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Introduction générale: 

 

La modélisation du comportement mécanique non linéaire des géomatériaux est un aspect 

essentiel pour l’analyse de la stabilité et de la durabilité des structures et des ouvrages dans de 

divers domaines d’application d’ingénieur comme la construction des espaces souterrain, le 

stockage des déchets radioactifs et des gaz résiduels, l’exploitation des hydrocarbures, la 

construction des infrastructures dans les transports etc. Dans ces domaines d’application, les 

géomatériaux concernés (sols, roches et matériaux cimentaires) sont souvent soumis à des 

sollicitations couplées d’origines différentes telles que mécanique, hydraulique, hydrique, 

thermique et chimique. Il convient alors de prendre en compte ces différents phénomènes de 

couplage. La maîtrise du comportement mécanique des géomatériaux sous sollicitations 

complexes est le point de départ pour la modélisation des couplages. 

 

Par ailleurs, par leur histoire de formation et procédure de fabrication, les géomatériaux sont 

quasi exclusivement des matériaux hétérogènes dans des échelles variées. Le comportement 

macroscopique de ces matériaux est intimement lié à leur microstructure et son évolution. Par 

exemple, le comportement mécanique d’une roche est fortement dépendent de sa composition 

minéralogique. Afin d’étudier et de modéliser le comportement mécanique des géomatériaux, des 

essais en laboratoires conventionnels comme compression triaxiale fournissent une base de 

données indispensables pour la caractérisation du comportement macroscopique. Ces essais sont 

généralement réalisés dans des échantillons de tailles différentes permettant de représenter un 

volume élémentaire représentatif (VER) du matériau. Cependant, afin de mieux cerner des 

mécanismes de déformation et de la rupture des géomatériaux, des observations et des 

expérimentations microscopiques s’avèrent de plus en plus utiles et indispensables. De 

nombreuses méthodes expérimentales nouvelles ont été développées pendant les dernières 

décennies visant à caractériser les déformations locales, les évolutions de la microstructure 

comme microfissuration et variation de porosité. L’amélioration de ces méthodes expérimentales 

microscopique représente encore un challenge largement ouvert dans le domaine expérimental. 

 

Dans le domaine de la modélisation, de nombreux et divers modèles ont été proposés pour 

décrire le comportement mécanique des géomatériaux. D’une manière simplifiée, on peut 

distinguer deux types de modèles. Les modèles macroscopiques ou phénoménologiques sont 

formulés essentiellement en se basant sur des données expérimentales en laboratoire et in situ et 



 

6 

en utilisant le cadre théorique de la thermodynamique des processus irréversibles. On peut citer 

par exemple des modèles plastiques isotropes ou anisotropes, des modèles d’endommagement 

isotropes et anisotropes, des modèles viscoplastiques, des modèles couplés etc. Des propres 

récents et significatifs ont également été réalisés quant à la précision des simulations fournies par 

de tels modèles. On est maintenant capable de décrire des réponses complexes des géomatériaux 

sous sollicitations très variées. Les modèles macroscopiques sont également utilisés dans des 

applications industrielles et fournissent ainsi un outil de modélisation numérique efficace. 

Cependant, les modèles macroscopiques ne permettent pas de prendre en compte directement des 

effets de l’hétérogénéité et des mécanismes physiques mis en jeu à différentes échelles de la 

microstructure des géomatériaux. A titre d’exemple, il n’est pas possible d’inclure directement des 

effets de la composition minéralogique dans un modèle macroscopique. Pour compléter ainsi les 

modélisations macroscopiques, des modèles micromécaniques ont également proposés notamment 

pour des matériaux fragiles et des matériaux granulaires. Par exemple, différents modèles 

d’endommagement micromécaniques ont été formulés pour des matériaux quasi fragiles (roches 

et bétons), soit en utilisant les principes de la mécanique de la rupture linéaire, soit en utilisant les 

techniques d’homogénéisation des milieux périodiques ou aléatoires. D’une manière générale, il 

s’agit souvent d’étudier à une échelle microscopique pertinente la nucléation et la propagation de 

microfissures. Les outils mathématiques utilisés dans les techniques d’homogénéisation des 

milieux élastiques comme la solution d’Eshelby d’un problème d’inclusion ont été adaptées. En 

revanche, lorsqu’il s’agit de la modélisation micromécanique du comportement des matériaux 

hétérogènes composés des constituants ayant un comportement inélastique, le problème devient 

largement plus complexe et reste encore largement ouvert. Dans le domaine des matériaux 

composites à matrice métallique (ou céramique) ou polycristallins, d’importants progrès de 

modélisation micromécanique ont été accomplis pendant des dernières décennies ; on peut citer 

les méthodes incrémentales, les méthodes sécantes, tangentes et affines, les méthodes d’analyse 

de champs de transformation uniformes (transformation field analysis – TFA) et non uniformes 

(non–uniform transformation analysis – NTFA), et les modèles auto cohérentes pour 

polycristallins etc. L’adaptation de ces méthodes d’homogénéisation non linéaire est un sujet de 

recherche d’actualité et prometteuse pour la modélisation micromécanique des géomatériaux non 

linéaires. C’est dans ce contexte général que le présent travail de thèse est proposé. 

 

Nous proposons d’aborder la question de modélisation micromécanique d’une classe de 

géomatériaux hétérogènes ayant une morphologie matrice/inclusion ou matrice/pores (matériaux 

poreux) ; le comportement mécanique de la matrice étant anélastique. On s’intéressera notamment 

à la modélisation du comportement mécanique d’une roche argileuse raide dite argilite de Meuse- 
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Haute Marne (MHM), qui est largement étudiée dans le cadre des études de faisabilité du stockage 

des déchets radioactifs menées par l’ANDRA (agence nationale de gestion des déchets radioactifs). 

Le présente travail représente la poursuite d’une série de travaux effectués dans l’équipe de 

recherche « couplages THMC » du laboratoire de mécanique de Lille (UMR 8107 CNRS), 

notamment de la thèse de doctorat d’Abou-Chakra Guéry (2007). Dans ladite thèse, la méthode 

incrémentale de Hill (1965) a été adptée pour la modélisation du comportement mécanique à court 

et à long terms de l’argilite de MHM. La roche a été considérée comme un composite à trois 

phases : matrice argileuse plastique, grains de calcite élastiques endommageables et grains de 

quartz élastisques. Dans la première partie de notre travail, nous présenterons quelques extensions 

de ce travail. L’argillite sera éttudiée comme un composite à deux phases; matrice argileuse 

plastique endommageable et les inclisons minéralogiques (calcite et quartz). En plus, des études 

numériques complémentaires seront effectuées sur la qualité redictive de la méthode 

incrémentales en terme de la technique d’isotropisation et de la nature du comportement local. 

Des comparaisons entre des prédictions numériques et données expérimentales et entre les deux 

modèles micromécaniques seront également présentées. 

 

Le modèle incrémentale fait partie des approches dites de « champs moyens ». La principale 

hypothèse et également le principal défaut de ces approches est le fait qu’on suppose que les 

champs locaux sont unifomes dans chaque phase. Dans le cas des métriaux hétérogènes non 

linéaires, cette hypothèse est à toute évident trop forte et ne reflète pas des champs locaux qui 

peuvent être fortement non-uniformes. Pour prendre en compte cette hétéronégéité des champs 

locaux, différentes méthodes ont été proposées pour des matériaux composites, on cite notamment 

les méthodes «transformation field analysis- TFA» (Dvorak, 1992) et «non-uniform 

transformation field analysis- NTFA » (Michel et Suquet, 2003). Les principaux de ces deux 

méthodes seront présentés dans le chapitre 1 de ce mémoire. Dans la deuxième partie du présent 

travail, nous proposons une adaptation de la méthode (NTFA) à la modélisation micromécanique 

des géomatériaux. Le principe de base est d’approcher le champ de déformation plastique locale 

par une combinaison linéaire des modes de déformations plastiques orthgonaux. La formulation et 

la mise en œuvre de cette méthode sera présentée dans le chapitre 4. Des applications numériques 

à des composites matrice/inclusion et des matériaux poreux seront présentées et comparées avec 

l’approche incrémentale. Enfin dans le dernier chapitre, une epremière phase d’application de la 

méthode (NTFA) à la modélisation de l’argilite de MHM sera aborée. 
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Principal Notations 

 

Notations of tensorial operations: 

 

a  scalar .  simple contraction 

a  first order tensor (vector) :  double contraction 

a  second order tensor Ä  tensor product 

A  fourth order tensor 
s

Ä  symmetric tensor product 

d  second order unit tensor tra  trace of second order tensor 

I  fourth order unit tensor, 
1

( )
2

ijkl ik jl il jkI d d d d= +  

J  volumetric projection operator of fourth order tensor, 
1

3
ijkl ij klJ d d=  

K  deviatoric projection operator of fourth order tensor, ijkl ijkl ijklK I J= -  

 

 

 

Notations of main variables: 

s  microscopic stress tensor 

e  microscopic strain tensor 

x  microscopic displacement vector 

s  deviator stress 

ms  microscopic hydrostatic (or mean) stress, 
1

3
m trs s=  

eqs  microscopic equivalent stress, 
3

:
2

eq s ss =  
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S  macroscopic stress tensor 

E  macroscopic strain tensor 

mS  macroscopic hydrostatic (or mean) stress 

eqS  microscopic equivalent stress 

  

E  Young’s modulus 

n  Poisson’s ratio 

k  bulk modulus 

G  shear modulus 

homa  homogenized quantity 

ra  value in phase r  

C  fourth order elastic stiffness tensor 

L  fourth order tangent stiffness tensor 

A  localization tensor 

P  Hill’s tensor 

E
S  Eshelby tensor 
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Chapter 1:  

Introduction to multiscale analyses of nonlinear heterogeneous materials 

and basic mechanical behavior of argillites 

  

In this chapter, we propose to give a short review of main homogenization techniques 

developed for multiscale modeling of nonlinear heterogeneous materials. The emphasis will be 

put on the Hill’s incremental method and non-uniform transformation field analysis (NTFA), 

which are used and adapted to geomaterials in this work. A short summary will also be given on 

the basic mechanical behavior of a hard clay rock (the argillites MHM) to which the two 

aforementioned methods will be applied. 

 

1.1 Principles and general procedures of nonlinear homogenization 

 

The primary assumption of mechanics of continuous media is that the medium is 

homogeneous, whose geometry and mechanical characteristics can be described by continuous 

functions. However, almost all the natural engineering materials, such as rocks, soils, woods, and 

many man-made engineering materials, such as concrete, mortar, alloy, ceramics, etc., are 

multiphase and multi-scale material systems. They are not homogeneous in microscopic scale, 

actually with complicated constituents and microstructures, even though some homogeneous 

properties are revealed in macroscopic scale. 

Mostly, the details of individual component properties and geometrical arrangement of 

constituents are not concerned in engineering practice. Instead the overall effective or 

homogenized material properties are used to evaluate the performance of the heterogeneous 

material and predict the macroscopic structure responses. However, those effective or 

homogenized properties are usually difficult to measure directly. Therefore the development of 

homogenization method is motivated to derive the homogenized material properties directly from 

the property of each individual constituent and their microstructures (Kanouté et al. 2009). 

It has been widely studied in great deal of literatures of various homogenization methods to 

forecast the overall properties of heterogeneous materials with linear elastic properties based on 

micromechanics. Most of them own good abilities to predict the effective properties very 

accurately taking account of different shapes and spatial distribution of constituents 

(Nemat-Nasser & Hori, 1999; Torquato, 2001; Segurado & Llorca, 2001; Milton, 2004; Li and 

Wang, 2008), or even extended to simulate multi-phase or linear thermo-elasticity heterogeneous 
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materials (Lielens, 1999; Pierard et al., 2004). However, the situation for nonlinear heterogeneous 

materials is much more complicated, and many difficulties emerge when these methods are 

extended to predicting nonlinear heterogeneous materials because the strain localization during 

plastic deformation is more difficult to capture. Various approaches dealing with nonlinear 

homogenization method are proposed in the latest decades, some of which are extended directly 

from the linear homogenization method, others are specially created for nonlinear heterogeneous 

materials. 

In this section, a short review will be given to introduce the principles of nonlinear 

homogenization methods and some most common approaches applied to obtain the equivalent 

properties of nonlinear heterogeneous materials. 

 

1.1.1 Basic principles of nonlinear homogenization 

 

In the framework of micromechanics, the mechanical properties of a macroscopic material 

point ( )M X regarded as a regular homogeneous medium, are equivalent to the overall properties 

of a representative volumetric element (RVE) in microscopic scale. S  and E are macroscopic 

stress and strain tensor at the material point M , respectively. In fact, the choice of the RVE must 

satisfy such scale conditions (Zaoui, 2000; Zaoui, 2002): 

 0 ,d d l L l    l= = = =  (1.1) 

where l , L , d , 0d , l  are respectively the sizes of RVE, macroscopic structure, microscopic 

heterogeneities (i.e. inclusions, grains, pores), molecular structure, and load fluctuate. The 

geometrical domain of the RVE is denoted by W , and each microscopic point in the RVE is 

represented by the its position vector z . ( )zs  and ( )ze  are microscopic stress and strain 

tensor at the microscopic point z . In order to estimate local stress and strain distribution inside 

the RVE, two kinds of boundary conditions, uniform stress condition and uniform strain condition, 

are generally prescribed on the exterior boundaries of the RVE, noted by¶W . These two loading 

conditions are expressed as: 

 

- Uniform stress boundary condition (Figure 1-1 (a)): 

 ( ) ( ). ( ) . ( ) )
d

T z z n z n z zs= = S     (" Î¶W  (1.2) 



1.1. Principles and general procedures of nonlinear homogenization 

13 

 

where ( )n z  is the outward unit normal to the boundary of the RVE at microscopic point z . 

From this uniform boundary condition, we can deduce the condition that the volumetric average 

of microscopic stress field in RVE must be equal to the prescribed macroscopic 

stress S (Dormieux et al. 2006): 

 ( )zs
W

= S
  

 (1.3) 

. W<  >  denotes the volumetric average operator defined as: 

 
1

x xdV
W

=
W ò

 

 (1.4) 

 

- Uniform strain boundary condition (Figure 1-1(b)): 

 ( ) . )z E z zx =     (" Î¶W  (1.5) 

( )zx  is the displacement vector at the microscopic point z . We can derive in this case the 

condition that the volumetric average of microscopic strain field in RVE must be equal to the 

prescribed macroscopic strain E : 

 ( )z Ee
W

=
  

 (1.6) 

 

W

( )zs¶W

( )n z

( ) . ( )
d

T z n z= S

 

W

( )ze¶W

( )n z

( ) .z E zx =

 

(a) (b) 

 

Figure 1-1:  Two types of boundary conditions applied to RVE 

(a) Uniform stress boundary condition; (b) Uniform strain boundary condition. 
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Nonlinear homogenization methods deal with heterogeneous materials composed of nonlinear 

material phases; which, when deformed have a partly reversible and partly irreversible response 

(Lahellec & Suquet, 2007). Generally, reversible effects are associated with a free energy density 

depending only on the state variables of the material which consists of all the energy available in a 

given state of the system (at a given material point). The evolution of the system is characterized 

by the changes of state variables, and controlled by the thermodynamic forces which are obtained 

by derivation of the free energy with respect to the state variables. Meanwhile, the irreversible 

effects are characterized by dissipation along an evolution path of the system. The evolution 

equations for state variables can be derived in a commonly used formulation from the dissipation 

potential (Lahellec & Suquet, 2007). Different homogenization methods for nonlinear materials 

have so far been developed. In the following sections, some typical approaches will be shortly 

reviewed and discussed.  

 

1.1.2 Mean filed approaches for nonlinear homogenization method 

 

Different mean field approaches are largely used to determine the overall properties of 

nonlinear heterogeneous materials. All of them assume that the stress and strain fields in each 

constituent phase can be adequately represented by some kind of averaged values or eigenvalues, 

though they differ in the way they account for the elastic interaction between the phases. They are 

usually based on the generalization of Eshelby inclusion solution (Eshelby, 1957) and particularly 

useful for situations with random microstructures. Generally they deliver only average values of 

local stress and strain and are not formulated in order to obtain the local stress and strain fields 

(Chaboche et al., 2001). According to the different methods for the linearization of local 

constitutive laws, mean filed approaches can be categorized in to some specific classes. Three 

mainly used mean field approaches are briefly reviewed here. 

 

- Hill’s tangent incremental method 

 

In 1965 Hill (Hill, 1965) proposed a method to transform the nonlinear homogenization 

problem to a multi linear one in an incremental form:  

 ( ) ( ) : ( )z z zs e= && L  (1.7) 
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where ( )zL  is the tangent operator (related to local constitutive relations) at each microscopic 

point. Then the macroscopic tangent operator can be determined in such a form, where it is 

assumed that the local tangent operator is uniform inside each phase and is calculated by means of 

some average strain of the phase at the current loading step: 

 :rr r
s e= && L

   
 (1.8) 

Where the fourth order tensor, rL , is the local tangent operator of the thr  material phase. 
r

e  is 

the average value of local strain field in this phase, which is used as a reference strain state to 

evaluate rL . Then the macroscopic effective tangent operator to the reference homogeneous 

medium can be formulated by such expression: 

 
hom ( ) : ( ) :r r r

r

z z c= = åL L A L A  (1.9) 

in which rc is the volume fraction of the phase r , and rA is the localization tensor of 

instantaneous tangent strain, which should be determined at each increment with an appropriate 

homogenization scheme, such as the dilute scheme, Mori-Tanaka scheme (Mori & Tanaka, 1973) 

etc. Finally, the overall tangent behavior can be expressed as: 

 
hom : ES = && L

  
 (1.10) 

It is the actual starting point of a whole range of schemes using linearization of the constitutive 

relations of the phases. This incremental formulation has been considered for a long time the 

standard for deriving nonlinear estimates of heterogeneous materials (Masson et al., 2000). This 

kind of methods have been largely applied to two phase nonlinear composite materials, for 

instance Chaboche (2005) for metals with von-Mises type plasticity theory, Doghri (2003) for 

cyclic plasticity with non linear kinematical hardening.  

 

- Secant method 

 

Following Hill’s works, many researchers proposed other ways to linearize local nonlinear 

constitutive equations other than the tangent form. One of them is called “secant” approach 

(Berveiller & Zaoui, 1979; Tandon & Weng, 1988), in which the secant modulus tensor sec
L is 

defined in order to replace the local constitutive equation of each material phase by the following 

linear secant form: 
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sec( ) ( ) : ( ( ) ( ))    :p
rr r

z z z z= - Þ =s e e s eL L  (1.11) 

sec
rL  is the secant modulus tensor of the phase r . After volumetric averaging, the macroscopic 

constitutive equation can be obtained and also written in secant form: 

 
sec : ES = L

   
 (1.12) 

sec
L is the macroscopic secant modulus tensor for the equivalent homogenized medium. 

