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Introduction

The purpose of this thesis is to obtain totally explicit versions for two fun-
damental results about coverings of algebraic curves: the Riemann Existence
Theorem and the Chevalley-Weil Theorem. In the introduction we briefly
recall basic facts on these two theorems. The detailed statements, which
require certain amount of notation, can be found in the introductions of the
corresponding chapters of the thesis.

The Riemann Existence Theorem

The Riemann Existence Theorem asserts that every compact Riemann sur-
face is (analytically isomorphic to) a complex algebraic curve. In other words,
the field of meromorphic functions on a compact Riemann surface S is finitely
generated and of transcendence degree 1 over C.

One of the most common ways of defining Riemann surfaces is realizing
them as finite ramified coverings of the Riemann sphere P1(C). Moreover,
even if the covering is purely topological, the C-analytic structure on the
Riemann sphere lifts, in a unique way, to the covering surface. Thus, the
Riemann Existence Theorem can be restated as follows.

Theorem A Let M be a finite subset of P1(C). Then for any finite covering
of P1(C) by a closed oriented surface, unramified outside the set M, there
exists a complex algebraic curve C and a rational function x ∈ C(C) such
that our covering is isomorphic1 to C(C)

x→ P1(C), the covering defined by x.
Moreover, the couple (C, x) is unique up to a naturally defined isomorphism2.

We refer to [6] for several more precise statements, and for the connection
of the Riemann Existence Theorem and the Inverse Galois Problem.

One of the purposes of this thesis is to give an effective description of
the curve C, or, more precisely, of the couple (C, x), in terms of the degree
of the initial topological covering and the set M of the ramification points,
provided the points from that set are defined over the field Q̄ of all algebraic
numbers. In this case the curve C is also defined over Q̄ (this is the “easy”

1Two coverings S1
π1→ S and S2

π2→ S of topological spaces are isomorphic if there exists
a homeomorphism S1

ϕ→ S2 such that π1 = π2 ◦ ϕ.
2If (C′, x′) is another such couple, then the field isomorphism C(x)→ C(x′) given by

x 7→ x′, extends to a field isomorphism C(C)→ C(C′).
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direction of Belyi’s Theorem). We produce a plane model of C over Q̄, such
that one of the coordinates is x, and we give explicit bounds for the degree
and the height of the defining equation of this model, and of the degree and
discriminant of the number field over which this model is defined.

Notice that we do not produce a new proof of the Riemann Existence The-
orem. In fact, we do use both the existence and the uniqueness statements
of Theorem A.

The principal motivation of this work lies in the field of effective Diophan-
tine analysis, where the covering technique is widely used. It happens quite
often that only the degree of the covering and the ramification points are
known, and to work with the covering curve, one needs to have an effective
description of it.

In particular, in Chapter 3 we use our explicit version of the Riemann ex-
istence theorem to get a user-friendly version of the Chevalley-Weil theorem,
see Theorem 3.1.5.

The Chevalley-Weil Theorem

The Chevalley-Weil theorem is one of the most basic principles of the Dio-
phantine analysis. Already Diophantus of Alexandria routinely used reason-
ing of the kind “if a and b are ‘almost’ co-prime integers and ab is a square,
then each of a and b is ‘almost’ a square”. The Chevalley-Weil theorem
provides a general set-up for this kind of arguments.

Theorem B (Chevalley-Weil) Let Ṽ
φ→ V be a finite étale covering of

normal projective varieties, defined over a number field K. Then there exists
a non-zero integer T such that for any P ∈ V (K) and P̃ ∈ Ṽ (K̄) such that

φ(P̃ ) = P , the relative discriminant of K(P̃ )/K(P ) divides T .

There is also a similar statement for coverings of affine varieties and inte-
gral points. See [17, Section 2.8] for more details.

The Chevalley-Weil theorem is indispensable in the Diophantine analysis,
because it reduces a Diophantine problem on the variety V to that on the
covering variety Ṽ , which can often be simpler to deal. In particular, the
Chevalley-Weil theorem is used, sometimes implicitly, in the proofs of the
great finiteness theorems of Mordell-Weil, Siegel and Faltings.

In view of all this, a quantitative version of the Chevalley-Weil theorem,
at least in dimension 1, would be useful to have. One such version appears
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in Chapter 4 of [1], but it is not explicit in all parameters; neither is the
version recently suggested by Draziotis and Poulakis [9, 10], who also make
some other restrictive assumptions (see Remark 3.1.3 in Chapter 3 for more
on this).

In the thesis we obtain a version of the Chevalley-Weil theorem in dimen-
sion 1, which is explicit in all parameters and considerably sharper than the
previous versions. Our approach is different from that of [9, 10], and goes
back to [1, 2].

For the precise statement of our results see the introduction of Chapter 3.

Plan of the thesis

In Chapter 1 we collect auxiliary facts of diverse nature, which are used
throughout the thesis. In Chapter 2 we obtain an explicit version of the
Riemann Existence Theorem over a number field. This chapter is based on
the article [3], joint with Yu. Bilu. In Chapter 3 we obtain several explicit
versions of the Chevalley-Weil Theorem for curves. This chapter is based on
the article [4], joint with Yu. Bilu and A. Surroca.
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Notation and Conventions

Let f(X) be a polynomial in X over some field (or integral domain), and β
is an element of this field (or domain), then we denote by ordX=βf the order
of vanishing of f at β. Sometimes we write simply ordβ or even ord, when
this does not lead to a confusion. We employ the same notation not only to
polynomials, but also to formal power series in X − β.

We denote by α the finite point (α : 1) of the projective line P1, and by∞
the infinite point (1 : 0).

Let α = (α1, . . . , αN) ∈ Q̄N be a point with algebraic coordinates in the
affine space of dimension N . Let K be a number field containing α1, . . . , αN
and MK be the set of its valuations. We assume that every valuation v ∈MK
is normalized so that its restriction to Q is the standard infinite or p-adic
valuation. Also, we let Kv be the v-adic completion of K, (then, in the case
of an infinite v, the field Kv is either R or C). For v ∈MK we put

|α|v = max {|α1|v, . . . , |αN |v}

Let α be a point in PN(Q̄) such that the vector (α0 : . . . : αN) is a coordi-
nate vector for α, we define then the absolute logarithmic projective height
(in the sequel simply projective height) of the point α as

hp(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log max{|α0|v, . . . , |αN |v}. (1)

Throughout the text, we also denote by ha the absolute logarithmic affine
height (or simply affine height from now on) on the affine space. Thus if
(α1, . . . , αN) is a coordinate vector of a point in Q̄N , we define

ha(α1, . . . , αN) = hp(1 : α1 : . . . : αN). (2)

or, in an equivalent way

ha(α) =
1

[K : Q]

∑
v∈MK

[Kv : Qv] log+ |α|v, (3)

where log+ x := log max{1, x}.
It is well-known and easy to verify that these definitions are independent

of the choice of the field K.
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For a polynomial f with algebraic coefficients we denote by hp(f) and by
ha(f) the projective height and the affine height of the vector of its coefficients
respectively, ordered somehow. More generally, the heights hp(f1, . . . , fs)
and ha(f1, . . . , fs) of a finite system of polynomials are, by definition, the
projective height and the affine height of the vector formed of all the non-
zero coefficients of all these polynomials.

Given an extension L/K of number fields, we denote by ∂L/K the normal-
ized logarithmic relative discriminant:

∂L/K =
logNK/QDL/K

[L : Q]
,

where DL/K is the discriminant of L over K and NK/Q is the norm map.
This quantity has the following properties. First, it is additive in towers: if
K ⊂ L ⊂M is a tower of number fields, then

∂M/K = ∂L/K + ∂M/L.

Second, it does not increase under the base extension: if K′ is a finite exten-
sion of K and L′ = LK′ then

∂L′/K′ ≤ ∂L/K.

Combining the two properties above, we obtain the “triangle inequality”:
if L1 and L2 are two extensions of K, then

∂L1L2/K ≤ ∂L1/K + ∂L2/K.

All these properties will be used without special reference.
Given a number field K and finite set of places S ⊂MK, we define the

absolute logarithmic height of this set as

h(S) =

∑
v∈S logNK/Q(v)

[K : Q]
.

where the norm NK/Q(v) of the place v is the norm of the corresponding
prime ideal if v is finite, and is set to be 1 when v is infinite.
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Finally, we shall systematically use the following estimates from [19].∑
p≤x

1 ≤ 1.26
x

log x
, (4)∑

p≤x

log p ≤ 1.02x, (5)

∑
p≤x

log p

p− 1
≤ 2 log x. (6)

See [19], Corollary 1 of Theorem 2 for (4), Theorem 9 for (5), and (6) follows
easily from the Corollary of Theorem 6.
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Chapter 1

General Lemmas and Useful
Tools

In this chapter we develop and collect some results we use sistematically
afterwards, covering topics like heights of polynomials, algebraic varieties,
formal (Puiseux) power series, ramifications and curves.

1.1 Heights

1.1.1 Estimates for Sums and Products of Polynomials

Recall that, for a polynomial f with algebraic coefficients, we denote by hp(f)
and by ha(f), respectively, the projective height and the affine height of the
vector of its coefficients ordered somehow, and the height ha(f1, . . . , fs) of a
finite system of polynomials is, by definition, the affine height of the vector
formed of all the non-zero coefficients of all these polynomials.

Lemma 1.1.1 Let f1, . . . , fs be polynomials in Q̄[X1, . . . , Xr] and put

N = max{deg f1, . . . , deg fs}, h = ha(f1, . . . , fs).

Let also g be a polynomial in Q̄[Y1, . . . , Ys]. Then

1. ha (
∏s

i=1 fi) ≤
∑s

i=1 ha (fi) + log(r + 1)
∑s−1

i=1 deg fi,

2. hp (
∏s

i=1 fi) ≥
∑s

i=1 hp (fi)−
∑s

i=1 deg fi,

3. ha

(
g (f1, . . . , fs)

)
≤ ha(g) +

(
h+ log(s+ 1) +N log(r + 1)

)
deg g.
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Notice that we use the projective height in Part 2, and the affine height in
the other parts.
Proof. Part 2 is the famous Gelfond inequality, see, for instance, Propo-
sition B.7.3 in [15]. The rest is an immediate consequence of Lemma 1.2
from [16]. 2

Remark 1.1.2 If in item 3 we make substitution Yi = fi only for a part
of the indeterminates Yi, say, for t of them, where t ≤ s, then we may re-
place log(s+ 1) by log(t+ 1), and deg g by the degree with respect to these
indeterminates:

ha

(
g (f1, . . . , ft, Yt+1, . . . , Ys)

)
≤ ha(g)+

(
h+log(t+1)+N log(r+1)

)
degY1,...,Yt g.

Remark 1.1.3 When all the fi are just linear polynomials in one variable,
item 2 can be refined as follows: let f(X) be a polynomial of degree ρ, and
β1, . . . , βρ are its roots (counted with multiplicities); then

ha(β1) + · · ·+ ha(βρ) ≤ hp(f) + log(ρ+ 1).

This is a classical result of Mahler, see, for instance, [20, Lemma 3].

Corollary 1.1.4 Let f and g be polynomials with algebraic coefficients such
that f divides g. Let also a be a non-zero coefficient of f . Then

1. hp(f) ≤ hp(g) + deg g,

2. ha(f) ≤ hp(g) + ha(a) + deg g.

Proof. The first item of the corollary is a direct consequence of Part 2 of
Lemma 1.1.1. Then one can remark that hp(f) = hp(f/a) as the projective
height is indipendend of multiplication by a constant, also that the projective
and the affine heights of f/a coincides as one of the coefficients is 1. We have
then

ha(f) = ha

(
a · f

a

)
≤ ha(a)+ha

(
f

a

)
= ha(a)+hp(f) ≤ ha(a)+hp(g)+deg g,

where the first inequality holds by Part 1 of Lemma 1.1.1. 2

Corollary 1.1.5 Let α be an algebraic number and f ∈ Q̄[X, Y ] be a poly-
nomial with algebraic coefficients, let also f (α)(X, Y ) = f(X + α, Y ) and
m = degX f , then

ha(f (α)) ≤ ha(f) +mha(α) + 2m log 2.
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Proof. This is a direct application of item 3 of Lemma 1.1.1, together with
Remark 1.1.2. 2

In one special case item 3 of Lemma 1.1.1 can be refined.

Lemma 1.1.6 Let (fij)ij be an s× s matrix of polynomials in Q̄[X1, . . . , Xr]
of degrees and affine heights bounded by µ and h, respectively. Then

ha

(
det (fij)ij

)
≤ s
(
h+ log s+ µ log(r + 1)

)
. �

For the proof see [16], end of Section 1.1.1.

We also need an estimate for both the affine and the projective height of
Y -resultant Rf (X) of a polynomial f(X, Y ) ∈ Q̄[X, Y ] and its Y -derivative
f ′Y , in terms of the affine (respectively, projective) height of f .

Lemma 1.1.7 Let f(X, Y ) ∈ Q̄[X, Y ] be of X-degree m and Y -degree n.
Then

ha(Rf ) ≤ (2n− 1)ha(f) + (2n− 1)
(
log(2n2) +m log 2

)
, (1.1)

hp(Rf ) ≤ (2n− 1)hp(f) + (2n− 1) log
(
(m+ 1)(n+ 1)

√
n
)
, (1.2)

Proof. Estimate (1.2) is due to Schmidt [20, Lemma 4]. To prove (1.1),
we invoke Lemma 1.1.6. Since Rf (X) can be presented as a determinant of
dimension 2n− 1, whose entries are polynomials of degree at most m and
of affine height at most ha(f) + log n, the result follows after an obvious
calculation. 2

Remark 1.1.8 Estimate (1.1) holds true also when m = 0. We obtain the
following statement: the resultant Rf of a polynomial f(X) and its derivative
f ′(X) satisfy

ha(Rf ) ≤ (2 deg f − 1)ha(f) + (2 deg f − 1) log
(
2(deg f)2

)
.

