Analyse chimique quantitative à haute résolution spatiale par microsonde et nanosonde nucléaires

par Guillaume Devès (Deves)

Thèse de doctorat en Chimie analytique et environnement

Sous la direction de Richard Ortega.

Soutenue le 08-11-2010

à Bordeaux 1 , dans le cadre de École doctorale des sciences chimiques (Talence, Gironde) .

Le président du jury était Philippe Moretto.

Le jury était composé de Philippe Barberet, Jean-Luc Guerquin-kern.

Les rapporteurs étaient Francisco Javier Garcia Lopez, Edouard Jallot.


  • Résumé

    Etudier le rôle des éléments traces à l’échelle cellulaire requiert des outils analytiques de pointe. Nous avons développé une nouvelle méthodologie précise de la répartition des éléments chimiques cellulaires à partir d’une combinaison des méthodes d’analyse par faisceaux d’ions PIXE, RBS et STIM. Cette méthodologie s’appuie fortement sur le développement d’un logiciel (Paparamborde) pour le traitement quantitatif des expériences STIM. La validité de cette méthode ainsi que ses limites sont discutées. La méthode STIM-PIXE-RBS permet de quantifier la composition en éléments traces (µg/g) avec une incertitude de mesure évaluée à 19,8% dans des compartiments cellulaires de masse inférieure à 0,1 ng.Une des limites de la méthode réside dans le faible nombre d’échantillons analysables en raison à la fois du temps minimum nécessaire pour réaliser une acquisition et de l’accès limité aux plateformes d’analyse par faisceaux d’ions. C’est pourquoi nous avons également développé une base de données pour la capitalisation des compositions chimiques cellulaires (BDC4). Cette base de données s’inscrit dans la logique de l’utilisation de la composition chimique cellulaire comme un traceur de l’activité biologique, et doit permettre à terme de définir des compositions chimiques de référence pour les différents types cellulaires analysés.L’application de la méthodologie STIM-PIXE-RBS à l’étude de la toxicologie nucléaire du cobalt permet d’illustrer son intérêt en pratique. En particulier, l’analyse STIM s’avère indispensable dans le cas d’échantillons présentant une perte de masse organique au cours de l’analyse PIXE-RBS.


  • Résumé

    The study of the role of trace elements at cellular level requires the use of state-of-the-art analytical tools that could achieve enough sensitivity and spatial resolution. We developed a new methodology for the accurate quantification of chemical element distribution in single cells based on a combination of ion beam analysis techniques STIM, PIXE and RBS. The quantification procedure relies on the development of a STIM data analysis software (Paparamborde). Validity of this methodology and limits are discussed here. The method allows the quantification of trace elements (µg/g) with a 19.8 % uncertainty in cellular compartments with mass below 0.1 ng.The main limit of the method lies in the poor number of samples that can be analyzed, due to long irradiation times required and limited access to ion beam analysis facilities. This is the reason why we developed a database for cellular chemical composition capitalization (BDC4). BDC4 has been designed in order to use cellular chemical composition as a tracer for biological activities and is expected to provide in the future reference chemical compositions for any cellular type or compartment.Application of the STIM-PIXE-RBS methodology to the study of nuclear toxicology of cobalt compounds is presented here showing that STIM analysis is absolutely needed when organic mass loss appears during PIXE-RBS irradiation.


Il est disponible au sein de la bibliothèque de l'établissement de soutenance.

Consulter en bibliothèque

La version de soutenance existe

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Bordeaux. Direction de la Documentation. Bibliothèque électronique.
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.