 

- Affine approach 

 

More recently, Masson (1998), Masson et al. (2000) proposed an “affine” approximation 

using the tangent stiffness tensor but in a non-incremental form to linearize the local constitutive 

equation: 

 
0

:rr r r
s e s= +L  (1.13) 

Then the overall constitutive equation is obtained as: 

 
0

:
r r r

ES = + SL
 

 (1.14) 

 

Chaboche et al. (2001) gave a schematic diagram (Figure 1-2) illustrating the three different mean 

field localization approaches to describe the instantaneous local behavior of nonlinear 

heterogeneous materials. 
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Figure 1-2: Schematic illustration of different methods for linearization of local constitutive relation 

used in nonlinear homogenization techniques (Chaboche et al., 2001) 

 

1.1.3 Transformation field analysis (TFA) 

 

The most important assumption of mean filed approaches is that the local stress and strain 

fields in each phase are uniform. However, these physical fields are heterogeneously distributed in 

every phase. It has been long recognized that for nonlinear heterogeneous materials the exact 

determination of the effective constitutive relations requires the accurate description of all 

microscopic plastic strain fields in RVE (Rice, 1970; Mandel, 1972; Suquet, 1985). The 

consequence of this theoretical result is that the number of macroscopic internal variable required 

for determining the macroscopic effective behavior is equal to the product of the number of 

integration points at all scales, which is nearly infinite. Therefore some approximations need to be 

made to derive a useable and reasonably accurate macroscopic constitutive model. The 

“Transformation field analysis” (TFA) proposed by Dvorak (Dvorak & Benveniste, 1992; Dvorak, 

1992) is an elegant way to reduce the number of macroscopic internal variables by assuming the 

microscopic fields of internal variables to be piecewise uniform. Many scholars including Dvorak 

himself developed this method for complex behaviors, such as thermo-visco-plasticity, damage, or 

interface debonding (Dvorak et al., 1994; Chaboche et al., 2001; Dvorak & Zhang, 2001; Fish & 

Yu, 2002; Fish et al., 1997; Kattan & Voyiadjiis, 1993). There are two main assumptions with the 

“Transformation Field Analysis” (TFA): 

 

- H1: The plastic strain field is piecewise uniform 
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Considering a RVE of a heterogeneous material occupying a domain denoted byV , subdivide 

the volume V into several local sub-domains ( 1, 2,...., )rV r N = . The plastic strain field ( )
an

xe  

is uniform in each sub-domain, that is: 

 
( )

1

( ) ( )
N

an an r

r
r

x x
=

e = e cå  (1.15) 

 
( ) 1

( )
0

rr

r

if x V
x

if x V

    Îì
c = í

    Ïî
 (1.16) 

where 
an

r
e  is a constant tensor in rV , independent of coordinates. Under this assumption the 

average strain and stress in rV  can be derived as: 
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in which rA  and rsD  are the average strain localization tensor and influence tensor, 

respectively. The components of these two tensors can be obtained by the following integrations: 
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where r rc V V= , representing the volumetric fraction of phase r ; ( , )x x¢G  is the non local 

elastic Green operator. 

 

- H2: Internal variables in each sub-domain can be replaced by an average value 

This assumption means that the evolution of the internal variables in sub-domain r   follows 

exactly the constitutive relations of a particular phase containing such sub-domain, and all the 

internal variables can be replaced by average value, as a homogeneous material. 
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1.1.4 Non-uniform transformation field analysis (NTFA) 

 

Compared with the mean field approaches which treat the heterogeneous plastic strain field in 

RVE as a uniform distribution, the TFA takes account of in some extent the heterogeneity of 

plastic strain distribution. However, it has been recognized by many scholars (Suquet, 1997; 

Chaboche et al., 2001; Michel et al., 2000) that the TFA may require, for nonlinear heterogeneous 

materials, a relative dense subdivision of each individual phase into several sub-domains to obtain 

a satisfactory description of the effective behavior. As a consequence, the number of macroscopic 

internal variables needed in the effective constitutive relations to obtain an acceptable result, 

although finite, can be still prohibitively high (Michel & Suquet, 2004).  

In order to better describe the plastic strain distribution in the RVE and obtain more accurate 

solutions with less internal variables, Michel and Suquet (2003; 2004) proposed and Rossete 

(2008) improved a new approach based on the TFA, named “Non-uniform transformation field 

analysis” (NTFA), expressing the heterogeneous plastic strain field with a linear combination of 

some predefined plastic modes, which owns a better ability to describe the heterogeneity of plastic 

field and the overall behavior of nonlinear heterogeneous materials.  

The basic hypothesis of NTFA is that the heterogeneous plastic strain field can be expressed 

as a linear combination of a set of pre-calculated fields
( )km , named “plastic modes” (Michel & 

Suquet, 2003; 2004): 

 
( )
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( ) ( )
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x x
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where M  is the total number of plastic modes. According to Michel & Suquet (2004), further 

assumptions should be satisfied such that the plastic modes are incompressible, i.e.
( )

( ) 0
k

tr m = ; 

orthogonal, i.e. 
(k) (l)

0 if: k l )m m =   (  ¹  and normalized, i.e. 1( k )
eqm = . All the related variables 

and constitutive equations can be decomposed in such a space. 

Moreover, it is proposed to define a group of reduced variables to represent total strain, 

plastic strain, stress, strain localization tensor, and Green’s operator, listed as follows respectively: 
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( )

( ) : ( )
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where the operator “*” is defined as: 
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and ( , )x x¢D  is the non-local operator gives the strain at the point x  created by a transformation 

strain ( )lm at the point x¢ . The reduced strain is then expressed as: 

 
( )

1

:
M

k an
k kl l

l

e a E D
=

= + eå  (1.26) 

Considering the isotropy of the studied material, the stress-strain function expressed by the 

reduced variables can be obtained as: 

 ( )2 ( )r an
k k kG e et = -  (1.27) 

It should be noted that ( )rG is the shear modulus of phase r , which the thk plastic mode fully 

occupied.  

To express the Mises yield criterion in the material phase r  with the reduced variables 

previously defined, an approximation was made in (Michel & Suquet, 2003) to define a new 

variable, which described a total effect of the Mises stress in all the ( )M r modes supported in this 

material phase r : 
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Then the Mises yield criterion in each material phase r is transformed as:  

 ( ) 0r r r
p eq rf R p= s - =  (1.29) 

where rp is the plastic hardening scale in the material phase r . Thus the evolution of internal 

variables Eq. is formulated as: 
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1.1.5 Comparison of different approaches 

 

As mentioned above, a theoretical result has been widely accepted that the accuracy of 

homogenization method for determining the effective mechanical behavior of nonlinear 

heterogeneous materials mostly depends on whether the heterogeneous plastic strain field can be 

well described. The mean field approaches are based on the hypothesis that the plastic strain is 

uniform distributed. Obviously the hypothesis is far from the reality.  

 

 

1.2 Summary of mechanical behavior of argillite 

 

This thesis is devoted to the micromechanical modeling of nonlinear heterogeneous materials. 

In particular, the proposed models will be applied to constitutive modeling of a typical nonlinear 

heterogeneous geomaterial called Callovo-Oxford argillite. This is a sedimentary hard clay rock 

from the East Paris basin in France. 

The Callovo-Oxford argillite has been largely investigated in the framework of feasibility 

study for geological storage of nuclear waste storage in France. Due to its high mechanical 

strength and very low permeability, this rock is studied as potential geological barrier for nuclear 

waste storage. In this framework, an underground research laboratory (URL) is constructed in the 

East region of France by the national agency for radioactive waste management (ANDRA). 

Extensive experimental investigations including laboratory testing and in situ experiments both in 

microscopic and macroscopic scale have being been performed. A short review is given here 

mainly on the engineering and geological context, mineralogical compositions and basic 

mechanical behaviors of this material. 

 

1.2.1 Engineering and geological context 

 

In November 1999, after completing the preliminary investigation phases, Andra started the 

construction work of the URL in the village of Bure (Meuse District) on the border of the Meuse 

and Haute-Marne departments in eastern France (Figure 1-3). The research activities of the URL 

are dedicated to study the feasibility of reversible, deep geological disposal of high-activity, 
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long-lived radioactive wastes in the host rock. The Callovo-Oxford argillite is chosen as potential 

geological barrier due to its excellent mechanical and permeability properties. 

The extent for the URL is a 130m thick layer of argillite that lies between about 420 and 

550m below the surface. The clays, constituting 40 to 45% of the Callovo-Oxford argillite, isolate 

the ground waters. Silica and carbonate-rich sedimentary components reinforce the rock and 

promote stability for underground construction (Delay et al., 2007). 

The Laboratory consists of two shafts, an experimental drift at 445m depth, and a set of 

technical and experimental drifts at the main level at 490m depth (Figure 1-4). The main shaft has 

a 5m diameter and allows access for personnel and equipment, material extraction and ventilation. 

The 4m auxiliary shaft located 100m away from the main shaft serves the ventilation system and 

provides not only mine safety, but also a second access for lowering equipment. Detailed 

monitoring of hydraulic and mechanical responses made the construction phase an important part 

of the experimental program for the URL From the shafts (Delay et al., 2007). 

There are three major aspects in the URL drifts to be investigated. The first topic is the 

capacity of rock to contain the radioactive liquid. The second is the reaction of rock to the 

excavation of shafts and drifts, and the associated development of the damaged and disturbed 

zone. And the last is the technique of sealing of a drift (Delay et al., 2007). As the host rock of the 

radioactive waste deposal, the argillite will be submitted to various complicated perturbations, 

including mechanical loadings, hydraulic infiltration, and chemical erodes, temperature variation, 

and so on. All the perturbations directly impact the long term safety of the storage facilities.  

This thesis focuses on the constitutive modeling for the mechanical properties of argillite. 

There have been various proposed phenomenological constitutive models for the argillite, and 

most of which can simulate the mechanical responses in a satisfactory way (Chiarelli et al., 2003; 

Conil et al., 2004; Hoxha et al. 2007 and others). However, it has been shown in many geological 

tests that the mineralogical compositions vary significantly between rock layers in different depth 

(Figure 1-5). The phenomenological constitutive models have to identify the material parameters 

for each rock layer. Moreover, the interactions between mineral composites of argillite can not be 

well considered in these macroscopic models. The physical mechanisms involved in deformation 

and failure process of the argillite are not clearly identified. Therefore, there is a need for the 

formulation of multi-scale models in order to link physical mechanisms at the microscopic scale 

to overall responses at macroscopic scale, by taking into account influences of mineralogical 

compositions. 
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Figure 1-3:  Location of the underground research laboratory (URL) at the Meuse/Haute-Marne site 

(Delay et al., 2007) 

 

 

 

Figure 1-4:  General layout drawing of the URL drifts (Delay et al., 2007) 
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Figure 1-5:  Variation of mineralogical compositions of the Callovo-Oxford formation (Delay et al., 

2007) 

 

1.2.2 Microscopic analyses and mineralogical composition of argillite 

 

In order to study influences of mineralogical compositions on hydromechanical behaviors of 

argillite, specimens from three different depths between 450m and 485m have been investigated. 

Mineralogical compositions were determined from the analyses of X-ray diffractometry and 

calcimetry (Chiarelli, 2000). It is shown that the argillite is main composed of three main phases: 

quartz (23% average), calcite (27% average) and clay minerals (45% average) together with 

subordinate feldspars, pyrite and iron oxides (total 5% average). The clay minerals composition is 

relatively constant at 65% I/S (ilite-smectite interstratifield minerals), 30% illite and 5% kaolinite 

and chlorite. The variation of mineralogical composition with the depth is shown in Table 1-1. 

Further observations in microscopic scale reveal that the grains of quartz and calcite are 

approximately ellipsoidal shape, and scattered in a fine matrix of clay minerals which acts as the 

cement phase. 
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Generally the elastic modulus of calcite and quartz are around 100GPa, and that of clay 

matrix is about 10GPa. Due to the significant contrast, the material studied exhibits strongly 

heterogeneous mechanical behaviors. According to microscopic extensometer analyses (Bornert et 

al., 2001) strongly heterogeneous strain fields are observed inside the different material phases of 

the argillite sample subjected to mechanical loading. The quartz and calcite grains generally 

deform in an elastic way. In some cases, a few microcracks may be observed inside calcite grains. 

The deformation of the clay matrix is more complex. Indeed, this matrix is itself a heterogeneous 

at smaller scales composed of clay particles and various pores. However, as a first approximation 

and at the scale of grains, it may be simplified as a homogeneous matrix. Its mechanical responses 

are mainly characterized by plastic deformation related to sliding of clay sheets. However, 

significant microcracks have also been observed inside the clay matrix. Finally, the interfaces 

between the clay matrix and mineral grains constituent important weakness zones in which 

growth and coalescence of microcracks can take place. In this thesis, the emphasis is to develop a 

micromechanical approach for modeling macroscopic behavior of argillite by taking into account 

the influences of mineralogical compositions. A simplified schematization the representative 

volume element (RVE) will be adopted. The argillite is considered as a two phase composite: the 

clay matrix and inclusion grains of quartz and calcite.  

 

Table 1-1:  Mineral compositions in different depths of Callovo-Oxford argillite 

No. Depth (m) Calcite Content (%) Quartz Content (%) Clays content (%) 

1 451.4-466.8 20-40 20-30 40-55 

2 468.9-469.1 25-55 20-30 35-55 

3 482.1-482.4 25-35 15-20 45-60 

 

 

 

Figure 1-6: Micrography of a typical Callovo-Oxford argillite structure: calcite grains (C), quartz 

grains (tectosilicates) (T) and clay matrix (MA) 
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1.2.3 Basic mechanical properties of argillite 

 

To investigate the macroscopic mechanical properties of the argillite, triaxial compression 

tests including the unloading-reloading paths have been performed on cylinder sample seen as the 

RVE. The size of sample is large enough with respect to that of heterogeneities considered here 

but small enough comparing with the characteristic length of structure. Different confining 

pressures varying from 0 to 20MPa have been used, and chosen according to the estimation of in 

situ stresses. Basic mechanical properties of the material have been investigated. First, the 

argillites may be regarded as initially isotropic material, as the structural anisotropy of this 

material plays is not very significant and can be neglected as a first approximation. Secondly, the 

argillites studied here exhibit significant plastic deformation upon unloading of deviatoric stress, 

and the plastic deformation is as more important as the confining pressure is higher (Chiarelli et 

al., 2003; Abou-Chakra Guéry et al., 2008). Therefore, there is an important pressure dependency 

of mechanical responses and transition from brittle to ductile behavior when the confining 

pressure increases. Further, significant volumetric plastic strains have also been obtained. During 

triaxial compression tests with given confining pressure, there is the transition from volumetric 

compressibility to dilatancy when the deviatoric stress increases. The compressibility/dilatancy 

transition point also depends on the confining pressure. Elastic properties have been determined 

through unloading-reloading cycles during triaxial compression tests. There is progressive 

deterioration of elastic modulus with the increase of deviatoric stress. Making the connection with 

the microstructure of argillite studied here, this deterioration of elastic properties is related to the 

growth of microcracks inside the clay matrix and on the interfaces. The growth of microcracks is 

further correlated with the increase of permeability (Bossart et al., 2002; Shao et al., 2005). On the 

other hand, the macroscopic plastic deformation is mainly related to irreversible sliding of clay 

sheets inside the matrix phase. Moreover, time-dependent deformation has also been observed in 

the argillite. The creep deformation may be related to two basic phenomena: viscoplastic sliding 

of clay matrix and sub-critical propagation of microcracks (Shao et al., 1999). However, this 

feature is not discussed in the thesis, and the emphasis is put on the time-independent deformation 

of argillite only. 

Therefore, based on the review of microstructure and basic macroscopic mechanical behavior 

of argillite, the following micromechanical modeling framework will be adopted. The RVE of 

argillite is composed of the clay matrix and quartz and calcite grains. The clay matrix is described 

by an elastoplastic damage model. The quartz and calcite grains are combined into a single 
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inclusion phase which exhibits a linear elastic behavior. 
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Figure 1-7:  Typical stress strain curves of the argillite during triaxial compression test with 

unloading-reloading paths (Chiarelli, 2000) 
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Chapter 2:  

Numerical simulation of heterogeneous with periodic microstructures 

 

In this chapter, we present some numerical results from direct finite element simulations of 

heterogeneous materials with periodic structures. These simulations are performed for double 

purposes: on the one hand, such direct simulations will be used for the validation of non linear 

homogenization methods in some specific cases. And on the other hand, such the direct simulation 

of periodic representative volume element is a key step in various numerical techniques for 

multi-scale modeling of heterogeneous materials such as square finite element method. 

Indeed, the direct numerical simulations consist in determining effective properties of linear 

or nonlinear heterogeneous materials by solving boundary values problems on the representative 

volume element by taking into account as close as possible the real microstructures of materials. 

The direct simulations are generally computationally expensive compared with homogenization 

methods. However, they provide the possibility of computing the macroscopic responses of 

heterogeneous materials with different configurations of constituents or microstructures. 

Theoretically all kinds of heterogeneous materials can be simulated by direct numerical 

approaches. Secondly, the relatively accurate results obtained can be regarded as the reference 

solutions, which will be used for the validation of different homogenization methods. Moreover, 

besides the effective properties of heterogeneous materials, the direct simulations can also give 

distributions of local fields (stresses, strains, plastic deformation, damage etc) inside each material 

phase. Such information may be very useful to capture local deformation and failure mechanisms 

and then provides relevant elements for the formulation and improvement of various 

homogenization techniques (Michel et al., 1999).  

The numerical approach by finite element method (FEM) for periodic heterogeneous 

materials was firstly developed in 1960s (Adams & Doner, 1967; Needleman, 1972). During 

recent years many significant progresses have been achieved including the simulation of 

heterogeneous materials composed of elastoplastic or viscoelastoplastic constituents (Gonzalez et 

al., 2004; Pierard et al., 2007), or composite with complicated microstructures (Moulinec & 

Suquet, 1998; Segurado & Llorca, 2002; Segurado & Llorca, 2006; Pierard et al., 2007), or 

considering the interface effect to deal with fractures (Segurado & Llorca, 2004; Segurado & 

Llorca, 2005) 

In this chapter, the direct numerical approaches for one of the mostly used heterogeneous 

materials, periodic heterogeneous materials are studied. The principles of simulations are firstly 

presented in section 2.1. Then the numerical algorithms are discussed in section 2.2. Finally, in 
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section 2.3, some examples are presented. 

