 
Genotype was not 
used for treatment 
selection 

1996-
2004 

At least 
intermediate 
resistance to 
≥1 drug - 
Stanford 

No difference for % of VL 
<500 (at week 12 and week 
24) 

Oette et al. 
[29] 

269 Germany  RESINA, Genotype 
was used to guide 
treatment selection 

2001-
2003 

geno2pheno No difference for % of VL 
<50 (at week 24 and week 
48) 

Pillay et al. 
[28] 

201 Europe  Seroconverters 
CASCADE, 
Genotype was not 
used for treatment 
selection 

1996-
2003 

At least 
intermediate 
resistance to 
≥1 drug - 
Stanford 

No impact on time to VL 
suppression <500 copies/mL 

Grant et al. 
[31] 

141 USA,                
San 
Francisco  

~80% MSM, 
Genotype was not 
used for treatment 
selection 

1996-
2001 

≥1 major 
mutation of 
the IAS-USA 
list 

Time to VL suppression 
<500 copies/mL was longer 
in pts with genotypic 
resistance 

Shet et al. 
[26] 

73 USA,                
New York  

Newly diagnosed, 
Genotype was used 
for treatment 
selection 

2003-
2004 

≥1 IAS-USA 
mutation 

No impact on time to VL 
suppression <50 copies/mL 

Poggensee et 
al. 
[30] 

69 Germany  German HIV-1 
Seroconverter Study, 
Genotype was not 
used for treatment 
selection 

 At least 
intermediate 
resistance to 
≥1 drug - 
Stanford 

% VL <500 cp/mL was 
lower in patients with 
resistant strains but not 
statistically significant 

*Number of patients available to assess the impact of transmitted drug resistance on virological response. TDR: 
transmitted drug resistance, cART: combination antiretroviral therapy, GSS: genotypic sensitivity score, VL: 
viral load, MSM: men having sex with men 
 
Other studies report poorer virological response in patients with transmitted drug resistance 

and a significantly shorter time to viral load suppression among patients with susceptible 

strains [26, 30, 141, 142].   

However, all these studies are hampered by a lack of statistical power due to the relatively 

small proportion of patients with transmitted drug resistance included. In particular, the 

impact of transmitted drug resistance on virological response in patients treated with a fully 

active regimen has not yet been explored in the context of systematic genotypic testing prior 

to treatment initiation in larger datasets. We have therefore investigated the impact of 
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transmitted drug resistance on virological and immunological outcome after the start of first 

line combination antiretroviral therapy in a large European study (see chapter 5). 

1.5.2  Prevalence of antiretroviral drug resistance in treatment 
experienced patients 

In a French nationwide study, prevalence of drug resistance to at least one antiretroviral drug 

using the ANRS interpretation algorithm was found to be 88% in treated patients with a viral 

load of >1000 copies/mL [17]. In patients failing a first line regimen included in the Swiss 

HIV cohort, resistance mutations (major mutations of the IAS-USA list) were found in 84% 

of patients who started a regimen containing an unboosted PI, 66% of patients who started a 

regimen containing an NNRTI and 30% of patients who started a ritonavir boosted PI [143]. 

Nevertheless, cumulative resistance to all three most commonly used drugs classes (i.e. 

NRTIs, NNRTIs and PIs) is rare. Costagliola et al. observed resistance to three classes in 4% 

of their study population in France and Lima et al. in 2% of their patients in British Columbia 

(Canada) [17, 144]. Development of multiclass resistance was more frequently observed in 

patients starting an NNRTI based regimen than with other regimens [143, 144]. 

Prevalence of acquired drug resistance in resource limited settings was found to be over 80% 

[145, 146]. In a systematic review Gupta et al. found that prevalence of drug resistance was 

88% for patients with infrequent monitoring and 61% for those with frequent monitoring 

[147]. 

1.5.3 Persistence of drug resistance  

1.5.3.1 Persistence of transmitted drug resistance 

In contrast to acquired drug resistance, patients with transmitted drug resistance virus do not 

have a reservoir of drug susceptible (wild type) virus. This implicates that transmitted drug 

resistant virus can only revert to wild type by back mutation. This can occur very rapidly for 

specific mutations such as reverse transcriptase mutation M184V which is linked to a fitness 

cost [148, 149]. For other mutations this back-reversion is less common or uncommon such as 

reverse transcriptase mutations Y181C or M41L, respectively.  

HIV resistant strains acquired at the time of primary infection massively fuel the cellular 

reservoir and can persist over long time periods [150-153]. Delaugerre et al. still found 

multidrug resistant HIV-1 two years after sexual transmission in a patient who was not treated 

during this time period [151]. A recent study even found transmitted drug resistance after 10 
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years in a patient without treatment [154]. Further, transmitted drug resistance mutations were 

found to persist even when the viral load was suppressed to undetectable levels [155].  

1.5.3.2 Persistance of acquired drug resistance 

After treatment discontinuation there is a rapid decline of HIV drug resistance mutations and 

the wild-type virus archived in the viral reservoir overgrows the resistant virus in weeks after 

the arrest of drug selective pressure [156-160].  

However, it is important to know that mutant viruses remain incorporated in the viral 

quasispecies and in the viral reservoir [7-12]. These mutant viruses may “reappear” under 

selective pressure, e.g. if the same drug is re-introduced. 

Thus, the whole treatment story and former genotypic test results, if available, should be 

considered for treatment optimization. 
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2 Statistical analysis of the impact of drug resistance on 
treatment response  

2.1 Definition of endpoints 

The definition of the endpoint of a study is crucial as the main conclusions are based on it and 

the sample size depends directly on it. The endpoint of a clinical study is usually a 

quantitative measurement(s) in relation to the objectives of the study. In other words the 

endpoint should address the primary question of the study. There are various desirable 

features for an endpoint, amongst others it should be relevant to disease process and easy to 

interpret. Further, ideally it should be free from measurement or assessment error and 

measurable within a reasonable period of time.  

Various definitions for endpoints exist and some basic definitions were proposed by the 

Biomarkers definition Working group of the National Health Institute, USA to describe 

biological measurements in therapeutic development and assessment [161]: 

Clinical endpoint:  A characteristic or variable that reflects how a patient 

feels or functions, or how long a patient survives. 

Biological marker (Biomarker):  A characteristic that is objectively measured and 

evaluated as an indicator of normal biologic process, 

pathogenic process, or pharmacologic responses to a 

therapeutic intervention. 

Surrogate endpoint:  A biomarker intended to substitute for a clinical 

endpoint. A clinical investigator uses epidemiologic, 

therapeutic, pathophysiologic, or other scientific 

evidence to select a surrogate endpoint that is expected to 

predict clinical benefit, harm, or lack of benefit or harm. 

 

There exist more strict statistical criteria for the definition of surrogate endpoints, e.g. 

Prentice’s criteria [162]. However, the discussion of evaluation and validation of surrogate 

endpoints is complex and out of scope of this thesis.  

2.1.1 Multiple endpoints 
Studies rarely use a single endpoint. Most often endpoints cover clinical events, symptoms, 

physiologic measures, side effects, quality of life, etc., some being primary and other 
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secondary endpoints. In general, clinical studies are powered for the primary endpoint only 

and analysis of multiple endpoints is linked to methodological issues such as inflation in type 

I error [163]. Further, secondary endpoints and primary endpoints are often related. For 

example, the observation of the secondary endpoint can depend directly on the primary one if 

the primary endpoint is survival and the secondary disease progression. Then there is a 

competing risk between the primary and secondary endpoint. In this case the analysis of the 

secondary outcome requires adapted statistical methods that condition on the primary 

outcome [164].  

Another possibility is to define co-primary outcomes which also implie the use of adequate 

methods as described by DiRienzo and De Gruttola [165] and discussed in chapter 4.1. 

The construction of a composite endpoint is now widely used in clinical studies. A composite 

endpoint combines multiple measurements into a single endpoint using a pre-specified 

algorithm.  

2.1.2 Which endpoints are used in HIV studies and in which context? 
In the HIV field, “classical” clinical endpoints are progression to AIDS or death, and 

frequently used biomarkers are the HIV viral load and the CD4 cell count. The field has 

evolved a lot in recent years so that the definition of endpoints has become more and more 

complex (see Figure 11). Survival of people living with HIV is approaching that of the 

general population, especially in patients with a CD4 cell count above 500 copies/mL [83]. 

However, the mortality of people living with HIV is still higher than that of the general 

population but not only due to AIDS events but also to non-AIDS defining events, cancer and 

other co-morbidities [82, 166-168]. HIV can not be eradicated yet so that, once started, 

antiretroviral treatment should be continued life long [1, 3]. Furthermore, adherence, pill 

burden, toxicity and development of drug resistance have to be considered. Another question 

is thus how long a specific treatment is efficient. Treatment goals are therefore more 

sophisticated than only to suppress the viral load and hamper disease progression. Today, 

progression to non-AIDS defining events, adherence, toxicity, development of resistance and 

the preservation of future treatment options may be equally important. 

The study population plays a role for the definition of an endpoint. For example, one could 

imagine that the primary treatment goal differs between treatment naïve patients and 

experienced patients (especially patients needing salvage therapy). Further, it will depend on 

the general context of the study; the evaluation of a single drug for approval might claim a 

different definition from a study evaluating a treatment strategy. 
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All these considerations have led to wide use of composite endpoints in HIV clinical trials 

because i) using a ‘simple’ clinical endpoint such as death or disease progression is now 

difficult because of the rarity of these endpoints, ii) a suppression in viral load alone might be 

an imperfect surrogate for clinically relevant outcomes and might only reflect treatment 

efficacy at the shorter term and iii) as treatment needs to be taken life-long the duration of an 

initial treatment and the preservation of future treatment options have become equally 

important. 

 
Figure 11: Simplified schema of change of endpoints in HIV clinical trials over time. 
TLOVR: Time to loss of virological response. 

2.1.3 Composite endpoints  
The FDA currently recommends the use of a composite endpoint called Time to loss of 

virological response (TLOVR) that combines components relating to virological failure, loss-

to-follow-up, initiation of a new treatment due to intolerance/toxicity or any other reason and 

death [169].  

Other definitions for composite endpoints in the HIV field are available and they are now the 

most commonly used endpoints for HIV clinical trials. Methodological issues in the use of 

composite endpoints are discussed in chapter 4.1.  

2.1.4 Virological endpoints 
‘Pure’ virological endpoints are necessary in specific contexts and to answer specific 

questions. Definition of a pure virological endpoint is supposed to reflect the impact of 

Clinical endpoint: Mortality    
- Simple, unique, short term     

Composite endpoint: TLOVR or TLOVR like    
- Composed, complex, long term     

Biomarker endpoint: Virological criterion     
- Simple, unique, short term     

1981    

1990    

2005     
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antiretroviral therapy on the replication of the virus. Thus, in the context of the evaluation of 

genotypic resistance mutations a ‘pure’ virological endpoint is the preferred one. Other 

situations would be the evaluation of an early antiretroviral effect to have an early potential 

surrogate criterion for clinical studies, to have the possibility of an early evaluation for the 

patient (daily practice) that may lead to treatment modification, or to have a criterion for 

clinical trials with an adaptive design (e.g. with possibilities of treatment optimisation).  

The quantification of HIV viral load is hampered by a detection limit. The assays currently 

used to measure HIV viral load for standard clinical care mostly have a lower limit of 

detection of 50 copies/mL (ranging from 500 to 20 copies/mL). 

2.1.4.1 Binary response 

A very simple way to define a virological endpoint would be to define a binary response that 

reflects the percentage of patients below/above the detection limit at a defined time point after 

treatment start, e.g. 6 months. 

However, such a definition will consider a patient starting with a very high viral load who 

stays above the detection limit up to 6 months to be in virological failure even when he had a 

steep decay and probably will reach detection limits at a later point. In some studies 

virological failure was defined as the proportion of patients with a viral load reduction of at 

least 1 log10 copies/mL [170-172]. A patient with a steep initial decay would be considered 

virological success with this definition. 

To avoid misclassification problems due to a high baseline viral load some researchers used 

combined virological criteria and defined virological failure as a viral load above the 

detection limit and a decrease ≤ 1 log10 copies/mL [173, 174].  

Of note, another issue is that the detection limit depends on technological progress and 

evolves with new generation of assays, but does not necessarily reflect a clinically relevant 

cut-off. 

2.1.4.2 Quantitative endpoints 

2.1.4.2.1 Difference of baseline viral load and follow up viral load 

Some studies use the difference in viral load between baseline (treatment start) and a follow 

up viral load to compare the difference in viral load decay observed between groups. A simple 

method to deal with the problem of the detection limit would be to impute the value of the 

lower detection limit. Simple imputation of the detection limit leads to an underestimation of 

the difference and studies using such a definition are thus prone to miss-classification bias. 
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Therefore, Marschner et al. proposed to use survival analysis methods to compare the 

reduction in viral load accounting for the censoring of the viral load measurements [175]. 

Another possibility is to use a linear mixed model approach taking left censoring (viral load 

below the detection limit) into account [52, 53]. 

2.1.4.2.2 The use of viral load dynamics and mathematical models to evaluate 
treatment efficacy 

Usually viral load is repeatedly measured after treatment start to monitor treatment efficacy. 

The efficacy of a treatment is supposed to have a direct influence on the viral load decline, i.e. 

the faster the decline the more efficient the treatment [91] but may also depend on the 

inhibition mechanism of the drug [176]. 

The use of piecewise linear mixed models extended for considering left-censored data are one 

possibility to analyse the viral load evolution [52, 53]. Other models based on bi-exponential 

models (which could be a solution of a system of differential equations) or differential 

equations can also be used to estimate decay rates [90, 91, 177-179]. Evaluation of early viral 

load decay rates in controlled clinical trials was discussed as a possibility to avoid undesired 

prolongation of study duration [133, 180] but results on this topic are controversy [181-184].  

Another possibility to assess treatment efficacy is to use dynamical models (i.e. mechanistic 

models based on differential equations) to estimate the percentage of virus production blocked 

by the therapy [185]. This method is used in the evaluation of treatment efficacy of hepatitis C 

virus (HCV) treatments in HCV or HIV-HCV infected patients [186, 187] and was adapted for 

left-censored data [188]. 

In conclusion, neither the definition of a clinical meaningful endpoint nor the definition of a 

‘pure’ virological endpoint is straightforward. We reviewed definitions of endpoints used in 

recent HIV clinical trials and discussed their methodological issues (chapter 4.1). Further, we 

summarised and discussed definitions used to analyse resistance data (chapter 4.2). 
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2.2 Prediction of treatment outcome using genotypic data in 
treatment naïve patients 

 
In general, available interpretation algorithms (i.e. ANRS algorithm or the Stanford 

algorithm) are used to interprete genotypic resistance data in treatment naïve patients.  

For exemple, Bansi et al. used the Stanford algorithm to calculate a GSS and analysed 

whether a GSS <3 due to transmitted drug resistance mutations was associated with treatment 

outcome [141]. Others used interpretation algorithms to class patients in groups, e.g. being 

resistant to at least one drug in their prescribed regimen [19, 28, 142].  

For the analysis presented in chapter 5 we opted for a slightly different definition in order to 

distinguish three patient groups: 0) those with no transmitted drug resistance mutations, 1) 

those with at least one transmitted drug resistance mutation but predicted to receive a fully 

active treatment (i.e. no resistance for any of their prescribed drugs) and 2) those with 

transmitted drug resistance ant predicted to be resistant to at least one of their prescribed 

drugs (see Figure 12).  

 

 
Figure 12: Classification scheme used to analyse the impact of transmitted drug resistance on 
treatment outcome in EuroCoord-CHAIN. 1 The World Health Organisation 2009 List of Mutations 
for Surveillance of Transmitted Drug Resistant HIV Strains [124], 2 Standford interpretation algorithm 
version 6.0.5 [34, 117].  
 
This variable was created in two steps: First, the WHO-list 2009 [124] was used to distinguish 

between patients having at least one mutation of this list and having no mutation. Second, the 

Stanford algorithm version 6.0.5 [34, 117] was used to classify patients having at least one 

WHO mutation in two groups (see Figure 12).  

WHO – list 2009 1 

 

Patients with  
≥ 1 mutation 

 
 

 Group 2  
resistant for ≥ 1 of their prescribed drugs  
(classified as 3 ‘Low-level resistance‘, 4 

‘Intermediate' or as 5 ‘High level resistance‘) 

Group 1  
show no drug resistance to their  
prescribed drugs (classified as 1  

‘susceptible’ or as 2  
‘potential low level resistance’) 

Group 0  
no mutation 

(used as a reference group)  
 
 

Stanford algorithm 2 
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2.3 Using genotypic resistance mutations to predict virological 
outcome in treatment experienced patients  

2.3.1 High number of predictors/mutations relative to the number of 
patients included in these studies 

Genotypic sequencing is now widely used in clinical practice (at least in the resource rich 

settings) and has led to the discovery of a still increasing number of drug resistance mutations 

which further can occur in diverse combinations.  

