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Conception et analyse de schémas d’ordre trés élevé distribuant le
résidu. Application & la mécanique des fluides.

Résumé :

La simulation numérique est aujourd’hui un outils majeur dans la conception des objets
aérodynamiques, que ce soit dans l'aéronautique, ’automobile, I'industrie navale, etc... Un des
défis majeurs pour repousser les limites des codes de simulation est d’ameéliorer leur précision, tout
en utilisant une quantité fixe de ressources (puissance et/ou temps de calcul). Cet objectif peut
étre atteint par deux approches différentes, soit en construisant une discrétisation fournissant
sur un maillage donné une solution d’ordre trés élevé, soit en construisant un schéma compact et
massivement parallélisable, de maniére & minimiser le temps de calcul en distribuant le probléme
sur un grand nombre de processeurs. Dans cette thése, nous tentons de rassembler ces deux
approches par le développement et I'implémentation de Schéma Distribuant le Résidu (RDS)
d’ordre trés élevé et de compacité maximale.

Ce manuscrit commence par un rappel des principaux résultats mathématiques concernant
les Lois de Conservation hyperboliques (CLs). Le but de cette premiére partie est de mettre en
évidence les propriétés des solutions analytiques que nous cherchons a approcher, de maniére a
injecter ces propriétés dans celles de la solution discréte recherchée. Nous décrivons ensuite les
trois étapes principales de la construction d’un schéma RD d’ordre trés élevé :

la représentation polynomiale d’ordre trés élevé de la solution sur des polygones et des
polyédres;

la description de méthodes distribuant le résidu de faible ordre, compactes et conservatives,
consistantes avec une représentation polynomiale des données de trés haut degré. Parmi
elles, une attention particuliére est donnée a la plus simple, issue d’une généralisation du
schéma de Lax-Friedrichs (LxF);

la mise en place d’une procédure préservant la positivité qui transforme tout schéma stable
et linéaire, en un schéma non linéaire d’ordre tres élevé, capturant les chocs de maniére
non oscillante.

Dans le manuscrit, nous montrons que les schémas obtenus par cette procédure sont consistants
avec la CL considérée, qu'ils sont stables en norme L8 et qu’ils ont la bonne erreur de tronca-
ture. Méme si tous ces développements théoriques ne sont démontrés que dans le cas de ClLs
scalaires, des remarques au sujet des problémes vectoriels sont faites dés que cela est possible.
Malheureusement, lorsqu’on considére le schéma LxF, le probléme algébrique non linéaire asso-
cié a la recherche de la solution stationnaire est en général mal posé. En particulier, on observe
I’apparition de modes parasites de haute fréquence dans les régions de faible gradient. Ceux-
ci sont éliminés grace a un terme supplémentaire de stabilisation dont les effets et 1’évaluation
numérique sont précisément détaillés. Enfin, nous nous intéressons & une discrétisation correcte
des conditions limites pour le schéma d’ordre élevé proposé.
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Cette théorie est ensuite illustrée sur des cas test scalaires bidimensionnels simples. Afin de
montrer la généralité de notre approche, des maillages composés uniquement de triangles et des
maillages hybrides, composés de triangles et de quandrangles, sont utilisés. Les résultats obtenus
par ces tests confirment ce qui est attendu par la théorie et mettent en avant certains avantages
des maillages hybrides. Nous considérons ensuite des solutions bidimensionnelles des équations
d’Euler de la dynamique des gaz. Les résultats sont assez bons, mais on perd les pentes de
convergence attendues dés que des conditions limite de paroi sont utilisées. Ce probléme nécessite
encore d’étre étudié. Nous présentons alors 'implémentation parallele du schéma. Celle-ci est
analysée et illustrée & travers des cas test tridimensionnel de grande taille. Du fait de la relative
nouveauté et de la complexité des problémes tridimensionels, seuls des remarques qualitatives
sont faites pour ces cas test : le comportement global semble étre bon, mais plus de travail
est encore nécessaire pour définir les propriétés du schémas en trois dimensions. Enfin, nous
présentons une extension possible du schéma aux équations de Navier-Stokes dans laquelle les
termes visqueux sont traités par une formulation de type Galerkin. La consistance de cette
formulation avec les équations de Navier-Stokes est démontrée et quelques remarques au sujet
de la précision du schéma sont soulevées. La méthode est validé sur une couche limite de Blasius
pour laquelle nous obtenons des résultats satisfaisants.

Ce travail offre une meilleure compréhension des propriétés générales des schémas RD d’ordre
trés élevé et souléve de nouvelles questions pour des améliorations futures. Ces améliorations
devrait faire des schémas RD une alternative attractive aux discrétisations classiques FV ou
ENO/WENO, aussi bien qu’aux schémas Galerkin Discontinu d’ordre trés élevé, de plus en plus
populaires.

Mots clés:

Distribution du Résidu, Fluctuation Splitting, Schémas d’ordre trés élevé, Lois de Conser-
vation, Hyperbolicité, Equations d’Euler, Equations de Navier-Stokes, Maillages non structurés,
Maillages Hybrides, Traitement Paralléle, Discrétisation Compacte.

Discipline :

Mathématiques Appliquées
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Conception and analysis of very high order distribution schemes.
Application to fluid mechanics.

Abstract:

Numerical simulations are nowadays a major tool in aerodynamic design in aeronautic, au-
tomotive, naval industry etc... One of the main challenges to push further the limits of the
simulation codes is to increase their accuracy within a fixed set of resources (computational
power and/or time). Two possible approaches to deal with this issue are either to contruct
discretizations yielding, on a given mesh, very high order accurate solutions, or to construct
compact, massively parallelizable schemes to minimize the computational time by means of a
high performance parallel implementation. In this thesis, we try to combine both approaches
by investigating the contruction and implementation of very high order Residual Distribution
Schemes (RDS) with the most possible compact stencil.

The manuscript starts with a review of the mathematical theory of hyperbolic Conservation
Laws (CLs). The aim of this initial part is to highlight the properties of the analytical solutions
we are trying to approximate, in order to be able to link these properties with the ones of the
sought discrete solutions. Next, we describe the three main steps toward the construction of a
very high order RDS:

The definition of higher order polynomial representations of the solution over polygons and
polyhedra;

The design of low order compact conservative RD schemes consistent with a given (high
degree) polynomial representation. Among these, particular accest is put on the simplest,
given by a generalization of the Lax-Friedrich’s (LxF) scheme;

The design of a positivity preserving nonlinear transformation, mapping first-order linear
schemes onto nonlinear very high order schemes.

In the manuscript, we show formally that the schemes obtained following this procedure are
consistent with the initial CL, that they are stable in L% norm, and that they have the proper
truncation error. Even though all the theoretical developments are carried out for scalar ClLs,
remarks on the extension to systems are given whenever possible. Unortunately, when employing
the first order LxFscheme as a basis for the construction of the nonlinear discretization, the final
nonlinear algebraic equation is not well-posed in general. In particular, for smoothly varying
solutions one observes the appearance of high frequency spurious modes. In order to kill these
modes, a streamline dissipation term is added to the scheme. The analytical implications of this
modifications, as well as its practical computation, are thouroughly studied. Lastly, we focus on
a correct discretization of the boundary conditions for the very high order RDS proposed.

The theory is then extensively verified on a variety of scalar two dimensional test cases. Both
triangular, and hybrid triangular-quadrilateral meshes are used to show the generality of the
approach. The results obtained in these tests confirm all the theoretical expectations in terms
of accuracy and stability and underline some advantages of the hybrid grids. Next, we consider



solutions of the two dimensional Euler equations of gas dynamics. The results obtained are
quite satisfactory and yet, we are not able to obtain the desired convergence rates on problems
involving solid wall boundaries. Further investigation of this problem is under way. We then
discuss the parallel implementation of the schemes, and analyze and illustrate the performance
of this implementation on large three dimensional problems. Due to the preliminary character
and the complexity of these three dimensional problems, a rather qualitative discussion is made
for these tests cases: the overall behavior seems to be the correct one, but more work is necessary
to assess the properties of the schemes in three dimensions. In the last chapter, we consider one
possible extension to the Navier-Stokes equations in which the viscous terms are discretized by a
standard Galerkin approach. We formally show that the overall discretization is consistent with
the Navier-Stokes equations. However some accuracy issues are highlighted and discussed. The
method is tested on a flat plate laminar boundary layer flow. The results are satisfactory.

The work presented in this thesis allows a better understanding of the general properties of
very high order RDS, and contributes substantially to bring forward a number of open issues
for future improvement. These improvements should make RD discretizations a very appealing
alternative to now classical high order and very high order FV ENO/WENO schemes, and to
the increasingly popular class of Discontinuous Galerkin schemes.

Keywords:
Residual Distribution, Fluctuation Splitting, Very High Order Schemes, Conservative Laws,

Hyperbolicity, Euler Equations, Navier-Stokes Equations, Unstructured Meshes, Hybrid Meshes,
Parallel treatment, Compact Discretization.

Discipline:

Applied Mathematics
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Chapter 1

Introduction

1.1 Motivation and Context

The development of high-order algorithms for the simulation of compressible flows in complex
domains and on arbitrary meshes is one of the most important research topics in Computational
Fluid Dynamics (CFD). The continuous growth of the available computing power allows to
increase the complexity of the flow configurations, object of the simulations, and to run always
bigger test cases usually to obtain an improved accuracy on the flow parameters. However,
improvements in the efficiency, flexibility and robustness of the numerical algorithms are still
needed to fully exploit this computational potential.

It is generally agreed that, when dealing with complex geometries and flow patterns, the use of
unstructured grids is somewhat mandatory. Compared to structured and multi-block structured
grids, the generation of unstructured meshes, or more generally hybrid unstructured /structured
meshes, can in fact be highly automated. A considerably lower degree of user-input and, con-
sequently, less time [12], are needed. Moreover, unstructured mesh generation lends itself very
naturally to solution-dependent local refinement and adaptation, which are known to improve
the simulation output, and at the same time reduce the number of elements/degrees of freedom
needed to achieve a fixed level of accuracy [12, 15, 18]. As a consequence, the design of new
numerical algorithms for the simulation of compressible flows is largely oriented to formulations
well suited for unstructured grids (see e.g. the volumes [18, 17]).

