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Introduction

Contexte général

Le rayonnement intervient dans de nombreuses configurations physiques présentes
aussi bien dans la vie de tous les jours que dans des applications de plus grande en-
vergure. Outre l’observation et l’expérimentation, la simulation numérique d’un tel
phénomène est un outil important dans le but d’en améliorer la compréhension. La
connaissance de la propagation du rayonnement et de son influence sur un milieu
donné est nécessaire dans de nombreux domaines. Le transfert radiatif intervient en
effet dans des processus industriels tels que les fours de cuisson du verre, dans les
écoulements haute température et même en météorologie. La variété des applica-
tions contribue à l’intérêt porté à ce phénomène. La présente étude n’en abordera
qu’un petit nombre.

La caractérisation du comportement des photons dans les rayons X est notam-
ment nécessaire dans le domaine de l’imagerie médicale. La reconstruction d’images
du corps humain est en effet possible grâce à une bonne connaissance et surtout à
une modélisation adéquate du transport du rayonnement à travers les tissus biolo-
giques. Il s’agit de prendre en compte le fait que le rayonnement traverse différents
types de tissus, comme dans le cas du cerveau humain qui se trouve entouré de sub-
stances aux propriétés diverses. Certains tissus possèdent la propriété de disperser
le rayonnement, alors que d’autres se contentent d’en absorber une partie.

Un second exemple est celui de la combustion lors de laquelle le rayonnement,
selon le combustible utilisé et la présence ou non de suies, contribue de manière
importante à l’entretien de la flamme. Ce phénomène a été étudié par J.-F. Ripoll
dans [38]. La combustion et les processus radiatifs associés (émission, absorption, dis-
persion) interviennent dans de nombreuses applications telles que la propulsion d’en-
gins spatiaux, les risques industriels et la prévention des feux. Pour ces applications,
le transport des photons se doit d’être couplé aux phénomènes hydrodynamiques
qui interviennent tels que la convection, ou les réactions chimiques engendrées par
l’élévation de température au sein de la flamme.

L’hydrodynamique radiative a aussi été étudiée par M. González dans [20] pour
application au domaine de l’astrophysique, et notamment aux chocs radiatifs et jets
moléculaires d’étoiles jeunes. Les observations faites des objets astrophysiques et
les données collectées sont rendues compréhensibles par une bonne simulation de
l’interaction des photons avec le gaz.

Enfin, dans ce mémoire, nous nous intéresserons à la rentrée atmosphérique de
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6 INTRODUCTION

véhicules spatiaux. Les rentrées atmosphériques font intervenir des écoulements à
des régimes dits hypersoniques, c’est à dire avec des nombres de Mach supérieurs à
5. Lors de la rentrée du véhicule dans l’atmosphère, une onde de choc se forme par
compression à l’avant du véhicule. Le gaz, considéré comme un fluide compressible,
voit sa pression et sa température atteindre des valeurs très importantes derrière
cette onde de choc, notamment à proximité du point d’arrêt.

Figure 1 – Rentrée atmosphérique.

La température devient suffisamment élevée pour exciter l’énergie de vibration
interne des molécules en présence. Dans le cas de l’air, ces effets deviennent im-
portants au-delà de 800K. Avec cette augmentation de température ainsi induite,
des réactions de dissociation et même d’ionisation des espèces présentes peuvent
avoir lieu. Une région hors-équilibre est alors observée derrière l’onde de choc. Le
retour du fluide à l’équilibre se fait suite à des échanges d’énergie par collisions
intermoléculaires.

Ces échanges d’énergie permettent la relaxation des espèces excitées vers un
état d’énergie plus stable, ceci s’accompagnant de l’émission d’un photon trans-
portant une énergie E = hν, où h est la constante de Planck, et ν la fréquence
du rayonnement. Ce photon peut ensuite être absorbé, ou dispersé par le milieu
dans lequel il se déplace. Ces différents comportements sont influencés par l’opacité,
également appelée épaisseur optique, du milieu considéré. On peut distinguer les
opacités d’émission, d’absorption et de dispersion, celles-ci dépendant de l’activité
radiative du fluide, et notamment des espèces qui le composent.

Pour un fluide donné, les distributions de population des états excités des espèces
radiatives doivent être connues pour pouvoir caractériser les phénomènes radiatifs
tels que l’émission et l’absorption de photons, et ainsi déterminer l’opacité du mi-
lieu. Pour cela, on s’intéresse à l’énergie interne des molécules. Elle est le résultat
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des contributions de quatre modes d’énergie : translation, rotation, vibration et
électronique. Dans le cas d’un atome, seuls les énergies de translation et électronique
existent. La mécanique quantique permet de quantifier ces différents modes d’énergie
afin de déterminer l’état et l’énergie interne d’une espèce chimique.

D’après la mécanique quantique, il existe donc un ensemble dénombrable de ni-
veaux d’énergie sur lesquels sont distribués les atomes et molécules à un instant
donné. On sait que pour un système à l’équilibre thermodynamique, la distribution
la plus probable est régie par une distribution gaussienne appelée Maxwellienne.
Dans l’étude réalisée ici, on ne cherchera pas à déterminer nous-même les opa-
cités d’émission et d’absorption. On se restreindra à des opacités données qui ne
dépendent pas de la composition ni de l’état du système.

Il apparâıt indispensable d’évaluer la contribution du rayonnement dans la me-
sure où le dimensionnement d’un véhicule de rentrée sera déterminé de façon à limiter
les flux thermiques à la paroi. Nous nous intéresserons exclusivement à l’avant du
véhicule et au rayonnement thermique engendré dans cette zone.

Précisons que l’importance du rayonnement thermique par les gaz chauds de la
couche de choc (délimitée par le corps de rentrée et la discontinuité) dépend de
plusieurs paramètres, relatifs à la géométrie de la couche de choc, et à son état
chimique et thermodynamique. Par exemple, plus la couche de choc est épaisse, plus
le volume de gaz susceptible d’émettre un rayonnement est important. Ainsi, comme
l’épaisseur de la couche de choc est proportionnelle au rayon de courbure du véhicule,
le flux radiatif au point d’arrêt devient aussi proportionnel au rayon de courbure. Il
en résulte que, pour des conditions de rentrée données, les flux thermiques d’origine
radiative seront moins importants si l’on réduit le rayon de courbure du véhicule.
Par contre, les flux thermiques à la paroi liés à la convection sont inversement
proportionnels à la racine carrée du rayon de courbure [1]. Il appartiendra donc
aux ingénieurs de trouver le bon compromis qui reduira l’impact thermique total.

Selon le type de rentrée (vitesse, composition chimique de l’atmosphère), le
rayonnement peut s’avérer être un phénomène prépondérant par rapport à la convec-
tion. Le rayonnement est le résultat de toutes les émissions et absorptions ayant lieu
dans le gaz présent dans la couche de choc. L’énergie radiative est transférée dans
toutes les directions à travers le fluide. Cette énergie, en fonction de la nature et de
l’opacité du milieu, est ainsi soit absorbée, soit atteint la surface du véhicule, soit
s’éloigne de la proximité du véhicule et favorise le refroidissement de la couche de
choc.

Ces effets dûs à la prise en compte du rayonnement sont mis en évidence à l’aide
de la figure 2. Il s’agit de calculs effectués dans le cas de la sonde Mars Sample Orbi-
ter. Nous nous intéressons dans cette introduction à l’aspect qualitatif des résultats
présentés. La géométrie de la sonde considérée est axi-symétrique, seule la moitié
inférieure de la zone de calcul est donc représentée. La sonde occupe la partie restée
blanche dans le coin en haut à droite de la figure. La figure de gauche est le résultat
d’un couplage des phénomènes hydrodynamiques avec le rayonnement, alors que la
figure de droite résulte d’un calcul découplé (sans rayonnement). Au vu des contours
de températures obtenues, il est clair que la contribution du rayonnement n’est pas
négligeable, du moins en terme de températures et d’épaisseur de la couche de choc.
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Figure 2 – Cartes de températures. Avec couplage (à gauche) et sans couplage (à
droite) avec le rayonnement.

Ainsi, si on choisit de simuler de telles applications impliquant des échanges
d’énergie entre le rayonnement et la matière, il est clairement nécessaire de cou-
pler l’écoulement et le rayonnement. Cependant, remarquons que d’importantes
différences d’échelles de temps caractéristiques existent entre la convection (de l’ordre
du m.s−1 ou du cm.s−1), les réactions chimiques un peu plus rapides, et le rayonne-
ment qui se déplace à la vitesse de la lumière.

La résolution du problème radiatif sera ainsi soumise à de nombreuses itérations,
par rapport aux phénomènes hydrodynamiques. La méthode de résolution du trans-
fert radiatif est donc déterminante dans le coût de calcul d’un problème couplé
rayonnement/hydrodynamique.

La forme microscopique de l’équation du transfert radiatif décrit le champ ra-
diatif et son interaction avec la matière. Cette équation régit l’évolution de l’in-
tensité radiative I. Une telle description microscopique est classiquement utilisée
dans le cas de milieux transparents. Des méthodes de résolution dites particulaires
directes, ou statistiques (comme la méthode Monte-Carlo) y sont associées. Cette
dernière méthode considère des paquets de photons dont la direction et la fréquence
sont aléatoires. La distance parcourue par les photons avant absorption ou diffusion
dépend de l’opacité du milieu. Outre le difficile couplage de ces méthodes avec les
codes d’hydrodynamique, elles sont aussi très coûteuses, notamment en régime de
diffusion.

Dans le cas des milieux opaques, des méthodes de type macroscopique sont sou-
vent utilisées. En milieu opaque, nous sommes proches de l’équilibre radiatif, et des
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modèles dits de diffusion sont utilisés pour décrire le comportement radiatif. Sous
l’hypothèse de quasi-isotropie directionnelle de répartition d’émission des photons
reposent les modèles dits de diffusion tels que l’approximation de Rosseland, ou
le modèle aux moments P1. L’utilisation de ces modèles est restreinte aux milieux
opaques. Ainsi pour des applications où coexistent des régions optiquement minces et
épaisses, il faut coupler méthodes microscopiques et modèles de diffusion. Un tel cou-
plage est complexe et présente des inconvénients tels qu’une perte de précision dans
les zones de transition, et il persiste notamment un mauvais traitement du trans-
fert radiatif dans les milieux semi-transparents puisque les deux méthodes citées
ci-dessus ne sont performantes que dans les cas limites, c’est à dire en milieu opaque
pour l’une, et en milieu transparent pour l’autre. Dans ces conditions, il n’est pas rai-
sonnable d’envisager le couplage d’une telle méthode d’approximation du transfert
radiatif à l’hydrodynamique.

On préfère donc approcher l’équation du transfert radiatif à l’aide d’une unique
méthode de type macroscopique. Le modèle P1 est inadapté car il ne respecte pas
la propriété de limitation du flux en régime de transport. C’est pourquoi on choisit
d’utiliser le modèle aux moments M1 développé par Dubroca et Feugeas [17], et qui
permet un panel plus large d’applications. Ce modèle est le résultat de moyennes
sur l’espace des fréquences et des directions, et contrairement au modèle P1, M1

considère une fonction de distribution avec une direction de propagation privilégiée
alignée avec le flux radiatif. Les trois premiers moments de l’intensité radiative
sont l’énergie radiative, le flux radiatif, et le tenseur de pression radiative. Ils ne
dépendent plus que du temps et de paramètres d’espace.

Le modèle M1, de par son hypothèse de fermeture, est d’autant plus intéressant
qu’il offre la possibilité de traiter les régimes de transport aussi bien que les régimes
de diffusion. En effet, son prédécesseur, le modèle P1 décrit un comportement non
physique des photons en régime de transport (le rayonnement obtenu tend à se
déplacer plus vite que la vitesse de la lumière), alors que le modèle M1 permet de
préserver cette limitation du flux radiatif dans les milieux transparents. Et dans les
milieux opaques, le système M1 dégénère en une équation de diffusion. Notons aussi
que ce modèle préserve la positivité de l’énergie.

A partir de ce modèle, l’enjeu du travail présenté dans ce document est d’y as-
socier un schéma numérique qui résout précisément un problème donné de transfert
radiatif. Le schéma HLL, introduit par Harten-Lax-Van Leer [27], est classiquement
utilisé et simple à mettre en oeuvre. Mais ce schéma donne des résultats présentant
une viscosité numérique importante, notamment dans les problèmes 2D. On a donc
cherché à développer un schéma capable de capturer avec plus de précision les dis-
continuités de contact et tenant compte de la propagation du rayonnement dans une
direction transverse.

Pour ce faire, il est courant de développer des schémas de type HLLC qui ont
la propriété de capturer les discontinuités de contact. Cependant, dans le cas du
schéma HLLC, la construction de linéarisations appropriées reste délicate. Dans [11]
et [12], certains types de linéarisations sont employés, mais la robustesse du schéma
n’y est pas établie. Assurer la robustesse des méthodes développées constitue un
point important de la présente étude. On veillera tout particulièrement au respect
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des propriétés physiques importantes telles que la positivité de l’énergie radiative,
et la limitation du flux.

Afin de construire plus facilement des linéarisations, et de mieux contrôler les
propriétés de robustesse, il a tout d’abord été envisagé de développer un schéma
dit de ‘relaxation’. Ce type de schéma présente deux avantages intéressants pour
notre étude : il permet de capturer les discontinuités de contact, tout en assurant
la robustesse du schéma. Malgré ce gain en précision, le schéma de relaxation ainsi
construit s’avère être relativement coûteux, ceci étant dû au calcul des coefficients
qui nous permettent d’assurer la robustesse du schéma. Ces coefficients sont diffi-
ciles à déterminer, et font notamment intervenir un nombre important d’équations
quadratiques.

La construction d’un schéma de relaxation dans le cadre du transfert radiatif
nous a tout de même permis de mettre en évidence des linéarisations importantes
pour le développement d’un schéma précis pour le modèle M1. Ce dernier est un
schéma de type HLLC. C’est une méthode similaire à la relaxation, qui possède les
mêmes propriétés de robustesse, tout en étant plus simple à mettre en oeuvre, et elle
est aussi moins coûteuse (une seule équation quadratique y est impliquée). Grâce
à ce schéma HLLC, nous observons un gain important en précision lors des tests
numériques que nous avons réalisés pour la validation de la méthode.

Plan de la thèse

Le chapitre 1 introduira la physique du rayonnement, et à travers les besoins
spécifiques à nos applications, on déterminera le cahier des charges auquel doit
répondre notre modèle. Un état de l’art sur les modèles et méthodes connus et uti-
lisés pour traiter du transfert radiatif nous guidera dans notre choix. On présentera
ensuite plus en détail le modèle M1 développé par Dubroca and Feugeas [17]. Une
reformulation du modèle sera proposée et conduira au développement de schémas
numériques précis.

Dans le chapitre 2, l’étude sera d’abord exposée à partir d’une formulation 1D
du système. On présentera le principe de l’approximation des solutions faibles du
système M1 par des méthodes aux volumes finis. Le solveur de Riemann de Harten-
Lax-Van Leer [27] possède jusqu’à présent l’exclusivité en ce qui concerne le transfert
radiatif. Il présente cependant des désavantages connus. Nous le présenterons et l’uti-
liserons comme point de départ pour le développement d’un schéma apte à capturer
l’onde de contact que le schèma HLL néglige. On commencera par la construction
d’un schéma de relaxation, avant d’aborder le schéma HLLC. Pour chacun de ces
schémas on veillera à en assurer la robustesse. Une comparaison de leurs perfor-
mances clôturera ce chapitre.

Ensuite, outre une montée en ordre de la solution à l’aide d’un schéma de type
MUSCL, on s’intéressera au comportement du schéma dans les régimes asympto-
tiques, c’est à dire en régime de diffusion dans les milieux opaques et en régime de
transport dans les milieux transparents, à travers un schéma ‘asymptotic preserving’
que l’on détaillera dans le chapitre 3.
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Puis, au chapitre 4, on explicitera les extensions réalisées à partir du schéma
HLLC précédemment construit, pour considérer des problèmes en deux dimensions
d’espace et à géométrie curviligne.

Enfin, dans le chapitre 5, des cas tests purement radiatifs mettront en évidence
les progrès réalisés en termes de précision numérique par comparaison avec le schéma
HLL, ainsi que les limitations du schéma notamment en ce qui concerne les deux
faisceaux de directions convergentes.

Une applications plus réelle et couplée à l’hydrodynamique sera mise en oeuvre
dans le dernier chapitre, l’entrée Venusienne de la sonde Pioneer, qui nous permettra
d’entrevoir le gain en coût de calcul qu’il est possible de réaliser.

Pour finir, nous présenterons une conclusion de ce travail, ainsi que les perspec-
tives envisagées.
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Chapitre 1

The Radiative Transfer Equation

1.1 Introduction

The work presented in this document is dedicated to the specification of radiative
transfer in physical applications. This phenomenon is involved in many applications
such as industrial processes (e.g. glass cooling), radiotherapy, combustion, astrophy-
sics and atmospheric entries of space vehicles.

Among these applications, let us develop the example of the atmospheric entry.
For this application, we are often confronted to hypersonic regimes where the Mach
number is higher than 5. And depending on the entry parameters, such as the density
and chemical composition of the planet’s atmosphere, the speed of the entering
vehicle, radiation transfer effects are more or less noticeable. For instance, in the
case of aerobreaking (when the vehicle is slowed down thanks to viscous effects),
two third of the energy is dissipated through radiative effects.

Indeed, because of the atmosphere density, the flow speed is considerably re-
duced, and a great part of kinetic energy is transformed into internal energy. The
temperature inside the shock layer then becomes high enough (> 3000K) to raise
the internal energy of the species in presence in the gas. In the case of very high
temperatures, dissociation and even ionisation reactions may occur.

When the temperature in the shock layer is sufficiently high, the thermal radia-
tion emitted by the gas becomes important. This radiative energy travels through
the flowfield in all directions and is either absorbed by the gases or leaves the shock
layer, or reaches the body surface. Heat fluxes from the gas must be taken into ac-
count for the sizing of the thermal protection of hypersonic vehicles. For instance,
in the case of an optically thin gas, the radiative flux to the body is known to be
proportional to the radius of curvature of the body, this radius would then appear
as one of the parameters to modify to make the vehicle viable. With this purpose
in mind, interests about the effects of radiation on the hydrodynamics are raised
within the aerodynamic society.

Another possible application is medical imaging in order to make possible a
proper reconstruction of the human body. Human tissues are very diverse and an
appropriate behaviour of the radiative model with the tissue characteristics is man-
datory.

13
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Combustion problems are also constraining from that point of view as far as the
flame may be of different nature depending on the presence of soot or not. And
radiation effects on the flame are then different whether it is confined in an optically
thick medium, or whether it is free to be transported to the outer environment.
Let us mention that such a flame is chemically reacting, and that convection also
plays an important part in the overall behaviour of the flame. Such hydrodynamic
phenomena then have to be coupled to radiation.

It is therefore set from the begining that we have some requirements to meet.
Indeed, we need a radiation model that is quite simple to couple with hydrodyna-
mic phenomena. In addition, we need a model that allows a treatment of various
propagation regimes, that is to say, radiative transfer in an optically thick medium,
where the mean free path of the photon is small, as well as in a transparent medium,
where the mean free path is big.

With this aim, after an overview on radiation and the usual resolution methods
in particular configurations, we argument the radiative model we choose to use and
the solution approximation method we therefore adopt. In this chapter, we detail
the macroscopic model that is derived from the radiative transfer equation. This
model has several interesting features that motivated its use, and which we detail
here. Particularly, we will see how coherent it is with the physical phenomena we are
interested in, and which are the constraints to impose on the macroscopic quantities.

An hyperbolic system is derived from the model and its properties are outlined.
The radiative variables are expressed and some useful relations are given. This chap-
ter introduces the tools on which relies the numerical study we make from Chapter
2 until the thesis conclusions.

1.2 Generalities on radiation

Radiation is a form of energy that can even propagate in vacuum. It is transpor-
ted by weightless photons travelling at the speed of light in vacuum.

Meanwhile, when propagating in a non-vacuous medium, three main phenomena
are observed when radiation interacts with matter : emission, absorption and scat-
tering. The species in the shock-layer have their internal energy excited due to the
high temperature of the gas. A high energy level is then reached. Molecular collisions
in the gas lead to a relaxation of the gas species. Their energy is relaxed back to
their initial and stable configuration, that is to say to a lower energy level. This
is actually the result of a photon emission. This photon transports an amount of
radiative energy E = hν, where h is Planck’s constant, and ν the photon frequency.

On the contrary, absorption occurs when matter absorbs energy and raises its
internal energy levels. An absorption opacity is also associated and is inversely pro-
portional to the mean free path between two photon absorptions of a given frequency.
When the mean free path tends to infinity (the opacity tends to zero), the photons
are not absorbed, whereas when the mean free path tends to zero (the opacity is
big), the photons are absorbed right after being emitted and the gas tends towards
radiative equilibrium.
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A third possible behaviour is the scattering occurring if the propagation direction
is modified without interaction with matter. In the case of scattering the radiative
energy is conserved, the matter only deviates the photon and does not absorb nor
emit photons. Scattering is observable for example on a foggy day as it makes the
cars’ lights thicker.

Note that in entry flowfields, as radiation is mainly due to electronic transitions,
the frequencies of interest are the infrared, visible and ultra-violet bands. An emis-
sion opacity is characteristic of the gas properties, and it is inversely proportional
to the mean free path between two photon emissions of a given frequency.

Radiation has an intensity I depending on four parameters which are : time t,
space x ∈ R

3, frequency ν and direction Ω ∈ R
3. The specific radiative intensity is

associated to the photons distribution function f̃ and they are related as :

I(t, x, Ω, ν) = chνf̃ (t, x,Ω, ν), (1.1)

where h is Planck’s constant and c is the speed of light.
If the radiative intensity does not depend on x, I is said to be homogeneous.

And, if the radiative intensity does not depend on the photons propagation direction
vector Ω then it is said to be isotropic. A common example where this particular
approximation is usable is a far-distant source of light such as stars. This particular
case leads to an easier analysis of radiative transfer.

Let us now enumerate the different states of the flow that can be encountered
in atmospheric entries. With the rise of temperature chemical reactions can occur
and the flow is then in chemical non-equilibrium. When dissociation and ionisation
reactions are also involved, the flow turns into an ionised plasma.

In addition, when all radiative processes occur at a local equilibrium temperature
of the gas, an additional radiative equilibrium is attained. The matter is said to be in
equilibrium with the radiative phenomenon and the photons are described according
to Planck’s function. In this particular case, an homogeneous and isotropic radiative
field has its specific radiative intensity equal to the black body function B = Bν(T )
with :

Bν(T ) =
2hν3

c2

[

exp(
hν

kT
) − 1

]−1

, (1.2)

where k is Boltzmann’s constant, ν is the frequency, and T is the matter temperature.
This function is known as Planck’s law where the radiative energy is continuously
distributed versus the wavelength λ = 2π/ν. Planck’s function is assimilated as an
equilibrium function, its use is relevant when all absorbed photons are immediately
re-emitted, and so on, which corresponds to the photons behaviour in an optically
thick medium (where the mean free path tends to zero).

Let us introduce some representative macroscopic variables. They are obtained
as the integration of the microscopic variables over the wavelength and frequency
ranges. We introduce the following average operator :

〈.〉 =
1

c

∫ ∞

0

∫

S2

. dΩdν. (1.3)
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The macroscopic variables we will use in all the following developments then are :

• the radiative energy ER = 〈I〉 ,
• the radiative flux vector FR = 〈cΩI〉 ,
• the radiative pressure tensor PR = 〈Ω ⊗ ΩI〉 .

(1.4)

These radiative variables are the first three moments of the radiative intensity I.
They are submitted to essential properties. Indeed, as the radiative intensity I is a
positive variable, the radiative energy ER is also a positive variable. Additionally, the
radiative flux is physically limited by the speed of light so that : −cER ≤ FR ≤ cER.

An important data for the resolution of radiative transfer is the medium opa-
city. It is determined through the knowledge of excited states energy levels and
their population. In most cases, equilibrium can not be considered, the different
internal modes of the species in presence in the shock layer are excited. To deter-
mine the excited states number densities various assumptions and models may be
used. For instance, the number densities of vibrational states within an electroni-
cally excited state can be determined with a Boltzmann distribution employing the
vibrational temperature. The same equilibrium assumption holds for the calculation
of rotational states, although the Boltzmann distribution employs the translational
temperature since the rotational temperature is known to equilibrate very fast with
the translational one.

Once the flowfield variables, such as temperature, species densities, and excited
states population distributions are known, the radiative processes remain to be de-
termined. With this aim, four methods with various accuracy levels are available
in order to determine the needed opacities of the medium through which radiation
is travelling. The absorption and emission opacities are usually presented in the
form of an absorption or emission spectrum, where the values are plotted versus the
corresponding wavelength. A spectrum example is given in Figure 1.1.

Number of databases exist for a given temperature range. In the case of geo-
physical applications, the associated temperatures are more often lower than 400K.
Combustion processes involve temperatures between 1000K and 2000K. And electric
arcs, lasers and atmospheric entries deal with temperatures from 3000K to 25000K.

The low temperature cases make use of the databases HITRAN and HITEMP
that contain molecular band spectra (from the near infrared to the wavelength of
the order of the millimeter). Figure 1.1 is actually a spectrum obtained from these
databases.

As for the high temperatures, the PARADE [40] and NEQAIR [48] databases
are actually codes that calculate the emission and absorption spectrum through a
line by line procedure, every transition line over the whole spectrum is specified.
This method is very expansive and is usually used as a validation tool and reference
solution.

Indeed, because of the important number of spectral lines, a detailed calculation
is not to be considered. Other alternatives are available. The spectrum may indeed
be divided into spectral intervals within which averages are performed. The first
category of these averaging models deals with band models where mean opacities
are determined over narrow spectral bands. This method remains expansive to use.
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Figure 1.1 – Absorption coefficient (m−1) versus the wavelength (cm−1) for the
CO, CO2 and H2O molecules

A third option is the multi-group method developped by Turpault [43] [44], where
the spectrum is divided into wider spectral bands than band models. The obtained
mean values may bring errors in the solution however it is usually not possible to use
more accurate methods because of the lack of data. Finally, with a fourth method,
it is possible to integrate over the full sprectrum. These models are called ”grey”
models. They are appropriate for applications where we simply focus on the energy
balance of the problem.

Mean macroscopic opacities are often used in macroscopic models such as mo-
ments models. We use the definition of the moments of the radiative intensity to
express the mean opacities as they are needed in such models. In our case, these
mean macroscopic opacities are defined as follows :

σe =
〈σB(T )〉

aT 4
, (1.5)

σa =
〈σI〉
ER

, (1.6)

σf
x =

c〈σΩxI〉
FR

, (1.7)

σf
y =

c〈σΩyI〉
FR

, (1.8)

where a is a constant defined later. Here σe is the emission opacity, it is also called
Planck’s average. The variable σa is the absorption opacity, and σf

x and σf
y are the

radiative flux absorption opacities. The calculation of the opacities is not realised in
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the present work. At the most, we will mainly consider thermal equilibrium or local
thermodynamic equilibrium so that the opacity is only a function of the density and
temperature. Pressure and temperature may also be used to evaluate the opacity,
which is equivalent thanks to the appropriate equation of state.