The protease has 99 positions where mutations can occur and the reverse transcriptase 

approximately 560 positions. Given the fact that multiple mutations can occur at any position, 

i.e. theoretically the wild type amino acid can be exchanged to 19 other amino acids, a hugh 

number of predictors is the result. Of note, this scenario does not count for possible silent 

mutations, i.e. mutations in the nucleotide sequence that do not lead to an amino acid change 

but could also be a risk factor for virological failure. 

Datasets for the study of genotypic resistance mutations and virological response to therapy 

have often a small sample size, especially when new drugs are evaluated. Thus, the number of 

predictors can easily be higher than that of the observations included in the study. Another 

issue is that resistance mutations occur not necessarily independently from each other but 

occur in mutation clusters. 

In summary, studies that are linking baseline genotypic mutations to treatment outcome are 

hampered by  i) the high number of mutations, ii) collinearity of the mutations and iii) the low 

number of patients included in such studies.  

The high number of variables/mutations in relation to the low number of patients can lead to 

overfitting. An overfitted model will typically fail on unseen data and will have a poor 

prediction performance. Thus, overfitting leads to lack of external validity. To avoid 

overfitting one solution is to use cross-validation or to train the model on a training data set 

and test its performance on a completely different new dataset.  

Collinearity can lead to estimation problems especially if ordinary least squares estimator are 

used. In the context of collinearity the estimator produces large variances, which in turn might 

inappropriately lead to exclusion of otherwise significant variables/mutations from the model. 

2.3.2 Methods to deal with high number of predictors 
Several methods have already been employed to predict either the phenotypic drug resistance 

or the virological outcome using genotypic resistance data as the main predictor. Some 

methods are so called statistical learning or machine learning methods. Statistical/machine 
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learning methods are algorithms that allow for deriving computational models that are able to 

predict for example treatment outcome from an available amount of predictors/mutations. 

Usually these models are derived from so called training data which comprise the predictors 

together with their associated response.  

The following two sections give an overview of methods using genotypic data either to 

predict phenotypic or virological outcome in treatment-experienced patients. The distinction 

between phenotypic and virological outcome is factual but makes no sense for the 

methodology. Methods summarized can be used to predict both outcomes.   

2.3.2.1 Overview of methods in the litterature using genotypic data to predict 
phenotypic resistance 

An overview of methods applied and compared to predict phenotypic drug resistance using 

genotypic mutations is given in Table 4. 

Support vector machines (SVM) were found to be highly predictive for phenotypic drug 

resistance [38]. SVMs are a group of learning methods that can be applied for classification or 

regression problems and can be used for linear and nonlinear data structure. In the context of 

genotype-phenotype data, sequences with known phenotype are mapped into a high-

dimensional vector space. In this space, a hyperplane is computed that optimally 

approximates the genotype–phenotype relation. SVM generally provides accurate prediction 

models but the generated models are typically regarded as incomprehensible black-box 

models.  

Other approaches tested to predict the phenotype are artificial neural networks [48] and 

decision trees [49].  

Usual linear regression models with and without interaction were used by Vermeiren et al. 

and Wang et al. to predict phenotype and in both studies a high accuracy in predicting the 

phenotype was found [189, 190]. The virtual phenotype by Virco is also based on linear 

regression models [191]. 
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Table 4: Overview of methods applied and compared to predict phenotypic drug resistance 
using genotypic mutations 
Reference Methods  Main results 
Sevin et al. 2000 
[192] 
 

Cluster analysis, 
recursive 
partitioning, linear 
discriminant 
analysis 

Recursive partitioning was found to be useful because it 
can identify interactions among mutations at different 
codons 

Beerenwinkel et al. 2002 
[49] 

decision trees Sensitivities ranged from 77.7 - 92.5% and specificities 
ranged from 68.7 - 97.2% depending on the drug classes 

Beerenwinkel  et al. 2003 
[38] 

support vector 
machines 

Models accounted for 30 to 79% of the phenotypic 
variance 

Wang et al. 2004 
[190] 

stepwise linear 
regression, 
decision trees, 
support vector 
machines, ANRS, 
Rega, Stanford 

Stepwise linear regression outperformed the other 
methods and interpretation algorithms for predictive 
accuracy 

Rabinowitz  et al. 2006 
[46] 

ridge regression, 
neural networks, 
PCA, decision 
trees, stepwise 
selection, support 
vector machines, 
Lasso 

Lasso and SVMs outperformed the other techniques 

Rhee et al. 2006 
[196] 

decision trees, 
neural networks, 
least square 
regression, support 
vector regression, 
LARS 

LARS was superior to the compared methods if the 
complete set of mutations present ≥2 sequences was used. 

Vermeiren et al. 2007 
[189] 

linear regression Good correlation between measured and predicted Fold 
change 

Saigo et al. 2007 
[197] 

Itemset boosting (a 
non linear 
regression 
method), LARS, 
support vector 
regression, ridge 
regression 

Itemset boosting outperformed LARS and support vector 
regression but only for NRTIs 

Sinisi et al. 2007 
[51] 

Superlearner: 
LARS, CART, 
D/S/A, logic 
regression, ridge 
regression and 
linear regression 

The selection of an optimal learner from candidate 
learners asymptotically outperformed any of the candidate 
estimators. D/S/A (Deletion/Substitution/Addition) and 
linear regression were selected as optimal learner to 
predict phenotypic resistance using genotypic data 

Schumi and DeGruttola 2008 
[194] 

resampling based  
methods 

Methods presented may allow the investigation of how 
mutations act in the presence of others and may be 
informative in suggesting candiate regression models  

Kjaer et al. 2008 
[198] 

Artificial neural 
networks 

Artificial neural networks predict phenotypic 
susceptibility to antiretroviral drugs to an extent that is 
comparable to routine phenotypic susceptibility testing 

PCA: principal component analysis, Lasso: least absolute shrinkage and selection operator, LARS: least angle 
regression. CART: classification and regression trees, ANRS: Agence nationale de recherche sur le SIDA et les 
hépatites. 
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Further, linear discriminant analysis, cluster analysis, recursive partitioning (an iterative 

technique to construct decision trees) [192], non-parametric methods [193] and resampling 

based methods that allow the investigation of combinations of mutations [194, 195] were also 

applied to predict the phenotypic drug resistance. 

Rabinowitz et al. compared most of the above listed methods and found the least absolute 

shrinkage and selection operator (Lasso, see also ) and SVMs to be the best predictors for 

phenotypic drug resistance [46]. 

Lasso is a penalized regression technique and gives easy interpretable results compared to 

SVMs. The regression parameters found for each predictor/mutation can be interpreted as a 

different weight for each mutation for the prediction of phenotypic drug resistance [46]. 

Further, Rhee et al. found that LARS (an algorithm including a solution for Lasso) was 

superior to the compared methods (amongst others SVMs and decision trees) if the complete 

set of mutations (no pre-selection of known resistance mutations) present ≥ 2 sequences (i.e. 

sequences of the reverse transcriptase or protease of patients included in the study) was used 

for predicting phenotypic drug resistance [196]. 

2.3.2.2 Overview of methods in the litterature using genotypic data to predict 
virological outcome 

Even if phenotypic drug resistance can also give helpful information, most clinicians are 

interested in the direct prediction of treatment outcome. 

The construction of a genotypic score is a simple method to summarize the information from 

genotypic resistance mutation to predict the virological response [36, 37].  

The genotypic score reflects the association of a set of mutations with virological response 

and is related to a given drug (see also section 2.3.3.2). The genotypic score is usually 

combined with expert knowledge and results from in vitro studies to create an interpretation 

algorithm for a given drug [33]. 

The HIV resistance response database initiative investigated SVMs, artificial neural networks 

and random forests (which are formed by many decision trees) [50] and has launched an 

experimental interpretation system (HIV TRePS v1.0 [203]).  
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Table 5: Overview of alternative methods applied and compared to predict virological outcome 
using genotypic mutations 
Reference Methods  Main results 
De Luca et al. 2004 
[199] 

fuzzy rule based 
algorithm 

algorithm showed independent prediction of virological outcome after 
adjusting for GSS made by rule based expert systems 

Brun-Vezinet et al. 
and Flandre et al. 
[36, 37, 200] 

1) Preselection of 
mutations by 
univariable tests                   
2) Selection of the 
set of mutations 
the most 
correlated with 
virological 
response by a test 
for trend 

The Jonckheere test for trend was recommended for building a 
genotypic score when compared with the Kruskal-Wallis test but the 
choice may depend on the objective of the score.  

Larder et al. 2007 
[48] 

artificial neural 
networks 

The best performing models explained 69% of the variance in 
virological response 

Yang et al. 2008 
[195] 

resampling based 
methods with 
covariate 
adjustment 

Method was found to be useful to help determine patterns of mutation 
significantly associated with drug resistance in settings where there are 
interactions in the effects of mutations. Might be helpful when used in 
conjunction with regression methods for prediction of virological 
response. 

Wang et al. 2009 
[50] 

artificial neural 
networks, support 
vector machines, 
random forests 

Random forests and SVMs were comparable to a committee of artificial 
neural network models.  

Bembom et al. 2009 
[201] 

targeted 
maximum-
likelihood 
estimation 

Targeted maximum-likelihood was considered a promising approach to 
select mutations associated with virological outcome.  

Larder et al. 2010 
[202] 

random forests Random forests model were accurate predictors of virological outcome 
and outperformed rule-based expert systems (HIVdb, ANRS, Rega) 

GSS: genotypic sensitivity score, SVM : support vector machine, HIVdb: HIV drug resistance 
database, ANRS: Agence nationale de recherche sur le SIDA et les hépatites. 
 

In the following we describe shortly the data in general available to analyse the impact of 

genotypic mutations on virological outcome, the construction of a genotypic score, the use of 

PCA, the use of PLS, and the use of Lasso for the analysis of genotypic resistance mutation to 

predict virological response. 
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2.3.3 Alternative methods and the construction of a genotypic score 

2.3.3.1 Brief overview of the data structure available for the analysis of the impact of 
genotypic resistance mutations on virological outcome 

In general, studies of patients adding a new drug to an existing regimen (e.g. 

fosamprenavir/rtv) or patients starting a new combination containing one drug administered 

for all patients (e.g.darunavir/rtv) are available for the analysis of acquired genotypic 

resistance mutations on virological response in treatment-experienced patients (see Figure 

13). 

 
Figure 13: Simplified schema for data available for the analysis of the impact of genotypic 
resistance mutations on virological response. 
 
 

2.3.3.1.1 Response variable 

The response variable is derived from the virological response and is either defined as a 

binary response or a quantitative response, i.e. change in viral load. 

For the observation (patient) i, we can define for example a binary response at week 12: 





≤=
>=

copies/mL 400 load l when vira0

copies/mL 400 load l when vira1
iy  i = 1…n 

 
 
 
 

Time   

Follow up viral load     

12 weeks     Baseline    

1) a new drug is added to an existing regimen, e.g. fosamprenavir/rtv in all patients      
2) a new combination is started containing for example for all patients darunavir/rtv 
      

Patient on a failing regimen     

Genotypic test from a plasma taken     
while on a failing regimen    
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This variable will give the response vector for the whole population of n subjects: 
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2.3.3.1.2 Main predictor variables 

The main explanatory variables will be the genotypic mutations. If patients start as a common 

drug a protease inhibitor main explanatory mutations will be protease mutations and if 

patients start a reverse transcriptase inhibitor the main predictor variable will be the mutations 

of the reverse transcriptase. 

For a patient i, we can define a binary variable representing a mutation j: 


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The matrix of the k predictor variables (j = 1…k) for n patients (i = 1…n) can be written as: 
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Thus, if at one position more than one mutation is reported a binary variable for each of them 

will be created.  

Another possibility would be to treat all possible amino acid substitutions in the same way. 

For example, whether at position 47 the wild-type amino acid Isoleucine is displaced by a 

Valine or by Alanine could be considered to be the same.  

2.3.3.2 Construction of a genotypic score 

The large number of possible mutations and possible collinearities lead to the application of 

strategies for reducing the number of predictors as e.g. backward and forward selection 

strategies in simple regression models. Backward selection is only applicable after pre-

selection of mutations. Inclusion of all mutations would lead to too many predictors which 

would require extremely high numbers of patients to be included in the studies. However, 

even after a pre-selection of mutation, applying backward selection could be problematic if 

mutations are highly correlated. Forward selection in contrast could be applicable but could 
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eliminate useful predictors that happen to be correlated with mutations already included in the 

model. To circumvent these problems and to simplify the interpretation, genotypic mutations 

are generally related to a single drug, summarised in a genotypic score. This score is the sum 

of resistance mutations observed in a given patient. The combination of mutations that are 

represented in the sets for constructing the score can be selected by different strategies. One 

of the classical strategies selects mutations in two steps. 

Step 1 

In the first step all mutations or the mutations from the IAS panel are investigated (i.e. k 

mutations known to be associated with poor response in vitro and in vivo).  

The first step determines a set of p < k mutations, which are associated with virological 

failure. For each mutation, frequency and prevalence are determined and only mutations 

having prevalence ≥10 % and ≤90 % are considered for further analyses [36]. With these 

mutations univariable analyses are realised in order to determine the association of each 

mutation with virological failure.  

Mutations providing a p-value < 0.25 are kept for further analysis [37]. These mutations form 

the first set of p ≥ m mutations that is used to calculate the first genotypic score.  

The score for a patient i calculated with the first set of mutations is defined as: 

∑
=

=
p

j
ji xs

1

 

Example: 

With the mutations selected in the first step the first genotypic score is calculated for each 

patient. For instance a first set contains the five protease mutations V32, I47, I50, V77, I84 

and L90. The score is defined as S= V32 + I47 + I50 + V77 + I84, in which each mutation is 

defined to get the value 1 if the mutation is present and 0 if not present (S varying from 0 to 

5). A patient with mutations I50, V77, I84 and L90 would thus get a score of 4. 

Step 2 

The next step reduces the number of mutations to m mutations for the final set. The final set 

of m mutations can be obtained by different selection strategies [37]. 

The number of included mutations can be reduced using step by step procedures. With 

forward or backward selection, scores are calculated for each considered subset of mutations. 

For each considered subset of mutations and its derived score, associations between the score 

values on an ordinal scale and virologic failure are assessed by a non parametric test for trend. 
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The set of mutations determined for the final score represents the subset providing the score 

with the strongest association with virological failure [37, 116].  

In the following paragraph we describe a removing procedure to select the final set of 

mutations: 

Backward selection procedure 

Starting with p ≥ m mutations that have been kept in the first step, every mutation is removed 

one by one. All sets of p-1 mutations are investigated. For each possible set, the test compares 

groups of patients having none to p-1 mutations.  

For a given set of mutations the number of patients with virological failure is defined as 

∑
=

=
hN

i
ih yy

1

for every group h with Nh individuals. The group h is defined for patients 

presenting the same number of mutations Sh= 0…p (Sh= 0…p-1, respectively), i.e. the same 

score value.  

We applied the Cochrane Armitage trend test to verify the hypothesis of an equal repartition 

of the probability of virological failure regarding mutation numbers as we defined a binary 

response variable for the study presented in chapter 6.1. The choice to use a trend test is based 

on a paper by Flandre et al. that demonstrated that the Jonckheere’s trend test was superior for 

the selection of a subset of mutations compared to Wilcoxon-Mann-Whitney when a 

quantitative outcome was used [37, 200]. 

The proportion of virological failure for the group h is defined as 
h

h
h N

y
=π and the proportion 

of virological failure is defined as 
n

y
n

i
i∑

== 1π  

  H0: ππππ :...10 ==== h  

H1:  The proportions hπ  are different to π  and these proportions depend on 

the score value Sh=0…p. The proportions tent to be higher relative to 

the number of mutations. 

 

The combination providing the lowest p-value is kept. The procedure is repeated and 

mutations are removed one by one to compare the different combinations of p-2 mutations to 

the set of p-1 mutation kept. The combination providing the lowest p-value is again kept, and 

so on. The procedure stops when removal of a mutation does not result in a lower p-value (see 

see Figure 14). 
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Figure 14: Scheme of the backward selection procedure realised in step 2 for the determination 
of a set of mutation associated with virological failure (VF).  
 
One restriction of this strategy is that every mutation has the same weighting. Hence, no 

difference between the impacts of major or minor mutations on the virological response can 

be determined. Further, some mutations are known to lead to hypersusceptibility. Flandre et 

al. 2005 and Capdepont et al. 2006 defined a value of -1 for mutations associated with a better 

virological response in the context of constructing a score for didanosine [37, 40]. Protease 

inhibitor mutation V77 was described to provoke hypersusceptibility [41]. The score S in the 

above depicted example would then range from -1 (only V77 present) to 4 (V77 absent but all 

others are present). The score for the patient with mutations I50, V77, I84 and L90 would be 

S=1-1+1+1=2.  