Finally, we need one more technical lemma.

Lemma 1.1.9 Let g(X, Y ) ∈ Q̄[X, Y ] be of X-degree m, and fix ρ ∈ Q̄. Put

f(X, Y ) = (X − ρ)mg
(
(X − ρ)−1, Y

)
.

Then
ha(f) ≤ ha(g) +mha(ρ) + 2m log 2.

Proof. The polynomials g(X, Y ) and g̃(X, Y ) = Xmg(X−1, Y ) have the
same coefficients and thereby the same height. Now direct application of
Lemma 1.1.1 and Remark 1.1.2 implies the result. 2

12



1.1.2 Bounds for Solutions of Algebraic Equations

Let p1(X), . . . , pk(X) be polynomials in X = (X1, . . . , XN) with algebraic
coefficients. By an isolated solution of the system of polynomial equations

p1(X) = . . . = pk(X) = 0. (1.3)

we mean a zero-dimensional component of the algebraic set in Q̄N defined
by (1.3). (Existence of such a component implies that k ≥ N .) Our aim is
to bound the height of an isolated solution in terms of the degrees and the
heights of the polynomials p1, . . . , pk.

Such a bound follows from the arithmetical Bézout inequality due to Bost,
Gillet and Soulé [5] and Philippon [18]. Krick, Pardo and Sombra [16] did
a great job of producing the user-friendly version of this fundamental result.
We very briefly recall some facts from [16] which will be used here. For an
affine algebraic set V ⊂ AN , defined over Q̄, Krick, Pardo and Sombra [16,
Section 1.2] define the height of V , to be denoted here as hKPS(V ). We do
not reproduce here the full definition of this height function, but only list
three of its properties. The first two follow immediately from the definition,
for the third see [16, end of Section 1.2.3].

(positivity) For any V we have hKPS(V ) ≥ 0.

(additivity) The height function is “additive” in the following sense: for
any V1 and V2 without common components,

hKPS(V1 ∪ V2) = hKPS(V1) + hKPS(V2).

(one-point set) If V = {α} is a one-point algebraic set, then

ha(α) ≤ hKPS(V ).

In fact, hKPS({α}) is defined by (3) with log+|α|v replaced, for an

archimedean v, by log (1 + |α1|2v + · · ·+ |αN |2v)
1/2

.

The properties above have the following consequence: for an affine algebraic
set V ∑

{α} component of V

ha(α) ≤ hKPS(V ), (1.4)

where the sum is over the 0-dimensional components of V (Q̄). This will be
used later.

We adapt the work of Krick, Pardo and Sombra as follows.

13



Proposition 1.1.10 Let K be a number field and let

p1(X), . . . , pk(X) ∈ K[X]

be polynomials in X = (X1, . . . , XN). Let α be an isolated solution of (1.3)
and L = K(α) the number field generated by the coordinates of α. Then
k ≥ N . Further, assume that

deg p1 ≥ deg p2 ≥ . . . ≥ deg pk.

and put

∇ = deg p1 · · · deg pN , Σ =
N∑
i=1

1

deg pi
, h = max{ha(p1), . . . , ha(pk)}.

Then

[L : K] ≤ ∇, (1.5)

[L : K]ha(α) ≤ ∇Σh+ 2∇N log(N + 1), (1.6)

∂L/K ≤ 2∇Σh+ 5∇N log(N + 1), (1.7)

(we refer to the Notations and Convention Chapter for the definition of ∂L/K).

The following consequence is immediate.

Corollary 1.1.11 In the set-up of Proposition 1.1.10, denote by V the al-
gebraic subset of Q̄N defined by (1.3), and let W be another algebraic subset
of Q̄N such that the difference set V \W is finite. Then every α ∈ V \W
satisfies (1.5), (1.6) and (1.7). 2

For the proof of Proposition 1.1.10 we shall use the following lemma, due
to Silverman [23, Theorem 2].

Lemma 1.1.12 Let K be a number field and α be a point in Q̄N . Then the
relative discriminant ∂L/K of the field L = K(α) over K satisfies the inequality

∂L/K ≤ 2([L : K]− 1)ha(α) + log[L : K]. �
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Proof of Proposition 1.1.10 We denote by V the algebraic set defined
by (1.3). Since it has a 0-dimensional component α, we have k ≥ N . Among
the k polynomials p1, . . . , pk one can select N polynomials q1, . . . , qN such
that α is an isolated solution of the system q1(X) = . . . = qN(X) = 0. The
algebraic set defined by this system has at most deg q1 · · · deg qN ≤ ∇ irre-
ducible (over Q̄) components: this follows from the geometric Bézout inequal-
ity. In particular, there is at most ∇ isolated solutions. Since a K-conjugate
of an isolated solution is again an isolated solution, we must have (1.5). Since
all conjugates of α have the same height, the left-hand side of (1.4) exceeds
[L : K]ha(α).

On the other hand, Krick, Pardo and Sombra proved that

hKPS(V ) ≤ ∇Σh+ 2∇N log(N + 1);

see Corollary 2.11 from [16], or, more precisely, the displayed inequality just
before the beginning of Section 2.2.3 on page 555 of [16]. Together with (1.4)
this proves (1.6). Combining it with Lemma 1.1.12, we obtain (1.7). 2

1.1.3 Height of sets of places

We summarize the properties of this height in the following proposition:

Proposition 1.1.13 1. (field extension) If L is an extension of K and SL
is the set of extensions of the places from S to L, then

h(SL) ≤ h(S) ≤ [L : K]h(SL).

2. (denominators and numerators) For α ∈ K̄N let the sets DenK(α) and
NumK(α) consist of all v ∈MK having an extension v̄ to K̄ such that
‖α‖v̄ > 1, respectively, ‖α‖v̄ < 1. Then

h
(
DenK(α)

)
≤ [K(α) : K]ha(α),

h
(
NumK(α)

)
≤ [K(α) : K]

(
ha(α)− hp(α)

)
(α 6= 0).

In particular, for α ∈ K̄∗ we have h
(
NumK(α)

)
≤ [K(α) : K]ha(α).

This will be used without special reference.
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1.1.4 Height and Discriminants

We need some estimates for the discriminant of a number field in terms of
the heights of its generators. Lemma 1.1.12 has the following consequence:

Corollary 1.1.14 Let f(X) ∈ K[X] be a polynomial of degree N . Then∑
f(α)=0

∂K(α)/K ≤ 2(N − 1)hp(f) + 3N logN, (1.8)

the sum being over the roots of f .

Proof. Since for any root α we have [K(α) : K] ≤ N , we estimate the
left-hand side of (1.8) by Lemma 1.1.12 as

2(N − 1)
∑
f(α)=0

ha(α) +N logN.

Remark 1.1.3 allows us to bound the sum on the right by hp(f) + log(N + 1).
Now, to complete the proof, just remark that (N − 1) log(N + 1) ≤ N logN .
2

We shall also need a bound for the discriminant of a different nature,
known as the Dedekind-Hensel inequality (see [7, page 397] for historical
comments and further references). This inequality gives an estimate of the
relative discriminant of a number field extension in terms of the ramified
places.

Lemma 1.1.15 Let K be a number field of degree d over Q, and L an
extension of K of finite degree ν, and let Ram(L/K) be the set of places of K
ramified in L. Then

∂L/K ≤
ν − 1

ν
h
(
Ram(L/K)

)
+ 1.26ν. (1.9)

This is Proposition 4.2.1 from [2] (though the notation in [2] is different,
and the quantity estimated therein is ν∂L/K in our notation), the only differ-
ence being that the error term is now explicit. The proof is the same as in [2],
but in the very last line one should use the estimate

∑
p≤ν 1 ≤ 1.26ν/ log ν,

which is (4).
A similar estimate was obtained by Serre [22, Proposition 4]. How-

ever, (1.9) is more suitable for our purposes.
It is useful to have an opposite estimate as well. The following is obvious.
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Lemma 1.1.16 In the set-up of Lemma 1.1.15 we have

h
(
Ram(L/K)

)
≤ ν∂L/K.

1.2 Power Series

In this section K is a field of characteristic 0 and f(X, Y ) ∈ K[[X]][Y ] is a
polynomial in Y with coefficients in the ring K[[X]] of formal power series.
We denote by ord the order of vanishing at 0. By the initial segment of
length κ of a power series y =

∑∞
k=0 γkX

k we mean y =
∑κ

k=0 γkX
k.

Lemma 1.2.1 Let ỹ =
∑κ

k=0 γkX
k ∈ K[X] be a polynomial in X of degree

at most κ. Assume that

ordf(X, ỹ) > 2κ, ordf ′Y (X, ỹ) = κ.

Then there exists a unique formal power series y =
∑∞

k=0 γkX
k belonging to

K[[X]] such that f(X, y) = 0, and such that ỹ is the initial segment of y of
length κ.

Proof. By Hensel’s Lemma, there exists a unique power series y such that
f(X, y) = 0 and ord(y − ỹ) > κ. The latter inequality implies that ỹ is the
initial segment of y of length κ. 2

Lemma 1.2.2 Let y1, y2 ∈ K[[X]] be distinct formal power series such that

f(X, y1) = f(X, y2) = 0.

Put κj = ordf ′Y (X, yj). Then there exist k ≤ min{κ1, κ2} such that the k-th
coefficients of y1 and y2 are distinct.

Proof. Let ỹj be the initial segment of yj of length κj. Then

ord(yj − ỹj) > κj.

Hence

f(X, ỹj) = f(X, yj) + f ′Y (X, yj)(yj − ỹj) + terms of order > 2κj,
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Since f(X, yj) = 0 and ordf ′Y (X, yj) = κi, the right-hand side is of order
> 2κj. Similarly,

f ′Y (X, ỹj) = f ′Y (X, yj) + terms of order > κj,

which implies that the right-hand side is of order κj. We have proved that

ordf(X, ỹj) > 2κj, ordf ′Y (X, ỹj) = κj.

Lemma 1.2.1 implies that yj is the unique power series satisfying f(X, yj) = 0
and having ỹj as an initial segment. Since the series y1 and y2 are distinct,
none of ỹj can be an initial segment of the other1. Whence the result. 2

Lemma 1.2.3 Suppose K algebrically closed and let y1, . . . , y` ∈ K[[X]] be
pairwise distinct formal power series such that

f(X, y1) = . . . = f(X, y`) = 0.

Assume that f is monic2 in Y and that

∑̀
j=1

ordf ′Y (yj) = ord d(X), (1.10)

where d(X) is the Y -discriminant of f . Then f splits into linear factors over
the ring K[[X]]:

f(X, Y ) = (Y − y1) · · · (Y − yn),

where y1, . . . , yn ∈ K[[X]].

Proof. Since f is monic, it splits, by the Puiseux theorem, into linear
factors over the ring K[[X1/e]] for some e:

f(X, Y ) = (Y − y1) · · · (Y − yn),

where y`+1, . . . , yn ∈ K[[X1/e]]. Further, d(X) =
∏n

j=1 f
′
Y (yj), which, together

with (1.10) implies that

ordf ′Y (yj) = 0 (j = `+ 1, . . . , n). (1.11)

1If, say, ỹ1 is an initial segment of ỹ2 then the same argument as above shows that
ordf ′Y (X, ỹ2) = ordf ′Y (X, ỹ1), that is, κ1 = κ2, whence ỹ1 = ỹ2. Lemma 1.2.1 now implies
that y1 = y2, a contradiction.

2that is, f is of the form Y n + termes of lower degree in Y
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If we now write yj = aj0 + aj1X
1/e + . . ., then (1.11) implies that

ordf ′Y (X, aj0) = 0 (j = `+ 1, . . . , n).

Lemma 1.2.1 now implies that in each of the rings K[[X]] and K[[X1/e]], the
polynomial f has exactly one root with initial term aj0. Hence yj ∈ K[[X]]
for j = `+ 1, . . . , n, as wanted. 2

1.3 Integral Elements

In this subsection R is an integrally closed integral domain and K its quotient
field.

Lemma 1.3.1 Let L be a finite separable extension of K of degree n and R̄
the integral closure of R in L. Let ω1, . . . , ωn ∈ R̄ form a base of L over K.

We denote by ∆ the discriminant of this basis: ∆ =
(

det [σi(ωj)]ij

)2

, where

σ1, . . . , σn : L ↪→ K̄ are the distinct embeddings of L into K̄. Then

R̄ ⊂ ∆−1(Rω1 + · · ·+Rωn).

Proof. This is standard. Write β ∈ R̄ as β = a1ω1 + · · ·+ anωn with
ai ∈ K. Solving the system of linear equations

σiβ = a1σi(ω1) + · · ·+ anσi(ωn) (i = 1, . . . , n)

using the Kramer rule, we find that the numbers ∆ai are integral over R.
Since R is integrally closed, we have ∆ai ∈ R. 2

Corollary 1.3.2 Let

f(T ) = f0T
n + f1T

n−1 + · · ·+ fn ∈ R[T ]

be a K-irreducible polynomial, and α ∈ K̄ one of its roots. Let R̄ be the
integral closure of R in the field K(α). Then R̄ ⊂ ∆(f)−1R[α]. where ∆(f)
is the discriminant of f .
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Proof. It is well-known that the quantities

ω1 = 1,

ω2 = f0α,

ω3 = f0α
2 + f1α,

. . .

ωn = f0α
n−1 + f1α

n−2 + · · ·+ fn−2α

are integral over R; see, for example, [21, page 183]. Applying Lemma 1.3.1
to the basis ω1, . . . , ωn, we complete the proof. 2

1.4 Local Lemmas

In this section K is a field of characteristic 0 supplied with a discrete val-
uation v. We denote by Ov the local ring of v. We say that a polynomial
f(X) ∈ K[X] is v-monic if its leading coefficient is a v-adic unit3.