 

2.1 Principles of direct simulations 

 

As discussed above, the macroscopic effective properties of heterogeneous materials are 

determined from the direct numerical study of RVE using given geometrical (microstructural) and 

boundary conditions as well as material properties of each phase. Compared with random 

materials that the geometrical and materials properties are only partially known through statistical 

information, all the geometrical and material information of periodic heterogeneous materials are 

completely determined by periodically repeating a unit cell to form the whole microstructure. The 

unit cell can be selected in different shape as shown in Figure 2-1, and the effective properties 

obtained from any type of unit cell should coincide (Michel and al., 1999). 

 

 

 

Figure 2-1:  Different choices of unit cell for quadrangular array 

 

Consider a large sample of periodic heterogeneous material composed of a large number of 

unit cells submitted to an arbitrary loading. Each unit cell can be either regarded as a material 

point in macroscopic scale, submitted to a macroscopic strain tensor E , or be considered as a 

microscopic structure (occupying a domain of W ) where a local strain field ( )ze  distributes. 

According to the basic principles of micromechanics, the macroscopic strain E  is the volumetric 

average value of microscopic strain field ( )ze
 

as defined in equation(1.6) , as well as the 

uniform strain boundary condition as in equation(1.5). Decompose the microscopic strain field 

( )ze  into two part, E  as the volumetric average value, and ( )z¢e  the fluctuation: 
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 ( ) ( )z E z¢e = + e
  

 (2.1) 

and accordingly the microscopic displacement field ( )u z  can be also decomposed into two parts, 

displacement due to average strain and due to fluctuation: 

 ( ) . ( )u z E z u z¢= +  (2.2) 

Substitute Eq.(2.1) into Eq. (1.6) the following relation that the microscopic strain fluctuation 

must satisfied can be obtained: 

 ( ) 0z
W

¢e =
   

 (2.3) 

It should be noted that ( )u z¢  is periodic, which means all components of ( )u z¢  take the same 

values on points of the boundary ¶W  of the unit cell which are deduced by translation parallel to 

the directions of invariance of the lattice (Michel et al., 1999; Bornert et al., 2001), as illustrated 

in Figure 2-2.  
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Figure 2-2: Periodic displacement boundary condition of unit cell 

 

When the periodic displacement boundary condition is satisfied, the condition Eq. (2.3) is met 

automatically. It can be proved as follows: 
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Since the u¢  takes the same values and n  takes opposite value on the opposite sides of ¶W , 
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the integral above results zero. Another periodic boundary condition is obvious considering the 

third Newton law that .ns  take the opposite value on the opposite side of unit cell, as illustrated 

in Figure 2-2. Then the numerical analysis for unit cell of periodic heterogeneous material can be 

concluded as such a boundary value: 

 ( ) 0,div z z s =    " ÎW  (2.4) 

 , ,

1
( ) ( )

2
i j j iz u u¢ ¢ ¢e = +  (2.5) 

 ( )( ) ( ) : ( )z z E z¢s = + eC  (2.6) 

 ) periodic, . ) opposite periodic,u z n z z¢(     s (      " Î¶W  (2.7) 

In this boundary value problem defined by Eq. (2.4) to Eq.(2.7), the periodic displacement 

fluctuation ( )u z¢  can be regarded as the independent unknown value, and the macroscopic strain 

E  is the uniform strain boundary strain condition. Generally the stress opposite periodic 

condition can be satisfied automatically, while the periodic condition for u¢  should be imposed 

by some techniques. The implementation in details will be discussed in the following sections. 

When dealing with nonlinear heterogeneous materials, the local constitutive law Eq. (2.6) can 

be also rewritten for elastoplastic materials as Eq.(2.8), or in an incremental form as Eq.(2.9). 

 ( )( ) ( ) : ( ) ( )
p

z z E z z¢s = + e - eC  (2.8) 

 ( )tan( ) ( ) : ( )z z E z¢s = + e& && L  (2.9) 

The fourth order tensors, ( )zC  and tan ( )zL , respectively denote local elastic stiffness tensor and 

elastoplastic tangent operator at the point z  of the unit cell. 

 

2.2 Numerical algorithm for stress controlled unit cell 

 

In the previous section, the numerical analysis for unit cell of periodic heterogeneous material 

has been concluded into a boundary value problem in which periodic displacement fluctuation 

( )u z¢  is the independent unknown value, and macroscopic strain E  is the specified boundary 
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strain condition. However, in many loading processes the macroscopic strain E  cannot be 

specified in advance. For example, in the triaxial compression tests (including the uniaxial test) 

the confining pressure is prescribed while the lateral strain is an undetermined value. So in this 

section the numerical algorithm of stress controlled problem of the unit cell is studied based on 

the Newton-Raphson method in incremental form. 

Consider a unit cell of heterogeneous material which can be either regarded as a microscopic 

structure or a macroscopic material point. The macroscopic stress and strain in the current load 

step m  are 
m

S  and 
m

E , respectively. In the next load step 1m + , a prescribed macroscopic 

stress increment 
1m+

DS  is applied to the unit cell. The problem then becomes to solve the 

boundary value problem presented in section 2.1 for the corresponding macroscopic strain 

increment 
1m

E
+

D (or equivalently
1m

E
+

) and the microscopic stress and strain distribution 

1
( )

m
z

+
s , 

1
( )

m
z

+
e  in the load step 1m + . Denote the superscript i  to be the iteration number 

( 0)i ³ . When 0i = , the variables are initiated as follows: 
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Thus the uniform strain boundary condition applied to the unit cell in the iteration 1i = can be 

obtained as: 
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 (2.10) 

It should be noted that tan ( )z L  cannot be understood as the equivalent homogeneous stiffness 

tensor hom
L . tan ( )z L  is used just to obtain a better rate of convergence. Indeed, the equivalent 

macroscopic stiffness tensor hom
L  should be obtained as follows (Dormieux et al. 2006): 

hom tan tan ( ) : ( )z z- =  L L A
 

A simplified iterative procedure can also be proposed by replacing tan ( )z L  by ( )z C , which 

does not vary in terms of loading process; this leads to a modified Newton-Raphson algorithm in 

which it is not needed to solve the inverse matrix during every iteration. But in general, a slower 

rate of convergence is obtained.  
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After 
1

1m
E

+
is obtained, the boundary value problem can be then solved for the microscopic 

strain field 1

1
( )

m
ze

+
, stress field 

1

1
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m
zs

+
, and tangent stiffness tensor at every microscopic point 

( )1
tan

1
( )

m
z

+
L by finite element method (FEM) or any other numerical methods such as Fast Fourier 

Transform (FFT) (Moulinec & Suquet, 1994). For 1i ³ , 
1

1

i

m
E

+

+
 can be updated as: 
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Then the microscopic strain field 1

1
( )

i

m
ze +

+
, stress field 

1

1
( )

i

m
zs +

+
, and tangent stiffness tensor at 

every microscopic point ( ) 1
tan

1
( )

i

m
z

+

+
L  can be determined. 

The convergence criterion is as follows: 
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+ ++
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and 

 
1 1

i i
dm m

E c E
+ +

D <  (2.13) 

where fc  and dc  are two tolerance values. g  denotes the norm of a matrix. Eq. (2.12) 

defines the stress criterion while Eq.(2.13) the strain criterion. When the convergence conditions 

are met, the macroscopic stress, the microscopic stress and strain fields can be obtained. 

 

2.3 Numerical examples 

 

Some examples are now presented to show the application of direct simulation approaches to 

modeling of heterogeneous materials using the principles and algorithms discussed above. These 

examples are also regarded as the preliminary bases for some more complicated computations in 

Chapter 4. 
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2.3.1 Example I 

 

The first example aims the estimation of macroscopic and microscopic mechanical behaviors 

of a unit cell in plain strain condition for a heterogeneous material composed of plastic matrix and 

elastic inclusions. The volumetric fraction of inclusion is 25%. The numerical simulation is 

performed by ABAQUS with user subroutines UEXTERNALDB, UMAT, URDFIL. The element 

type CPE8R (8-node biquadratic plane strain quadrilateral, reduced integration) is used to mesh 

the geometric domain into 546 elements and 1703 nodes. The FEM mesh is illustrated in Figure 

2-3. The plastic matrix is described by a non associated flow rule based on the classic 

Drucker-Prager yield criterion. The plastic yield function and plastic potential are given by: 

 
0

0

( ) 0

( )

a
p m eq

a
m eq

f H

g H

= as + s - s + g =

= ys + s - s + g
 (2.14) 

The parameter a  is the internal frictional coefficient and b  the volumetric dilation coefficient; 

0s  denotes the initial plastic yield threshold; H and g  are two parameters for plastic hardening 

law and p is the equivalent plastic shear strain. The parameters of matrix and inclusion are listed 

in Table 2-1 and Table 2-2. 

A pure shear loading is applied to the unit cell: 

4 31 2 2 1 3 3( ) ( )e e e e e eS = S Ä + Ä + S Ä
 

The component 
3S  cannot be prescribed but are determined as the reaction of the plain strain 

reaction. As discussed in the previous section, the independent variable in the FEM calculation is 

the periodic displacement fluctuation ( )u z¢ , which is imposed in the periodic condition by 

‘*Equation’ command in ABAQUS. The uniform boundary condition E  is determined by 

Newton-Raphson iteration using the user subroutine ‘UEXTERNALDB’ in ABAQUS. 

 

Table 2-1: Parameters of Drucker-Prager matrix in example I 

(Pa)mE  
mu  

0(Pa)s  (Pa)H  a  a  y  

101.0 10´  0.25  73.0 10´  
81.0 10´  0.3 0.15 0.15 
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Table 2-2:  Parameters of linear inclusion in example I 

(Pa)IE  
Iu  

105.0 10´  0.20  

 

 

Figure 2-3:  Illustrations of the FEM mesh in example I 

 

The macroscopic mechanical responses are illustrated in Figure 2-4. Besides the macroscopic 

shearing strain and shearing stress curve, the relation between shearing strain and normal strain 

due to plastic flow is also included in this figure. The microscopic fields can also be obtained by 

the FEM calculation. The periodic displacement fluctuation ( )u z¢  and the corresponding ( )ze ¢  

(only shear component of the strain tensor) are illustrated in Figure 2-5. The microscopic strain 

field ( )ze and displacement field ( )u z for each load step can be then calculated by Eq.(2.1) and 

Eq. (2.2).  

 

 

 

Figure 2-4: Results of macroscopic mechanical responses: shearing strain vs. shearing stress and 

shearing strain vs. normal strain 
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(a) (b) 

 

Figure 2-5: Microscopic fields on deformed configuration of the unit cell 

(a) Periodic displacement fluctuation ( )u z¢ ; (b) corresponding strain fluctuation
4 ( )ze ¢  

 

2.3.2 Example II 

 

The second example is the simulation of a porous material subjected to a uniaxial tension 

loading. For the sake of simplicity and clear illustration, a plain strain model with 25% porosity is 

considered in this example (Figure 2-6). The matrix of the simulated material obeys the Mises 

criterion as Eq.(2.15), and the parameters are listed in  

Table 2-3. 

 0( ) 0a
p eqf Hps s= - + =  (2.15) 

 

Table 2-3: Parameters of Mises type matrix in example II 

(Pa)mE  
mu  

0(Pa)s  (Pa)H  a  

101.0 10´  0.20 73.0 10´  
81.5 10´  0.35 

 

Figure 2-7 shows a usually used but incorrect method to simulate this problem. Figure 2-7(a) 

is the matrix of unit cell submitted to a macroscopic uniaxial tension loading. Then a single unit 

cell is separated, and a uniaxial loading is applied to the unit cell directly. In particular, the 

boundary condition in one dimension is imposed a uniform displacement loading, and the 
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boundary condition in another dimension is free of charge as Figure 2-7(b). The results are 

illustrated in Figure 2-7(c) and (d). One can see that the matrix of unit cell is no longer continuous, 

but appears some discontinuities, because the free boundaries of the unit cell can not keep uniform 

deformation. This is obviously incompatible with the reality. So the approach presented above in 

this work for periodic heterogeneous materials is applied to solve this problem. The macroscopic 

and microscopic results are illustrated in Figure 2-8 and Figure 2-9, respectively. It can be seen 

from the microscopic results that the microstructure keeps a periodic shape during the loading 

process. So the matrix of unit cell as Figure 2-7(a) will be always continuous. 

 

 

Figure 2-6: Illustrations of the FEM mesh in example II 

 

 

discontinuity

(a) (b) (c) (d)  

Figure 2-7: Incorrect computation process of porous material submitted to uniaxial tension 
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Figure 2-8: Macroscopic stress strain curves in uniaxial tension test of porous medium 

 

  

(a) (b) 

Figure 2-9: Microscopic fields on deformed configuration of the unit cell 

(a) Vector of periodic displacement fluctuation ( )u z¢ ; (b) corresponding strain fluctuation
1 ( )ze ¢  

 

2.4  Conclusions 

 

In this chapter we focus on the direct computational approaches for heterogeneous materials 

with periodic microstructures. As a general numerical modeling method, despite this direct 

approach is not the final aim of the present work, it still deserves our attention because of its 

capacity of solving non linear problems with complex microstructures, its accuracy of results to 

be used as reference solution to validate homogenization methods, and its ability of exploring the 

microscopic fields distributions. Moreover, the direct computational approach is studied here to be 

a preliminary phase for the following sections in this thesis. 
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The periodic boundary conditions were discussed as a key point in section 2.1. Then the 

numerical analysis for the unit cell of periodic heterogeneous material was concluded as a 

boundary value problem. For some macroscopic strain controlled problem, this problem can be 

directly solved. But for the other stress controlled or stress-strain mixed controlled problem (such 

as the triaxial tension or compression), a Newton-Raphson iterative procedure is necessary to 

determine the suitable macroscopic strain boundary condition. Specific numerical algorithms are 

presented. Finally, two examples were presented to show the validity and advantage of the 

proposed direct computational approach. 
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Chapter 3:  

Incremental approach for nonlinear heterogeneous materials and its 

application to argillite 

 

This chapter focuses on one of the most commonly used approaches of nonlinear 

homogenization methods for nonlinear heterogeneous materials, Hill’s incremental approach. In 

spite of some limitations, the incremental method is easy to implement in standard computer 

codes and it is particularly suitable for complex loading paths with unloading cycles. In particular, 

combined with suitable isotropization procedure, the incremental method seems to provide 

efficient predictions of macroscopic responses of non linear heterogeneous materials. Further, it is 

also useful to note that the numerical implementation of the incremental method is very easy and 

it can be easily used as a user defined material subroutine in any computer codes. Therefore, we 

adopt the incremental approach in this chapter, give the homogenization scheme and algorithm for 

numerical simulation in section 3.1, and then make a further study for the efficiency of 

isotropization methods based on the incremental approach for describe nonlinear heterogeneous 

materials in section 3.2. 

As mentioned above, besides studying the general method of nonlinear homogenization, the 

second aim of this thesis is devoted to the micromechanical modeling of cohesive geomaterials, in 

particular the Callovo-Oxford hard clays (argillite) which is chosen as one of the possible 

geological barriers for the underground storage of radioactive wastes. To fulfill this target, an 

application of Hill’s incremental approach based on Mori-Tanaka scheme on modeling the 

argillite is implemented in section 3.3. Taking account of the microscopic constituent character of 

argillite, a local elastoplastic damage constitutive model for clay matrix is proposed in section 3.3. 

At last, the calibration and verification of the micromechanical model are performed in section 3.5 

by comparing numerical simulations and experimental data on the argillite for various loading 

paths. 

 

3.1 Fundamentals of Hill’s incremental approach 

 

As the standard steps of micromechanical modeling, the representative volumetric element 

(RVE) should be firstly defined. In this section, the heterogeneous material is taken as a 

composite composed of nonlinear matrix and elastic inclusions. The RVE is illustrated as Figure 

3-1, which occupies the geometrical domain W , and is subjected to a uniform strain boundary 
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condition on ¶W . In this context, W denotes the volume of the RVE, mV ( IV ) and mf ( If ) are the 

volume and volume fraction of matrix (inclusion), respectively. The volumetric average operator 

is denoted as follows, 

 
1

( )x x dV
W

=
W

ò
 

 (3.1) 

Matrix: Nonlinear

material

Inclusions: Linear elastic

E&

 

Figure 3-1:  Illustration of RVE of a random matrix-inclusion composite 
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Figure 3-2:  Main steps of non homogenization method using incremental approach 

 

The main steps of non linear homogenization method for micromechanical modeling of heterogeneous 

materials are illustrated in Figure 3-2 in incremental form. The basic principle of the incremental 

method proposed by (Hill, 1965) consists in the determination of the overall tangent stiffness 

tensor for each incremental loading step, based on the knowledge of local constitutive behaviors. 

This method thus requires a rate formulation of the local constitutive relations for each phase: 

 ( ) ( ) : ( )z z zs e= && L  (3.2) 

s&  and e&  denotes respectively local fields of stress and strain rates while ( )zL  is the local 
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tangent stiffness tensor which depends on the position of material point in each material phase. 

Due to the fact that the local constitutive relations Eq. (3.2) take the form of an incrementally 

linearized law with nonlinear tangent operator, the classical Eshelby-based homogenization 

procedures (Eshelby, 1957) can be used for the resolution of this problem. For this purpose, a 

tangent localization tensor ( )zA  is introduced to relate the local strain rate to that of 

macroscopic strain rate: 

 ( ) ( ) :z z Ee = && A
  

 (3.3) 

Substituting (3.3) for (3.2) and defining the macroscopic stress tensor by S = s& & , the 

macroscopic incremental constitutive relations read: 

 
hom : ES = && L

  
 (3.4) 

The macroscopic tangent stiffness tensor is given by: 

 
hom ( ) : ( )z z=L L A  (3.5) 

Note that the homogenization procedure should further verify the energy condition of Hill, 

: :ES = s e&& && . From Eq.(3.5), one can see that for the determination of the macroscopic tangent 

operator, it is necessary to first define the local tangent operator and localization tensor at each 

material point of constituent phases, and then perform volumetric averaging of these quantities. In 

practice, this is nearly impossible to obtain the analytical form of such volumetric averaging and 

needs prohibitively high computation time for numerical evaluation. Therefore, for the effective 

implementation of the incremental method, an approximation of the tangent operator in each 

phase is needed. For this purpose, the following hypothesis is adopted: at any point z  of the 

phase r , the relation between stress rate and strain rate can be approximated by: 

   ,   ( ) : ( )r rz V z zs e" Î = && L  (3.6) 

This hypothesis comes to assume that the local tangent stiffness tensor is uniform in each material 

phase. It is obvious that this strong assumption represents a shortcoming of the incremental 

method and does not verify real fields of local stiffness which should be heterogeneously 

distributed inside material phases. However, this assumption makes it possible to deduce in an 

analytical way the macroscopic stiffness tensor. In practice, the local stiffness tensor rL  is 

evaluated for a suitable reference strain state, which is classically taken as the average value of 



3.1. Fundamentals of Hill’s incremental approach 

44 

local strain field in the phase r , noted by 
r

e . With this reference strain state, the tangent 

localization laws Eq. (3.3) for each material phase (clay matrix and mineral inclusions) become: 
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 (3.7) 

mA  and IA  are the tangent localization tensors respectively for the matrix and inclusions. 