 No of Mutations, i.e. value of the score  

n np … n0 Total 

… VF 

Total p ... 0  

0

1
0

0

n

y
n

i i∑ ==π
p

n

i i
p n

yp∑ == 1π
n

y
n

i i∑ == 1π

n np-1 … n0 Total 

… VF 

Total p-1 … 0  
  

0π π1−pπ

All possible combinations of 
p-1 mutations to calculate a 
genotypic score are tested 

Table 2.1: % of VF according to a score calculated without 
mutation at codon 13 

Tableau 2.p -1: % of VF according to a score calculated 
without mutation at codon 90 

n np-1 … n0 Total 

… VF 

Total p-1 … 0  
  

0π π1−pπ

p-value 1 

p-value 2.1 p-value 2.p-1 

All possible combinations of 
p-2 mutations to calculate a 
genotypic score are tested 

Table 3.p-2 

The set of mutations (among 3.1 to 3.p-2) with the lowest p-value is kept if lower than p-value 2.1 

Table 3.1 

No of Mutations, i.e. value of the score No of Mutations, i.e. value of the score 

The set with the lowest p-value is kept. For example, if p-value 2.1 is < the 
p-value 1 then mutation 13 is removed and the procedure starts with the set 
of mutations without mutation 13 and all possible combinations eliminating 

another mutation are tested 

Table 1:  Proportions of patients with virological failure according to the 
the first genotypic score  

The procedure stops if removing another mutation does not result in a lower p-value. 
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Another restriction of the genotypic score is that interactions between mutations are not taken 

into account. The effect of one mutation may be higher or weaker when another mutation is 

present. 

Once the genotypic score is defined, a cut-off with reasonable sensibilities and specificities 

for the prediction of virological failure is determined by comparison with clinical parameters. 

In summary, the construction of a genotypic score has several limitations. First, a pre-

selection of mutations linked to virological response is needed in order to reduce the set of 

mutations used for constructing the genotypic score. This pre-selection can potentially lead to 

exclusion of mutations linked to virological response. Second, each mutations used for the 

calculation of the genotypic score is given the same weight, irrespectively whether it is a 

major or minor mutation. Third, given the number of mutations a high number of tests must 

be realised. Thus, the false discovery rate due to the raise in type I error may be important. 

2.3.3.3 Alternative strategies 

Alternative strategies such as principal component analysis (PCA) and partial least square 

(PLS) have been suggested to reduce the size of correlated predictors [42-44]. Moreover, these 

strategies may help in describing associations between mutations. Lasso is another technique 

which is suited for data with a high number of potentially correlated predictors and which is 

easy to interpret [46, 204, 205].  

Advantages of these methods are that they do not need pre-selection of variables/mutations. 

PCA and PLS consider all potential mutations with a different weight for the prediction of 

treatment outcome. Lasso shrinks parameters of some mutations with no impact on treatment 

outcome to zero. 

2.3.3.3.1 Principal Component Analysis 

The objective of PCA is to find a set of “latent variables” in form of a linear transformation of 

the original predictors. The properties of these latent variables are that they are uncorrelated 

and that they account for as much of the variance of the predictor variables as possible [44]. 

The reduced numbers of uncorrelated latent variables are also called Principal Components 

(PC). PCA has been used to determine groups of mutations [45] and was used to predict 

phenotypic drug resistance [46]. 

PCA analyses the structure of the correlation matrix of the predictor variables. The objective 

is to determine components which are representing the variability of the predictor variables 

matrix, e.g. the mutations. Variables are centred and scaled before PCA analysis to prevent 

scaling inequalities. 
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The centred and scaled matrix can be written as: 
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The correlation matrix can be denoted as S =( )

kkjks
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. As the variables are centred and scaled 

we can write the samples correlation matrix as: 

  
  
The eigenvalues λ  and corresponding eigenvectors kV  of the correlation matrix are obtained 

by singular value decomposition such as:  
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The principal components can be denoted as: 

kkknkn VXC ××× = ~
 

The coefficient vectors that define the principal components are the eigenvectors of the 

correlation matrix S. In order to assure that the first principal components explain as much of 

the variance of the columns of the matrixX
~

as possible, the corresponding eigenvalues are 

ordered so that kλλλ ≥≥≥ ...21 . Therefore the principal components can be seen as 

orthogonal linear spans in which the variance is the corresponding eigenvalue. 

Because there are as many principal components as variables usually only some of the 

principal components are used (h = 1 … k). 
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Generally, s principal components that account for a high percentage of the total given 

variability are used. The s PCs used should explain at least 75 % of that variability so that:  

 

Another possibility is to use principal components, which are related to the response 

variables. The PCs chosen with this strategy are not imperatively those who account for a 

high percentage of the total variability.  

The first s principal components can then for example be used in a logistic model: 
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2.3.3.3.2 Partial Least Square  

PLS reduces equally a set of predictor variables to a set of uncorrelated “latent variables”, the 

so-called PLS components. The main difference between the PCA and PLS is that PLS also 

considers the variability of the response in order to determine the components.  

Variables (predictors X and response Y) are centred and scaled before PLS analysis to prevent 

scaling inequalities and values equal to zero which might perturb the estimations. 
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The first component that is determined can be defined as 

 
 
The vector 1w  represents the weight of every predictor variable (mutation) on the first PLS 

component. This component is used to make a regression on X
~

andy~, respectively. 

 
The estimated regression coefficients 1̂b and 1p̂ are used to calculate the residuals. 

 
The second component is determined with the residuals 1ŷ and 1X̂  and it can be defined as  

 
The vector 2w  represents the weight of every predictor variable (mutation) on the second PLS 

component. The residuals are calculated with the estimated regression coefficients for the 

second component. 

 

Further components are obtained in the same manner.  

To be able to calculate the PLS components (h different PLS components exists) directly with 

the centred and scaled predictor variables one has to transform the weights w  because they 

are related to the residuals (with exception of the weights obtained for the first PLS 

component).  

 
For instance, PLS components for a new patient must be calculated with ∗w .  
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PLS components can then be used in logistic regression or other models to assess their 

association with virological outcome. 

A logistic model can be written as  

 
The number of PLS components to consider is usually determined by cross-validation. 

Additionally, the prediction quality of the logistic model (or other models) is determined by 

cross-validation because PLS components are already determined using the virological 

response.  

2.3.3.3.3 Least absolute shrinkage and selection operator (Lasso) 

Lasso was first described by Tibshirani [205] and uses the l1 norm to shrink the linear 

regression parameters. Lasso allows for the selection of a subset of variables that together are 

the most effective predictors.  

The parameter (b) are estimated by: 

 

λ is found by cross-validation.  

The Lasso technique sets several parameters to 0 and those parameters kept in the model can 

be interpreted as parameters of a linear regression model. 

Lasso was also expanded for the estimation of general linear models [206] and for variable 

selection using Cox models [207]. 
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3 Plan and objectives  
 
Given the background and methodological issues outlined above, this thesis addresses three 

objectives with regards to virological outcomes and analysis of resistance data: 

The first objective was to describe definitions of endpoints used in the HIV field and to 

discuss their methodological limitations. Chapter 4.1 describes methodological issues in the 

use of composite endpoints in clinical trials and was published in the journal Clinical Trials in 

2010. This work is the result of discussion with workpackage 4 (Trial design, Statistics) of the 

European AIDS treatment network (NEAT) and was helpful for study design and endpoint 

definition of the first NEAT randomised clinical trial (NEAT 001/ANRS143 trial, 

NCT01066962 [55]) evaluating two antiretroviral first-line treatment strategies with a 

composite virological and clinical endpoint. Endpoints used to analyse the impact of 

transmitted drug resistance on virological outcome as well as endpoints used in studies 

constructing a genotypic score are presented and discussed in chapter 4.2. 

The second objective was to analyse the impact of transmitted drug resistance mutations in 

the first year after combination antiretroviral therapy was started. In this work we were 

particularly interested in the effect of transmitted drug resistance in patients receiving a 

treatment predicted to be fully susceptible to the genotype of the patient virus. A manuscript 

(chapter 5) of this work is in completion and will be submitted to the Lancet. This work was 

realised as a collaborative pilot project between EuroCoord (meta-collaboration of European 

cohorts of HIV infected patients) and CHAIN (a network of experts in HIV drug resistance).  

The third objective was to investigate alternative methods for the analysis of genotypic 

resistance mutations in treatment experienced patients. We were especially interested in 

methods that allow for summarizing the information of genotypic mutations and that can be 

used as a predictor for virological response. Chapter 6.1 summarizes the application of PCA 

and PLS in comparison to the construction of a genotypic score and was published in BMC 

Medical Research Methodology in 2008. The adaptation of Lasso for left censored data as a 

perspective for the analysis of genotypic resistance mutations to predict virological outcome 

is presented in Chapter 6.2. This project is realised in the context of a collaboration with the 

Forum for collaborative HIV research (international Forum aiming at facilitating HIV 

research). 
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4 Endpoints in the HIV field 
 
As already mentioned the definition of endpoints is very important and may vary according to 

the purpose of the study. In the following two chapters we show present definitions of 

endpoints in two different contexts. First, in the context of recent clinical trials in the HIV 

field realised in connection with the European AIDS treatment network (NEAT). Second, in 

the context of the analysis of drug resistance mutations and their impact on treatment outcome 

in treatment naïve and treatment experienced patients.  

Although the virological response is a common denominator in both contexts the definition of 

endpoints are very different. 

4.1 Methodological issues in the use of composite endpoints in 
clinical trials: examples from the HIV field 

 

Many HIV clinical trials raise practical methodological challenges and require innovative 

approaches in study design in order to address issues such as limited sample sizes or complex 

endpoints. One objective of the methodological workpackage 4 (WP4; Trial design, Statistics) 

of NEAT is to support trial design. Therefore, areas of statistical methodological work which 

are of key practical relevance to the analysis of trials in HIV/AIDS were one priority of WP4. 

Methodological issues include: handling missing data (e.g. missing = failure principle and 

multiple imputations) for missing laboratory measurements, left censoring of viral load 

measurements etc. 

NEAT001/ANRS143 is a phase III, randomised, open-label, multinational, multicenter trial 

(countries participating in NEAT) that aims at comparing the efficacy and tolerability of 

darunavir/ritonavir plus tenofovir/emtricitabine versus darunavir/ritonavir plus raltegravir in 

treatment naïve patients. For the primary endpoint of NEAT001/ANRS143 the definition of 

an endpoint reflecting virological efficacy, clinical progression and serious toxicity issues was 

of particular interest.  

In collaboration with WP4 we were thus interested in an overview of endpoints used in recent 

clinical trials and in methodological issues linked to their definitions. 

The following chapter gives an overview of methodological issues in the use of composite 

endpoints in clinical trials and uses examples from the HIV field.  
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4.2 Definition of a virological endpoint for the analysis of the 
impact of drug resistance mutations 

Genotypic resistance mutations directly or indirectly influence the replicative capacity of the 

virus under drug pressure, and render the antiretroviral effect of the treatment defective. Thus, 

to analyse the impact of genotypic resistance mutations on treatment response the definition 

of a ‘pure’ virological endpoint is required. In other words, we are interested in a definition 

that is highly specific for virological response as it gives an estimation of the antiretroviral 

effect of the treatment.  

4.2.1 Endpoint definitions in treatment naïve patients 
In recent studies, for the analysis of the impact of transmitted genotypic drug resistance on 

virological outcome either a binary response (% of patients below the detection limit) was 

used or the time to virological suppression below the detection limit was analysed (see Table 

7). 

Table 7: Virological endpoints used in recent studies (by descending year of publication) that 
investigated the impact of transmitted genotypic drug resistance on virological outcome in 
treatment naïve patients (by descending year of publication). 
    Treatment of patients with 
Reference Cohort name/ Study 

population 
Endpoint Time Missing data 

of VL 
treatment 
change 

Bansi et al. 
[141] 

CHIC  Time to VL<50 
cp/mL  

 excluded adjusted with 
a time 
updated co-
variable 

Bannister et 
al. 
[19] 

EuroSIDA   % VL<500cp/mL  24 weeks                    
48 weeks                                  

= failure;       
for sensitivity 
analysis 
excluded 

not specified 

Chaix et al. 
[142] 

ANRS CO 06 PRIMO   % VL <400 cp/mL  12 weeks                     
24 weeks 

excluded not specified 

Poggensee et 
al. 
[30] 

German HIV-1 
Seroconverter Study  

% VL <500 cp/mL  24 weeks                                                   excluded not specified 

Oette et al. 
[29] 

RESINA   % VL<50cp/mL  or  
<400 cp/mL 

24 weeks                    
48 weeks                                  

= failure;       
for sensitivity 
analysis 
excluded 

not specified 

Shet et al. 
[26] 

Newly diagnosed, New 
York City 

Time to VL <50 
cp/mL  

 excluded not specified 

Pillay et al. 
[28] 

CASCADE  Time to VL <500 
cp/mL  

 excluded not specified 

Grant et al. 
[31] 

~80% MSM, San 
Francisco 

Time to VL <500 
cp/mL  

  excluded censored* 

*patients with complete treatment stop were censored at the date of treatment stop. VL: viral load, MSM: men 
having sex with men, cp: copies. 
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4.2.1.1 Binary response 

The analysis of binary virological response can probably be hampered by the amount of 

information still available after the follow-up. This implicates that one needs to define how to 

handle observations with missing data on the follow-up viral load. Bannister et al. defined 

observations with missing data as endpoint failures but as already mentioned in chapter 4.1 

this definition is in reality the same than defining a composite outcome including missing = 

failure. Thus, the endpoint is not a ‘pure’ virological one anymore. Further, whether to 

consider patients that change any treatment may be dependent on the underlying question but 

patients stopping treatment should be excluded as done by Grant et al. as stopping treatment 

naturally results in a raise in viral load [31]. For all but one study summarised above it was not 

specified how patients changing or stopping treatment were taken into account.  

4.2.1.2 Time to event 

4.2.1.2.1 Time to suppression 

Time to event analysis are all hampered by the issue how to handle observations of people 

who died, and the fact that patients who are lost-to-follow-up before reaching the above 

defined endpoint should be censored. Patients who completely stop treatment should be 

excluded as a treatment stop will lead to a raise in viral load. Treatment changes could be 

ignored if treatment change is not supposed to be due to virological failure. Another 

probability is to censor patients at the date of a treatment change with the caveat to miss some 

of the virological failures. Sensitivity analysis accounting for this problem should be 

performed. 

The analysis of the time to virological suppression to below the detection limit is supposed to 

reflect the initial efficacy of a treatment. Further, the interest to look at the initial response is 

because it is supposed to be directly correlated with the response at a longer term i.e. 12 

months or 24 months.  

4.2.1.2.2 Time to failure 

If the question is to study the risk of virological failure after a given time of therapy, the time 

to virological failure could be analysed. Failure could for example be defined as the time to a 

viral load above the detection limit after the patient was given a supposedly sufficient long 

time to suppress its viral load first, e.g. after 6 months of therapy. There are also some 

methodological issues with such a definition. First, patients never suppressing their viral load 

below the limit of detection will have as earliest failure time 6 months. Second, patients 
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starting with very high viral load who take longer time to suppress may not be “real” failures 

but would be considered as such. Third, an imbalance in the number and timing of 

measurements (e.g. viral load measurements) between compared groups may lead to an over 

or underestimation of the effect when time-to-event analyse are used in the context of 

observational databases [208, 209].  Fourth, if a lot of treatment changes occur before the 

defined virological failure endpoint is reached it may be difficult to assign failure to the initial 

treatment. Therefore sensitivity analyses should be done. A simple way would be to censor all 

treatment changes but another possibility is discussed below.  

To account for patients that stopped or changed treatment due to virological failure a sort of 

composite endpoint could be created. For example, this endpoint could combine virological 

failure as defined by a confirmed viral load above the detection limit after 6 months of 

therapy or having a viral load above the detection limit before switching or stopping 

antiretroviral treatment. Of note, if the treatment switch occurs very early after treatment start 

a viral load above the detection limit may not necessarily indicate virological failure. The 

analysis of this endpoint as a time to event endpoint would implicate that some patients are 

truncated, i.e. they cannot fail earlier than 6 months. In contrast, patients who stopped or 

changed treatment before 6 months could also have a failure date before 6 months. Thus, 

estimations of hazards ratios are not reliable using this definition. However, a binary response 

could be created that assigns patients that reached either endpoint up to a given time, i.e. 12 

months or 24 months as failures. Patients who died or who are lost to follow up before 12/24 

months are not at risk for virological failure at 12/24 months anymore and thus should be 

excluded from this analysis (including those with a viral load above the detection limit before 

dieng or before lost-to-follow-up may be discussed). Further, patients who completely 

stopped antiretroviral treatment should be excluded as well as a treatment stop ultimately 

leads to a rise in viral load. Such an analysis would be a modified ‘nonvirological failures 

censored/excluded’ approach as proposed by Hill and Sabin [210]. 

4.2.2 Endpoint definitions in treatment experienced patients 
For the analysis of the impact of genotypic resistance mutations on virological response in 

treatment experienced patients and for the construction of a genotypic score, an early 

virological endpoint is of interest. An early virological endpoint avoids the response to be 

affected by other factors such as adherence, toxicity, plasma drug levels, the evolution of the 

baseline genotype or the emergence of undetectable minority resistant strains [36].  
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None of the studies listed in Table 8 used a time of evaluation later than 12 weeks after 

treatment start. Three studies used a simple binary outcome, two studies a composite binary 

outcome taking into account suppression of viral load below detection or a reduction of more 

than 1 log10 copies/mL, and three studies used a quantitative outcome, i.e. the difference 

between baseline and a follow-up viral load.  