Lemma 1.4.1 Let f(X) ∈ Ov[X] be a v-monic polynomial, and let η ∈ K̄
be a root of f . (We do not assume f to be the minimal polynomial of η
over K, because we do not assume it K-irreducible.) Assume that v ramifies
in the field K(η). Then |R(f, f ′)|v < 1, where R(f, f ′) is the resultant of f
and f ′.

Proof We may assume that K is v-complete, and we let d = dK(η)/K be the
different of the extension K(η)/K. Since v ramifies in K(η), the different is
a non-trivial ideal of Ov.

Since η is a root of a v-monic polynomial, it is integral over Ov. Let
g(X) ∈ Ov[X] be the minimal polynomial of η. Then the different d divides
g′(η), which implies that |g′(η)|v < 1.

Write f(X) = g(X)h(X). By the Gauss lemma we have h(X) ∈ Ov[X],
and since f ′(η) = g′(η)h(η), we obtain |f ′(η)|v ≤ |g′(η)|v < 1. Since R(f, f ′)
is a linear combination of f and f ′ with coefficients in Ov[X], the result
follows. 2

Given a polynomial f(X) over some field of characteristic 0, we define by

f̂(X) the radical of f , that is, the separable polynomial, having the same

3We say that α is a v-adic unit if |α|v = 1.
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roots and the same leading coefficient as f :

f̂(X) = f0

∏
f(α)=0

(X − α),

where f0 is the leading coefficient of f and the product runs over the distinct
roots of f (in an algebraic closure of the base field).

Lemma 1.4.2 Assume that f(X) ∈ Ov[X]. Then the radical f̂(X) is in

Ov[X] as well. Also, if |f(ξ)|v < 1 for some ξ ∈ Ov, then we have |f̂(ξ)|v < 1
as well.

Proof. Let f(X) = p1(X)α1 · · · pk(X)αk be the irreducible factorization
of f in K[X]. The Gauss Lemma implies that we can choose pi(X) ∈ Ov[X]
for i = 1, . . . , k. Since the characteristic of K is 0, every pi is separable.
Obviously, the leading coefficient of the separable polynomial p1(X) · · · pk(X)

divides that of f(X) in the ring Ov. Hence f̂(X) = γp1(X) · · · pk(X) with
some γ ∈ Ov, which proves the first part of the lemma. The second part is
obvious: if |f(ξ)|v < 1 then |pi(ξ)|v < 1 for some i, which implies |f̂(ξ)|v < 1.
2

Lemma 1.4.3 Let f(X) ∈ Ov[X] and ξ ∈ Ov satisfy

|f(ξ)|v < 1, |f ′(ξ)|v = 1.

Let v̄ be an extension of v to K̄. Then there exists exactly one root α ∈ K̄
of f such that |ξ − α|v̄ < 1.

Proof. This is a consequence of Hensel’s lemma. Extending K, we may
assume that it contains all the roots of f . Hensel’s lemma implies that there
is exactly one root α in the v-adic completion of K with the required property.
This root must belong to K. 2

Lemma 1.4.4 Let f(X), g(X) ∈ Ov[X] and α, ξ ∈ Ov satisfy

f(X) = (X − α)mg(X), 0 < |ξ − α|v < |g(α)|v

with some non-negative integer m. Expand the rational function f(X)−1

into the Laurent series at α. Then this series converges at X = ξ.

Proof. Substituting X 7→ α +X, we may assume α = 0, in which case the
statement becomes obvious. 2
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1.5 Miscellaneous Lemmas

Lemma 1.5.1 Let C be a smooth projective curve defined over an alge-
braically closed field K of characteristic 0. Let x ∈ K(C) have only simple
poles, and let y ∈ K(C) have a single (possibly, multiple) pole which is a pole
of x as well. Then K(C) = K(x, y).

Proof. Since x has only simple poles in K(C), the place at ∞ of the field

K(x) splits completely in K(C). Let P be the pole of y, and let P̃ be the

place of K(x, y) below P . Then P̃ is above the place at ∞ of K(x). Hence it
also splits completely in K(C).

Now assume that K(x, y) is a proper subfield of K(C). Then there are

at least two places of K(C) above P̃ . In particular, there is a place P ′ 6= P

above P̃ . This P ′ must be a pole of y, a contradiction. 2

Lemma 1.5.2 Let K be an algebraically closed field of characteristic 0
and let V be a non-empty irreducible quasiprojective variety over K. Let
{(Ct, Dt) : t ∈ V } be an algebraic family of curves supplied with an effective
divisor. Also, let s be a positive integer. Assume that there exists τ ∈ V
such that Cτ is irreducible and dimL(Dτ ) = s. Then the set{

t ∈ V :
either Ct is reducible
or Ct is irreducible and dimL(Dt) > s

}
is not Zariski dense in V .

Proof. This is a consequence of the theorems of Bertini and semi-continuity,
see, for instance, Theorem 12.8 in [14, Chapter III]. 2

Lemma 1.5.3 Given a positive integer n and a finite set M ⊂ C, there exist
only finitely many extensions of the rational function field C(x) of degree n,
unramified outside M.

Proof. This is an immediate consequence of the uniqueness statement of
Theorem A. 2
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Chapter 2

Effective Riemann Esistence
Theorem

2.1 Introduction

To state the main result of this chapter, we recall briefly one of the topological
forms of the Riemann Existence Theorem.

Theorem 2.1.1 Let M be a finite subset of P1(C). Then for any finite cover-
ing of P1(C) by a closed oriented surface, unramified outside the set M, there
exists a complex algebraic curve C and a rational function x ∈ C(C) such
that our covering is isomorphic1 to C(C)

x→ P1(C), the covering defined by x.
Moreover, the couple (C, x) is unique up to a naturally defined isomorphism2.

As we said in the introduction, the purpose of this chapter is to give an
effective description of the couple (C, x). We produce a plane model of C
over Q̄, such that one of the coordinates is x, and we give explicit bounds for
the degree and the height of the defining equation of this model, and of the
degree and discriminant of the number field over which this model is defined.

Our method of proof is as follows. First, we use the existence part of
Theorem 2.1.1 to show the existence of C and x. Next, we define “quasi-
canonically” a generator y of Q̄(C) over Q̄(x), and denote by f(X, Y ) the

1Two coverings S1
π1→ S and S2

π2→ S of topological spaces are isomorphic if there exists
a homeomorphism S1

ϕ→ S2 such that π1 = π2 ◦ ϕ.
2If (C′, x′) is another such couple, then the field isomorphism C(x)→ C(x′) given by

x 7→ x′, extends to a field isomorphism C(C)→ C(C′).
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irreducible polynomial satisfying f(x, y) = 0. Further, we show that the co-
efficients of this polynomial satisfy certain system of algebraic equations and
inequalities, and we use the uniqueness part of Theorem 2.1.1 to show that
the set of solutions of the system is finite. (To be more precise, the coeffi-
cients of f form only a part of the variables involved in the equations and
inequalities.) Using this, we estimate the height of the polynomial, and the
degree and discriminant of the number field generated by its coefficients.

Let us state our principal result.

Theorem 2.1.2 Let S → P1(C) be a finite covering of degree n ≥ 2 by a
closed oriented surface S of genus g, unramified outside a finite set M ⊂ P1(Q̄).
Put3

K = Q(M), h = max{ha(α) : α ∈ M}, Λ =
(
2(g + 1)n2

)10gn+12n
.

Then there exist a number field L, containing K, an algebraic curve C defined
over L and rational functions x, y ∈ L(C) such that L(C) = L(x, y) and the
following is true.

1. The covering x : C(C)→ P1(C) is isomorphic to the given covering
S → P1(C).

2. The rational functions x, y ∈ L(C) satisfy the equation f(x, y) = 0,
where the absolutely irreducible polynomial f(X, Y ) ∈ L[X, Y ] is such
that

degX f = g + 1, degY f = n, ha(f) ≤ Λ(h+ 1). (2.1)

3. The degree and the discriminant of L over K satisfy

[L : K] ≤ Λ, ∂L/K ≤ Λ(h+ 1), (2.2)

(we recall that ∂L/K =
(
logNK/QDL/K

)
/[L : Q] and NK/Q is the norm

map).

3A pedantic reader may complain that the definition of h below is formally incorrect,
because ha(·) is the affine height, and M is a subset of the projective line. Of course, this
can be easily overcome, for instance by writing P1 = A1 ∪ {∞} and defining ha(∞) = 0.
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This argument is inspired by the work of Zverovich [24], who applies a
rather similar approach, though he works only in the complex domain. The
system of equation considered by Zverovich is simpler than ours, but we could
not understand one key point in his proof of the finiteness of the number of
solutions.

Our result is sensitive only to the set M of ramification points, and the
degree n of the covering. It would be interesting to obtain a more precise
result, which depends on the more subtle elements of the “covering data”,
like the monodromy permutations associated to every ramification point.
Probably, the “correct” statement of Theorem 2.1.2 must involve the notion
of the Hurwitz space associated to the given topological covering, see [8].
Another interesting problem is to characterize our curve not in terms of the
defining equation, but in more invariant terms, for instance, to estimate its
Faltings height.

In our result, the quantity Λ depends exponentially on n. This improves
on Theorem 3A from [1], where the dependence is doubly exponential. There
are strong reasons to believe that the “correct” estimate is polynomial in n.
Indeed, this is case for a similar problem over a function field, see the recent
work of Edixhoven et al. [13].

2.2 Setup for the Proof of Theorem 2.1.2

Let S → P1(C) be a covering as in the statement of Theorem 2.1.2. Accord-
ing to Theorem A, our covering is isomorphic to C(C)

x→ P1(C), where C is
a complex algebraic curve and x is a rational function on C. Since all ramifi-
cation points of the latter covering are algebraic, the curve C the function x
are definable over Q̄.

We are going to find a field L ⊃ K, a function y ∈ L(C) such that
Q̄(C) = Q̄(x, y), and an absolutely irreducible polynomial f(X, Y ) ∈ L[X, Y ]
such that f(x, y) = 0, and such that the degrees degX f , degY f , the height
ha(f), as well as the degree [L : K] and the relative discriminant of L/K sat-
isfy required (in)equalities. To achieve this, we define algebraic sets V and W
in a high-dimensional affine space, such that the set V \W contains a point
having the coefficients of f as part of its coordinates. We then show that the
set V \W is finite (and hence the coefficients of f) using Corollary 1.1.11.
As a by-product, we will also bound the degree and the discriminant of the
field generated by the coefficients.
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We write
M = {α1, . . . , αµ}.

For the main part of the proof we shall assume that the curve C is unramified
over ∞ (that is, ∞ is not one of the points α1, . . . , αµ), and that C has no
Weierstrass point above∞. In other words, the poles of x are neither ramified
nor Weierstrass. The general case easily reduces to this one, see Section 2.12.

Now we start the detailed proof. Since it is going to be long and involved,
we divide it into short logically complete steps.

2.3 Function y and Polynomial f (X, Y )

Fix a pole P of x. Since P is not a Weierstrass point of C, we have

dimL(mP ) = 2, dimL((m− 1)P ) = 1.

with m = g(C) + 1.
Since x is unramified above the infinity, x−1 can serve as a local param-

eter at P . If y belongs to L(mP ), but not to L((m − 1)P ), then y has
the Puiseux expansion at P of the form

∑∞
k=−m ckx

−k with c−m 6= 0. Since
dimL(mP ) = 2, there exists a unique y ∈ L(mP ) with the properties

c−m = 1, c0 = 0. (2.3)

In the sequel, we mean by y the function satisfying these conditions.
The function y has a single pole P which is a pole of x as well. Lemma 1.5.1

implies now that Q̄(C) = Q̄(x, y) (here we use the assumption that x is un-
ramified above ∞). Also, y is integral over the ring Q̄[x]. Hence, there
exists a unique absolutely irreducible polynomial f(X, Y ) ∈ Q̄[X, Y ], such
that f(x, y) = 0, monic in Y and satisfying

degY f = [Q̄(C) : Q̄(x)] = n.

We also have
degX f = [Q̄(C) : Q̄(y)] = deg(y)∞ = m,

where (y)∞ = mP is the divisor of poles of y. We write

f(X, Y ) = Y n +
n−1∑
j=0

m∑
i=0

θijX
iY j. (2.4)
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2.4 The Discriminant and its Roots, and the

Puiseux Expansions

Let d(X) be the discriminant of f(X, Y ) with respect to Y . Every αi is a
root of d(X). Besides the αi-s, the polynomial d(X) may have other roots;
we denote them β1, . . . , βν . Thus, we have

d(X) = δ

µ∏
i=1

(X − αi)σi
ν∏
i=1

(X − βi)τi , (2.5)

where δ ∈ Q̄∗ and where σi and τi are positive integers.
Now fix i ∈ {i, . . . , ν}. Since x is unramified over βi, the function y has n

Puiseux expansions at βi of the form

yij =
∞∑
k=0

γijk (x− βi)k (j = 1, . . . , n).

We put
κij = ordβif

′
Y (x, yij) .

Then
κi1 + · · ·+ κin = τi. (2.6)

We may assume that κi1 ≥ . . . ≥ κin and we define `i from the condition

κi`i > 0, κij = 0 for j > `i. (2.7)

Then (2.6) reads
`i∑
j=1

κij = τi, (2.8)

which implies that∑
1≤i≤ν
1≤j≤`i

(κij + 1) ≤
∑
1≤i≤ν
1≤j≤`i

2κij = 2(τ1 + · · ·+ τν) ≤ 2 deg d(X). (2.9)

This inequality will be used in Section 2.6.
We also let ỹij be the initial segment of the series yij of length κij:

ỹij =

κij∑
k=0

γijk (x− βi)k . (2.10)
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Then we have

ordβif (x, ỹij) > 2κij, ordβif
′
Y (x, ỹij) = κij,

see the proof of Lemma 1.2.2.
Lemma 1.2.2 also implies that, for every fixed i, neither of ỹi1, . . . , ỹin

is an initial segment of the other. In other words, for every distinct indices
j1, j2 ∈ {1, . . . , n} there is a non-negative integer λ(i, j1, j2) ≤ min {κij1 , κij2}
such that

γij1λ(i,j1,j2) 6= γij2λ(i,j1,j2).