Now that we have defined the opacities, we are left with the resolution of the ra-
diative transfer problem. Our starting point is the time-dependant Radiative Trans-
fer Equation (RTE) describing the behaviour of the photons distribution function
I. It writes :

1

c
∂tIν(Ω) + Ω.∇Iν(Ω) = Sν − (σa

ν + σd
ν)Iν(Ω)

+
σd

ν

4π

∫

S2

pν(Ω
′.Ω)Iν(Ω

′)dΩ′dν,
(1.9)

where σa
ν and σd

ν are respectively the absorption and scattering opacities, pν is the
scattering probability and Sν is the emission source term. As mentioned earlier, in
the case of a local thermal equilibrium, this source term can be expressed thanks to
Planck’s blackbody function as :

Sν = σe
νBν(T ), (1.10)

where σe
ν is the emission opacity and Bν(T ) is defined by (1.2).

This RTE actually reveals to be too sophisticated to be utilised in its form
(1.9) in our context, where a coupling to hydrodynamic phenomena is needed. The
solution we have at our disposal is then to use approximate models of the RTE.
We then have to choose an appropriate radiative model. In the applications we
mentionned and that we are aiming to simulate, very diverse propagation regimes
can be encountered. The radiative model should be chosen carefully so that it is
appropriate for our applications.

In order to justify the choice of the model we make, let us specify the two limit
regimes we have to deal with for our dedicated applications. When the opacity
tends to zero, the photons are not absorbed by the matter, and then travel in free
streaming. The associated propagation regime in the limit of a zero opacity is a
transport regime. On the other hand, when the mean free path of the photons is
short, the opacity tends to infinity. It is known that in this opaque medium limit, the
matter temperature can be approximated by the solution of an asymptotic model
called equilibrium diffusion equation (see Mihalas [34] and Pomraning [36]). We
therefore need to choose an approximate model that solves those two limit regimes :
transport and diffusion. More often, the proposed models are able to deal properly
with the free streaming regime, whereas it is more tricky to solve appropriately the
diffusion regime.

Let us now make an overview of the methods available so far. In fact, if we first
consider the microscopic methods, we can cite the statistical method known as the
Monte-Carlo method. Like the direct methods, it looks at groups of photons. From a
number of directions and frequencies defined beforehand, the direction and frequency
of the group of photons we are looking at is then randomly set. This group of photons
then interacts with the matter and travels through it. This method works quite well
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in transparent medium, where the opacity is close to zero. However, a solution is
longer to obtain in opaque mediums. This is related to the optical thickness of the
medium, indeed, the mean free path of the photons being very short, the transfer
of the photons from point to another involves even more processes as the mean free
path is short. This makes these microscopic methods not easily applicable in opaque
mediums, even if they are quite efficient in the transport regime.

The next alternative we mention here are macroscopic models obtained from the
integration of the RTE over frequencies and directions. They are often used in order
to perform cheap resolutions from a computational point of view.

1.3 Macroscopic models

Using macroscopic equations in fluid mechanics through the moments method
has been suggested by Grad [24] in 1949. He proposed to introduce unknowns such
as the stress tensor and the heat flux. They are called moment models as they
involve the moments of the radiative intensity I such as the radiative energy ER,
the radiative flux FR and the radiative pressure PR. These moments models actually
focus on the energy balance. Then, the model to use only depends on time and space
parameters, and not anymore on direction and frequency parameters. An appropriate
closure is needed for the moments system derived from Boltzmann’s equation to be
hyperbolic.

Let us assume the RTE with no scattering source term, and a frozen flow in
Local Thermal Equilibrium. In fact, radiative energy is not conserved so we choose
to couple the radiative and matter energies to obtain a conserved total energy. We
describe radiative transfer and its interaction with matter through the following
equations :

1

c
∂tI + Ω.∇I = σ (Bν(T ) − I) , (1.11)

∂t (ρCvT ) = −
∫ ∞

0

∫

S2

σ (Bν(T ) − I) dΩdν, (1.12)

where T is the matter temperature, ρ is the density, and Cv is the specific heat
at constant volume. The term σ (Bν(T ) − I) sets a balance between the photons
emission and absorption, σ being the absorption opacity.

Given the definition of the radiative energy and the radiative flux as the first
two moments of the radiative intensity, the non-dimensional radiative flux is defined
as : f = ‖FR‖ /cER where ‖·‖ is the euclidian norm. Let us remind that, to verify
the limited flux property, this non-dimensional flux must be such that :

f ≤ 1. (1.13)

Note that Planck’s function, given by (1.2), has its energy expressed in terms of
the temperature as :

1

c

∫ ∞

0

∫

S2

Bν(T )dΩdν = aT 4, (1.14)
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where the coefficient a is given by a = 8π5k4

15h3c3
. The coefficient a is usually written

as 4σR

c
where σR is Stefan-Boltzmann’s constant. Planck’s function being isotropic,

its radiative flux is equal to zero. Radiative equilibrium is indeed characterised by a
zero radiative flux and a radiative energy equal to aT 4. While the radiative energy
is defined by :

ER = aT 4
R, (1.15)

where TR is the radiative temperature, it is clear that in radiative equilibrium condi-
tions TR = T .

Proposition 1. The total energy of a radiating gas is conserved, that is to say :

∂t(ER + ρCvT ) + div(FR) = 0. (1.16)

Proof. Let us start with Equation (1.11) and integrate over directions and fre-
quencies :

〈1
c
∂tI + Ω.∇I〉 = 〈σ (Bν(T ) − I)〉. (1.17)

And with Ω.∇I = div(ΩI) − Idiv(Ω) where div(Ω) = 0, it comes :

∂tER + div(FR) = 〈cσ (Bν(T ) − I)〉. (1.18)

Meanwhile, from Equation (1.12), we have :

∂t(ρCvT ) = −〈cσ (Bν(T ) − I)〉. (1.19)

Now, adding up the two Equations (1.18) and (1.19), we obtain (1.16). The proof is
thus achieved. �

Now, let us write the moments system obtained in the grey case from the inte-
gration of the Radiative Transfer Equation (1.9) where the first three moments of
the radiative intensity (1.4) intervene. We have :







∂tER + div(FR) = cσ(aT 4 − ER),

∂tFR + c2div(PR) = −cσFR,

∂t(ρCvT ) = −cσ(aT 4 − ER).

(1.20)

From this system, there exist many possibilities in the choice of the closure hypo-
thesis. This choice is indeed important as it determines the various properties of the
model, its capabilities and failures. We present three of the main models that are
usually used.
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1.3.1 Diffusion models

In the case of applications where diffusion is the main propagation regime, so
called ”diffusion models” are more often used. Diffusion models are an alternative
where the Radiative Transfer Equation is assimilated to a parabolic equation. This
method is applied in optically thick cases, radiative equilibrium conditions are then
assumed and Rosseland’s limit in such diffusion regimes is considered. In this model,
we only consider the evolution equation of the radiative energy. To solve it, we
express the radiative flux as a function of the radiative energy. For that, we make
the assumption of a continuous regime in the evolution equation of the radiative
flux in (1.20). It comes :

c div(PR) = −σFR. (1.21)

Next, we define the closure relation based on the fact that in the diffusive regime,
the pressure is isotropic and :

PR =
ER

3
I, (1.22)

where I is the identity matrix.
Coming back to our diffusion model, and replacing the expression of PR in (1.21),

we obtain a relation between the radiative flux and the radiative energy :

FR = − c

3σ
∇ER. (1.23)

Replacing (1.23) in the radiative energy evolution equation, we obtain the following
diffusion equation :

∂tER − div
(

− c

3σ
∇ER

)

= cσ(aT 4 − ER). (1.24)

A good point for this method is that it is obviously cheap from a numerical point
of view, and it is then widely used when coupling radiative transfer to any other
phenomenon (hydrodynamic, chemistry ... ). However, one must keep in mind that
it is based on the hypothesis of an isotropic radiative pressure tensor in the diffusive
limit. This method is then not adapted to transport regimes.

Moreover, from Equation (1.23), the radiative flux being proportional to the
radiative energy, it is not limited by construction, which is contradictory with the
radiative flux definition (it can not propagate faster than the speed of light). Some
method have been developed to solve this issue where a multiplication factor is
used, called ”flux limiter”. Although these methods are not yet good enough in the
transport regime.

1.3.2 The P1 model

In order to get rid of the disadvantages of the diffusion models, the P1 model
has been developed. The main difference with diffusion models is that we conserve
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the radiative flux evolution equation, while we are still using an isotropic radiative
pressure tensor.

Indeed, the P1 system uses the function I(T ) = Bν(T )(α + ~β.Ω) where the
condition I ≥ 0 is not always verified, and the flux limitation property is not ensured.
Let us express the various moments of the radiative intensity. We have :

ER = 〈I〉 =
1

c

∫ ∞

0

Bν(T )dν ×
∫ 1

−1

(α + β µ)dµ = 2αaT 4, (1.25)

FR = 〈cµI〉 = caT 4 ×
[

αµ2/2 + βµ3/3
]1

−1
= caT 4 2β

3
, (1.26)

where µ = cos(Ω) is in (−1, 1). It is then possible to write :

I(T ) =
Bν(T )

2caT 4
(cER + 3µFR). (1.27)

And then we write the radiative pressure as :

PR =
〈

µ2I
〉

=
1

2c

∫ 1

−1

(cER + 3µFR)µ2dµ =
1

2c

[

cERµ3/3
]1

−1
. (1.28)

The radiative pressure can therefore be expressed as :

PR =
ER

3
, (1.29)

that is to say, as a function of the radiative energy.
Taking into account the two evolution equations allows a better treatment of the

flux limitation property. However, the closure relying on a diffusion approximation,
it must be carefuly used in transport regimes. It is advised to use the P1 model
mainly in continuous regimes, when the medium is opaque and close to radiative
equilibrium.

1.3.3 The M1 model

A further improved moment model is the M1 model developped by Dubroca and
Feugeas [17] where the closure hypothesis is more general. This M1 model is obtained
from a local entropy dissipating condition. This model conveniently appears to fulfill
our requirements as soon as it is able to deal properly with both transport and
diffusion regimes. Indeed it remains consistent in these two regimes, and particularly,
it verifies the radiative energy positivity condition and the radiative flux limitation
property. Important radiative non-equilibrium can be dealt with thanks to this M1

model. And this M1 model is therefore chosen for the test cases of varying opacities
we have to compute.

As presented in the general case of the moment models, the M1 model is obtained
when multiplying Equation (1.11) by the vector m = (1 cΩ)T and integrate over
the directions and frequencies. It writes :

{

∂tER + div(FR) = cσ(aT 4 − ER),

∂tFR + c2div(PR) = −cσFR,
(1.30)
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where ER, FR and PR are the first three moments of the radiative intensity defined
by (1.4). We remind that the radiation state vector (ER,FR) in R

3 is expected to
be in the following radiation admissible space :

A = {(ER,FR) ∈ R
3; ER ≥ 0, f ≤ 1}. (1.31)

The M1 model is based on System (1.30), however some closure hypothesis needs
to be made for the unknown radiative pressure to be expressed as a function of the
radiative energy and flux. As for the M1 model, it is obtained thanks to the minimum
entropy principle : the chosen radiative intensity is the one that makes the smallest
radiative entropy, with the associated radiative energy and radiative flux :

H(I) = min
I≥0

{H(I) = 〈h?(I)〉, 〈I〉 = ER and c〈ΩI〉 = FR} , (1.32)

where h? is the microscopic entropy.
Amongst the possible states, the Planck’s function B(T ) is the most likely as it

minimises the entropy H.
Note that we are working under the constraint imposing that the radiative in-

tensity of the model remains positive.

Proposition 2. The distribution

I = B(~α) =
2hν3

c2

[

exp

(

hν

kT
~α · m(Ω)

)

− 1

]−1

(1.33)

is the minimum of the radiative entropy under the constraint of an appropriate
reconstruction of the considered moments model :

H?(B) = min
I≥0

{

H?(I) = 〈mI〉 = (ER,FR)T
}

, (1.34)

where ~α ∈ R
M is the vector of Lagrangian multiplicators and (ER,FR)T is the mo-

ments vector.

Proof. The following minimisation problem with equality constraint :

min
I≥0

{

H?(I) = 〈mI〉 = (ER,FR)T
}

, (1.35)

is equivalent to the determination of the following Lagrangian point :

L(I, ~α) = H?(I) − ~α · ((ER,FR)T − 〈mI〉), (1.36)

where ~α ∈ R
M is the vector of Lagrangian multiplicators. These multiplicators are

fully defined from the constraint. The constraint 〈mI〉 = (ER,FR)T is realised by
definition, the solution B of this minimisation problem has to satisfy, for all I ≥ 0 :

∂BL(B, ~α)(I) = 〈(∂Bh?(B) + ~α · m)I〉 = 0,

= 〈(∂nh?(n)
c2

2hν3
+ ~α · m)I〉 = 0,

= 〈(− k

hcν
ln(1 +

1

n
) + ~α · m)I〉 = 0,

(1.37)
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where n is the population number density. The solution of this equation is also
solution of :

− k

hcν
ln(1 +

1

n
) + ~α · m)I = 0, (1.38)

that is to say, replacing ~α with a normalised multiplicator ~α :

B =
2hν3

c2

[

exp(
hν

kT
~α · m) − 1

]−1

, (1.39)

where ~α ∈ R
M is determined with the constraint 〈mI〉 = (ER,FR)T , then :

(ER,FR)T = 〈mB(~α)〉 =
1

c

∫ ∞

0

∫

S2

2hν3

c2
m

[

exp(
hν

kT
~α · m) − 1

]−1

dνdΩ. (1.40)

�

Then, while the P1 system uses the function I(T ) = B(T )(α+ ~β.Ω), let us write
the following function, equivalent to (1.33), that is used in the M1 model :

I(T ) =
2hν3

c2

[

exp

(

hν

kT
(α − ~β.Ω)

)

− 1

]−1

, (1.41)

where α and ~β are Lagrangian multiplicators to be determined. We now therefore
have at our disposal a system which is hyperbolic symmetrizable and minimises the
entropy (see [16]).

At this point of the main variables presentation, let us introduce the Eddington
factor χ (see [33]) :

χ =
3 + 4f 2

5 + 2ξ
, (1.42)

where ξ =
√

4 − 3f 2. And the Eddington tensor is defined such that :

PR = DRER, (1.43)

where :

DR =
1 − χ

2
Id +

3χ − 1

2

f

f
⊗ f

f
. (1.44)

Introducing the Eddington tensor, the M1 model can be written :







∂tER + div(FR) = cσ(aT 4 − ER),

∂tFR + c2div(DRER) = −cσFR,

∂t(ρCvT ) = −cσ(aT 4 − ER),

(1.45)
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where σ is a constant opacity over the whole spectrum, so it does not depend on
the frequency ν. The third equation is representative of the interaction of radiation
with the matter.

An important property of the M1 model is that it recovers the equilibrium diffu-
sion regime. Indeed, assuming that the opacity is large, we can rescale the M1 system
so that the Knudsen number ε appears in front of the time derivative term (long
time approximation) and in the relaxation term (near equilibrium hypothesis) :

ε∂tER + div(FR) =
cσ

ε
(aT 4 − ER), (1.46)

ε∂tFR + c2div(PR) = −cσ

ε
FR, (1.47)

ε∂t(ρCvT ) = −cσ

ε
(aT 4 − ER). (1.48)

An asymptotic expansion around ε = 0 gives the usual near equilibrium behavior. If
we set T = T0 + εT1 + ε2T2 + ..., we get at the leading order, from Equations (1.46)
and (1.47), that :

E0 = aT 4
0 , (1.49)

F0 = 0. (1.50)

At the next order, using Equation (1.47), the flux can be written as :

F1 = − c

σ
div(P0) = − c

3σ
a∇T 4

0 . (1.51)

Finally, summing Equation (1.46) and (1.48) at the following order leads to :

∂t(ρCvT0 + aT 4
0 ) − div(

4cT 3
0

3σ
∇T0) = 0, (1.52)

which is the equilibrium diffusion equation.
We have now presented the M1 model in its general form, as well as the associated

radiative variables. The work realised in this thesis consists in solving this system
as much precisely as possible. This hyperbolic system with a relaxation source term
is solved through a finite volume scheme.

1.4 Structure of the macroscopic M1 system

From the construction of the M1 system, we know that it is hyperbolic symme-
trizable. For the general two dimensional form, let us introduce the notations :

W =





E
Fx

Fy



 , F =





Fx

c2Pxx

c2Pxy



 , G =





Fy

c2Pxy

c2Pyy



 , (1.53)

and the matrices :

MA = ∂WF , MB = ∂WG. (1.54)
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We then express the Jacobian matrices of the F and G fluxes. As the system ∂tW +
∂WF + ∂WG = 0 is invariant through rotation, we can restrain the study to the
x-direction. The matrice MA contains the following coefficients :

MA =







0 1 0
(2f2−3f2

y )(χ−fχ′)+f2
y

2f2 −fxf2
y

2f4 θ + fxχ′
f

f2
xf2

y

2f4 θ − f2
y χ′

2f
fxfy

2f2 (3χ − 3fχ′ − 1) f2
xfy

2f4 θ + fy

2f2 (3χ − 1)
fxf2

y

4f4 θ + fx

2f2 (3χ − 1)






,(1.55)

where θ = 2 + 3fχ′ − 6χ. And the matrix MB is of the same form with fx replacing
fy. The eigenvalues of matrix MA are :

λ± = c





fx

ξ
±

√
2
√

(ξ − 1)(ξ + 2)(2(ξ − 1)(ξ + 2) + 3f 2
y )

√
3ξ(ξ + 2)



 ,

λ0 = c
(2 − ξ)fx

f 2
.

(1.56)

We do not specify here the eigenvectors for the formulas are too large in the formu-
lation known so far.

In Figure 1.2, the dimensionless eigenvalues (i.e. λ/c) of the Jacobian matrix are
given as functions of fx, respectively for fy = 0 and fy =

√
3/2. Let us remark that

Figure 1.2 – Eigenvalues for the hyperbolic M1 system

these eigenvalues are equal to λ± = ±c/
√

3 and λ0 = 0 at the equilibrium (when
fx = fy = 0). It illustrates well that the isotropic emission of photons is predominant
at the equilibrium. On the contrary, in the case of a strong non-equilibrium (when
|fx| tends to 1), the eigenvalues tend to the speed of light c. In this situation, the
photons then all travel at the same speed and towards the same direction (or that
the underlying radiative intensity tends towards a Dirac which is called the free
streaming regime).

Note that the characteristic fields associated with the eigenvalues λ± are genui-
nely nonlinear as ∇Wλ±.r± 6= 0 where r± are the corresponding eigenvectors. And
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the characteristic field associated with λ0 is linearly degenerate because ∇Wλ0.r0 =
0. These three waves generated by the system are either rarefaction or shock waves
in the case of nonlinear fields, either contact discontinuities for linearly degenerate
fields. The interest of linearly degenerate fields is that the Riemann invariants are
constant through the contact discontinuity.

Definition 1. A Riemann invariant associated with the j th field is a function ϕ(W )
such that :

∇ϕ(W ).rj = 0, (1.57)

where rj is the jth eigenvector of the Jacobian matrix.

The formulary that we detail below will be useful in the following. The Lagran-
gian multiplicators α and ~β are used in most formulations and so we here specify
them.

Let us start from the relation (1.41) where Lagrangian multiplicators are involved
in the radiative intensity expression. We integrate the radiative intensity with (1.3)
in order to obtain its three radiative moments. The radiative energy, the radiative
flux and radiative pressure tensor are therefore determined as functions of α and ~β :

ER =
aT 4

α4

3 + β2

3(1 − β2)3
,

FR =
caT 4

α4

4~β

3(1 − β2)3
,

PR =

(

1 − β2

3 + β2
Id +

3 + β2

4
f ⊗ f

)

ER,

(1.58)

where f = FR

cER
. Identifying the radiative pressure expression with the one using the

Eddington tensor, we obtain ~β as a function of f :

~β =
3χ − 1

2

f

f 2
=

(2 − ξ)f

f 2
. (1.59)

Therefore it comes the following relation between the contact wave speed and ~β :

λ0 = cβ. (1.60)

From (1.58) and the definition of f , we can also write the limited flux as :

f =
4~β

4 + β2
. (1.61)

The first step of the study reported here is realised with the M1 system (1.30)
reduced to its conservative form. The source terms will be taken into account from
Section 3.2 through the asymptotic preserving procedure. Let us then write System
(1.30) without the source terms :

{

∂tER + div(FR) = 0,

∂tFR + c2div(PR) = 0.
(1.62)
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Inspired by Després [11], we choose to introduce the variable Π defined as :

Π =
1 − β2

3 + β2
ER, (1.63)

so that it comes the following expression for the radiative pressure PR :

PR =
~β ⊗ FR

c
+ Π. (1.64)

And we can write the second equation in a form similar to the momentum conser-
vation equation, so it comes :







∂tER + div(FR) = 0,

∂tFR + c2div(
~β ⊗ FR

c
+ Π) = 0.

(1.65)

As we will first work with the M1 system without considering the source terms,
the 1D system will be written as :







∂tE + ∂xFx = 0,
∂tFx + c2∂xPxx = 0,
∂tFy + c2∂xPxy = 0,

(1.66)

where Pxx = βxFx

c
+ Π, and Pxy = βxFy

c
.

Let us note that in a first step, in order to simplify the study and scheme deve-
lopment, we plan to look at the subsystem :

{

∂tE + ∂xFx = 0,
∂tFx + c2∂xPxx = 0,

where only the two nonlinear fields are involved (the stationary contact is not part
of the structure anymore). Once the scheme is constructed with such a simplified
version, we will consider the full 1D system (1.66). And then, the 2D scheme will be
quite straightforward as it acutally sums up the 1D calculations in each direction.



Chapitre 2

Numerical approximation of the

monodimensional M1 model

2.1 Introduction

In the precedent chapter, we have presented an overview of radiative transfer
and its applications, and have introduced the M1 model. This model has several
advantages of interest for our purposes, unlike the statistical (Monte-Carlo) or direct
method, and even the diffusion models. Indeed, the microscopic approaches, such as
the statistical and direct methods, aim to look at groups of photons which direction
and frequency are randomly set. The mean free path of the photons until they are
absorbed or scattered is related to the medium opacity. Considering that it is longer
for a photon to go from one point to an other in an optically thick region, it then
turns out that computations with these microscopic methods are longer in opaque
mediums than in transparent mediums. These microscopic methods are then not
profitable for our applications that not only involve optically thin mediums. And
as for the coupling with hydrodynamic codes, it is even more expansive from a
computational point of view as the radiation transport routine is called several
times (this phenomenon being faster than the hydrodynamic phenomena).

The alternative to perform cheaper calculation is macroscopic methods. There
exist some diffusion models but they are indeed pertinent only in the diffusion re-
gime, which is not convenient in our case. Other possible macroscopic models are
moments models obtained after integration of the Radiative Transfer Equation over
directions and frequencies. The first one is the P1 model. However, this model is not
behaving well enough in the transport regime. A solution could have been to couple
these models that deal properly with diffusion regimes to a microscopic method.
This coupling remains too much complex to realise, and in addition the transition
regime between diffusion and transport would not be properly ensured, and the
computational cost would remain too much important. The M1 model is interesting
from this point of view : it is accurate enough over a wide range of radiation transfer
regimes which is crucial for our applications.

The M1 model introduced by Dubroca and Feugeas [17] preserves several crucial
properties of the radiative transfer equation such as the energy positiveness, the flux

29



30 NUMERICAL APPROXIMATION IN ONE DIMENSION

limitation and the conservation of the total energy. When approximating solutions
for this hyperbolic system with source terms, it is important to ensure the preser-
vation of these properties. In this section, we focus on the derivation of numerical
schemes meeting this requirement.

Considering a proper Godunov method remains so far out of reach for the M1

model as the Riemann problem is not known yet. The use of approximate methods
is then mandatory. Schemes are developed, each involving a number of constraints.

Dubroca and Feugeas [17] first proposed the use of a standard HLL scheme (see
Harten, Lax and Van Leer [27]). The main benefit of this numerical approximation is
an easy preservation of the admissible states for a viscous discretisation. But because
this method does not take the contact wave into account, and averages the solution
over a single intermediate state, it sometimes remains too much diffusive (see [10]
and [6] where the authors modify the HLL Riemann solver to introduce the source
terms) and needs arose for a more accurate approximation of the numerical solution.
We then undertook to build new solvers able to capture the contact wave, such as
a relaxation scheme, and an HLLC type scheme. Even if the resulting relaxation
scheme does not turn out to be accurate enough, it helped in the suggestion of
the appropriate linearisations for the construction of an HLLC type scheme. This
HLLC scheme gives results with a good accuracy. In addition, it allows to cover
the asymptotic diffusion regime in the limit of large opacities and then satisfies the
asymptotic preserving property of the M1 model.

A full two dimensional study will be done in the following chapters. For now, and
for the sake of simplicity in the numerical tool development, a one space dimension
study is realised. That is to say, in this chapter, we will consider the following 1D
subsystem of (1.66) without source terms :

{

∂tE + ∂xFx = 0,
∂tFx + c2∂xPxx = 0.

(2.1)

And after an introduction about the finite volume method, the relaxation and HLLC
schemes are successively developed and presented.

2.2 Finite volume method

To present the finite volume procedure, let us use as an example the following
scalar conservation law in differential form :

∂tu + ∂xf(u) = 0, (2.2)

where f(u) is the flux function. The integral formulation of the conservation law
may be written :

∫ x2

x1

u(x, t2)dx =

∫ x2

x1

u(x, t1)dx +

∫ t2

t1

f(u(x1, t))dt −
∫ t2

t1

f(u(x2, t))dt. (2.3)

This integral formulation will allow us to design numerical methods for our specific
needs. Indeed, the integral formulation has the advantage to allow an extension of
the class of admissible solutions to include discontinuous solutions.
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Figure 2.1 – Discretisation domain

Let us first set the working space sketched as in Figure 2.1 where we aim to work
in the cell (control volume) Ci = (xi− 1

2
, xi+ 1

2
) × (tn, tn+1) where ∆x and ∆t are set

constant. The discrete times are defined by : tn = n∆t, n ∈ N. Working in such a
discretised domain, the solution u(x, t), x ∈ R, t ≥ 0, is discretised over this domain
in order to be evaluated.

At the date t = 0, the approximation of the initial data is expressed as :

u0
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

u(x, 0)dx.

Then, at the date tn, we assume as known the piecewise constant approximation of
u(x, t) denoted uh(x, tn), and defined by :

uh(x, tn) = un
i if x ∈ (xi− 1

2
, xi+ 1

2
). (2.4)

Now, this approximate solution is evolved in time to the date tn + ∆t to define
uh(x, tn + ∆t). To evaluate the sequence un+1

i we consider a Godunov approach.

It is a conservative method, where the intercell numerical fluxes (approximations
of the physical fluxes) are computed using solutions of local Riemann problems. The
successive Riemann problems do not interact as long as ∆t is small enough. This is
ensured with an appropriate determination of the time step given by the following
CFL like condition :

∆t ≤ 1

2

∆x

λn
max

, (2.5)

where λn
max = maxi |f ′(un

i )|. And we are then able to solve these successive Riemann
problems for a small enough time step ∆t, in order to evolve the solution to the time
tn+1.
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Indeed, let us assume a pair of constant states (un
i , un

i+1) separated by a discon-
tinuity at the boundary xi+ 1

2
. The local Riemann problem is then defined as :



















∂tu + ∂xf(u) = 0,

u0(x) =

{

un
i if x < xi+ 1

2
,

un
i+1 if x > xi+ 1

2
.

(2.6)

of which we need to find the solution at ∆t. The exact solution is known and we
note it

uR

(

x − xi+ 1
2

∆t
; un

i , u
n
i+1

)

.