Table 8: Virological endpoints used in selected studies evaluating the impact of genotypic 
resistance mutations on treatment outcome in treatment experienced patients and used to 
construct a genotypic score. 
Reference Drug for which a 

genotypic score was 
constructed 

Endpoint Time of evaluation 

Descamps et al. 
[211] 

darunavir % <200 cp/mL 12 weeks 

Marcelin et al. 
[173] 

tipranavir % <LOQ or decay of  ≥1 log10 12 weeks  

Masquelier et al. 
[41] 

fosamprenavir VL difference 
(VL at baseline minus VL at 12 weeks) 

12 weeks 

Pellegrin et al. 
[174] 

fosamprenavir % <400 cp/mL or decay of ≥ 1 log10 
 

12 weeks  

Capdepont et al. 
[40] 

didanosine % <50 cp/mL 12 weeks 

Pellegrin et al. 
[212] 

atazanavir % <50 cp/mL 12 weeks 

Marcelin et al. 
[213] 

didanosine VL difference 
(VL at baseline minus VL at 4 weeks) 

4 weeks 

Marcelin et al. 
[214] 

saquinavir VL difference 
(VL at baseline minus VL at 12 weeks) 

12 weeks 

LOQ: lower limit of detection, VL: viral load, cp: copies. 

 

A simple binary outcome might lead to misclassification especially when evaluated very early 

after treatment start because not all patients may have reached the detection limit. A viral load 

difference endpoint without considering left-censoring may lead to biased estimation of the 

initial decay [52-54].  
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5 Impact of transmitted drug resistance on virological 
and immunological outcome to initial combination 
antiretroviral therapy 

 
 

EuroCoord is a European platform for the integration of four ongoing cohorts or cohort 

collaborations related to clinical, virological and epidemiological HIV research. Partners are 

three EU-funded Coordination Actions, i.e. CASCADE, EuroSIDA, PENTA-EPPICC, and 

COHERE. 

The joint project on transmitted drug resistance (TDR) and their impact on treatment response 

between EuroCoord and the EU funded FP7 CHAIN (Collaborative HIV and Anti HIV 

resistance network) was identified as a pilot project because a large number of patients was 

required to address the scientific question raised. The objective was to compare virological, 

immunological and clinical outcome up to 12-16 months following initiation of cART, 

according to markers of virus variability (specific mutations, subtypes), and relevant to the 

drugs in the regimen. 

This joint project is a proof of concept of the collaboration between the four founding partners 

involved in EuroCoord (mainly epidemiologists, statisticians and clinicians) and CHAIN 

(mainly virologists).  

For the following analysis we assessed the impact of TDR on virological and immunological 

response in the first year of cART in adults and children. In particular we focussed our 

analysis on response in patients with TDR receiving a fully active treatment in terms of 

regimens containing 2 NRTIs with either a ritonavir boosted PI or an NNRTI because these 

regimens are recommended as first-line treatments in high income countries. 
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Impact of transmitted drug resistance on virological and 
immunological response to initial combination 
antiretroviral therapy  
 

The EuroCoord-CHAIN writing committee 

 
Abstract   
Background:  
The impact of transmitted drug resistance (TDR) on first line treatment of HIV-1 infected 
patients requires further study, particular in the context of optimal drug regimens to use in 
such cases. We investigated the impact of TDR on treatment outcome in the first year of 
combination antiretroviral therapy (cART) in patients within a large European cohort 
collaboration. 
Methods:  
HIV-1 infected patients regardless of age, who started cART after 1.1.1998 and had ≥1 
sample for genotypic testing taken whilst antiretroviral naïve, were included. We used the 
World Health Organisation (WHO) drug resistance list (2009) and the Stanford algorithm 
(v6.0.5) to classify patients in three resistance categories: no TDR, ≥1 mutation but receiving 
a fully active cART, ≥1 mutation and resistant to ≥1 prescribed drug. Virological failure (VF) 
was defined as time to the first of two consecutive viral load measurements >500 cp/mL after 
6 months of therapy. 
Findings:  
Of 10,056 patients from 25 cohorts, 9102 (90.5%) patients harboured HIV-1 without TDR, 
475 (4.7%) had ≥1 mutation but received a fully active cART and 479 (4.8%) had ≥1 
mutation and were classified as resistant to ≥1 drug. Patients infected with TDR and resistant 
to ≥1 drug had a 3.3 fold higher risk of VF (95% confidence interval [CI]: 2.5; 4.4, P<10-4) 
compared to patients without TDR. Overall, there was no significant difference between 
patients with TDR receiving a fully active cART and patients without TDR (HR: 1.4, 95% CI: 
0.9; 2.3, P=0.17). In stratified analysis, those receiving 2NRTIs+1NNRTI with TDR but still 
predicted to receive a fully active cART tended to have a higher risk for VF (HR: 2.0, 95% 
CI: 0.9; 4.7, P=0.09). 
Interpretation: 
TDR caused a poor virological response when patients received cART containing ≥1 drug 
classified with at least low-level resistance. Even when an active regimen was used in the 
presence of TDR we found a potential higher risk of VF if 2NRTIs+1NNRTI were used, 
though not if a boosted PI+2 NRTIs were prescribed. 
Funding: 
European Community’s Seventh Framework Programme FP7/2007-2013, GILEAD.
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Introduction  
In Europe, widespread combination antiretroviral therapy (cART) use has been associated 
with a dramatic improvement in survival. However, this trend is paralleled by increased 
transmission of antiretroviral drug resistance: Between 10% and 15% of antiretroviral-naive 
patients are estimated to carry viruses with ≥ 1 drug-resistance mutation(s) 1-7. In North 
America recent observational studies reported prevalence up to 25% 8, 9. 
Mutations in the genome of HIV conferring drug resistance are a major reason for virological 
or immunological failure of antiretroviral therapy (as measured either by HIV RNA levels or 
CD4 cell counts, respectively). Recent treatment guidelines recommend genotypic testing in 
naïve patients to detect the presence of transmitted drug resistance (TDR) and to adapt their 
first line treatment 10-12. However, the potential impact of TDR on virological and 
immunologic response remains controversial and has not been fully described. Some studies 
report no significant association between presence of TDR and either time to HIV RNA load 
suppression or proportions with HIV RNA suppression 2, 13, 14 or with immunological 
response 2, 8, 13, 14. Other studies report poorer virological response in patients with TDR  and a 
significantly shorter time to HIV RNA suppression among patients with susceptible strains 8, 

14-18.  However, all of these studies are hampered by a lack of statistical power due to the 
relatively small proportion of patients with transmitted drug resistance included. In particular, 
the impact of TDR on virological response in patients treated with a fully active regimen has 
not yet been explored in the context of systematic genotypic testing prior to treatment 
initiation in larger datasets. Furthermore, there are also concerns about the possible impact of 
minority resistance strains (not detectable by standard genotypic testing) on treatment 
outcome especially for patients with minority non-nucleoside reverse transcriptase inhibitor 
(NNRTI) resistance mutations receiving an NNRTI based regimen predicted to be fully active 
based on population genotypic test results (detectable TDR mutations) 19-24.  
We assessed the impact of TDR on virological and immunological response in the first year of 
combination antiretroviral therapy (cART) in adults and children within a very large 
European collaboration of HIV observational cohorts (EuroCoord) and the European 
collaborative HIV and Anti HIV resistance network (CHAIN). In particular we focussed our 
analysis on response in patients with TDR receiving a fully active treatment as well as 
regimens containing two nucleoside reverse transcriptase inhibitors (NRTIs) with either a 
ritonavir boosted protease inhibitor (PI) or an NNRTI because these regimens are 
recommended as first-line treatments in high income countries 10, 25, 26. 
 

Methods 
 
Study population 
The collaborative HIV cohorts CASCADE, COHERE, EuroSIDA and PENTA-EPPICC are 
the four founding networks of EuroCoord (The European Coordinating Committee for the 
Integration of Ongoing Coordination Actions Related to Clinical and Epidemiological HIV 
Research). CHAIN (Collaborative HIV and Anti HIV resistance network) and EuroCoord 
joined their collaborative efforts for this project.  
The 25 cohorts participating through the four funding networks (and listed in the Appendix) 
submitted a defined dataset to their network-specific Coordination Centre, using the HIV 
Cohort Data Exchange Protocol (HICDEP) 27. The dataset included patient demographics, use 
of cART, CD4 counts and HIV RNA measurements up to 16 months post-cART start, clinical 
(AIDS and death) events and genotypic resistance tests. Genotypic tests results were 
submitted as nucleotide sequences for protease and reverse-transcriptase or as lists of 
mutations for protease and reverse-transcriptase. Duplicates were removed prior to merging 
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the 4 network datasets into one overall EuroCoord-CHAIN database (final merger October 
2009).  

Each Coordinating Centre ensured that their participating cohorts had documented evidence 
of the ethics approval for such a project, and that the holding of data complied with local and 
national data protection requirements. All data proved by cohorts was anonymised, i.e. it was 
not possible to identify any infected individual using data submitted.  

HIV infected patients were included regardless of age if they were antiretroviral naïve prior to 
starting cART for the first time after the 1 January 1998 and if they had ≥1 sample for a 
genotypic test taken before the initiation of cART. Time between genotypic testing and cART 
was not restricted, i.e. test results were not necessarily used to optimize first line treatment. 
For the main analysis a viral load measurement after 6 months was required if patients did not 
die or were lost to follow up before 6 months. 
If more than one genotypic test result was available results were cumulated. Subtype of the 
virus was used as reported by the cohorts or determined by the Rega subtyping tool version 2 
28 for patients with missing data on subtype but an available nucleotide sequence.  
 
Statistical analyses 
Definition of TDR  
TDR was defined in two steps. First, the World Health Organisation (WHO) drug resistance 
surveillance list 29  was used to distinguish between patients harbouring a virus with ≥1 TDR 
mutation of this list and patients harbouring a virus with no TDR mutation of this list referred 
to as ‘no TDR’. Second, for patients harbouring a virus with ≥1 TDR mutation the Stanford 
algorithm version 6.0.5 30 was used to classify patients into those receiving a fully active 
cART (Stanford levels 1: susceptible, 2: potential low level resistance for all prescribed 
drugs) referred to as ‘TDR and fully active cART’ or patients harbouring a resistant HIV 
strain (Stanford levels 3: low level resistance, 4: intermediate, 5: high level resistance) 
affecting ≥1 of their prescribed drugs refferd to as ‘TDR and resistant’. For robustness 
analyses we further distinguished between patients with high level resistance (level 5) to ≥1 of 
their prescribed drugs, patients with low level/intermediate resistance (level 3,4) to ≥1 of their 
drugs and patients receiving a fully active cART (level 1,2). The prevalence of patients 
having ≥1 mutation of the WHO list was described; specifying also prevalence according to 
treatment classes: ≥1 NRTI mutation, ≥1 NNRTI mutation and ≥1 PI mutation. Furthermore, 
patients having ≥1 mutation to two different treatment classes (NRTI and NNRTI or NRTI 
and PI or NNRTI and PI) or having at ≥1 to three different treatment classes (NRTIs, NNRTIs 
and PIs) were calculated.  
 
Virological response 
Virological failure was defined as two consecutive viral loads >500 cp/mL after 6 months of 
therapy (date of first viral load >500 cp/mL was considered as failure date) (virological 
endpoint 1). Patients were censored if they died, were lost to follow up as defined by each 
cohort or stopped cART. In the absence of above defined events patients were censored at 
their last available viral load date in a six to 16 months window (patients with only one viral 
load after 6 months were censored at the date of viral load measurement either having a viral 
load ≤500 or >500 cp/mL). The time to virological failure is described by Kaplan Meier 
curves and analysed by Cox proportional Hazards model stratified by cohort. Baseline is 
defined as date of cART initiation. Proportional hazard assumption was graphically checked 
by plotting the log negative log survival time against the log time.  
For sensitivity analysis, virological failure was defined as two consecutive viral loads > 500 
cp/mL after 6 months of therapy, one viral load >500 cp/mL after six months where only one 
viral load available or one viral load >500 cp/mL in a two months period prior to a treatment 
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change/treatment stop (virological endpoint 2). A binary variable that assigned virological 
failure for those experiencing virological failure up to 12 months was created. Patients who 
died and patients who were lost to follow up before 12 months were excluded for this 
analysis. Further, patients stopping cART before 12 months without a viral load measurement 
>500 cp/mL before stopping were also excluded. Factors associated with virological failure at 
12 months were assessed using logistic regression. The method of generalised estimating 
equations was used to estimate odds ratios and a compound symmetry covariance matrix was 
used to take intra-cohort correlation into account.   
 
Immunological outcome 
We modelled the difference between follow up CD4 counts and pre-treatment CD4 count of 
patients included in the main virological survival analysis. All CD4 cell counts measured after 
start of cART and before 12 months were used, and CD4 counts taken after treatment stops or 
changes were excluded. Children aged less than five years were excluded from this analysis 
because the marked differences in the variation of absolute CD4 count in this group has been 
previously described 31. We used a piecewise linear mixed model with two slopes. The first 
slope was defined up to one month and the second slope after one month up to 12 months 
based on graphically observed slope change at one month. We took inter-patient correlation 
into account using random effects on the first and second slope. Correlation between the first 
and second slope was taken into account via an unstructured covariance matrix. Residuals 
distribution was graphically checked. 
 
All multivariable models were adjusted for gender, age, pre-treatment viral load (log10 
transformed) and CD4 count, subtype (B, non B, unknown), origin (African, European, 
other/unknown), year of treatment start (1998-1999, 2000-2005, ≥2006), previous AIDS 
diagnosis (yes, no, unknown) and HIV transmission risk group (homosexual/bisexual, 
heterosexual, injection drug use, perinatal, other/unknown). Analyses were performed using 
SAS 9.1 (SAS Institute, Inc., Cary, NC). P-values are double-sided.  
 
Role of the funding source 
The sponsors had no role in data collection, design, data analysis, data interpretation and 
writing of the report. 
 

Results 
Patient characteristics 
Of 12,016 patients starting cART after the first January 1998 and had a resistance test 
performed on a plasma sample taken whilst ART-naïve, 10,056 patients had sufficient follow 
up data and were included in the main analysis (table 1). Of 10,056 patients, 6126 (60·9%) 
had ≥1 nucleotide sequence available. A plasma sample for a genotypic test was taken before 
ART in all patients but the date the sample was tested was after start of cART in some cases: 
for 3722 (37·0%) the genotypic test was assessed before initiation of cART (median 2 
months, interquartile range [IQR]: 0.6-9.2); 2536 (25·2%) patients had a test assessed 
retrospectively after initiation of cART(median 34 months, IQR: 2-76); and for 3798 (37·8%) 
of the patients the genotypic test date was unknown. Median time between diagnosis of HIV 
and treatment start was 11 months (IQR: 2; 42) and median time between diagnosis and time 
of plasma sample for genotypic testing was 1.6 months (IQR: 0·4; 24). Of 10,056 patients 
included, 4845 received 2 NRTIs + 1 NNRTI (48·2%), 3117 2 NRTIs + 1 ritonavir boosted PI 
(31·1%), 1220 2 NRTIs + 1 unboosted PI (12·1%), 282 patients received NRTIs only (3 or 4 
NRTIs, 2·8%) and 592 received other combinations (5·9%) (table 1 and table 2 of 
supplements). Complete cART stop was observed for 9·8% (95%CI: 9·2; 10·4) and 13·6% 
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(95% CI: 12·9; 14·3) of the patients at 6 and 12 months, respectively. Reasons for complete 
treatment stop were treatment failure in 3·6% of patients stopping cART up to 16 months 
(N=1479), toxicity and tolerance issues in 23·8%, other reasons (i.e. non-compliance, 
patient’s decision etc.) in 42·4% and 30·2% stopped for unknown reasons. Treatment change 
of ≥1 drug was observed for 25·4% (95%CI: 24·5; 26·2) and 37.7% (38·7; 36·7) of the 
patients at 6 and 12 months, respectively. Reasons were treatment failure in 4·3%, 
tolerance/toxicity in 30·9%, other reasons in 35·5% and for 29·3% the reason was unknown. 
 