2.5 The Puiseux Expansions at Infinity

We also have the Puiseux expansions of y at infinity:

y∞j =
∞∑
k=0

γ∞jk x
−k (j = 2, . . . , n),

y∞1 =
∞∑

k=−m

γ∞1k x
−k.

(2.11)

We define the polynomials

g(T, Y ) = Tmf
(
T−1, Y

)
, h(T, Y ) = Tm(n+1)f

(
T−1, T−mY

)
and put t = x−1, so that the expansions (2.11) can be written in powers of t.
Now we define the numbers

κ∞j = ordt=0g
′
Y (t, y∞j) (j = 2, . . . , n),

κ∞1 = ordt=0h
′
Y (t, tmy∞1) .

We have h(T, TmY ) = Tmng(T, Y ), whence

κ∞1 = mn+ ordt=0g
′
Y (t, y∞1) .

Hence the sum κ∞1 + κ∞2 + · · ·+ κ∞n is bounded by mn plus the order at
T = 0 of the Y -discriminant of g(T, Y ). Bounding the latter order by the
degree of this discriminant, we obtain

κ∞1 + κ∞2 + · · ·+ κ∞n ≤ mn+ deg d(X). (2.12)
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Putting
`∞ = n, (2.13)

we re-write (2.12) as∑
1≤j≤`∞

(κ∞j + 1) ≤ (m+ 1)n+ deg d(X). (2.14)

This will be used in Section 2.6.
Further, for j = 2, . . . , n let ỹ∞j be the initial segment of the series y∞j of

length κ∞j, and let ỹ∞1 be the initial segment of the series y∞1 of the length
κ∞1:

ỹ∞j =

κ∞j∑
k=0

γ∞jk t
k (j = 2, . . . , n), (2.15)

ỹ∞1 =

κ∞1−m∑
k=−m

γ∞1k t
k. (2.16)

Then we have

ordt=0g (t, ỹ∞j) > 2κ∞j, ordt=0g
′
Y (t, ỹ∞j) = κ∞j (j = 2, . . . , n),

ordt=0h (t, tmỹ∞1) > 2κ∞1, ordt=0h
′
Y (t, tmỹ∞1) = κ∞1.

Identities (2.3) now become

γ∞1,−m = 1, γ∞1 0 = 0.

As in the finite case, for every distinct j1, j2 ∈ {2, . . . , n} there exists a non-
negative integer λ(∞, j1, j2) ≤ min {κ∞j1 , κ∞j2} such that

γ∞j1λ(∞,j1,j2) 6= γ∞j2λ(∞,j1,j2).

2.6 The Indeterminates

We consider the vector
ϕ =

(
θ, α, β, γ, δ

)
,

where

• θ = (θij) 0≤i≤m
0≤j≤n−1

is the vector of coefficients of f , see (2.4);
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• α = (αi)1≤i≤µ and β = (βi)1≤i≤ν are the vectors of roots of the discrim-
inant d(X), and δ is its leading coefficient, see (2.5);

• γ =
(
γ
ij

)
i∈{1,...,ν,∞}

1≤j≤`i

, where `i are defined in (2.7) and (2.13), and γ
ij

is the vectors of coefficients of the initial segment ỹij of the Puiseux
expansion yij, that is,

γ
ij

= (γijk)0≤k≤κij , (i, j) 6= (∞, 1),

γ∞1
= (γ∞1k)−m≤k≤κ∞1−m

see (2.10), (2.15) and (2.16).

We are only interested in the vectors θ and α, but we cannot study them
separately of the other vectors defined above.

Vector ϕ belongs to the affine space Q̄Ω of dimension

Ω := (m+ 1)n+ µ+ ν +
∑
1≤i≤ν
1≤j≤`i

(κij + 1) +
∑

1≤j≤`∞

(κ∞j + 1) + 1

≤ 2(m+ 1)n+ 4 deg d(X) + 1

≤ 10mn+ 2n− 8m+ 1, (2.17)

where we use (2.9), (2.14) and the estimates µ+ ν ≤ deg(d(X)) ≤ 2m(n− 1).
We shall define algebraic sets V and W in Q̄Ω such that ϕ ∈ V \W and

V \W is finite. This will allow us to use Corollary 1.1.11 to bound the height
of ϕ. This would imply a bound on the height of θ, which is the height of
the polynomial f .

To define our algebraic sets, we introduce the vector of indeterminates Φ
whose coordinates correspond to the coordinates of ϕ:

Φ = (Θ,A,B,Γ,∆) ,

where

Θ = (Θij) 0≤i≤m
0≤j≤n−1

, A = (Ai)1≤i≤µ, B = (Bi)1≤i≤ν , Γ =
(
Γ ij

)
i∈{1,...,ν,∞}

1≤j≤`i

with

Γ ij = (Γijk)0≤k≤κij for (i, j) 6= (∞, 1), Γ∞1 = (Γ∞1k)−m≤k≤κ∞1−m .
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2.7 The Algebraic Set V

The first series of equations defining the algebraic set V is

Ai = αi (i = 1, . . . , µ). (2.18)

To write down the rest of the equations defining V we introduce the polyno-
mials F (X, Y ), D(X), G(T, Y ) and H(T, Y ) with coefficients in Z[Θ], which
correspond to the polynomials d(X), g(T, Y ) and h(T, Y ) from Section 2.4.
More specifically, we put

F (X, Y ) = Y n +
n−1∑
j=0

m∑
i=0

ΘijX
iY j ∈ Z[Θ][X, Y ],

we define D(X) as the Y -discriminant of F (X, Y ) and we put

G(T, Y ) = TmF
(
T−1, Y

)
, H(T, Y ) = Tm(n+1)F

(
T−1, T−mY

)
.

The second series of equations comes out from the equality

D(X) = ∆

µ∏
i=1

(X − Ai)
σi

ν∏
i=1

(X − Bi)
τi , (2.19)

where the quantities σi and τi are defined in (2.5). In order to define the
third set of equation we introduce the polynomials

Ỹij =

κij∑
k=0

Γijk (X − Bi)
k (1 ≤ i ≤ ν, 1 ≤ j ≤ `i),

Ỹ∞j =

κ∞j∑
k=0

Γ∞jkT
k (2 ≤ j ≤ `∞)

and the Laurent polynomial

Ỹ∞1 =

κ∞1−m∑
k=−m

Γ∞1kT
k.
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The equations come out from the relations

ordX=BiF (X, Ỹi,j) > 2κij,

ordX=BiF
′
Y (X, Ỹi,j) ≥ κij

(1 ≤ i ≤ ν, 1 ≤ j ≤ `i), (2.20)

ordT=0G(T, Ỹ∞,j) > 2κ∞j,

ordT=0G
′
Y (T, Ỹ∞,j) ≥ κ∞j

(2 ≤ j ≤ `∞), (2.21)

ordT=0H(T, TmỸ∞,1) > 2κ∞1, ordT=0H
′
Y (T, TmỸ∞,1) ≥ κ∞j. (2.22)

The final two equations are

Γ∞1,−m = 1, Γ∞1 0 = 0. (2.23)

The following statement is immediate in view of the definitions and prop-
erties from Sections 2.4 and 2.5.

Proposition 2.7.1 Vector ϕ belongs to the set V . 2

2.8 The Algebraic Set W

We write
W = W1 ∪W2 ∪W3 ∪W4 ∪W5 ∪W6,

where the sets W1, . . . ,W6 are defined below.
The set W1 is defined by ∆ = 0. Next, put

W2 =
⋃

1≤i≤µ
1≤j≤ν

W
(ij)
2 , W3 =

⋃
1≤i<j≤ν

W
(ij)
3 ,

where W
(ij)
2 is defined by Ai = Bj and W

(ij)
3 is defined by Bi = Bj.

Further, we put

W4 =
⋃

i∈{1,...,ν,∞}
1≤j≤`i

W
(ij)
4 ,

where the set W
(ij)
4 is defined by the relations

ordX=BiF
′
Y (X, Ỹij) > κij, when i 6=∞, (2.24)

ordT=0G
′
Y (T, Ỹ∞j) > κ∞j, when i =∞ and j 6= 1, (2.25)

ordT=0H
′
Y (T, TmỸ∞1) > κ∞j, when (i, j) = (∞, 1). (2.26)
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Further, we put

W5 =

 ⋃
1≤i≤ν

1≤j1<j2≤`i

W
(ij1j2)
5

 ∪( ⋃
2≤j1<j2≤`∞

W
(∞j1j2)
5

)
,

where W
(ij1j2)
5 is defined by the equation Γij1λ(ij1j2) = Γij2λ(ij1j2) and W

(∞j1j2)
5

by the equation Γ∞j1λ(∞j1j2) = Γ∞j2λ(∞j1j2), the numbers λ(i, j1, j2) being
defined at the end of Sections 2.4 and 2.5.

Finally, Lemma 1.5.2 implies that there is a proper Zariski-closed sub-

set W6 of V such that ϕ /∈ W6 and for any ϕ̂ =
(
θ̂, α̂, β̂, γ̂, δ̂

)
∈ V \W6 the

polynomial

Y n +
n−1∑
j=0

m∑
i=0

θ̂ijX
iY j (2.27)

is irreducible and has the following property. Let x̂ and ŷ be the coordinate
functions on the curve Ĉ defined by (2.27). Then the effective divisor (ŷ)∞
satisfies dimL

(
(ŷ)∞

)
= 2.

The following statement is again immediate.

Proposition 2.8.1 The vector ϕ does not belong to the set W . 2

2.9 Finiteness of V \W

Here we prove that the set V \W is finite. Let ϕ̂ =
(
θ̂, α̂, β̂, γ̂, δ̂

)
be a point

in V \W . Then α̂ = α because of (2.18).
Put

F̂ (X, Y ) = Y n +
n−1∑
j=0

m∑
i=0

θ̂ijX
iY j.

It is a Q̄-irreducible polynomial (because ϕ̂ /∈ W6) and defines an algebraic

curve Ĉ together with rational functions x̂, ŷ ∈ Q̄(Ĉ) satisfying F̂ (x̂, ŷ) = 0.
Notice that this implies that ŷ is integral over Q̄[x̂].

Let d̂(X) be the Y -discriminant of F̂ (X, Y ). Then

d̂(X) = δ̂

µ∏
i=1

(X − αi)σi
ν∏
i=1

(
X − β̂i

)τi
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because ϕ̂ satisfies (2.19). Since ϕ̂ /∈ W2 ∪W3, the numbers β̂i are pairwise
distinct and also are distinct from every αi.

The covering Ĉ bx→ P1 can be ramified only over the roots of d̂(X), and,
perhaps, over infinity. We want to show that x̂ is unramified over the num-
bers β̂i and over infinity.

Fix a root β̂i and define

˜̂yij(X) =

κij∑
k=0

γ̂ijk(X − β̂i)k (j = 1, . . . , `i). (2.28)

Then
ordbβiF̂ (X, ˜̂yij) > 2κij, ordbβiF̂ ′Y (X, ˜̂yij) = κij,

because ϕ̂ satisfies (2.20) and does not satisfy (2.24). Also, none of ˜̂yij is an
initial segment of another, because ϕ̂ /∈ W5.

Using Lemma 1.2.1, we find `i pairwise distinct Puiseux expansions

ŷi1, . . . , ŷi`i∈Q̄[[X − β̂i]]

of x̂ at β̂i. satisfying ordbβiF̂ ′Y (X, ŷij) = κij. Since

`i∑
j=1

ordbβiF̂ ′Y (X, ŷij) =

`i∑
j=1

κij = τi = ordbβi d̂(X),

by (2.8), Lemma 1.2.3 implies that all n Puiseux expansions of x̂ at β̂i are in

Q̄[[X − β̂i]], which means that x̂ is unramified over β̂i.
In a similar way we prove that x̂ is unramified over infinity (here `∞ = n

and we do not need Lemma 1.2.3). Moreover, ŷ has at infinity n− 1 Puiseux
expansions without negative powers and one expansion starting from the
term of degree −m. Since ŷ is integral over Q̄[x̂], we have (ŷ)∞ = mP̂ ,

where P̂ is a pole of x̂. Since ϕ̂ /∈ W6, we have dimL(mP̂ ) = 2.

Thus, each ϕ̂ ∈ V \W gives rise to a pair (Ĉ, x̂), where Ĉ is an algebraic

curve and x̂ an rational function on Ĉ of degree n, unramified outside the
points αi. By Lemma 1.5.3, there is only finitely many possibilities for (Ĉ, x̂).

Fix one. Since dimL(mP̂ ) = 2, the function ŷ is uniquely defined by the

equations (2.23). It follows that the polynomial F̂ is uniquely defined as

well. Hence so is δ̂, and the vector β̂ is uniquely defined up to ordering its
components. Having this order fixed, we find that γ̂ is uniquely defined.

This proves that the set V \W is finite.
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2.10 Degrees and Heights of the Equations

Defining V

In this section we estimate the degrees and the heights of the equations
defining the algebraic set V .

Since κij ≤ deg d(X) ≤ 2m(n− 1), equations defined by (2.20) are of de-
gree at most

n
(
2m(n− 1) + 1

)
+ 1 ≤ 2mn2.

