Thèse soutenue

Les circuits neuronaux de l'aversion olfactive conditionnée : approche électrophysiologique chez le rat vigile

FR  |  
EN
Auteur / Autrice : Julie Chapuis
Direction : Nadine Ravel
Type : Thèse de doctorat
Discipline(s) : Neurosciences
Date : Soutenance le 04/05/2009
Etablissement(s) : Lyon 1
Ecole(s) doctorale(s) : École doctorale Neurosciences et Cognition (NSCo) (Lyon)
Partenaire(s) de recherche : Laboratoire : Neurosciences sensorielles, comportement et cognition , Lyon
Jury : Président / Présidente : Rémi Gervais
Examinateurs / Examinatrices : Olivier Bertrand, Guillaume Ferreira
Rapporteurs / Rapporteuses : Georges Di Scala, François Roman

Résumé

FR  |  
EN

L’objectif de cette thèse est de décrire le réseau cérébral et la dynamique neuronale qui pourraient servir de support aux aversions alimentaires de type olfactives. Nous avons réalisé des enregistrements multisites de potentiel de champ locaux chez le rat vigile engagé dans cet apprentissage, en proposant deux modes de présentation de l’indice olfactif : à proximité de l’eau de boisson (distal) ou ingéré (distal-proximal). Après apprentissage, la présentation du seul indice distal induit l’émergence d’une activité oscillatoire de forte amplitude dans la bande de fréquence beta (15-40 Hz). Finement corrélée au comportement d’aversion de l’animal, cette activité est proposée comme la signature du réseau de structures fonctionnellement impliquées dans la reconnaissance de l’odeur en tant que signal. Nous montrons que ce réseau peut être plus ou moins étendu selon la façon dont le stimulus a été perçu lors du conditionnement: dans certaines aires (bulbe olfactif, cortex piriforme, amygdale basolatérale, cortex orbitofrontal) la modulation en puissance de l’activité beta se fait indépendamment du mode de conditionnement; dans d’autres aires (cortex insulaire, cortex infralimbique) ces changements ont lieu si et seulement si l’odeur a été ingérée. Complétés par l’étude des interactions fonctionnelles entre ces différentes structures dans la bande de fréquence considérée, ces résultats nous permettent de mieux comprendre comment un stimulus peut être représenté en mémoire dans un réseau cérébral en fonction de l’expérience que l’animal en a fait.