Genotypic characteristics 
At least one TDR mutation was found in 954 (9·5%, 95% confidence interval (CI): 8·9; 10·0) 
of patients. Of those 954 patients with TDR, 475 (49·8%) received a fully active cART and 
479 (50·2%) were resistant to ≥1 prescribed drug. Of 479 patients with resistance, 334 
(70·0%) patients had resistance to their prescribed NRTIs only, 56 (11·7%) patients to their 
prescribed NNRTI only, 14 (2·9%) patients to their prescribed PI only, 31 (6·5%) patients 
were resistant for their prescribed NRTIs and NNRTIs, 41 (8·6%) patients were resistant for 
NRTIs and PIs in their regimen and three patients (1·7%) had resistance against NRTIs, 
NNRTIs and PIs in their regimen. Further, of 479 patients with resistance for ≥1 prescribed 
drug, 157 (32·8%) patients had Stanford level 5 for ≥1 prescribed drug, 136 (28·4%) Stanford 
level 4 for ≥1 prescribed drug and 186 (38·8%) Stanford level 3 for ≥1 prescribed drug.  
The prevalence for ≥1 NRTI mutation, ≥1 NNRTI mutation and ≥1 PI mutation were 6·2% 
(95% CI: 5·8; 6.7), 3·0% (95% CI: 2·7; 3·4) and 2.4% (95% CI: 2·1; 3·7), respectively. In 
total, 180 (1·8%) patients harboured a virus with ≥1 TDR mutation to two different treatment 
classes and 38 (0·4%) had ≥1 TDR mutation to three treatment classes. The most common 
mutations were for NRTIs M41L (n=215 (2·1 %)) followed by T215D (120 (1·1%)), for 
NNRTIs K103N (n=183 (1·8%)) followed by Y181C (n=67 (0·7%) and for PIs L90M (n=79 
(0·8%)) followed by M46I (n=49 (0·5%)) (table 3 supplements). Most of the patients were 
infected with a subtype B (n=6906, 68·7%) although other subtypes were subtype C (n=725, 
7·1%), circulating recombinant form CRF01_AE (n=594, 5·9%), CRF02_AG (n=458, 4·6%), 
subtype A (n=451, 4·5%) and subtype G (n=145, 1·4%). For 124 patients other CRFs (1·2%), 
for 179 other subtypes (1·8%) were found and for 474 patients (4·7%) the subtype was 
unknown. The prevalence of transmitted drug resistance varied between 4·8% and 5·8% for 
subtypes C and A, respectively and 9·8% for subtype B infected patients.  
 
Virological outcome 
All patients 
Cumulative Kaplan Meier estimates for virological failure at 12 months were 4·2% (95% CI: 
3·8; 4·7), 4.7% (2·9; 7·5) and 15·1% (11·9; 19·0) for patient groups no TDR, TDR and fully 
active cART and TDR and resistant, respectively (figure 1 A, Log-rank P<0·0001). In the 
adjusted Cox proportional hazards model the virological response differed significantly 
according to the TDR groups (Global P<0·0001). Patients of the TDR and resistant group had 
a 3·3 fold higher risk of virological failure (95% CI: 2·5; 4·4 P<0·0001) compared to patients 
of the no TDR group (table 2). In contrast, the risk of virological failure was not significantly 
different between patients of the TDR and fully active cART group and patients of the no 
TDR group (adjusted HR: 1·4, 95% CI: 0·9; 2·3, P=0·1724) (table 2). Then, in patients 
predicted with resistance for ≥1 prescribed drug we distinguished between patients classified 
with at least low-level/intermediate or fully resistance for ≥1 prescribed drug (figure 1 B Log-
rank P<0·0001). Relative to patients of the no TDR group, a significantly higher risk of 
virological failure was observed as soon as patients received ≥1 drug classified with low-
level/intermediate resistance (adjusted HR: 2·2, 95%CI: 1·5; 3·3, P=0·0001) and patients 
receiving ≥1 drug classified with high level resistance had a 6.3 fold higher risk for 
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virological failure (95%CI: 4·2; 9·4, P<0·0001). Other factors associated with a significant 
lower risk for virological failure included: a treatment start in recent years (≥2006), HIV 
transmission risk group: heterosexual/bisexual and European origin (table 2). 
 
Treatment strata 
Patients receiving 2 NRTIs + PI/rtv were more likely to be women, more likely to have 
initiated cART ≥2006, less likely to be homosexual, more likely to be of European origin and 
had higher pre-treatment viral loads and lower pre-treatment CD4 counts compared to patients 
receiving 2 NRTIs + 1 NNRTI (table 1). The cumulative Kaplan Meier estimates for 
virological failure for patients receiving 2 NRTIs plus 1 NNRTI at 12 months were 2·8%, 
4·3% and 10·6% for the groups no TDR, TDR and fully active cART and the TDR and 
resistant group, respectively. The risk for virological failure of patients receiving 2 NRTIs + 
PI/rtv were 2·7%, 2·7% and 10·9% for patients in the groups no TDR, TDR and fully active 
cART and TDR and resistant group, respectively. 
Patients with TDR receiving a fully active cART in the strata 2 NRTIs + 1 NNRTI tended to 
have a higher risk (HR: 2·0, 95% CI: 0·9; 4·7, P=0·0928) compared to patients of the no TDR 
group. In contrast, the risk for virological failure for patients of the TDR and fully active 
treatment group receiving a PI/rtv containing regimen was similar to the group no TDR (HR: 
0·9, 95% CI: 0·4; 2·0, P=0·7302) (figure 2). The interaction between TDR and the two 
treatment strata 2NRTIs+ either NNRTI or PI/rtv was not significant (Global P=0·3439). For 
patients receiving other treatments with a low genetic barrier, i.e. 2 NRTIs + an unboosted PI 
and 3 or 4 NRTIs, a tendency for a higher risk for virological failure was seen for patients 
with TDR but predicted to receive a fully active treatment (table 6 supplements). The 
interaction between TDR and these four treatment strata was significant in unadjusted 
analysis (P=0·0105). 
 
Sensitivity analyses 
All patients 
In all patients, exclusion of children younger than 13 and patients harbouring a virus with the 
mutation M184V (as a potential sign for non reported treatment exposure) revealed the same 
results than the main analysis. Frequencies of virological failure at 12 months in sensitivity 
analysis (virological endpoint 2) considering patients having one viral load over 500 cp/mL 
before stopping cART or before changing ≥1 drug as a virological failure were 12·2%, 12·4% 
and 30·4% for patients of the groups no TDR, TDR and fully active cART and TDR and 
resistant group, respectively. In adjusted analysis, the risk for virological failure was not 
significantly higher compared to the no TDR group in patients of the TDR and fully active 
cART group (OR: 1·3, 95% CI: 0·95; 1·8, P=0·1009) but it was for the TDR and resistant 
group (OR 3·1, 95% CI: 2·4; 4·0, P<0·0001). All adjusted models were consistent with the 
main results (table 4 supplements).  
 
Treatment strata 
Frequencies of virological failure at 12 months (virological endpoint 2) were 8·6%, 10·2% 
and 27·8% for patients receiving 2 NRTIs plus 1 NNRTI and 11·7%, 10·1% and 24·3% for 
patients receiving 2 NRTIs plus PI/rtv in patients of the groups no TDR, TDR and fully active 
cART and TDR and resistant group, respectively. In adjusted analysis, the risk of virological 
failure (ORs) for patients starting 2NRTIs + 1NNRTI and for patients starting 2NRTIs + 
1PI/rtv were 1·4 (95% CI: 0·8; 2·4, P=0·2349) and 0·99 (95% CI: 0·6; 1·6, P=0·9593) in the 
group TDR and fully active treatment compared to the group no TDR. ORs for virological 
failure in the group TDR and resistant were 3·8 (95% CI: 2·6; 5·7, P<0·0001) and 2·5 (95% 
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CI: 1·6; 4·2, P=0·0002) compared to the no TDR group for patients in the NNRTI and PI/rtv 
treatment strata, respectively (table 5 supplements).  
 
Impact on immune response 
All patients 
Median CD4 cell increase between start of cART and 12 months was 183 cells/µL (IQR: 105; 
282). Unadjusted evolution according to the three classes of TDR is depicted in figure 3. 
Using a piecewise linear mixed model adjusted for potential cofounders there was neither a 
significant difference of CD4 cell increase in the first month after first line treatment start  
(Global P = 0·4013) nor a significant difference of CD4 cell increase after M1 neither 
(Global P = 0.0689), regardless of presence TDR and predicted susceptibility of cART 
received. Relative to patients of the no TDR group, the estimated difference in increase of 
CD4 count cells/µL per 12 months after one month of therapy were + 8 cells/µL/12months 
(95% CI: -11; 27, P=0·4308) for patients of the TDR and fully active cART group and -25 
cells/µL/12months (95% CI: -48; -2, P=0·0326) for patients of the TDR and resistant group.  
 
Treatment strata 
Compared to the no TDR group, patients receiving 2 NRTIs + 1 PI/rtv had an estimated 
difference of +16 cells/µL/12months (95% CI: -10; 42, P=0.22) in the TDR and fully active 
cART group and -18 cells/µL/12months (95% CI: -60; 23, P=0.39) in the TDR and resistant 
group. For patients receiving 2NRTIs + 1NNRTI the estimated difference was -7 
cells/µL/12months (95% CI: -37; 22, P=0·6312) in the TDR and fully active cART group 
compared to the no TDR group and -34 cells/µL/12months (95% CI: -68; 0, P=0·0514) in the 
TDR and resistant group versus the no TDR group. 
 

Discussion   
This is the largest evaluation of the clinical impact of TDR to date. We found that TDR was 
strongly associated with virological failure in particularly in those who received ≥1 drug to 
which the virus had lost susceptibility. Our findings confirm a poorer virological response in 
patients with TDR 8, 14-16, 18. This is the first study that provides strong evidence that the 
selection of an initial regimen should be based on resistance testing in treatment naïve patients 
as recommended in recent treatment guidelines 10-12. Furthermore, we showed that the 
prescription of a drug classified even with low-level resistance is associated with a 
significantly higher risk for virological failure which underscores the need of ≥3 fully active 
antiretroviral drugs in order to optimize the virological response to first-line regimen. A 
stratified analysis showed a tendency for a higher risk of virological failure in patients starting 
a 2 NRTIs + 1 NNRTI containing regimen if the patient harboured a virus with TDR even 
when the prescribed treatment was predicted to be fully active. In contrast, patients starting a 
regimen containing 2 NRTIs + 1 PI/rtv receiving a fully active treatment in presence of TDR 
had the same risk for virological failure as patients harbouring a virus with no TDR 
mutations. 
 
Our study has several limitations. Genotypic testing was realised after treatment start for some 
patients. Thus, therapy was not necessarily guided by resistance testing and this could be one 
explanation why some suboptimal cART regimens have been used. Clinicians could have 
prescribed drugs that they were not aware to be incompletely active. We used a recent 
interpretation algorithm to predict the susceptibility of the prescribed treatment for all patients 
irrespective of the date of treatment start and time of genotypic testing. Interpretation 
algorithms evolve over time and even patient predicted to be susceptible to a specific drug at 
their treatment start could now have been classified as resistant if the algorithm for this drug 
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changed. This could be another explanation for the relatively high proportion of patients 
predicted to have at least low level resistance to ≥1 of their prescribed drugs.  
Furthermore, patients classified to harbour a virus with no mutations of the WHO list could in 
fact harbour other resistance mutations not listed by the WHO but used by the Stanford 
algorithm. Indeed, there were 20 patients harbouring a virus with no mutation of the WHO list 
but predicted to have some resistance by the Stanford algorithm to their prescribed drugs 
(Stanford level 3, n=16; Stanford level 4, n=2 and Stanford level 5, n=2). Exclusion of these 
patients had no impact on the results (data not shown). 
Patients predicted to have at least low level resistance to ≥1 of their prescribed drugs could 
have received ≥3 active drugs. Indeed there were 53 patients receiving ≥3 drugs predicted to 
have ≥3 active drugs but classified in the category at least low level resistance to ≥1 drug. 
Excluding those patients had no impact on the results (data not shown). 
 
The findings for patients receiving 2 NRTIs + 1NNRTI could be partly explained by the 
presence of minority NNRTI resistant strains. These results would support previous findings 
that the presence of minority NNRTI resistance mutations can be related to virological failure 
if patients start a NNRTI based regimen 19-22, 24. All sensitivity analyses consistently found a 
tendency for a higher risk of virological failure for patients receiving 2 NRTIs + 1NNRTI in 
the presence of TDR even when the regimen was predicted to be fully active. However, we 
can not exclude that other factors such as a poor adherence could explain our findings. For 
instance, if patients receiving 2 NRTIs + 1 NNRTI with TDR were less adherent than patients 
receiving 2 NRTIs + 1 boosted PI with TDR  this could explain the higher failure rate in 
patients receiving 2 NRTIs + 1 NNRTI. Furthermore, the higher rate of virological failure in 
patients starting 2NRTIs + 1 NNRTI must not be necessarily linked to minority NNRTI 
mutations but could also be due to minority NRTI mutations impacting on the efficiency of 
the NRTI backbone in the regimen32. For other treatment combinations with a low genetic 
barrier, i.e. 2NRTIs plus an unboosted PI and NRTI monoclass therapy, patients with TDR 
predicted to receive a fully active cART tended also to have a higher risk for virological 
failure compared to those harbouring a virus with no TDR. This finding supports the 
hypothesis that detection of TDR at population sequencing level may be a sign of hidden 
resistant minority species. 
 
The other finding is that patients receiving a boosted PI + 2NRTIs had the same risk for 
virological failure in presence of TDR if the treatment was adapted to the baseline reflects the 
higher genetic barrier of boosted PIs when compared to NNRTIs  33. This is in agreement with 
previous studies that even when minority PI resistant variants were detected by ultra-deep 
sequencing or when NRTI mutations were present detected by allele specific PCR during 
primary infection the virological response was not affected if the patient received a boosted PI 
32, 34. Of note, from a clinical point of view if drug resistance mutations are detected before 
treatment initiation, a ritonavir boosted PI should be included in the first treatment regimen 
whose higher genetic barrier could better protect from the risk of virological failure due to 
potential invisible resistant minority species.  
 
Patients having TDR and resistant to at least one prescribed drug had the same increase in 
CD4 cell count up to one month and tended to have a lower CD4 cell increase after one month 
compared to patients with no TDR. This finding may reflect the higher virological failure rate 
in these patients as we only adjusted for pre-treatment viral loads and is thus probably not a 
direct effect of TDR on CD4 cell count. For patients having with TDR receiving a fully active 
cART there was no significant difference in CD4 cell count increase neither up to one month 
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nor after one month compared to patients with no TDR This finding is in accordance with 
previous studies that found no impact of TDR on immunological outcome 2, 8, 13, 14.  
 
We found an improved virological response for patients starting ≥2006-2008 that is probably 
due to the use of more potent regimen in recent years and are in accordance with recent 
findings of an increased proportion of patients with virological success over time 35. The 
reasons for a better response in the homosexual transmission risk group and for patients with 
European origin are not straight forward but could be due to a better socioeconomic status, 
different health-seeking behaviour or adherence. 
 
In conclusion, transmitted drug resistance was associated with a poorer virological response if 
the treatment was not adapted to the viral genotype. In the presence of TDR and when an 
active regimen was used we found a potential higher risk of virological failure if a 
combination of 2 NRTIs + 1NNRTI was used, though not if a boosted PI + 2 NRTIs were 
prescribed. Our results underscore that genotypic testing in treatment naive patients in regions 
with medium to high prevalence TDR is important to select a fully active regimen for 
treatment initiation. In regions where genotypic testing is not routinely available but high 
prevalence of TDR is suspected, first line regimens containing boosted PI should be 
considered. 
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Table 1: Patient characteristics at the time of starting cART (N=10,056) in all patients and in those 
starting 2NRTIs + 1NNRTI (N=4845) or 2NRTIs + PI/rtv (N=3117). 
  Statistics† 
  All  2NRTIs+1NNRTI 2NRTIs+1PI/r 

Female gendera  2404 (23·9)  976 (20·1) 782 (25·1) 

Age, years median (IQR) 38 (32;  44)  38 (32;  45) 38 (32;  44) 

 <2 63 (0·6)  8 (0·2) 9 (0·3) 

 3-5 60 (0·6)  11 (0·2) 3 (0·1) 

 6-12 90 (0·9)  39 (0·8) 5 (0·2) 

 13-17 46 (0·5)  22 (0·5) 12 (0·4) 

 18-29 1702 (16·9)  767 (15·8) 552 (17·7) 

 30-39 4099 (40·8)  1922 (39·7) 1263 (40·5) 

 40-49 2710 (26·9)  1408 (29·1) 873 (28·0) 

 50-59 952 (9·5)  496 (10·2) 298 (9·6) 

 ≥60 334 (3·3)  172 (3·6) 102 (3·3) 

Year of treatment start 1998-1999 1041 (10·4)  179 (3·7) 96 (3·1) 

 2000-2002 1578 (15·7)  633 (13·1) 282 (9·0) 

 2003-2004 2087 (20·8)  1136 (23·4) 663 (21·3) 

 2005-2006 3349 (33·3)  1781 (36·8) 1322 (42·4) 

 2007-2008 2001 (19·9)  1116 (23·0) 754 (24·2) 

Transmission risk group Homosexual/Bisexual men 5025 (50·0)  2693 (55·6) 1525 (48·9) 

 Injecting drug user 754 (7·5)  254 (5·2) 242 (7·8) 

 heterosexual contact 3259 (32·4) 
 

1481 (30·6) 1060 (34·0) 

 perinatal 214 (2·1)  62 (1·3) 19 (0·6) 

 Other/unknown 804 (8·0)  355 (7·3) 271 (8·7) 

Origin Africa 1002 (10·0)  448 (9·2) 283 (9·1) 