Under the CFL like condition (2.5), we define the juxtaposition of the non interacting
Riemann solution as follows :

uh(x, tn + ∆t) = uR

(

x − xi+ 1
2

∆t
; un

i , u
n
i+1

)

if x ∈ (xi, xi+1).

The solution un+1
i is obtained as the L2-projection of the solutions of non-interacting

Riemann problems. This is written :

un+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

uh(x, tn + ∆t)dx. (2.7)

We now use the integral form (2.3) of the conservation law to write :

t n

x
i+3/2

x

un

i

x
i−1/2

x
i+1/2

u n

i+1

t n +   t

Figure 2.2 – Riemann problems

∫ x
i+1

2

x
i− 1

2

uh(x, tn + ∆t)dx =

∫ x
i+1

2

x
i− 1

2

uh(x, tn)dx

+

∫ tn+∆t

tn
f(uh(xi− 1

2
, t))dt −

∫ tn+∆t

tn
f(uh(xi+ 1

2
, t))dt,

(2.8)
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and, using the cell averages definitions given by (2.7), it comes :

un+1
i = un

i +
∆t

∆x

(

fi− 1
2
− fi+ 1

2

)

, (2.9)

where the numerical flux is fi+ 1
2

= f(uh(xi+ 1
2
, tn + ∆t)).

Godunov’s scheme is the standard basis of finite volume methods, leading to
robust and stable schemes. In our case, as we do not know the exact solution of the
Riemann problem , we plan to use approximate methods to approximate the weak
solutions of the M1 hyperbolic system. The Harten-Lax-Van Leer [27] scheme is a
classical approximate method that we present in the next section.

2.3 The HLL scheme

The so-called HLL scheme has been developed by Harten, Lax and Van Leer [27]
with the purpose of computing the Godunov-type flux in order to obtain an approxi-
mate solution for the Riemann problem. With this approach, introducing an appro-
priate linearisation, the solution of the Riemann problem is approximated. Starting
from a two waves configuration separating three constant states, and assuming the
wave speeds are known, the application of the integral form of the conservation laws
allows to approximate the flux. The resulting HLL Riemann solvers constitute very
efficient and robust approximate methods.

This HLL scheme was so far the only scheme at our disposal for solving System
(2.1). It is actually quite straightforward to apply to radiative transfer. We will here
sketch its principle in order to set the starting point of the study that follows.

General relations. The approximate solution of the Riemann problem is defined
as :

U(x, ∆t) =







UL if x < bL∆t,
U? if x ∈ (bL∆t, bR∆t),
UR if x > bR∆t,

(2.10)

where the wavespeeds bL and bR verify bL < bR. For the sake of simplicity, and for
the rest of the study, we choose to work with bL < 0 and bR > 0.

The HLL Riemann solver involves a intermediate region that consists of a single
constant state. The U ? constant state has its expression obtained from the integral
form of the conservation law in the control volume (x1, x2)×(0, ∆t) (see Figure 2.3),
where x1 < x2. It comes :

∫ x2

x1

U(x, ∆t)dx =

∫ x2

x1

U(x, 0)dx +

∫ ∆t

0

F (U(x1, t))dt −
∫ ∆t

0

F (U(x2, t))dt.(2.11)

Over the interval (0, ∆t), the function such that t −→ F (U(xi, t)) is constant and
we have :

F (U(x1, t)) = F (UL) and F (U(x2, t)) = F (UR).
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∆t

0x1 x2bL∆t bR∆t

UL UR

U?

bL bR

t

x

Figure 2.3 – HLL scheme - Riemann problem

In order to simplify the notations, we note FL = F (UL) and FR = F (UR), and it
comes :

∫ x2

x1

U(x, ∆t)dx = x2UR − x1UL + ∆t(FL − FR). (2.12)

Let us split the integral on the left-hand side of (2.11) and then evaluate the first
and third terms. With x1 < bL and x2 > bR so that the exact dependance cone is
included into the control volume, we obtain :

∫ x2

x1

U(x, ∆t)dx =

∫ bR∆t

bL∆t

U(x, ∆t)dx + (bL∆t − x1)UL + (x2 − bR∆t)UR. (2.13)

The relations (2.12) and (2.13) now give :

∫ bR∆t

bL∆t

U(x, ∆t)dx = ∆t(bRUR − bLUL + FL − FR). (2.14)

We remind that U(x, ∆t) is constant equal to U ? over (bL∆t, bR∆t). we can then
write :

∫ bR∆t

bL∆t

U(x, ∆t)dx = ∆t(bR − bL)U?. (2.15)

And thanks to (2.14), we obtain :

U? =
bRUR − bLUL

bR − bL
− 1

bR − bL
(FR − FL). (2.16)

Now let us apply the above procedure to the control volume (x1, 0)× (0, ∆t) (see
Figure 2.3), we thus have :

∫ 0

bL∆t

U(x, ∆t)dx = −∆tbLUL + ∆t(FL − F0L), (2.17)
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where F0L is the flux F (U) at x = 0. Equation (2.17) leads to :

F0L = FL − bLUL − 1

∆t

∫ 0

bL∆t

U(x, ∆t)dx, (2.18)

and in the same way, when working in the control volume (0, x2)× (0, ∆t), we have :

F0R = FR − bRUR +
1

∆t

∫ bR∆t

0

U(x, ∆t)dx. (2.19)

Let us now substitute the integrand in (2.18) and (2.19) by its expression (2.15)
involving U?. We thus obtain a flux continuity property, which is :

F0L = F0R = F̃ .

And we replace the fluxes F0L and F0R at x = 0 by the corresponding intercell flux
F̃ , we obtain the two relations :

F̃ = FL + bL(U? − UL),

F̃ = FR + bR(U? − UR),
(2.20)

which are similar to the Rankine-Hugoniot relations. The HLL Riemann solver is
often assimilated to the direct application of the Rankine-Hugoniot equations. From
System (2.20) involving two equations and two unknowns, it is straightforward to
derive the expression for the intermediate state U ? and the intermediate flux F̃ .

Now, from a known solution at the date tn, we obtain the solution at the date
tn+1 as the juxtaposition of the non interacting Riemann problems, and integrated
over the cell (xi− 1

2
, xi+ 1

2
) :

Un+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

U(x, tn + ∆t)dx. (2.21)

t n

x

i+1

n

x
i+1/2i−1/2

x

n

iUU
n

i−1

U
i+1/2U *

i−1/2

x
i

b b b b

*

U

i+1/2 i+1/2i−1/2 i−1/2
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Figure 2.4 – HLL scheme
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When working in a discretised domain such as displayed in Figure 2.1, the final
scheme may be written as :

Un+1
i = Un

i − ∆t

∆x
(F̃i+ 1

2
− F̃i− 1

2
), (2.22)

where, according to (2.20) :

F̃i+ 1
2

=
b
i+ 1

2
R F (Ui) − b

i+ 1
2

L F (Ui+1)

b
i+ 1

2
R − b

i+ 1
2

L

+
b
i+ 1

2
R b

i+ 1
2

L

b
i+ 1

2
R − b

i+ 1
2

L

(F (Ui+1) − F (Ui)) , (2.23)

and :

U?
i+ 1

2
=

b
i+ 1

2
R Ui+1 − b

i+ 1
2

L Ui

b
i+ 1

2
R − b

i+ 1
2

L

− 1

b
i+ 1

2
R − b

i+ 1
2

L

(Fi+1 − Fi). (2.24)

Application to radiative transfer. Making use of the preceding relations for
the HLL Riemann solver, let us write the Rankine-Hugoniot like relations (2.20)
through the numerical waves of speed bL and bR. These relations are :

{

F̃ − F(UL) = bL(U? − UL),

F̃ − F(UR) = bR(U? − UR).
(2.25)

From them, we can easily derive expressions for U ? and F̃ .

U? =
bRUR − bLUL

bR − bL

− 1

bR − bL

(F(UR) − F(UL)),

F̃ =
bRF(UL) − bLF(UR)

bR − bL

+
bRbL

bR − bL

(UR − UL).

(2.26)

Note that as in any approximate Riemann solver we have F̃ 6= F(U?). As they will
be used later, we explicitly write here the HLL [27] approximate solutions in the
star region and the corresponding flux functions :

E?
HLL =

bRER − bLEL

bR − bL
− 1

bR − bL
(Fx,R − Fx,L),

F ?
x,HLL =

bRFx,R − bLFx,L

bR − bL

− c2

bR − bL

(Pxx,R − Pxx,L),

F̃x,HLL =
bRFx,L − bLFx,R

bR − bL
+

bRbL

bR − bL
(ER − EL),

P̃xx,HLL =
bRPxx,L − bLPxx,R

bR − bL
+

bRbL

c2(bR − bL)
(Fx,R − Fx,L).

(2.27)

We now write the full HLL scheme, we can write En+1
i and F n+1

x,i such as :











En+1
i = En

i − ∆t

∆x
(F̃

i+ 1
2

x,HLL − F̃
i− 1

2
x,HLL),

F n+1
x,i = F n

x,i −
∆t

∆x
(P̃

i+ 1
2

xx,HLL − P̃
i− 1

2
xx,HLL),

(2.28)
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where :


























F̃
i+ 1

2
x,HLL =

b
i+ 1

2
R F n

x,i − b
i+ 1

2
L F n

x,i+1

b
i+ 1

2
R − b

i+ 1
2

L

+
b
i+ 1

2
R b

i+ 1
2

L

b
i+ 1

2
R − b

i+ 1
2

L

(En
i+1 − En

i ),

P̃
i+ 1

2
xx,HLL =

b
i+ 1

2
R P n

xx,i − b
i+ 1

2
L P n

xx,i+1

b
i+ 1

2
R − b

i+ 1
2

L

+
b
i+ 1

2
R b

i+ 1
2

L

c2(b
i+ 1

2
R − b

i+ 1
2

L )
(F n

x,i+1 − F n
x,i),

(2.29)

and with the CFL like condition :

∆t

∆x
max
i∈Z

(bi+ 1
2
) ≤ 1

2
. (2.30)

We will see later that it is more convenient to work with the constant wave speeds
bL = −c and bR = +c. The scheme then writes as (2.28) where the intermediate
fluxes are simply written as :















F̃
i+ 1

2
x,HLL =

F n
x,i + F n

x,i+1

2
− c

2
(En

i+1 − En
i ),

P̃
i+ 1

2
xx,HLL =

P n
xx,i + P n

xx,i+1

2
− 1

2c
(F n

x,i+1 − F n
x,i),

(2.31)

and with the CFL like condition :

c∆t

∆x
≤ 1

2
. (2.32)

This HLL scheme is stable but provides us with a quite viscous solution in the
case of radiative transfer. The numerical viscosity comes from the presence of a single
intermediate state. This property and the results obtained in numerical experiments
(see Chapter 5) raise the need to have at our disposal a more accurate scheme.

These HLL schemes are indeed correct for many hyperbolic systems, however,
for systems involving contact waves in between the non-linear fields, this two-wave
assumption is not correct anymore. Indeed, when considering only two waves, an ave-
rage is performed and then implies imprecisions. The resolution of physical features
such as contact surfaces is therefore inaccurate. This will be clearly demonstrated
by the shadow cone test case in Section 5.3. In order to improve the numerical accu-
racy, in the following sections, we developed two schemes able to capture the existing
stationary contact wave. The first one is a relaxation-type scheme, and the second
one is an HLLC-type scheme. These methods allow us to integrate the solution over
two intermediate states and then to profit from a more accurate approximation of
the Riemann solution.

2.4 The relaxation scheme

Relaxation solvers have been developed and studied in the Euler case in [9], where
in particular Suliciu’s relaxation system is presented (see also [2], [13], [15], [30], [31], [29]
for more relaxation solvers for conservation laws).
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Our purpose here is to approximate the solutions of the conservative form of the
1D M1 model, where x-directed variables and matter interaction are not considered.
Let us remind this system :

{

∂tE + ∂xFx = 0,
∂tFx + c2∂xPxx = 0,

(2.33)

where :

Pxx =

(

1 − β2
x

3 + β2
x

+
3 + β2

x

4
f 2

)

E. (2.34)

The numerical method is expected to preserve the physical properties of the
model, and particular attention is paid to the stability of the scheme. Through an
adequate reformulation, the weak solutions of system (2.33) are approximated by
the weak solutions of a suitable system with singular perturbations.

2.4.1 Reformulation of the system

We decide to perform a reformulation, introducing new variables, allowing us to
work with a relaxation system similar to some well-known systems (see [9], [11] and
[12]).

Let us remind some relations associated to the selected M1 model. From the
model construction, the radiative energy E, radiative flux Fx and radiative pressure
tensor Pxx are function of some Lagrangian multiplicators such as βx. We have :

Fx =
4cE

3 + β2
x

βx,

Pxx =

(

1 − β2
x

3 + β2
x

Id +
3 + β2

x

4
f 2

)

E,
(2.35)

where the coefficient βx intervenes in (1.41), and f = 4βx

3+β2
x
.

Resting on the parallel with hydrodynamics inspired by Després [12], we propose
the following notations :

{

E = ρe,
Fx = ρv,

(2.36)

where e is a radiative energy per unit mass, v is the photon velocity, and ρ is an
arbitrary density to be defined. Let us introduce the variable Π set as :

Π =
E(1 − β2

x)

3 + β2
x

. (2.37)

It comes :

Pxx =
βxFx

c
+ Π. (2.38)
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It is then straightforward to write the relations :

{

ρv = cβx(ρe + Π),

Pxx =
ρvβx

c
+ Π.

(2.39)

With these notations, system (2.33) can be written as :

{

∂tρv + ∂x(ρvcβx + c2Π) = 0,
∂tρe + ∂xcβx(ρe + Π) = 0.

(2.40)

Some similarities with the Euler equations are here remarkable such as the variable
Π that appears to play the same role as the hydrodynamic pressure, and cβx reveals
to be the contact Riemann invariant like the velocity u in the Euler equations. It
then becomes evident that, with the notations (2.36) and the variable Π we have
introduced, we can make a parallel between the Euler system of equations and (2.40).
Note also that the velocity cβx and the pressure like Π are formally invariants across
the arbitrarily added wave (later on, when we will consider the full 1D system (1.66),
this Riemann solver with two intermediate states will help bringing more accuracy to
the scheme). Setting cβx = v, Π = p and c = 1, we get back to the Euler equations.

Let us remind the 1D Euler conservative system :







∂tρ + ∂xρv = 0,
∂tρv + ∂x(ρv2 + p) = 0,
∂tρE + ∂x(ρE + p)v = 0.

(2.41)

We make use of this analogy with the Euler system of equations, and with the
Suliciu model presented in [9], we propose an adequate relaxation model for (2.40).
As it is done with the Euler system, we aim to relax the non-linearities introduced
with the pressure Π, but also with the cβx velocity. The idea is actually to relax these
system non-linearities thanks to new unknowns governed by pertinent equations.

Let us first introduce the variable q that will relax to Π. It is then possible to
write the q relaxation equation :

∂tq + u∂xq +
a2

ρ
∂xu =

1

δ
(Π − q), (2.42)

which can also be written in the conservative form :

∂tρq + ∂x(ρqu + a2u) =
ρ

δ
(Π − q), (2.43)

where a ≥ 0 is a parameter to be determined, ρ ≥ 0 is a density to be defined, and
δ is a relaxation parameter.

Next, the cβx term is actually relaxed to a velocity u governed by the following
equation :

∂tρu + ∂x(ρu2 + q) =
ρ

δ
(cβx − u). (2.44)
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It comes the following model where ρ is not yet defined :























∂tρu + ∂x(ρu2 + q) =
ρ

δ
(cβx − u),

∂tρv + ∂x(ρvu + c2q) = 0,
∂tρe + ∂x(ρe + q)u = 0,

∂tρq + ∂x(ρqu + a2u) =
ρ

δ
(Π − q).

(2.45)

First, with the introduction of the variable V defined as V = v − c2u, we obtain
the following system :































∂tρu + ∂x(ρu2 + q) =
ρ

δ
(cβx − u),

∂tρV + ∂xρV u = −c2ρ

δ
(cβx − u),

∂tρe + ∂x(ρe + q)u = 0,

∂tq + u∂xq +
a2

ρ
∂xu =

ρ

δ
(Π − q).

(2.46)

Note that this obtained system is similar to the 2D Suliciu system for the Euler
equations as soon as ρ satisfies a relevant continuity equation :

∂tρ + ∂xρu = 0.

The full considered relaxation model is thus given by :







































∂tρ + ∂xρu = 0,

∂tρu + ∂x(ρu2 + q) =
ρ

δ
(cβx − u),

∂tρV + ∂xρV u = −c2ρ

δ
(cβx − u),

∂tρe + ∂x(ρe + q)u = 0,

∂tq + u∂xq +
a2

ρ
∂xu =

ρ

δ
(Π − q).

(2.47)

Lastly, in order to ease up the model analysis, we write System (2.47) in terms
of primitive variables. We introduce the internal energy per unit mass ε such that
e = ε + u2

2
. This enables us to write the conservative form of System (2.47). Then,

the relaxation system to be considered in the following model analysis is :















































∂tρ + ρ∂xu + u∂xρ = 0,

∂tu + u∂xu +
1

ρ
∂xq =

1

δ
(cβx − u),

∂tV + u∂xV = −c2

δ
(cβx − u),

∂tε + u∂xε +
q

ρ
∂xu = 0,

∂tq + u∂xq +
a2

ρ
∂xu =

1

δ
(Π − q).

(2.48)
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Let us define the relaxation primitive state vector as :

W = (ρ, u, V, ε, q).

This relaxation state vector W is expected to be in the following admissible space :

Ω = {(ρ, u, V, ε, q) ∈ R
5, ρ > 0, u ∈ R, V ∈ R, ε > 0, q ∈ R}. (2.49)

This relaxation state vector will be said to be at the equilibrium as soon as we have :

W = (ρ, u = cβx, V, ε, q = Π).

Indeed, formally, let δ tend to zero, then u tends to cβx and q tends to Π. Then,
from the equations governing ρv and ρe in System (2.40), we recover the equations
governing the radiative energy and the radiative flux.

2.4.2 Riemann problem

We here study the solutions of the Riemann problem without the source terms.
Let us consider the above System (2.48) without the source terms :











































∂tρ + ρ∂xu + u∂xρ = 0,

∂tu + u∂xu +
1

ρ
∂xq = 0,

∂tV + u∂xV = 0,

∂tε + u∂xε +
q

ρ
∂xu = 0,

∂tq + u∂xq +
a2

ρ
∂xu = 0.

(2.50)

The given data for this Riemann problem is made of two constant states, the state
vector WL on the left side and the state vector WR on the right side separated by a
discontinuity located at x = 0.

W (x, 0) =

{

WL if x < 0,
WR if x > 0.

(2.51)

The eigenvalues associated to this System (2.50) are the simple eigenvalues λ± =
u± a

ρ
and the triple eigenvalue λ0 = u. Note that a is a parameter to be determined.

A particularity of this relaxation model is also that, even if ρ is an unknown of the
system, it is though a parameter which value has to be determined arbitrarily. The
initial given data of the Riemann problem deal with ρe and ρv, while q and u are
determined through equilibrium states. Meanwhile, ρL and ρR are not known from
the start and then are seen as new parameters. The parameters a, ρL and ρR will
be useful to ensure the final scheme stability (see later in Section 2.4.3).

Concerning the standard algebra of System (2.50), first, let us consider the central
wave of wavespeed λ0 = u. An associated eigenvector is r0 = (1, 0, 0, 1, 1)T . We check
the nature of the field with the operation ∇Wλ0 · r0. It turns out that it is equal
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to zero which means that the field is linearly degenerate. Also, we determine the
Riemann invariants associated with this field. They clearly come up as :

u and q,

which are thus constant across the contact wave with velocity λ0 = u.
Next, considering the wave of wavespeed λ− = u− a

ρ
. An associated eigenvector

is r− = (1,−a/ρ2, a2/ρ2, q/ρ2, 0)T . We have ∇Wλ− ·r− = 0 so the field is also linearly
degenerate. And the Riemann invariants associated with the λ− field are

V, au + q, u − a

ρ
,

q2

2
− a2ε,

which are constant across the linearly degenerate wave.
As for the λ+ = u + a

ρ
field, the associated eigenvector is determined as r+ =

(1, a/ρ2, a2/ρ2, q/ρ2, 0)T . It also comes that ∇W λ+ · r+ = 0 then the field is once
again linearly degenerate. And the Riemann invariants associated with the λ+ field
are

V, au − q, u +
a

ρ
,

q2

2
− a2ε.

The approximate solution of this Riemann problem containing three contact discon-
tinuities is given by :

W (x, t) =



















WL if x/t < uL − a
ρL

,

W ?
L if uL − a

ρL
< x/t < u?,

W ?
R if u? < x/t < uR + a

ρR
,

WR if x/t > uR + a
ρR

,

(2.52)

and is summed up in Figure 2.5. Note that this structure is valid when the waves
remain ordered, that is to say when uL − a

ρL
< u? < uR + a

ρR
. Such an order of the

waves will be imposed later on by the positivity of the intermediate densities.

ρL
uL
qL
εL
VL

ρR
uR
qR
εR
VR

ρ?
L

u?

q?

ε?
L

VL

ρ?
R

u?

q?

ε?
R

VR

u?uL − a
ρL

uR + a
ρR

Figure 2.5 – Relaxation scheme - Riemann problem

The Riemann invariants allow us to write some relations to help closing the
system. Indeed, across the contact wave λ0, we have :

{

u?
L = u?

R = u?,
q?
L = q?

R = q?.
(2.53)
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Across the wave λ− we have :














VL = V ?
L ,

auL + qL = au?
L + q?

L,
uL − a/ρL = u?

L − a/ρ?
L,

q2
L/2 − a2εL = q?,2

L /2 − a2ε?
L.

(2.54)

Finally, across the wave λ+, the relations resulting from the knowledge of the Rie-
mann invariants are :















VR = V ?
R,

auR − qR = au?
R − q?

R,
uR + a/ρR = u?

R + a/ρ?
R,

q2
R/2 − a2εR = q?,2

R /2 − a2ε?
R.

(2.55)

The remaining variables to determine in each region are resumed in Figure 2.5.
The variables in the intermediate regions can now be expressed explicitly. Solving

(2.53), (2.54) and (2.55), we have :

u? =
uL + uR

2
+

qL − qR

2a
, (2.56)

q? =
qL + qR

2
+

a

2
(uL − uR), (2.57)















ε?
L = εL +

q?2 − q2
L

2a2
,

ε?
R = εR +

q?2 − q2
R

2a2
,

(2.58)











ρ?
L =

aρL

a + ρL(u? − uL)
,

ρ?
R =

aρR

a + ρR(uR − u?)
.

(2.59)

Meanwhile, some parameters such as ρL, ρR and a have to be chosen properly
for the scheme to verify the required physical properties as the energy positivity and
the flux limitation, ρL, ρR and a being positive parameters. The relations outlined
in the following subsection enable us to set the position of the Riemann problem
waves and ensure the good ordering of the waves.

2.4.3 Model properties

From the construction of the relaxation model (2.48), we have at our disposal
some parameters which we can fiddle with in order to ensure the preservation of the
important mathematical properties. Particularly the position of the Riemann solver
waves depend on the ρL, ρR and a parameters (see Figure 2.5), and is determined
with the objective to have the radiative energy positivity and the radiative flux
limitation verified.
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In all the upcoming, the left and right variables are assumed to respect the needed
properties, namely the radiative energy positivity and the radiative flux limitation,
and we make sure that the variables in the star region observe them as well. Then the
approximate Riemann solution of the relaxation model is included in the solutions
admissible space Ω defined by (1.31).

Density positivity. The parameter ρ must remain positive. According to the
relations (2.59) concerning ρ?

L,R the following lemma can be written.

Proposition 3. Assume WL and WR in Ω. Let us set :

∆ρ,L = ρ2
L(

uR − uL

2
)2 − 2ρL(qL − qR)

and

∆ρ,R = ρ2
R(

uR − uL

2
)2 − 2ρR(qR − qL).

There exist a real number a big enough such that :

if ∆ρ,L ≥ 0, a > max

(

−ρL
uR − uL

4
±
√

∆ρ,L

2
, 0

)

, (2.60)

else if ∆ρ,L < 0, a > 0,

and

if ∆ρ,R ≥ 0, a > max

(

−ρR
uR − uL

4
±
√

∆ρ,R

2
, 0

)

, (2.61)

else if ∆ρ,R < 0, a > 0.

Then ρ?
L > 0 and ρ?

R > 0. As a consequence, the waves are ordered, and we have :

uL − a

ρL
< u? < uR +

a

ρR
. (2.62)

Proof. We first consider equation (2.59) where a and ρL are positive parameters.
Then, for ρ?

L to be positive, the inequality :

a + ρL(u? − uL) > 0,

has to be verified. Including (2.56), this statement appears to be equivalent to :

a2 + ρL
uR − uL

2
a + ρL

qL − qR

2
> 0. (2.63)

If the discriminant of (2.63) is negative, then (2.63) is always verified and ρ?
L > 0.

And if the discriminant of (2.63) is positive, then a must verify (2.60) for ρ?
L to be

positive.
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Next, let us consider equation (2.59) where a and ρR are positive parameters.
Then, for ρ?

R to be positive, the inequality :

a + ρL(uR − u?) > 0,

has to be verified. Including (2.56), this statement appears to be equivalent to :

a2 + ρR
uR − uL

2
a + ρL

qR − qL

2
> 0. (2.64)

If the discriminant of (2.64) is negative, then (2.64) is always verified and ρ?
R > 0.

And if the discriminant of (2.64) is positive, then a must verify (2.61) for ρ?
R to be

positive.
Concerning the wave order, from the positiveness of ρ?

L and ρ?
R, we immediately

have :

u? − a

ρ?
L

< u? < u? +
a

ρ?
R

.

Then (2.62) easily comes from the continuity of the Riemann invariants. �

Radiative energy positivity. We now make sure the radiative energy remains
positive, that is to say that E?

L,R > 0. From (2.36), let us write the following equa-
lities :

E?
L,R = (ρe)?

L,R,

which also writes :

E?
L,R = ρ?

L,Rε?
L,R + ρ?

L,R

u?,2

2
.

Knowing from Proposition 3 that ρ?
L,R > 0, we then at most need to have ε?

L,R > 0
for the positivity of the radiative energy to be preserved.

We use the parameter a and determine its value in such a way that ε?
L,R is positive

and therefore ensure that the radiative energy is positive.

Proposition 4. Assume WL and WR in Ω. Let us set :

∆E,L =

(

(qL + qR)(uL − uR)

4

)2

− 2

(

εL +
(uL − uR)2

8

)

(

(

qL + qR

2

)2

− q2
L

)

and

∆E,R =

(

(qL + qR)(uL − uR)

4

)2

− 2

(

εR +
(uL − uR)2

8

)

(

(

qL + qR

2

)2

− q2
R

)

.
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There exist a real number a big enough such that :

if ∆E,L ≥ 0, a > max





− (qL+qR)(uL−uR)
4

±
√

∆E,L

2
(

εL + (uL−uR)2

8

) , 0



 , (2.65)

else if ∆E,L < 0, a > 0,

and

if ∆E,R ≥ 0, a > max





− (qL+qR)(uL−uR)
4

±
√

∆E,R

2
(

εR + (uL−uR)2

8

) , 0



 , (2.66)

else if ∆E,R < 0, a > 0.

Then ε?
L > 0 and ε?

R > 0.