An abstract model for the fluid-mechanics equations is given by a so-called Conservation Law:
a Partial Differential Equation (PDE) stating the conservation of some unknowns over a given
region of space and time. The design of new numerical schemes for compressible flow simulations
often starts with the study of simple Conservation Laws for which one has more theoretical
information on the properties of the exact solution. It is generally accepted that state of the
art of numerical methods for conservation laws on unstructured grids is not entirely satisfactory.
The need of more flexible, accurate and robust solution algorithms for the analysis of large and
complex systems is what drives the development of new techniques. Accuracy, robustness and
efficiency requirements lead to the following design constraints:

Accuracy: The accuracy of a numerical solution is measured as its mathematical distance to the
exact solution. It is well known this error is often a power function of a characteristic size
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of the used mesh. The power coefficient measuring the speed of convergence of the method
is called the order of accuracy. It is actually possible to increase the order of accuracy of
the approximation in a relatively simple way, without introducing expensive reconstruction
steps. Moreover, due to the fact that unstructured grids can be quite irregular (especially
in 3D), the accuracy of the method should be as insensitive as possible to the regularity of
the mesh;

Stability:  Conservation laws admit weak solutions containing discontinuities. These solutions
are piecewise smooth without strong oscillations in correspondence of the singularities. The
numerical method must be able to handle discontinuities without polluting the solution with
spurious oscillations, what usually leads to a reduced order of accuracy. Additionally, weak
solutions of Conservation Laws also verify additional constraints imposed by the existence
of a (vanishing) dissipative mechanism'. This gives an additional stability requirement
for the numerical method. Ideally, the stability of the scheme (non-oscillatory character
and energy/entropy stability) should be parameter free, that is, it should not depend on
constants which are difficult to optimize in a general way;

E ciency:  Since the beginning of this century, CPU designers are able to still fit the Moore
law |70] only thanks to the increasing number of processor cores inside the CPUs. In order
to go along with this computation distribution, the numerical method of the future should
allow a fast and efficient implementation, particularly on parallel platforms. From this
point of view, the main requirements are simplicity and compactness. A compact method
is one that, to update the values of the unknowns in a certain mesh location, only uses
information contained in the closest grid entities. In parallel implementations, this allows
to minimize the overhead due to inter-processor communication. Compactness is equivalent
to the locality of the discrete procedure.

1.2 Methods Overview

This section presents a brief overview of the main methods used to approximate the solutions
of compressible flow problems.

1.2.1 Finite Volume Methods

Within these methods, the Finite Volume Methods |66, 117] are certainly the most mature
and the most documented ones. The reason of this is that most of the industrial codes for CFD
have started by implementing this kind of methods. At the difference of the two next presented
methods, the Finite Volume Methods are based on Cell-Centered approximation of the spatial
domain: to each node of the mesh is associated a small area in its vicinity. It is called the cell.
The node interacts with its neighbors through the edges of this cell. Problem is that in multiple
dimensions, most FV schemes are designed by applying only one dimensional formulations along
particular mesh directions (edges, edge normals, etc...). This often reduces dramatically the
accuracy on irregular meshes and it is why this type of scheme suffers of strong deficiencies as far
as accuracy and efficiency are concerned. Moreover, the construction of high order formulation
necessitates the local reconstruction of polynomials of the proper degree, what is done by looking

"The entropy inequality implied by the second principle of thermodynamics is an example
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for enough neighbors such that the local polynomial coefficients are uniquely defined. For very
high order polynomial approximation, one will then use the direct neighbors, the neighbors of
the neighbors, aso... This renders the schemes non-compact, hence less efficient.

Even though there have been attempts to design truly multidimensional finite volume schemes
(|67, 65]) and to improve high order FV schemes for unstructured meshes [20, 19, 21|, the main
deficiencies remain. These deficiencies are neither cured by the very high order extensions ob-
tained using the ENO/WENO philosophy (see [110, 111]), which are based on even more complex
polynomial reconstructions that are completely annihilating hopes of efficient parallelization.

1.2.2 Discontinuous Galerkin Methods

As you may guess from their name, the Discontinuous Galerkin (DG) methods are based
on the Galerkin Finite Element theory, but allow the numerical solution to be discontinuous
[14, 13]. Each element of the grid has its own degrees of freedom and do not share them with
others. Interactions between elements are computed by numerical fluxes that can be rather
complex, often coming from the theory of the Riemann solvers. It is today a numerical method
enjoying a very wide and very active community because of its promising character. The main
advantage of the method is an easy and compact generalization to high order formulation [13].
This is due to the fact that high order polynomial representation of the data is not reconstructed
but defined on the elements of the grid, all containing extra degrees of freedom. Impressive results
have already been shown [45, 44].

Unfortunately, even if local energy stability properties can be easily proved [14], the design of
non-oscillatory DG schemes relies either on the use of FV limiters, which can reduce dramatically
their accuracy, or, as stabilized FE schemes, on the use of discontinuity capturing operators
[61, 46, 16]. This technique basically reduces to adding strongly dissipative terms in localized
regions where the gradient of the solution is large. This approach, if on one hand allows to
prove the global L8 stability of the solution, on the other hand does not fully guarantee its local
monotonicity. More importantly, these shock-capturing (SC) terms depend on tunable constants
which are difficult to determine in a general way.

Finally, the price to pay for this discontinuous approach is a quite expensive computational
cost. On Figure 1.1 is represented for the same mesh the conformal approach that would be used
by the continuous Residual Distribution schemes and the non-conformal discretization used in
the DG framework. It is clear the DG discretization uses more degrees of freedom. To be more
rational, let us consider a mesh composed of n vertices. We can roughly estimate the number of
degrees of freedom needed by a DG scheme and by a RD one. This is done in Tabular 1.1. The
Residual Distribution framework presents always much less unknowns than its DG equivalent,
especially for low order of accuracy. For 4" order, it is for example 3 to 4 times cheaper. But if
we look at the asymptotic behaviour with respect to the polynomial order of representation of
the data, we see that both schemes need approximately the same amount of unknowns. In 2D,
if K is the polynomial order of representation of the solution, a RD scheme needs approximately
k?n degrees of freedom when DG needs gk 1qgk  2qn. The same in 3D, both scheme needing
asymptotically k3n degrees of freedom.
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Figure 1.1: Third Order RD and DG meshes.

2D 3D

Order | DG RD || DG RD
2 6ng Ng 24ngy ng
3 12ns 4ng || 40ns  8ng
4 20ns 9ng || 80ng 27ng

Table 1.1: Comparison of the number of degrees of freedom needed for second, third and fourth
order approximation in the case of aDG or a RD scheme.

1.2.3 Residual Distribution Schemes

The last class of methods we are presenting here is the one that is going to be used and
developed through all this thesis. TheResidual Distribution Schemes(RDS), is a class of
methods that uses a continuous representation of the variables, similarly to the standard Finite
Element methods. It has been rst studied by P.L. Roe in the early eighties [99] and was called
at that time the Fluctuation Splitting methods. The ground entity is the residual, an integral
quantity over each element, that represents the balance of information entering the element.
Following some well de ned rules, this residual is distributed to the nodes of the elements and
by looping over this oversimpli ed scheme, we prove to converge toward an approximation of the
exact solution of the Conservation Law These methods allow to discretize all the operators of
the equation at the same time and it is proved the global accuracy of the scheme is led by the
residual computation accuracy. Furthermore, these methods can guarantee by construction the
local monotonicity of the approximation. Solutions with discontinuities can then be computed
without the help of any shock capturing or slope limiter term. Eventually, the distribution of
the degrees of freedom used for thk!" order polynomial representation of the data being done
inside the elements and thereforemaximum compact the update of the value of the solution
in a given location of the mesh only uses the information stored in immediately adjacent mesh
entities. This makes residual methods very compact and e ciently parallelizable.
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overview of what was already available at that time and what was not. If we look at one dimension
variable problems (usually called scalar problems), the global progress was pretty much the same
as today. It is in fact only on these simple cases that we have a real theoretical framework and
this has been of course the task of the pioneering work. Scalar very high order methods were
already developed with Lax-Friedrichs scheme in Bordeauz [8, 81, 115], and with the LDA scheme
at VKI? [40, 52] but no results using more accurate approximations than quadratic polynomials
had been presented. Scalar unsteady problems had also found second order solutions by different
ways that are still in competition today. One can either consider the problem in a time-space
domain [7, 95] or first discretize the time dependent terms and then solve the problem by RDS
as a steady problem plus a time dependent source term [5]. For multidimensional problems (as
Euler or Navier-Stokes equations), second order solutions on hybrid meshes were just produced
[114], and some unsteady cases were treated [95, 7]. The treatment of the viscous terms was at
the very beginning [63, 93].

1.3.2 New Developments

Higher Order Assessment: The first work of this PhD thesis was to develop a high order
scalar code in order to validate the theory for very high order computations. This code is using
polynomial representation of the solution up to 4" order and the results are very good. We
have been testing the code on several simple test cases and the general mesh convergence always
get the expected slope. This proves that the theory on high order RD schemes is good and
that the scheme we are using, based on the first order linear Laz-Friedrichs scheme, is able
to reach this very high order convergence in seemingly all the possible scalar cases. Once this
point had been verified, we could start implementing the scheme for multidimensional problems
inside the Fortran platform for fluid simulations developed at INRIA Bordeaux Sud-Ouest, called
“FluidBox”.

Higher Order Quadrangle Treatment: At the beginning of this introduction, we were
speaking about the general agreement of the community on the mandatory character of unstruc-
tured grids for their flexibility and adaptivity in the case of complex geometries. We call Hybrid
meshes, the discretizations of the spatial domain that do not contain a unique type of element.
In our case, they are built with both triangles and quadrangles. These hybrid meshes are even
more interesting for complex geometries, because they are more flexible but above all, because
for a given number of degrees of freedom they have up to twice as less elements.

The scalar code presented in the last paragraph has also been coded to handle with quadran-
gular elements. In Chapter 6, we are going to show that very high order can also be reached on
hybrid meshes. Moreover, we notice that using hybrid meshes is often very interesting in term
of CPU time for scalar problems: the computation of the residuals inside quadrangles is indeed
more expensive, but as we already said, there are roughly twice as less elements in a hybrid mesh
where a maximal number of quadrangles is used. Furthermore, the accuracy of the obtained
solution is usually higher when using quadrangles, because of the higher polynomial degree of
of their shape functions. Developing the high order formulation for quadrangles first on scalar
problems gave us a global understanding of the difficulties of the formulation. We could then
transpose the general hybrid scheme for multidimensional problems treatment into “FluidBox”

2\lon Karman Institute, Brussels, Belgium
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easily.

Code Parallelization: compactness is one of the major property of the Residual Distribution
schemes, because it allows to parallelize the global algorithm with great efficiency. We had then
to try to distribute the computation to several processors, in order to measure the real efficiency
of the parallelization, but also simply to be able to run some big test cases that lasted forever
when using a sequential method (1 processor only). The implementation of this task did not
radically change our Fortran code, adding just some new routines and processor communications
here and there, but its optimization is a hard challenge which is still ongoing at that moment.
The parallel efficiency should be very near form 1:0 (n processors work n times faster than 1
single processor), it is not the case nowadays. Even if 2 or 4 processors are really working
approximately 2 or 4 times faster than one, we cannot reach this efficiency for a growing number
of processors. The mean parallel efficiency is today oscillating between 0:7 and 0:8, following the
size of the treated problem.

3D Simulations: Three dimensional problems were the main argument for the code paralleliza-
tion. Excluding a very small number of simple test cases, three dimensional problems require
such an amount of calculations that they are almost impossible to run on a sequential machine.
Just after the code has been parallelized, we developed a RD formulation for tetrahedra. We
are today able to run inviscid second order simulations on any unstructured mesh composed
uniquely with tetrahedra. This is illustrated in this thesis by figures representing continuous
or discontinuous solutions around several types of aerodynamic objects, including a complete
aircraft. Hybrid 3D mesh is indeed a next step in that branch, but the generalization of the
actual code to hexahedra should not be very complex. On the contrary, taking into account the
viscous phenomena seems to be a much harder challenge and it is an ongoing work inside INRTA
project Bacchus.