 Europe 5653 (56·2)  2375 (49·0) 1829 (58·7) 

 Other/unknown 3401 (33·8)  2022 (41·7) 1005 (32·2) 

Previous aids diagnosis Yes 1451 (14·4)  596 (12·3) 520 (16·7) 

 No 7679 (76·4)  3877 (80·0) 2248 (72·1) 

 unknown 926 (9·2)  372 (7·7) 349 (11·2) 

Subtype Non B 2676 (26·6)  1293 (26·7) 843 (27·0) 

 B 6906 (68·7)  3345 (69·0) 2141 (68·7) 

 unknown 474 (4·7)  207 (4·3) 133 (4·3) 

Pre-treatment VL log10 cp/mLb median (IQR) 5 (4·4;  5·4)  4.9 (4·4;  5·3) 5 (4·5;  5·5) 

 <4 1292 (13·5)  595 (12·9) 398 (13·3) 

 ≥4 and <4.5 1342 (14·0)  690 (15·0) 388 (13·0) 

 ≥4.5 and <5 2421 (25·2)  1249 (27·1) 670 (22·5) 

 ≥5 and <5.5 2507 (26·1)  1271 (27·6) 751 (25·2) 

 ≥5.5 and <6 1533 (16·0)  652 (14·1) 548 (18·4) 

 >6 506 (5.3)  152 (3·3) 228 (7·6) 
Pre-treatment CD4 count cells/µL c  median (IQR) 218 (124;  310)  216 (137;  289) 207 (101;  313) 

 <50 1062 (11·3)  388 (8·5) 436 (14·8) 

 ≥50 and <200 3103 (32·9)  1597 (35·0) 954 (32·4) 

 ≥200 and <350 3449 (36·6)  1970 (43·1) 955 (32·5) 

 ≥350 and <500 1043 (11·1)  396 (8·7) 355 (12·1) 

 ≥500 768 (8·1)  215 (4·7) 241 (8·2) 

Time of genotypic testingd Before treatment start 3722 (37·0) 
 

2114 (46·6) 1275 (40·9) 

 After treatment start 2536 (25·2)  893 (18·4) 777 (24·9) 

  unknown 3798 (37·8)  1838 (40·0) 1065 (34·2) 
a ALL: N=10,053, 2NRTIs+1NNRTI: N=4845, 2NRTIs+1PI/rtv: N=3114, b ALL: N=9601, 2NRTIs+1NNRTI: 
N= 4609, 2NRTIs+1PI/rtv: N=2983, c ALL: N=9425, 2NRTIs+1NNRTI: N=4566, 2NRTIs+1PI/rtv: N= 2941, 
dall samples for genotypic testing were taken before treatment start, †Frequencies (percentages) are reported 
unless stated otherwise. PI: Protease inhibitors, PI/rtv: ritonavir boosted Protease inhibitor, NRTI: Nucleotide 
reverse transcriptase inhibitors, NNRTI: Non nucleotide reverse transcriptase inhibitors, AIDS: Acquired 
immunodeficiency syndrome. IQR: Interquartile range. 



  Chapter 5 

  101   

Table 2: Univariable and multivariable analysis of risk factors for time to virological failure using a Cox 
proportional Hazards model stratified by cohort. 
  Univariable  Multivariable  

    HR (95% CI) P   HR (95% CI) P 
TDR No TDR 1·00   <0·0001  1·00   <0·0001 

 TDR and fully active cART 1·15 (0·72; 1·83) 0·5574   1·40 (0·86; 2·26) 0·1724  

 TDR and resistant 3·30 (2·52; 4·32) <0·0001   3·30 (2·46; 4·43) <0·0001  

Gender Female 1·00     1·00    

 Male  0·83 (0·67; 1·03) 0·0902   1·05 (0·81; 1·37) 0·7057  
age per additional year 0·98 (0·97; 0·99) <0·0001   0·99 (0·98; 1·00) 0·1038  

Pre-treatment viral load per additional log10 cp/mL 1·02 (0·91; 1·14) 0·7428   1·04 (0·92; 1·17) 0·5444  

Pre-treatmen CD4 cell count per additional 100 cells/µL 0·99 (0·95; 1·03) 0·5460   0·97 (0·93; 1·01) 0·1052  

Year of treatment start ≥2006 1·00   <0·0001  1·00   <0·0001 
 1998-1999  3·60 (2·60; 4·99) <0·0001   3·64 (2·56; 5·18) <0·0001  

 2000-2005  1·78 (1·37; 2·30) <0·0001   1·58 (1·19; 2·08) 0·0013  

Subtype B 1·00   0·1904  1·00   0·0653 

 Non B  1·10 (0·87; 1·38) 0·4170   0·85 (0·63; 1·14) 0·2776  
 Unknown  0·71 (0·46; 1·10) 0·1263   0·54 (0·32; 0·92) 0·0228  

Previous AIDS diagnosis No 1·00   0·0102  1·00   0·0932 

 Yes 1·41 (1·10; 1·81) 0·0067   1·32 (1·00; 1·73) 0·0483  

 Unknown  0·73 (0·31; 1·76) 0·4876   0·79 (0·30; 2·13) 0·6467  
Transmission risk group heterosexual 1·00   <0·0001  1·00   <0·0001 

 IDU  1·16 (0·82; 1·63) 0·4123   1·07 (0·73; 1·56) 0·7353  

 Homosexual men  0·65 (0·52; 0·83) 0·0004   0·64 (0·47; 0·88) 0·0052  

 Perinatal 8·46 (4·07; 17·62) <0·0001   7·44 (3·21; 17·24) <0·0001  
 Other/unknown 0·93 (0·63; 1·37) 0·7076   0·92 (0·60; 1·40) 0·6923  

Origin Europe 1·00   0·0062  1·00   0·0653 

 African  1·63 (1·20; 2·22) 0·0019   1·56 (1·07; 2·28) 0·0219  

  Other/Unknown 1·28 (0·91; 1·78) 0·1529     1·19 (0·83; 1·70) 0·3495   

*Due to exclusion of patients with missing values for pre-treatment viral load, pre-treatment CD4 cell count or 
gender N=9236. TDR: Transmitted drug resistance, no TDR: no mutation of  the World Health Organization 
2009 list of mutations for surveillance of transmitted drug resistant HIV strains (WHO list), TDR and fully 
active cART: ≥1 mutation of the WHO list and Stanford levels 1, 2 to all prescribed drugs, TDR and resistant: 
≥1 mutation of the WHO list and resistant to at least one drug in the prescribed regimen (Stanford levels 3, 4, 5), 
HR: Hazards ratio, CI: confidence interval, AIDS: Acquired immunodeficiency syndrome, IDU: Injection drug 
user. cART: combination antiretroviral therapy. 
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Figure 1: Proportion of patients with virological failure according to transmitted drug resistance (TDR)
(crude Kaplan Meier estimates, dotted lines 95% confidence intervals). A) Risk of virological failure according to three
group of patients: no TDR (no mutation of the World Health Organization 2009 list of mutations for surveillance of 
transmitted drug resistant HIV strains (WHO list ), TDR and fully active cART: ≥1 mutation of the WHO list and 
Stanford 1,2 to all prescribed drugs and TDR and resistant:  ≥1 mutation of the WHO list and resistant to ≥1 prescribed
drug (Stanford level 3, 4, 5). Log rank P<0·0001. B) Risk of virological distinguishing patients with intermediate and 
high level resistance. Log rank P<0·0001. cART: combinationantiretroviral therapy.
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Figure 2: Adjusted Hazard ratios (log scale) in all patients and patients starting a regimen containing 2 
NRTIs plus either 1 NNRTI or 1 PI/rtv 
Squares: Adjusted Hazards ratios, horizontal bars: 95% confidence intervals, NRTI: nucleotide reverse 
transcriptase inhibitors, NNRTI: non nucleotide reverse transcriptase inhibitors, PI/rtv: ritonavir boosted protease 
inhibitor, No TDR: no mutation of the World Health Organization 2009 list of mutations for surveillance of 
transmitted drug resistant HIV strains (WHO list).TDR and fully active cART: ≥ 1 mutation of the WHO list and 
Stanford level 1, 2to all prescribed drugs. TDR and resistant: ≥1 mutation of the WHO list and resistant 
(Stanford level 3, 4, 5) to ≥1 prescribed drugs. All models are stratified by cohort and multivariable models 
ajusted for: Gender, age, pre-treatment viral load and CD4 count, year of treatment start, previous AIDS 
diagnosis, subtype, HIV transmission risk group and origin. TDR: Transmitted drug resistance. cART: 
combination antiretroviral therapy 
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Months after initiation of combination antiretroviral therapy
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Figure 3: Observed difference of CD4 cell count cells/µL between follow up and pre-treatment CD4 count. 
black line: no mutation of  the World Health Organization 2009 list of mutations for surveillance of transmitted 
drug resistant HIV strains (WHO list). Blue line: ≥1 mutation of the WHO list and Stanford level 1, 2 to all 
prescribed drugs. red line: ≥1 mutation of the WHO list and resistant (Stanford level 3, 4, 5) to ≥1 prescribed 
drugs). Horizontal bars: 95% confidence intervals 
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Supplements 

 

Table 1: Treatment combinations prescribed at the time of starting cART in patients included in the main 
analysis (N=10,056) 

Treatment combination prescribed N (%) 

1 class treatments 3 or 4 NRTIs 282 (2.8) 

2 class treatments 2 NRTIs + 1 NNRTI 4845 (48.2) 

 2 NRTIs + 1 RTV boosted PI 3117 (31.0) 

 2 NRTIs + 1 PI 1220 (12.1) 

 ≥ 3 NRTIs + 1 NNRTI 134 (1.3) 

 ≥ 3 NRTIs + 1 RTV boosted PI 107 (1.1) 

 ≥ 3 NRTIs + 1 PI 31 (0.3) 

 0ther 34 (0.3) 

3 class treatments ≥ 1 NRTI + 1NNRTI + 1 RTV boosted PI 201 (2.0) 

 ≥ 1 NRTI + 1NNRTI + 1 PI 54 (0.5) 

 Other 24 (0.2) 

4 class treatments 2 NRTI + 1NNRTI + 1 RTV boosted PI + 1FI 5 (0.0) 

 1 NRTI + 1NNRTI + 1 RTV  boosted PI + 1INSTI 1 (0.0) 

 1 NRTI + 1 RTV boosted PI + 1FI + 1INSTI 1 (0.0) 

NRTI: Nucleoside reverse transcriptase inhibitors, NNRTI: Non nucleoside reverse transcriptase inhibitor, PI: 
protease inhibitor, RTV: ritonavir, FI: Fusion inhibitor, INSTI: Integrase strand transfer inhibitor. cART: 
combination antiretroviral therapy. 
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Table 2: Antiretroviral drugs prescribed at the time of starting cART in patients included in the main analysis (N=10,056) and in those starting 2NRTIs + 1NNRTI 
(N=4845), 2NRTIs + PI/rtv (N=3117), 2NRTIs + 1PI (N=1220) and 3 or 4 NRTIs (N=282). 
  All  2 NRTIs + 1 NNRTI  2 NRTIs + 1 PI/rtv  2 NRTIs + 1 PI  3 or 4 NRTIs 

    N (%)   N (%)   N (%)   N (%)   N (%) 

NRTIs  Lamivudine 6776 (67.4)  3011 (62.1)  2048 (65.7)  991 (81.2)  262 (92.9) 

 Zidovudine 4099 (40.8)  1559 (32.2)  1297 (41.6)  718 (58.9)  215 (76.2) 

 Tenofovir 3821 (38.0)  2247 (46.4)  1271 (40.8)  44 (3.6)  87 (30.9) 

 Emtricitabine 2906 (28.9)  1674 (34.6)  979 (31.4)  29 (2.4)  56 (19.9) 

 Abacavir 1717 (17.1)  733 (15.1)  419 (13.4)  87 (7.1)  237 (84.0) 

 Stavudine 729 (7.2)  173 (3.6)  118 (3.8)  385 (31.6)  13 (4.6) 

 Didanosine 653 (6.5)  292 (6.0)  100 (3.2)  169 (13.9)  16 (5.7) 

  Zalcitabine 21 (0.2)   1    2 (0.1)   17 (1.4)    - - 

PIs Lopinavir 2320 (23.1)  - -  2042 (65.5)  - -  - - 

 Nelfinavir 926 (9.2)  - -  - -  864 (70.8)  - - 

 Atazanavir 588 (5.8)  - -  515 (16.5)  48 (3.9)  - - 

 Indinavir 426 (4.2)  - -  143 (4.6)  250 (20.5)  - - 

 Saquinavir 290 (2.9)  - -  246 (7.9)  14 (1.1)  - - 

 Fosamprenavir 129 (1.3)  - -  123 (3.9)  1 (0.1)  - - 

 Amprenavir 47 (0.5)  - -  30 (1.0)  1 (0.1)  - - 

 Tipranavir 8 (0.1)  - -  5 (0.2)  - -  - - 

 Darunavir 15 (0.1)  - -  13 (0.4)  - -  - - 

 Ritonavir alone 46 (0.5)  - -  - -  42 (3.4)  - - 

  Ritonavir boost 3464 (34.4)    - -   3117 (100.0)    - -    - - 

NNRTIs Efavirenz 4226 (42.0)  3927 (81.1)  - -  - -  - - 

 Nevirapine 1031 (10.3)  918 (18.9)  - -  - -  - - 

 Delavirdine 2   - -  - -  - -  - - 

  Etravirine 1     - -    - -    - -    - - 

Other Raltegravir 4   - -  - -  - -  - - 

 Enfurvirtide 21 (0.2)  - -  - -  - -  - - 

  Maraviroc 16 (0.2)    - -    - -    - -    - - 

PI: protease inhibitors, PI/rtv: ritonavir boosted protease inhibitor, NRTI: nucleotide reverse transcriptase inhibitors, NNRTI: non nucleotide reverse transcriptase inhibitors, 
cART: combination antiretroviral therapy. 
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Table 3: Prevalence of mutations listed by the World Health Organization list of mutations for 
surveillance of transmitted drug resistant HIV strains. 

NRTI mutations  NNRTI mutations  PI mutations 

Mutation N  (%)  Mutation N  (%)  Mutation N  (%) 

M41L 215 (2.14)  L100I 4 (0.04)  L23I 3 (0.03) 

K65R 11 (0.11)  K101E 33 (0.33)  L24I 8 (0.08) 

D67N 87 (0.87)  K101P 4 (0.04)  D30N 13 (0.13) 

D67G 16 (0.16)  K103N 183 (1.82)  V32I 4 (0.04) 

D67E 8 (0.08)  K103S 10 (0.10)  M46I 49 (0.49) 

T69D 35 (0.35)  V106M 7 (0.07)  M46L 42 (0.42) 

T69INS 0   V106A 6 (0.06)  I47V 7 (0.07) 

K70R 45 (0.45)  V179F 1 (0.01)  I47A 2 (0.02) 

K70E 4 (0.04)  Y181C 67 (0.67)  G48V 3 (0.03) 

L74V 17 (0.17)  Y181I 1 (0.01)  G48M 1 (0.01) 

L74I 7 (0.07)  Y181V 1 (0.01)  I50V 2 (0.02) 

V75M 4 (0.04)  Y188L 13 (0.13)  I50L 0  

V75T 3 (0.03)  Y188C 2 (0.02)  F53L 11 (0.11) 

A75A 3 (0.03)  Y188H 3 (0.03)  F53Y 4 (0.04) 

V75S 0   G190S 6 (0.06)  I54L 2 (0.02) 

F77L 15 (0.15)  G190A 38 (0.38)  I54V 31 (0.31) 

Y115F 2 (0.02)  G190E 2 (0.02)  I54M 1 (0.01) 

F116Y 7 (0.07)  P225H 4 (0.04)  I54T 2 (0.02) 

Q151M 5 (0.05)  M230L 4 (0.04)  I54A 3 (0.03) 

M184V 103 (1.02)      I54S 1 (0.01) 

M184I 15 (0.15)      G73S 12 (0.12) 

L210W 97 (0.96)      G73T 2 (0.02) 

T215Y 55 (0.55)      G73C 0  

T215F 16 (0.16)      G73A 0  

T215I 17 (0.17)      L76V 4 (0.04) 

T215S 102 (1.01)      V82A 37 (0.37) 

T215C 32 (0.32)      V82T 6 (0.06) 

T215D 120 (1.19)      V82F 6 (0.06) 

T215V 10 (0.10)      V82S 2 (0.02) 

T215E 30 (0.30)      V82C 0  

K219Q 61 (0.61)      V82M 0  

K219E 30 (0.30)      V82L 11 (0.11) 

K219N 18 (0.18)      N83D 3 (0.03) 

K219R 10 (0.10)      I84V 13 (0.13) 

        I84A 0  

        I84C 0  

        I85V 14 (0.14) 

        N88D 11 (0.11) 

        N88S 4 (0.04) 

        L90M 79 (0.79) 