Here the “1” inside the parentheses is the degree of Ỹij in Γ, and the “1”
outside the parentheses is the degree of F (and of F ′Y ) in Θ.

A straightforward verification shows that the degrees of the other equa-
tions are bounded by 2mn2 as well.

Now let us estimate the heights of the equations. The heights of the µ
equations (2.18) are obviously bounded by h = max{ha(α1), . . . , ha(αµ)}.

Estimating the heights of the remaining equations can be done with
Lemma 1.1.1. All of the polynomials occurring below have rational inte-
ger coefficients. We call the size of a polynomial p with coefficients in Z
(denoted by ‖p‖) the sup-norm of the vector of its coefficients. For a non-
zero polynomial p we have ha(p) ≤ log ‖p‖, with equality if the coefficients
are co-prime. In particular, ha(p) = 0 if p is of size 1, which is the case for
many polynomials below.

The left-hand side of (2.19) is a determinant of order 2n− 1 whose entries
are polynomials in n(m+ 1) + 1 variables X and Θ, each entry being of
degree at most m+ 1 and of size at most n. Hence its height can be estimated
using Lemma 1.1.6:

ha(D) ≤ (2n− 1)
(

log n+ log(2n− 1) + (m+ 1) log
(
n(m+ 1) + 2

))
≤ 10(mn)2.

The right-hand side of (2.19) is a product of at most 2m(n− 1) polyno-
mials of degree 1 and size 1 in µ+ ν + 1 variables A, B and X. Lemma
1.1.1 (1) allows us to estimate the height of the right-hand side by the quan-
tity 2m(n− 1) log(ν + µ+ 1) ≤ 5(mn)2. We thereby bound the heights of
the equations coming from (2.19) by 10(mn)2.

Equations (2.23) are, obviously, of height 0. The height of equations com-
ing from (2.20), (2.21) and (2.22) can be estimated using Lemma 1.1.1 (3).

For i 6=∞ the polynomial Ỹij is in κij + 2 ≤ 2mn variables X, Bj, Γij. It is of
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degree κij + 1 ≤ 2mn− 1 and of size bounded by 2κij ≤ 4mn. Lemma 1.1.1 (3)

together with Remark 1.1.2 bound the height of the polynomials F (X, Ỹi,j)

and F ′Y (X, Ỹi,j) are bounded by the quantities(
mn log 4 + log 2 + 2mn log(2mn+ 1)

)
(m+ n)

and
log n+

(
mn log 4 + log 2 + 2mn log(2mn+ 1)

)
(m+ n− 1),

respectively. Both do not exceed 6(mn)3, which bounds the heights of equa-
tions coming from (2.20). Similarly, one bounds by 12(mn)3 the heights of
equations coming from (2.21) and (2.22).

We conclude: the algebraic set V is defined by equations of degree bounded
by 2mn2 and height bounded by h+ 12(mn)3.

2.11 The Height of ϕ and the Field K(ϕ)

Now we may apply Proposition 1.1.10, or, more precisely, Corollary 1.1.11
to bound the height of the vector ϕ, and the number field generated by its
coordinates. Recall that ϕ belongs to Q̄Ω, where the dimension Ω satisfies

Ω ≤ 10mn+ 2n− 7,

see (2.17). If we define ∇ and Σ as in Proposition 1.1.10, we would have

ha(f) ≤ ha(ϕ) ≤ ∇Σ
(
h+ 12(mn)3

)
+ 2∇Ω log(Ω + 1).

Furthermore, the field L = K(ϕ) satisfies [L : K] ≤ ∇ and

∂L/K ≤ 2∇Σ
(
h+ 12(mn)3

)
+ 5∇Ω log(Ω + 1).

Since the degrees of the equations defining V are bounded by 2mn2, we have

∇ ≤ (2mn2)Ω ≤ (2mn2)10mn+2n−7.

Obviously, Σ ≤ Ω ≤ 12mn. After trivial calculations we obtain

ha(f) ≤ Λ′(h+ 1), [L : K] ≤ Λ′, ∂L/K ≤ Λ′(h+ 1) (2.29)

with Λ′ = (2mn2)10mn+2n−3. Since m = g + 1, this proves Theorem 2.1.2 in
the case when there is no ramified points and no Weierstrass points among
the poles of x.
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2.12 The General Case

We no longer assume that the set of poles of x has no Weierstrass and no
ramified points (called bad points in the sequel). Since there exists at most
g3 − g Weierstrass points and at most 2g ramified points, there exists ρ ∈ Z,
satisfying

|ρ| ≤ g3 + g ≤ m3

(recall that m = g + 1) such that the fiber of x above ρ contains no bad
points. It follows that the function x̌ = (x− ρ)−1 has no bad points among
its poles, and the previous argument applies to it. We find a number
field L, a function y ∈ L(C) such that L(C) = L(x̌, y) and a polynomial
f̌(X, Y ) ∈ L[X, Y ] such that f̌(x̌, y) = 0,

degX f̌ = m = g + 1, degY f̌ = n,

and (2.29) holds with f replaced by f̌ and h replaced by

ȟ := max
{

ha

(
(α1 − ρ)−1

)
, . . . , ha

(
(αµ − ρ)−1

)}
.

Obviously
ȟ ≤ h+ log

(
2 max{1, |ρ|}

)
≤ h+ 3 log(2m),

which proves (2.2) after a short calculation. Further, the polynomial

f(X, Y ) := (X − ρ)mf̌
(
(X − ρ)−1, Y )

satisfies f(x, y) = 0 and

ha(f) ≤ ha(f̌) + 3m log(2m)

by Lemma 1.1.9. Again a trivial calculation implies (2.1). Theorem 2.1.2 is
completely proved. 2
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Chapter 3

Effectivity in the
Chevalley-Weil Theorem

3.1 Introduction

To state our principal results, we have to introduce some notation. Let K be
a number field, C an absolutely irreducible smooth projective curve defined
over K, and x ∈ K(C) a non-constant K-rational function on C. We also fix

a covering C̃ φ→ C of C by another smooth irreducible projective curve C̃; we
assume that both C̃ and the covering φ are defined over K. We consider K(C)
as a subfield of K(C̃); in particular, we identify the functions x ∈ K(C) and

x ◦ φ ∈ K(C̃).
We also fix one more rational function y ∈ K(C) such that K(C) = K(x, y)

(existence of such y follows from the primitive element theorem). Let
f(X, Y ) ∈ K[X, Y ] be the K-irreducible polynomial such that f(x, y) = 0 (it
is well-defined up to a constant factor). Since C is absolutely irreducible, so
is the polynomial f(X, Y ). We put m = degX f and n = degY f .

Similarly, we fix a function ỹ ∈ K(C̃) such that K(C̃) = K(x, ỹ). We let

f̃(X, Ỹ ) ∈ K[X, Ỹ ] be an irreducible polynomial such that f̃(x, ỹ) = 0. We
put m̃ = degX f̃ and ñ = degY f̃ . We denote by ν the degree of the cover-
ing φ, so that ñ = nν.

Remark 3.1.1 Notice that equations f(X, Y ) = 0 and f̃(X, Ỹ ) = 0 define

affine plane models of our curves C and C̃; we do not assume these models
non-singular.
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We recall that hp(·) and ha(·) denote the projective and the affine absolute
logarithmic heights, respectively, see the Notations and Conventions Chapter
for the definitions. We also recall the normalized logarithmic discriminant
∂L/K and the height h(S) of a finite set of places S:

∂L/K =
logNK/QDL/K

[L : Q]
, h(S) =

∑
v∈S logNK/Q(v)

[K : Q]
;

see the Notation and Conventions Chapter for the details.
Put

Ω = 160mn3 log n
(
hp(f) + 2m+ 2n

)
,

Ω̃ = 160m̃ñ3 log ñ
(
hp(f̃) + 2m̃+ 2ñ

)
,

Υ = 2ñ
(
m̃hp(f) +mhp(f̃)

)
.

(3.1)

Theorem 3.1.2 (“projective” Chevalley-Weil theorem) In the above

set-up, assume that the covering C̃ φ→ C is unramified. Then for every
P ∈ C(K̄) and P̃ ∈ C̃(K̄) such that φ(P̃ ) = P we have

∂K( eP )/K(P ) ≤ 2(Ω + Ω̃ + Υ).

Remark 3.1.3 Draziotis and Poulakis [10, Theorem 1.1], assume that C is
a non-singular plane curve (which is quite restrictive) and that P ∈ C(K).
Their set-up is slightly different, and the two estimates cannot be compared
directly. But it would be safe to say that their estimate is not sharper than

∂K( eP )/K(P ) ≤ cm3N30Ñ13
(

hp(f) + hp(f̃)
)

+ C,

where N = deg f , Ñ = deg f̃ , the constant c is absolute and C depends
of N , Ñ and the degree [K : Q].

Now let S be a finite set of places of K, including all the archimedean
places. A point P ∈ C(K̄) will be called S-integral if for any v ∈MK r S
and any extension v̄ of v to K̄ we have |x(P )|v̄ ≤ 1.

Theorem 3.1.4 (“affine” Chevalley-Weil theorem) In the above set-

up, assume that the covering C̃ φ→ C is unramified outside the poles of x.
Then for every S-integral point P ∈ C(K̄) and P̃ ∈ C̃(K̄) such that φ(P̃ ) = P
we have

∂K( eP )/K(P ) ≤ Ω + Ω̃ + Υ + h(S). (3.2)
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Again, Draziotis and Poulakis [9, Theorem 1.1] obtain a less sharp result
under more restrictive assumptions.

It might be also useful to have a statement free of the defining equations
of the curves C and C̃. Using the result of Chapter 2, we obtain versions
of Theorems 3.1.2 and 3.1.4, which depend only on the degrees and the
ramification points of our curves over P1. For a finite set A ⊂ P1(K̄) we
define ha(A) as the affine height of the vector whose coordinates are the
finite elements of A.

Theorem 3.1.5 Let A be a finite subset of P1(K̄) such that the covering
C x→ P1 is unramified outside A. Put

δ = [K(A) : K], g̃ = g(C̃), Λ =
(
(g̃ + 1)ñ

)25(eg+1)en
+ 2(δ − 1).

1. Assume that the covering φ : C̃ → C is unramified. Then for every
P ∈ C(K̄) and P̃ ∈ C̃(K̄) such that φ(P̃ ) = P we have

∂K( eP )/K(P ) ≤ Λ
(
ha(A) + 1

)
.

2. Assume that the covering φ : C̃ → C is unramified outside the poles
of x, and let S be as above. Then for every S-integral point P ∈ C(K̄)

and P̃ ∈ C̃(K̄) such that φ(P̃ ) = P we have

∂K( eP )/K(P ) ≤ h(S) + Λ
(
ha(A) + 1

)
.

3.2 Eisenstein Theorem for Power Series

Our main technical tool is the quantitative Eisenstein theorem, based on the
work of Dwork, Robba, Schmidt and van der Poorten [11, 12, 20]. Let

y =
∞∑

k=−k0

akx
k/e (3.3)

be an algebraic power series with coefficients in Q̄, where we assume k0 ≥ 0
and a−k0 6= 0 when k0 > 0. The classical Eisenstein theorem tells that
the coefficients of this series belong to some number field, that for every
valuation v of this field |ak|v grows at most exponentially in k, and for all
but finitely many v we have |ak|v ≤ 1 for all k. We need a quantitative form
of this statement, in terms of an algebraic equation f(x, y) = 0 satisfied by y.
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3.2.1 Eisenstein Theorem

Thus, let f(X, Y ) ∈ K[X, Y ] be a polynomial over a number field K. We put

d = [K : Q], m = degX f, n = degY f. (3.4)

Write
f(X, Y ) = f0(X)Y n + f1(X)Y n−1 + . . . (3.5)

and put
u = ord0f0. (3.6)

Then, if y satisfies the equation f(x, y) = 0, then k0/e ≤ u ≤ m. Also, if L
is the extension of K generated by all the coefficients ak of the series y, then
it is well-known that [L : K] ≤ n.

The following theorem is a combination of the ideas and results from
[11, 12, 20].

Theorem 3.2.1 Let K be a number field and f(X, Y ) ∈ K(X, Y ). We use
notation (3.4–3.6). For every v ∈MK there exist real numbers Av, Bv ≥ 1,
with Av = Bv = 1 for all but finitely many v, such that the following holds.
First of all,

d−1
∑
v∈MK

dv logAv ≤ (2n− 1)hp(f) + 6n2 + 2n logm, (3.7)

d−1
∑
v∈MK

dv logBv ≤ hp(f) + log(2n). (3.8)

Further, for any non-archimedean valuation v of K we have dv logBv
logNv ∈ Z and

h

({
v ∈M0

K :
dv logAv
logN v

/∈ Z
})
≤ (2n− 1)hp(f) + n(2 logm+ 3 log n+ 5).

(3.9)
Finally, let y be an algebraic power series, written as in (3.3), and satisfy-

ing f(x, y) = 0. Let L be the number field generated over K by the coefficients
of y. Then for any valuation w|v of ML and for all k ≥ −k0 we have

|ak|w ≤ BvA
u+k/e
v , (3.10)

where u is defined in (3.6).
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Proof. This is, essentially, [2, Theorem 2.1], with the error terms made
explicit. (Warning: we denote by Bv the quantity denoted in [2] by A′v.)
Below we briefly review the proof from [2], indicating the changes needed to
get explicit error terms.

Denote by Rf (X) the Y -resultant of f and f ′Y , and put

µ = ord0Rf (X), (3.11)

(notice that µ has a slightly different meaning in [2]). We may normalize
the polynomial f to have f0(X) = Xuf ∗0 (X) with f ∗0 (0) = 1. We also write
Rf (X) = AXµR∗(X) with R∗(0) = 1.

Let α1, . . . , αt be roots the of R∗(X). For every valuation v in K fix an
extension to K(α1, . . . , αt) and put

σv = min(1, |α1|v, . . . , |αt|v).