Proof. Let us start from the expression for ε?
L in (2.58). We are looking to prove

that :

εL +
q?,2 − q2

L

2a2
> 0,

which, using (2.57), is equivalent with proving :

εL +
1

2a2

[

(

qL + qR

2
+

a

2
(uL − uR)

)2

− q2
L

]

> 0, (2.67)

And then, developing (2.67), it leaves :

(

εL +
(uL − uR)2

8

)

a2 +
(qL + qR)(uL − uR)

4
a +

1

2

(

(

qL + qR

2

)2

− q2
L

)

> 0.(2.68)

Knowing that εL + (uL−uR)2

8
> 0, if the discriminant of (2.68) is negative, then (2.68)

is always verified and ε?
L > 0. And if the discriminant of (2.68) is positive, then a

must verify (2.65) for ε?
L to be positive.

Next, we consider the expression for ε?
R in (2.58). We want to prove that :

εR +
q?,2 − q2

R

2a2
> 0,

which, using (2.57), is equivalent with proving :

εR +
1

2a2

[

(

qL + qR

2
+

a

2
(uL − uR)

)2

− q2
R

]

> 0, (2.69)
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And then, developing (2.69), it leaves :

(

εR +
(uL − uR)2

8

)

a2 +
(qL + qR)(uL − uR)

4
a +

1

2

(

(

qL + qR

2

)2

− q2
R

)

> 0,(2.70)

Knowing that εR + (uL−uR)2

8
> 0, if the discriminant of (2.70) is negative, then (2.70)

is always verified and ε?
R > 0. And if the discriminant of (2.70) is positive, then a

must verify (2.66) for ε?
R to be positive. �

Flux limitation. The flux limitation is also enforced through several additional
constraints. From (2.36), the intermediate non dimensional fluxes write :

F ?
x,L

cE?
L

=
Fx,L/ρL + c2 [(uR − uL)/2 + (qL − qR)/2a]

c [EL/ρL + (q2
R − q2

L)/4a2 + (qLuL − qRuR)/2a + (u2
R − u2

L)/4]
, (2.71)

F ?
x,R

cE?
R

=
Fx,R/ρR + c2 [(uL − uR)/2 + (qL − qR)/2a]

c [ER/ρR + (q2
L − q2

R)/4a2 + (qLuL − qRuR)/2a + (u2
L − u2

R)/4]
. (2.72)

The flux limitation imposed to the intermediate states reads : −1 ≤ F ?
x,L/cE?

L ≤ 1
and −1 ≤ F ?

x,R/cE?
R ≤ 1. We first enforce the denominator of (2.71) and (2.72) to

be positive imposing constraints on ρL, ρR and a.

Proposition 5. Let us set :

DL = (qLuL − qRuR)2 − (4EL/ρL + u2
R − u2

L)(q2
R − q2

L)

and
DR = (qLuL − qRuR)2 − (4ER/ρR + u2

L − u2
R)(q2

L − q2
R).

There exist ρL > 0 small enough and the parameter a big enough such that :

if DL ≥ 0, a > max

(−(qLuL − qRuR) ±
√

DL

4EL/ρL + u2
R − u2

L

, 0

)

, (2.73)

else if DL < 0, a > 0,

and

1

ρL
≥ u2

L − u2
R

4EL
. (2.74)

Then :

c

[

EL

ρL
+

q2
R − q2

L

4a2
+

qLuL − qRuR

2a
+

u2
R − u2

L

4

]

> 0. (2.75)
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In addition, there exist ρR > 0 small enough and the parameter a big enough such
that :

if DR ≥ 0, a > max

(−(qLuL − qRuR) ±
√

DR

4ER/ρR + u2
L − u2

R

, 0

)

, (2.76)

else if DR < 0, a > 0,

and

1

ρR
≥ u2

R − u2
L

4ER
. (2.77)

Then :

c

[

ER

ρR
+

q2
L − q2

R

4a2
+

qLuL − qRuR

2a
+

u2
L − u2

R

4

]

> 0. (2.78)

Proof. Assume a > 0. We multiply (2.75) by a2 and we obtain :

(

EL

ρL
+

u2
R − u2

L

4

)

a2 +
qLuL − qRuR

2
a +

q2
R − q2

L

4
> 0. (2.79)

We then impose EL

ρL
+

u2
R−u2

L

4
> 0 with (2.74). If the discriminant DL is negative,

(2.79) is thus verified. And if DL is positive, with (2.73), (2.79) is true.
Next, multiplying (2.78) by a2, we obtain :

(

ER

ρR

+
u2

L − u2
R

4

)

a2 +
qLuL − qRuR

2
a +

q2
L − qRr2

4
> 0.

We then impose ER

ρR
+

u2
L−u2

R

4
> 0 with (2.77). If the discriminant DR is negative,

(2.80) is thus verified. And if DR is positive, with (2.76), (2.80) is true. �

Assuming the above constraints on ρL, ρR and a, it is now just a matter of
matching with the following inequalities :
• F ?

x,L/cE?
L ≤ 1 is ensured thanks to :

a2

[

4

ρL

(Fx,L − cEL) + 2c2(uR − uL) − c(u2
R − u2

L)

]

+a
[

2c2(qL − qR) − 2c(qLuL − qRuR)
]

− c(q2
R − q2

L) ≤ 0.
(2.80)

• F ?
x,L/cE?

L ≥ −1 is verified if :

a2

[

4

ρL

(Fx,L + cEL) + 2c2(uR − uL) + c(u2
R − u2

L)

]

+a
[

2c2(qL − qR) + 2c(qLuL − qRuR)
]

+ c(q2
R − q2

L) ≥ 0.
(2.81)
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• F ?
x,R/cE?

R ≤ 1 is verified if :

a2

[

4

ρR
(Fx,R − cER) + 2c2(uL − uR) − c(u2

L − u2
R)

]

+a
[

2c2(qL − qR) − 2c(qLuL − qRuR)
]

− c(q2
L − q2

R) ≤ 0.
(2.82)

• And F ?
x,R/cE?

R ≥ −1 is verified if :

a2

[

4

ρR
(Fx,R + cER) + 2c2(uL − uR) + c(u2

L − u2
R)

]

+a
[

2c2(qL − qR) + 2c(qLuL − qRuR)
]

+ c(q2
L − q2

R) ≥ 0.
(2.83)

The next propositions ensure the flux limitations, the proofs are not detailed here
as the formulas are too extensive, even if they do not hold particular difficulties.

Proposition 6. There exist ρL > 0 small enough and a big enough defined as
follows :

if dL,1 ≥ 0, a > max





−(2c2(qL − qR) − 2c(qLuL − qRuR)) ±
√

dL,1

2
(

4
ρL

(Fx,L − cEL) + 2c2(uR − uL) − c(u2
R − u2

L)
) , 0



 ,(2.84)

else if dL,1 < 0, a > 0,

where

dL,1 =
(

2c2(qL − qR) − 2c(qLuL − qRuR)
)2

−4

(

4

ρL
(Fx,L − cEL) + 2c2(uR − uL) − c(u2

R − u2
L)

)

(

−c(q2
R − q2

L)
)

.

And also :

if dL,2 ≥ 0, a > max





−(2c2(qL − qR) − 2c(qLuL − qRuR)) ±
√

dL,2

2
(

4
ρL

(Fx,L + cEL) + 2c2(uR − uL) − c(u2
R − u2

L)
) , 0



 ,(2.85)

else if dL,2 < 0, a > 0,

where

dL,2 =
(

2c2(qL − qR) − 2c(qLuL − qRuR)
)2

−4

(

4

ρL
(Fx,L + cEL) + 2c2(uR − uL) − c(u2

R − u2
L)

)

(

−c(q2
R − q2

L)
)

.

Meanwhile, the parameter ρL is determined with :

1

ρL
≥ max

(

c(u2
R − u2

L) − 2c2(uR − uL)

4(Fx,L − cEL)
,
−c(u2

R − u2
L) − 2c2(uR − uL)

4(Fx,L + cEL)
, 0

)

. (2.86)
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Then −1 ≤ F ?
x,L/cE?

L ≤ 1.

In addition, there exist ρR > 0 small enough and a big enough defined as follows :

if dR,1 < 0, a > max





−(2c2(qL − qR) − 2c(qLuL − qRuR)) ±
√

dR,1

2
(

4
ρR

(Fx,R − cER) + 2c2(uL − uR) − c(u2
L − u2

R)
) , 0



 ,(2.87)

else if dR,1 < 0, a > 0,

where

dR,1 =
(

2c2(qL − qR) − 2c(qLuL − qRuR)
)2

−4

(

4

ρR
(Fx,R − cER) + 2c2(uL − uR) − c(u2

L − u2
R)

)

(

−c(q2
L − q2

R)
)

.

And also :

if dR,2 < 0, a > max





−(2c2(qL − qR) − 2c(qLuL − qRuR)) ±
√

dR,2

2
(

4
ρR

(Fx,R + cER) + 2c2(uL − uR) − c(u2
L − u2

R)
) , 0



 ,(2.88)

else if dR,2 < 0, a > 0,

dR,2 =
(

2c2(qL − qR) − 2c(qLuL − qRuR)
)2

−4

(

4

ρR
(Fx,R + cER) + 2c2(uL − uR) − c(u2

L − u2
R)

)

(

−c(q2
L − q2

R)
)

.

Meanwhile, the parameter ρR is determined with :

1

ρR

≥ max

(

c(u2
L − u2

R) − 2c2(uL − uR)

4(Fx,R − cER)
,
−c(u2

L − u2
R) − 2c2(uL − uR)

4(Fx,R + cER)
, 0

)

.(2.89)

Then −1 ≤ F ?
x,R/cE?

R ≤ 1.

Following all the above properties, several constraints are imposed on the para-
meters a and ρL,R for the radiative energy positivity and radiative flux limitation
to be preserved. To sum it up, a has to simultaneously verify (2.65), (2.66), (2.73),
(2.76), (2.84), (2.85), (2.87) and (2.88). And in the mean time ρL and ρR verify
(2.60), (2.61), (2.74), (2.77), (2.86) and (2.89). Note that these constraints tend
to widen the numerical cone (see Figure 2.5) and may cause excessive numerical
viscosity.
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2.4.4 Relaxation scheme procedure

On the basis of the relaxation model (2.48), we describe the numerical procedure
that is commonly used in the framework of relaxation schemes, using the notations
introduced in Section 2.2 and considering a structured mesh in space and time
defined by the cells Ii = (xi− 1

2
, xi+ 1

2
) and the time intervals [tn, tn+1) (see Figure

2.1).
At the time tn, we know the state vector Un = (En, F n), and we aim to calculate

the state vector Un+1 at the time tn+1. With this purpose,, we use a relaxation
procedure based on (2.47) and composed of two steps.

In the first step, working with the relaxation model (2.47) in its conservative
form, we aim to evolve the solution Un to Un+1,−. We define the conservative re-
laxation state vector :

wn
i = (ρn

i , (ρu)n
i , (ρv)n

i , (ρe)n
i , (ρq)n

i ),

and write a Godunov type solver for this model. It is summed up as :

∂tw + ∂xG(w) = 0, (2.90)

where

G(w) = (ρu, ρu2 + q, ρuv, (ρe + q)u, ρuq + a2u). (2.91)

The Riemann problem solution for this equation is obtained through (2.56), (2.57),
(2.58), and (2.59).

The updated state vector wn+1,−
i is then determined with a Godunov type scheme

through :

wn+1,−
i = wn

i − ∆t

∆x

(

G(wh(xi+ 1
2
, tn+1,−, wn

i , wn
i+1)) − G(wh(xi− 1

2
, tn+1,−, wn

i−1, w
n
i ))
)

,(2.92)

where wh(xi+ 1
2
, tn+1,−, wn

i , wn
i+1) is the Riemann problem solution at the interface,

where wn
i and wn

i+1 are known, and under the CFL like condition :

∆t

∆x
max

i

(∣

∣

∣

∣

∣

un
i +

ai− 1
2

ρ
i− 1

2
R

∣

∣

∣

∣

∣

,

∣

∣

∣

∣

∣

un
i −

ai+ 1
2

ρ
i+ 1

2
L

∣

∣

∣

∣

∣

)

≤ 1

2
. (2.93)

Next, the second step is dedicated to the actual relaxation enforcing the updated
state to be at the equilibrium. To access such an issue, the system solved is the
following :

∂tw =
ρ

δ
(0, cβx − u, 0, 0, q − Π), (2.94)

with wn+1,−
i as initial data. It also writes as :































∂tρ = 0,

∂tρu =
ρ

δ
(cβx − u),

∂tρv = 0,
∂tρe = 0,

∂tρq =
ρ

δ
(q − Π).

(2.95)
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Whenever δ tends to zero, as un+1
i = (cβx)

n+1
i and qn+1

i = Πn+1
i , the updated state

vector at the time tn+1 is given by wn+1
i and the solution of (2.94) is given by :







ρn+1
i = ρn+1,−

i ,

(ρe)n+1
i = (ρe)n+1,−

i ,

(ρv)n+1
i = (ρv)n+1,−

i ,

(2.96)

And thus, having En+1
i = (ρe)n+1

i and F n+1
i = (ρv)n+1

i , the updated state vec-
tor Un+1

i = (En+1
i , F n+1

i ) is deduced. The scheme can then be written as a usual
approximate Riemann solver :

En+1
i = En

i − ∆t

∆x
(FE

i+ 1
2
− FE

i− 1
2
),

F n+1
i = F n

i − ∆t

∆x
(FF

i+ 1
2
−FF

i− 1
2
),

(2.97)

where

FE
i+ 1

2
= Gρe

(

wh(xi+ 1
2
, tn+1, wn

i , wn
i+1)
)

and

FF
i+ 1

2
= Gρv

(

wh(xi+ 1
2
, tn+1, wn

i , wn
i+1)
)

are respectively determined through the components of the vector defined by (2.91)
associated to the ρe and ρv components of the state vector of conservative variables
w.

Note that, in order to reduce the numerical viscosity, the parameters ai+ 1
2

and

ρ
i+ 1

2
L,R are locally determined at each interface according to (2.65), (2.66), (2.73),

(2.76), (2.84), (2.85), (2.87) and (2.88) concerning a, and according to ρL and ρR

verify (2.60), (2.61), (2.74), (2.77), (2.86) and (2.89) concerning ρL,R.
This procedure is quite simple to code and some results are presented against

the HLLC solution in Section 2.6. We finally set the scheme robustness.

Theorem 7. Consider an admissible sequence (Un
i )i∈Z in A defined by (1.31). Define

the updated sequence (Un+1
i )i∈Z by the scheme (2.97) under the CFL like condition

(2.93) and with a and ρL,R determined according to (2.65), (2.66), (2.73), (2.76),
(2.84), (2.85), (2.87), (2.88) and (2.60), (2.61), (2.74), (2.77), (2.86), (2.89). Then
we have Un+1

i is in A for all i ∈ Z.

Proof. Consider (Un
i )i∈Z in A and (Un+1

i )i∈Z defined by (2.97) under the CFL like
condition (2.93). Un+1

i results from the following integration in the cell (xi− 1
2
, xi+ 1

2
),

i ∈ Z :

Un+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

Uh(x, tn+1)dx, (2.98)

where Uh is the juxtaposition of the non-interacting approximate Riemann problems.
From the propositions 4 and 6, we have that each of the approximate states satisfies
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the energy positivity property and the flux limitation property. Therefore, focusing
first on the energy positivity, we can write :

Eh(x, tn+1) > 0 for all x ∈ (xi− 1
2
, xi+ 1

2
) and i ∈ Z.

So it comes :

En+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

Eh(x, tn+1)dx > 0, (2.99)

and then, En+1
i > 0 for all i ∈ Z.

As for the flux limitation property, we have :

F h
x (x, tn+1) − cEh(x, tn+1) < 0 for all x ∈ (xi− 1

2
, xi+ 1

2
) and i ∈ Z,

and

F h
x (x, tn+1) + cEh(x, tn+1) > 0 for all x ∈ (xi− 1

2
, xi+ 1

2
) and i ∈ Z.

So it comes :

F n+1
x,i − cEn+1

i =
1

∆x

∫ x
i+1

2

x
i− 1

2

(F h
x (x, tn+1) − cEh(x, tn+1))dx < 0, (2.100)

then F n+1
x,i − cEn+1

i < 0 for all i ∈ Z. And :

F n+1
x,i + cEn+1

i =
1

∆x

∫ x
i+1

2

x
i− 1

2

(F h
x (x, tn+1) − cEh(x, tn+1))dx > 0, (2.101)

then F n+1
x,i + cEn+1

i > 0 for all i ∈ Z. Therefore Un+1
i is in A for all i ∈ Z. �

2.5 The HLLC scheme

The HLLC scheme developed in this section is based on the classical HLL method
(see [27]). The HLL scheme is known to be stable but rather viscous. The numerical
viscosity comes from the presence of a single intermediate state in the constructed
Riemann problem. This property, and the not satisfying numerical results we ob-
tain, raise the need to have at our disposal a more accurate tool. The present HLLC
method comes from an improved HLL method designed to exactly capture the sta-
tionary contact wave which influence is outlined in two dimensional configurations.
It then allows us to integrate the solution over two intermediate states as for the
relaxation model but aiming to profit from a more accurate approximation of the
Riemann solution.
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2.5.1 Linearisations

Let us start again with the 1D simplified system (2.33) with no source terms
and only x-directed contributions. For the sake of simplicity, let us set the outer
wavespeeds as bL and bR verifying bL < 0 < bR. We also set :

U =

(

E
Fx

)

and F =

(

Fx

c2Pxx

)

.

UL

FL

UR

FR

U?
L

F̃L

U?
R

F̃R

cβ?
xbL bR

Figure 2.6 – HLLC scheme - Riemann problem

In order to introduce linearisations inspired by the above relaxation method and
such as (2.39), and given the radiative pressure written in the form

P =

(

1 − χ(f)

2
I +

3χ(f) − 1

2

F 2
x

F 2

)

E,

we choose to introduce the variables βx and Π as :

Π =
1 − χ(f)

2
E and βx =

3χ(f) − 1

2

Fx

F 2
cE. (2.102)

Therefore simple relations, similar to (2.39), that will reveal themselves quite handy
in the following developments can be written. They are :







Fx = cβx(E + Π),

Pxx =
βxFx

c
+ Π.

(2.103)

These relations turn out to be useful for the determination of the flux functions
and intermediate states of the given approximate Riemann problem. They actually
constitute the fundamental elements of the present HLLC method for radiative
transfer. From these, we have been able to derive an accurate and stable scheme
for the resolution of the radiative transfer equation.

We propose an HLLC type solver considering two intermediate states, separated
by a wave of which we note the speed as cβ?

x. The approximate Riemann solution
thus writes :

U(x/t) =















UL if x/t < bL,
U?

L if bL < x/t < cβ?
x,

U?
R if cβ?

x < x/t < bR,
UR if x/t > bR,

(2.104)
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where the corresponding approximate flux is :

H(x/t) =















F(UL) if x/t < bL,

F̃L if bL < x/t < cβ?
x,

F̃R if cβ?
x < x/t < bR,

F(UR) if x/t > bR.

(2.105)

Let us remind that as in this approximate Riemann solver, we have F̃L 6= F(U?
L)

and F̃R 6= F(U?
R).

Based on (2.103), we propose the following linearisations :










F ?
x,L = cβ?

x,L(E?
L + Π?

L),

P̃xx,L =
β?

x,LF̃x,L

c
+ Π?

L.











F ?
x,R = cβ?

x,R(E?
R + Π?

R),

P̃xx,R =
β?

x,RF̃x,R

c
+ Π?

R,
(2.106)

where β?
x,L,R and Π?

L,R are relevant linearisations of βx and Π defined by Equation
(2.102). In addition, β?

x,L,R and Π?
L,R being continuous across the middle wave sepa-

rating the two intermediate states, we have β?
x,L = β?

x,R = β?
x and Π?

L = Π?
R = Π?.

Let us also point out that F ?
x,L = F̃x,L and F ?

x,R = F̃x,R.

We can now focus on the determination of the U ?
L,R and F̃L,R variables.

2.5.2 Flux functions and intermediate states

The same way as for the HLL scheme, the approximate Rankine-Hugoniot rela-
tions are used to evaluate E?

L,R, F ?
x,L,R, F̃x,L,R and P̃xx,L,R. We write the Rankine-

Hugoniot relations across the waves of speeds bL and bR :
{

F̃x,L − Fx,L = bL(E?
L − EL),

F̃x,R − Fx,R = bR(E?
R − ER),

(2.107)

{

c2(P̃xx,L − Pxx,L) = bL(F ?
x,L − Fx,L),

c2(P̃xx,R − Pxx,R) = bR(F ?
x,R − Fx,R),

(2.108)

In the process of the Riemann problem resolution, our first objective is to de-
termine U?

L,R and F̃L,R. Let us note the appearence of some HLL typical relations
for the radiative transfer resolution, as they are also visible and used in [6]. Let us
remind here the HLL flux functions and intermediate states in the star region and
the corresponding flux functions :

E?
HLL =

bRER − bLEL

bR − bL
− 1

bR − bL
(Fx,R − Fx,L),

F ?
x,HLL =

bRFx,R − bLFx,L

bR − bL
− c2

bR − bL
(Pxx,R − Pxx,L),

(2.109)

F̃x,HLL =
bRFx,L − bLFx,R

bR − bL
+

bRbL

bR − bL
(ER − EL),

P̃xx,HLL =
bRPxx,L − bLPxx,R

bR − bL
+

bRbL

c2(bR − bL)
(Fx,R − Fx,L).

(2.110)
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Making use of the linearisations (2.106), it clearly comes the expressions for the
radiative energy in the star region, they write as follows :















E?
L =

Fx,L − bLEL − cβ?
xΠ

?

cβ?
x − bL

,

E?
R =

Fx,R − bRER − cβ?
xΠ

?

cβ?
x − bR

.
(2.111)

And from (2.106), knowing E?
L,R, it is easy to determine F ?

x,L,R with :

{

F ?
x,L = cβ?

x(E
?
L + Π?),

F ?
x,R = cβ?

x(E
?
R + Π?).

(2.112)

The remaining variables to explicitly express are β?
x and Π?. We show in the

following that β?
x comes out as the solution of a quadratic equation involving the

HLL variables, and Π? is linearly related to the same HLL variables. The next two
propositions 8 and 9 allow us to establish this quadratic equation.

Proposition 8. The states β?
x and Π? verify the relation

F ?
x,HLL = cβ?

x(Π
? + E?

HLL), (2.113)

where E?
HLL and F ?

x,HLL are the intermediate states from the HLL scheme.

Proof. Let us recall the HLL intermediate states expressions obtained from the
Rankine-Hugoniot relations written accross the numerical waves of speed bL and bR

are given by (2.109).
In the next step, starting from (2.108) and inserting a few relations from (2.106),

we can write :

(cβ?
x)

2(E?
L + Π?) + c2Π? − c2Pxx,L = bL(cβ?

x(E
?
L + Π?) − Fx,L),

and

(cβ?
x)

2(E?
R + Π?) + c2Π? − c2Pxx,R = bR(cβ?

x(E
?
R + Π?) − Fx,R).

And with (2.111) we finally obtain :

(cβ?
x + bL)Fx,L − cβ?

xΠ
?bL − cβ?

xbLEL + c2Π? − c2Pxx,L = 0, (2.114)

and

(cβ?
x + bR)Fx,R − cβ?

xΠ
?bR − cβ?

xbRER + c2Π? − c2Pxx,R = 0. (2.115)

Then, (2.114)-(2.115) well gives relation (2.113). �
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Proposition 9. The states β?
x and Π? verify the relation

P̃xx,HLL = Π? +
β?

x

c
F̃x,HLL. (2.116)

where F̃x,HLL and P̃xx,HLL are the fluxes used in the HLL scheme.

Proof. Let us recall the HLL fluxes obtained from the Rankine-Hugoniot relations
written accross the numerical waves of speed bL and bR are given by (2.110).

In a first step, we multiply the first equation from (2.108) by bR and the second
one by bL. And then substracting them, we get :

c2(bRP̃xx,L − bLP̃xx,R) + bRbL(F ?
x,L − F ?

x,R) = (bR − bL)P̃xx,HLL.

We then use (2.106) to replace P̃xx and F ?
x in the first member of this equation. We

obtain :

cβ?
x(bRF̃x,L − bLF̃x,R) + c2Π?(bR − bL) + cβ?

xbRbL(E?
R − E?

L) = (bR − bL)P̃xx,HLL.

And finally, thanks to the Rankine-Hugoniot relations in (2.107) we replace the F̃x

variables. It comes (2.116). �

A second degree equation can then be obtained from (2.113) and (2.116), this
equation will allow us to evaluate the β?

x variable. It is :

β?
x
2F̃x,HLL − c(P̃xx,HLL + E?

HLL)β?
x + F ?

x,HLL = 0. (2.117)

The fluxes for this solver are then fully specified thanks to (2.111), (2.112), Π?, β?
x

and (2.106). The scheme robustness must then be studied.

2.5.3 Robustness

First the existence of the β?
x variable is to be checked.

Lemma 10. Equation (2.117) admits at least one solution in R.

Proof. We just need to proove that the discriminant of Equation (2.117) is posi-
tive. Let D be the discriminant of Equation (2.117) given by :

D = c2(P̃xx,HLL + E?
HLL)2 − 4F̃x,HLLF ?

x,HLL.

However, with (2.113) and (2.116) we have :

F̃x,HLLF ?
x,HLL = c2(Π? + E?

HLL)(P̃xx,HLL − Π?).

It follows that a factorisation of D leads to

D = c2(E?
HLL − P̃xx,HLL + 2Π?)2.

Therefore, the discriminant of Equation (2.117) is positive. �

We are now going to show that there only exists one root to Equation (2.117)
in the interval (bL/c, bR/c). With this point, we first need the following technical
statement that will be useful to show the existence of this single root in (bL/c, bR/c).
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Lemma 11. Assume bL and bR such that −c ≤ bL ≤ 0 and 0 ≤ bR ≤ +c. Then the
two following inequalities hold :

b2
LEL − 2bLFL + c2PL ≥ 0, (2.118)

and

b2
RER − 2bRFR + c2PR ≥ 0. (2.119)

Proof. We get back to the photons distribution function I and we use the mo-
ments definitions (1.4) for a given frequency :

E =
1

c

∫ 1

−1

I(µ)dµ,

F =
1

c

∫ 1

−1

cµI(µ)dµ,

P =
1

c

∫ 1

−1

µ2I(µ)dµ,

where µ = cos(Ω). Hence for all b in R we have :

∫ 1

−1

(
b

c
− µ)2I(µ)dµ ≥ 0, (2.120)

which is equivalent to :

∫ 1

−1

(

b2

c2
I(µ) − 2

b

c
µI(µ) + µ2I(µ)

)

dµ ≥ 0. (2.121)

And, from the definitions of the radiative energy, flux and pressure tensor, it comes :

b2

c
E − 2

b

c
F + cP ≥ 0. (2.122)

The proof is achieved. �

Now we turn establishing the existence of β?
x in (bL/c, bR/c).