Viscous Term Treatment: RD schemes are not very well suited at that moment to deal with
viscous problems. The main reason is that RD formulation assumes the approximated quantities
to be continuous, when viscous terms make use of the unknowns and their gradients. Because
the unknowns are piecewise polynomial per elements, their gradients are discontinuous along the
edges of the mesh. To bypass this constraint, we have been using a Finite Element Galerkin
formulation for the viscous terms and coupled it with the RD formulation of the inviscid part
of the fluid mechanics equations. We prove here that binding these two formulations together
is consistent but unfortunately, it seems that high order convergence cannot be reached for fine
meshes. However, the obtained solutions are satisfying, especially for coarse meshes which is a
promising result for even higher order approximations.

Optimizations: here and there small improvements of the scheme are also an important part of
the new developments brought by this thesis. These optimizations increase the execution speed of
the code, as Jacobian matrices calculation by finite differences that requires a little bit more time
than the solution we had before, but that tremendously helps the iterative convergence. We can
also notice the effort of always finding the optimal number of points needed for each quadrature
formula. We say optimal, because this does not always correspond to the minimal number of
points. Some minimal quadrature formulas need to reconstruct the unknowns at the quadrature
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points when a formula with one or to extra points makes use of already computed quantities
and is therefore globally faster. This quadrature rules reduction is always done by studying
the mandatory properties of the terms we are approximating. In that case, the optimization is
thus not only a matter of execution speed but also a matter of memory size, as one needs less
information to come to the same result. It is also important to think about next developments
and to implement a code that is generic enough to integrate further steps easily, but not to much
generic to keep a relative efficiency.

Finally, optimizations are indeed using a lot of development time but they are also greatly
helping to find small errors in the program that are very common in our everyday work. These
collateral improvements are at the end greatly helping the scheme to reach its optimal perfor-
mances and sometimes also help to understand better the numerical properties of the scheme.

1.4 Structure of the Manuscript

The organization of the manuscript has been conceived keeping in mind the modeling steps
which lead, starting from a physical problem, to a discrete solution verifying certain properties.
In particular, the idea behind the structure of the thesis is to first present the continuous prob-
lem that needs to be solved, then to introduce the framework of a discrete space and discrete
unknowns, to present theoretically and practically the discretization approach, and finally vali-
date it on many test cases, showing at the same time some new developments. It is hoped this
structure starting from the most theoretical aspects of the problem and ending by some very
practical remarks is going to make clear the analytical tools that are going to be used and on
what grounds some properties are claimed to be important. The text is structured as follows:

The first part of this thesis is the most theoretical one. The goal is here to set down the
whole framework in which is drown the numerical scheme we are describing in the next
parts. Classical mathematical and physical concepts are recalled in those two chapters.

In Chapter 2 are first presented in an as complete as possible way the mathematics
of Conservation Laws. The goal is here to give an exhaustive overview of the ground
results about the well-posedness of the problem and about the structure of the so-
lution. Links with the physics are also given. In a second part of this chapter, we
are going to recall the main ideas allowing to build the two main Conservation Laws
that are used along this thesis: the Euler and the Navier-Stokes equations. Finally,
some theoretical but also physical arguments about the boundary conditions are also
discussed.

Chapter 3 treats the problem of the discretization and the high order representation
of the solution. It first starts by a very abstract explanation that shows the approx-
imation of the problem is in fact just a reduction of the space of unknowns. The
continuous problem living in a space of infinite dimension is recast into a discrete
problem existing in finite dimensional functional space. A finite amount of degrees
of freedom is needed and this introduces the concept of meshing for linear or higher
order polynomial interpolation. Many useful relations and notations are introduced
is this chapter. This part ends by a discussion on the advantages of the higher order
formulation.
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The second part is dedicated to the Residual Distribution Schemes and their theory. We
wish here to give a fair overview of what is known and what is not in the world of RD
schemes and to detail as much as possible the practical implementation of the RD scheme
based on the first order Laz-Friedrichs scheme.

Chapter 4 recalls all the theoretical results needed to understand well the computa-
tion of a RD scheme. In order to stay clear, the problem is often reduced to a scalar
problem or/and to a linear approximation of the data. It is unfortunately most of
the time the only framework in which we are able to obtain any result. In a first
section, we explain what a Residual Distribution Scheme is and where it does come
from. In particular, links with other classical numerical formulations are given. In
a second section are described and studied the main properties of the RD schemes.
Consistency with the continuous solution, stability of the scheme and accuracy of the
approximation are detailed and reformulated into simple properties. This chapter fi-
nally ends by a brief overview of the main Residual Distribution Schemes: N, LDA,
Blended, PSI, SUPG and Lax-Friedrichs schemes.

In Chapter 5 , we are much interested into the higher order formulation of the Lax-
Friedrichs scheme. We here explain step by step what must be done in order to
reach the steady state of a Conservation Law problem. First section details the high
order residual computation and the limitation technique that turns any first order RD
scheme into a high order one. Second section speaks about the problem resolution.
An explicit method is described and several solutions for an implicit treatment are
given. They are compared in term of efficiency. Third section deals with a convergence
problem that is occurring when using the Limited Laz-Friedrichs scheme. We here
give an explanation of the problem and propose a cure as well as a deep analysis
of its practical computation. A global overview of the boundary conditions used in
the following test cases is given in a fourth section. Finally, this part concludes by
a summary of the effective implementation of the Stabilized Limited Laz-Friedrichs
Residual Distribution Scheme.

The third part of this thesis illustrates the above properties of the RD schemes by pre-
senting a large panel of test cases. At the same time, it is the occasion to show the new
developments that have been realized during the past three years. This being still ongoing
work, the quality of the results is not always the one expected, and it is going to be honestly
discussed.

Chapter 6 deals with a generalization of the formulation to hybrid meshes. Whereas
all the theoretical results of Part II are developed on triangles only, we present here
a formulation adapted to quadrangles. The second section shows some numerical
results. We first start by validating the hybrid meshes formulation on very simple
scalar test cases. Convergence curves show a quasi perfect match with the expected
results. We then go to the system case and show that most of the phenomena observed
in the scalar cases are still noticed for multidimensional problems.

In Chapter 7 , the matter is the extension of the scheme to three dimensional spaces.
The problem is that 3D simulations are costly in terms of calculation. That is why
we first begin this chapter with a detailed explanation of the parallelization of the
code. An analysis of the computational speedup is also given. When this is done,
we are able to run almost any kind of simulation, whatever it size can be, as soon
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as we have enough processors. This allows us to present a large panel of inviscid
results, starting from a very simple 3D Bump test case and finishing with a complete
supersonic aircraft.

Chapter 8 , the last chapter of this thesis, presents a formulation and results for
viscous problems. As explained earlier, there is at that moment no possible RD
straightforward formulation for the viscous terms, because of the occurrence of the
gradients of the unknowns. These viscous terms are then discretized by Finite Element
Galerkin Formulation and we show in a second section that this treatment stays
consistent but that the desired order of accuracy cannot be reached for finest meshes.
This theory is validated on a very simple Blasius Layer test case and 2D viscous test
cases are then shown.

We finally conclude this manuscript by a summary of the content and by a global review of
the new developments brought by this work. We also underline the current limitations of
our approach and finally discuss some possible routes to improve and extend the presented
work.



Part 1

Theoretical Framework

11






13

In this part, we are about to explain theoretically the main context of this thesis: the mathe-
matics of conservation laws, and more precisely some of the mathematics needed to solve well the
problems associated to Fluid Dynamics. For clearness of our words, we will restrict our spatial
domain to R?, or a part of R2. This will also greatly help the illustration of the presented ideas.
When no further information is given, we are speaking about the whole R2. All the following
ideas can be straightforwardly extended to a three-dimensional space though. Incidentally, this
will be done in the appropriate part, see Chapter 7.

We first recall some useful mathematical results and techniques around Fluid Mechanics. It
contains results on systems of conservation laws and mathematical description of the well known
Navier-Stokes and Euler Equations. In a second Chapter, we present the techniques for the
approximation of a problem applying a conservation law on a given domain. The polynomial
order of the discretization is then defined. We finally explain why higher order formulation is
today appealing in numerical simulation, above all in term of computation cost.
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Chapter 2

Mathematics and Fluid Mechanics

The concepts described in this chapter are well known in CFD. They are recalled here for
sake of completeness and to gain better understanding of the Residual Distribution Schemes
(RDS). Indeed, RDS, the object of the thesis, as most of the schemes for hyperbolic problems,
are built starting on one or several of the results presented in this chapter. Because there is
always a realistic phenomenon behind a Partial Differential Equation (PDE), the link between
the PDEs and the physics will also be underlined.

The following chapter is certainly not complete though, and we will try to show the results
in the largest possible framework. Each of the following ideas have been demonstrated either in
the scalar case or for a one-dimensional domain. In our case, we try to make these notions as
clear as possible in a multidimensional system context, but this is not always possible. There are
two potential reasons for that. First, no complete demonstration exists at this time in a general
framework, and the concept is mathematically valid only in a one dimensional domain or for
a scalar unknown. Extension to more complex situation is however often assumed. Second, a
complete demonstration might exist, but the tools needed are too complex and their description
would be much too long. In this case some reliable references are given. What the reader has to
keep in mind is that the following ideal mathematical problems always come from a real context,
and the tools developed to solve them mainly come from the physics. That means that even if
no mathematical demonstration is today available, the extension of these notions on very simple
cases is physically expected and then somewhere mathematically assumed.

In a first part, we set up the theoretical framework around the systems of conservation laws.
We build the class of possible solutions and explain two tools needed to describe these solutions
and find the only relevant one: hyperbolicity and entropy conditions. Boundary problems will
also be discussed. In a second part, we present two main systems of conservation laws: the
Euler equations and the Navier-Stokes equations. Because the complete formulation of these
equations has always been unclear for me, I decided to start from the main conservation laws
of mechanics (mass, momentum and energy conservation) and then build the expected Partial
Differential System (PDS) using some physical hypothesis. This chapter is also the occasion to
set down some useful notations.

15
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2.1 Systems of Conservation Laws

2.1.1 Description

Let D be an open subset of R™, and U a vector of m variables Uy;:::;Um. U is assumed to
be a function from R? r0; 8r into D. We call system of m equations of conservation laws, the
system

BU BFpdg BGpJq 2
— 0; X ;yq PR%; ¥0 2.1
& & w I p X’ yq ’ t ( )

where F and G are called thelgua:—functions. They are smooth functions from D into R™. We
also introduce the fluz-vector p F; Gqg which enables us to rewrite equation (2.1) into an
equivalent form

BN

= pUg 0; X pxyqPR% t¥ o (2.1)

If we furthermore consider the fluz-functions as differentiable, the system can be put into a
so called quasi linear form

e

% ~M 0, X pxyqPR?% t¥o0 (2.2)
BF
with ~ @; $ , the flux Jacobians.
System (2.1) expresses the conservation of the quantities Uy;:::;um. In fact, if Q is an

arbitrary sub-domain of R? and 1 is the outward unit normal to B, the boundary of €, it

follows from (2.1) » »

— udXx IE pg:rnds O: (2.3)
BQ

3

That means the time variation of ,UdX is equal to the mean flux IE pU q entering 2. And

inside the whole space.