Clearly σv does not depend on the fixed prolongation. Schmidt [20, Lemma 5]
proves that

d−1
∑
v∈MK

dv log(1/σv) ≤ (2n− 1)hp(f) + 2n log
(
(m+ 1)(n+ 1)

√
n
)
. (3.12)

(Notice that Schmidt uses a different normalization of valuations).
For every valuation v of K we define real numbers Av, Bv ≥ 1 as follows:

Av =


2n/σv, p(v) =∞,
1/σv, n < p(v) <∞,(
np(v)1/(p(v)−1)

)n
/σv, p(v) ≤ n,

Bv =

{
2n|f |v, p(v) =∞,
|f |v, p(v) <∞

Notice that Av = Bv = 1 for all but finitely many v.
Inequality (3.10) is established in [2, Section 2.3]. Inequality (3.8) is im-

mediate from the definition of Bv. Further,

d−1
∑
p(v)≤n

dv log
(
np(v)1/(p(v)−1)

)n
= d−1n

∑
p≤n

∑
p(v)=p

dv

(
log n+

log p

p− 1

)

= n
∑
p≤n

(
log n+

log p

p− 1

)
≤ 1.26n2 + 2n log n,
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where we used (4) and (6) for the last estimate. Combining this with (3.12),
we obtain

d−1
∑
v∈MK

dv logAv ≤ (2n−1)hp(f)+n log 2+1.26n2+2n log n+2n log
(
(m+ 1)(n+ 1)

√
n
)
,

which implies (3.7) after a routine calculation.
The definition of Bv implies that dv logBv

logNv ∈ Z. We are left with (3.9).

Write the set on the left of (3.9) as S1 ∪ S2, where S1 consists of v with
p(v) ≤ n, and S2 of those with p(v) > n. Obviously,

h(S1) ≤
∑
p≤n

log p ≤ 1.02n, (3.13)

where we use (5). For S2 we have the estimate (see [2], second displayed
equation on page 134)

h(S2) ≤ hp(R∗) + log(1 + degR∗)

≤ (2n− 1)hp(f) + (2n− 1) log
(
(m+ 1)(n+ 1)

√
n
)

+ log(2mn),

where we use the property hp(R∗) = hp(R) and Lemma 1.1.7 for the last
inequality. Together with (3.13), this implies (3.9) after an easy calculation.
2

Here is one consequence that we shall use.

Corollary 3.2.2 In the set-up of Theorem 3.2.1, let T be the subset of
v ∈MK such that one of the inequalities Av > 1 or Bv > 1 holds. Then
h(T ) ≤ (4n− 1)hp(f) + 13n2 + 4n logm.

Proof. For v ∈ T we have either logN v ≤ dv logAv or logN v ≤ dv logBv

or dv logAv
logNv /∈ Z. Partitioning the set into three sets and using (3.7), (3.8)

and (3.9), we obtain the result after an easy calculation. 2

3.2.2 Fields Generated by the Coefficients

We also need to bound the discriminant of the number field generated by
the coefficients of an algebraic power series. Such a bound is obtained in [2,
Lemma 2.4.2]. Here we obtain a similar statement, explicit in all parameters.
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Proposition 3.2.3 In the set-up of Theorem 3.2.1, let L be the number field
generated by the coefficients of the series y. Put ν = [L : K], and define u
and µ as in (3.6) and (3.11). Then

∂L/K ≤ (4nµ+ 4nuν + 2ν) hp(f) + (µ+ uν)
(
12n2 + 4n logm

)
+ 3ν log(2n).

(3.14)

Proof. As shown in [2, Lemma 2.4.2], the field L is generated over K
by a−k0 , . . . , aκ, where κ ≤ eµ/ν (we recall that in [2] the quantity µ has
a slightly different definition and is less than or equal to our µ). Using
Theorem 3.2.1 we estimate the height of the vector a = (a−k0 , . . . , aκ) as
follows:

ha(a) ≤ d−1
∑
v∈MK

dv logBv + d−1
(
u+

κ

e

) ∑
v∈MK

dv logAv

≤ hp(f) + log(2n) +
(µ
ν

+ u
) (

(2n− 1)hp(f) + 6n2 + 2n logm
)

≤
(

2n
(µ
ν

+ u
)

+ 1
)

hp(f) +
(µ
ν

+ u
) (

6n2 + 2n logm
)

+ log(2n).

Applying now Lemma 1.1.12, we obtain

∂L/K ≤ (4nµ+ 4nuν + 2ν) hp(f)+

(µ+ uν)
(
12n2 + 4n logm

)
+ 2ν log(2n) + log ν,

which is even sharper than (3.14). 2

Let now {y1, . . . , yn} be the set of all power series roots of f at 0, that is,

f(x, Y ) = f0(x)(Y − y1) · · · (Y − yn),

and let Li be the field generated by the coefficients of yi. Summing up and
estimating each degree [Li : Q] by n, we obtain the following consequence of
Proposition 3.2.3.

Corollary 3.2.4 In the previous set-up, the following inequality holds

n∑
i=1

∂Li/K ≤
(
4n2µ+ 4n3u+ 2n2

)
hp(f)+(

µn+ un2
) (

12n2 + 4n logm
)

+ 3n2 log(2n).
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3.2.3 The “Essential” Coefficients

In this subsection the letter q always denotes a prime number. Let us assume
now that the series (3.3) has exact ramification e; that is, it cannot be written
as a series in x1/e′ with e′ < e. Then for every q dividing e there exists at
least one k such that q - k and ak 6= 0. We denote by κ(q) the smallest k
with this property, and we call a(q) = aκ(q) the q-essential coefficient of the
series (3.3). We want to estimate the height of the q-essential coefficients.
We again put ν = [L : K], and define u and µ as in (3.6) and (3.11).

Proposition 3.2.5 In the above set-up, the following inequality holds:∑
q|e

ha(a(q)) ≤ log2 e
(
u+

µ

ν

) (
2nhp(f) + 6n2 + 2n logm

)
. (3.15)

Proof. We can bound the number κ(q) by

κ(q) ≤ eµ

ν(q − 1)
− 1

by [2, Lemma 2.4.4]. We shall use the trivial bounds∑
q|e

1

q − 1
≤
∑
q|e

1 ≤ log2 e. (3.16)

Now, Theorem 3.2.1 gives us the explicit bound

ha(a(q)) ≤
(
u+

µ

ν(q − 1)

)(
2nhp(f) + 6n2 + 2n logm

)
for the height of the q-essential coefficient ha(aκ(q)). Summing up over all
primes q dividing e, and simplifying by (3.16) we obtain the result. 2

Corollary 3.2.6 Define yi as in the previous section and let ai(q) denote
the q-essential coefficient of the series yi. Then

n∑
i=1

∑
q|e

ha(ai(q)) ≤ (u+ µ)
(
2n2hp(f) + 6n3 + 2n2 logm

)
log2 n.

Proof. Let ei be the ramification of the series yi. Summing up and using
log2 ei ≤ log2 n and 1/ν ≤ 1, we obtain the result. 2
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3.3 Proximity and Ramification

This section is the technical heart of the chapter. We consider a covering
C → P1, a point Q on C and a non-archimedean place v, and show, that in
a certain v-adic neighborhood of Q, the v-ramification is the same and is
determined by the ramification of Q over P1. Roughly speaking, “geometric
ramification defines arithmetic ramification”. It is not difficult to make a
qualitative statement of this kind, but it is a rather delicate task to make
everything explicit.

Thus, in this section we fix, once and for all:

• a number field K;

• an absolutely irreducible smooth projective curve C defined over K;

• a non-constant rational function x ∈ K(C);

• one more rational function y ∈ K(C) such that K(C) = K(x, y) (exis-
tence of such y follows from the primitive element theorem).

Let f(X, Y ) ∈ K[X, Y ] be the K-irreducible polynomial such that our
functions x and y satisfy f(x, y) = 0 (the polynomial f is well-defined up
to a constant factor). Since C is absolutely irreducible, so is the polynomial
f(X, Y ).

Remark 3.3.1 One can say that the plane curve define by the equation
f(X, Y ) = 0 is a two-dimensional affine model of C. We do not assume
this model to be smooth.

We put m = degX f , n = degY f , and write

f(X, Y ) = f0(X)Y n + f1(X)Y n−1 + · · ·+ fn(X). (3.17)

Let Q ∈ C(K̄) be a K̄-point of C, which is not a pole of x. We let
α = x(Q) and we denote by e = eQ the ramification index of x at Q (that
is, e = ordQ(x− α)). Fix a primitive e-th root of unity ζ = ζe. Then there
exist e equivalent Puiseux expansions of y at Q:

y
(Q)
i =

∞∑
k=−k(Q)

a
(Q)
k ζ ik(x− α)k/e (i = 0, . . . , e− 1), (3.18)
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where k(Q) = max {0,−ordQ(y)}.
Let v̄ be a valuation of K̄. We say that the series (3.18) converge v̄-adically

at ξ ∈ K̄, if, for a fixed e-th root e
√
ξ − α, the e numerical series

∞∑
k=−k(Q)

a
(Q)
k

(
ζ i e
√
ξ − α

)k
(i = 0, . . . , e− 1)

converge in the v̄-adic topology. We denote by y
(Q)
i (ξ), with i = 0, . . . , e− 1,

the corresponding sums. While the individual sums depend on the particular
choice of the root e

√
ξ − α, the very fact of convergence, as well as the set{

y
(Q)
0 (ξ), . . . , y

(Q)
e−1(ξ)

}
of the sums, are independent of the choice of the root.

Now we are ready to introduce the principal notion of this section, that
of proximity of a point to a different point with respect to a given valuation
v̄ ∈MK̄.

Definition 3.3.2 Let P ∈ C(K̄) be a K̄-point of C, not a pole of x, and put
ξ = x(P ). We say that P is v̄-adically close to Q if the following conditions
are satisfied:

• |ξ − α|v̄ < 1;

• the e series (3.18) v̄-adically converge at ξ, and one of the sums y
(Q)
i (ξ)

is equal to y(P ).

An important warning: the notion of proximity just introduced is not
symmetric in P and Q: the proximity of P to Q does not imply, in general,
the proximity of Q to P . Intuitively, one should think of Q as a “constant”
point, and of P as a “variable” point.

To state the main results of this section, we have to define a finite set Q
of K̄-points of the curve C, and certain finite sets of non-archimedean places
of the field K.

Let R(X) = Rf (X) ∈ K[X] be the Y -resultant of f(X, Y ) and f ′Y (X, Y ),
and let A be the set of the roots of R(X):

A = {α ∈ K̄ : R(α) = 0}.

We define Q as follows:

Q =
{
Q ∈ C(K̄) : x(Q) ∈ A

}
.
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It is important to notice that Q contains all the finite ramification points
of x (and may contain some other points as well). Also, the set Q is Galois-
invariant over K: every point belongs to it together with its Galois orbit
over K.

Now let us define the finite sets of valuations of K mentioned above. First
of all we assume (as we may, without loss of generality) that

the polynomial f0(X), defined in (3.17), is monic. (3.19)

In particular, f has a coefficient equal to 1, which implies equality of the
affine and the projective heights of f :

ha(f) = hp(f). (3.20)

Now, we define

T1 =
{
v ∈M0

K : the prime below v is ≤ n
}
,

T2 =
{
v ∈M0

K : |f |v > 1
}
.

Further, let r0 be the leading coefficient of R(X). We define

T3 =
{
v ∈M0

K : |r0|v < 1
}
.

Next, we let ∆ be the resultant of R̂(X) and R̂′(X), where R̂ is the radical

of R, see Subsection 1.4. Since the polynomial R̂(X) is separable, we have
∆ ∈ K∗. Now we define the set T4 as follows:

T4 =
{
v ∈M0

K : |∆|v < 1
}
.

Now fix Q ∈ C(K̄) and define three sets T
(Q)
5 , T

(Q)
6 and T

(Q)
7 , using the

Puiseux expansions of y at Q ∈ Q. As in (3.18), we denote by a
(Q)
k the

coefficients of these expansions. Now define

T
(Q)
5 =

{
v ∈M0

K :
∣∣a(Q)
k

∣∣
v̄
> 1 for some k and some v̄ extending v

}
,

T5 =
⋃
Q∈Q

T
(Q)
5 .

The Eisenstein theorem implies that the set T
(Q)
5 is finite. Further, the

coefficients a
(Q)
k generate a finite extension K(Q) of K(α) (where, as above,

α = x(Q)); more precisely, [K(Q) : K(α)] ≤ n. Now we define

T
(Q)
6 =

{
v ∈M0

K : v ramifies in K(Q)
}
, T6 =

⋃
Q∈Q

T
(Q)
6 .
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Finally, for any prime divisor q of e = eQ let a(Q)(q) be the q-essential
coefficient of the series y(Q), as defined Subsection 3.2.3. Now put

T
(Q)
7 =

{
v ∈M0

K :
∣∣a(Q)(q)

∣∣
v̄
< 1 for some q|eQ and some v̄ extending v

}
,

T7 =
⋃
Q∈Q

T
(Q)
7 .

Finally, for P,Q ∈ C(K̄) and a finite valuation v̄ ∈MK̄ we let v be the
restriction of v̄ to K and π a primitive element of the local ring Ov, and
define

`(P,Q, v̄) =
log |ξ − α|v̄

log |π|v
, (3.21)

where, as above, ξ = x(P ) and α = x(Q).
Now we are ready to state the principal results of this section. Call a

point P ∈ C(K̄) semi-defined over K if ξ = x(P ) ∈ K.

Proposition 3.3.3 Let Q be the sets defined above. Then for any point
P ∈ C(K̄) \ Q semi-defined over K, and for any finite valuation v ∈MK, at
least one of the following conditions is satisfied (we again put ξ = x(P )).