Using now the Mori-Tanaka scheme (Mori & Tanaka, 1973) the tangent localization tensors are 

given by: 
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 (3.8) 

The fourth order tensor 0
IP  is called Hill tensor which only depends on the geometry of the 

inclusions and on the tangent stiffness tensor of the clay matrix mL . Alternatively the Hill tensor 

can be also expressed in the following form: 

 
0 E 1:I m

-=P S L
  

 (3.9) 

E
S  is the Eshelby tensor. It is important to note that due to the dependence of the local tangent 

stiffness on the direction of applied strain rates, mL  is a non linear tangent operator which 

characterizes the non linear response of the reference medium. Moreover, as the Hill’s (or Eshelby) 

tensor depends on the morphology of microstructure and non linear behavior of the matrice, it is 

generally not possible to obtain a close form of the Hill tensor, which should be computed using a 

suitable numerical integration method. The computation of Hill tensor is based on the Green’s 

function. In the case of spherical inclusions as considered here, the Hill tensor is given by the 

following simplified expression (Dormieux et al., 2006): 

 
10 0

1

1
( )

4
ijkl ijkl j l j lP C dS

x
x x x x

p

-

=
= ò  (3.10) 

Using a Gauss type numerical integration procedure, the integration (3.10) may be approximated 

by: 
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1

( )
N

ijkl k ijkl j l j l

k

P w C -

=

= x x x xå  (3.11) 

where N  is the number of integration points, kw  is the weight coefficient associated with the 

thk  integration point. In the case of matrix characterized by an isotropic tangent operator, it is 

then possible to determine a closed form of Eshelby tensor as follows (Dormieux et al., 2006):  

 3 2m t tk m= +L J K  (3.12) 

 
3 26

3 4 5 3 4

E t t t

t t t t

k k

k k

m
m m

+
= +

+ +
S J K  (3.13) 

The two coefficients, tk  and tm , denote the tangent compressibility and shear moduli of non 

linear material phase. Their values depend on the local constitutive relations and loading 

orientation. Using now the relations Eq. (3.6) and Eq. (3.8), the macroscopic tangent operator of 

the composite can be written in the following form: 

 hom : :m m m I I If f= +L L A L A  (3.14) 

As mentioned above, the matrix is described by an inelastic constitutive model, thus the 

tangent stiffness tensor mL  should be updated in each incremental loading step. IL  is the 

elastic stiffness tensor of the inclusions, which remains constant during all the loading steps. 

 

3.2 Isotropization techniques in incremental approach 

 

Among various approaches proposed so far, micromechanical models based on the Hill’s 

incremental method (Hill, 1965) have been largely developed and applied to different 

heterogeneous materials, due to the relative mathematical simplicity and facility for numerical 

implementation (Doghri & Ouaar, 2003; Chaboche et al., 2005; Abou-Chakra Guéry et al., 2008). 

However, it is well known that the direct use of Hill’s incremental method generally leads to too 

stiff responses of macroscopic behaviors. The main reason of such phenomenon is that the 

non-uniform distributions of local strains in constituents are approximated by uniform fields in the 

incremental method. Without developing other kinds of approaches in this stage and in order to 

numerically improve predictions of the incremental method, the isotropization method has been 

introduced. It consists of using only some isotropic part of the local tangent stiffness operator in 

the determination of macroscopic tangent operator for the prediction of overall responses of 
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homogenized material. However, different techniques of isotropization may be set up, and their 

efficiency should depend on local nonlinear constitutive models of constituents. This section 

presents a comparative study on the efficiency of these isotropization techniques. To do this, a two 

phase composite is considered, with an elastoplastic matrix obeying Drucker-Prager criterion and 

elastic inclusions.  

The first step of isotropization method consists in the extraction of an isotropic part from the 

local tangent operator of matrix. The general decomposition method proposed by Bornert (2001) 

is used here. The isotropic part of tangent stiffness tensor is obtained by: 

 
1

( :: ) ( :: ) 3 2
5

iso
m m m t tk m= + = +L J L J K L K J K  (3.15) 

 
1 1

( :: )  ;    ( :: )
3 10

t m t mk =m= J L K L  (3.16) 

Using this isotropic part of the tangent operator for the matrix phase, it is possible to consider 

different techniques for the evaluation of macroscopic tangent operator. In this work, the 

following three different techniques are considered. 

 

Method 1:  

Only the Eshelby tensor is computed with the isotropic part of the tangent stiffness tensor, i.e., Eq. 

(3.9) is replaced by: 

 0 1( ) :E iso
I m m

-=P S L L  (3.17) 

Method 2:  

The Hill tensor is calculated by the isotropic part of tangent stiffness tensor, thus Eq. (3.9) is 

transformed to: 

 
0 1( ) : ( )E iso iso
I m m

-=P S L L  (3.18) 

Method 3:  

All the computing steps for the evaluation of macroscopic tangent operator are performed using 

the isotropic part of the tangent operator of the matrix given by Eq.(3.15). 

 

3.2.1 Comparison of isotropization techniques and analyses  
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In order to verify and compare the efficiency of isotropization methods, the three techniques 

mentioned above are now compared with the reference solution on the RVE. This solution is 

obtained by direct elastoplastic modeling of the RVE using finite element method (FEM). The 

microstructure of heterogeneous material is represented by some periodic assembly of 3D unit 

cells; each one is composed of an elastoplastic hexagonal matrix and embedded elastic spherical 

inclusions. A simplification is made to benefit the advantage of axial symmetry; the actual 

hexagonal unit cell is approximated by a cylinder one, as illustrated in Figure 3-3. Due to the 

symmetry, only half an axial symmetry plain is considered in the FEM simulation. 

r

z

r

matrix

inclusion

z

L

R

1x
2x

3x

 

Figure 3-3: Approximation from 3D hexagonal periodic array with spherical inclusion to 

axi-symmetric cylinder unit cell 

 

Uniform strain boundary conditions are applied to the unit cell as indicated in Eq. (3.19). The 

displacement on the top side 3U
 is prescribed gradually as a linear function of time. The lateral 

displacement 2U must keep uniform along the boundary to satisfy the uniform strain boundary 

condition (Huet, 1990; Hazanov & Huet, 1994; Segurado et al., 2003; Llorca & Segurado, 2004, 

Guery et al., 2008).  
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 (3.19) 

Two cases are considered; respectively with a volumetric fraction of 5% and 15% for spherical 

inclusions. A classical Drucker-Prager type yield criterion with isotropic hardening is used for the 

description of matrix, as indicated in Eq. (3.20), and a typical set of parameters are listed in the 

Table 3-3-1 and Table 3-2. 
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 1 2 03 ( )bf I J Ha s g= + - +  (3.20) 

1I  is the first invariant of stress tensor and 2J  the second invariant of deviatoric stress tensor. 

0s  denotes the initial threshold of yield stress and H  the modulus for plastic hardening. Finally, 

g
 

is the plastic hardening variable which is taken as the generalized plastic shear strain. 

 

Table 3-3-1:  Typical values of parameters for matrix 

( )mE Pa  
mn  a  0 ( )Pas  ( )H Pa  b  

93.0 10´  0.30  0.167  
68.0 10´  

79.0 10´  0.30  

 

Table 3-2:  Typical values of parameters for inclusions 

( )IE Pa  In  

109.8 10´  0.15  

 

An associated flow rule is first considered. In the Figure 3-3-4, the results for the uniaxial 

compression test obtained by the FEM solution are presented, together with those obtained by the 

micromechanical model respectively using the three different isotropization techniques and fully 

anisotropic tangent operator of the matrix. Similar to those shown in previous studies (Doghri & 

Ouaar, 2003; Chaboche, et al., 2005; Pierard & Doghri, 2006; Abou-Chakra Guéry et al., 2008), 

the response given by the micromechanical model using the anisotropic stiffness tensor is too stiff 

compared with the reference one. Also the results obtained using the isotropization methods 2 and 

3 are not able to give good approximations. Only the results given by the micromechanical model 

with the isotropization method 1 agree very well with the reference solution. Due to this, in the 

following part of this study, we will take only this isotropization method will be examined. 
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Figure 3-4: Macroscopic responses of composite in uniaxial compression test - Comparison between 

different isotropization techniques with the reference FEM solution; (a) 5%If = ; (b) 15%If = . 

 

3.2.2 Influences of local plastic flow rule 

In the case of associated flow rule discussed above, it is shown that the isotropization method 

N°1 (only the Eshelby tensor is computed with isotropic part of tangent operator of the matrix) 

leads to satisfactory approximation of overall responses of heterogeneous material in the 

framework of incremental approach. However, in many cases such as for most geomaterials, 

non-associated flow rules are necessary to better describe plastic responses of materials. In this 

section, it is proposed to study influences of plastic flow rules on the efficiency of isotropization 

method in micromechanical modeling of non linear heterogeneous materials. To do this, a plastic 

potential is defined as expressed in Eq.(3.21): 

 1 2 03 ( )bg I J Hy s g= + - +  (3.21) 

The parameter y  defines the so-called volumetric dilatancy coefficient. The yield function is 

unchanged the values of parameters are the same as those given in Table 1 and Table 2. 

For each volumetric fraction of inclusions (5% and 15%), four different values of y  values 

are considered. The predictions obtained by the micromechanical model with anisotropic tangent 

operator and isotropization technique are presented and compared with the reference solution in 

Figure 3-5 and Figure 3-6. It is clear that the accuracy of micromechanical modeling with 

isotropization technique is dependent on the flow rule of local constitutive model. With the 

associated flow rule (as considered above), the predictions coincide with the FEM solution very 

well; and with the non-associated flow rule, the efficiency of the isotropization method becomes 
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less confirmed as in the associated flow rule. Some less or more important scatters are observed 

compared with the FEM solution. However, in all the cases, the prediction using isotropization 

method is better than that obtained using fully anisotropic tangent operator. Note that the 

volumetric dilatancy parameter y  controls plastic volumetric strain rate. It seems that there is a 

certain dependency of the isotropization efficiency on the plastic volumetric strain. Larger plastic 

volumetric strain rate will lead to soften predictions of microscopic responses while smaller 

plastic volumetric strain rate will induce stiffer ones. 
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Figure 3-5:  Macroscopic responses of composite in uniaxial compression test: Comparison of 

numerical predictions respectively using anisotropic tangent operator and isotropization method with 

reference FEM solution for different values of plastic dilatancy coefficient ( 5%If = ); (a) 0.167y =  

(associated); (b) 0.20y = ; (c) 0.15y = ; (d) 0.10y =  

 

 



3.3. Application to argillite 

51 

 

 

-180

-160

-140

-120

-100

-80

-60

-40

-20
-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 

E3 (%)

Σ3 (MPa)

FEM simulation

Isotropic

Anisotropic

E1 (%)

 

-200

-180

-160

-140

-120

-100

-80

-60

-40

-20
-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 8.0 

E3 (%)

Σ3 (MPa)

FEM simulation

Isotropic

Anisotropic

E1 (%)

 

(a) (b) 

-180

-160

-140

-120

-100

-80

-60

-40

-20
-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 

E3 (%)

Σ3 (MPa)

FEM simulation

Isotropic

Anisotropic

E1 (%)

 

-180

-160

-140

-120

-100

-80

-60

-40

-20
-8.0 -6.0 -4.0 -2.0 0.0 2.0 4.0 6.0 

E3 (%)

Σ3 (MPa)

FEM simulation

Isotropic

Anisotropic

E1 (%)

 

(c) (d) 

 

Figure 3-6:  Macroscopic responses of composite in uniaxial compression test: Comparison of 

numerical predictions respectively using anisotropic tangent operator and isotropization method with 

reference FEM solution for different values of plastic dilatancy coefficient ( 15%If = ) 

(a) 0.167y = (associated); (b) 0.20y = ; (c) 0.15y = ; (d) 0.10y =  

 

3.3 Application to argillite 

 

In this section, the incremental approach is applied to micromechanical modeling of non 

linear behavior of the Meuse/Haute Marne (MHM) argillite seen as a heterogeneous composite. A 

local constitutive model is first proposed for the clay matrix. 

As aforementioned, the studied argillite is considered as a two phase composite with elastic 

mineral inclusions embedded in the clay matrix. The behavior of clay matrix is described by an 

elastoplastic damage model. In this section, the local elastoplastic damage model of clay matrix is 
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formulated. For the sake of simplicity, an isotropic damage and isotropic plastic hardening law 

will be assumed. Thus, the state variables include total strain tensor, plastic strain tensor, the 

scalar variable for isotropic plastic hardening g  and the isotropic damage variable w  related to 

volumetric crack density. As in the classic plasticity theory, the total strain tensor is decomposed 

into an elastic part and plastic part: 

 
e pe e e= +

   
 (3.22) 

The total free energy function including the elastic strain energy and stored plastic hardening 

energy pY may be written as: 

 
1

( ) : ( ) : ( ) ( , )
2

p p
pe e w e e g wY = - - + YC   (3.23) 

In which the fourth order tensor ( )wC  denotes the elastic stiffness of the damaged material. For 

isotropic materials, the elastic properties are characterized by the bulk modulus ( )k w  and shear 

modulus ( )G w : 

 ( ) 2 ( ) 3 ( )G kw w w= +C K J  (3.24) 

Then the stress tensor can be derived from the thermodynamic potential: 

 ( ) : ( )
ps w e e

e
¶Y

= = -
¶

C  (3.25) 

The thermodynamic forces associated with the internal variables are defined by: 

 

( ) : ( , )

( , ) ( , )

1
: ( ) : ( , )

2

e e

p

p
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¶Yì- = w e = s e wï ¶eï
ï ¶Y¶Yï

= g w = h g wí
¶g ¶gï

ï ¶Y¶Y
¢ï- = - e w e - g w =

¶w ¶wïî

C

C

 (3.26) 

 

Like most clay materials and soft rocks, the plastic behavior of clay matrix is strongly 

dependent on confining pressure (Shao & Henry, 1991; Pietruszczak et al., 2002). For this purpose, 

a curved yield surface is used and described by the following quadratic form: 
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where aP  is a normalizing coefficient taken to be the uniaxial compression strength in the 

present model; and the parameter sC  represents the coefficient of material cohesion. Inspired by 

experimental data on various clay soils and rocks, the isotropic plastic hardening law is 

characterized the following hyperbolic function: 

 0 0
1

( , ) ( , ) (1 ) ( )
p

m
b

¶Y é ùg
h g w = g w = - w h + h - hê ú¶g + gë û

 (3.28) 

The parameters 0h  and mh  denote respectively the initial yield threshold and asymptotic state 

of plastic hardening, while 1b  controls the kinetics of hardening. As in many macroscopic plastic 

models, the hardening variable is taken as the generalized plastic shear strain defined by: 

 
2

:   ;   
3

p p p p p
ijij ij ij ij kkd de de de d dg = = e - e d  (3.29) 

It is known that most geomaterials exhibit volumetric contraction and dilation during plastic flow. 

It is generally needed to use a non-associated flow rule. In order to describe the transition from 

plastic contraction to dilation and inspired by the works by Pietruszczak et al. (1988), the flowing 

plastic potential is used: 

 (1 )( )ln a s m
eq c a s m

P C
Q P C

p

æ ö- s
= s + m - w - s ç ÷

è ø
 (3.30) 

The coefficient p  corresponds to the intersection point between the plastic potential surface and 

the axis ( ) 0a s mP C -s > . The parameter cm  is related to the volumetric dilatancy.  

According to the Eq. (3.26), the thermodynamic force associated with the damage can be 

decomposed into two parts, 
pe

d d dY Y Y= + , respectively related to the release rate of elastic strain 

energy and locked plastic energy.  

 

1
: ( ) :

2

( , )

e ee
d

pp
d

Y

Y

ì ¢= - e w eïï
í ¶Yï = - g w
ï ¶wî

C

 (3.31) 

Generally, for geomaterials under compressive stresses, the damage is essentially related to the 
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growth of microcracks generated by plastic sliding along microcracks. For simplicity, it is 

assumed that the damage evolution in the clay matrix is essentially controlled by the plastic 

shearing. As a consequence, the damage evolution depends on the plastic part of thermodynamic 

force p
dY  only, which is defined by: 

 1
0 1

1

( ) ( ) ln
pp

m md

b
Y b

b

¶Y æ ö+ g
g = - = h g - h - h ç ÷

¶w è ø
 (3.32) 

For the description of damage evolution, inspired by various damage models for brittle materials, 

the following damage criterion is proposed here: 

 ( )0 0( , ) tanh ( ) tanh( ) 0
p p

d c d dd df Y B Y Y B Yé ùw = w - + - w =
ë û

 (3.33) 

The two parameters dB  and 0Y  control the kinetics of damage evolution and cw represents the 

critical damage state which determines the residual strength of the material.  

Generally, the elastic properties of the clay matrix are also affected by the induced damage by 

microcracks. According to the relevant micromechanical analysis (Nemat-Nasser & Hori, 1999; 

Pensée et al., 2002), the bulk modulus and shear modulus in (3.24) should be independently 

expressed as functions of damage variable. The unilateral effects due to crack closure should also 

be included in the determination of effective elastic properties. However, in the present work, we 

are considering essentially mechanical responses of geomaterials under compressive stresses. In 

this case, most microcracks are in closed position. In this case, it is found that the bulk modulus 

remains constant and only the shear modulus is affected by the induced damage (Pensée et al., 

2002). Therefore, the following simple relations are used here: 

 
0

0

( )

( ) (1 )

k k

G G

w =ì
í

w = - wî  

 (3.34) 

The parameters 0k  and 0G  denote the initial bulk and shear modulus of undamaged clay 

matrix. 

In the present elastoplastic damage model, the two dissipation mechanisms of plastic flow 

and damage evolution are coupled. Further, as a simplified choice, the damage evolution is 

directly related to plastic flow. Therefore, the loading/unloading conditions are the same for the 

two mechanisms. Generally, the plastic flow and damage evolution rates are defined by the 

following rules:  
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The plastic multiplier pl& and the damage multiplier dl&  should be determined using the 

consistency conditions respectively for plastic flow and damage evolution: 

 ( , , ) 0
p p p

p

f f f
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¶ ¶ ¶¶h ¶h
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f Y Y

Y

¶ ¶
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However, in the model, as only the plastic part of the thermodynamic damage force is used in the 

damage criterion and it is related to plastic distortion, it is then possible to relate the damage 

evolution rate to the plastic distortion rate. Substitute Eq. (3.32) and (3.33) for Eq. (3.37), one 

obtains: 
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Using the definition of g& , one can rewrite Eq. (3.38) as follows: 
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Applying now the plastic consistency condition, the plastic multiplier is finally given by:  
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Substituting now Eq. (3.40) and (3.41) for the rate form of the constitutive relations Eq.(3.25), the 

local tangent operator of the clay matrix can be determined as follows: 
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3.4 Local integration scheme 

 

The proposed micromechanical model can be easily implemented into usual computer codes, 

for instance, using finite element method. The local integration procedure of the micromechanical 

model is outlined here. The representative volume element of heterogeneous material is subjected 

to a uniform macroscopic strain increment, 
( 1) ( )n n

E E E
+ = + D , at the loading step ( 1)n + . The 

objective of local integration is to found the corresponding macroscopic strain increment via the 

macroscopic tangent stiffness tensor using (3.4). For this purpose, the following procedure is 

adopted. Let first denote 
( )i

r
eD , the estimate of the average strain increment at the iteration ( )i  

inside the material phase r (Abou-Charka Guéry, 2007). 