2.1.2 1D Linear Riemann Problem

To understand well the resolution of such a non-linear system of conservation laws, we will
first restrict our problem to a one dimensional linear equation, with Riemann initial conditions,
the matrix A being constant.

$

'&& A:% 0; xPR;t; 0

b, UPGO0g U x 0 '
Um;09g Uy, xj 0

If we consider A as diagonalizable, there exists L and R, matrices of left and right eigenvectors
respectively, such that A R L, with diagp 1;:::; mq There is no restriction considering
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Figure 2.1: Solution of the 1D linear Riemann problem for a4 dimensional unknown. The
solution is represented in the eigenspace.

veri es the decoupled system:

$
o BV BV
o, V;0g LU, Vi x 0

A)Vp(;oq LU, V¢ xj O

(2.5)

One applies the theory of characteristic to each of then independent one dimensional scalar
problem and obtains:

viptg vik it;0g @pitqPR R ;@ 1:::m:

o

U i Viri gives then the expected solution of (2.4). An illustration of this result is represented
on Figure 2.1.

By diagonalizing the system, we have decoupled then equations and revealedn independent

solutions of such a problem. Generalizing this method to two dimensional problems, as in (2.2),
is not as simple as in the one dimensional situation. The main drawback is that the matrices

BF BG
— and —— are generally never diagonalizable in the same basis. The equations stay coupled

and the system is still as hard to solve as before. But on the other hand, this gives us some
very interesting properties, strongly bounded to the physics. This is described in the following.
These results are fully studied in [109], [106], [4].
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De nition 2.2 ( Symmetrizability )

Operator D is symmetrizable if there exists a symmetric positive-de nite matrix Sy, such
that every SyA; is symmetric.

Property 2.3

If an operator is symmetrizable or constantly hyperbolic, then it is weakly hyperbolic.

Proof: If we can write Ap q Pp q '"Dp gPp qwith D p qa real diagonal matrix, we have

kexpp iAp qk @ kPp ckkPp q 'k kexpp iDp qd
And condition (2.7) is ful lled when the conditioning kPp ck kPp q 'k of P is bounded indepen-
dently of

In the case of a symmetrizable system, §1 admits a unique symmetric positive-de nite square
root R and one has:

Apd RRSAP RR '
The matrix RSgAp R is symmetric and diagonalizable in an orthogonal basis and may be written
as Q q'Dp qQp g We now have :

kPp ckkPp q 'k kQp R 'kkRQp g'k kR 'k kRk;

a number independent of .

In the case of a constantly hyperbolic operator, the eigenspaces depend continuously on
Then for any , P s? 1, there exists a neighborhood of ; on which a choice of B q depends
continuously on , and is thus bounded. And as the sphere § Tis compact, it is covered by

a nite number of such neighborhoods. There now existsC PR such that @ PS¢ ; o

kPp ok & C. We have found a choice of the diagonalizing matrix, possibly not continuous, but
which conditioning is bounded. |

We finish this paragraph with the following theorem showing that in a constant coefficient
symmetrizable hyperbolic system, the speed of propagation of the information is finite and
bounded by the maximal spectral radius of the matrix A. This result can be extended to
any symmetrizable hyperbolic systems, as shown in [106].

Consider again equation (2.6) and use the notation, @ PS'; Apq A ; B, Ifour
system is symmetrizable, there exists a s.p.d constant matrix Sp such that SgA and SyB are
symmetric matrices. The system

BU BU BU
So— SpA— SyB— 0 2.
e Ay SBg (2.8)
can easily be transformed into a symmetric system using the variable V Sé{QU . We therefore
define the characteristic polar envelope
(

Char p; qPS! R :detpSo)Apq |Imq O ;
and for each point pX; TqPR? R , the dependence cone
KpX;Tq pitqPR?2 r0;Ts g Tg px Xg = 0,@p; qPC’har(:

K pX; Tqis the intersection of the half-spaces passing through pX ; Tqwith outward normal p ; g
It is then a convex cone with basis pX; Tq and its boundary admits almost everywhere a tangent
plane which equation is: g Tqgq px X@g 0 for some p ; q PChar, being necessarily
maximal. The section of K pX; Tgat time t is denoted by ! ptqand we have the following theorem:
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Theorem 2.4 ( Finite Propagation Speed )
If Vg OthenVptg 0, @p;TqPKpX;Tq

Proof: If we take the scalar product of equation (2.8) by V SS{ZU, we obtain the following
additional conservation law (viewed as an energy identity)

B 2 B An,. B .
gV g AViV), B (BV:;V) 0 (2.9)
where the notation  :;:j ., is used for the canonical scalar product inR™ and matrices A' and
B'are A" S)?As, "2 B' s)t?Bs, 2
For0 " T, letus consider the truncated cone

Kp"g tpx;tgPKptg 0t T "u

and integrate relation (2.9) over K p0;"q (See Figure (2.2)). On the top (resp. bottom) of the
truncated cone, the outward normal is the positive (resp. negative) axis of the time component.
On the side, as we already showed it, there exists almost everywhere a normal which fis; q P
Char, being maximal in the direction . Thus we have:

W, V;Vi
J | (AV;V) | dxdt f kV K3 ,,,dx f KV k2, dx
A'P0,eq BYV:V i wpt €q wp0q

f (A" B'2 1.,)V;V)dxdt
side
0

But as for all , is maximal in the directon , matrix A', B', | ., has only positive
eigenvalues and the term integrated on the side of the cone is positive. That means no information
enters the cone. And nally, if V is identically null on the bottom it is straightforward that it is

null everywhere inK p0;"q " being arbitrarily small, V |xpx 7q 0. |

This result shows that in the case of constant coefficients matrices, for any pX;tqin the space-
time domain, we can define a dependence cone, function of the eigenvalues of Ap qin all space
direction . We then know that the value of the solution at point pX;tqonly depends on the
value of the solution inside the cone because no information crosses the boundary of this cone.
That demonstrates that in symmetrizable constant coefficients systems the speed of propagation
of compactly supported initial condition is finite and bounded by the biggest eigenvalue of Ap q

covering S9 1.

This result can actually be extended to constant hyperbolic problems and for systems with
non constant coefficient matrices. The mathematical tools needed to reach this goal are rather
complex though, and that is why we just refer to the book of Benzoni-Gavage [106].

2.1.5 Weak Solutions and the Rankine-Hugoniot Conditions

Another main feature of systems of conservation laws is they do not admit in general classical
solutions (at least C') over the whole space-time domain. This is true even for very regular initial
conditions. In other words, for a given system and an - let say C® - initial condition, there might
exist a time T such that @ ¥ T , the solution U of system (2.1) is not continuous in space.
Let us illustrate this with the very simplest classical example: the Burger equation.
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Figure 2.2: Dependence cone for pointX ; Tg The propagation is anisotropic. K p0;"qis the
part of the cone between the two surfacesp0gand! g "q p ; qis a normal to the side surface.
It is an element of Char, with  being maximal.
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We consider the following scalar (m 1) one-dimensional problem

#
Bu Bu
B u§ 0; xPR;tj; 0

up; 09 upxg  x PR
It is a classical calculation to show that the solution is constant along the characteristic curves,
and that these characteristic curves are straight lines which constant slopes depend on the initial
data. The characteristic line passing through point pXo; 0qis defined by the equation:

(2.10)

X Xog UoXoGt

This is illustrated on Figure 2.3 for the initial condition

& 1; x = 0;
Uopxq % 1 x; 0w xnol; (2.11)
0; X 1

This is of course not a very regular initial condition, but we took this one for sake of simplicity.
The result would be exactly the same with any regular decreasing initial condition. As one can
see on Figure 2.3, all characteristics curves generated in r0;1s intersect at point pl;1qg That
means that at this point of the space-time domain, the solution u can take any value between 0
and 1, and thus cannot be continuous here. In order to be able to solve problem (2.1), we must
then consider a weaker definition of a solution. Instead of seeking our solution in the space of
regular functions, we are going to define the solutions in the space of the distributions.

De nition 2.5 ( Weak Solution )

Let Uy be a vector ofm bounded function in R2. A function U PL8pR2 r 0; 8rq ™ is
called a weak solution of problem (2.1) with initial condition Uy, if Upx;tg PD a:e: and
satis es for any C' function ' with compact support in R r 0; 8r

» 8 » B - m »
U:E IE pdgr ,  dxdt R2U0p<q' px; Ogdx  0: (2.12)

0 R2

Remark 2.6

If U is a C! solution of problem (2.1), it is of coursea weak solution of this problem in the
above sense.

A characterization of the weak solutions of a system of conservation is given by the following
well known theorem. One can read [48] or [49] for a proof.



2.1. Systems of Conservation Laws 23

Figure 2.3: Solution of the 1D scalar Burger equation (2.10) with initial conditions (2.11). All
the characteristics meet at point p1; 1qgand the solution cannot be continuous there.
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2.1.7 Entropy Solution

The mathematical problem of existence and uniqueness of the solution of problem (2.1) is
at that point in a dead end. We have seen that some well chosen cases do not admit classical
solutions. We have then extended the space of existence of the solutions to a larger class of
functions and obtained an infinity of solutions. But realistic problems admit only one repro-
ducible solution. We have now to find a criterion that will sort the weak solutions in order to
pick the only physically relevant one. This criterion is based on the concept of the entropy that
we introduce now.

In nature, there is always a dissipation phenomenon: no real problem coming from the physics
is perfectly reversible. Let us consider the following one-dimensional scalar dissipative problem,
" i 0 being a small viscous parameter

% divpf punqq  "Aur; (2.15)

with initial condition urpx; 0q Ug N ug when " N 0. We still suppose that u» takes its value
in D, a sub-domain of R (m  1). If f is regular enough (Lipschitz), it has been shown that
for any positive ", for any initial condition ugr P L2, equation (2.15) admits a unique solution.
This result is partly demonstrated in [48]. One can also find a partial extension to systems (only
existence in the space of distribution) in [51] and [47].