• |ξ|v > 1.

• v ∈ T2 ∪ T3 ∪ T4 ∪ T5.

• v is not ramified in the field K(P ).

• For any v̄ ∈MK̄, extending v, our point P is v̄-adically close to some
Q ∈ Q, which is well-defined when v̄ is fixed. Moreover, the integers eQ
and `(P,Q, v̄) are independent of the particular choice of v̄.

Proposition 3.3.4 Assume that P ∈ C(K̄) is semi-defined over K, and let P
be v̄-adically close to some Q ∈ C(K̄) for some finite valuation v̄ ∈MK̄. Let v
and w be the restrictions of v̄ to K and K(P ), respectively. Assume that v

does not belong to T1 ∪ T (Q)
5 ∪ T (Q)

6 ∪ T (Q)
7 . Then the ramification index of w

over v is equal to eQ/ gcd(eQ, `), where ` = `(P,Q, v̄) is defined in (3.21).

(Intuitively, the last condition means that the arithmetic ramification comes
from the geometric ramification.)

Proposition 3.3.5 Put T = T1 ∪ T2 ∪ . . . ∪ T7. Then

h(T ) ≤ 150mn3 log n
(
hp(f) + 2m+ 2n

)
.

49



3.3.1 Proof of Proposition 3.3.3

We fix, once and for all, a finite valuation v ∈MK, its extension v̄ ∈MK̄, and
a point P ∈ C(K̄) semi-defined over K and such that ξ = x(P ) /∈ A. We shall
assume that |ξ|v ≤ 1, that v /∈ T2 ∪ . . . ∪ T5 and that v is ramified in K(P ),
and we shall prove that P is v̄-adically close to a unique Q ∈ Q, and that
the numbers eQ and `(P,Q, v̄) are independent of the selected v̄.

Since v /∈ T2 ∪ T3, the polynomial R(X) belongs to Ov[X] and is v-monic.

Lemma 1.4.2 implies that so is its radical R̂(X). Also, every root α of R is
a v-adic integer.

Put η = y(P ). Since ξ /∈ A, the point (ξ, η) of the plane curve f(X, Y ) = 0
is non-singular, which implies that K(P ) = K(ξ, η) = K(η) (recall that ξ ∈ K).

Now Lemma 1.4.1 implies that |R(ξ)|v < 1, which implies that |R̂(ξ)|v < 1
by Lemma 1.4.2.

Next, since v /∈ T4, we have |R̂′(ξ)|v = 1. Lemma 1.4.3 implies now that
there exists a unique α ∈ A such that |ξ − α|v̄ < 1. The uniqueness of α
implies that the couple (α, v̄) is well-defined up to the Galois action of
Gal(K̄/K). Hence, while α depends on the choice of v̄, the quantity |ξ − α|v̄
is independent of v̄.

Fix this α from now on. There is
∑

x(Q)=α eQ = n Puiseux expansions of y
at the points Q above α, and they satisfy

f(x, Y ) = f0(x)
∏

x(Q)=α

eQ−1∏
i=0

(
Y − y(Q)

i

)
.

Since v /∈ T5, each of the series y
(Q)
i has v-adic convergence radius at least 1.

Since |ξ − α|v̄ < 1, all them v̄-adically converge at ξ. Moreover, the conver-
gence is absolute, because v̄ is non-archimedean. Hence

f(ξ, Y ) = f0(ξ)
∏

x(Q)=α

eQ−1∏
i=0

(
Y − y(Q)

i (ξ)
)
.

Since R(ξ) 6= 0, we have f0(ξ) 6= 0 as well. Hence we have on the left and
on the right polynomials of degree n in Y , the polynomial on the left having
η = y(P ) as a simple root (here we again use that R(ξ) 6= 0). Hence exactly

one of the sums y
(Q)
i (ξ) is equal to η. We have proved that P is v̄-adically

close to exactly one Q ∈ Q.
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The uniqueness of Q implies that eQ is independent of the particular choice
of v̄. Indeed, if we select a different v̄, then Q will be replaced by a conjugate
over K, and conjugate points have the same ramification. Also, as we have
seen above |ξ − α|v̄ is independent of the choice of v̄ as well; hence so is
`(P,Q, v̄). 2

3.3.2 Proof of Proposition 3.3.4

We may assume, by re-defining the root e
√
ξ − α that η = y(P ) is the sum

of y
(Q)
0 at ξ. In the sequel we omit reference to Q (when it does not lead to

confusion) and write e for eQ, ak for a
(Q)
k , etc. Thus, we have, in the sense of

v̄-adic convergence,

η =
∞∑

k=−k(Q)

ak

(
e
√
ξ − α

)k
. (3.22)

Now we have to show that the ramification index of any extension of v
to K(P ) is e′ = e/ gcd(e, `), where ` is defined in (3.21). Since v /∈ T6, it is
unramified in the field, generated over K by α and the coefficients ak. Hence
we may extend K and assume that all of the latter belong to it.

Let Kv be a v-adic completion of K. We consider K̄v̄ as its algebraic
closure, and the fields Kv(P ) = Kv(η) and Kv

(
e
√
ξ − α

)
as subfields of the

latter. According to (3.22), we have Kv(η) ⊂ Kv

(
e
√
ξ − α

)
. The latter field

has ramification e′ over Kv: see, for instance, Proposition 3.3 from [2]. (Here
and below we use the fact that all our ramifications are tame, which follows
from the assumption v /∈ T1.) If the ramification of Kv(η) is not e′, then it
must divide e′/q, where q is a prime divisor of e′. We want to show that this
is impossible.

Let κ = κ(Q)(q) be as defined in Subsection 3.2.3. Then the q-essential
coefficient a(Q)(q) is equal to aκ. Put

θ = η −
κ−1∑

k=k(Q)

ak

(
e
√
ξ − α

)k
= aκ

(
e
√
ξ − α

)κ
+

∞∑
k=κ+1

ak

(
e
√
ξ − α

)k
By the definition of κ, we have θ ∈ Kv

(
η, e/q
√
ξ − α

)
. The ramification of

Kv

(
e/q
√
ξ − α

)
/Kv is (e/q)/ gcd(e/q, `) = e′/q (since q divides e′, it cannot

divide `′ = `/ gcd(e, `), and we have gcd(e/q, `) = gcd(e, `)). Hence the ram-
ification of Kv(θ)/Kv divides e′/q. But, since v /∈ T5 ∪ T7, we have |ak|v ≤ 1
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for all k and |aκ|v = 1, which implies that

|θ|v =
∣∣∣( e
√
ξ − α

)κ∣∣∣
v
.

If π and Π are primitive elements of the local fields Kv and Kv(θ), respectively,
then ordπΠ divides e′/q. On the other hand, ordΠθ = (κ`/e) · ordπΠ ∈ Z,
which implies that (κ`/e) · (e′/q) = κ`′/q ∈ Z. But q does not divide any of
the numbers κ and `′, a contradiction. 2

3.3.3 Proof of Proposition 3.3.5

The proposition is a direct consequence of the estimates

h(T1) ≤ 1.02n, (3.23)

h(T2) ≤ hp(f), (3.24)

h(T3) ≤ (2n− 1)
(
hp(f) +m log 2 + log(2n2)

)
, (3.25)

h(T4) ≤ 16mn2
(
hp(f) + 2m+ 2 log n

)
, (3.26)

h(T5) ≤ 16mn2
(
hp(f) + 2m+ 2n), (3.27)

h(T6) ≤ 40mn3
(
hp(f) + 2m+ 2n

)
, (3.28)

h(T7) ≤ 18mn3 log n
(
hp(f) + 2m+ 2n

)
. (3.29)

Remark 3.3.6 Estimates (3.28) and (3.29) can probably be refined, to have
the main term of the form O(mn2hp(f)), which would result in the similar
main term in Proposition 3.3.5.

Proof of (3.23) Obviously, h(T1) ≤
∑

p≤n log p, which is bounded by 1.02n
according to (5). 2

Proof of (3.24) Item 2 of Proposition 1.1.13 implies that h(T2) ≤ ha(f).
Since ha(f) = hp(f) by (3.20), the result follows. 2

Proof of (3.25) Item 2 of Proposition 1.1.13 and Lemma 1.1.7 imply that

h(T3) ≤ ha(r0) ≤ ha(R) ≤ (2n− 1)ha(f) + (2n− 1)
(
log(2n2) +m log 2

)
.

(3.30)
Again using (3.20), we have the result. 2
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Proof of (3.26) We have deg R̂ ≤ degR ≤ (2n− 1)m. Further, using
Corollary 1.1.4 and inequalities (3.30), we find

ha(R̂) ≤ hp(R) + ha(r0) + degR ≤ (4n− 2)ha(f) + (8n− 4) (log n+m) .

Finally, using Remark 1.1.8 and the previous estimates, we obtain

h(T4) ≤ ha(∆) ≤ (2 deg R̂− 1)
(

ha(R̂) + log(2(deg R̂)2)
)

≤ 16mn2ha(f) + 32mn2 (log n+m) .

Using (3.20), we obtain the result. 2

Preparation for the proofs of (3.27–3.29) Recall that we denote by
R(X) the Y -resultant of f(X, Y ) and f ′Y (X, Y ) and by A the set of the roots
of R(X). If we denote by µα the order of α as the root of R(X), then we
have

|A| ≤
∑
α∈A

µα ≤ degR(X) ≤ m(2n− 1), (3.31)∑
α∈A

ha(α)≤
∑
α∈A

µαha(α)≤ hp(R) + log(2mn)≤ (2n− 1)hp(f) + 3n log(4mn),

(3.32)

where for (3.32) we use Remark 1.1.3 and Lemma 1.1.7. Denoting by uα
order of α as the root of f0(X), we have, obviously,∑

α∈A

uα ≤ m,∑
α∈A

uαha(α) ≤ hp(f0) + log(m+ 1) ≤ hp(f) + log(m+ 1).

Using the notation
f (α)(X, Y ) = f(X + α, Y ) (3.33)

and Corollary 1.1.5, we obtain the following inequalities:∑
α∈A

ha(f (α)) ≤
∑
α∈A

µαha(f (α)) ≤ 4mnhp(f) + 7m2n+ 3nm log n, (3.34)∑
α∈A

uαha(f (α)) ≤ 2mhp(f) + 3m2. (3.35)
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Proof of (3.27) For α ∈ A and v ∈MK(α) let Av(α) and Bv(α) be the
quantities of Theorem 3.2.1 but for the polynomial f (α) instead of f . Put

T
(α)
5 =

{
v ∈MK(α) : A(α)

v > 1 or B(α)
v > 1

}
,

Corollary 3.2.2 implies that

h
(
T

(α)
5

)
≤ (4n− 1)hp(f (α)) + 13n2 + 4n logm. (3.36)

Now let A′ be a maximal selection of α ∈ A pairwise non-conjugate over K.
Then every place from T5 extends to some place from T

(α)
5 for some α ∈ A′.

Item 1 of Proposition 1.1.13 implies that

h(T5) ≤
∑
α∈A′

[K(α) : K]h
(
T

(α)
5

)
.

Using (3.36), we obtain

h(T5) ≤ (4n− 1)
∑
α∈A′

[K(α) : K]hp(f (α)) + (13n2 + 4n logm)
∑
α∈A′

[K(α) : K]

= (4n− 1)
∑
α∈A

hp(f (α)) + (13n2 + 4n logm)|A|.

Using (3.31) and (3.34), we obtain (3.27) after an easy calculation. 2

Proof of (3.28) We again let A′ be a maximal selection of α ∈ A pairwise
non-conjugate over K, and for any α ∈ A we let Q′α be a maximal selection of
points Q with x(Q) = α, pairwise non-conjugate over K(α). A place v ∈MK

belongs to T6 in one of the following cases: either v ramifies in K(α) for some
α ∈ A′, or an extension of v to some K(α) ramifies in K(Q) for some Q ∈ Q′α.
Item 1 of Proposition 1.1.13 implies that

h(T6) ≤
∑
α∈A′

h
(

Ram
(
K(α)/K

))
+
∑
α∈A′

∑
Q∈Q′α

[K(α) : K]h
(

Ram
(
K(Q)/K(α)

))
,

(3.37)
where Ram(·) is defined in Lemma 1.1.15. Lemma 1.1.16 implies that∑

α∈A′
h
(

Ram
(
K(α)/K

))
≤
∑
α∈A′

[K(α) : K]∂K(α)/K =
∑
α∈A

∂K(α)/K.
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The latter sum can be easily estimated by Corollary 1.1.14 and Lemma 1.1.7:∑
α∈A

∂K(α)/K ≤ 4mnhp(R) + 6mn log(2mn) ≤ 8mn2hp(f) + 18mn2 log(3mn).

(3.38)

To estimate the second sum in (3.37), we again use Lemma 1.1.16:∑
α∈A′

∑
Q∈Q′α

[K(α) : K]h
(

Ram
(
K(Q)/K(α)

))
≤

≤
∑
α∈A′

[K(α) : K]
∑
Q∈Q′α

[
K(Q) : K(α)

]
∂K(Q)/K(α) =

∑
α∈A

∑
x(Q)=α

∂K(Q)/K(α)

Corollary 3.2.4 implies that∑
x(Q)=α

∂K(Q)/K(α) ≤
(
4n2µα + 4uαn

3 + 2n2
)

hp(f (α))+

+
(
µαn+ uαn

2
) (

12n2 + 4n logm
)

+ 3n2 log(2n).