 

1. Put the macroscopic strain as the initial estimate of the average strain in the inclusion phase: 

 
(0)

I
EeD = D

   
 (3.43) 

2. Thus, at the iteration ( )i , the value of 
( )i

I
eD  is known, and the local tangent operator of the 

inclusion phase is also determined (for instance the linear elastic tensor). Then the average strain 

increment in the clay matrix if given by: 

 

( )
( )

1

i
Ii I

m
I

E f

f

e
e

D - D
D =

-
 (3.44) 

3. Using this prescribed strain increment, the tangent operator of the clay matrix can be 

determined using the local elastoplastic damage model Eq. (3.42). 

4. Hill’s tensor 
0
IP  is evaluated by analytical solution Eq. (3.17) for isotropic case and by 

numerical calculation Eq. (3.11) for anisotropic case. 



3.5. Numerical simulation of the laboratory tests of argillite 

57 

 

5. Update the strain localization tensors respectively for inclusion phase IA  and clay matrix 

mA  using Eq. (3.8). Verify now the compatibility of the average strains for each phase according 

to the localization tensors: 

 
( ) ( )

:
i i

II I
R E e= D - DA  (3.45) 

 
( ) ( )

:
i i

mm m
R E e= D - DA  (3.46) 

If the strain estimation errors ( )i

I
R  and ( )i

m
R  are less than the fixed convergence tolerance, then 

the solution is obtained. Else, a new iteration step is needed by using the new estimations of 

average strain in each phase: 

 
( 1) ( ) ( )i i i

II I
Re e+D = D +  (3.47) 

 
( 1) ( ) ( )i i i

mm m
Re e+D = D +  (3.48) 

The iterative procedure id repeated until the convergence is obtained. 

6. After the convergence, the macroscopic tangent operator of homogenized material is 

determined and the macroscopic stress increment calculated: 

 
( ) ( )hom ( ) ( )(1 ) : :
i ii i

I m m I I If f= - +L L A L A  (3.49) 

 
( 1) ( 1)hom :
n n

E
+ +DS = DL  (3.50) 

 

3.5 Numerical simulation of the laboratory tests of argillite 

 

In order to perform a first phase of validation, the proposed micromechanical model is now 

applied to simulate laboratory tests with various loading path performed on argillites with 

different mineralogical compositions. The main challenge of micromechanical modeling is the 

identification of local parameters for each material phase. The local mechanical behavior should 

be determined. This direct identification method is so far not possible because relevant data on 

mechanical responses at the microscopic scale are not available. An indirect identification method 

is then adopted. The elastic properties of quartz and calcite grains are selected from reported data 

in literature for these minerals. For the identification of mechanical parameters of the clay matrix, 
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the following procedure is used. Consider some laboratory tests as the reference tests, for example, 

uniaxial compression test performed on the sample with a given mineralogical composition. The 

model’s parameters are then determined by numerical fitting with respect to these references tests. 

One set of parameters are then obtained, as the reference parameters. Using these ones, other 

laboratory tests, with different loading paths and performed on sample with different 

mineralogical compositions are simulated. During these simulations, all the mechanical 

parameters are hold constant and only the mineralogical compositions is changing. For the 

argillite studied here, the reference parameters are given in Table 3-3 and Table 3-4. In all the 

simulations presented herein, the axis 3e represents the axial direction of cylinder sample, while 

the axes 1e  and 2e  denote the radial directions. 

 

Table 3-3:  Parameters of the clay matrix 

(GPa)mE  mn  sC  0h  mh  1b  cm  0Y  dB  cw  

3.0 0.30 17.0 0.0015 21.0 0.0015 1.6 0.4 3.0 0.7 

 

Table 3-4:  Parameters of the inclusion 

(GPa)IE  In  

98.0 0.15 

 

3.5.1 Simulations of triaxial compression tests 

 

The results of numerical simulation to the triaxial compression tests under different confining 

pressures performed on specimens from different depths are illustrated in Figure , Figure , and 

Figure . One can see that there is a fairly good general agreement between numerical results and 

experimental results. The main macroscopic characteristics of the argillite are clearly revealed in 

the micromechanical modeling, such as pressure dependency, transition from volumetric 

compressibility to dilatancy and material softening due to progressive growth of microcracks in 

the clay matrix. It is particularly worth noticing that the micromechanical model inherently takes 

into account the influences of mineralogical compositions. This is an important advantage 

compared with classical phenomenological models for which a set of parameters has to be 

determined from each group of mineralogical composition. In Figure 3-10, the simulations of 

triaxial compression tests with unloading cycles are also shown. The micromechanical model 
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seems also to be able to predict the progressive degradation of elastic modulus due to induced 

damage by microcracks. Some quantitative differences are observed between numerical 

predictions and experimental data in some tests. Note that the argillite studied here is a delicate 

material which is sensitive to many factors such as water content. Therefore, important scatters 

have been obtained during experimental investigations. The numerical prediction may be 

improved if more experimental investigations, in particular on the microscopic level, are 

available. 

In Figure 3-11, the overall mechanical responses of the argillite during a triaxial compression 

test are compared with those of the clay matrix alone as a homogeneous material. There are 

significant differences between the two series of responses. The role of mineral inclusions to 

reinforce the composite material is clearly demonstrated. In Figure 3-12, the evolution of local 

damage by microcracks inside the clay matrix is shown as a function of macroscopic deviatoric 

stress. The local damage is responsible for progressive degradation of elastic properties and 

material softening of argillite at the macroscopic level. 

 

3.5.2 Proportional triaxial compression tests and lateral extension tests 

 

Two other typical loading paths in rock mechanics are now considered: radial extension and 

proportional compression tests. Numerical simulations of these tests are performed to provide a 

complementary validation of the model. In the proportional compression test, the axial and radial 

stresses are simultaneously increased with a constant ratio: 

 33

11

k
S

=
S

    

 (3.51) 

In the radial extension test, the sample is first subjected to a hydrostatic stress state to a given 

value, and then the radial stress is progressively decreased while the axial stress is kept constant. 

Comparisons between numerical predictions and experimental data for these two kinds of tests are 

shown in Figure 3-13 and  

Figure 3-14. Again, one obtains a general good agreement and the proposed micromechanical 

model correctly describes the main characteristics of mechanical responses of material in these 

two loading paths. 

 In Figure 3-15, we have shown comparisons of numerical simulations respectively obtained 

by the present model with two material phases and that proposed by Abou-Chakra et al. (2008) 

with three material phases. Reminder that in the present model, the induced damage is associated 
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with the clay matrix while in the previous model it was included in the calcite grains. One can 

note that the consequence of local damage on macroscopic responses of argillite is quite different 

between the two models. This consequence is more significant in the present model, which is in 

particular able to reproduce the peak failure stress and material softening behavior in post-peak 

regime. This seems to more agree with experimental observations on this class of materials. 
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Figure 3-7: Macroscopic responses of the specimens from depth-1 (451.4m-466.8m) during triaxial 

compression tests with different confining pressures: (a) 0MPa; (b) 5MPa; (c) 10MPa; (d) 20MPa 
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Figure 3-8: Macroscopic responses of the specimens from depth-2 (468.9m-469.1m) during triaxial 

compression tests with different confining pressures: (a) 0MPa; (b) 5MPa; (c) 10MPa; (d) 20MPa 
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Figure 3-9: Macroscopic responses of the specimens from depth-3 (482.1m-482.4m) during triaxial 

compression tests with different confining pressures: (a) 0MPa; (b) 5MPa; (c) 10MPa; (d) 20MPa 
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Figure 3-10:  Macroscopic responses (axial strain versus deviatoric stress) of specimens from 

different depths during triaxial compression tests with 10MPa confining pressure and unloading – 

reloading cycles 
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Figure 3-11:  Comparison of overall responses of argillite and those of clay matrix alone during a 

triaxial compression test with 10MPa confining pressure – influence of mineral inclusions 
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Figure 3-12:  Relation of damage variable of clay matrix and macroscopic equivalent deviator stress 

of the specimen from depth-2 (468.9m-469.1m) with 10MPa confining pressure 
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Figure 3-13: Macroscopic responses (axial and radial strains versus axial stress) of specimens from 

different depths during proportional compression tests 
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(c) 

 

Figure 3-14:  Macroscopic responses (axial and radial strains versus radial stress) of specimens from 

different depths during radial extension tests with initial confining pressure of 60MPa 
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Figure 3-15: Comparison of simulations of a triaxial compression test between the micromechanical 

models with two (continuous lines) and three phases (symbols) ; (a) sample depth 451.5m; (b) sample 

depth 482.4m 
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3.6 Conclusions 

A micromechanical model is proposed in this chapter for the description of nonlinear 

behavior of heterogeneous materials, in particular the elastoplastic damage geomaterial. The 

formulation of non linear homogenization is based on the incremental method of Hill. The 

proposed model is applied to hard clay which is considered as a two phase composite with the 

clay matrix and quartz/calcite mineral inclusions. The macroscopic tangent operation of 

homogenized material is obtained using Mori-Tanaka scheme. The isotropization procedure can 

efficiently improve the predictions of macroscopic responses of heterogeneous materials. 

 

The validity of the proposed model is verified through the comparisons between numerical 

predictions and experimental data. Compared with classical macroscopic models, the 

micromechanical approach inherently takes into account influences of microstructure 

(mineralogical compositions) on macroscopic mechanical behavior of material. This is an 

important advantage, which allows a continuous description of spatial variations of mechanical 

behavior of rock materials in numerical modeling of structures. An overall good agreement 

between numerical predictions and experimental data has been obtained. The proposed 

micromechanical model seems to be able to describe main features of mechanical behaviors 

observed, such as pressure dependency, transition from volumetric compressibility to dilatancy, 

plastic damage coupling, progressive degradation of elastic properties and material softening due 

to induced damage by microcracks. 
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Chapter 4:  

Non-uniform transformation field analysis (NTFA) for pressure-dependent 

heterogeneous elastoplastic materials 

 

The non-uniform transformation field analysis (NTFA) initially proposed by Michel and 

Suquet (2003; 2004) assumed that the microscopic plastic strain field in RVE can be decomposed 

into a linear combination of a group of typical non-uniform plastic strain fields, called “plastic 

modes ”. Compared with the TFA approach (Dvorak & Benveniste, 1992; Dvorak, 1992) and all 

the kinds of mean field approaches, the NTFA can much better describe the heterogeneity of 

microscopic plastic strain field. As a result, the estimation of the effective response of 

heterogeneous material is more accurate, and the local fields can be easily recovered after the 

solution of the overall structural boundary value problem (Kanouté et al. 2009). 

The NTFA has so far been applied only to predict the nonlinear composites with pressure 

independent constituents. For heterogeneous materials composed of pressure sensitive 

constituents, in particular for geomaterials such as concrete, rocks, and soils, there is need for 

specific adaptation of the NTFA because such materials present some distinct properties, such as 

volumetric dilatancy, asymmetric mechanical responses to compression and tension. 

Therefore, the objective of this chapter is the adaptation and application of the NTFA method 

to micromechanical modeling of heterogeneous geomaterials. As a starting point of this study, we 

will first consider nonlinear heterogeneous materials composed of pressure-sensitive matrix which 

is described by non associated plastic flow rule based on the classic Drucker-Prager criterion. 

After the presentation of local constitutive model in Section 4.1, the formulation and numerical 

implementation of the NTFA method are presented respectively in sections 4.2 and 4.3. In section 

4.4, we will consider two specific applications; one is the composite with Drucker-Prager type 

matrix reinforced by elastic inclusions, the other is a porous material with Drucker-Prager matrix. 

The numerical results obtained from the NTFA will be compared with the reference solution from 

FEM simulation and those issued from other commonly used approaches. 

 

4.1 Local elastoplastic constitutive model 

 

The local elastoplastic constitutive model for solid matrix is formulated in the general 

thermodynamic framework. The state variables are composed of total strain tensor e  and two 

internal variables, i.e. plastic strain tensor 
pe and isotropic plastic hardening scale g . The total 
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strain tensor is then decomposed as follows: 

 
e pe e e= +

   
 (4.1) 

Only isotropic hardening materials are considered in this study, thus the free energy of material is 

composed of two parts, energy induced by elastic deformation and isotropic hardening.  

 
1

( , , ) ( ) : : ( ) ( )
2

p p p pw we e g e e e e g= - - +C  (4.2) 

where the fourth order tensor C  is the elastic stiffness, which can be expressed in a simple form 

for the isotropic material in this study. 

 3 2k G= +C J K   (4.3) 

 ,
3(1 2 ) 2(1 )

E E
k G

u u
=    =

- +
 (4.4) 

where k  and G  are bulk and shear modulus, E  and u  are elastic modulus and Poisson ratio, 

respectively. Using the free energy function Eq. (4.2) as the thermodynamic potential, the standard 

derivation leads to the following state equations, in which the stress s  and thermodynamic 

forces ( , )
pl hY Y  are associated with state variables as follows: 

 ( , , ) : ( )
p pw

s e e g e e
e

¶
= = -

¶
C  (4.5) 

 

( , , )

( , , ) ( ) ( )

pl p

p

p
ph

w
Y

w w
Y p R

e e g s
e

e e g g
g g

¶ì = - =ï ¶ï
í

¶ ¶ï = - = - = -ï ¶ ¶î

 (4.6) 

( )R g is the thermodynamic force associated with the internal variable g , defining the size of 

elastic domain and controlling the evolution of yield surface. The classical Drucker-Prager yield 

function (Drucker & Prager, 1952) is written as: 

 ( , ) ( ) 0p m eqf Rs g as s g= + - =  (4.7) 

where ( : ) / 3ms = s d , 3 : / 2eq s ss = , :s = sK
 

is the deviatoric stress tensor. A 

non-associated flow rule is used in this study to describe the variation of plastic dilatancy: 
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 ( )m eqg Rys s g= + -  (4.8) 

The parameter y  describes the plastic volumetric dilatancy. Then the evolution of internal 

variables can be derived in the general scheme of plasticity as follows: 

 

1 3
( )
3 2
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p
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h

sg g

Y

g g

RY

e l l l y d
s s

g l l l
g

ì ¶ ¶
= = = +ï ¶¶ï

í
æ ö¶ ¶ï = = - =ç ÷ï ¶¶ è øî

& & &&

& & &&

 (4.9) 

That is, the relationship between the increments of two internal variables can be formulated as: 

 
1 3

( )
3 2

p

eq

s
e g yd

s
= +& &  (4.10) 

 

4.2 Principles of nonuniform transformation field method (NTFA) for 

pressure-dependent materials 

4.2.1 Basic assumptions of NTFA for D-P material 

As stated above, it is the main advantage of the NTFA (Michel & Suquet, 2003; 2004) that the 

heterogeneous plastic strain field in RVE can be considered by non uniform transformation fields. 

In this study, the plastic strain field of D-P material is divided into two parts, deviatoric 

component ( )
p

d
xe , and volumetric component ( )p

m xe d . Each part is decomposed of a linear 

combination of a group of so-called “plastic modes”: 
( )

( )
k

d
xm

 
for deviatoric component and 

( ) ( )k

m xm d  for volumetric component of the plastic strain field, respectively: 

 

( )( ) ( )
_ _

1 1

( ) ( ) ( )

( ) ( )
d m

p p p
md

N N
kp p k

mk d k m
d

k k

x x x

x x

e e e d

e m e m d
= =

= +

= +å å

 (4.11) 

where _
p
k de  and _

p
k me are coefficients of linear combinations, 

dN  and 
mN  are total number of 

plastic modes respectively for deviatoric and volumetric part of plastic strain field. For the sake of 

simplicity, it is assumed that in Eq. (4.11) each plastic mode exists in only one material phase; 

however, every material phase can contain several plastic modes. Furthermore, there are two 

conditions that any two groups of plastic modes must be satisfied: 
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1). Orthogonal:1 

 ( ) ( )( ) ( ) ( ) ( ): 0, : 0 if )
k l k l

m m
d d

k lm m m d m d=     =     (  ¹  (4.12) 

2). Normalized: 

 ( )2( ) ( ) ( ): 1, 1
k k k

m
d d

m m m=        =  (4.13) 

To better understand the decomposition of plastic strain field, some fundamental concepts of 

functional analysis can be cited here (Rynne & Youngson, 2008; Lebedev & Vorovich, 2003). 

Denote H  being the set of all admissible plastic strain field ( )
p

xe
 

in RVE, which can be 

regarded as a tensor field space (or six-dimensional vector field space) defined on R . 

1 2
( ), ( )

p p
x xe e"   ÎH , define the inner product ,

inner
 g g as: 

 
1 2 1 2 1 2

1
( ), ( ) ( ) : ( ) ( ), ( )

p p p p p p

Vinner
x x x x dV x x

V
e e e e e e  =    =   ò  (4.14) 

That is, the result of volumetric average calculation can be treated as the defined inner product. It 

is obviously that the inner product Eq. (4.14) satisfies the “inner product axiom”. Thus H  is an 

inner product space defined on R . The plastic modes,
 

( )
( ) 1...

k

d
d

x k Nm   ( = ) , and 

( ) ( ) 1...k

m mx k Nm d   ( = )
 

form an orthonormal basis of the plastic strain field space. Any admissible 

plastic strain field in the RVE can be expressed as a linear combination of the plastic modes. Then 

the advantage of orthonormal basis can be inherited by the plastic modes in the present study. 

Plastic modes can be determined either analytically or numerically. The computing method will be 

studied in detail in the following section. 