If we now consider a sequence of " tending toward zero, and a sequence of solutions of (2.15)
such that :
a) DC PR; kurkg ® C; independently of ";

b) u- YNNO u almost everywhere in R? r 0; 8r ;

then u is a weak solution of (2.1) in its scalar form for initial condition ug, and moreover verifies,
in the sense of distributions, any inequality of the form:

B

g S divpGpugqg =0; (2.16)

where

(i) S: DN R is a smooth convex function;

(ii) G is a vector of 2 scalar smooth functions such that
S'wudj'ug Gug | 12 (2.17)

pS; Gqis called a pair of Entropy-Fluz, S an entropy function and G an entropy fluz. This result
may also be extended to systems, see [48] page 27. If we now take relation (2.2) and multiply it
by S'U q quick calculation shows that U satisfies an additional conservation relation

§SpUq I\r‘r:GpUq 0; X pxyqPR? t¥o0: (2.18)

The next important result is available in the scalar case for entropy solutions. It is the main
result of chapter 2 of [48] were one can find a complete and rigorous demonstration.
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Theorem 2.8 ( Kruzhkov )

A weak solution u of a scalar conservation law with a bounded initial conditionug PL® pq
verifying relation (2.16) for any pair of Entropy-Flux pS;Gqis unique and calledthe entropy
solution . Moreover this solution is bounded

@i 0, uPL®M r0;Tsq

We were looking for the solution of a sort of idealistic problem (without viscosity), and we
found that the only relevant solution is the one coming from the physics. By “the one coming
from the physics”, we mean the solution being the limit of a sequence of solutions of an associated
more realistic perturbed problem for a decreasing viscosity coefficient ". But we do not have
to construct such a sequence of realistic solutions in order to find our sought solution. We can
simply sort the solution of the idealistic problem with an entropy criterion. Entropy is then a
set of additional conservation relations the solution of problem (2.1) has to verify.

What one has to remember is that we started with a system verifying just the first principle
of thermodynamics (conservation of the variables), and could find either no solutions (in the
class of regular ones) or an infinity (in a weaker class of functions). But by looking at the
physics intrinsic to the problem, we found the system of conservation laws is well-posed when
it comes with an entropy condition. That is the second principle of thermodynamics and that
binds strongly the mathematical problem to the one that comes from the physics.

In the following, we are not much going to speak about entropy. It is a very important notion
though. In fact it is rather hard to define a criterion ensuring the solution of a numerical scheme
will converge toward the entropy solution of the associated Partial Differential System (PDS).
It is besides not always the case as one can build numerical schemes that converge toward a bad

solution in the case of problem (2.14). For example, let us consider the case when u, 1 and
Ur 1. As we have seen, the characteristic straight lines never intersect and the solution is two
constant plateau separated by a fan between the lines t x andt x. We now apply the
finite difference second order consistent Mac Cormack method defined by:

$ n At n n

& U ut  F feuf,a fpulq

o (2.19)

(o]
ut b ! ua g5 feua fry g

with At and h being the time and spatial steps respectively and f being the equation flux,
fpug  u?{2 in the case of the Burger equation. We see on Figure 2.4, that for any time or
spatial step, the solution at time step n is identically reproduced in u and thus in u" !. At the
end, we obtain a solution with a shock which equation is X 0 and this is actually a weak solution
of problem (2.14) as' s pur ugq{2 0. The scheme has converged toward a weak solution
of the problem which is not the entropy solution. And making the problem more complex does
not help: there exists multidimensional test cases for which unphysical shocks may appear. A
general criterion ensuring a scheme is always converging toward the entropy solution is then still
needed.

A last interesting result is the following theorem of Mock.
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Figure 2.4: Mac Cormack second order consistent nite di erence scheme applied to equation
(2.14) with initial boundary conditions u, 1Tandu, 1.

Theorem 2.9 ( Mock )

Let S: D YN R be a smooth convex function. A necessary and su cient condition forS to
be an entropy for system (2.1) is that them m matrices S2pU o 'pU qand S2pU G 'pU qare
symmetric.

Proof: Let rstassume S is a convex entropy for system (2.1). Then there exists a vector of smooth

functions G, such that SlTlUF'PUq GlpUgand SPUqG' g GlpUg Let consider only the
rst relation and di erentiate its k™ -line with respect to uj. We obtain :

B ." BF;BS BG

— — — 0 2.20
By .  BucBu Bug (2.20)
m m
5 B’G, " BF, BS " BF; BZS: (2.21)
BJkUj i1 BJkUj Bui i1 B.lk BJin

Since the left-hand side is symmetric in thek and j variables, it holds for the right-hand side,

and we have :
7 BF B’S " BF; BPS

— — : 2.22
Buk BUin i1 an Buj uk ( )

i1
This means exactly the matrix S2pUF'pUq is symmetric. And same argument holds for the
second coordinateGpUJ q
Conversely, assuming (2.22), we have

B B BS TB, BS  BF BS (2.23)
Bu  ,BukBu ., BucBuBy  BukBuj By '
B " BF; BS
i il e 2.24
Bux . , By Bu (2.24)

If our spatial domain is contractible (there is a homotopy that continuously deforms  to a point),
it follows from Poincaré's lemma that there exists a function G;, such that

BG " BF; BS.

— —_— P vi;mw
Buk i1BukBui @

And because once more the same arguments hold f@, S is an entropy function associated with
the entropy uxes Gy and G. ]
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Figure 2.5: E ect of the boundary and initial conditions on the i!" component of the unknown
in both caseswhen; Oand ;i O

We now come to a more complex problem, with space dimensiam and non constant coef-
cient matrices. We are here dealing just with a formal generalization of the previous section.
Some results are mathematically demonstrated, but we consider the physical explanation of the
phenomenon as relevant enough. At almost any point of the boundary we have a tangent plane
which is a hyperplane ofR". It is then well de ned by its unit normal . We moreover suppose
that points inside the domain. If we further assume that our problem is symmetrizable, the

boundary problem as a local one dimensional problem, and we assume that the problem is well-
posed if the boundary condition enforces the solution on and only on the entering characteristic
directions.

2.2 Euler and Navier-Stokes Equations

We will now describe physically the two systems of equations which solutions are going to
be approximated during this thesis: the Euler and Navier-Stokes equations. We rst start by
the main mechanical conservation laws and apply some restrictions coming from uid mechanics.
Some ner hypothesis on the uid behaviour will give the two systems of equations. Each term
of these systems of partial derivatives will be described and analyzed. This will lead to some
equivalent formulations that will be useful in the rest of the manuscript.
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where 3 is the specific volumic force inside ! , and FgpM; rrqis the surface force applied to the
boundary of ! at point M and into the direction 1, the outward normal to Bl at M.

A result of physics [23, 26, 53] shows that Fs must be a linear function of ®. That means
there exists a strain tensor opM qsuch that

@ PQ; @ PR?% FspM; ng  opM gn:

Therefore, using once more that the conservation relation above is verified for any subset ! g of Qg
and by applying the divergence theorem on the boundary term, we obtain the local momentum
conservation equations, component by component (i 1;2)

B . )
gpuiq divpuittqg pvq divpriq; (2.28)

assuming oj is the it" line of strain tensor o.

2.2.4 Angular Momentum Conservation

Still following the fundamental principle of dynamics, the variation of the total angular
momentum in ! is given by

» » »

b OM A & dM OM A 5, dM OM A popM grqds (2.29)
Dt g ! ptq B

In R?, this is a scalar equation on the direction Oz and using (2.26) and (2.28), we quickly find
that 012 ©21. In R3, we have 3 equations, each of them leading respectively to o3  ©93,
013 031 and 012 ©21. In both two and three dimensional spaces, the angular momentum
equation leads to the requirement that the strain tensor o has to be symmetric.

2.2.5 Energy Conservation

The first principle of thermodynamics states that the variation of total energy with respect
to time is equal to the power of all the forces applied to the system, plus the heat contributions.
If we denote by E %kuk2 e the total energy per unit volume (e being the internal energy per
unit volume), by w the specific heat creation by unit of time, and by § the heat flux inside (2,
this is translated for any time t as

» » »

% Edx o dx FspoM; nqepM qds
I g ! B pa

w dx g:n ds (2.30)
I'ptq B! ptq

Once more using the divergence theorem if needed, and the fact ! is indifferently chosen, we
obtain the local expression of the energy conservation equation
BE

B divpEwe ot §q fym w (2.31)
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2.2.6 Application to Fluids

De nition 2.13

A continuous medium is a Newtonian fluid when the strain tensor is a linear function of the
stress tensor, de ned by

Bui By

P4 5 B Ba

N =

We can then demonstrate [53, 26] there exists a variable p, called pressure, and two viscosity
coefficients and called respectively first and second Lamé coefficient of viscosity such that

o p p divppgqd 2 D (2.32)

Furthermore, these equations are just equations of conservation of the mass, the momentum,
and the energy. They do not take into account the second principle of thermodynamics. We
do have to find criteria in the system of equation and in the behaviour laws such that the
compatibility with the second principle of thermodynamics is ensured. This second principle
states there exists a scalar function s, called the specific entropy, such that for any !

D » » W » q'ﬁ
— sdx ¥ —dx ~——ds: 2.33
Dt 1pq tpq T Blptg | (233)

We then obtain the local entropy inequality:

Bs ) q W
E div st f ¥ ? (234)

Using the expression of the heat production coming from the Energy conservation equation (2.31)

De . _
w Dt divpgq o:D;

where ;" denotes the operator o : D oj Djj , we obtain the well known Clausius-Duhem In-

equality [53, 26]: o
T% De q:PNI'

Dt Dt T
This relation is essential in the study of the behaviour laws. For example, if we consider that
the internal energy € only depends on the specific entropy s and on the specific volume v 1{ |
one has:

o:D¥ 0: (2.35)

De Be Ds B

Dt Bs Dt B o P
Be Ds Be
B Dt By Tr pDq;

S

Tr pgbeing the trace operator, and equation (2.35) is recast into

B Ds Be | b ST,
T &% ot P §STrqu pliveqgd 2 D:D T ¥ 00 (236)
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Let us consider the case of a constant velocity flow. The only possibility in order the Clausius-
Duhem Inequality is always verified is ([53])

De q:?’ﬂT .

— d 0:
Ds T
If you consider the heat transfers follow the Fourier law § k?NT, this implies in particular
that the coefficient of heat conduction k has to be positive.
Be
Moreover, if we consider now a flow at constant temperature, using the fact that T B
Clausius-Duhem Inequality says
Be :?NT
b —  Trdq plivmgd 2D:D Iy
Bv | T
which is always satisfied if and only if:
Be :?NT
0 SR odivorgd 2 D:D qT ¥ 0
A quick calculation on the second term of the last equation [53] shows that this implies
3 2 ¥0: (2.37)

Eventually, we can physically define entropy functions p Sqwhich are concave [4, 60, 54, 69]
and S is then also a convex mathematical entropy. That means, following the theorem of Mock,
this system of equations is also symmetrizable and its symmetrizing matrix is the hessian r 2S.
Then, all the properties of a symmetrizable system are valid here: propagation of the information
at finite speed, aso...

2.2.7 Equation of State

We have built a system of PDE, with 4 equations and 5 unknowns (the conserved unknowns
plus the pressure). In order to close the problem, we need an extra equation describing the
nature of the fluid. This is an input that has to come from the physics. Indeed, the previous
equations do not take into account the nature of the fluid we are dealing with (except for the
viscosity coefficients). At this state of construction, we would apply the same set of equations
to a balloon of helium as to a river of mercury, or to a cloud of vapor as to a large river. We
need to find a relation between the physical variables describing the state of the fluid. These
variables are usually the temperature, the pressure, the specific volume, the internal energy and
the entropy. Starting from the equation of state of a physical system, it is possible to determine
all the thermodynamic variables of the system and thus to express its properties.