Lemma 12. Assume −1 ≤ bL/c ≤ 0 ≤ bR/c ≤ 1. Assume bL and bR such that :

bLbRER − (bL + bR)FR + c2PR ≤ 0, (2.123)

and

bLbREL − (bL + bR)FL + c2PL ≤ 0. (2.124)

Let us introduce :

P(z) = z2F̃x,HLL − c(P̃xx,HLL + E?
HLL)z + F ?

x,HLL. (2.125)

Then P(β) admits exactly one root in (bL/c, bR/c). This root is denoted β?
x.
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Proof. The proof rests upon the fact that β?
x ∈ (bL/c, bR/c). If P(bL/c) and

P(bR/c) are of opposite signs then β?
x is the only solution in (bL/c, bR/c) to the

equation P(z) = 0, where P(z) is defined by (2.125).
Let us first study the conditions for P(bL/c) ≥ 0 to be verified. We have :

P(bL/c) =
b2
L

c2
(F̃x,HLL) − bL

(

E?
HLL + P̃xx,HLL

)

+ F ?
HLL. (2.126)

Next, multiplying by (bR − bL) and replacing intermediate HLL states and fluxes
with (2.109) and (2.110), it writes :

(bR − bL)P(bL/c) =
b2
L

c2
(bRFL − bLFR + bRbL(ER − EL))

−bL

(

bRPL − bLPR +
bRbL

c2
(FR − FL)

)

−bL (bRER − bLEL − (FR − FL))

+bRFR − bLFL − c2 (PR − PL) ,

which can also be written :

(bR − bL)P(bL/c) =

(

1 − bRbL

c2

)

(

b2
LEL − 2bLFL + c2PL

)

+

(

b2
L

c2
− 1

)

(

bLbRER − (bL + bR)FR + c2PR

)

.

And then P(bL/c) ≥ 0 if we have both (2.118) and (2.123) verified. In fact, (2.118)
is verified for all bL in (−c, 0)(see Lemma 11).

Let us now verify that P(bR/c) ≤ 0. We have :

P(bR/c) =
b2
R

c2
F̃x,HLL − bR

(

E?
HLL + P̃xx,HLL

)

+ F ?
HLL. (2.127)

Next, multiplying by (bR − bL) and replacing intermediate HLL states and fluxes
with (2.109) and (2.110), it writes :

(bR − bL)P(bR/c) =
b2
R

c2
(bRFL − bLFR + bRbL(ER − EL))

−bR

(

bRPL − bLPR +
bRbL

c2
(FR − FL)

)

−bR (bRER − bLEL − (FR − FL))

+bRFR − bLFL − c2 (PR − PL) .

Therefore :

(bR − bL)P(bR/c) =

(

bRbL

c2
− 1

)

(

b2
RER − 2bRFR + c2PR

)

+

(

1 − b2
R

c2

)

(

bLbREL − (bL + bR)FL + c2PL

)

.
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And then P(bR/c) ≤ 0 if and only if we have both (2.119) and (2.124) verified.
(2.119) is here again true for all bR in (0, +c)(see Lemma 11). �

At this stage of the demonstration, for varying bL and bR, we know that the
scheme is well defined and we are able to approximate the Riemann solver, and
particularly the β?

x ‘contact wave velocity’ as the solution of a quadratic equation.
It now remains to show that the radiative energy positivity and the radiative flux
limitation are well preserved. With this aim, we decide to work into a defined space
such that the wave speeds are set as :

bL = −c and bR = +c.

In order to establish the robustness of the developed HLLC like scheme, let us
start with two basic lemmas that will be useful in the following.

Lemma 13. Assume U to be given in A, then we have :

1 ± 2f + χ > 0, (2.128)

where f = Fx/cE and χ = Pxx/E.

Proof. Showing (2.128) is equivalent with showing :

E + Pxx ± 2
Fx

c
> 0. (2.129)

After the work by Dubroca-Feugeas [17], the radiative energy E and the radiative
flux Fx are the first two moments in the x-direction of a positive radiative intensity
I. As a consequence, E and Fx rewrite as follows :

E =< 1, I > and
Fx

c
=< µx, I > . (2.130)

In addition, involving such notations, the radiative pressure is nothing but the fol-
lowing closure :

Pxx =< µ2
x, I > . (2.131)

Arguing such a reformulation, we have :

E + Pxx ± 2
Fx

c
=< (1 ± µx)

2, I >, (2.132)

and the proof is achieved. �

Lemma 14. Assume U to be given in A, then we have :

3 + 2f − χ > 0, (2.133)

where f = Fx/cE and χ = Pxx/E.
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Proof. Showing (2.133) is equivalent with showing :

3E + 2
Fx

c
− Pxx > 0. (2.134)

After the work by Dubroca-Feugeas [17], the radiative energy E and the radiative
flux Fx are the first two moments in the x-direction of a positive radiative intensity
I. As a consequence, E and Fx rewrite as follows :

E =< 1, I > and
Fx

c
=< µx, I > . (2.135)

In addition, involving such notations, the radiative pressure is nothing but the fol-
lowing closure :

Pxx =< µ2
x, I > . (2.136)

Arguing such a reformulation, we have :

3E + 2
Fx

c
− Pxx =< 3 + 2µx − µ2

x, I >, (2.137)

where 3 + 2µx − µ2
x > 0 as µ = cosΩ is in (−1, 1). and the proof is achieved. �

We show next that the intermediate states are in the admissible space A. In
the extremal case where the signal velocities of the approximate Riemann solver is
taken as the speed of light c, we can prove the robustness of the HLLC approximate
Riemann solver.

Theorem 15. Assume U is given in A. If bL = −c and bR = c, then the ap-
proximated states U ?

L and U?
R generated by the HLLC Riemann solver are physically

admissible :

1. the intermediate energies are positive, E?
L ≥ 0 and E?

R ≥ 0,

2. the intermediate states are flux limited, |F ?
x,L| ≤ cE?

L and |F ?
x,R| ≤ cE?

R.

Proof. Let us first focus on the left discontinuity. The Rankine-Hugoniot condi-
tions across the left discontinuity are given by the first equations of (2.107) and
(2.108). And with bL = −c, it comes :

F ∗
x,L − Fx,L = −c(E?

L − EL), (2.138)

c2(P̃xx,L − Pxx,L) = −c(F ?
x,L − Fx,L). (2.139)

The first point of the proof concerns E?
L ≤ 0. As we have from (2.112) that

F ?
x,L = cβ?

x(E
?
L + Π?) we can deduce from (2.138) that :

E?
L =

Fx,L + cEL − cβ?
xΠ

?

c(β?
x + 1)

, (2.140)
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and

F ?
x,L = β?

x

Fx,L + cEL + cΠ?

β?
x + 1

. (2.141)

Solving (2.139) thanks to (2.138) and the linearisation P̃xx,L = β?
xF

?
x,L/c + Π?

from (2.106), we can deduce from (2.141) that :

Π? =
Fx,L + cPxx,L − β?

x(Fx,L + cEL)

c(β?
x + 1)

, (2.142)

and by replacing the value of Π? in (2.140) we obtain :

E?
L = EL

(1 + fL)(β?
x)

2 + (1 − χL)β?
x + 1 + fL

(1 + β?
x)

2
, (2.143)

where Pxx,L = χLEL and Fx,L = cfLEL with fL ∈ [−1, 1] and χL ∈ [1
3
, 1].

In the same way, the value of the flux can be computed from (2.141) and written
as :

F ?
x,L = cβ?

xEL
(1 + fL)(1 + 2fL + χL)

(1 + β?
x)

2
. (2.144)

In order to prove that E?
L ≥ 0, as |β?

x| < 1, one need to show that the following
second order polynom of unknown βx from (2.143),

(1 + fL)(β?
x)

2 + (1 − χL)β?
x + 1 + fL,

is always non-negative. In fact, as the zero order coefficient is positive, it will be
sufficient to show that the discriminant of the polynom is always negative. In fact,
this discriminant can be factorised as :

(1 − χL)2 − 4(1 + fL)2 = −(1 + 2fL + χL)(3 + 2fL − χL) ≤ 0.

From Lemma (13), we have (1 ± 2fL + χL) ≥ 0 and from Lemma (13), we have
(3 + 2fL − χL) ≥ 0, hence the radiative energy of the left intermediate state E?

L is
always non negative.

Now, in order to prove the flux limitation, we need to show that cE?
L ±F ?

x,L ≥ 0.
Thanks to (2.143) and (2.144), these quantities can be written as :

cE?
L + F ?

x,L = cEL(1 + fL)

and

cE?
L − F ?

x,L = cEL
(1 + fL)(β?

x)
2 + 2(fl + χL)β?

x + 1 + fL

(1 + β?
x)

2
.

Having fL ∈ [−1, 1] and EL positive, it is evident that cE?
l + F ?

x,L ≥ 0. Next, the
sign of cE?

L − F ?
x,L is given by the sign of the following second order polynom of

unknown βx :

(1 + fL)(β?
x)

2 + 2(fL + χL)β?
x + 1 + fL. (2.145)
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The discriminant of this polynom can be written as :

(fL + χL)2 − (1 + fL)2 = −(1 − χL)(1 + 2fL + χL).

As (1±2fL+χL) ≥ 0 from Lemma (14) and χL ≤ 1, the discriminant of the polynom
(2.145) is always negative. Hence the left state is flux limited. The proof concerning
the right state is similar and is omitted here. �

2.5.4 Numerical scheme

Now, working with constant wave speeds bL = −c and bR = +c as we will mostly
do, we use the obtained approximate Riemann solver

Uh(x, t) =















UL if x/t < −c,
U?

L if − c < x/t < cβ?
x,

U?
R if cβ?

x < x/t < c,
UR if x/t > c,

(2.146)

where the wave speed cβ?
x is in (−c, c) and we derive the Godunov type scheme. We

consider a uniform mesh defined by the cell [xi− 1
2
, xi+ 1

2
) where xi+ 1

2
= xi + ∆x/2

for all i in Z with a constant increment ∆x. The time discretisation is given by
tn+1 = tn + ∆t where ∆t is restricted according to the CFL like condition :

c∆t

∆x
≤ 1

2
. (2.147)

. As usual, at the time tn, we assume to be known a piecewise constant approximation
of U(x, tn) defined as follows :

Uh(x, tn) = Un
i if x ∈ (xi− 1

2
, xi+ 1

2
). (2.148)

At each cell interface xi+ 1
2
, we set the approximate Riemann solver defined by (2.146)

with UL = Un
i and UR = Un

i+1. Under the CFL restriction (2.147), we thus consider a
juxtaposition of non-interacting Riemann solvers (see Figure 2.7), denoted U h(x, t)
for t ∈ [tn, tn + ∆t).

Un
i−1 Un

i Un
i+1

U
?,L

i− 1
2

U
?,R

i− 1
2

U
?,L

i+1
2

U
?,R

i+ 1
2

cβ?

i− 1
2

cβ?

i+1
2−c c −c c

x
i− 1

2

x
i+ 1

2

Figure 2.7 – Successive Riemann problems
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The updated state vector is obtained as follows :

Un
i+1 =

1

∆x

∫ x
i+1

2

x
i− 1

2

Uh(x, tn + ∆t)dx. (2.149)

A standard computation gives the following detailed HLLC scheme :

En+1
i = En

i − ∆t

∆x
(FE

i+ 1
2
−FE

i− 1
2
),

(Fx)
n+1
i = (Fx)

n
i − ∆t

∆x
(FFx

i+ 1
2

− FFx

i− 1
2

),

(2.150)

where we have set the notations as :

FE
i+ 1

2
=











c(β?
x)i+ 1

2
(E?,L

i+ 1
2

+ Π?
i+ 1

2
) if (β?

x)i+ 1
2

> 0,

c(β?
x)i+ 1

2
(E?,R

i+ 1
2

+ Π?
i+ 1

2
) otherwise,

FFx

i+ 1
2

= Π?
i+ 1

2
+

(β?
x)i+ 1

2

c
FE

i+ 1
2
.

(2.151)

For the sake of completeness, let us recall that (β?
x)i+ 1

2
is the single solution in (−1, 1)

of the following equation :

X2(F̃ HLL
x )i+ 1

2
− c((P̃ HLL

xx )i+ 1
2

+ (E?,HLL)i+ 1
2
)X + (F ?,HLL

x )i+ 1
2

= 0, (2.152)

while we have :

Π?
i+ 1

2
= (P̃ HLL

xx )i+ 1
2
−

(β?
x)i+ 1

2

c
(F̃ HLL

x )i+ 1
2
,

E?,L

i+ 1
2

=
1

1 + (β?
x)i+ 1

2

(

En
i − (β?

x)i+ 1
2
Π?

i+ 1
2

+
(Fx)

n
i

c

)

,

E?,R

i+ 1
2

=
1

1 − (β?
x)i+ 1

2

(

En
i+1 + (β?

x)i+ 1
2
Π?

i+ 1
2

+
(Fx)

n
i+1

c

)

,

(2.153)

where we have set :

E?,HLL

i+ 1
2

=
cEn

i+1 + cEn
i

2c
− 1

2c
((Fx)

n
i+1 − (Fx)

n
i ),

(F ?,HLL
x )i+ 1

2
=

(Fx)
n
i+1 + (Fx)

n
i

2
− c

2
((Pxx)

n
i+1 − (Pxx)

n
i ),

(F̃ HLL
x )i+ 1

2
=

(Fx)
n
i + (Fx)

n
i+1

2
− c

2
(En

i+1 − En
i ),

(P̃ HLL
xx )i+ 1

2
=

c(Pxx)
n
i + c(Pxx)

n
i+1

2c
− 1

2c
((Fx)

n
i+1 − (Fx)

n
i ).

(2.154)

The derivation of the HLLC type scheme to approximate the weak solution of (2.1)
is thus completed.

Let us now set the scheme robustness.
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Theorem 16. Consider an admissible sequence (Un
i )i∈Z in A. Define the updated

sequence (Un+1
i )i∈Z by the scheme (2.150), (2.151), (2.153) and (2.154) under the

CFL like condition (2.147). Then we have Un+1
i is in A for all i ∈ Z.

Proof. Consider (Un
i )i∈Z in A and (Un+1

i )i∈Z defined by (2.150), (2.151), (2.153)
and (2.154) under the CFL like condition (2.147). Un+1

i results from the following
integration in the cell (xi− 1

2
, xi+ 1

2
), i ∈ Z :

Un+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

Uh(x, tn+1)dx, (2.155)

where Uh is the juxtaposition of the non interacting approximate Riemann problems.
From the theorem 15, we have that each of the approximate states satisfies the energy
positivity property and the flux limitation property. Therefore, focusing first on the
energy positivity, we can write :

Eh(x, tn+1) > 0 for all x ∈ (xi− 1
2
, xi+ 1

2
) and i ∈ Z.

So it comes :

En+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

Eh(x, tn+1)dx > 0, (2.156)

and then, En+1
i > 0 for all i ∈ Z.

As for the flux limitation property, we have :

F h
x (x, tn+1) − cEh(x, tn+1) < 0 for all x ∈ (xi− 1

2
, xi+ 1

2
) and i ∈ Z,

and

F h
x (x, tn+1) + cEh(x, tn+1) > 0 for all x ∈ (xi− 1

2
, xi+ 1

2
) and i ∈ Z.

So it comes :

F n+1
x,i − cEn+1

i =
1

∆x

∫ x
i+1

2

x
i− 1

2

(F h
x (x, tn+1) − cEh(x, tn+1))dx < 0, (2.157)

then F n+1
x,i − cEn+1

i < 0 for all i ∈ Z. And :

F n+1
x,i + cEn+1

i =
1

∆x

∫ x
i+1

2

x
i− 1

2

(F h
x (x, tn+1) − cEh(x, tn+1))dx > 0, (2.158)

then F n+1
x,i + cEn+1

i > 0 for all i ∈ Z. Therefore Un+1
i is in A for all i ∈ Z. �
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2.6 Comparison

Simple 1D numerical tests have been undergone to test the accuracy of the
developed schemes. A comparison with Lax-Friedrichs’ scheme is made and shown in
Figure 2.8. The figure plots a non-dimensional radiative energy. The non-dimensional
input data are EL = 6, FL = 2 in the interval (0, 0.5), and ER = 5, FR = 3 in the
interval (0.5, 1). The CFL condition is set to 0.5 and the calculation is performed
over 200 points. The displayed results are obtained from first order computations
and compared to a reference solution obtained with the use of Lax-Friedrichs’ scheme
over 40000 points.

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

Lax-Friedrichs
Relaxation
HLLC
Reference solution

Figure 2.8 – Comparison between HLLC, Relaxation and Lax-Friedrichs’ schemes.

The graph 2.8 shows that a considerable improvement in accuracy is made thanks
to the relaxation and HLLC schemes. Moreover, in the case of the HLLC scheme, a
sharper solution than with the relaxation scheme is obtained. The stability condi-
tions determined in Section 2.4.3 are too much restrictive and while the numerical
cone narrows, some accuracy is lost. Note that for this 1D case with only x-directed
contributions, no difference is observed between the HLL and HLLC schemes. Also
note that the Lax-Friedrichs solution is not smooth with the low resolution set for the
domain discretisation, whereas HLLC and relaxation provide with smooth solutions.

Relying on the results presented here, the following of the study is focusing on the
HLLC scheme that gives more accurate solutions. In Chapter 3, MUSCL-like schemes
are applied to raise the resolution to a second-order accuracy solution. A suitable
calculation of the solution in the asymptotic regimes is also ensured with the use of
an asymptotic-preserving scheme detailed in Chapter 3. A two dimensional extension
is then performed, and curvilinear geometries are also envisaged in Chapter 4.



Chapitre 3

High order extension and

asymptotic preserving property of

the HLLC scheme

3.1 Introduction

So far, we have developed accurate approximate Riemann solvers for the M1 ra-
diative model. Amongst the relaxation and HLLC like solvers detailed in Chapter 2,
we selected the HLLC like solver which reveals to be more accurate, and we add
some features to it in order to account for the source terms first, and to raise the
accuracy to second order. The following developments presented in this chapter then
focus on upgrades of the scheme that would give it additional accuracy capabilities.

Indeed, the HLLC-like Riemann solver developed in the precedent chapter is
proved robust, but we aim to apply it to test cases with very stiff source terms and for
a wide range of propagation regimes. These regimes are designated as ‘asymptotic’
regimes, and extend from the diffusion regime in optically thick mediums to the
transport regime in transparent mediums. In relation with the treatment of these
limit regimes, existing asymptotic preserving schemes are often too sophisticated
and based on a control of the Riemann solver (see [25], [21]). In order to preserve
our scheme properties and precision capabilities, we choose a method that performs
adequate corrections of the source terms.

In order to add even more precision to our model, we suggest to raise the order
of accuracy to a second order scheme in space. Amongst various existing methods to
raise a scheme to higher orders of accuracy, because some of them tend to enhance
instabilities or are not convenient to apply to our scheme, we choose to apply a
MUSCL type scheme [41] [47] of which we present the principle in this section. This
method involves the use of slope limiters in order to avoid any instability that could
be enhanced by a non regular monotony of the solution, and for the admissible states
to be preserved.

67
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3.2 Asymptotic preserving scheme

Let us now take the source terms into account and deal with their influence on
the radiative propagation regime. Indeed, according to the value of the source terms,
the nature of the system to solve may be modified. A relaxation approach to the
asymptotic scheme is presented in [7].

The limit regimes are a diffusion regime when the opacities are very big, and a
transport regime when the opacities are very small. As discussed in Section 1.3.3,
these two asymptotic regimes are properly handled by the M1 model (as well as the
intermediate regime). For our numerical procedure to remain asymptotic preserving,
we here present an appropriate method for our needs. The system of equations we
consider is the following one dimensional simplified subsystem :







∂tE + ∂xFx = cσ(aT 4 − E),
∂tFx + ∂xPxx = −cσFx,
∂t(ρCvT ) = −cσ(aT 4 − E).

(3.1)

When σ = 0, the asymptotic behaviour of System (3.1) is a transport-like system of
equations written :







∂tE + ∂xFx = 0,
∂tFx + c2∂xPxx = 0,
∂t(ρCvT ) = 0,

(3.2)

which is actually identical with (2.1) for which we have developed an approximate
Riemann solver in the precedent chapter.

Meanwhile, when the opacities become large, the system degenerates into a pa-
rabolic system. Indeed, let us introduce a rescaling factor ε, a Knudsen number like,
to rewrite the system as follows :







ε∂tE + ∂xFx = cσ
ε
(aT 4 − E),

ε∂tFx + c2∂xPxx = − cσ
ε
Fx,

ε∂t(ρCvT ) = − cσ
ε
(aT 4 − E).

(3.3)

Therefore, when ε tends to infinity and in a stationary configuration, as shown in
Section 1.3.3, we obtain the following diffusion behaviour in the opaque asymptotic
limit :











E = aT 4,
Fx = 0,

∂t(ρCvT + aT 4) − div(
4cT 3

3σ
∇T ) = 0.

(3.4)

This regime is a continuous phenomenon. Note that (3.4) is obtained through a
Chapman-Enskog expansion.

These models are important to consider as various regimes can coexist in a given
application. We then want to be able to adequately predict the solution in the
limit regimes. The work by Gosse-Toscani [22] presents an approach applied to the
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Telegraph equations, while the work by Buet-Cordier [10] presents an asymptotic
preserving method based on relaxation schemes, and in [6] an asymptotic preserving
scheme with application to radiative transfer is shown. However, these methods are
asymptotic preserving through a modification of the numerical dependance cone,
whereas with the HLLC Riemann solver developed in Chapter 2, we mostly work
with fixed numerical cones where bL = −c and bR = c. We thus want to extend the
standard asymptotic preserving methods in order to match our specific needs.

The asymptotic preserving scheme presented here is developed in [6] and we
detail here the main particularities.

In Section 2.5, we have proposed a finite volume scheme to approximate the
solutions of (3.2). This scheme is easily extended to take into account the mat-
ter temperature which is governed by the stationary equation (omitting the source
term) :

∂t(ρCvT ) = 0. (3.5)

Hence, to approximate the free streaming region associated to the M1 model, and
governed by System (3.2), we have derived the following contact discontinuity pre-
serving scheme given by :

W n+1
i = W n

i − ∆t

∆x

(

Fi+ 1
2
− Fi− 1

2

)

, (3.6)

where

W n
i =

(

En
i , F n

x,i, T
n
i

)T
and Fi+ 1

2
=
(

FE
i+ 1

2
,FFx

i+ 1
2

, 0
)T

,

and where the formulas (2.151)-(2.152)-(2.153) are used. For the sake of simplicity
in the forthcoming developments, we set F̄(W ) = (Fx, Pxx, 0)T .

Now, we propose to modify this method to introduce a suitable discretisation of
the source term in order to approximate the system (3.1). In this sense, we adopt a
recent approach introduced by Berthon-Turpault [8]. The involved technique used a
relevant formulation of the hyperbolic system with source term (3.1).

To address such an issue, we intend to modify the Riemann solver. We suggest
first a reformulation of the source terms, introducing the function R, and then write
the system of equations (3.1) as :

∂tW + ∂xF̄(W ) = cσ(R(x, W ) − W ). (3.7)

To determine the function R, assumptions on the opacities must be made.

Lemma 17. If we set σm = max(σ, σaT 3

ρCv
), then there exists two positive coefficients

σ1 and σ2 such that :

σm = σ + σ1,

σm =
σaT 3

ρCv
+ σ2.

(3.8)
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With these notations, the system (3.1) can be written in the form (3.7) if we set
σ = cσm and

R(x, W ) =

(

σaT 4 + σ1E

σm
,
σ1Fx

σm
,

σE
ρCv

+ σ2T

σm

)T

. (3.9)

Proof. Involving the definition of σ1 and σ2, the components of the source term
in (3.1) write :

σaT 4 + σE = σaT 4 − (σm − σ1)E = σm

(

σaT 4 + σ1E

σm
− E

)

,

−σFx = σm

(

σ1Fx

σm
− Fx

)

,

σE − σaT 4

ρCv
= σm

(

σE
ρCv

+ σ2T

σm
− T

)

.

The system (3.1) thus writes in the following form :

∂tE + ∂xFx = cσm

(

σaT 4 + σ1E

σm
− E

)

,

∂tFx + c2∂xPxx = cσm(
σ1Fx

σm
− Fx),

∂tT = cσm

(

σE
ρCv

+ σ2T

σm
− T

)

.

The definition of R(x, W ) is easily deduced from the last result and the proof is
therefore achieved. �

Next, we suggest to modify the intermediate state function involved in the HLLC
scheme (2.150). Let us introduce a notation such that the intermediate state W ? is
defined through the HLLC Riemann solver, containing two intermediate states :

W ?(x/t) =

{

W ?
L if − c < x/t < cβ?

x,
W ?

R if cβ?
x < x/t < c,

(3.10)

where we have set :

WL,R = (UL,R, TL,R)T ,
W ?

L,R = (U?
L,R, TL,R)T .

(3.11)

Then, the approximate solver UR, defined by (2.146), is corrected as follows :

W̃R(x/t, WL, WR) =















WL if x/t < −c,
αW ?(x/t) + (1 − α)R(0+, WL) if − c < x/t < 0,
αW ?(x/t) + (1 − α)R(0−, WR) if 0 < x/t < c,
WR if x/t > c,

(3.12)
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where

α =
2

2 + σ∆x
, (3.13)

where we remind that U = (E, Fx), and 0± denotes the left and right limit as x/t
goes to zero. Note that the corrected intermediate states are a convex combination
of the approximate state for the system (3.2) and the source term. Therefore, when
σ = 0, then α = 1 and we get the expected transport regime. Whereas, when σ
tends to infinity, α tends to zero, the intermediate states tend to R and the diffusion
regime is reached.

We adopt the new approximate Riemann solver (3.12) to define a Godunov type
scheme. We then consider the juxtaposition, denoted W̃ h(x, t) for t ∈ (tn, tn + ∆t),
of the Riemann solver stated at each interface xi+ 1

2
, and we write :

W̃ h(x, tn + ∆t) = W̃R

(

x − xi+ 1
2

tn + ∆t
; W n

i , W n
i+1

)

. (3.14)

And the updated state at tn + ∆t in each cell (xi− 1
2
, xi+ 1

2
) is defined as follows :

W n+1
i =

1

∆x

∫ x
i+1

2

x
i− 1

2

W̃ h(x, tn + ∆t)dx. (3.15)

We now want to write this integral formulation under a conservation form sup-
plemented by a relevant discretisation of the source term. To do so we consider this
integral formulation into two parts, one related to the interval (xi− 1

2
, xi) and the

second one related to the interval (xi, xi+ 1
2
). We have :

1

∆x

∫ xi

x
i− 1

2

W̃ h(x, tn + ∆t)dx =
αi− 1

2

∆x

∫ xi

x
i− 1

2

W h(x, tn + ∆t)dx

+
1 − αi− 1

2

∆x





∫ xi+c∆t

x
i− 1

2

R(x+
i− 1

2

, W n
i )dx +

∫ xi

xi+c∆t

W n
i dx



 .