 

4.2.2 Microscopic strain in elastoplastic homogenization problems 

In elastic homogenization problem, the microscopic local strain tensor depends linearly on the 

macroscopic strain tensor, that is: 

 ( ) ( ) :x x Ee =A
 

 (4.15) 

                                                   
1
 The condition ( )( ) ( ): 0

k l

m
d

m m d = can be satisfied automatically. 
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Where ( )xA  is the fourth order elastic strain localization tensor, which depends only on the 

properties and spatial distribution of constituents, but remains constant during all the loading 

history. The strain localization tensor, ( )xA , can be calculated numerically as a general method 

(Suquet, 1987), or obtained analytically in some specific problem, e.g. the Eshelby’s problem 

(Eshelby, 1957). However, Eq. (4.15) is no longer valid in dealing with non linear homogenization 

of elastoplastic heterogeneous materials, because the influence of plastic strain field must be 

considered. Michel and Suquet (2003) proposed a theoretical solution by means of the non local 

elastic fourth order Green operator ( , )x x¢G of the heterogeneous elastic medium as: 

 ( )1
( ) ( ) : ( , ) : ( ) : ( )

p

v
x x E x x x x dV

V
e e¢ ¢ ¢ ¢= + òA G C  (4.16) 

where ( , )x x¢G  means the microscopic strain induced at the point x  by a unit local stress at the 

point x¢ . It is seen that the microscopic local strain in elastoplastic homogenization problem is 

composed of two parts that are induced by macroscopic strain and local plastic strain fields, 

respectively. In the elastic problem ( ) 0
p

xe = , Eq. (4.16) reduces then to Eq. (4.15). 

Introduce now a non local fourth order tensor ( , ) ( , ) : ( )x x x x x¢ ¢ ¢=D G C  which represents the 

microscopic strain at the point x induced by the plastic strain at the point x¢
 and for the sake of  

simplicity define a product operator ‘* ’ as follows: 

 ( ) 1
( ) ( , ) : ( )

p p

v
x x x x dV

V
e e¢ ¢ ¢* = òD D  (4.17) 

Then the microscopic strain is formulated as: 

 ( )( ) ( ) : ( )
p

x x E xe e= + *A D  (4.18) 

Substituting the basic assumption of NTFA Eq. (4.11) into Eq.(4.18), the non-localized 

microscopic strain is obtained in terms of plastic modes: 

 ( ) ( )( )( ) ( )
_ _

1 1

( ) ( ) : ( ) ( )
d mN N

k p pk
mk d k m

d
k k

x x E x xe m e m d e
= =

= + * + *å åA D D  (4.19) 

 

For the effective implementation of the NTFA method, a series of reduced variables should be 

defined in order to replace the conventional variables. Accordingly, the local constitutive model 
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should also be reformulated in terms of such reduced variables. 

 

4.2.3 Reduced variables 

 

The ‘Reduced variables’ means a series of macroscopic scale variables obtained by 

multiplying all the conventional microscopic variables (tensors), such as strain, stress, etc, by 

plastic modes 
( )

( ) 1...
k

d
d

x k Nm   ( = )
 

and ( ) ( ) 1...k

m mx k Nm d   ( = ) , and then performing the 

volumetric averaging process. 

 

1). Reduced strain 

 ( )( ) ( )
_ _( ) : ( ) , ( ) : ( )

k k
k d k m m

d
e x x e x xe m e m d=    =  (4.20) 

2). Reduced plastic strain 

 ( )( ) ( )
_ _( ) : ( ) , ( ) : ( )

p k pp p k
mk d k m

d
e x x e x xe m e m d=    =  (4.21) 

3). Reduced stress 

 ( )( ) ( )
_ _( ) : ( ) , ( ) : ( )

k k
k d k m m

d
x x x xt s m t s m d=    =  (4.22) 

4). Reduced elastic localization tensor 

 ( )( ) ( ) ( ) ( )( ) : ( ) , ( ) : ( )
k k k k

md md
a x x a x xm m d=    =A A  (4.23) 

5). ReducedD tensor 
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 (4.24) 
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Combine Eq. (4.19) with Eq. (4.20), the following expressions can be obtained: 
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Combine Eq. (4.24) with Eq. (4.26), the reduced non-localized strain can be derived in terms of 

three macroscopic variables E ,
_

p
k de and _

p
k me :  
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 (4.27) 

 

4.2.4 Constitutive model in terms of reduced variables 

 

As stated above, the reduced scalar variables are endowed with macroscopic mechanical 

meaning by performing the tensor product with plastic modes and volumetric average process. 

Accordingly, the local constitutive model should be rewritten in terms of the reduced variables in 

NTFA scheme. 

The local stress-strain relation for elastoplastic material is formulated as Eq. (4.5). Substitute 

Eq. (4.5) into Eq. (4.22), the reduced stress can be expressed as: 
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( )
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_

( )
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C
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Take account of the basic NTFA assumption that each plastic mode 
( )

( )
k

d
xm

 
or ( )( ) ( )k

m xm d  

exists in only one material phase ( ( )r k ), therefore ( )xC  keeps a constant ( ( ))r k
C  in Eq.(4.28)  

for every definite k . ( ( ))r k
C  is the fourth order elastic stiffness tensor of the material phase ( )r k  

where the plastic mode k  exist. Only isotropic material is considered in this study for simplicity; 

then ( ( ))r k
C  is characterized by two parameters, the bulk modulus ( ( ))r kk  and shear modulus 

( ( ))r kG : 

 
( ( )) ( ( )) ( ( ))3 2r k r k r kk G= +C J K  (4.29) 

where k  and G  are defined in Eq. (4.4). According to the basic NTFA assumptions, the plastic 

mode 
( )

( )
k

d
xm

 
are purely deviatoric, and ( )( ) ( )k

m xm d
 

are purely volumetric, so: 
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As a result, the reduced stress-strain relation is formulated as: 
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pr k
k d k d k d

pr k
k m k m k m

G e e

k e e

t

t

= -

= -
 (4.31) 

We will now reformulate the D-P criterion in terms of reduced variables. According to Eq. (4.7) 

and (4.10), the local D-P yield criterion and flow rules at every microscopic point are: 

 

( ) ( ) ( ) ( ( )) 0

( )1 3
( ) ( )( )

3 2 ( )

p m eq

p

eq

f x x x R x

s x
x x

x

as s g
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 (4.32) 

Combined with Eq.(4.21), the reduced form of plastic strain rate can be expressed as: 
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 ( )( ) ( )
_

1
( ) : ( ) ( ) : ( )

3

p k k
m mk me x x x x= yg d m d = yg m& &&  (4.34) 

Michel and Suquet (2003; 2004) studied the reduced Mises yield criterion and the 

corresponding flow rule in two different ways: uncoupled model and coupled model. The latter 

owns more advantages both in theory and in numerical accuracy. Therefore, a coupled model for 

D-P yield criterion and flow rule will be established in this study to predict the overall properties 

of elastoplastic composite or porous material. The main assumptions of coupled model rely on 

such intuitive mechanical concept that the 
thk  reduced stress not only controls the evolution of 

plastic strain on the thk  plastic mode, but also influences the evolution of plastic strain on the 

thl  plastic mode. All the plastic modes existing in the same material phase should be coupled. 

Consequently, the following simplifications have to be made: 

 

(A). ( )xg  is independent of geometric position in every phase ( r ), i.e., ( )xg  can be 

replaced by ( )rg . 

(B). ( )eq xs  is replaced by: 
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(C). ( )m xs  is replaced by: 

 

( )
( )

_

1

1

3

mN r
r

m k m
k

s t
=

= å  (4.36) 

The simplification (A) implies that the local interne variable ( )xg  is the same value ( )rg
 in 

every material phase. The simplification (B) and (C) means that all the reduced stresses ( ( )dN r  

or ( )mN r )  existing in the same material phase ( r ) are combined to form a resultant force that 

controls the evolution of plastic strain on all the plastic modes contained in the certain material 

phase ( r ). The reduced D-P yield criterion and flow rule can be then expressed under these 

simplifications as: 

 
( ) ( ) ( ) ( )( ) 0r r r r
p m eqf Ras s g= + - =  (4.37) 
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 (4.38) 

 

Eq. (4.37) provides the reduced form of the D-P yield criterion of every material phase  ( r ) to 

estimate whether the evolution of reduced plastic strains contained in this material phase takes 

place. If yes, the evolution rates of reduced plastic strains are obtained according to Eq. (4.38). 

Combined Eq. (4.27), (4.38) and (4.31) together, the complete constitutive relations in terms of 

reduced variables are set up for D-P material. 

 

4.2.5 Macroscopic stress and plastic strain 

 

After the internal variables are determined, the macroscopic stresses and plastic strains can be 

then obtained as the final results of homogenized problem with uniform strain boundary 

condition: 

Substitute Eq.(4.11) and (4.19) into Eq.(4.5), we obtain: 
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Define ( )
( )

k

d
xr , ( )

( )
k

m
xr

 
and homelas-

C  as: 
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 (4.40) 

 

Then substituting Eq. (4.11) into Eq. (4.21): 



4.3. Numerical implementation of NTFA 

79 

 

 

( ) ( )

( ) ( )
_ _

1

( ) ( )
_ _

1

( ) : ( )

( ) : ( )

d

m

N
l kp p

k d l d
d d

l

N
p p l k

m mk m l m
l

e x x

e x x

e m m

e m d m d

=

=

=

=

å

å
 (4.41) 

Take account of the fact that ( ) ( )( ) ( ) ( ) ( ): 0, : 0 if  
k l k l

m m
d d

k lm m m d m d=    =    ( ¹ ) (Eq.(4.12)), one 

obtains: 

 

( ) ( )

_

_
( ) ( )

_

_ ( ) ( )

( ) : ( )

( ) : ( )

p
k dp

k d
k k

d d

p
k mp

k m k k
m m

e

x x

x x

ì
ïe =
ï m m
ï
í
ï e

e =ï
ï m d m d
î

 (4.42) 

 

Note that there is no summation with index k in Eq. (4.42). Finally, the macroscopic stress is 

derived as: 

 
( ) ( )elas-hom

_ _
1 1

( ) : ( ) ( )
d mN N

k kp p
k d k m

d m
k k

x E x xs r e r e
= =

S = = + +å åC  (4.43) 

 

Left multiply each side of Eq. (4.43) by ( ) 1
elas-hom

-
C , the following relations are deduced: 

 

( )

( )

1
( )elas hom

_
1

1
( )elas hom

_
1

: ( )

: ( )

d

m

N
p k p

k d
d

k

N
k p

k mm
k

E E E x

x

r e

r e

--

=

--

=

- = +

                +

å

å

C

C

 (4.44) 

Thus, the macroscopic plastic strain is obtained as: 

 ( ) ( )1 1( ) ( )elas hom elas hom
_ _

1 1

: ( ) : ( )
d mN N

p k kp p
k d k m

d m
k k

E x xr e r e
- -- -

= =

= - -å åC C  (4.45) 

 

4.3 Numerical implementation of NTFA 
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 The numerical implementation of the NTFA is generally performed in two steps. Firstly, 

some preliminary computations are required to obtain the necessary static data, plastic modes, 

reduced elastic localization tensor, effective fourth order stiffness tensor, 
( )k

d
r , 

( )k

m
r

 
tensor 

in Eq. (4.43)  and reduced D  tensor. All these quantities are calculated once for all and used in 

all the loading process. However, for strongly non linear heterogeneous materials, these quantities 

inherently depend on plastic strain level. In such case, some updating computations may be 

necessary for different levels of applied loading. In the second stage, the local integration is 

performed to find the updated macroscopic stress tensor corresponding to a macroscopic strain 

increment via the reduced constitutive model discussed above. 

 

4.3.1 Preliminary computations for plastic mode determination 

 

The accuracy of the NTFA method is directly related to the choice of plastic modes. Such 

modes are determined from the estimations of local plastic strain fields. Generally, the analytical 

determination of plastic modes is very difficult; suitable numerical computations are then 

necessary. Various techniques can be used such as FFT method and FEM method. In this work, 

the plastic modes will be chosen from FEM simulations and using proper orthogonal 

decomposition (POD) technique. 

For pressure sensitive materials, the plastic strain field is decomposed into the linear 

combination of two sets of plastic modes 
( )

( ) 1...
k

d
d

x k Nm  ( = )  and ( ) ( ) 1...k

m mx k Nm d  ( = ) . As 

mentioned above, two steps are needed to determine the plastic modes. Firstly, a set of numerical 

analyses are performed to determine the elastoplastic responses of RVE along representative 

loading paths in the macroscopic stress space. In this study, the 3D FEM analysis is performed to 

determine the responses of the REV along 6 typical macroscopic stress loading conditions 

composed of uniaxial tensile test in three directions, and three pure tests, as defined as. 

 

( )

( )

( )

(1) (4)
1 1 1 2 2 1

(2) (5)
2 2 1 3 3 1

(3) (6)
3 3 2 3 3 2

1
,

2

1
,

2

1
,

2

e e e e e e

e e e e e e

e e e e e e

S = Ä       S = Ä + Ä

S = Ä      S = Ä + Ä

S = Ä       S = Ä + Ä

 (4.46) 

The simulated microscopic plastic strain field 
( )

( ) ( 1...6)
k

x kq   =  are analyzed when the 

macroscopic strain reaches a relative high value to ensure a full developed plastic strain field. 
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Then decompose each 
( )

( )
k

xq
 

into deviatoric part 
( )

( )
k

d
xq  and volumetric part ( ) ( )k

m xq d : 

 
( ) ( ) ( )( ) ( ) ( )
k k k

md
x x xq q q d= +  (4.47) 

In the second step, an orthonormalization procedure should be realized on the sets of 
( )

( )
k

d
xq

 
and 

( ) ( )k

m xq d  to generate the plastic modes 
( )

( ) 1...
k

d
d

x k Nm   ( = )
 

and ( ) ( ) 1...k

m mx k Nm d   ( = ) , which 

satisfy the condition Eq.(4.12) and (4.13), respectively. The most commonly used method, 

Gram–Schmidt orthogonalization method, is briefly introduced as follows: 

 µ

(1)
(1)(1) (1)

(1) (1)

( )
( ) ( ), ( )

( ) : ( )

d

dd d

d d

x
x x x

x x

b
b q m

b b
=      =  (4.48) 

 

µ µ

µ

1 ( ) ( )( ) ( ) ( )

( )
( )

( ) ( )

( ) ( ) ( ) : ( ) ( )

( )
( )

( ) : ( )

n i in n n

d dd d d
i

n
n

d

d n n

d d

x x x x x

x
x

x x

b q q m m

b
m

b b

-
= -

=

å

 (4.49) 

Two sequences, µ
( )

( ) 1...
k

d
d

x k Nm   ( = )
 

and µ
( )

( ) 1...
k

m mx k Nm d   ( = ) 2 , respectively obtained by Eq. 

(4.48) and (4.49), can meet the orthogonal condition Eq. (4.12). However, they are not satisfied by 

the normalized condition Eq. (4.13). So a normalization process must be implemented to get the 

final plastic modes: 

 

µ

µ µ

µ

µ

( )
( )

( ) ( )

( ) ( ) 2
( )

( ) ( )
( ) , ( )

( ) : ( ) ( )

k
k

k kd m
m

d k k
k

md d

x x
x x

x x x

m m
m m d d

m m m

=     =
æ ö
ç ÷
è ø

 (4.50) 

 

4.3.2 Determination of reduced localization tensor and effective stiffness tensor 

 

In general three-dimensional elastic homogenization problem, the fourth order strain 

localization tensor is usually obtained by solving such 6 linear elastic problems with uniform 

                                                   
2 µ

( )

( ) 1...
k

m mx k Mm d   ( = ) can be obtained only by changing 
( )

( )
i

d
xq , ( )

( )
i

d
xb with ( ) ( )i

d xq d , ( ) ( )i

d xb d  
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strain boundary conditions: 

 

( ( )) 0

( ) ( ) : ( )

( )

div x

x x x

x E

s

s e

e

=

=

=

C  (4.51) 

with (11) (22) (33) (12) (13) (23)
, , , , ,E i i i i i i= , respectively, where:  

 ( ) 1
( )

2

ij
ik jl il jkkli = d d + d d  (4.52) 

 

 

(11) (22) (33)

(12) (13) (23)

1 0 0 0 0 0 0 0 0

0 0 0 , 0 1 0 , 0 0 0

0 0 0 0 0 0 0 0 1

10 0 10 0 0 0 02 2
1 10 0 , 0 0 0 , 0 0

2 2
1 0 00 0 0 10 02 2

i i i

i i i

æ ö æ ö æ ö
ç ÷ ç ÷ ç ÷   =        =         =ç ÷ ç ÷ ç ÷
ç ÷ ç ÷ ç ÷
è ø è ø è ø

æ ö æ öæ ö
ç ÷ ç ÷ç ÷
ç ÷ ç ÷ç ÷=   =   =
ç ÷ ç ÷ç ÷
ç ÷ ç ÷ç ÷ç ÷ ç ÷è øè ø è ø

 (4.53) 

 

Let ( )kl

ij xe
 

and ( )kl

ij xs
 

denote the strain and stress solutions of Eq.(4.51) with 
( )kl

E i= , then the 

strain localization tensor, reduced strain localization tensor, and effective stiffness tensor can be 

obtained by: 

 
( )

( ) ( )
kl

ijkl ijA x xe=  (4.54) 

 ( )( ) ( ) ( )( ) ( ) ( )( ) : ( ) , ( ) : ( )
k ij ijk k k

ij m ij md
d

a x x a x xm e m d e=    =  (4.55) 

 
elas-hom ( )

( ) : ( ) ( )
kl

ijkl ijmn mnkl kjC C x A x xs= =  (4.56) 

 

4.3.3 Determination of reduced influence tensor D  and 
( )k

d
r , 

( )k

m
r tensor 

It can be seen from Eq.(4.18) that the operator ( )*() ( )xD means the strain field induced by 

the appointed transformation plastic strain field with null averaged macroscopic strain field 0E = . 

So the following linear elastic problem needs to be solved: 



4.3. Numerical implementation of NTFA 

83 

 

 
( )

( )

( )

( )

( ( )) 0

( ) ( ) : ( ) ( )

( ) ( ) : ( ) ( )

( ) 0

k

d

k
m

div x

x x x x

or x x x x

E x

s

s e m

s e m d

e

=

= -

             = -

= =

C

C

 (4.57) 

The result of strain field ( )xe obtained from this problem is ( )( )
( )

k

d
xm*D

 
or 

( )( )( ) ( )k

m xm d*D , and the stress field solution ( )xs
 

is 
( )

( )
k

d
xr  or 

( )
( )

k

m
xr

 
according to 

Eq.(4.40). Thus ( )d mN N+  linear elastic problems need to be solved, the components of reduced 

D  tensor _kl ddD , _kl mdD , _kl dmD , _kl mmD
 

are calculated from Eq.(4.24), and 
( )k

d
r , 

( )k

m
r  

are obtained by performing the volumetric averaging procedures. 