Summing up over α ∈ A and using (3.31), (3.34) and (3.35), we obtain∑
α∈A

∑
x(Q)=α

∂K(Q)/K(α) ≤ 32mn3hp(f) + 60mn3(m+ n),

which, together with (3.38), implies (3.28). 2

Proof of (3.29) For Q ∈ Q denote by ΣQ the sum of the heights of all the
essential coefficients of the Puiseux expansion at Q. Keeping the notation A′
and Q′α from the previous proof, and using item 2 of Proposition 1.1.13, we
obtain

h(T7) ≤
∑
α∈A′

[K(α) : K]
∑
Q∈Q′α

[
K(Q) : K(α)

]
ΣQ =

∑
α∈A

∑
x(Q)=α

ΣQ.

Corollary 3.2.6 estimates the inner sum by

(uα + µα)
(
2n2hp(f (α)) + 6n3 + 2n2 logm

)
log2 n.

Applying inequalities (3.31), (3.34) and (3.35) once again, we obtain

h(T7) ≤ 12mn3 log2 n hp(f) + 24mn3(m+ n) log2 n.

Since log2 n ≤ 1.5 log n, the result follows. This completes the proof of Propo-
sition 3.3.5. 2
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3.4 A Tower of K̄-Points

In this section we retain the set-up of Section 3.3; that is, we fix a number
field K, a curve C defined over K and rational functions x, y ∈ K(C) such
that K(C) = K(x, y). We again let f(X, Y ) ∈ K[X, Y ] be the K-irreducible
polynomial of X-degree m and Y -degree n such that f(x, y) = 0, and we
again assume that f0(X) in (3.17) is monic. We again define the polynomial
R(X), the sets A ⊂ K̄, Q ⊂ C(K̄) and T1, . . . , T7 ⊂MK, etc.

We also fix a covering C̃ φ→ C of C by another smooth irreducible projec-
tive curve C̃; we assume that both C̃ and the covering φ are defined over K.
We consider K(C) as a subfield of K(C̃); in particular, we identify the func-

tions x ∈ K(C) and x ◦ φ ∈ K(C̃). We fix a function z ∈ K(C̃) such that

K(C̃) = K(x, z). We let f̃(X,Z) ∈ K[X,Z] be an irreducible polynomial of
X-degree m̃ and Z-degree ñ such that f̃(x, z) = 0; we write

f̃(X,Z) = f̃0(X)Zen + f̃1(X)Zen−1 + · · ·+ f̃en(X)

and assume that the polynomial f̃0(X) is monic. We define in the the similar

way the polynomial R̃(X), the sets Ã ⊂ K̄, Q̃ ⊂ C̃(K̄) and T̃1, . . . , T̃7 ⊂MK,

etc. We also define the notion of proximity on the curve C̃ exactly in the
same way as we did it for C in Definition 3.3.2, and we have the analogues
of Propositions 3.3.3, 3.3.4 and 3.3.5.

In addition to all this, we define one more finite set of places of K as follows.
Write R̃(X) = R̃1(X)R̃2(X), where the polynomials R̃1(X), R̃2(X) ∈ K(X)
are uniquely defined by the following conditions:

• the roots of R̃1(X) are contained in the set of the roots of f0(X);

• the polynomial R̃2(X) has no common roots with f0(X) and is monic.

Now let Θ be the resultant of f0(X) and R̃2(X). Then Θ 6= 0 by the definition

of R̃2(X), and we define put

U = {v ∈MK : |Θ|v < 1}.

Proposition 3.4.1 Let P ∈ C(K̄) be semi-defined over K (that is, we have

ξ = x(P ) ∈ K), and let P̃ ∈ C̃(K̄) be a point above P (that is, φ(P̃ ) = P ).

Let v be a finite place of K, and v̄ an extension of v to K̄. Assume that P̃ is
v̄-close to some Q̃ ∈ Q̃. Then we have one of the following options.
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• |ξ|v > 1.

• v ∈ T ∪ T̃ ∪ U .

• P is v̄-close to the Q ∈ C(K̄) which lies below Q̃.

For the proof we shall need a simple lemma.

Lemma 3.4.2 In the above set-up, there is a polynomial Φ(X,Z) ∈ K[X,Z]
such that

y =
Φ(x, z)

f0(x)R̃(x)

Proof. Since f0(x)y is integral over K[x], Corollary 1.3.2 implies that

f0(x)y ∈ R̃(x)−1K[x, z], whence the result. 2

Proof of Proposition 3.4.1 We put α = x(Q̃). By the definition of the

set Q̃, we have α ∈ Ã. Assume that |ξ|v ≤ 1 and v /∈ T ∪ T̃ ∪ U . Let ẽ be

the ramification of Q̃ over P1, and let

z
( eQ)
i =

∞∑
k=−k( eQ)

a
( eQ)
k ζ̃ ik(x− α)k/ee (i = 0, . . . , ẽ− 1), (3.39)

be the equivalent Puiseux expansions of z at Q̃ (here ζ̃ is a primitive ẽ-th root

of unity). Since P̃ is v̄-close to Q̃, we have |ξ − α|v̄ < 1 and the ẽ series (3.39)

converge at ξ, with one of the sums being z(P̃ ).
Now Φ(X,Z) be the polynomial from Lemma 3.4.2. Then the ẽ series

Φ
(
x, z

( eQ)
i

)
f0(x)R̃(x)

(i = 0, . . . , ẽ− 1) (3.40)

contain all the equivalent Puiseux series of y at Q = φ(Q̃). More precisely,
if the ramification of Q over P1 is e, then every of the latter series occurs
in (3.40) exactly ẽ/e times.

Write f0(X)R̃(X) = (X − α)rg(X) with g(α) 6= 0. Since

v /∈ T2 ∪ T̃2 ∪ T̃3 ∪ T̃4 ∪ U,

57



we have |g(α)|v̄ = 1. Now Lemma 1.4.4 implies that the Laurent series at α of

the rational function
(
f0(x)R̃(x)

)−1
converges at ξ. Hence all the series (3.40)

converge at ξ, and among the sums we find

Φ
(
x(Q̃), z(Q̃)

)
f0

(
x(Q̃)

)
R̃
(
x(Q̃)

) = y(Q).

Hence P is v̄-close to Q. 2

We shall also need a bound for U similar to that of Proposition 3.3.5.

Proposition 3.4.3 We have h(U) ≤ Υ + Ξ, where Υ is defined in (3.1) and

Ξ = 2mñ(2m̃+ 3 log ñ) + (m+ 2m̃ñ) log(m+ 2m̃ñ). (3.41)

Proof. Item 2 of Proposition 1.1.13 implies that h(U) ≤ ha(Θ), where Θ is

the resultant of f0(X) and R̃2(X). Expressing Θ as the familiar determinant,
we find

ha(Θ) ≤ deg R̃2ha(f0)+deg f0ha(R̃2)+(deg f0 +deg R̃2) log(deg f0 +deg R̃2).
(3.42)

Since both f0 and R̃2 are monic polynomials (by the convention (3.19) and

the definition of R̃2), we may replace the affine heights by the projective
heights. Further, we have the estimates

deg f0 ≤ m, deg R̃2 ≤ m̃(2ñ− 1), hp(f0) ≤ hp(f),

hp(R̃2) ≤ (2ñ− 1)hp(f̃) + (2ñ− 1)
(

2m̃+ log
(
(ñ+ 1)

√
ñ
))
,

the latter estimate being a consequence of Corollary 1.1.4 and Lemma 1.1.7.
Substituting all this to (3.42), we obtain the result. 2

3.5 The Chevalley-Weil Theorem

Now we may to gather the fruits of our hard work. In this section we retain
the set-up of Section 3.4. Here is our principal result, which will easily imply
all the theorems stated in the introduction.
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Theorem 3.5.1 Assume that the covering φ is unramified outside the poles
of x. Let P ∈ C(K̄) be semi-defined over K, and let P̃ ∈ C̃(K̄) be a point

above P . As usual, we put ξ = x(P ) = x(P̃ ). Then for every non-archimedean
v ∈MK we have one of the following options.

• |ξ|v > 1.

• v ∈ T ∪ T̃ ∪ U .

• Any extension of v to K(P ) is unramified in K(P̃ ).

Proof. Let v ∈MK be a non-archimedean valuation such that |ξ|v ≤ 1

and v /∈ T ∪ T̃ ∪ U . Fix an extension v̄ of v to K̄, and let w̃ and w be the
restrictions of v̄ to K(P̃ ) and K(P ), and ẽ and e their ramification indexes
over v, respectively.

Proposition 3.3.3 implies that P̃ is v̄-adically close to some Q̃ ∈ Q̃. Propo-
sition 3.3.4 now implies that ẽ = e eQ/ gcd(e eQ, `).

Let Q be the point of C lying under Q̃. Put α = x(Q̃) = x(Q). The rest
of the proof splits into two cases. If α 6∈ A then the covering C 7→ P1 does
not ramify at Q. Since φ is unramified outside the poles of x, the covering
C̃ 7→ P1 does not ramify at Q̃, that is, e eQ = 1. Hence ẽ = 1, which means
that w̃ is not ramified over v, and, a fortiori, over w.

Now assume that α ∈ A. Proposition 3.4.1 implies that P is v̄-adically
close to Q. Now notice that eQ = e eQ, again because φ is unramified. Also,

`(P,Q, v̄)) = `(P̃ , Q̃, v̄) = `, just by the definition of this quantity. We have
then e = eQ/ gcd(eQ, `) = ẽ by Proposition 3.3.4. This shows tha w̃ is un-
ramified over w, completing the proof. 2

We also need an estimate for h(T ∪ T̃ ∪ U).

Proposition 3.5.2 We have

h(T ∪ T̃ ∪ U) ≤ Ω + Ω̃ + Υ. (3.43)

where Ω, Ω̃ and Υ are defined in (3.1).

Proof. Combining Propositions 3.3.5 and 3.4.3, we obtain the estimate

h(T ∪ T̃ ∪ U) ≤ 3

4
(Ω + Ω̃) + Υ + Ξ,

where Ξ is defined in (3.41). A routine calculation show that Ξ ≤ (Ω + Ω̃)/4,
whence the result. 2

Now we can prove the theorems from the introduction.
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Proof of Theorem 3.1.2 We may replace K by K(P ) and assume that
P ∈ C(K). Put ξ = x(P ) and let R be the set of places of K that ramify

in K(P̃ ). Theorem 3.5.1 and estimate (3.43) imply that

h
(
{v ∈ R : |ξ|v ≤ 1}

)
≤ Ω + Ω̃ + Υ.

Replacing x by x−1 and the polynomials f , f̃ by the polynomialsXmf(X−1, Y )
and X emf̃(X−1, Y ), respectively, we obtain the estimate

h
(
{v ∈ R : |ξ|v ≥ 1}

)
≤ Ω + Ω̃ + Υ.

Thus,
h(R) ≤ 2(Ω + Ω̃ + Υ),

and Lemma 1.1.15 implies that

∂K( eP )/K ≤ 2
ν − 1

ν
(Ω + Ω̃ + Υ) + 1.26ν ≤ 2(Ω + Ω̃ + Υ).

The theorem is proved. 2

Proof of Theorem 3.1.4 Let S ′ be set of places of the field K(P ) extend-
ing the places from S. The right-hand side of (3.2) will not increase (see
item 1 of Proposition 1.1.13) if we replace K by K(P ) and S by S ′. Thus,
we may assume that P ∈ C(K).

Again using Theorem 3.5.1 and (3.43), we obtain

h(R \ S) ≤ Ω + Ω̃ + Υ.

We again complete the proof, applying Lemma 1.1.15. 2

To order to prove Theorem 3.1.5, we use the effective Riemann Existence
Theorem, proved in Chapter 2, in the following form.

Theorem 3.5.3 Let x : C → P1 be a finite covering of degree n ≥ 2, defined
over K and unramified outside a finite set A ⊂ P1(K̄). Put

h = ha(A), Λ′ =
(
2(g + 1)n2

)10gn+12n
,

where g = g(C). Then there exists a rational function y ∈ K̄(C) such that
K̄(C) = K̄(x, y) and the rational functions x, y ∈ K̄(C) satisfy the equation
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f(x, y) = 0, where the absolutely irreducible polynomial f(X, Y ) ∈ L[X, Y ]
is such that

degX f = g + 1, degY f = n, hp(f) ≤ Λ′(h+ 1). (3.44)

Moreover, the number field L, generated over K by the set A and by the
coefficients of f satisfies ∂L/K(A) ≤ Λ′(h+ 1).

Proof of Theorem 3.1.5 We shall prove the “projective” case 1 of this
theorem. The affine case is proved similarly.

We define Λ̃′ in the same way as Λ′ in Theorem 3.5.3, but with n and g
replaced by ñ and g̃. We use Theorem 3.5.3 to find functions y ∈ K̄(C)
and z ∈ K̄(C̃), and polynomials f(X, Y ) ∈ K̄[X, Y ] and f̃(X,Z) ∈ K̄[X,Z].
Denoting by L the field generated by the set A and the coefficients of both
the polynomials, we find ∂L/K(A) ≤ (Λ′ + Λ̃′)(h+ 1) with h = ha(A). Using
Lemma 1.1.12, we estimate ∂K(A)/K ≤ 2(δ − 1)h+ log δ. Hence

∂L/K ≤
(
Λ′ + Λ̃′ + 2(δ − 1)

)
(h+ 1).

We define the quantities Ω, Ω̃ and Υ as in the introduction. Then, applying
Theorem 3.1.2, but over field L rather than K, we find

∂L( eP )/L(P ) ≤ 2(Ω + Ω̃ + Υ).

Hence

∂K( eP )/K(P ) ≤ ∂L( eP )/K(P ) = ∂L( eP )/L(P ) + ∂L(P )/K(P ) ≤ ∂L( eP )/L(P ) + ∂L/K.

The last sum is bounded by

2(Ω + Ω̃ + Υ) +
(
Λ′ + Λ̃′ + 2(δ − 1)

)
(h+ 1),

which, obviously, does not exceed Λ(h+ 1), as wanted. 2
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