(3.16)

And a straightforward computation gives :

1

∆x

∫ xi

x
i− 1

2

W̃ h(x, tn + ∆t)dx =
1

2
W n

i +
∆t

∆x
αi− 1

2
Fi− 1

2
− ∆t

∆x
F̄(W n

i )

+
∆t

∆x
(1 − αi− 1

2
)S+

i− 1
2

,

(3.17)

where

S+
i− 1

2

= c
(

R(x+
i− 1

2

, W n
i ) − W n

i

)

+ F̄(W n
i ), (3.18)

with

R(x+
i− 1

2

, W n
i ) =

(

σa(T n
i )4 + σ1E

n
i

σm
,
σ1F

n
x,i

σm
,

σEn
i

ρCv
+ σ2T

n
i

σm

)T

. (3.19)
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Similarly, we have :

1

∆x

∫ x
i+1

2

xi

W̃ h(x, tn + ∆t)dx =
1

2
W n

i +
∆t

∆x
αi+ 1

2
Fi+ 1

2
− ∆t

∆x
F̄(W n

i )

+
∆t

∆x
(1 − αi+ 1

2
)S−

i+ 1
2

,

(3.20)

where

S−

i+ 1
2

= −c
(

W n
i − R(x−

i+ 1
2

, W n
i )
)

− F̄(W n
i ), (3.21)

with

R(x−

i+ 1
2

, W n
i ) =

(

σa(T n
i )4 + σ1E

n
i

σm
,
σ1F

n
x,i

σm
,

σEn
i

ρCv
+ σ2T

n
i

σm

)T

. (3.22)

Let us note that through the expressions (3.19) and (3.19), we have that :

R(x+
i− 1

2

, W n
i ) = R(x−

i+ 1
2

, W n
i ). (3.23)

Finally, the scheme reads as follows :

W n+1
i = W n

i − ∆t

∆x

(

αi+ 1
2
Fi+ 1

2
− αi− 1

2
Fi− 1

2

)

+∆t

(

1 − αi− 1
2

∆x
S+

i− 1
2

+
1 − αi+ 1

2

∆x
S−

i 1
2

)

.
(3.24)

Theorem 18. Assume W n
i in A for all i ∈ Z. Assume that the scheme (2.150)-

(2.151)-(2.153)-(2.154) preserves A under the CFL condition (2.147). Assume R(x+
i− 1

2

, W n
i )

and R(x−

i+ 1
2

, W n
i ) defined by (3.19) and (3.22) are in A. Then the updated state W n+1

i

defined by (3.24) is in A for all i ∈ Z.

Proof. Since A is a convex space, from the definition of W n+1
i given by (3.15),

the result is established as soon as we have W̃ h(x, tn + ∆t) ∈ A for all x ∈ R. Now,
W̃ h turns out to be the juxtaposition of the form W̃R given by (3.12) composed of
states W n

i ∈ A and convex combinations of states in A. We immediately deduce
that W̃ h(x, tn + ∆t) ∈ A for all x ∈ R, which concludes the proof. �

In the limit of a rescaling parameter the scheme must be able to restore a rele-
vant approximation of the diffusive equation (1.52). We introduce the Knudsen like
number ε into the numerical scheme and substitute ∆t and σ by ∆t/ε and σ/ε. The
rescaled scheme thus reads :

W n+1
i = W n

i − ∆t

∆x

(

αε
i+ 1

2
Fi+ 1

2
− αε

i− 1
2
Fi− 1

2

)

+
∆t

ε

(

σ

2ε + σ∆x
S+

i− 1
2

+
σ

2ε + σ∆x
S−

i+ 1
2

)

,
(3.25)
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where

αε
i+ 1

2
=

2

2ε + σ∆x
. (3.26)

We study the behaviour of the rescaled scheme as ε tends to zero. In the limit of
ε tending to zero, the scheme (3.25) reduces to :

S+
i− 1

2

+ S−

i+ 1
2

= 0, (3.27)

to obtain :

(R(x−

i+ 1
2

, W n
i ) − W n

i ) + (R(x+
i− 1

2

, W n
i ) − W n

i ) = 0. (3.28)

As a consequence, thanks to (3.23), the limit state vector satisfies :

En
i = a(T n

i )4, (Fx)
n
i = 0. (3.29)

Concerning the limit temperature, the following discrete diffusion equation is
obtained :

(ρCvT + aT 4)n+1
i = (ρCvT + aT 4)n

i

+c
∆t

∆x2

(

(ρCvT + aT 4)n
i+1 − (ρCvT + aT 4)n

i

σ
+

(ρCvT + aT 4)n
i−1 − (ρCvT + aT 4)n

i

σ

)

.
(3.30)

Then, the limit diffusion equation is written in the following discrete form :

(ρCvT + aT 4)n+1
i = (ρCvT + aT 4)n

i +
∆t

∆x2

c

σ

(

a(T n
i+1)

4 − 2a(T n
i )4 + a(T n

i−1)
4
)

.(3.31)

However, this diffusion limit is not appropriate as it should involve the diffusion
coefficient c

3σ
rather than c

σ
. In [8], the authors propose a correction to the asymp-

totic preserving scheme (3.24) in order to obtain the correct asymptotic limit. An
additional free parameter σ̄ ≥ 0 is introduced, which can be seen as a new degree of
freedom essential to ensure the expected diffusive regime.

The source term is thus rewritten and we write (3.1) in the following form :

∂tW + ∂xF̄(W ) = cσ(R(x, W ) − W ) + σ̄(W − W ),

= c(σ + σ̄)

(

σ

σ + σ̄
R(x, W ) +

σ̄

σ + σ̄
W − W

)

(3.32)

It then comes :

∂tW + ∂xF̄(W ) = c(σ + σ̄)(R̄(x, W ) − W ), (3.33)

where R(x, W ) is defined by (3.9) and R̄(x, W ) is set as :

R̄(x, W ) =
σ

σ + σ̄
R(x, W ) +

σ̄

σ + σ̄
W. (3.34)
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Let us note that since A is a convex space and the parameters σ and σ̄ are
positive, we have R̄(x, W ) in A for all W ∈ A. Moreover, the new formulation is
free from the definition of σ̄. Here again, we then consider the juxtaposition, denoted
W h(x, t) for t ∈ (tn, tn + ∆t), of the Riemann solver stated at each interface. The
updated state vector is defined as (3.15), and the resulting scheme reads :

W n+1
i = W n

i − ∆t

∆x

(

αi+ 1
2
Fi+ 1

2
− αi− 1

2
Fi− 1

2

)

+∆t

(

σ + σ̄i− 1
2

2 + (σ + σ̄i− 1
2
)∆x

S+
i− 1

2

+
σ + σ̄i+ 1

2

2 + (σ + σ̄i+ 1
2
)∆x

S−

i+ 1
2

)

,
(3.35)

where :

S−

i+ 1
2

= c(W n
i − R̄(x−

i+ 1
2

, W n
i )) − F̄(W n

i ),

S+
i− 1

2

= c(R̄(x+
i− 1

2

, W n
i+1) − W n

i ) + F̄(W n
i ),

R̄(x−

i+ 1
2

, W n
i ) =

σ

σ + σ̄i+ 1
2

R(x−

i+ 1
2

, W n
i ) +

σ̄i+ 1
2

σ + σ̄i+ 1
2

W n
i ,

R̄(x+
i− 1

2

, W n
i ) =

σ

σ + σ̄i− 1
2

R(x+
i− 1

2

, W n
i ) +

σ̄i− 1
2

σ + σ̄i− 1
2

W n
i ,

(3.36)

and

αi+ 1
2

=
2

2 + (σ + σ̄i+ 1
2
)∆x

. (3.37)

Now, the free parameter σ̄i+ 1
2

is fixed in order to satisfy the required asymptotic
preserving property. Indeed, in the limit of a rescaling parameter the scheme must
be able to restore a relevant approximation of the diffusive equation (1.52). With
this aim, we introduce the Knudsen like number ε into the numerical scheme. As a
consequence, we substitute ∆t, σ and σ̄i+ 1

2
by ∆t/ε, σ/ε and σ̄i+ 1

2
/ε. The rescaled

scheme thus reads as follows :

W n+1
i = W n

i − ∆t

∆x

(

αε
i+ 1

2
Fi+ 1

2
− αε

i− 1
2
Fi− 1

2

)

+
∆t

ε

(

σ + σ̄i− 1
2

2ε + (σ + σ̄i− 1
2
)∆x

S+
i− 1

2

+
σ + σ̄i+ 1

2

2ε + (σ + σ̄i+ 1
2
)∆x

S−

i+ 1
2

)

,
(3.38)

where

αε
i+ 1

2
=

2

2ε + (σ + σ̄i+ 1
2
)∆x

. (3.39)

Next, we study the behaviour of the rescaled scheme as ε tends to zero. In the
limit of ε tending to zero, the scheme (3.38) reduces to :

S+
i− 1

2

+ S−

i+ 1
2

= 0, (3.40)
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to obtain :

(R̄(x−

i+ 1
2

, W n
i ) − W n

i ) + (R̄(x+
i− 1

2

, W n
i ) − W n

i ) = 0, (3.41)

which may also be written :

(

σ

σ + σ̄i+ 1
2

R(x−

i+ 1
2

, W n
i ) +

σ̄i+ 1
2

σ + σ̄i+ 1
2

W n
i − W n

i

)

+

(

σ

σ + σ̄i− 1
2

R(x+
i− 1

2

, W n
i ) +

σ̄i− 1
2

σ + σ̄i− 1
2

W n
i − W n

i

)

= 0,

(3.42)

and it comes :

σ

σ + σ̄i+ 1
2

(

R(x−

i+ 1
2

, W n
i ) − W n

i

)

+
σ

σ + σ̄i− 1
2

(

R(x+
i− 1

2

, W n
i ) − W n

i

)

= 0. (3.43)

As a consequence, thanks to (3.23), the limit state vector satisfies :

En
i = a(T n

i )4, (Fx)
n
i = 0. (3.44)

Concerning the limit temperature, the following discrete diffusion equation is
obtained :

(ρCvT + aT 4)n+1
i = (ρCvT + aT 4)n

i

+c
∆t

∆x2

(

(ρCvT + aT 4)n
i+1 − (ρCvT + aT 4)n

i

σ + σ̄i+ 1
2

+
(ρCvT + aT 4)n

i−1 − (ρCvT + aT 4)n
i

σ + σ̄i− 1
2

)

.
(3.45)

We note that enforcing :

σ̄i+ 1
2

=















2σ + 3σρCv

T n
i+1 − T n

i

a(T n
i+1)

4 − a(T n
i )4

if T n
i+1 6= T n

i ,

2σ + 3σρCv
1

4a(T n
i )3

else,
(3.46)

allows us to write the relevant limit diffusion equation in the following discrete form :

(ρCvT + aT 4)n+1
i = (ρCvT + aT 4)n

i +
∆t

∆x2

c

3σ

(

a(T n
i+1)

4 − 2a(T n
i )4 + a(T n

i−1)
4
)

(3.47)

Thanks to Theorem 18, the scheme preserves the radiative energy positiveness,
the normalized flux limitation, and the total flux conservation. It is also shown that
the standard diffusion regime is recovered in the relaxation limit. This asymptotic
preserving scheme is tested and used in the numerical experiments presented in the
following sections.
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3.3 Second order MUSCL scheme

In this section, we aim to improve the accuracy of the solution raising the order
of accuracy of the scheme to a second order version in space.

There exist various methods dealing with the order of accuracy of a solution.
Some methods, based on the Generalised Riemann Problem (GRP) [5], [42], are too
complicated to implement in the case of non-linear problems such as ours. Indeed,
these methods are applicable when the Riemann problem is known, which is not our
case. High order methods such as the Piecewise Parabolic Method (PPM) also exist
(see [14]). And others such as the ENO [26] and WENO [23] methods involve even
higher order of precision, but they appear not to be stable enough for the very stiff
cases we want to run.

We then choose to make use of the MUSCL (Monotonic Upstream Schemes for
Conservation Laws) approach to fulfill the second order accuracy requirement. It
was developed, amongst others, by Van Leer [47] (see also [9], [19] and [41]). This
method consists in using piecewise linear reconstructions of the solution, instead of
piecewise constant functions. This is applied together with a limitation procedure
useful to ensure the stability, as the slopes are sometimes too steep.

The method difficulty indeed rests upon the choice of an appropriate slope in
order to allow an adequate reconstruction. If the slope is badly chosen, instabilities
may occur in the solution. We are then led to limitate this slope, but just enough
to avoid instabilities, and not too much for the solution to remain accurate.

Let us remind the procedure used for first order approximations. Let us consi-
der piecewise constant approximations Uh(x, tn). We have : Uh(x, tn) = Un

i if x ∈
(xi−1/2, xi+1/2) where Un

i is a constant. The process to obtain the updated solution

n
i

i+1

n

xi−1/2 xi+1/2 i+3/2x

U

U

Figure 3.1 – First order approximation - Piecewise constant functions

at tn+1 is obtained through two steps. The first step is the evolution step where
an approximate Riemann solver is used to define an approximation of the solution
at the time tn + ∆t. In a second step, the updated solution is obtained through a
juxtaposition of non-interacting Riemann problems at the date tn + ∆t, under the
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CFL-like condition (2.5). The solution is thus obtained through a L2-projection onto
each grid cell :

Un+1
i =

1

∆x

∫ xi+1/2

xi−1/2

Uh(x, tn+1)dx.

to get :

Un+1
i = Un

i +
∆t

∆x

(

F (Un
i+1, U

n
i ) − F (Un

i , Un
i−1)
)

, (3.48)

where F is the numerical flux at the xi± 1
2

interface, and the scheme is consistent

since F (U, U) = F (U).

Second order reconstuction. Now, we extend the definition in order to obtain a
second order scheme in space. In the case of a second order approximation, U h(x, tn)
is defined thanks to piecewise linear functions Un

i (x). If x ∈ (xi−1/2, xi+1/2), we have :
Uh(x, tn) = Un

i (x). And we define :

Uh(x, tn) = Un
i + si(x − xi) if x ∈ (xi−1/2, xi+1/2), (3.49)

where si is a suitably chosen slope for the Uh(x, tn) linear function defined locally
in the cell (xi−1/2, xi+1/2). Therefore, on the edges of the cell, we are led to define

xi−1/2 i+1/2x i+3/2x

−
i

n
i (x)

+
i

−

n
i+1

+
i+1

i+1

U

U

U

U

U

xi−3/2

U
n

i−1
(x)

U
i−1

−

U i−1

+

(x)

U

Figure 3.2 – Second order approximation - Piecewise linear functions

the ‘inner approximations’ (approximations at the interfaces) such as :

U+
i = Un

i + si(xi+1/2 − xi),

= Un
i + si

∆x

2
,

U−
i = Un

i + si(xi−1/2 − xi),

= Un
i − si

∆x

2
.

(3.50)
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In the present MUSCL procedure, the approximations at the interfaces are re-
placed, in the numerical flux F , by reconstructions at the interfaces. And it comes
the following flux balance involving the inner approximations defined in (3.50) :

Un+1
i = Un

i − ∆t

∆x

(

F (U+
i , U−

i+1) − F (U+
i−1, U

−
i )
)

. (3.51)

x x
i−1/2 i+1/2

n+1,+
i

n+1,−
iU U

U
−

U
i

+

iU
+

i−1 U
i+1

−

Figure 3.3 – Second order reconstruction

We now want to make sure that we are able to preserve the admissible states
(defined by the A admissible space (1.31), with A convex). We will show that the
MUSCL procedure is actually a convex combination of two first order schemes, and
this property will allow the preservation of the admissible states.

Indeed, the Riemann problem being resumed as in Figure 3.3, it is possible to
write the scheme as in a first order resolution. Let us consider two constant states,
one on the interface (xi−1/2, xi) and the other on the interface (xi, xi+1/2). Then we
evolve this sequence of constant states using the first order scheme (3.48), and we
obtain the following relations :











Un+1,−
i = U−

i − ∆t

∆x/2

(

F (U−
i , U+

i ) − F (U+
i−1, U

−
i )
)

if x ∈ (xi− 1
2
, xi),

Un+1,+
i = U+

i − ∆t

∆x/2

(

F (U+
i , U−

i+1) − F (U−
i , U+

i )
)

if x ∈ (xi, xi+ 1
2
).

(3.52)

Therefore, with :

Un+1
i =

1

2

(

Un+1,−
i + Un+1,+

i

)

, (3.53)

we obtain again (3.51). The MUSCL scheme is then nothing but the half-sum (3.53)
of Un+1,−

i and Un+1,+
i . To ensure the stability, assuming Un,−

i and Un,+
i in A, it is

sufficient to have Un+1,−
i and Un+1,+

i in A, which is the case through (3.52) under
the appropriate CFL-like condition :

c
∆t

∆x/2
≤ 1

2
, (3.54)
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similar to (2.147).
The MUSCL procedure is thus robust as it preserves the admissible states under

the CFL-like condition (3.54). The remaining challenge is now to determine a slope
limiter ensuring that this property preserving the admissible states is satisfied.

Slope limiter. The values of Un
i (x) at the extreme points of the cell are usually

called boundary extrapolated values. An important property for these boundary
values to verify is that they must not disturb the monotony of the slope. Slope
limiters ensure the stability of the scheme by calculating the suitable slope for the
monotony to be respected. In the following we will use standard limiters from the
litterature. A commonly used tool is the Minmod slope limiter. The Minmod function
is defined as follows :

minmod(a, b) = max(0, min(a, b)) + min(0, max(a, b)). (3.55)

Hence, the boundary extrapolated values are defined as :

U±
i = Un

i ± ∆U, (3.56)

where

∆U =
1

2
minmod

(

Un
i − Un

i−1, U
n
i+1 − Un

i

)

. (3.57)

An other slope limiter used in the computations presented in Chapter 5 is the
so-called Superbee limiter [39] [41]. The formulation of the Superbee limiter is as
follows :

superbee(a, b) = max(0, min(2a, 2b, a + b)) + min(0, max(2a, 2b, a + b)). (3.58)

Extra limitation. Let us start with an example showing that the only slope limi-
ters presented above may not be enough to ensure the preservation of the admissible
states.

Let us set, in a non-dimensional case where c = 1, the three admissible state
vectors :

Ui−1 =

(

3
2

)

, Ui =

(

3.1
3

)

, and Ui+1 =

(

4.1
4

)

.

According to the Minmod limitation (3.57), we have :

∆Ui =

(

0.05
0.5

)

.

Then, through (3.56), it comes :

U+
i =

(

3.15
3.5

)

.
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We thus have that the energy positivity is preserved, whereas the flux limitation
property is not ensured, and U+

i is not in A. It then appears that an additional
limitation is needed for the MUSCL procedure to be robust.

This extra limitation is defined as follows.
Let us set the parameter θ defined in (0, 1) such that :

U±
i = Ui ± θ∆Ui. (3.59)

Note that when θ = 0, we recover a first order scheme that is known robust from
Section 2.5.3. Meanwhile, when θ = 1, we recover the slope defined by the slope
limiters such as Minmod or Superbee presented above.

Now, setting

∆Ui =

(

∆Ei

∆Fi

)

,

it remains to determine the θ parameter such that the flux limitation is ensured,
which is equivalent to have :

(F±
i )2 ≤ c2(E±

i )2.

Then, with (3.59), we have :

(Fi ± θ∆Fi)
2 ≤ c2(Ei ± θ∆Ei)

2,

which may also be written as :

c2E2
i − F 2

i ± 2θ
(

c2Ei∆Ei − Fi∆Fi

)

+ θ2
(

c2∆E2
i − ∆F 2

i

)

≥ 0. (3.60)

The reduced determinant for the quadratic equation in (3.60) is :

D =
(

c2Ei∆Ei − Fi∆Fi

)2 −
(

c2E2
i − F 2

i

) (

c2∆E2
i − ∆F 2

i

)

.

Therefore, if D < 0 then the radiative flux is limited even with θ = 1. And if D ≥ 0,
we determine the solution of the quadratic equation from (3.60). There are four of
them, which are expressed as :

θj =
∓ (c2Ei∆Ei − Fi∆Fi) ±

√
D

c2∆E2
i − ∆F 2

i

, (3.61)

and the parameter θ ensuring that the MUSCL procedure preserves the admissible
states is determined through the relation :

θ = min

(

1, min
θj>0

θj

)

. (3.62)

The applications shown in Chapter 5 and 6 show how accurate the solution is
thanks to the second order MUSCL scheme. However, some stability issues may be
observed, mostly with the use of the Superbee slope limiter. Note also that the CFL
number has to be reduced when performing a second order approximation.



Chapitre 4

Numerical approximation of the

M1 model in two dimensions

4.1 Introduction

In the precedent chapters, we have detailed the development of an HLLC type
scheme for the resolution of the hyperbolic M1 system. A second order reconstruction
has been added as an option for the approximation accuracy to be improved, and
then the source terms are taken into account through an asymptotic preserving
correction allowing a proper treatment of the limit regimes such as diffusion in
opaque mediums and transport in transparent mediums.

This HLLC type scheme has been developed in Chapter 2 on the basis of the one
dimensional subsystem (2.1). In particular, even if the structure of the considered
subsystem (2.1) is only made of two fields, the developments performed in Chapter
2 are done considering a Riemann problem containing three fields : the two non-
linear fields, and an additional stationary wave. This three waves configuration has
actually been envisaged in expectation of the stationary contact wave that appears
when considering the full one dimensional system :







∂tE + ∂xFx = 0,
∂tFx + c2∂xPxx = 0,
∂tFy + c2∂xPxy = 0.

(4.1)

The scheme should then be more easily adapted to the System (4.1) and to two
dimensional configurations.

Therefore, in this chapter, we choose to include the y-directed contribution of
the flux and write the scheme for the complete 1D system. Next, we present the pro-
cedure to extend the scheme to two dimensional computational domains. This will
allow us to perform calculations on two dimensional cartesian grids. In the second
section, as curved bodies are considered in the applications we aim to perform, and
in order to be able to refine the computational domain where severe gradients are
experienced, we decide to make use of generalised curvilinear coordinates so that we
will be able to compute flows around curved bodies. We then present the procedure
used to get the original scheme to deal with various geometries.

81
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4.2 Two dimensional scheme

The HLLC scheme is known and explicitly written for a simplified 1D system of
the M1 model in Section 2.5. We now want to write the complete one dimensional
scheme that takes into account the Fy component. In a second step, we present the
quite straigthforward procedure applied to work with two dimensional domains.

4.2.1 Full 1D scheme

The same study as in Section 2.5.1 is made, except that we now decide to consider
the full 1D system of the M1 model in its conservative form (4.1) where the radiative
pressure is defined by :

P =
1

2

(

(1 − χ(f))I + (3χ(f) − 1)
F ⊗ F

||F||2
)

E (4.2)

and where :

χ(f) =
3 + 4f 2

5 + 2ξ
, ξ =

√

4 − 3f 2, f =
||F||
cE

. (4.3)

Let us precise additional notations in this full 1D configuration, we have :

Π =
1 − χ(f)

2
E, (4.4)

βx =
3χ(f) − 1

2

Fx

‖F‖2 cE, (4.5)

so we can rewrite (4.1) in the following form :






∂tE + ∂xFx = 0,
∂tFx + ∂x(cβxFx + c2Π) = 0,
∂tFy + ∂x(cβxFy) = 0,

(4.6)

The notations used in the sequel concerning the state variable and the flux function
are :

U =





E
Fx

Fy



 , F =





Fx

c2Pxx

c2Pxy



 =





Fx

cβxFx + c2Π
cβxFy



 .

The aim here is to approximate the Riemann solution of (4.1). As the three fields
where already taken into account in Section 2.5, the Riemann problem remains as
sketched in Figure 2.6 and the approximate Riemann solver is still written in the
following form :

Uh(x, t) =















UL if x/t < bL,
U?

L if bL < x/t < cβ?
x,

U?
R if cβ?

x < x/t < bR,
UR if x/t > bR,

(4.7)
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where the wave speed cβ?
x is proved to be in (bL, bR) according to Lemma 11, and

where we have to approximate the intermediate states :

U?
L = (E?

L, F ?
x,L, F ?

y,L) and U?
R = (E?

R, F ?
x,R, F ?

y,R)

and the approximate flux functions :

F̃L = (F̃x,L, c2P̃xx,L, c2P̃xy,L) and F̃R = (F̃x,R, c2P̃xx,R, c2P̃xy,R).

With this objective in mind, after Harten-Lax-Van Leer [27], we write the Rankine-
Hugoniot like conditions across each wave with speed bL and bR :

{

bL(U?
L − UL) = F̃L −F(UL),

bR(U?
R − UR) = F̃R −F(UR).

(4.8)

Several supplementary conditions have to be considered. We enforce the continuity
of the Riemann invariants across the middle wave with velocity cβ?

x. Hence, we have :
{

(βx)
?
L = (βx)

?
R = β?

x,
Π?

L = Π?
R = Π?.

(4.9)

We complete the system to be solved by several linearisations which retranscribe
the relations linking the Riemann invariants (βx, Π) and the radiative state vector
U . Then, we set :







































F ?
x,L = F̃x,L = cβ?

x(E
?
L + Π?),

F ?
y,L = F̃y,L,

P̃xx,L =
β?

xF̃x,L

c
+ Π?,

P̃xy,L =
β?

xF̃y,L

c
,







































F ?
x,R = F̃x,R = cβ?

x(E
?
R + Π?),

F ?
y,R = F̃y,R,

P̃xx,R =
β?

xF̃x,R

c
+ Π?,

P̃xy,R =
β?

xF̃y,R

c
.

(4.10)

The unknowns U?
L,R, F̃L,R and (β?

x, Π
?) are solution of the system made of (4.8)

and (4.10). As a consequence, the approximate Riemann solver (4.7) is fully cha-
racterised as soon as the system (4.8)-(4.10) is solved. Let us specify the Rankine-
Hugoniot relations for each component of the state vector, it comes the already
known relations (2.107) and (2.108), and concerning the third component, we have :

{

c2(P̃xy,L − Pxy,L) = bL(F ?
y,L − Fy,L),

c2(P̃xy,R − Pxy,R) = bR(F ?
y,R − Fy,R).

(4.11)

Considering the full 1D system (4.1) does not change anything to the second
degree equation (2.117) involving the β?

x variable, speed of the Riemann problem
contact wave. Indeed, Equations (2.113) and (2.116) are still valid.

The intermediate state radiative variables E?
L,R and F ?

x,L,R are determined as in
(2.111) and (2.112). Let us remind these relations :















E?
L =

Fx,L − bLEL − cβ?
xΠ

?

cβ?
x − bL

,

E?
R =

Fx,R − bRER − cβ?
xΠ

?

cβ?
x − bR

,
(4.12)
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and
{

F ?
x,L = cβ?

x(E
?
L + Π?),

F ?
x,R = cβ?

x(E
?
R + Π?).

(4.13)

Meanwhile, F ?
y,L,R is given by :















F ?
y,L =

c2Pxy,L − bLFy,L

cβ?
x − bL

,

F ?
y,R =

c2Pxy,R − bRFy,R

cβ?
x − bR

.
(4.14)

Numerical scheme. Now, we use the obtained approximate Riemann solver (4.7)
to derive the Godunov type scheme in the case where bL = −c and bR = c,. We
consider a uniform mesh defined by the cell [xi− 1

2
, xi+ 1

2
) where xi+ 1

2
= xi + ∆x/2

for all i in Z with a constant increment ∆x. The time discretisation is given by
tn+1 = tn + ∆t where ∆t is restricted according to a CFL-like condition given by :

c
∆t

∆x
≤ 1

2
. (4.15)

As usual, at the time tn, we assume to be known a piecewise constant approximation
of U(x, tn) defined as follows :

Uh(x, tn) = Un
i if x ∈ (xi− 1

2
, xi+ 1

2
). (4.16)

At each cell interface xi+ 1
2
, we set the approximate Riemann solver defined by (4.7)

with UL = Un
i and UR = Un

i+1. Under the CFL restriction (4.15), we thus consider a
juxtaposition of non-interacting Riemann solvers (see Figure 4.1), denoted U h(x, t)
for t ∈ [tn, tn + ∆t).