 

4.3.4 Local integration algorithm of NTFA  

 

The NTFA can be implemented into standard computer codes, for instance, using finite 

element method. The core algorithm of local integration procedure is briefly outlined here. The 

RVE is subjected to a uniform macroscopic strain increment ( ) ( ) ( )
t t t t

E E E
+D

= + D  at the 

loading step ( )t t+ D . All the variables at loading step t  are assumed to be known. At the loading 

step ( )t t+ D , ( )_

i

k d t t
e

+D
 and ( )_

i

k m t t
e

+D
are then known variables for arbitrary iteration 1i ³ . 

In particular, assume the strain increments to be totally elastic for 1i = , then Eq. (4.27) turns to: 

 
( ) ( )

( ) ( )

(1) ( )
_

(1) ( )
_

:

:

k
k d t tdt t

k
k m t tmt t

e a E

e a E

+D+D

+D+D

ì =ï
í
ï =
î

 (4.58) 

and for 1i > , they are obtained from the previous iteration ( 1)i - (as done in the Step C). 

 

- Verify the plastic yield criterion and compute the evolution of reduced internal 

variables ( )( )
i

r

t t
g

+D
& , ( )_

i
p

k d t t
e

+D
& , ( )_

i
p

k m t t
e

+D
& , if necessary. The detailed procedure will be presented in 

the following text. 
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- Calculate macroscopic stresses following the relations  

( ) ( ) ( ) ( )( ) ( )hom
_ _

1 1

: ( ) ( )
d mN Ni ii k kp pelas

k d k mt t t t d mt t t t
k k

E x xr e r e-
+D +D +D +D= =

S = + +å åC  (4.59) 

 

- Update ( )_

i

k d t t
e

+D
 and ( )_

i

k m t t
e

+D
 as follows: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 ( )
_ _ __ _

1 1

1 ( )
_ _ __ _

1 1

:

:

d m

d m

N Ni ii k p p
k d kl dd kl dml d l md t tt t t t t t

l l

N Ni ii k p p
k m kl md kl mml d l mm t tt t t t t t

l l

e a E D D

e a E D D

e e

e e

+

+D+D +D +D= =

+

+D+D +D +D= =

ì
= + +ï

ï
í
ï

= + +ï
î

å å

å å
 (4.60) 

 

- Verify the convergence: 

IF 

 
( ) ( ) ( ) ( )

( ) ( )

1 1

_ _ _ _,
i i i i

k d k d k m k mt t t t t t t tk k

t t t

Max Max e e Max e e

E Ec

+ +

+D +D +D +D

+D

é ùæ ö æ ö-   -ç ÷ ç ÷ê úè ø è øë û

< -

 (4.61) 

where c  is a small tolerance coefficient, for instance, 510-c = . The norm of second order 

tensor is recommended here to use the “max norm”, defined as: 

 }{max ,
max ij

i j
A a=  (4.62) 

THEN 

 The convergent is obtained; the following quantities are updated: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

1 1

_ _ _ _

1 1

_ __ _

_ _ _ _

1
( ) ( )

, ;

, ;

, ;

;

i i

k d k d k m k mt t t t t t t t

i i
p pan an

k d k mk d k m
t t t tt t t t

i i

k d k d k m k mt t t t t t t t

i
r r

t t t t

i

t t t t

e e e e

e e e e

t t t t

g g

+ +

+D +D +D +D

+ +

+D +D+D +D

+D +D +D +D

+

+D +D

+D +D

=     =

=     =

=     =

=

S = S
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t t t= + D , GO TO the next load step. 

ELSE 

1i i= + , GO TO (A) for the next iteration of the same loading step 

END IF 

 

Detailed procedure in Step (A): 

 

The aim of step (A) is to determine the state evolution of reduced internal variables of iterate 

i  in the current loading step ( )t t+ D , ( )( )
i

r

t t
g

+D
& , ( )_

i
p

k d t t
e

+D
& , ( )_

i
p

k m t t
e

+D
& , from their known values 

at the previous loading step ( t ), and those of ( )_

i

k d t t
e

+D  
( )_

i

k m t t
e

+D
updated by the last iterate ( 1i - ) 

in the current loading step. This is composed of the following operations. 

 

- Calculate the elastic trial stress, the superscript ( e ) indicates the elastic trial quantity: 

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )
_ _ _ _

( )
_ _ _ _

2

3

i i pe r
k d k d k d k dt t tt t t

i i pe r
k m k m k m k mt t tt t t

G e e

k e e

t t

t t

+D+D

+D+D

æ ö= + -ç ÷
è ø

æ ö= + -ç ÷
è ø

 (4.63) 

 

- Verify the reduced yield criterion: 

 

 ( ) ( )( )( ) ( ) ( )
i i

e ei
e r r r
p m eq

t t t
t t t t

f Ra s s g
+D

+D +D

æ ö æ ö
= + -ç ÷ ç ÷

è ø è ø
 (4.64) 

where: 

 

( ) ( )

( ) ( )

( )
( )

_

1

1
2( ) 2( )

_

1

1

3

3

2

m

d

N ri ir e e
m k m

t tt t k

N ri ir e e
eq k d

t tt t k

s t

s t

+D+D =

+D+D =

=

æ öæ ö= ç ÷ç ÷ç ÷è øè ø

å

å

 (4.65) 

IF ( ) 0
i

e
p

t t
f

+D
<  THEN 
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( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( )

_ _ _ _

_ _ _ _

( ) ( )

,

,

i ii ie e
k d k d k m k mt t t tt t t t

i i
p p p p
k d k d k m k m
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i
r r

t t t

e e e e

t t t t

g g

+D +D+D +D

+D +D
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=     =  

=    =

=

 

ELSE 

Calculate the evolution of reduced internal variables (the deviatoric part following 

‘radial return’ rule). 

  END IF 

 

- Calculating the evolution of reduced internal variables  

a): Solve ( )( )
i

r

t t
g

+D
&  

From Eq. (4.38) and the radial return rule, on gets: 

 

( ) ( )
( )
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_
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_

3

2
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i
e

i i k d
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ì
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ï
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ï
ï

 =ïî

&&

&&

 (4.66) 

 

Then the corrected reduced stresses, 
( )r

eqs
 

and 
( )r

ms , can be expressed as: 

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

( )
( ) ( ) ( ) ( ) ( )

1

3

3 ( )
m

i i ir r e r r
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N ri i ir r e r r k
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G
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s s g
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ì
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ï
í
ï = -ï
î

å

&

&

 (4.67) 

Thus, a nonlinear equation for ( )( )
i

r

t t
g

+D
&  must be solved: 
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 (4.68) 

 

In this study, the dichotomy method is used to solve this nonlinear equation. For the initial 

iteration, ( )( )
i

r

t t
g

+D
& can be restricted into

( )
( )

( ) ( ) ( )

1

0,

3 ( ) 3
m

i
e

p t t

N r
r k r

m

k

f

k x Gay m

+D

=

æ ö
ç ÷
ç ÷    
ç ÷

+ç ÷
è ø

å
, where ( )i

e

p t t
f

+D
is 

defined in Eq.(4.64). 

 

b): Then the reduced stress components can be computed: 
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_
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_ _
( )

( ) ( ) ( )
_ _

3

3 ( )

i
e

i i k di e r r t t
k d k d it t t t t t r e

eq
t t
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 (4.69) 

where ( )( )
i

r

m

t t

s
+D

is calculated following the Eq.(4.67) 

 

c): Finally the reduced plastic strain can be estimated as follows: 
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( ) ( )
( )

( ) ( )
( )

_

__ ( )

_

__ ( )

2

3

i

i i k dp t t
k dk d rt tt t

i

i i k mp t t
k mk m rt tt t

e e
G

e e
k

t

t

+D
+D+D

+D
+D+D

ì
ï = -ïï
í
ï
ï = -
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 (4.70) 

 

4.4 Example of application to heterogeneous material with D-P matrix 

 

In this section, two examples of application are presented as the first stage of validation of the 

NTFA method for micromechanical modeling of nonlinear composites (example I) and of porous 

materials (example II). The numerical results are compared with other homogenization 

approaches to reveal the advantage of the NTFA.  

The two three-dimensional problems studied here concern both matrix-inclusion composite. 

In the first case, the inclusions are linear elastic material and in the second case the inclusion is 

replaced by pore voids. The volumetric fraction inclusion (or the porosity) is 25% in both cases; 

the geometrical domain studied and FEM mesh used are illustrated in Figure 4-1.  

The solid matrix in the two examples is described by the same D-P plastic model. The plastic 

yield function and plastic potential are presented in Eq.(4.71), and the material parameters used 

are listed in Table 4-1. The material parameters of inclusion for the composite case are given in 

Table 4-2. 

 
0

0

( ) 0

( )

b
p m eq

b
m eq

f H

g H

as s s g

ys s s g

= + - + =

= + - +
 (4.71) 

 

Table 4-1: Material parameters used for the solid matrix 

(Pa)mE  mu  0(Pa)s  (Pa)H  b  a  y  

101.0 10´  0.25  
74.5 10´  

81.5 10´  0.5 0.3 0.3 

 

Table 4-2: Elastic parameters for inclusion 

(Pa)IE  In  

102.0 10´  0.20  
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3e

1e

2e

25%f =

 

(a) 

  

(b) (c) 

 

Figure 4-1: Geometry and FEM mesh (cross middle section along direction 3e ) of the studied unit-cell 

(a) Geometry domain; (b) Mesh for composite with inclusion (Example I); (c) Mesh for porous 

material (Example II) 

 

In the previous work by Michel and Suquet (Michel & Suquet, 2003; 2004) only the 

composite composed of Mises type matrix and elastic inclusion was discussed. For the sake of 

comparison, we will give an additional example (example III) for porous material with Misès type 

solid matrix, to show the advantage and performance of the NTFA method for different kinds of 

nonlinear heterogeneous materials. 
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4.4.1 Example I: composite with D-P matrix and elastic inclusion 

 

In the first example, simulations of nonlinear composite composed of D-P matrix and elastic 

inclusion (Figure 4-1) are performed. As studied in section 4.3, the implementation is divided into 

two steps, the preliminary computation, and local integration process. Firstly, a set of initial 

numerical elastoplastic simulations are performed to decide the plastic modes. For this model six 

numerical simulations along different loading directions as Eq. (4.46) are executed by FEM. Then 

plastic modes are chosen using the method introduced in section 4.3.1. Figure 4-2 and Figure 4-3 

show the six components of the first two plastic modes 
(1)

( )
d

xm  and 
(2)

( )
d

xm  for the deviator 

part, and Figure 4-4 shows the first two modes (1) ( )m xm  and (2) ( )m xm  for the volumetric part.  

The results of uniaxial compression simulation and the finite element solutions as reference 

results (Michel, Moulinec, & Suquet, 1999) for the composite are illustrated in Figure 4-5. Also 

the results obtained by Hill’s incremental method (Hill, 1965) are plotted together for comparison. 

Taken account of the heterogeneity of microscopic plastic strain field, the results obtained by 

NTFA are of a good agreement with FEM solution that can be regarded as the exact results. As 

anticipated above, the predictions of Hill’s incremental method are unrealistically stiff, because 

the uniform plastic strain field is inappropriately simplified as a constant.  

  

4.4.2 Example II: porous material with D-P matrix 

 

Another type of nonlinear heterogeneous material, porous media has been widely researched 

to investigate the strength properties. For porous material composed of Mises constituent, 

Gurson’s Model (Gurson, 1977) and other improved models, such as GTN Model (Tvergaard, 

1981), can well determine the macroscopic yield surface. Nevertheless, the modeling of 

macroscopic strength properties for D-P porous material is still an open problem (Zaoui, 2002). In 

recent years, many valuable results are obtained in this area (Lee & Oung, 2000; Dormieux & 

Barthélémy, 2003; Trillat, Pastor, & Thoré, 2006; Pastor, Thoré, Loute, Pastor, & Trillat, 2008; 

Guo, Faleskog, & Shih, 2008; Maghous, Dormieux, & Barthélémy, 2009). However, the results of 

these analytical macroscopic strength criterions for D-P porous media proposed by different 

scholars vary a lot. A widely accepted and used criterion does not exist yet. Moreover all the 

analytical models can only predict the macroscopic yield surface, but the overall mechanical 

responses can not obtained from this analytical models.  
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In the example II, we will use the NTFA to predict the overall mechanical responses of D-P 

porous material. The geometric model, constitutive equations, and corresponding parameters have 

introduced above. Figure 4-6 and Figure 4-7 show the six components of the first two plastic 

modes 
(1)

( )
d

xm  and 
(2)

( )
d

xm  for the deviator part, and Figure 4-8 shows the first two modes 

(1) ( )m xm  and (2) ( )m xm  for the volumetric part. 

The Figure 4-9 illustrates the comparison of the results obtained by FEM (as a reference 

result), Hill’s incremental approach, and NTFA for a uniaxial compression test. We can see that 

the curve of NTFA coincides with the reference result very well. 

The macroscopic yield surface of the studied porous material in this example obtained 

numerically by NTFA is plotted in Figure 4-10, accompanied by FEM solution and two typical 

analytical results: 

 

Model proposed by (Dormieux & Barthélémy, 2003): 

 
2 2 2 2

2 2

2 4 / 3 3
1 2(1 ) (1 ) 0
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f P f P
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 (4.72) 

where f is the porosity, 
2

3
T a= ,

0 /P s a= , 
0,a s  are defined by Eq.(4.71). 

 

Model proposed by Guo in approximate form (2008): 
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2 cosh ln(1 ) (1 ) 0
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eq m
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f f
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a
a
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 (4.73) 

where 
2

1 sgn( )
3

ms a= + S . 

Figure 4-10 reveals that the macroscopic yields surface obtained by NTFA follows the same 

trend with the two analytical models, but owns a better accordance with the finite element 

solution. . It can be seen that the NTFA owns a very good ability to predict the macroscopic 

strength property of D-P porous material besides determining the overall response of composite. 
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4-2: Plastic modes 
(1)

( )
d

xm for the example I (only matrix is illustrated
3
) 

(a) (1)

11( )d xm ; (b) (1)

22 ( )d xm ; (c) (1)

33( )d xm ; (d) (1)

12 ( )d xm ; (e) (1)

13( )d xm ; (f) (1)

23( )d xm  

                                                   

3 The plastic mode 
( )

( )
k

d

xm  in the linear elastic inclusion is zero, so the figure omits this part.   
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4-3: Plastic modes 
(2)

( )
d

xm for the example I (only matrix is illustrated
4
) 

(a) (2)

11( )d xm ; (b) (2)

22 ( )d xm ; (c) (2)

33 ( )d xm ; (d) (2)

12 ( )d xm ; (e) (2)

13( )d xm ; (f) (2)

23 ( )d xm  

                                                   
4 The plastic mode ( )

( )
k

d
xm  in the linear elastic inclusion is zero, so the figure omits this part.   



4.4. Example of application to heterogeneous material with D-P matrix 

94 

 

  

(a) (b) 

 

Figure 4-4: Plastic modes (1) ( )m xm  and (2) ( )m xm for the example I (only matrix is illustrated
5
) 

(a) 
(1) ( )m xm ; (b) 

(2) ( )m xm  

 

 

 

Figure 4-5: Comparison of the predicted results by NTFA with those from Hill’s incremental approach 

and reference solution by FEM in uniaxial compression test of composite 

 

 

                                                   
5 The plastic mode ( )

( )
k

d
xm  in the linear elastic inclusion is zero, so the figure omits this part.   
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(a) (b) 

 
 

(c) (d) 

 
 

(e) (f) 

 

Figure 4-6: Plastic modes 
(1)

( )
d

xm for the example II (porous media) 

(a) (1)

11( )d xm ; (b) (1)

22 ( )d xm ; (c) (1)

33( )d xm ; (d) (1)

12 ( )d xm ; (e) (1)

13( )d xm ; (f) (1)

23( )d xm  
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(a) (b) 

  

(c) (d) 

  

(e) (f) 

Figure 4-7: Plastic modes 
(2)

( )
d

xm for the example II (porous media) 

(a) (2)

11( )d xm ; (b) (2)

22 ( )d xm ; (c) (2)

33 ( )d xm ; (d) (2)

12 ( )d xm ; (e) (2)

13( )d xm ; (f) (2)

23 ( )d xm  
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(a) (b) 

Figure 4-8: Plastic modes (1) ( )m xm  and (2) ( )m xm for the example II (porous media) 

(a) 
(1) ( )m xm ; (b) 

(2) ( )m xm  

 

 

 

Figure 4-9: Comparison of the predicted results by NTFA with those by Hill’s incremental approach 

and reference solution by FEM in uniaxial compression test of porous material 
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Figure 4-10: Composition of plastic yield surfaces of porous material obtained by NTFA, Dormieux’s 

model, Guo’s model, and solution by FEM simulation 

 

4.4.3 Example III: porous material with Mises matrix 

 

The example III concerns a porous material with Mises type solid matrix. The three-dimensional 

geometrical domain and FEM mesh used are illustrated as  

Figure 4-11. The porosity is 10%. The plastic yield function with isotropic hardening law is given 

in Eq. (4.74); and the material parameters are listed in Table 4-3. 

 0( ) 0b
p eqf ps s g= - + =  (4.74) 

 

3e

1e

2e

10%f =
  

(a) (b) 

 

Figure 4-11: Geometry domain and FEM mesh (cross middle section along direction 3e ) of the 

simulated unit-cell in example III; (a) Geometry of the model; (b) Mesh of the model 
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Table 4-3:  Material parameters used for Mises solid matrix 

(Pa)mE
 mu

 0 (Pa)s
 

(Pa)H  b  

101.0 10´  0.25  
74.5 10´  

81.5 10´  0.50 

 

The result of predicting a uniaxial tension test (lateral strain was fixed to zero) of the porous 

media with NTFA and FEM simulation are plotted in Fig. 2. Taken as a comparison, some results 

of the same problem achieved by other classical homogenization approaches are also plotted in 

the same figure, including the Gurson’s model (Gurson, 1977) expressed as Eq.(4.75), and the 

Hill’s incremental approach (Hill, 1965) in Mori-Tanaka scheme (Mori & Tanaka, 1973). It can be 

seen that the prediction by Hill’s incremental approach is unrealistically stiff. The reason is the 

incremental approach ignores the homogeneity of plastic strain field in the matrix. The result of 

NTFA seems to be very close to that of the FEM simulation which is regarded as a reference 

result.  

 

2

23
2 cosh (1 ) 0

2

(1 ) ( )

eq m

H H

p

f f

f f tr

s s

e

Sæ ö æ öS
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è øè ø
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 (4.75) 

 0
b

H Hs s g= +
 

 (4.76) 

 

As mentioned in many literatures, the Gurson’s model provides an upper bound of solution. 