NRTI: nucleotide reverse transcriptase inhibitors, NNRTI: non nucleotide reverse transcriptase inhibitors, PI: 
protease inhibitors. Mutations: The wild type amino acid is given followed by the position of the reverse 
transcriptase gene for NRTI and NNRTI mutations and the protease gene for PIs. After the position number the 
amino acid substitution conferring resistance is given. Amino acid abbreviations: A, alanine; C, cysteine; D, 
aspartate; E, glutamate; F, phenylalanine, G, glycine; H, histidine; I, isoleucine; K, lysine; L, leucine; M, 
methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; W, 
tryptophan; Y, tyrosine. 
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Table 4: Overview of sensitivity analysis in all patients 
Definition of virological endpoint   N* % VF M12** HR  (95% CI) P 

No TDR 9102 4.2 1   

TDR and fully active cART 475 4.7 1.40 (0.86; 2.26) 0.1724 

Virological endpoint 1 TDR and resistant 479 15.1 3.30 (2.46; 4.43) <0.0001 

No TDR 9102 4.2 1   

TDR and fully active cART 475 4.7 1.41 (0.87; 2.28) 0.1644 

TDR and resistant (stanford level 3, 4) 322 10.2 2.19 (1.47; 3.27) 0.0001 

Virological endpoint 1 TDR and resistant (stanford level 5) 157 25.7 6.30 (4.22; 9.4) <0.0001 

No TDR 8907 3.7 1   

TDR and fully active cART 472 4.7 1.43 (0.88; 2.31) 0.1498 

Virological endpoint 1 (children <13 excluded) TDR and resistant 464 14.3 3.67 (2.72; 4.97) <0.0001 

No TDR 9102 4.2 1   

TDR and fully active cART 462 4.3 1.29 (0.77; 2.14) 0.3290 

Virological endpoint 1 (Patients harbouring M184V excluded) TDR and resistant 389 12.5 2.90 (2.06; 4.08) <0.0001 

    N* % VF M12 ***  OR  (95% CI) P 

No TDR 7724 4 1     

TDR and fully active cART 411 4.1 1.41 (0.86; 2.31) 0.1743 

Virological endpoint 1b TDR and resistant 396 14.7 3.55 (2.5; 5.04) <0.0001 

No TDR 7918 12.2 1     

TDR and fully active cART 421 12.4 1.29 (0.95; 1.76) 0.1009 

Virological endpoint 2 TDR and resistant 420 30.4 3.12 (2.44; 3.98) <0.0001 

Virological endpoint 1: Virological failure was defined as two consecutive viral loads >500 cp/mL after 6 months of therapy (date of first viral load >500 cp/mL was 
considered as failure date). Patients were censored if they died, were lost to follow up as defined by each cohort or stopped cART. In the absence of above defined events 
patients were censored at their last available viral load date in a six to 16 months window (patients with only one viral load after 6 months were censored at the date of viral 
load measurement either having a viral load ≤500 or >500 cp/mL). Virological endpoint 1b: Virological failure was defined as under virological endpoint 1 but a binary 
variable that assigned virological failure for those experiencing virological failure up to 12 months was created. Patients who died, patients who were lost to follow up and 
patients who stopped treatment were excluded. Virological endpoint 2: For sensitivity analysis, virological failure was defined as two consecutive viral loads > 500 cp/mL 
after 6 months of therapy, one viral load >500 cp/mL after six months where only one viral load available or one viral load >500 cp/mL in a two months period prior to a 
treatment change/treatment stop. A binary variable that assigned virological failure for those experiencing virological failure up to 12 months was created. Patients who died 
and patients who were lost to follow up before 12 months were excluded for this analysis. Further, patients stopping cART before 12 months without a viral load 
measurement >500 cp/mL before stopping were also excluded. VF: Virological failure, HR: adjusted Hazards ratio, OR: adjusted Odds ratio, CI: confidence interval, M12: 12 
months. No TDR: no mutation of the World Health Organization 2009 list of mutations for surveillance of transmitted drug resistant HIV strains (WHO list). TDR and fully 
active cART: ≥ 1 mutation of the WHO list and susceptible (stanford level 1, 2) to all prescribed drugs. TDR and resistant: ≥1 mutation of the WHO list and resistant 
(stanford level 3, 4, 5) to ≥1 prescribed drugs. cART: combination antiretroviral therapy. * Numbers included in univariable analysis, **Univariable Kaplan Meier estimates, 
***Univariable frequencies of virological failure. 
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Table 5: Overview of sensitivity analysis in patients receiving 2 NRTIs + either 1 NNRTI or a ritonavir boosted PI 
  2 NRTIs + 1 NNRTI  2 NRTIs + 1 PI/rtv 

Definition of virological endpoint N* 
% VF 
M12** HR  (95% CI) P  N* 

% VF 
M12** HR  (95% CI) P 

No TDR 4509 2.8 1       2748 2.7 1     

TDR and fully active cART 160 4.3 2.05 (0.89; 4.72) 0.0928  237 2.7 0.86 (0.36; 2.03) 0.7302 

Virological endpoint 1 TDR and resistant 176 10.6 2.99 (1.67; 5.34) 0.0002   132 10.9 3.60 (1.76; 7.34) 0.0004 

    N* 
% VF 
M12*** OR  (95% CI) P   N* 

% VF 
M12*** OR  (95% CI) P 

No TDR 4003 2.5 1       2257 2.6 1     

TDR and fully active cART 144 3.5 1.75 (0.75; 4.06) 0.1943  204 2.5 0.72 (0.23; 2.25) 0.5681 

Virological endpoint 1b TDR and resistant 152 10.5 3.42 (1.84; 6.36) 0.0001   108 11.1 4.32 (1.89; 9.89) 0.0005 

No TDR 4063 8.6 1       2318 11.7 1     

TDR and fully active cART 147 10.2 1.39 (0.81; 2.38) 0.2349  207 10.1 0.99 (0.61; 1.60) 0.9593 

Virological endpoint 2 TDR and resistant 162 27.8 3.82 (2.56; 5.68) <0.0001   115 24.3 2.54 (1.56; 4.16) 0.0002 

Virological endpoint 1: Virological failure was defined as two consecutive viral loads >500 cp/mL after 6 months of therapy (date of first viral load >500 cp/mL was 
considered as failure date). Patients were censored if they died, were lost to follow up as defined by each cohort or stopped cART. In the absence of above defined events 
patients were censored at their last available viral load date in a six to 16 months window (patients with only one viral load after 6 months were censored at the date of viral 
load measurement either having a viral load ≤500 or >500 cp/mL). Virological endpoint 1b: Virological failure was defined as under virological endpoint 1 but a binary 
variable that assigned virological failure for those experiencing virological failure up to 12 months was created. Patients who died, patients who were lost to follow up and 
patients who stopped treatment were excluded. Virological endpoint 2: For sensitivity analysis, virological failure was defined as two consecutive viral loads > 500 cp/mL 
after 6 months of therapy, one viral load >500 cp/mL after six months where only one viral load available or one viral load >500 cp/mL in a two months period prior to a 
treatment change/treatment stop. A binary variable that assigned virological failure for those experiencing virological failure up to 12 months was created. Patients who died 
and patients who were lost to follow up before 12 months were excluded for this analysis. Further, patients stopping cART before 12 months without a viral load 
measurement >500 cp/mL before stopping were also excluded. VF: Virological failure, HR: adjusted Hazards ratio, OR: adjusted Odds ratio, CI: confidence interval, NRTI: 
Nucleoside reverse transcriptase inhibitor, NNRTI: Non nucleoside reverse transcriptase inhibitor, PI/rtv: ritonavir boosted Protease inhibitor. M12: 12 months. No TDR: no 
mutation of the World Health Organization 2009 list of mutations for surveillance of transmitted drug resistant HIV strains (WHO list). TDR and fully active cART: ≥ 1 
mutation of the WHO list and susceptible (stanford level 1, 2) to all prescribed drugs. TDR and resistant: ≥1 mutation of the WHO list and resistant (stanford level 3, 4, 5) to 
≥1 prescribed drugs. cART: combination antiretroviral therapy. * Numbers included in univariable analysis, **Univariable Kaplan Meier estimates, ***Univariable 
frequencies of virological failure. 
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Table 6: Overview of sensitivity analysis in patients receiving 2 NRTIs plus an unboosted PI and patients receiving 3 or 4 NRTIs 
  2 NRTIs + 1 PI  3 or 4 NRTIs§ 

Definition of virological endpoint N* % VF M12** HR   (95% CI) P   N* % VF M12** HR  (95% CI)  P 
No TDR 112 12.8 1    242 9.1 1   

TDR and fully active cART 35 15.5 2.52 (0.89; 7.12) 0.082  19 20.5 4.62 (1.09; 19.65) 0.038 

Virological endpoint 1 TDR and resistant 73 24.7 1.71 (0.92; 3.17) 0.090   21 32.5 4.91 (1.76; 13.70) 0.002 

    N* 
% VF 
M12*** OR  (95% CI)  P   N* % VF M12*** OR  (95% CI)  P 

No TDR 869 12.5 1       188 9.0 1     

TDR and fully active cART 28 14.3 1.54 (0.48; 4.99) 0.470  15 20.0 2.54 (0.66; 9.83) 0.177 

Virological endpoint 1b TDR and resistant 56 23.2 1.48 (0.69; 3.15) 0.314   19 31.6 4.65 (1.57; 13.79) 0.006 

No TDR 906 23.2 1       198 17.2 1     

TDR and fully active cART 29 27.7 1.60 (0.64; 3.95) 0.313  15 26.7 1.87 (0.57; 6.11) 0.302 

Virological endpoint 2 TDR and resistant 61 39.3 1.73 (0.97; 3.11) 0.065   19 31.6 2.33 (0.83; 6.49) 0.107 

Virological endpoint 1: Virological failure was defined as two consecutive viral loads >500 cp/mL after 6 months of therapy (date of first viral load >500 cp/mL was 
considered as failure date). Patients were censored if they died, were lost to follow up as defined by each cohort or stopped cART. In the absence of above defined events 
patients were censored at their last available viral load date in a six to 16 months window (patients with only one viral load after 6 months were censored at the date of viral 
load measurement either having a viral load ≤500 or >500 cp/mL). Virological endpoint 1b: Virological failure was defined as under virological endpoint 1 but a binary 
variable that assigned virological failure for those experiencing virological failure up to 12 months was created. Patients who died, patients who were lost to follow up and 
patients who stopped treatment were excluded. Virological endpoint 2: For sensitivity analysis, virological failure was defined as two consecutive viral loads > 500 cp/mL 
after 6 months of therapy, one viral load >500 cp/mL after six months where only one viral load available or one viral load >500 cp/mL in a two months period prior to a 
treatment change/treatment stop. A binary variable that assigned virological failure for those experiencing virological failure up to 12 months was created. Patients who died 
and patients who were lost to follow up before 12 months were excluded for this analysis. Further, patients stopping cART before 12 months without a viral load 
measurement >500 cp/mL before stopping were also excluded. VF: Virological failure, HR: adjusted hazards ratio, OR: adjusted odds ratio, CI: confidence interval, NRTI: 
Nucleoside reverse transcriptase inhibitor, NNRTI: Non nucleoside reverse transcriptase inhibitor, PI: unboosted protease inhibitor. M12: 12 months. No TDR: no mutation of 
the World Health Organization 2009 list of mutations for surveillance of transmitted drug resistant HIV strains (WHO list). TDR and fully active cART: ≥ 1 mutation of the 
WHO list and susceptible (stanford level 1, 2) to all prescribed drugs. TDR and resistant: ≥1 mutation of the WHO list and resistant (stanford level 3, 4, 5) to ≥1 prescribed 
drugs. cART: combination antiretroviral therapy. * Numbers included in univariable analysis, **Univariable Kaplan Meier estimates, ***Univariable frequencies of 
virological failure, §Only Univariable Hazard rations and odds rations are presented. 
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6 Analysis of the impact of genotypic mutations on 
virological response in treatment experienced patients  

We were interested in methods that are suitable for a high number of potentially correlated 

predictors that give mutations different weights for the prediction of virological outcome. 

Further, we were interested in easily interpretable methods. 

First, we investigated the use of principal component analysis and partial least square (PLS) 

to predict virological outcome. Both methods determine linear combinations (principal 

components and PLS components) of the genotypic mutations that summarize best the 

variance structure of the mutations. The difference is that PLS takes the response variable into 

account to determine its components whereas principal components are based on the 

information given by the mutations only. Both, principal components and PLS components 

can then be used in regression models to assess their correlation with the virological outcome 

and their predictive abilities [42]. Second, we were also interested in Lasso since this method 

has showed a good performance for the prediction of phenotypic resistance and has also the 

advantage to be easy interpretable [46].  

Our hypothesis was that the use of methods that attribute different weights to different 

mutations would result in a better prediction of the virological outcome compared to the 

construction of a genotypic score. 

6.1 Alternative methods to analyse the impact of HIV genotypic 
mutations on virological response to antiretroviral therapy 
in treatment experienced patients 

We hypothesized that a better consideration of mutations (e.g. different weights) related to 

virological failure may lead to a higher quality of the predictions of treatment outcome.  

The objective was to compare strategies that analyse the impact of protease gene mutations on 

virological responses related to fosamprenavir/ritonavir treatment. 

We used data from the Zephir study, a substudy of the ANRS CO3 Aquitaine Cohort [174]. 

The Zephir study was designed to study the impact of protease mutations on virological 

outcome in treatment experienced patients starting a fosamprenavir/ritonavir based cART. 

For the following work we focussed on the use of principal component analysis, partial least 

square and compared their predictive ability to the construction of a genotypic score. This 

work was published in BMC Medical Research Methodology. 
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6.2 Perspectives 

6.2.1 Collaboration with the Forum for Collaborative HIV Research 
Founded in 1997, The Forum for Collaborative HIV Research is a public/private partnership 

at the University of California, Berkeley Washington Campus. The Forum's mission is to 

enhance and facilitate HIV research and this is accomplished by bringing together all relevant 

stakeholders (i.e. government, industry, patient advocates, health care providers, academia 

and foundations) to address emerging issues in HIV/AIDS [215]. 

We started a collaboration with the Forum for Collaborative HIV Research and in particular 

with the drug resistance working group (Standardization and Clinical Relevance of HIV Drug 

Resistance Testing Project). Beside the comparison of existing genotypic interpretation 

algorithms and external validation of existing rules [216, 217] the drug resistance working 

group is also interested in comparison of quantitative methods for the analysis of genotypic 

resistance data [194, 195, 218]. We obtained a dataset containing observations of treatment 

experienced patients who started abacavir plus additional antiretroviral drugs having a 

genotype at baseline [217]. 

 

6.2.2 Application of Lasso, PCA and PLS to data from the Forum for 
Collaborative HIV Research 

 

The objective of this ongoing work is to compare principal component analysis (PCA), partial 

least square (PLS) and Lasso with an existing genotypic interpretation system (ANRS) to 

analyse the impact of HIV reverse transcriptase (RT) mutations on virological response.  

6.2.2.1 Methods 

In preliminary analyses we used a subset of 574 patients initiating an abacavir-based regimen 

(baseline) not including protease inhibitors. We calculated the genotypic score for abacavir 

using the ANRS algorithm (version 17, July 2008). Virological success was defined as 1) a 

viral load ≤400 cps/mL at week 8 or 2) a VL ≤400 cps/mL at week 8 or at least 1 log10 

reduction between baseline and week 8. We selected known RT mutations (IAS USA list 

December 2008 and those listed by Shafer et al. [15]) to determine the first principal 

component and the first PLS component. A logistic regression model was used to determine 

the performance of the first PC and PLS component. For Lasso we used the same known RT 

mutations using the Akaike Information Criterion (AIC) to select the model. We used 5-fold 
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cross-validation to assess the area under the receiver operating curve (AUC of ROC) for PCA, 

PLS and Lasso. Results presented are unadjusted for covariates.  

6.2.2.2 Results 

Median number (IQR) of drugs in regimen (including abacavir) were 2 (1; 3). Median CD4 

cell count and viral load at baseline were 271 (152; 428)/mm3 and 4.3 (3.7; 5.0) log10 cp/mL, 

respectively. Of 574 patients, 272 (47%) had a viral load ≤400 cps/mL at week 8 and 369 

(64%) had a viral load ≤400 cps/mL at week 8 or at least 1 log10 reduction between baseline 

and week 8.  

AUCs were overall fairly low but AUCs calculated using PCA, PLS and Lasso suggested a 

better predictive performance compared to the ANRS abacavir score (see Table 9). Further 

investigation of these methods are ongoing. 

Table 9: Cross-validated area under the receiver operator curve (AUC (standard deviation)) 
Definition of virological 

response 
 Method applied 

  ANRS PCA PLS Lasso 

viral load ≤400 cps/mL at week 8  0.56 (0.03) 0.65 (0.04) 0.67 (0.05) 0.64 (0.04) 

viral load ≤400 cps/mL at week 8 
or at least 1 log10 reduction 
between baseline and week 8 

 0.60 (0.05) 0.67 (0.02) 0.67 (0.02) 0.65 (0.03) 

6.2.3 Ongoing - Lasso and left censuring 
Continuous viral load change from baseline give the greatest amount of information of the 

effect of drug resistance mutations on treatment efficacy and methods taking left censoring 

into account should be considered for their evaluation [36].  