Un
i−1 Un

i Un
i+1

U
?,L

i− 1
2

U
?,R

i− 1
2

U
?,L

i+1
2

U
?,R

i+ 1
2

cβ?

i− 1
2

cβ?

i+1
2−c c −c c

x
i− 1

2

x
i+ 1

2

Figure 4.1 – Successive Riemann problems

The updated state vector is obtained as follows :

Un
i+1 =

1

∆x

∫ x
i+1

2

x
i− 1

2

Uh(x, tn + ∆t)dx. (4.17)
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A standard computation gives the following detailed scheme :

En+1
i = En

i − ∆t

∆x
(FE

i+ 1
2
−FE

i− 1
2
),

(Fx)
n+1
i = (Fx)

n
i − ∆t

∆x
(FFx

i+ 1
2

− FFx

i− 1
2

),

(Fy)
n+1
i = (Fy)

n
i − ∆t

∆x
(FFy

i+ 1
2

− FFy

i− 1
2

),

(4.18)

where we have set the notations as :

FE
i+ 1

2
=











c(β?
x)i+ 1

2
(E?,L

i+ 1
2

+ Π?
i+ 1

2
) if (β?

x)i+ 1
2

> 0,

c(β?
x)i+ 1

2
(E?,R

i+ 1
2

+ Π?
i+ 1

2
) otherwise,

FFx

i+ 1
2

= Π?
i+ 1

2
+

(β?
x)i+ 1

2

c
FE

i+ 1
2
,

FFy

i+ 1
2

=



















(β?
x)i+ 1

2

1 + (β?
x)i+ 1

2

(

(Pxy)
n
i +

(Fy)
n
i

c

)

if (β?
x)i+ 1

2
> 0,

−(β?
x)i+ 1

2

1 − (β?
x)i+ 1

2

(

(Pxy)
n
i+1 +

(Fy)
n
i+1

c

)

otherwise.

(4.19)

For the sake of completeness, let us recall that (β?
x)i+ 1

2
is the single solution in (−1, 1)

of the following equation :

X2(F̃ HLL
x )i+ 1

2
− c((P̃ HLL

xx )i+ 1
2

+ (E?,HLL)i+ 1
2
)X + (F ?,HLL

x )i+ 1
2

= 0, (4.20)

while we have :

Π?
i+ 1

2
= (P̃ HLL

xx )i+ 1
2
−

(β?
x)i+ 1

2

c
(F̃ HLL

x )i+ 1
2
,

E?,L

i+ 1
2

=
1

1 + (β?
x)i+ 1

2

(

En
i − (β?

x)i+ 1
2
Π?

i+ 1
2

+
(Fx)

n
i

c

)

,

E?,R

i+ 1
2

=
1

1 − (β?
x)i+ 1

2

(

En
i+1 + (β?

x)i+ 1
2
Π?

i+ 1
2

+
(Fx)

n
i+1

c

)

,

(4.21)

and where the E?,HLL

i+ 1
2

, (F ?,HLL
x )i+ 1

2
, (F̃ HLL

x )i+ 1
2

and (P̃ HLL
xx )i+ 1

2
variables are defi-

ned by (2.154). The derivation of the HLLC type scheme to approximate the weak
solution of (4.1) is thus completed.

Robustness. The full 1D scheme here detailed is as much stable as the scheme
developed in Section 2.5 with the simplified 1D system. The lemmas 10, 12 remain
satisfied and the proofs are unchanged. As, for the robustness, it is numerically
tested through the test cases presented in Chapters 5 and 6.

Next, let us deal with the accuracy of the scheme. We are here aiming to prove
that the scheme (4.18)-(4.21) preserves the stationary contact waves.
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Theorem 19. Consider an admissible sequence (Un
i )i∈Z in A. For all i in Z, assume

(βx)
n
i = 0 where (βx)

n
i := (βx)(U

n
i ) is defined by (4.5). Let us set Π a positive

constant. Assume Πn
i = Π for all i ∈ Z where Πn

i := Π(Un
i ) is given by (4.4). Then

we have Un+1
i = Un

i for all i ∈ Z.

This result is a direct consequence of the property of the approximate Riemann
solver to exactly capture the stationary contact discontinuity.

Lemma 20. Let UL and UR be given in A, and assume that UL and UR define
a stationary contact wave ; namely (βx)L = (βx)R = 0 and ΠL = ΠR. Then the
approximate Riemann solver, defined by (4.7), coincides with the exact stationary
contact wave solution :

UR(x, t) =

{

UL if x/t < 0,
UR if x/t > 0.

(4.22)

Proof. Arguing the definition of βx, given by (4.5), as soon as βx = 0 we have
Fx = 0. As a consequence (Fx)L = (Fx)R = 0. In addition, the radiative pressure
reads :

(Pxx)L = (Pxx)R = Π,
(Pxy)L = (Pxy)R = 0.

(4.23)

From these values, we note that F ?,HLL
x = 0 and P̃ HLL

xx = Π.
We now evaluate the intermediate states of UR. First, β?

x is the main solution in
(−1, 1) of the following equation :

X2F̃ HLL
x − cX(P̃ HLL

xx + E?,HLL) = 0. (4.24)

Hence, we have β?
x = 0. Next, from (2.116) we have Π? = Π. Concerning the radia-

tive energy, from (4.12) we obtain E?
L = EL and E?

R = ER. Arguing (4.10) we get
F ?

x,L = F ?
x,R = 0 while (4.14) gives F ?

y,L = Fy,L and F ?
y,R = Fy,R. The proof is thus

completed. �

Proof.of Theorem 19.
Invoking Lemma 20, the expected result is an immediate consequence of the updated
state vector definition (4.17). �

4.2.2 Validation of the full 1D scheme

The numerical test shown in Section 2.6 is here reproduced in a full one dimen-
sional configuration. The above detailed HLLC-like aproximate Riemann solver is
tested against the relaxation model presented in Section 2.4 and against the classical
HLL and Lax-Friedrichs schemes. The comparison is shown in Figure 4.2

The figure plots a non-dimensional radiative energy. The non-dimensional input
data are EL = 6, Fx,L = 2, Fy,L = 1 in the interval (0, 0.5), and ER = 5, Fx,R = 3,
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Fy,R = 2 in the interval (0.5, 1). The CFL condition is set to 0.5 and the calculation
is performed over 200 points. The displayed results are obtained from first order
computations and compared to a reference solution obtained with the use of Lax-
Friedrichs’ scheme over 40000 points.

0 0.2 0.4 0.6 0.8 1
4

4.5

5

5.5

6

HLL
HLLC
Lax-Friedrichs
Relaxation
Reference solution

Figure 4.2 – Comparison between HLLC, HLL, Relaxation and Lax-Friedrichs’
schemes.

The graph 4.2 confirms the improvement in accuracy made thanks to the HLLC
approximate Riemann solver developed in this work. We can still observe that some
accuracy is lost in the case of the relaxation solver because of the very restrictive
conditions ensuring the robustness of the scheme, the results are even worse than
those given by the HLL scheme.

Note that, for this full 1D case, a difference is observed between the HLL and
HLLC schemes, whereas when performing this test in the simplified 1D configura-
tion in Section 2.6, there was no difference between the HLL and HLLC schemes.
Moreover, the HLLC scheme provides us with a sharper approximation of the solu-
tion.

4.2.3 2D extension

Let us get back to the notations and define the following vectors :

U =





E
Fx

Fy



 , F =





Fx

c2Pxx

c2Pxy



 andG =





Fy

c2Pyx

c2Pyy



 .
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With these notations, we can write the system to be solved in 2D configurations. It
takes the form :

∂tU + ∂xF + ∂yG = 0. (4.25)

With A = ∂F
∂U

and B = ∂G
∂U

it comes :

∂tU + A∂xU + B∂yU = 0.

Equation (4.25) is integrated over a finite volume Ci.
∫

ci

(∂tU + ∂xF + ∂yG) dxdy = 0, (4.26)

where ∂xF+∂yG can also be written divx,y

(

F
G

)

. It comes that (4.26) is equivalent

to :

∂t

∫

ci

U +

∫

∂ci

(

F
G

)

· ~n dσ = 0. (4.27)

The method to determine the solution of a given 2D problem is therefore resumed
to solving a Riemann problem in the ~n direction, where :

(

F
G

)

· ~n = Fnx + Gny =





Fxnx + Fyny

c2Pxxnx + c2Pyxny

c2Pxynx + c2Pyyny



 =

(

~F · ~n
c2 ¯̄P~n

)

.

The Riemann problem in two dimensions is resumed in Figure 4.3.

UL

(nxF + nyG)L

UR

(nxF + nyG)R

U?
L

˜(nxF + nyG)L

U?
R

˜(nxF + nyG)R

‖ ~β?‖bL bR

Figure 4.3 – HLLC 2D scheme

In addition, the radiative tensor ¯̄P , which expression is given in Section 2.5.1, is
written again with 2D notations. We remind some usual relations between vectors :

~F ⊗ ~F~n = ~F t ~F~n = (~F · ~n)~F .

Hence, once the vectors have been put right, we obtain :

¯̄P~n =
1 − χ(f)

2
E~n +

3χ(f) − 1

2

E

‖~F‖2
(~F · ~n)~F .
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The additional relations

Π =
1 − χ(f)

2
E,

3χ(f) − 1

2
= ‖~β‖‖

~F‖
cE

and
~F

‖~F‖
=

~β

‖~β‖
allow us to write :

¯̄P~n = Π~n + (~β · ~n)
~F

c
. (4.28)

From (4.28), we can write the flux vector as :

(

F
G

)

· ~n =

(

~F · ~n
c2Π~n + c(~β · ~n)~F

)

. (4.29)

We do not detail here the well known Rankine-Hugoniot relations, it is straight-
forward to obtain the expressions of the radiative variables in the star region. Let
us specify the linearisations with the 2D notations :















~F ?
L,R = ~̃FL,R = c ~β?(E?

L,R + Π?),

˜̄̄
PL,R~n = Π?~n + ( ~β? · ~n)

~̃FL,R

c
.

(4.30)

The intermediate states of the Riemann problem are :


















E?
L =

(~F · ~n)L − bLEL − c( ~β? · ~n)Π?

c( ~β? · ~n) − bL

,

E?
R =

(~F · ~n)R − bRER − c( ~β? · ~n)Π?

c( ~β? · ~n) − bR

,

(4.31)

and the intermediate fluxes are written :


















(~F ? · ~n)L =
c2( ¯̄P~n)L · ~n − bL(~F · ~n)L − c2Π?

c( ~β? · ~n) − bL

,

(~F ? · ~n)R =
c2( ¯̄P~n)R · ~n − bR(~F · ~n)R − c2Π?

c( ~β? · ~n) − bR

.

(4.32)

With 2D notations, the relations (2.113) and (2.116) are written as follows :

~F ?
HLL · ~n = c( ~β? · ~n)(E?

HLL + Π?), (4.33)

(
˜̄̄
PHLL~n) · ~n = Π? + ( ~β? · ~n)

~̃FHLL · ~n
c

. (4.34)

And the second order degree equation of unknown ~β? · ~n is then :

( ~β? · ~n)2( ~̃FHLL · ~n) − c( ~β? · ~n)
(

E?
HLL + (

˜̄̄
PHLL~n) · ~n

)

+ ~F ?
HLL · ~n = 0. (4.35)
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Discretisation. The two dimensional procedure is said to be based on a dimen-
sional splitting. Indeed, it sums up two resolutions of the 1D Riemann problem in
each direction. For every time step, in the case of cartesian grids, the numerical
fluxes are obtained in the x-direction first and then in the y-direction, and are used
to update the solution at tn+1.

We consider a uniform mesh defined by the finite volumes (xi− 1
2
, xi+ 1

2
)×(yi− 1

2
, yi+ 1

2
)

where xi+ 1
2

= xi +∆x/2 and yi+ 1
2

= yi+∆y/2 for all i in Z with constant increments

∆x and ∆y. The time discretisation is given by tn+1 = tn +∆t where ∆t is restricted
according to a CFL-like condition given by :

c
∆t

∆x + ∆y
≤ 1

2
. (4.36)

Let us write the discretised form of Equation (4.25), we have :

1

∆t

(

Un+1
i,j − Un

i,j

)

+
1

∆x

(

Fi+1/2,j − Fi−1/2,j

)

+
1

∆y

(

Gi,j+1/2 − Gi,j−1/2

)

= 0. (4.37)

As usual, at the time tn, we assume to be known a piecewise constant approxi-
mation of Uh(x, tn) defined as follows :

{

Uh(x, tn) = Un
i if x ∈ (xi− 1

2
, xi+ 1

2
),

Uh(y, tn) = Un
i if y ∈ (yi− 1

2
, yi+ 1

2
).

(4.38)

At each cell interface xi+ 1
2

or yi+ 1
2

(depending on the direction in which we are

working), we set the approximate Riemann solver defined by (4.7) with UL = Un
i

and UR = Un
i+1. Under the CFL restriction (4.36), we thus consider a juxtaposition

of non-interacting Riemann solvers, which solutions are denoted Uh(x, t) if working
in the x direction or Uh(y, t) if working in the y direction, and for t ∈ [tn, tn + ∆t).

The scheme (4.18)-(4.21) is then applied in each direction and the solution at
the time tn + ∆t is obtained through (4.37).

The stability and robustness of the 2D scheme thus depends on the 1D scheme
for which the important properties have be shown in the precedent section. That is
to say, the 2D HLLC type scheme presented here has its approximate solution in
the admissible space A, i.e. the energy positivity and flux limitation are preserved.
Moreover, through the ability of the scheme to preserve the stationary contact wave,
an improved accuracy is ensured compared to the Harten-Lax-Van Leer [27] scheme.

4.3 Curvilinear extension

As mentioned earlier, with the starting point of a two dimensional cartesian
scheme, we want to make it able to deal with curved geometries i.e. with the asso-
ciated curvilinear meshes, as well as with mesh refinements in areas where strong
gradients are involved. The principle is presented in the following, as well as the
parametric coefficients useful for this transformation.
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4.3.1 The conform transformation

First, let us remind the M1 system in its 2D form :

∂tU + ∂xF + ∂yG = 0, (4.39)

which is integrated over a cell Ci :

∫

ci

(∂tU + ∂xF + ∂yG) dxdy = 0.

We here aim to map the physical (x, y) space to a generalised curvilinear coor-
dinate (ξ, η) space, in order to be able to consider rather arbitrary geometries. The
discretisation of the governing equations is done in the generalised coordinate space,
so are the computations.

An application ϕ defined as ϕ : (x, y) −→ (ξ, η) ensures the conform trans-
formation from the physical space to the generalised coordinate space. Indeed, for

ϕ

y

x

η

ξ

Figure 4.4 – Conform transformation

the spatial derivatives to be properly evaluated at every time step, we consider two
distinct domains :

– the physical domain where the physical variables are initialized,
– the mathematical domain where the problem equations are discretised.

Computations in a two-dimensional curved region are more appropriately per-
formed along a wall that coincides with lines of constant η for instance. In such a
configuration, location along the wall will then correspond to specific values of ξ in
the computational domain. The use of such a coordinate space is particularly jus-
tified when grid refinement is needed in parts of the physical domain where severe
gradients are expected.

It is assumed that there is a single-valued relationship between the generalised
coordinates and the physical coordinates, written as : ξ = ξ(x, y) and η = η(x, y).
And the spatial derivatives of any function f depending on the physical variables
(x, y) can be written :

∂xf = ∂xξ∂ξf + ∂xη∂ηf,

∂yf = ∂yξ∂ξf + ∂yη∂ηf.
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The governing equations are transformed into corresponding equations contai-
ning partial derivatives with respect to ξ and η. The Jacobian matrix J of the
transformation is :

J =





∂xξ ∂yξ

∂xη ∂yη



 ,

and the determinant of the Jacobian matrix is given by :

J = ∂xξ ∂yη − ∂yξ ∂xη =
1

∂ξx ∂ηy − ∂ηx ∂ξy
,

so the inverse of the Jacobian matrix can be written as follows :

J−1 =





∂ξx ∂ηx

∂ξy ∂ηy



 =
1

J





∂yη −∂yξ

−∂xη ∂xξ



 , (4.40)

where 1/J actually represents the considered cell surface. Note that the involved
derivatives of the mathematical coordinates as functions of the physical coordinates
are usually designated as the parametric coefficients.

Proposition 21. Eq.(4.39) can be written in the form :

∂Û

∂t
+

∂F̂
∂ξ

+
∂Ĝ
∂η

= 0, (4.41)

where






































Û =
U

J
,

F̂ =

(

∂xξ

J
F +

∂yξ

J
G
)

,

Ĝ =

(

∂xη

J
F +

∂yη

J
G
)

.

Proof. Let us denote by ϕ an arbitrary test function. The integration of Eq.(4.39)
writes :

∫ +∞

0

∫

ci

(

∂W

∂t
+

∂F
∂x

+
∂G
∂y

)

ϕdtdxdy = 0.

Through Green’s theorem, this is equivalent with writing :

∫ +∞

0

∫

ci

(

W
∂ϕ

∂t
+ F ∂ϕ

∂x
+ G ∂ϕ

∂y

)

dtdxdy = 0.



NUMERICAL APPROXIMATION IN TWO DIMENSIONS 93

Using the following relations :







dxdy = 1
J
dξdη,

∇ϕ = ∇ξ ∂ϕ
∂ξ

+ ∇η ∂ϕ
∂η

,

we then obtain :

∫ +∞

0

∫

ci

[

W

J

∂ϕ

∂t
+

(

∂xξ

J
F +

∂yξ

J
G
)

∂ϕ

∂ξ
+

(

∂xη

J
F +

∂yη

J
G
)

∂ϕ

∂η

]

dtdξdη = 0.

Therefore it comes :

∫ +∞

0

∫

ci

[

∂

∂t

(

W

J

)

+
∂

∂ξ

(

∂xξ

J
F +

∂yξ

J
G
)

+
∂

∂η

(

∂xη

J
F +

∂yη

J
G
)]

ϕdtdξdη = 0,(4.42)

which completes the proof. �

Note that if a source term is involved, the differential equation in curvilinear
coordinates takes the form :

∂Û

∂t
+

∂F̂
∂ξ

+
∂Ĝ
∂η

= Ŝ, (4.43)

where Ŝ = S
J
.

4.3.2 Numerical approximation

The equations are discretised in the (ξ, η) domain, and the mapping is arran-
ged so that the mapping is uniform and rectangular in the computational domain.
Curved lines of the physical grid are approximated by tangent lines, see Fig.(4.5).
A discretisation of (4.41) gives :

1

∆t

(

ˆUn+1
i,j − Ûn

i,j

)

+
1

∆ξ

(

F̂i+1/2,j − F̂i−1/2,j

)

+
1

∆η

(

Ĝi,j+1/2 − Ĝi,j−1/2

)

= 0.(4.44)

where







































F̂i+1/2,j =

(

∂xξ

J

)

i+1/2,j

Fi,j + Fi+1,j

2
+

(

∂yξ

J

)

i+1/2,j

Gi,j + Gi+1,j

2
,

(

∂xξ

J

)

i+1/2,j

= (∂ηy)i+1/2,j =
yBi,j

− yCi,j

∆η
,

(

∂yξ

J

)

i+1/2,j

= − (∂ηx)i+1/2,j = −xBi,j
− xCi,j

∆η
,

(4.45)
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Figure 4.5 – Two dimensional curved grid

and






































Ĝi,j+1/2 =

(

∂xη

J

)

i,j+1/2

Fi,j + Fi,j+1

2
+

(

∂yη

J

)

i,j+1/2

Gi,j + Gi,j+1

2
,

(

∂xη

J

)

i,j+1/2

= − (∂ξy)i,j+1/2 = −yBi,j
− yAi,j

∆ξ
,

(

∂yη

J

)

i,j+1/2

= (∂ξx)i,j+1/2 =
xBi,j

− xAi,j

∆ξ
,

(4.46)

and finally :










































J−1
i,j =

(

∂xξ

J

)

i,j

(

∂yη

J

)

i,j

−
(

∂yξ

J

)

i,j

(

∂xη

J

)

i,j

,

(

∂xξ

J

)

i,j

=
1

2

[

(

∂xξ

J

)

i+1/2,j

+

(

∂xξ

J

)

i−1/2,j

]

,

(

∂xη

J

)

i,j

=
1

2

[

(

∂xη

J

)

i,j+1/2

+

(

∂xη

J

)

i,j−1/2

]

.

(4.47)

The unitary normal vector ~n for each face of the control volume also needs to be
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specified. We have :



























(

∂xξ
J

∂yξ
J

)

i,j+1/2

=

(

∂ηy

−∂ηx

)

i,j+1/2

=
1

∆η

(

yBi,j
− yCi,j

−(xBi,j
− xCi,j

)

)

=
1

∆η

(

xBi,j
− xCi,j

yBi,j
− yCi,j

)⊥

,

(

∂xη
J

∂yη
J

)

i+1/2,j

=

(

−∂ξy

∂ξx

)

i+1/2,j

=
1

∆ξ

(

−(yBi,j
− yAi,j

)
xBi,j

− xAi,j

)

=
1

∆ξ

(

xBi,j
− xAi,j

yBi,j
− yAi,j

)⊥

.

For instance, considering the face ABi,j, its normal vector ~n(AB)i,j
is colinear to

∆ξ

( ∂xη
J

∂yη

J

)

i+1/2,j

, as for the face BCi,j, its normal vector ~n(BC)i,j
is colinear to

∆η

( ∂xξ
J

∂yξ

J

)

i,j+1/2

.

Numerical experiments are performed in Chapter 5 to test the relevance of the
curvilinear coordinates. A classical observation is that the use of a curvilinear mesh
introduces numerical dissipation in the solution.

Indeed, the evaluation of the parametric coefficients, useful for the conform trans-
formation realised here, plays an important part in the resulting precision of the
scheme. The evaluation of these parametric coefficients may be done in two different
ways : they can either be analytically calculated if the function of the transformation
is known, or they can be numerically computed. The first option is used when one
want to avoid the troncature error. However, it is known that this choice leads to
a deterioration of the order of accuracy used in the numerical scheme. The second
option that evaluates the derivatives from the discretised scheme is then prefered as
it preserves the global accuracy. In addition, calculating the parametric coefficients
numerically ensures the consistency, i.e. the constant solutions are preserved through
this geometric conservation law.

Nevertheless, the use of a conform transformation in multidimensional domains
adds up troncature errors, and particularly, they are related to the mesh orthogo-
nality. The typical error is indeed proportional to cosθ where θ is the angle between
the ξ and η axis. The numerical experiment presented in Section 5.7 tests the in-
fluence and pertinence of the use of curvilinear coordinates in the case of a curved
geometry.
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Chapitre 5

Validation of the approach

5.1 Introduction

So far, we have focused on the construction of an accurate Riemann solver for
the resolution of the M1 hyperbolic system. This Riemann solver is an HLLC scheme
that has the capability to capture the contact wave and is then supposed to be more
accurate than the classical HLL scheme.

In the present chapter, as well as in the following, we display the results obtained
through various test cases, and compare the HLLC scheme against the HLL scheme.
We here aim to put into light the improvement brought to the radiative transfer
solution. In this chapter, we focus exclusively on pure radiative test cases, where no
hydrodynamic calculation is involved. The first test case is a one dimensional case,
whereas the next test cases are two dimensional.

The first test case deals with a Marshak wave. Indeed, we look at the time propa-
gation of a heat wave and compare the HLL and HLLC numerical schemes, applied
to the M1 model, with a kinetic solution of the radiative transfer equation. We there
check that there is no deterioration of the 1D solution through the numerical scheme.

From the second test case, two dimensional configurations are considered. A sha-
dow cone is first studied. It is a very stiff test case, with an important discontinuity
at the interface. It allows us to test the capability of the HLLC scheme to capture
the discontinuity with good accuracy. The usefulness of the second order MUSCL
and asymptotic preserving schemes is also tested through this test case.

We also look at the ability of our radiative transfer code to deal with curvilinear
geometries through the elliptic thick cloud test case, where a cartesian mesh is
considered in the first place, and then a curvilinear mesh is tried on. It is the only
test case to involve non-constant opacities as the opacity is defined as a function of
the density and temperature.

The numerical diffusion of the scheme is quantified through the single light beam
test case. And finally, a double light beam case shows that some limitations are
induced by the use of the M1 model, even if the behaviour of the model is very
satisfactory in the transport regime.

Finally, the last application deals with a medical application of radiation such as
the photons propagation in brain tissues. Indeed, when using radiation as a cure, it
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is important not to damage the healthy areas. For the simulation of human tissues,
matters with scattering opacities non equal to zero are considered. We are then
confronted to a test case with scattering mediums. The calculations are performed
based on the M1 model and with both HLL and HLLC schemes, and are compared
to microscopic resolutions of the radiative transfer equation.

5.2 Marshak wave

The Marshak wave is a one-dimensional test case that focuses on the chronome-
tric behaviour of the scheme. The considered slab of material is initially cool and in
radiative equilibrium. A heat wave enters the domain and its evolution is observed.

In [46], this test case is used to compare the M1 model behaviour with various
diffusion models where the flux is artificially limited. The flux limiters used are
Kershaw’s, Minerbo’s, Levermore’s, and Levermore-Lorentz’s [33]. A kinetic model
is used as a reference solution, and it turns out that amongst the diffusion models,
some are late, and some are early compared to the kinetic solution. However, the M1

model is quite well behaving timewise, and is then a better choice when computing
non-stationary cases.

Having this in mind, we here aim to check that using a different scheme than
the usual HLL scheme does not deteriorate the non-stationary solution.

This test case is composed of a slab of material that extends from x = 0m to
x = 0.1m, and which mesh is divided into 10 cells. The initial temperature is equal
to 300K and the source on the left side of the domain has a temperature of 1000K.
This source generates a thermal wave propagating into the initially cold medium.

The opacity is assumed to be constant equal to σ = 100 m−1 and the density
multiplied by the heat capacity is ρCv = 10−4Jm−3K−1. The results are compared
with a full transport calculation [6] used as a reference solution. Note that in the
present slab, the mean free path is equal to λ = 1/σ = 0.01 m, which is actually equal
to the spatial resolution ∆x = 0.01 m. The cells are then too large for the absorption
phenomenon to be numerically visible, and the computation is thus comparable to
a transport calculation.

The radiative temperature profiles observed at t = 1.33 10−7s are shown in Figure
5.1. Computations with both HLL and HLLC schemes are compared, and also with
the additional asymptotic scheme denoted ‘AP’ and presented in Section 3.2.

Results without the asymptotic preserving scheme are clearly early compared to
the reference solution, whereas the use of the asymptotic preserving scheme allows
a much better agreement with the reference solution. We also note that the HLLC
and HLL schemes both give similar results from a chronometric point of view.

An additional test is performed with more points for the computation, that is to
say with 50 points along the path (whereas there were only 10 before). The results
are shown in Figure 5.2. We observe that the solution shows a rather good fit with
the reference solution.
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Figure 5.1 – Marshak wave at t = 1.33 10−7s.
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Figure 5.2 – Marshak wave at t = 1.33 10−7s with a refined spatial discretisation.

5.3 Shadow cone

Let us now consider a 2D problem in order to focus on two dimensional effects.
The design of this test case has been defined in order to realise mathematical expe-
riments in the sense that the data have no physical meaning. This test case has very
stiff initial conditions and demonstrates really well the quality of the solution provi-
ded by the solver. The discontinuity is indeed well pronounced between the matter



100 VALIDATION OF THE APPROACH

and transparent mediums, the input conditions we set in these regions and at their
boundaries. Tests have been performed in [6], and we show here some improvements
from the results obtained in [6].

The considered domain extends from x = 0m to x = 2m and from y = 0m to y =
1m as shown on Figure 5.3. Computations shown here are run on a 80×40 cartesian
mesh. The domain is composed of a dense material (ρCv = 8.6 104Jm−3K−1 and σ =
2 105 m−1) and a transparent region. A free streaming beam adjacent to the dense
material enters the domain through the top left boundary. The other boundaries
of the domain are set as transparent. The initial temperature is 1K in the dense
material and 300K elsewhere. A radiative temperature of T = 5802000K is applied
on the left side of the transparent region (from y = 0.5m to y = 1m).

