Backward SDEs and sequential optimal stochastic control in continuous time in finance
Auteur / Autrice : | Idris Kharroubi |
Direction : | Huyên Pham |
Type : | Thèse de doctorat |
Discipline(s) : | Mathématiques appliquées |
Date : | Soutenance en 2009 |
Etablissement(s) : | Paris 7 |
Mots clés
Résumé
Nous étudions le lien entre EDS rétrogrades et certains problèmes d'optimisation stochastique ainsi que leurs applications en finance. Dans la première partie, nous nous intéressons à la représentation par EDSR de problème d'optimisation stochastique séquentielle : le contrôle impulsionnel et le switching optimal. Nous introduisons la notion d'EDSR contrainte à sauts et montrons qu'elle donne une représentation des solutions de problème de contrôle impulsionnel markovien. Nous lions ensuite cette classe d'EDSR aux EDSRs à réflexions obliques et aux processus valeurs de problèmes de switching optimal. Dans la seconde partie nous étudions la discrétisation des EDSRs intervenant plus haut. Nous introduisons une discrétisation des EDSRs contraintes à sauts utilisant l'approximation par EDSRs pénalisées pour laquelle nous obtenons la convergence. Nous étudions ensuite la discrétisation des EDSRs à réflexions obliques. Nous obtenons pour le schéma proposé une vitesse de convergence vers la solution continûment réfléchie. Enfin dans la troisième partie, nous étudions un problème de liquidation optimale de portefeuille avec risque et coût d'exécution. Nous considérons un marché financier sur lequel un agent doit liquider une position en un actif risqué. L'intervention de cet agent influe sur le prix de marché de cet actif et conduit à un coût d'exécution modélisant le risque de liquidité. Nous caractérisons la fonction valeur de notre problème comme solution minimale d'une inéquation quasi-variationnelle au sens de la viscosité contrainte.