We are currently working on the adaptation of Lasso for left-censored data.   

6.2.3.1 Definition of response 

We can define the virological response as the difference between a follow-up viral load (VL) 

at time t (e.g. at 8 weeks) and the viral load at baseline (t0). 

Y = VL(t) - VL(t 0) 

The viral load at time t is either observed or censored due to the detection limit. All baseline 

viral loads are assumed to be detectable. 

6.2.3.2 The Model 

We consider a usual regression situation. We have data (xi, yi), i = 1…n, where xi = (xi1 …xik) 

and yi are the k predictors and response for the i th observation. The model parameter for the i th 
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observation represent a vector b = (b1… bk)
T. The model for the i th observation can be written 

as follows: 

iii ebxy +=           (1) 

We assume that ei is independently normally distributed ei ~ N (0, σ²).  

6.2.3.3 The Likelihood 

Let o
iy  be the difference between an observed viral load at t and a baseline viral load andciy be 

the difference between a censored viral load at t and a baseline viral load.  

According to the model (1) yi has a Gaussian probability density function. Then, the 

contribution o the likelihood for a patient with observed viral loads takes the form: 
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Thus, the log-likelihood has the following form: 
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6.2.3.4 Estimation and Computation 

The estimation of the parameters is realised by the maximization of the log-lihelihood 

penalized by the norm 1 (L1) of b and by a tuning parameter determined by cross-validation. 

( )
1

maxarg bLLb λ−       (5) 

There exist different algorithms to find a solution for (5) [207, 219]. The R package “penalized” 

is a package for fitting possibly high dimensional penalized regression models developed by 

Jelle J. Goeman [220]. The penalty structure can be any combination of a L1 penalty (lasso), a 

L2 penalty (ridge) and a positivity constraint on the regression coefficients. The package 

supports linear regression models, logistic and poisson regression and the Cox Proportional 

Hazards model. The algorithm used in the penalized package is based on a novel algorithm 

that efficiently computes L1 penalized (lasso) estimates of parameters in high-dimensional 

models [221]. In collaboration with Marta Avalos, Pierre Seiter and Daniel Commenges in our 

team we modified this package in order to take left censoring into account. Currently, we 

work on the evaluation of this approach. 
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7 Conclusion 
Knowing the impact of genotypic resistance mutations on treatment outcome is important 

both in treatment naïve and treatment experienced patients. However, the statistical analysis 

of the impact of genotypic mutations on treatment outcome is hampered by i) the high number 

of possible mutations, ii) the potential collinearity between mutations and iii) the low number 

of patients. Further, the definition of an endpoint is not straightforward and may depend on 

the study population (naïve or treatment experienced), the purpose of the study (e.g. licencing 

a drug) and the scientific question to be answered. We were thus interested in epidemiological 

and methodological questions regarding the analysis of genotypic resistance mutations. 

 

The analysis of the impact of transmitted drug resistance on first line antiretroviral treatment 

is an important epidemiological question as the choice of the initial treatment is crucial and 

may further limit future treatment options. Several existing studies are controversial and may 

suffer from limited power [19, 26, 28-31, 141, 142]. We investigated the impact of transmitted 

drug resistance on virological and immunological outcome in patients starting at least three 

antiretroviral drugs in a large-scale European collaboration. To our knowledge, this is the 

most ample evaluation of the clinical impact of TDR to date. We particularily focused on i) 

patients starting 2 NRTIs + 1 NNRTI or 2 NRTIs + 1 PI/ritonavir and ii) patients receiving 

treatment predicted to be fully active. We found strong evidence that the selection of an initial 

regimen should be based on resistance testing in treatment naïve patients as recommended in 

recent treatment guidelines [2, 3, 13]. This is the first study showing that the prescription of a 

drug classified even as encountering low-level resistance is associated with a significantly 

higher risk for virological failure. This finding underlines the need of ≥3 fully active 

antiretroviral drugs in order to optimize the virological response to first-line regimen. In the 

presence of transmitted drug resistance and when an active regimen was used, we found a 

potential higher risk of virological failure compared to patients with no transmitted drug 

resistance mutations if a combination of 2 NRTIs + 1 NNRTI was used, though not if a 

boosted PI + 2 NRTIs were prescribed. The findings for patients receiving 2 NRTIs + 1 

NNRTI could be partly explained by the presence of minority NNRTI resistant strains. These 

results support previous findings that the presence of minority NNRTI resistance mutations 

can be related to virological failure if patients start a NNRTI based regimen [222-226]. 

In conclusion, genotypic testing in treatment naive patients in regions with medium to high 

prevalence transmitted drug resistance is important to select a fully active regimen for 
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treatment initiation. In regions where genotypic testing is not routinely available but high 

prevalence of transmitted drug resistance is suspected, first line regimens containing a 

ritonavir boosted PI should be considered. 

 

The definition of an endpoint for the study presented above was not straightforward. We 

opted for a time-to-event analysis but as discussed these implicates methodological issues. 

Therefore, we realised several sensitivity analyses in order to account among other aspects for 

patients switching treatment. The evaluation of viral load evolution using measurements taken 

before any treatment stop/switch only would be a powerful alternative. Preliminary results 

using piecewise linear random effect models in order to analyse the viral load decay gave 

comparable results (data not show) and might be a helpful tool to evaluate virological efficacy 

of a treatment. 

As the definition of an endpoint is variable in different contexts and may implicate various 

methodological issues we summarized endpoints 1) used in recent clinical trials and 2) used in 

studies to evaluate the impact of genotypic resistance mutations to predict virological 

outcome.  

We reviewed recent clinical trials in antiretroviral naive and treatment experienced patients to 

give an overview of the endpoints and to discuss the resulting methodological problems. 

Composite endpoints were the most used endpoints in recent HIV clinical trials. The change 

of endpoint definition over time in the HIV field is amongst others due to the amelioration of 

antiretroviral treatment efficacy. The use of clinical endpoints, e.g. disease progression or 

death may now be unfeasible as these endpoints became rare and very large long-term trials to 

observe these endpoints would be required. More easily observed laboratory measurements, 

such as HIV viral load can be used as biomarkers for treatment efficacy. However, good 

virological response may not be a sufficient definition in the context of pragmatic trials where 

toxicity, quality of life or preservation of future drug options are also of interest. We observed 

considerable differences in what made up these endpoints, and reporting would benefit from 

standardization. All components of the endpoint should be reported to allow a better 

understanding of eventual differences between compared groups [169, 227]. 

‘Pure’ virological endpoints were rarely used in clinical trials but are of interest for the 

evaluation of genotypic drug resistance and their impact of treatment outcome [36]. Further, a 

quantitative measurement may better reflect the direct impact of drug resistance mutation on 

the replicative capacity of the virus. However, the definition of a quantitative outcome is 

hampered by the detection limit of current viral load assays. Methods allowing the 
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consideration of left-censoring for the evaluation of viral load evolution or the first viral load 

decay have been proposed [52-54] and are less biased then using simple imputation based on 

the detection limit.  

 

We compared principal component analysis and partial least square with the construction of a 

genotypic score as described by Flandre et al. and Brun-Vézinet et al. [36, 37] in order to 

predict the virological outcome using genotypic resistance data in treatment experienced 

patients. We compared these two techniques with the construction of a genotypic score 

because they allow considering each mutation with a different weight. Principal component 

analysis and partial least square showed a good performance but had only a slightly better 

predictive capacity than the genotypic score. However, both methods provided a helpful tool 

in describing the association between mutations and to detect mutation clusters. The latter 

finding is in accordance with other studies, which used similar techniques to detect co-

variation and cluster of protease and reverse transcriptase mutations [45, 228]. However, many 

other techniques to analyse genotypic mutations have been described and were applied either 

to predict phenotypic drug resistance or virological outcome. Some of these methods have 

been integrated in data-driven prediction engines [38, 39, 121].  

 

Lasso was identified as one of the best performing methods to predict phenotypic drug 

resistance [46] and has not yet been used to predict virological outcome. Further, preliminary 

investigations using different endpoint definitions to construct a genotypic score but also 

using different statistical methods showed that prediction accuracy but also the 

selection/weighting of mutations varied between outcome definitions (data not shown). This 

led to the idea of adapting Lasso for left-censored data in order to evaluate this method using 

a quantitative virological outcome.  

The comparison of different methods using different virological criteria could be another 

perspective of this work. Further, the use of PCA, PLS and Lasso are also of interest for other 

studies with high-dimensional data, for example in the context of “omics” data.   

 

In total, our work is relevant for clinical care of HIV-1 infected patients starting their first 

antiretroviral therapy and may also be relevant to improve adequate design and analysis of 

future drug resistance studies. 
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Abbreviations 
 
AIDS  Acquired immune 

deficiency syndrome 
ART  Antiretroviral therapy 
AUC  Area under the receiver 

operator curve 
 
cART  combination antiretroviral 

therapy 
CART  classification and regression 

trees 
CD4  T lymphocytes CD4 

receptor positive 
CI  confidence interval 
 
DNA  desoxyribonucleic acid 
 
env  envelope 
e.g.   exempli gratia 
 
FDA  Food and drug 

administration 
 
gag  group antigen 
gp  glycoprotein 
GSS  genotypic sensitivity score 
 
HAART highly active antiretroviral 

therapy 
HIV  Human immunedeficiency 

virus 
HCV   Hepatitis C virus 
HR  Hazards ratio 
 
IAS  International AIDS society 
i.e.  id est 
INSTI  Integrase Strand transfer 

inhibitor 

IN  Integrase 
 
LARS  Least angle regression 
Lasso  Least absolute shrinkage 

and selection operator 
LTR  long terminal repeat 
 
NRTI  Nucleoside and nucleotide 

reverse transcriptase 
inhibitor 

NNRTI Non-nucleoside reverse 
transcriptase inhibitor 

 
OR  Odds ratio 
 
PCA  Principal component 

analysis 
PC  principal component 
PI  Protease inhibitor 
PI/rtv  ritonavir boosted protease 

inhibitor 
PLS  Partial least square 
Pm  Polymorphism 
pol  polymerase 
PR  protease 
 
RT  reverse transcriptase 
RNA  ribonucleic acid 
 
SVM  support vector machines 
 
TAM  Thymidin analog mutations 
TDR  transmitted drug resistance 
 
VL  viral load 
 
WHO  World Health Organization 
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Glossary 
 
Amino acid Amino acids are the structural units that make up proteins. One 

letter code amino acid abbreviations of the 20 amino acid 
directly encoded by the genetic code: A, alanine; C, cysteine; D, 
aspartate; E, glutamate; F, phenylalanine, G, glycine; H, 
histidine; I, isoleucine; K, lysine; L, leucine; M, methionine; N, 
asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, 
threonine; V, valine; W, tryptophan; Y, tyrosine. 

 
Base pair Two nucleotides on opposite complementary DNA or RNA 

strands are a so-called base pair. 
 
CASCADE Concerted Action on SeroConversion to AIDS and Death in 

Europe.  
It is currently a network of epidemiologists, statisticians, 
virologists and clinicians from lead HIV institutions in 15 
European countries, Australia and Canada. Seroconverters are 
enrolled into the individual cohorts locally and nationally and 
are typically followed up life-long. CASCADE’s main aim is to 
monitor newly infected individuals and those already enrolled in 
studies, covering the entire duration of HIV infection. 
 

CHAIN   Collaborative HIV and Anti-HIV Drug Resistance Network. 
CHAIN is a large scale integrating project aimet to effectively 
and durably combat new and existing anti-HIV drug resistance 
in clinical settings, with a special emphasis on Eastern Europe 
and in heavily affected resource-poor regions in Africa.  

CHAIN received funding from the European Community’s 
Seventh Framework Programme FP7/2007-2013 under grant 
agreement n° 223131. 

Codon    Three nucleotides that encode one amino acid. 
 

COHERE Collaboration of Observational HIV Epidemiological Research 
Europe.  
COHERE is a structure that was organised in 2005 and is a 
collaboration of 33 cohorts from 30 European countries. The 
mission of COHERE is: To conduct epidemiological research on 
the prognosis and outcome of HIV-infected people from across 
Europe including pregnant mothers, children, and adults. The 
research will focus on scientific questions requiring a large 
sample size of patients which the contributing cohorts cannot 
answer individually and which do not overlap with existing 
collaborations between participating COHERE cohorts.  
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Cross-validation A method to assess prediction accuracy. The dataset is devided 
into equal-sized parts, for example five. A model is assessed 
using four parts of the data and is then tested on the 5th part (e.g. 
the prediction accuracy is tested). The procedure is repeated 5 
times so that each part served as test-set. 

 
DNA Deoxyribonucleic acid is a chain of nucleotides, i.e. adenine: A, 

cytosine: C, guanine: G and thymine: T. DNA contains the 
genetic intstructions and one of the main roles is the long term 
storage of information.  

 
EuroCOORD The collaborative HIV cohorts CASCADE, COHERE, 

EuroSIDA and PENTA-EPPICC are the four founding networks 
of EuroCoord (The European Coordinating Committee for the 
Integration of Ongoing Coordination Actions Related to Clinical 
and Epidemiological HIV Research).  

  

EuroSIDA The EuroSIDA study is a prospective observational cohort study 
of more than 16.505 patients followed in 103 hospitals in 32 
European countries plus Israel and Argentina. The main 
objective of the study is to assess the impact of antiretroviral 
drugs on the outcome of the general population of HIV-infected 
patients living in Europe. 

 
Forum of Collaborative HIV  
Research Founded in 1997, The Forum for Collaborative HIV Research is 

a public/private partnership at the University of California, 
Berkeley Washington Campus.  The Forum's mission is to 
enhance and facilitate HIV research and this is accomplished by 
bringing together all relevant stakeholders (i.e. government, 
industry, patient advocates, health care providers, academia and 
foundations) to address emerging issues in HIV/AIDS. 

Genetic barrier The number of mutations required to overcome drug-selective 
pressure. 

Genetic code The genetic code defines the mapping between codons and 
amino acids. The genetic code has redundancy. For example, 
codons AAA and AAG both specify lysine (redundancy) but 
neither of them specifies any other amino acid (no ambiguity). 

HXB2  The viral strain HXB2 is a commonly used laboratory HIV-1 
wild-type virus (GenBank Accession Number K03455). The 
HXB2 sequence is used as the reference sequence to determine 
changes in the genome of the  
HIV-1 virus. 
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Logit     The logit transformation is defined  
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Mutation  Change in the genetic code. In this report mutations refers to a 

change in an amino acid. Silent mutations, i.e. mutations in the 
nucleotide sequence without leading to change in the amino acid 
are not considered. 

NEAT  Eurpean AIDS Treatment Network. NEAT’s mission is to 
strengthen European HIV clinical research capacity by building 
a clinical and laboratory network in HIV therapeutics. NEAT 
will catalyse a critical mass of resources and expertise, with the 
direct involvement of 41 core partners from 16 countries and 
over 350 affiliated centres of established international 
reputation. NEAT is committed to designing the roadmap for a 
durable reshaping of the way clinical research is carried out in 
Europe so as to achieve a progressive and lasting integration. In 
doing so, NEAT will pave the way toward the creation of the 
European Research Area. The Network will also spread 
expertise and resources provide training and mobility of 
scientists at all levels and will foster lasting collaborations 
across Europe. 

PENTA Paediatric European Network for Treatment of AIDS. Penta was 
established in 1991 as a collaboration between paediatric HIV 
centres in Europe. 

 
PCR    Polymerase Chain reaction. 

PCR is a technique used in molecular biology to amplify a piece 
of DNA. 
 

Polymorphism Polymorphisms in the HIV genome occurs at several codons 
even without drug selective pressure and occur commonly in 
untreated patients as naturally occurring variants. 

 
Protein Amino acid sequence. Structure and function of proteins are 

various. For example, the protease of HIV is a protein which 
catalyzes cleavage of other viral proteins, i.e. the protease is an 
enzyme. The proteins forming the envelope or the nucleopasid 
of HIV are structural proteins. 

 
Replicative capacity The ability of the virus to reproduce itself. Viral fitness is a 

synonym.   
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RNA Ribonucleic acid is a chain of nucleotides that differ slightly 
from that used to form a DNA molecule, i.e. adenine: A, 
cytosine: C, guanine: G and uracil: U. Uracil is used at the place 
of thymidine.  Many different RNA molecules exist. One 
example is the messenger RNA (mRNA) that carries 
information about a protein sequence. Further, RNA can carry 
genetic information (as DNA) and RNA viruses have genomes 
composed of RNA such as HIV. 

 
Transcription In biology, transcription refers to the creation of an equivalent 

RNA copy from a DNA.  
 
Translation In biology, transcription refers to the step of protein synthesis. 

The nucleotide sequence of a messenger RNA is translated into 
an amino acid seuquence forming a protein. 

 
Silent mutation A change in the nucleotide seuquence that does not change the 

amino acid seuquence. Silent mutations can occur due to the 
redundancy of the genetic code. For example, a change of the 
codon AAA to AAG does not change the amino acid sequence, 
i.e. bot codons encode lysine. 
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