Examples :

Ideal Gas: the ideal gas law is known to be

pv  NRT (2.38)

where N is the number of mole of gas contained in the volume vand R 8:3144J.K ':mol !

is a universal constant.
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Polytropic Gas: a polytropic gas is merely an ideal gas for which the heat capacity at

BT A e ¢ T. Then relation (2.38) is reformulated

\"

p p 1qe (2.39)

where is the ratio of the heat capacities %Zp 1:4 for the air).

constant volume is constant. ¢,

into

Other:  there exists many other equations of state, as Wan der Waals [119], hypersonic
state [120], combustion [105, 37], mixed perfect gas [36], multiphase flow, dense gas [35],
etc. But none of these have been used during this thesis. We just cite them here to show
the numerous possibilities. When no further information is given, we are using the equation
of state of polytropic gas.

2.2.8 Euler Equations

In this subsection, we consider the fluid as a perfect fluid. This is equivalent to the following
three hypothesis:

1. The fluid is non-viscous : 0A o pl,
2. There is no body forces : fy, T,

3. There is no heat transfer : w  0; q T.

Gathering equations (2.26),(2.28) and (2.31), we obtain the very well known Euler system :

$ B

B divp tq 0
&

BI_:tI divpuit piq 0, i 1;2 (2.40)
%% divppE  pg 0

where j is the i-th column of the 2 2 identity matrix.

Concerning the equation of state, we will always use the incomplete equation of state of
polytropic gas (2.39). It is called incomplete because it is not a relation between all the state
variables, but a simple pressure law. It is nevertheless a sufficient law for the closure of the Euler
equations.

If we set

~ u i
U ¢ ; and I?! pFqi;F2q; with F;j uitt p | (2.41)
E PE  paui
system (2.40) is rewritten in the compact form
BU -
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F, o, B

, B ——and ~

for a smooth enough solution the equivalent quasi-linear form

and if we denote by A

":m 0:

2.2.9 Properties of the Euler Equations

The matrices A and B are the following

Chapter 2. Mathematics and Fluid Mechanics

p A;Bqthe Jacobian of the fluxes, we obtain

0 1 0 0
A p 1k u? P pb o p g
uv v u 0
upp 1l Hg H p1 aq? pl v u
0 0 1 0
B uv v u 0
p 1k Vv pl M o p Iq
vpp 1d&e Hg g aqv H pl o? v
where E; pu? v2q2and H e p{ denote the kinetic energy and the enthalpy per unit
volume, respectively. Given a unit normal f p ny;nyq PS!, the matrix
0 Ny Ny 0
~. p ldchyx ut: o p2 Quny uny pl Qny p 1oy
"
p lgecny v vne pl Quny g p2 any p lony
t:npp 1 Hq Hng p1l qua:r Hny pl R t:n
is diagonalizable and one has T:n R L with:
gy c O 0 0
0 o 0 0 .
0 0 on 0 ’
0 0 0 wn c
1 1 0 1
R u cng u ny u cny
v cny V. ny v cng
H wonc E o:n H winc
1 1 . 1 1 1 1 1
3% o B MR 5 U N0 oV Ny 5z
1 P 10E. p 1l p_lgv pL _q
L c2 c? c2 c2
o:nK ny Ny 0
1 1 . 1 1 1 1 1
5% o B R 5 U N5 oV Ny 5g
b

We have introduced a new variable ¢

acoustic phenomena. It is well known

P which represents the speed of propagation of the

that for air ¢ 330m.s ' at standard temperature. The

last decomposition of the Jacobian matrices shows that the Fuler equations are a system of
conservation laws which is constantly hyperbolic.
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2.2.10 Navier-Stokes Equations

We now come to the complete Navier-Stokes equations. We say “complete” because the
Navier-Stokes equations are today considered as one of the physical system that best models
some strange phenomena observed in the reality. Even if one would add new equations and new
variables in order for instance to reproduce numerically some turbulence phenomena, they are
in fact already described in the set of the Navier-Stokes equations. Turbulence equations and
variables are just an artifact aiming to overcome the lack of accuracy of the nowadays numerical
schemes, relatively to the space scale of the turbulent phenomena. Most of the instabilities,
turbulence, etc... making fluid mechanics such an appealing subject are solution of this PDS.

As we did for the Euler equations, we first start by some hypothesis on the fluid:

1. The fluid is a Newtonian fluid:

2@
2@

S
@@
2|2

see Definition 2.13,

2. According to Fourier law, the heat diffusion is opposite to the gradient of temperature.
The coefficient of proportionality k j 0 is the coefficient of heat diffusion: § ki T,

3. There is no body forces : f, T,
4. There is no heat production inside the domain : w 0,

5. The fluid is a polytropic gas : p p 1ge. This condition being just a pressure law,
it can be easily replaced by another complete Equation of State. This one is used for its
simplicity.

6. By Clausius-Duhem Inequality, we must have 3 2 ¥ 0 and we respect this constraint
by enforcing the viscous coefficient closure:

2

3

If we gather these hypothesis with equations of conservation (2.26),(2.28) and (2.31), we
obtain

5 B

! g divp oq 0

& Buj . B .. .

| B divpuit piq p qg dive Aup; i 1;2 (2.42)
! sa N |

% % divppE  patq div k?NT Tot

This is the form in which Navier-Stokes equations are usually presented. In order to simplify, we
have used the viscous tensor

dvmg 2 = p X
p§ gq divpeq 2 @
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They are many different ways of writing these equations, above all depending on the application
in mind.

One formulation will be however particularly useful in Chapter 8. It is a bit more complex
than this one, but it has the advantage to present the system in a complete matricial form. It
has been inspired by Chapter 2 of P.J. Capon’s Thesis [27]. If we consider the advective flux
defined in (2.41) and the following diffusive matrices

0 0 0 0
4 4
< tu 4 0 0
. \% 0 1 0 ,
2 4
28 5 mPee EQ ug 5 VI 5 om
0 0 0 0 0 0 0 0
2 2
v 0 £ 0 % 0 1 0
_ 3 3 _
Ki u 1 0 o K= 2u 2 00
2 P
% Y su 0 % sV.u 0
and
0 0 0
K u 1 0 0
- 4 4 :

2
2% 5 mpPe B9 Ul 5 VI om on

we can rewrite system (2.42) as

~

Us div FpUuq  mKyUjq  div KU (2.43)
where we have used the Einstein notation and “;;” refers to the derivative with respect to the j th

space variable.

2.2.11 Boundary Conditions

We finish this chapter with the boundary conditions that are going along with these two
models: the Euler and Navier-Stokes equations. These conditions are needed to close the prob-
lem. Tt is rather hard to enumerate all the boundary conditions that have been developed for
some specific purposes. We are here just going to list the boundary conditions we have been

using during this thesis. We describe them here in their continuous versions. The way they are
discretized is shown in Section 5.4.

Inow and Outow  : it is sometimes useful to impose a given state at an entrance or an
output of a domain. This is for example the case when the domain is linking two tanks of
pressure at two different states. We are also going to use this at the external boundaries
of a domain containing an aircraft. The goal is to simulate the flow around the aircraft at
a certain speed. The easiest way to do this is to consider the problem in the referential of
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the aircraft: the domain is fixed and the air moves at the opposite velocity of the aircraft.
The external boundary are considered as at infinity and we wish to impose there a Far-field
State. In both cases, if Ug is the state we want to impose on boundary I'g , one has:

Upxg Us; @ PTls: (2.44)

In practice, if /1 is the inward normal to I'g , some characteristics in the direction f1 are
often leaving the domain. Then, as noticed in Property 2.11, we do not have to impose
anything on these characteristics, and the condition is usually recast into

Umxqg Apiq Ug; @PIlg:

where Aprq denotes the positive part of the Jacobian operator in the direction .

No-Slip Wall : when the fluid is considered viscous, it sticks to the walls. By continuity,
the velocity ¢ of the flow along the wall must be the same as the velocity of the wall ttyg

opXq  twal; @ Plyan: (2.45)

In most of cases, the wall is still and ttyaq U. Then, following the eigenvalues of the
advection matrix given in Subsection 2.2.9, one has only one outgoing characteristic. The
system having size m d 2, one needs an extra boundary condition. This is provided
by the heat transfer between the wall and the fluid. This can be done in two ways.
The temperature can either be considered continuous. In this case, we just impose the
temperature of the wall Tya

Txq Twai; @ PTLwan: (2.46)

Or, in the case of a steady simulation, one consider that the heat transfers are null at
steady state. The heat flow between the wall and the fluid has to be zero and the boundary
condition reads:

BT

Slip Wall : finally, in the case of the Euler equations, the fluid is considered as non viscous,
and it is completely possible that the fluid slips on the walls. But on the other hand, it
is still impossible that the fluid enters the boundary (by definition of the wall). Then the
no-slip condition of the viscous flows is formulated as

gpxgn  0; @ Plwan: (2.48)
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Chapter 3

High Order Schemes

This chapter is devoted to a brief introduction to high order numerical schemes. The main
goal is to explain why high order schemes are today so attractive for CFD, but also what their
main drawbacks are. It is the occasion to present roughly the concept of higher order schemes
and to set down conventions and notations on mesh parameters and data representation. In
a first part, we are going to introduce a general framework for numerical schemes and explain
what a high order scheme is. We also introduce the main definitions on mesh and geometry. In a
second part, we describe the polynomial representation of the data on triangles and quadrangles.
A last section eventually treats the appealing features of high order schemes.

3.1 Numerical Schemes: a General Framework

In this section, we are about to present the numerical resolution of a PDS in a very abstract
way. We see that the solution of a problem in a functional space with infinite dimension can be
approximated by the solution of an associated problem, this time existing in a finite dimensional
functional space. At the end, we have just projected the sought solution on a restricted finite
dimensional space of unknowns, without even knowing this exact solution. All numerical schemes
are included in this general framework.

In the following, we call E a functional space with infinite dimension and ¢ a differential
operator on E. We also denote by L a Hilbert functional space such that :

)E€EL;

i) 0:EN L .

3.1.1 Finite Dimension Approximation

We want to solve the following problem:

Find u PE; such that Su i x PO

g; xPIL€BQ:

41
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f and g are of course regular enough functions, in order our problem is well-defined. This
is a very general problem, and most of the modelizations in physics lead to such a problem
[87]. The difficulty is that we are today usually absolutely not able to find an exact solution of
such a PDS, even in some apparently very simple cases. We have to approximate the solution
and this is done numerically. We first remark that if u is a solution of problem (3.1), then
@ PL ; hou ;vi H;vi_ . We now denote by W, a subspace of E with finite dimension n,

depends on the geometry of €2, and on a spatial discretization of 2, M 1, that will be called further
the mesh. h represents a characteristic length associated to the mesh. The finite dimensional
subset also depends on the order of representation of the data on the discretized space and on
other geometrical parameters. We now define Py as a projection from E to W,, for example

$ .
& EWN Wh
n
Ph : b, U PYN <u;wih> wh
i1 L
We will see next this is not the only way of defining a projection from E to W, and we are for

that matter usually not going to use this one. The reader has to consider this projection just as
a theoretical example.