E = aT4 Fx = aT4 Fy = 0

T = 5802000K

E = 0 Fx = 0 Fy = 0

E = aT4

Tm = 1K

F = 0

Figure 5.3 – Geometry (left) and expected solution (right) for the 2D case.

As for the expected solution it is summed up in Figure 5.3. Indeed, in the upper
part the photons are simply translated from the left boundary to the right of the
domain. And in the lower part, no photons are entering this area and the solution
remains constant against time. The line y = 0.5 then is a stationary contact discon-
tinuity for the M1-system. The dense material does not get any photon either and
its temperature remains constant.

Simulations are stopped at time t = 5 10−8s. Figure 5.4 and 5.5 respectively show
the radiative and material temperature distributions obtained from calculations with
the HLL scheme on one hand and with the HLLC scheme on the other hand. It is
obvious that the HLL scheme induces an important numerical diffusion responsible
for non-physical penetration of photons in the lower part of the domain. Meanwhile
the HLLC scheme is able to deal properly with the discontinuity. There is underlined
the major role of the third eigenvalue that was expected to make the difference in
2D configurations.

Looking more in details at the material temperature obtained through the va-
rious schemes (see Table 5.1), it appears that the HLLC scheme together with the
asymptotic preserving modification and a second order MUSCL-like scheme allow
to narrow the expected temperature of 1K.

Figure 5.6 is a slice made at x = 1m so we can look at the computed radiative
temperature across the contact discontinuity. There is outlined the numerical diffu-
sion engendered by the HLL scheme while HLLC is able to approximate the exact
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Figure 5.4 – Radiative temperature.

T matière max T matière moyenne

Scheme HLL HLLC HLL HLLC

bR, bL csts 4300000 17000 350000 840
bR, bL variables 3700000 170000 290000 11000
bR, bL csts + AP 3600000 9000 43000 40
bR, bL variables + AP 740000 110000 5200 690
bR, bL csts + Minmod 3600000 16000 240000 340
bR, bL csts + Minmod +

AP

2700000 6400 34000 26

bR, bL csts + Superbee +

AP

1600000 2400 11000 6.1

Table 5.1 – Material temperature with HLL and HLLC schemes.

solution quite closely.
Let us note that a better approximation of the solution is obtained when setting

the bL and bR values to ±c than when using the exact eigenvalues of the system. This
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Figure 5.5 – Material temperature.

may come from the fact that the waves with velocities bL and bR get too close to the
contact wave of velocity cβ and divisions by zero may occur. We therefore choose to
use the speed of light as the Riemann problem wavespeeds in all the computations.
It indeed does not appear useful to spend time calculating an exact cone. The wider
cone (made of bL = −c and bR = +c) is sufficient as far as capturing the contact
wave of the Riemann problem brings a great deal of accuracy to the calculations,
even in this very stiff case.

5.4 Elliptic cloud

The second purely radiative test case also allows us to check that the model is able
to deal with strong anisotropies, characteristic of the shadow phenomena. We here
consider an ellipsöıdal cloud a hundred times thicker than its air-like environment.
Other results for this test are shown in [28] and [20].

The domain is a cylinder of length L = 1cm and radius R = 0.12cm. The
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Figure 5.6 – Radiative temperature along the y coordinate.

geometry is symmetric and we will only consider one half of it. The cloud center is
(0.5, 0) and its dimensions are (0.1, 0.06). The medium is initially at the equilibrium
temperature T0 = 290K and density ρ0 = 10−3 kg m−3. As for the cloud its density
is ρ1 = 100ρ0 and the edge of the cloud is smooth thanks to the relation :

ρ(z, r) = ρ0 +
ρ1 − ρ0

1 + exp∆
, (5.1)

where

∆ = 10

[

(

z − zc

z0

)2

+

(

r − rc

r0

)2

− 1

]

. (5.2)

The opacity in the medium is a function of density and temperature :

σ = σ0

(

T

T0

)−3.5(
ρ

ρ0

)2

, (5.3)

where σ0 = 10m−1.
At time t = 0s a uniform temperature T = 1740K is applied on the left boundary

of the cylinder. Photons are translated to the right, except that the region behind
the cloud is shadowed because of the very short mean free path in the cloud. This
shadow must remain stable as long as the light has not gone through the cloud.
Figure 5.7 shows the radiative temperature distribution for this test case and for
HLL and HLLC calculations. The computations have been performed on a 280× 80
cartesian grid. The calculations are stopped at t = 0.1s.
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radiative

    

Figure 5.7 – Radiative temperature around the cloud with HLL (top) and HLLC
(bottom).

The HLL result presented here is a first order calculation with varying bL and bR,
and the HLLC result is a second order calculation with the Minmod slope limiter
and with constant bL and bR, i.e. bL = −c and bR = +c. Both results use the
asymptotic preserving modification. The results outline the ability of the HLLC
scheme to preserve the radiation anisotropy and to minimise greatly the numerical
diffusion.

5.5 Light beam

Another test is this of the light beam entering the domain with an angle different
from zero (see [37]). This test is helpful to quantify the numerical diffusion enhanced
by the numerical scheme as the incident beam is not aligned with the mesh axis.

In this test the mesh is divided into 128 × 128 cells and has the dimensions
x = [−1, 1] and y = [−1, 1]. The temperature in the domain is initially T = 300K
and all boundaries are transparent except at x = −1m and in the interval y =
[−0.875,−0.750] where a radiative temperature of 1000K is applied, the photons
incident angle in this interval is 45◦. The opacity in the whole medium is σ = 0m−1,
therefore it is not expected any physical diffusion, nor dispersion of the photons.

Figure 5.8 shows radiative energy distributions obtained thanks to computations
with HLL on one hand and HLLC on the other hand. Figure 5.9 plots the radiative
energy profile at y = 0m. We can then compare the beams wideness. Indeed, while
the boundary condition sets the incident beam over 8 cells, half-way up the domain
the beam extends over 24 cells with the HLL scheme and over 15 cells with the
HLLC scheme. The same result as with the HLL scheme was shown in [20].

In order to test the influence of the mesh on the result in figure 5.10 and figure
5.11 are respectively plotted the radiative energy profile at y = 0 and the decrease
of radiative energy along the beam for both meshes 128 × 128 and 256 × 256. The
numerical imperfections are obviously less spreaded with the 256 × 256 mesh, and
also the radiative energy appears less attenuated along the beam. Improvements
brought by the numerical schemes are here outlined as far as the numerical diffusion
is reduced across the discontinuities.
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Figure 5.8 – Radiative energy of the angled light beam with the HLL scheme (left)
and the HLLC scheme (right).

Figure 5.9 – Radiative energy profile at y = 0m.

5.6 Double light beams

In here we consider two converging light beams angled as in the precedent test.
The behaviour of the M1-model in such a case is shown in Figure 5.12. This test
yields the limitations of the M1-model. In fact, because of the average made over
the solid angle when deriving the M1-model from the radiative transfer equation,
photons moving in various directions end up into a single resulting beam. In this
test, the two beams should not actually interact. The macroscopic model we have
chosen is thus the limiting parameter for the solution to be correct from a physical
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Figure 5.10 – Radiative energy profile at y = 0 for two meshes.

Figure 5.11 – Radiative energy decrease along the beam.

point of view.
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Figure 5.12 – The two converging light beams - Radiative energy.

5.7 Curvilinear test

Lastly, in order to test the curvilinear scheme presented in Section 4.3 we get
back to the elliptic cloud test case presented in Section 5.4.

In Figure 5.14, the computation results for three different meshes and for the two
HLL and HLLC schemes are presented. The meshes used for these computations are
a cartesian one, a curvilinear one and a mixed mesh where the area from y = 0.0006
to y = 0.0012 is cartesian and the bottom area, where the cloud is situated, is
meshed curvilinearly. These three meshes are shown in Figure 5.13 where the elliptic
cloud has been artificially located. Note that the properties of the cloud area (and
the outside of the cloud) have been set through a penalisation method : every cell
which center coordinates are located into the ellipse are designated with the cloud
properties.

HLL and HLLC computations are second order calculations with the use of the
Minmod slope limiter and of the asymptotic preserving scheme. The HLL calcula-
tions are performed with variable bL and bR and the HLLC calculations make use of
bR = −bL = c. The results are presented in Figure 5.14.

The cartesian and mixed meshes give similar results whereas the curvilinear mesh
deteriorates the sharpness of the solution. This could be explained by the fact that,
in this particular case, the main propagation direction of the photons is not aligned
with the mesh, which involves errors when approximating the solution. Note that
the results are still better with the HLLC scheme than with HLL.
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Figure 5.13 – Cartesian, curvilinear and mixed meshes.

5.8 Scattering

Let us recall the time-dependant Radiative Transfer Equation taking into account
the scattering term :

1
c
∂tIν(Ω) + Ω.∇Iν(Ω) = σe

νBν(T ) − (σa
ν + σd

ν)Iν(Ω)

+σd
ν

4π

∫

S2 pν(Ω
′.Ω)Iν(Ω

′)dΩ′dν,
(5.4)

where σd
ν , σa

ν and σe
ν are respectively the mean dispersion, absorption and emis-

sion opacities, and p/4π is the scattering probability density. When constructing
the M1 moment model, integrations of the RTE are performed over directions and
frequencies, therefore one obtain the following system :

{

∂tE + ∇ · F = cσa
(

aT 4 − E
)

∂tF + c2∇ ·P = −c
(

σa + (1 − g̃ν)σ
d
)

F
(5.5)

where g̃ν is the asymetric parameter of dispersion. In the following test case, the
dispersion is considered to be isotropic and this parameter is then equal to 0. The
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Figure 5.14 – Radiative temperature versus the y coordinate with the HLL and
HLLC scheme (200 mesh point in the x direction).

equations in (5.5) become :

{

∂tE + ∇ · F = cσa
(

aT 4 − E
)

∂tF + c2∇ · P = −c
(

σa + σd
)

F
(5.6)

The effects of scattering and the scheme behaviour are observed through a test
case from Aydin [4]. This test simulates the propagation of an isotropic beam source
into the brain, that is surrounded by a clear layer (the subarachnoid space) and then
by the outside tissues. The computed domain is a 100mm× 100mm square meshed
by 100 cells in both directions. The ponctual source is centered on the left side of
the domain. This configuration is modelled by the geometry in Figure 5.15. Effects
of a void-like channel are here highlighted. The channel is 4mm thick and 84mm
long all around. Results are compared with kinetic computations of this test case.

Figure 5.16 shows a map of the radiative energy obtained with computations
through a kinetic method. The domain is still discretised into 100 cells in both
directions, and the arbitrarily chosen frequencies and directions of propagations
vary up to eight different values for a first computation, and up to sixteen different
values for the second computation. These kinetic solutions are used as reference
solutions for the validation of our macroscopic method based on the moment M1

model.
Figure 5.17 shows a map of the radiative energy in the domain. This is obtained
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Figure 5.15 – Geometry of the channeling problem.

through a second order computation performed with the HLL scheme on the left
and the HLLC scheme on the right.

Figure 5.16 – Radiative energy - Kinetic computations with 8 (left) and 16 (right)
directions of propagation.

A slice is made at the ordinate y = 50mm. And the radiative energy along
this line is compared with the one obtained through a microscopic resolution of
the radiative transfer equation. The number of directions for this kinetic resolution
may vary from 8, to 16. Figure 5.18 gathers the results obtained from calculations
in a 100 × 100 mesh, through a kinetic formulation of radiative transfer on one
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Figure 5.17 – Radiative energy - HLL and HLLC schemes, 2nd order MUSCL
computations.
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Figure 5.18 – Comparison of the radiative energy evolutions across the domain
with HLL, HLLC and kinetic computations.

part, and the combined use of the M1 moments model and the HLL and HLLC
Riemann solvers. In this latter case, first and also second order computations have
been performed. The logarithmic scale have been chosen in Figure 5.18 so that the
slight differences remaining between the various methods can be seen.

In order to involve the role played by the spatial discretisation and to test the
mesh convergence, computations have also been performed with a refined mesh
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made of 200 cells in both directions. The results are shown in Figure 5.19, where
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Figure 5.19 – Comparison of the radiative energy evolutions with a refined mesh.

a logarithmic scale is again used for the graph ordinate. The kinetic solution that
is used as reference solution is obtained over a range of 16 varying directions, and
both results with the original and refined mesh are plotted. We observe that the
kinetic solution is not really converged either so we can not properly conclude on
the improvements brought by the HLLC-type Riemann solver. Although the quality
of the results seems to be at least preserved.

5.9 Conclusion

In this chapter, we have performed a number of numerical test cases dedicated
to radiative transfer only. These experiments allowed us to specifically test the nu-
merical capabilities of our developed HLLC type scheme, further furbished with an
asymptotic preserving correction of the source terms and a second order MUSCL
reconstruction.

Particularly, the shadow cone test case contains a very stiff discontinuity that
basic Riemann solvers, neglecting the contact wave, are not able to treat properly
and enhance an important numerical diffusion. Meanwhile, the present HLLC type
scheme provides us with pretty good and accurate simulations of such a configura-
tion. The asymptotic preserving correction of the source terms there appears to be
appropriate and efficient.

In addition, through the brain imaging test case, the photons scattering is expe-
rienced and drawn against some results obtained through a kinetic approach. The
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calculations through the macroscopic approach reveal to be quite satisfactory even if
the kinetic approach used as a reference solution does not seem to be fully converged.

The remaining test to carry out is now a coupling of our radiative transfer solu-
tion with hydrodynamic phenomena. Having at our disposal an accurate model and
a rather cheap method, we are then able to perform such simulations and observe
the influence of radiative transfer upon other physical phenomena.
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Chapitre 6

Coupling with hydrodynamics

6.1 Introduction

This chapter is devoted to some real life applications to the radiative trans-
fer characterisation. The test case is related to hypersonic flows and the radiative
transfer calculation is coupled with hydrodynamic calculations. This application is
important as it shows the improvement in terms of accuracy brought to the radiative
transfer calculation, and in terms of computation time that can be saved thanks to
the newly developed scheme.

This application is a hypersonic flowfield calculation as it deals with an atmopshe-
ric reentry. Atmospheric reentry refers to the movement of human-made or natural
objects as they enter the atmosphere of a planet from outer space. It mainly deals
with controlled reentry of vehicles which are intended to reach the planetary surface
intact, although it may also include minimally controlled cases such as destructive
deorbiting of satellites. Typically, this reentry process requires special methods to
protect against aerodynamic heating. Indeed, depending on the entry parameters,
the effects can be very different. For instance, in the case of a space shuttle coming
back to Earth, the conditions are such that radiation plays only a neglectable part
compared to the hydrodynamic effects. Meanwhile, in some cases, radiative transfer
is determinant. As a matter of fact, the considered planet’s atmosphere may be,
as Venus’, very dense, or as in Titan’s case, it may contain chemical species that
radiate a lot, and then an important amount of radiation is enhanced. The planet’s
gravity may also be important and then accelerate the probe or comet coming in.
And finally, the velocity of a superorbital object entering the atmosphere can be very
high. Indeed, the objective of such high speed reentries is to save fuel by slowing
down the vehicle only using the planet’s atmosphere as an aerodynamic brake. As an
example, for the returning Appolo capsules, two third of the energy was dissipated
by the means of radiative transfer effects.

A discussion about the optimum shape of an entry vehicle [35] concludes that a
body of large nose radius is favorable in planetary entries as it produces a thick shock
layer. This observation was the basic principle on which were built the early space
missions vehicles. However, such a shape revealed to bring an unexpected heating
related to radiation. As a matter of fact, the temperature in the shock layer being

115
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very high (of the order of 10, 000K), the gas is then fully dissociated, or partially
ionised, and it also leads to the production of radiation. This phenomenon, amongst
the chemical and aerodynamic phenomena, is thus taken into account in nowadays
feasibility studies of atmospheric reentry.

The calculation of a flow around a reentry vehicle involves many parameters that
make necessary the use of robust codes. Indeed, considering radiative transfer, we
must be able to approximate closely enough the solution of the radiative transfer
equation in regimes as different as the diffusion regime in the hot and dense gases
of the shock layer, and the transport regime in the cold and transparent regions,
as well as the intermediate regimes. The medium opacities are determined from the
chemical composition of the gas and the state the species are in, some radiating more
or less, and depending on the temperature range the database may not be complete.
Moreover, the hydrodynamic behaviour of the flow should not be neglected as it
dictates the position and characteristics of the shock and the drag, and can be
influenced by the radiative effects.

We have here performed simulations of a hypersonic flow around a planetary
entry probe in the case of a Venus like reentry, where the chemistry and the opacities
determination are simplified. We focus on the interaction between the radiative
effects and the hydrodynamic behaviour.

6.2 The hydrodynamic code and coupling

6.2.1 The Navier-Stokes and M1 model coupling

For the following application, to keep the calculation as simple as possible and
as we mainly focus on the capabilities of the numerical methods, we consider the
grey radiative model written as :

∂tU + ∂xF(U) + ∂yG(U) − ∂xFv(U) − ∂yGv(U) = S(U), (6.1)

where, if we consider the perfect gas multi-species Navier-Stokes equations, we have :
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Fv(U) =
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and in the case of the M1 model, the Eddington tensor is written as :

DR =
1 − χ

2
Id +

3χ − 1

2

FR ⊗ FR

‖FR‖
(6.2)

The scalar χ = χ(f) is the Eddington factor. The considered state relation is here a
perfect gas relation for every specie (pi = ρiRiT ). However, the numerical code we
use here is able to consider various state relations. In System (6.1), we have neglected
some terms. As for the radiative pressure, it is assumed to be small compared to
the total pressure. We suppose that emission, absorption and scattering are the only
interaction mecanisms occuring between the photons and the matter. Moreover, the
scattering distribution function is assumed to depend only on the angle Ω.

An interesting property of System (6.1) is that the first order term (∂tU +
∂xF(U) + ∂yG(U) = 0) is hyperbolic. Indeed, in 1D, the Jacobian matrix is :
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
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. (6.3)

This matrix J is diagonal in blocks. The first block (3× 3) is the jacobian of the
Euler equations. And the second block (2×2) is the jacobian of the M1 model. This
means that hydrodynamic and radiative phenomena are only coupled through the
source terms of order 0. The system eigenvalues are then u + a, u, u− a, λ−+ and
λ− where a is the speed of sound and

λ± = ±
c[∓3f

√

4 − 3f 2 + 2
√

3
√

(−4 + 3f 2)(3f 2 + 2
√

4 − 3f 2 − 5]

3(−4 + 3f 2)
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are the eigenvalues of the M1 system [17].
This non-coupled property of the hyperbolic system makes easier the numerical

approximation and the introduction of radiation into a hypersonic hydrodynamic
procedure. However, for specific applications, it is possible to realise a strong cou-
pling between hydrodynamic and radiation. This coupling is taken into account
through the source terms.

6.2.2 Numerical scheme

The numerical methods presented in this document have been introduced in the
ARES code from the CEA-CESTA. ARES is a two dimensional aerodynamic code
that contains various types of flow models such as Euler, Navier-Stokes, and with
turbulence models, simple chemistry or non-equilibrium chemistry.

Spatial discretisation

Let us consider multi-block structured meshes. In this case, the discrete unk-
nowns vector is defined by :

U(i + (l − 1)nfr + (m − 1)lmaxnfr)i=1..nfr,l=1..lmax,m=1..mmax. (6.4)

The hyperbolic numerical fluxes calculation may be done through :
• a Roe scheme for the hydrodynamic.
• an HLL or HLLC scheme, or a kinetic scheme for radiative transfer (see [3],

[17], [45]).
The second order terms are treated through centered schemes.

Time implicit scheme

With the above defined spatial discretisation, the scheme can be written :

∂tUl,m(t) +
Fl+ 1

2
,m(t) − Fl− 1

2
,m(t)

∆xl,m
+

Gl,m+ 1
2
(t) − Gl,m− 1

2
(t)

∆yl,m
= Sl,m(t), (6.5)

that we also note :

∂tUl,m(t) = Θl,m(U(t)). (6.6)

In terms of time discretisation, we use the following schemes :
• Explicit scheme :

Un+1
l,m − Ul,m − ∆tΘ(Un) = 0. (6.7)

• Implicit scheme :
– Euler implicit (first order) :

Un+1
l,m − Ul,m − ∆tΘ(Un+1) = 0. (6.8)

– Gear method (second order) :

3Un+1
l,m − 4Ul,m + Un−1

l,m − 2∆tΘ(Un+1) = 0. (6.9)
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GMRes and JFNK methods

All the precedent schemes can be written in the form Φ(Un+1) = 0. In order to
determine Un+1, we have to solve this equation. With this aim, we use the Newton
method. And, in this case, if we set A(U) = Φ

′
(U), we have to iterate the solution

of the linear system :

A(Uk)(Uk+1 − Uk) = −Φ(Uk). (6.10)

In order to solve these systems, we choose to use a Krylov type method with the
GMRes extension (Generalized Minimal Residual). Within this classical approach,
we are led to build and store the jacobian matrix A, which size is usually quite
important. However, we are to skip this difficulty by using Jacobian-Free method,
i.e. a method where the calculation and storage of the jacobian matrix is not useful.
Finally, as we often like to use large timesteps, which deteriorates the jacobian
matrix conditionning, we use pre-conditioning schemes that accelerate the GMRes
convergence.

6.3 The Pioneer Venus entry

In this numerical experiment, we look at an object with the dimensions of the
Pioneer Venus bus portion of the spacecraft that reached Venus in December 1978.
It is a 2.5m diameter vehicle weighing 250kg. The trajectory point considered in
this simulation is located at an altitude of about 80km, and the temperature at this
point is of 142K and the pressure is 300Pa. Atmospheric reentries in Venus are to
be known to be quite difficult because of the thickness of its atmosphere (about 90
times thicker than the Earth atmosphere).

For the simulations performed here, we solely look at the forepart of the body.
The chemical composition of the venusian atmosphere is assumed to be made of
100% of CO2, we neglect the presence of N2, and then, the species in presence in the
shock layer will be CO2, CO, C, C2 and O2. The initial opacities are also considered
constant over the computed domain and equal to 5000m−1.

It has already been pointed out in [46] that the flow is modified by the radiative
effects. The shock layer thickness is smaller in the case of a coupled calculation, and
also the temperatures are smaller in the coupled case than in the calculation without
radiation. And the conclusion is that a large amount of energy is dissipated thanks
to the radiative effects and that this energy is transfered towards the cold regions
of the outer environment of the probe.

Here, we focus on the numerical accuracy improvements realised with the deve-
lopment of an accurate approximate Riemann solver that is the HLLC-like solver
described in the precedent chapters. Then for our study, we reduce the comparison
to the HLL and HLLC approximate Riemann solvers at our disposal for the solution
approximation of the radiative transfer equation. The calculation domain is regu-
larly divided into 40 cells in the x direction and 15 cells in the y direction (see the
left mesh in Figure 6.2). The temperatures obtained with such flow conditions are
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plotted in Figure 6.1. We can notice that the shock layer thickness is even more
reduced through the use of the HLLC scheme than with the HLL scheme (compared
to a non coupled simulation as shown in [46]).We  un 10 08:52:12 200
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Figure 6.1 – Temperatures obtained the HLL (top) and HLLC (bottom) schemes.
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Next, an additional test we make is to refine the mesh in the boundary layer close
to the body, and we observe how does the solution converge with a better adapted
mesh to the phenomena. The first mesh, which is basically regular over the whole
domain, and the second and refined mesh are sketched in Figure 6.2. Let us precise
that the refined mesh is still divided into 40 cells in the x direction and 15 cells in
the y direction, as the original mesh.

Figure 6.2 – Regular (left) and refined (right) meshes.

From the observations of the obtained temperatures shown in Figure 6.3 and
the anisotropy factor in Figure 6.4, we have that the HLLC solution obtained with
the regular mesh converges with both HLL and HLLC solutions obtained with the
refined mesh. We thus confirm the gain in accuracy we have made when developing
an HLLC like Riemann solver. Moreover, from a computation cost point of view,
performing these tests on one processor (type : Itanium II - 1.6 GHz), we outline
that it is approximately two times longer to obtain a converged solution with the
refined mesh than with the regular mesh. It is therefore cheaper to realise the needed
calculations over a regular mesh, and it is accurate enough when using the HLLC
approximate Riemann solver.

The influence of radiative transfer is thus here outlined, even at such a high
altitude where we picked our trajectory point. Deeper into the atmosphere, it may
be even more visible. However, more complex chemistry and turbulence calculations
would be needed.
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Conclusion

The present document reports the work realised on the particular phenomenon
that is radiative transfer and for purposes such as atmospheric reentries simulations.
The objective was to allow us to take radiative transfer into account providing with
an accurate approximation of the solution and still with an acceptable computa-
tion cost. This work is based on the M1 macroscopic model for radiative transfer,
resulting from an integration of the radiative transfer equation over the directions
and frequencies. This model has the advantage to preserve some essential physical
properties, such as the radiative energy positivity, the radiative flux limitation, and
it is built on the entropy minimum principle. This model is appropriate for our needs
as it allows simulations of the limit propagation regime occuring in opaque mediums
on one hand, and in transparent mediums on the other hand.

Finite volume techniques are considered for the expected simulations, and parti-
cularly, accurate approximate Riemann solvers were our main topic. The study of a
relaxation scheme has permitted to establish the appropriate linearisations useful for
writing an accurate numerical tool. On the basis of the classical HLL approximate
Riemann solver, known for its robustness but rather diffusive behaviour, we have
built an HLLC type Riemann solver. This solver is able to capture the stationary
contact wave and thus brings additional accuracy to the solution approximation.
Additionaly, this scheme is proved to be robust. The robustness is verified through
various numerical experiments, and the precision improvement is well exhibited with
these numerical test cases, especially with the very stiff case that is the shadow cone
test case.

In order to fulfill the asymptotic regimes requirements, we have included an
asymptotic preserving scheme dealing properly with the source terms of our hyper-
bolic system and respecting the limit regimes behaviours. Along with the use of a
second order MUSCL-like scheme, the whole procedure is checked to remain robust,
that is to say, to preserve the radiative energy positivity and the radiative flux limi-
tation. The whole procedure containing the developed HLLC Riemann solver reveals
to be rather effective as far as, particularly when performing coupled calculations
with hydrodynamic problems, it allows an obvious gain in accuracy, and thus a
significant saving in terms of computation cost.

The effects of scattering have also been investigated. Isotropic dispersion have
been compared with a kinetic approach of the phenomenon and the results reveal
to be satisfactory.

The next step, in order to improve the hypersonic flow simulations, would be to
consider the appropriate opacities that are usually calculated through databases spe-
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cifying the radiative properties for each chemical species in presence in the medium.
The M1 model, resulting from an integration of the radiative transfer equation over
the frequencies, considers a unique opacity data over the whole spectrum. However,
this is not accurate when dealing with reentry problems where the radiative gas is
in spectral non-equilibrium. Multigroup models, such as the one presented in [44]
and [46], must then be used to compensate this need.

An other aspect to deal with is the direction non-equilibrium. Indeed, as for the
spectral non-equilibrium, the M1 model, from its construction, does not take this
aspect into account.

Finally, it could be envisaged to couple a macroscopic treatment of radiative
transfer such as realised in this work, with a kinetic model in order to compensate
for the disadvantages of the M1 model in the areas where strong non-equilibriums
occur. The calculations of these latter regions would be taken over by the more
precise but expansive method, while the equilibrium regions are calculated through
the M1 model for a faster treatment.
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