The yield surface obtained from NTFA, Gurson’s model, and Pastor’s limit analysis results (Trillat 

& Pastor, 2005) (including the strain static, strain kinematic, stress static and stress kinematic 

results) are plotted in Figure 4-13. It seems obviously that the yield surface of NTFA is smaller 

than that of Gurson’s model. Compared with the yield surface obtained by limit analysis, as 

plotted, the two vertexes of NTFA yield surface are very near with the strain results (strain static, 

strain kinematic), and the central part of NTFA yield surface is closed to the stress results (stress 

static and stress kinematic results) of limit analysis. 
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(a) 

 

 

(b) 

Figure 4-12: Comparison of the predicted results by NTFA with those by Gurson’s model, Hill’s 

incremental approach and reference solution by FEM in uniaxial tension test of porous media;  

(a) lateral free tension; (b) lateral fixed tension 
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(a) (b) 

 

Figure 4-13: Comparison of yield surfaces of porous medium respectively obtained by NTFA, 

Gurson’s model, and Pastor’s model; (a) strain loading; (b) stress loading 

 

4.5 Conclusions 

 

The NTFA proposed by Michel and Suquet (2003; 2004) provides an efficient way to 

simulate and predict macroscopic behaviors of nonlinear heterogeneous composites and porous 

materials with Mises type material phases. In this chapter, the NTFA is applied to nonlinear 

homogenization problems with pressure-dependent constituents, in particular the D-P materials, 

which are commonly used in geomaterials. By decomposing the plastic strain field into 

volumetric and deviatoric part and then a linear combination of plastic modes, the heterogeneity 

of microscopic plastic strain field can be well approximated; meanwhile the number of internal 

variables is efficiently reduced. The D-P criterion is formulated in terms of a set of reduced 

variables over the plastic modes. The applications of NTFA, to the prediction of mechanical 

response of both matrix-inclusion composite and porous material, have shown good agreements 

with the reference results obtained by FEM simulations. The macroscopic yield surface of porous 

material has also been correctly predicted. In the next Chapter, we will present an application of 

the NTFA to modeling of the Callovo-Oxford argillite. 
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Chapter 5:  

Application of NTFA to micromechanical modeling of argillite 

 

In Chapter 3, a microscopic mechanical model based on Hill’s incremental approach for the 

description the nonlinear behavior of argillite was proposed. The validity of the proposed model is 

verified through the comparisons between numerical predictions and experimental data of argillite. 

It seems that the proposed micromechanical model is able to describe main features of mechanical 

behaviors of argillite revealed in the tests, such as pressure dependency, transition from 

volumetric compressibility to dilatancy, and material softening. 

However, as recognized by many scholars, the incremental approach owns some intrinsic 

theoretical defects. The most significant one is that the microscopic plastic strain filed in RVE is 

assumed as uniformly distributed. According to the widely accepted theory that for nonlinear 

heterogeneous materials the exact determination of the effective constitutive relations requires the 

accurate description of all microscopic plastic strain fields in RVE (Rice, 1970; Mandel, 1972; 

Suquet, 1985), the incremental approach can not accurately describe the overall mechanical 

behavior of nonlinear heterogeneous materials quantitatively. In practice, it is also noted in many 

researches that the direct use of Hill’s incremental approach often leads to significant numerical 

errors. Some techniques, such as the isotropization method used in section 3.2, can be performed 

to improve the prediction of incremental approach.  

The NTFA proposed by Michel and Suquet (2003, 2004) for pressure independent 

constituents and developed in chapter Chapter 4: for pressure dependent constituents, has obvious 

advantage that the heterogeneity of local plastic strain field in RVE can be well described by 

decomposing it into a linear combination of set of predicted plastic modes. Theoretically, NTFA 

owns the ability of accurately determining the macroscopic overall mechanical responses of 

nonlinear heterogeneous materials. Some examples have been presented in the previous chapter. 

In this chapter, the NTFA will be used to simulate some more complicated mechanical responses 

of argillite. 

In this simulation, the studied argillite is considered as a two phase composite with elastic 

mineral inclusions embedded in the clay matrix. The behavior of clay matrix is described by an 

elastoplastic model. In section 5.1 and 5.2, the local elastoplastic model of clay matrix is 

formulated and validated respectively. Then the simulation of laboratory test results of argillite is 

presented in section 5.3. 
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5.1 Local constitutive model for the clay matrix of argillite 

 

As mentioned above, some basic mechanical properties of the studied argillite have been 

investigated, such as an important pressure dependency of mechanical responses, a significant 

volumetric dilatancy following the loading increase, and the softening process after the peak 

strength. To describe these characters, the local constitutive model for the clay matrix is studied in 

this section. 

The proposed local elastoplastic constitutive model is based on the thermodynamic 

framework discussed in section 4.1. A Drucker-Prager yield criterion is adopted to describe the 

character of pressure dependency: 

 ( ) 0p m eqf R= as + s - g =  (5.1) 

where g  is the internal variable, and ( )R g  acts as the isotropic hardening function. Taking 

account of the peak strength and softening behavior of argillite, we use such a hyperbolic tangent 

hardening function: 

 ( )( )0 1 2( ) tanh( ) tanh( ) 1.0R H t H t bg s g g= + - - +  (5.2) 

0s  is the initial yield stress in uniaxial compression test. t  and b  control the kinetics of plastic 

hardening and softening;
1H  and 

2H  describe the transition from hardening to softening regimes. In 

Figure 5-1, we show the evolution of hardening function with different values of some parameters 

involved in plastic hardening law. And in Table 5-1, the reference values of materials parameters are 

given. 
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Figure 5-1: Illustration of evolution of hardening function with different parameters 

 

 

Table 5-1: Reference values of parameters for hardening function 

0(Pa)s  1(Pa)H  2H  t  b  

65.0 10´  
72.2 10´  0.33  40  3.0  

 

It’s well known that the studied argillite exhibited significant volumetric contraction and 

dilation during plastic flow. In order to describe this feature, a non-associated flow rule is adopted 

here: 

 ( ) ( )m eqg Ry g s s g= + -  (5.3) 

The volumetric dilatancy coefficient y  which controls the evolution of plastic volumetric strain 

is a function in terms of internal variable g . The volumetric strain features of argillite during the 

compression process are observed in the laboratory tests that the volumetric strain decreases in the 

initial loading stage, and then observably dilates with plastic flow evolution. Considering this 

property, the volumetric dilatancy coefficient y  is chosen in the following form: 

 0 0( ) ( ) tanh( )m ty g y y y g¢= + -  (5.4) 

The parameter 0y  and my  represent the initial and asymptotic value of volumetric dilatancy 

coefficient. t¢  controls the evolution speed volumetric dilatancy coefficient. If 0my y= , then 

the Eq. (5.4) reduces to Eq. (4.71), in which the coefficient y  is independent with the internal 

variable. 
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0

ψ(γ) 

γ
ψ0

ψm

  

Figure 5-2: Evolution of dilatation coefficient y  with hardening variable g  

 

5.2 Numerical validation 

 

For a first verification of the NTFA to simulate composite composed of matrix obeying the 

proposed local constitutive equations in the previous section, and elastic inclusion, a simple 

numerical validation is performed in this section to compare the results obtained by NTFA and 

reference results by FEM.  

The inclusion volumetric fraction ( 25%f = ) and geometry of the simulated model is the 

same with those in section 4.4, and have been illustrated in Figure 4-1(a), (b). The parameters of 

matrix and inclusion are listed in Table 5-2 and Table 5-3, respectively. The results of comparison 

between NTFA and FEM on a uniaxial compression test are illustrated in Figure 5-3. It seems that 

the result obtained by NTFA coincides with the reference result by FEM. This good accordance 

inspires the next study of simulating the mechanical responses of argillite by NTFA with the 

proposed local constitutive model. 

 

Table 5-2: Materials parameters of matrix 

(Pa)mE  mu  0(Pa)s  1( )H MPa  2H  t  b  

101.0 10´  0.25  
72.0 10´  

81.5 10´  0.3333 40 3.0 

 

 Table 5-2 (Continued) 

a  0y
 my

 t¢  

0.3 0.3 0.3 (arbitrary) 
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Table 5-3: Material parameters of inclusion 

(Pa)IE  Iu  

102.0 10´  0.20  

 

 

Figure 5-3: Comparison between numerical prediction by NTFA and reference solution by FEM for 

uniaxial tension test 

 

5.3 Simulation of laboratory test results of argillite 

In Section 3.5, the laboratory tests with various loading path performed on argillites with 

different mineralogical compositions were simulated by Hill’s incremental method. However, 

although the results were fairly good after a numerical parameter fitting process, the incremental 

method can not accurately describe the overall mechanical behavior of nonlinear heterogeneous 

materials quantitatively due to it cannot describe the heterogeneous microscopic plastic strain 

fields in RVE. Compared with it, the NTFA well conquers this weakness and can theoretically 

obtain better results to simulate the mechanical responses of the nonlinear heterogeneous argillite. 

As discussed in section 5.1 and 5.2, the argillite is considered as a composite composed of 

elastoplastic matrix (clay matrix) and linear elastic inclusions (quartz and calcite grains). In this 

section NTFA is used to simulate the same laboratory test results of argillite shown in section 3.5. 

Due to some numerical difficulties, only one mineralogical composition is calculated (matrix 60% 

and inclusion 40%). The parameters of each constituent cannot be determined directly because the 

microscopic mechanical response of each material phase is impossible to be obtained in the 

current experimental condition. As a result an indirect identification method has to be adopted. 

Firstly, the elastic parameters of quartz and calcite inclusion can be selected from the literatures of 
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handbook about the minerals. Then a numerical fitting process is performed to identify the 

parameters of clay matrix, regarding the macroscopic test results as the reference results. Finally a 

group of optimized local parameters are selected to simulate the macroscopic mechanical 

properties of argillite. The local parameters are shown in Table 5-4 and Table 5-5 for clay matrix 

and mineral inclusion, respectively. The simulation of triaxial compression results under different 

confining pressures are illustrated in Figure 5-4. We can see that the numerical simulation results 

are generally coincided with the test results. The main mechanical characters of argillite, such as 

significant plastic deformation, volumetric variation from compression to dilatancy related to 

plastic deformation, and the peak strength are well described by NTFA.  

 

Table 5-4:  Parameters of matrix 

(Pa)mE  mu  0(Pa)s  1(Pa)H  2H  t  b  

103.0 10´  0.30  
61.0 10´  

71.5 10´  0.4 55 3.0 

 

             (Continued) 

a  0y
 my

 t¢  

0.19 -0.18 0.15 30 

 

Table 5-5:  Parameters of inclusion 

(Pa)IE  Iu  

102.0 10´  0.20  

 

  

(a) Depth 482.2m, 60%mf = , 40%If =  

Uniaxial compression 

(b) Depth 482.2m, 60%mf = , 40%If =  

Triaxial compression, 5c MPas =  
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(c) Depth 482.2m, 60%mf = , 40%If =  

Triaxial compression, 10c MPas =  

(d) Depth 482.2m, 60%mf = , 40%If =  

Triaxial compression, 20c MPas =  

 

Figure 5-4: Comparison between the NTFA simulation and laboratory test 

 

5.4 Conclusions 

In this chapter the mechanical behavior of argillite is simulated by NTFA. The argillite is 

seen as a matrix-inclusion composite as mentioned in Chapter 3. For the sake of simplicity, the 

mechanical behavior of the clay matrix is described by an elastoplastic model with 

Drucker-Prager yield criterion. A specific function is used to describe the plastic hardening and 

softening. Further, a non-associated flow rule is adopted. A linear elastic model is used for mineral 

inclusion (quartz and calcite). Comparisons between numerical predictions by NTFA and 

experimental data have been presented for some simple cases, and a good overall agreement has 

been obtained. However, there are still quite important scatters for some loading paths and 

mineral compositions. Such scatters should be due to plastic modes used in NTFA simulations. 

Further works are still necessary for improve numerical prediction by more appropriate plastic 

modes. 
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Conclusions and future works 

 

This thesis is devoted to the micromechanical modeling of nonlinear heterogeneous 

geomaterials with a specific application to the MHM argillite. Among various nonlinear 

homogenization methods, the Hill’s incremental approach and non-uniform transformation field 

analysis (NTFA) have been adopted in this study.  

As a preliminary phase of the present work, the direct FEM simulation of periodic 

heterogeneous materials was first performed and the obtained result served as reference solutions 

for comparisons and validation of two homogenization methods later developed. The unit cell of 

is transformed to a boundary value problem with periodic boundary conditions. The microscopic 

displacement fluctuations are considered as independent variables. In particular, we have focused 

on the cases with stress controlled loading paths in accordance with laboratory testing in 

geomaterials. A specific Newton-Raphson iteration method was proposed in order to obtain the 

corresponding macroscopic strain increment. 

The Hill’s incremental approach has then been studied. Combined with suitable isotropization 

procedures, it was seen that the incremental method seems to provide efficient predictions of 

macroscopic responses of non linear heterogeneous materials. In this study, several isotropization 

techniques have been studied and compared, and the influences of local plastic flow rule have 

been discussed to explore the efficiency of this approach in different situations.  

Although the incremental approach associated with suitable isotropization methods provides 

satisfactory predictions of geomaterials (argillites) for specific cases, we cannot neglect its 

intrinsic limitations. The most important one is that the microscopic strain and stress fields in each 

material phase are assumed uniform in the incremental approach. This strong assumption is 

obviously far from real local fields which may be highly heterogeneous. Further, the 

isotropization method is not physically justified. In this study, the NTFA method proposed by 

Michel and Suquet was adapted. The heterogeneous local plastic strain fields are decomposed into 

a linear combination of several predefined plastic deformation modes. Compared with previous 

works, we have proposed an adaptation of the NTFA to nonlinear heterogeneous materials 

composed of pressure-sensitive constituents. The plastic strain field is decomposed into 

volumetric and deviatoric part, each of which is formulated as a linear combination of plastic 

modes. The computational implementation procedure of the NTFA has been studied in the context 

of geomaterials studied. Two examples have been presented to validate the proposed NTFA 

method, respectively for composite with Drucker-Prager plastic matrix and elastic inclusions, and 

a porous material with Drucker-Prager plastic matrix. We have shown that for the two examples 
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the NTFA method is able to predict correctly the overall mechanical behaviors of heterogeneous 

materials compared with the reference solution by FEM. Moreover, in the case of porous 

materials, the macroscopic yield surfaces issued from the NTFA is close to those predicted by 

other models.  

One of the objectives of the present work is micromechanical modeling of the MHM argillite 

investigated in the context of feasibility study for geological storage of nuclear waste conducted 

by ANDRA. Two micromechanical models proposed in this work, incremental model and NTFA 

model, have been applied to modeling mechanical behavior of the argillite. It was considered as a 

composite with two phases, the elastoplastic clay matrix and linear elastic inclusions. In the case 

of the incremental approach associated with isotropization technique of Eshelby tensor, the 

numerical predictions were very close to experimental data and main features of argillite 

mechanical behavior have been correctly described. In particular, the influences of mineralogical 

compositions can be easily taken into account. Concerning the NTFA method, due to the 

complexity of the microstructure of argillite and time limitation of the present work, only a first 

phase of application to argillite was performed. It has been shown that there was also a good 

agreement between micromechanical predictions and experimental data. However, further 

investigations are still necessary to confirm the performance of the NTFA method in this situation. 

As mentioned in this work, the micromechanical modeling of non linear heterogeneous 

geomaterials is still an open topic. It is necessary to pursue in various features. For instance, the 

NTFA is a promising non linear homogenization method. Further developments might be 

envisaged to improve its efficiency. For example, the choice of orthogonal plastic modes should 

be improved using more extensive numerical simulations covering more plastic deformation 

mechanisms or with the help of some analytical fields. As an example, in the case of porous 

materials, it will be interesting to use analytical strain fields issued from Eshelby solution to 

construct plastic deformation modes. There is also possibility of extension by using other local 

constitutive models such as elastoplastic damage model. 
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Contribution to the micromechanical modelling of inelastic behaviors of heterogeneous geomaterials 

 

This study is devoted to the micromechanical modelling of inelastic behaviors of heterogeneous geomate-

rials. A kind of hard clay rock (argillite) is taken as an example to validate the micromechanical modelling. 

A short review of main homogenization techniques developed for multi-scale modeling of nonlinear hete-

rogeneous materials is presented in the first chapter. Then some numerical results from direct FEM simula-

tion are given in the second chapter. In the following chapter, one of the most commonly used approaches 

of nonlinear homogenization methods for nonlinear heterogeneous materials, Hill’s incremental approach, 

is studied and applied to simulate the mechanical behaviors of argillite with various compositions under 

different loading paths. Considering some theoretical limitations of the incremental approach, a new ho-

mogenization method named nonuniform transformation field analysis (NTFA) firstly proposed by Michel 

and Suquet is adopted and developed to adapt the pressure-dependent geomaterials in chapter 4. In this 

chapter the formulation and numerical implementation of the NTFA for a typical pressure-dependent hete-

rogeneous materials composed of Drucker-Prager matrix and elastic inclusion are presented. Next, in chap-

ter six a more complicated application is performed to simulate the mechanical behavior of argillite to ve-

rify the validity of the proposed NTFA method. 

 

Key words: Micromechanics, homogenization, multi-scale modelling, plasticity, geomaterials, rocks, 

Drucker-Prager criterion 

 

 

Contribution à la modélisation micromécanique des comportements inélastiques des géomatériaux 

hétérogènes 

 

Cette étude est consacrée à la modélisation micromécanique de comportement inélastique des géomatériaux 

hétérogènes . Une sorte de roche d'argile dure (argilite) est considérée comme un exemple pour valider la 

modélisation micromécanique. Un bref aperçu des principales techniques d'homogénéisation pour la 

modélisation multi-échelles développées de matériaux non-linéaire hétérogènes est présenté dans le premier 

chapitre. Puis quelques résultats numérique des simulations directes FEM sont donnés dans le deuxi me 

chapitre. Dans le chapitre suivant, l'une des approches les plus couramment utilisée de méthodes 

d'homogénéisation non-linéaire des matériaux hétérogènes non linéaires, approche incrémentale de Hill, est 

étudiée et appliquée pour simuler le comportement mécanique de l'argilite avec des divers compositions sur 

différents parcours de chargement. Compte tenu des certains limites théoriques de l'approche incrémentale, 

une nouvelle méthode d'homogénéisation nommé analyse des champs avec transformation non-uniforme 

(NTFA) proposé d'abord par Michel et Suquet est adoptée et développée pour s'adapter aux géomatériaux 

pression-dépendants dans Chapitre 4. Dans ce chapitre, la formulation et la mise en œuvre numérique de la 

NTFA pour des matériaux hétérogènes composés d'une matrice pression-dépendante de type 

Drucker-Prager et une inclusion élastique sont présentés. Ensuite, dans le chapitre six une application plus 

compliquée est réalisée pour simuler le comportement mécanique de l'argilite afin de valiter de la méthode 

proposée NTFA. 

 

Mots clés: micromécanique, homogénéisation, modélisation multi-échelles, plasticité, géomatériaux, 

roches, critère de Drucker-Prager 