We can then associate (3.1) to a finite dimensional problem

hOUun; Vi H,vhip ;5 @n PW,
up  Phpog @Pr

If ¢ is a linear operator, this problem can be obviously put into the matricial form A:U B
where Aj <<>Wih;th>L and B;j <f;Wih>L Fibc. Fibc stands here for the contribution of

some numerical fluxes on the boundary I', this ensuring the boundary condition u, Phrpgg

Find up PW; such that (3.2)

In this case, problem (3.2) is well-posed if matrix A is invertible and admits then a unique
solution up, PW,. uy is then called the approzimated solution. We are going to see in the next
section how the quality of the approximation of u by uy is quantified: the order of accuracy of
the scheme.

3.1.2 Error and Truncation Error

u and up are both functions of L and we can then write the global error of approximation

ku  unkL ® fgh60d308brASoooimRinSoodtHSoco00000n
|

as

The two terms of the right-hand side represent different things.

|: it is the projection error. It depends on the polynomial order of approximation of the data.
Generally, if W, is spanned by polynomials of order k and u is regular enough, the order
of magnitude of term | is dominated by h¥ 1, where h is a characteristic length of the
discretization of Q needed to define W,. That means in particular that Pppuq converges
toward U as h goes to 0 for any regular enough u P E, and that in a certain sense, W,
converges toward E as h gets smaller.
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Il : it is called the truncation error of the scheme. As one can see, if the truncation error is
also of order k 1, then un is an approximation of order K 1 in L -norm of the exact
solution u . Thus, below we will speak of a pk  1d"-order scheme when referring to a
scheme using a k™ order representation of the data and which truncation error is of order
pk  1g As we have already seen in the introduction, there exists several different types
of high order schemes. The main differences between these formulations come from the
functional space approximation.

We have now presented the main concepts of the numerical resolution of a complex problem
a very abstract way. The important thing here is to understand that a numerical resolution of
a problem in an infinite functional space is done by defining a certain projection of the solution
on a finite dimensional subspace. The projection of the exact solution is the unique solution of a
finite dimensional problem which can be “easily” solved. The nature of the projection is defined
by the type of the chosen numerical scheme. This will be explained later on. What one can
expect is that the finer the approximation of E by W is, the closer to u up is. This is always
the result of theorems we call “Laz- Wendroff like” and that are essential in the development of
the numerical schemes.

Eventually, the finite dimensional subspace W is in fact completely defined by the discretiza-
tion of the domain and the order of representation of the data inside the discrete meshing. This
is the subject of the next sections.

3.1.3 Domain Discretization

In the last paragraphs, we have implicitly considered Q as our spatial domain. To simplify
the presentation, we suppose (2 is bi-dimensional. The illustrations will be much easier.

Let Q € R? be the continuous spatial domain. A spatial approxigation of  is a finite set

T of non overlapping elements with strictly positive area such that T Q or at least such
o TPT,

that the area belonging to T or to  but not to both, tends toward zero when the refinement
TPT,

parameter h is getting smaller. Here, h represents a characteristic distance between two vertices
of the mesh. In our case, it will be either the constant mesh spacing on the boundary of 2 or the
maximal distance between two vertices or the square root of the area of the biggest element in
Th. We also call M 1, the set of the vertices of the elements of Ty, but by abuse of notation, M y,
also represents the set of any kind of entity of the mesh. It contains the vertices of the mesh as
well as the edges, the faces or the elements, etc...

There are many types of meshes and there is a wide vocabulary on this subject. We give
hereafter the main nomenclature used here. Even if the elements of T, are denoted by T they
must not always be triangles. They can be triangles or quadrangles or any type of polyhedral
or even isoparametric elements as shown on figure 3.1, and this will be true for the rest of this
manuscript. We are not going to speak here about isoparametric elements as a whole section is
devoted to them, see page 137. The construction of such an element is detailed in this section.
When the mesh is composed only by triangles, it is called a triangulation. In order to eliminate
too “flat” triangles, we assume that the mesh is regular enough and that there exist two constants
C; and Cs such that the ratio of two heights of any triangle of the mesh stands between C; and
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Figure 3.1: (Isoparametric Elements) The edges of these elements are represented by the
same polynomial order K as the one used inside the element to approximate the solution. In that
case, K 2 and the edges are quadratic, uniquely defined by the vertices and the middles of the
edges. These elements are very useful to represent the boundaries with a much better accuracy.

C,.

DCq;Co PR ; such that @ PM p; @1; hy heights of T;

Ciuo m o C, (33)
ha

The same argument is suitable for quadrangles with the ratio of the diagonal lengths. There
exists two main types of triangulations: the structured and the unstructured ones, see Figure
3.2. The main difference is the number of direct neighbours of each vertex (the vertices of M p,
sharing an edge with it). In the case of a structured triangulation, the mesh is really regular, all
the elements are identical or quasi-identical, and the number of direct neighbours stays constant.
Whereas in the unstructured case, this number of direct neighbours is not necessarily constant
and it is generally not. When a mesh mixes different types of elements it is called a hybrid mesh.
Hybrid meshes are very interesting from a geometrical point of view. As we have seen a meshing
does not have to match the domain perfectly but must approach it with the area of the difference
depending on h. As one can guess it is now much easier to match some complex geometries as an
obtuse angle or round nose with a hybrid unstructured mesh than with a structured triangulation.

In this thesis, we are also dealing only with conformal meshes. A mesh is conformal, when
no vertex of an element lies inside an edge of another element. This is represented on Figure 3.3.
Residual Distribution Scheme on non conformal meshes is actually a rather complex development
even if it is not declared as impossible. The main problems are how to define the direct neighbours
of the non conformal vertices as well as its dual cells (see next paragraph for definition). It is
then quite complex to associate a basis function to those vertices. This is not the aim of this
manuscript and that is why all the meshes are thereafter conformal.

For any type of meshing, the following notations are useful. For any element T of Ty, we
denote by jTj its area. For any vertex i PM y, D; is the subset of elements containing i. jDjj
is the sum of the areas of the elements of Dj. By abuse of notation, D; also denotes the direct
neighbours of i, ie. the nodes of the elements members of D;j. To any node i of the mesh, we
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Figure 3.2: Unstructured (left) and structured (right) triangulation

Figure 3.3: (Non Conformal Mesh)  The 3 black points denote non conformal points, because
they lie inside the edge of another element. QQ denotes the only quadrangle of this mesh.
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Figure 3.4: (Dual Cell) On this gure is represented nodei, D; the subset of elements sharing

midpoints of the edges sharing and the centroids of the triangles ofD;. This can be generalized
to any polyhedral.

associate itsdual cell G, represented on gure 3.4. It represents the domain of in uence of
the scheme for node. It is obtained by joining the gravity centers of the elements ofD; with
the midpoints of the edges meeting ati. This notion is very important in the case of Finite
Volume SchemeqFV ), see Subsection 4.1.3 page 62. In the caseRD schemes, we are mainly
interested by the dual cell area O
i~ Uil
iGi 3

especially for linear representation of the data.

Euler Formula We are here giving a formula linking the number of elements, faces, edges and
vertices in a 2D mesh. It is called theEuler Formula and it has been conjectured in 1752. This
formula has actually a much wider generalization though and can be applied on any kind of really
weird topology [71, 112]. This is not the object of this work and we restrict our demonstration
to two dimensional unstructured hybrid meshes. The main argument of this demonstration can
be applied as it is to the three dimensional case.

ﬂoperty 3.1
Let M, be a unstructured hybrid meshing of a two dimensional simply connected domain
and F; E; V being respectively, the number of elements, edges and verticeslih,. Then

F E V 1 (3.4)

Remark 3.2 ( Euler Characteristic )

The quantity F E V is called theEuler Characteristic. It is de ned in any polyhedral
meshing, in any dimension, as the alternate sum kg ki ks k3 :::, wherek, denotes
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Figure 3.5: 7 points, 7 edges, 2 triangles and 2 connected components: 7 2 2.

any choosen ordeik. To do so, we have to add new degrees of freedom inside each element, in
order to de ned what we are going to callPX basis functions on these elements.

3.2.1 Lagrangian Data Representation on Triangles

We suppose the mesh is a triangulation.

Linear Mapping: Through three non-colinear points of a three dimensional space passes a
unique plane. That allows for a given triangle of a mesh, to de ne the unique plane that takes
value 1 at some vertex and0 at the two others. If we denote byi this vertex and T the triangle,

we call this function ' ,T and we can do the same for all the triangles oD;. Because these
functions de ned on each triangles are linear, they are also linear along the edges Bf and we
can join these planes by continuity. Furthermore, these functions vanish on the vertices of the
boundaries ofD;. This means we can continuously connect these functions de ned oB; with
the null function outside of D;. And if we use the convention:@ RD;; ' ,T 0, we de ne the
basis function associated to node by

''"xq ' Tmxg whenx PT: (3.6)

This well known continuous linear basis function is represented on Figure 3.6. Superscrigt
stands for the basis function is piecewise of degree one.

We now de ne the nite subset ' 'LiPM h(. Its elements are obviously linearly
independent because a linear combination of these function is the null function if and only if
all the coe cients of the combination are null. Then 'is a basis of}] Span ', and W/
is the space of continuous functions that are piecewise linear over each triangle &f . In the
following, this space will be calledP! pM ,q or simply P! when no confusion is possibleW, is
isomorphic to R", wheren is the number of vertices inM , and if pviqpy.,, is @ vector of R", it

is the coordinates of the function of W! taking value v; at nodei, in the basis ' | .
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Figure 3.8: Control cellsG, G and G and sub-triangulation in P2 formulation.

i 10
' I(;)s o7 Tilh ;;1. gn
k=4: i 123
T LT T s T agw [T 1
i 4:9, ] is the vertex of T the nearest toi, k is the other tip of the edge

14 16, , .
;I',4 3 _T1 T1p4 T:1 1qF2 J_'I',1 1q

i 10:12 j;k are the tips of the edgei is part of

i 13:15,j is the vertex of T the nearest toi

[] T,k

We still use the convention@ R Dj; i 0 and thus de ne the k"-order basis function

associated to nodd by :

'kxq ' [*mxg whenx PT: (3.7)

Once more the nite subset ' K ipvi:# DoFw NaS linearly independant elements and is then a

basis of WX. And if pvigp,q.,,iS @ vector ofR", n being the number of degrees of freedom in the
kth-order mesh, it is the coordinates in this basis of the function oth taking value v; at node
i.

For any function u : R2 N R, we can therefore de ne its projectionuﬁ on th, also denoted
by Ku, by

Ku  uk upiq' K: (3.8)
iPM 1,

This will be often denoted by u,, when the order of approximation is obvious.
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(@) Q' Quadran- (b) @® Quadran-
gle. gle.
(c) @ Quadran- (d) Q* Quadran-
gle. gle.

Figure 3.10: High order quadrangles up ta#" polynomial order.

associated to triangles and quadrangles are represented on Figure 3.11. For the form functions,
we decouple the in uence of space and time and de ne the basis function at nodeas the product

of the k"-order basis function in space at nodé by the one dimensional " -order time basis
function

g ipg (3.13)

3.3 Appeals of Higher Order Schemes

We begin this section by a quick summary of the ideas already presented in this chapter. We
rst gave an abstract de nition of a numerical scheme and explained what ak'"-order scheme
is. In particular, we have seen that for apk  1g"-order scheme we generally need a polynomial
representation of the solution of order at leastk. In the last paragraph, we have eventually
presented domain discretization andk'"-order representation of the data on this discretization.
But what is the goal of higher order schemes ? What do we win with this much more complex
representation of the solution ?

To be as clear as possible, we are going to treat the problem at a constant approximation
error ". If the scheme is of orderk, there exists a proportionality coe cient Cy such that the
behaviour of the error can be modeled by

"n Cghk:
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Figure 3.13: Maximal number of DoFs needed to reach accuracy 10 6 for order of approximation
k 1:::100.

respect to the number of DoFsneeded. And this is really important as Npops represents the size
of the finite dimensional problem to solve at the end. As one can see on figure 3.13, even if, as
for tabular 3.12, a value of 1 has been taken for S and Cy in order to simplify the calculation,
there is a huge factor between the number of DoF's needed at first and optimum order to reach
6t order of accuracy.

Furthermore, as we will next see, in the case of the Residual Distribution Schemes the solving
algorithm treats the problem element per element. The less elements we get in the mesh, the
less computations we have to do. We have already seen that in a k'-order triangulation, the
number of elements is proportional to " %k kNY'lél 1. Starting from this point of view, we would

like to have the largest possible order. What is hidden is that increasing order of approximation
provides less elements but on the other hand more work to do per element. And as the number
of triangles is exponentially decreasing toward 1, there once more must exist an optimum order.



Part 11

Residual Distribution Schemes
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Chapter 4

Introduction to Residual Distribution
Schemes

Until now, we have been simplifying the general framework of the problem along the pages.
We started by the very general case (2.1) and restricted it for sake of simplicity. From now on,
the trend is being inverted, and the problem is going to be complicated along the chapters. For
this introduction, we are going to consider the simplest framework for the conservation laws.
But, even if we start here by the well described P! steady scalar non viscous case, we still aim
at explaining the end of this manuscript the treatment of a 3D, P¥, Navier-Stokes problem.

We are looking for the value of a scalar unknown u verifying, on a two dimensional domain
2, a simple conservation equation

div Ig pug 0 (4.1)

Boundary Conditions (Dirichlet, Neumann, strong or weak...)

As we did before, the flux vector IE can be split into its two one dimensional components, F and
G. For a real problem, we would have of course to add some boundary conditions, but in order
to simplify the explanation, we are going to ignore them. In fact, one could use the homogeneous
boundary condition Ugy 0 and obtain exactly the same results. For those interested in our
weak or strong formulation of some Dirichlet, Neumann, aso... boundary conditions, more details
are given in Section 5.4.

4.1 Principle

The formulation of the Residual Distribution Schemes (RDS) applied to equation (4.1) is
rather simple to understand. However, a sound mathematical framework is still not available at
the present. Often, geometrical and more or less qualitative arguments have been used to study
the properties of the schemes. Moreover, as soon as we treat vectorial problems or want to use
any kind of high order method, the formal constructions developed in the simple scalar P! case
do not apply any longer. Most properties are nevertheless assumed to be still valid and anyway
verified numerically. For these reasons, we first present how the scheme is built, without giving
any formal justification, next show its computational properties (consistence, stability,...) and

99
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only at the end give evidences that the solution of such a scheme approximates the exact solution
of (4.1) with the desired order.

As the construction of such a scheme is rather simple, and mathematicians liking simple
things, it would be very interesting to find a complete “Residual” formulation of equation (4.1),
defined on the continuous domain. It could really help to understand the properties of RDS,
obviously, but also all the numerical formulations on conservative systems. In particular, it is
very hard to show that a RDS has an unique solution in a given functional space and we need
to see the problem an other way to be able to answer to this question.

4.1.1 Residual and Residual Distribution

For each element, we define the Global Residual or Element Residual as
» »

ol ] div ¥ pug dx . M pugn ds; (4.2)

where T does nqg¢ have to be a triangle and 11 is the outward unit normal. This quantity represents
the global flux F leaving the triangle. If we look at the exact solution of the equation on the
continuous domain (4.1), the residual should be zero on every triangle. This could be one way to
write the scheme: nullify the global amount of flux entering or leaving each triangle. However,
we want to define the scheme point-wise. To be able to write an equation for each degree of
freedom, we nullify the global flux entering some control cell around each DoF.

This is obtained in practice by distributing ®T to each DoF of the element with a certain
distribution coe cient T

ol ol (4.3)

<I>iT is usually called the Nodal Residual . Here is the core of the method. They are many
possibilities of distributing the global residual, each one of them having a different combination
of properties: monotonicity, linearity preservation, higher order accuracy, upwinding, etc... We

are going to detail those words in the next section.

If we want the scheme to be conservative, no information must suddenly appear or disappear.
In other words, we need the global residual to be exactly distributed in each element

o RGLE (4.4)
iPT

This can be straightforwardly rewritten in term of distribution coefficients:

As we see in the next subsection, gathering all the nodal residuals sent to a node corresponds
in some simple cases to estimate the balance of flux entering some control cell around i. We wish
then to nullify this global flux, and the scheme writes
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Figure 4.1: Find barycentric coordinates p !; 2?; 2qof B such that quadrilaterals 14B6, 24B5
and 36B5 have areas 1jTj, 2jTj and 3jTj respectively. j14B6] p 2 3(% 1jTj and the
same reasoning being true for the two other vertices, one gets ' 1 2 ;i 1;:::;3

5

T 0, @PM p: (4.5)

|
TPD;

4.1.2 Geometrical Interpretation in the P' Case
Let consider a P! mesh. Each triangle has three degrees of freedom. Because pr ,T 1,1t is
possible to define an inner point B of T, such that for each vertex i, the quadrilateral generated by
node i, the two mid-edges next to i and B has area ,T jTj. This point has barycentric coordinates
pl. 2 ;1 2 9;1 2 3q see figure 4.1. If we define the new control cell associated to node i
with these quadrilaterals, and denote it by G , we obtain that the integral of equation (4.1) on
each control cell gives the expression of the scheme (4.5)
» .
@PMy; ~ @ div Iﬂwq dx 0
TPD; Czﬁ

Then, the control cell defines a discrete closed ways in the domain through which the global
entering flux is null. Linking the different control cells together, we obtain a new meshing, dual
of the original one (M ). It is obvious that the balance of flux entering any sub-domain of this
dual mesh is null. If we now consider the dual control cells as the indivisible two dimensional
entities of the domain, or as the infinitesimal surfaces of 2, equation (4.1) has been discretized
on the dual mesh. But IT depends on the value of the solution up. Then the problem writes:
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Figure 4.2: FV scheme. Neighboring cellsS; and S; (left) and cell normals (right)

Find u, and iTpuhq such thatl}‘ Un is zero over the dual mesh associated to the distribution

coe cients ;.

The control cells de ne a discrete closed ways in the domain through which the global entering
ux is null : equation (4.1) is solved on the dual mesh.

4.1.3 Links with Other Classical Formulations

We here present some relations between thBD framework and other classes of classical
numerical schemes. The goal is just to show the proposed formulation can be seen as another
point of view for the treatment of the conservative equations. The comparison in the following
examples however usually stops as soon as we leave the simBlescalar case. If possible, more
details will be given.

Finite Volume Schemes: The following explanation essentially comes from [2] and Mario
Ricchuito's thesis [89]. SymbolFV denotes the nite volume schemes. All geometrical entities
are illustrated on Figure 4.2.

We consider a meshing of a domain, and for any Dok its associated median dual cellG,
generated by the midpoint of the edges and the barycentric centers of the elemeniss part of,
see Figure 4.2. The new meshing constituted by the DoFs and their median dual cells is called
the median dual mesh We consider a piecewise constant numerical approximation over the dual
cells: y (
upP f: YW R, @QPM y; f|Q is constant " :

FV formulation of continuous scalar equation (4.1) reads
»

>

M pusungd o (4.6)
lj PG i

where% pu; v; ng stands for the FV numerical ux, | is the portion of BG separating G from
G (see Figure 4.2) andn is the outward unit normal.
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This shows that any finite volume scheme operating on the median dual cells with a Q-form
numerical flux function defined in (4.7) is equivalent to the RD scheme with the local nodal
residuals [ - )

of Flmq Pomig g Qpuiujimgqey g ;
JPT;j i

obtained with a continuous piecewise linear approximation of the flux. Note that the analysis
is general and can be extended to nonlinear problems and systems. Moreover, as shown in [89]
page 62, it applies to general FV numerical fluxes and not only to (4.7). Surprisingly, starting
from the piecewise constant FV approximation, we arrived to a scheme based on a continuous
flux approximation which, moreover, respects all the assumptions of the Lax-Wendroff theorem
presented in next section.

Galerkin Finite Element Method: It is well known the Finite Element Method (FE)
enjoys a complete mathematical formulation which transforms formally the strong continuous
problem (4.1) into its weak form, and the two formulations are consistent. We consider here its

P! numerical resolution. We have in that case to solve the finite dimensional problem:
»

W
r i:lg puphqdx 0; @PM p: (4.9)
Q
i denotes the P! basis function associated to node i. As explained in the introduction of this
chapter, the boundary condﬁions have been neglected or supposed to be homog eous ]ﬁrichlet
condition. Then, if the flux F is continuously approximated by its P! projection F ,, ¥ :F ppunq

is constant over every element and we obtain
» -
>

@PM hs i|¥ ZIE ththX 0
TPD, T

This shows the P! Galerkin Finite Element Method is a P! centered Residual Distribution
Scheme with uniform constant distribution coefficients:

Fe 1
! 3
Petrov-Galerkin Formulation: The Galerkin Finite Element Method is known to be un-
stable. This can be easily shown in the case of a constant advection problem (see |1, 73, 64]):
~ZIWU 0: (4.10)

A new class of schemes has been developed [73, 25, 72| in order to stabilize the FE in the case
of conservation laws; they are called the Petrov-Galerkin scheme and just add to the Galerkin
formulation a stabilization term. They are all included into the formulation:
» o »
?’m i:lg pupqdx
Q TPD, T

Ii:?wi ‘hr{:lgpthdx 0; @PM y: (4.11)
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~ is a matrix of local nondimensionalization which characteristic size must be proportional to

And if we use the notation
» N ...
& W

T Bu

h
pju} cq’

ki L dx; (4.12)

and suppose the advection wind B to be constant inside T, we obtain that P! Petrov-Galerkin

schemes can be rewritten into the form

R L e
@PM hs § |T| 3
TPD;

which means they fit the RDS formalism with distribution coefficients
Tk

b3 T

This is unfortunately not true in the general case, as the extra dissipative term in (4.11) cannot
be expressed in terms of kiT.

Another thing to observe is that this dissipative term brings to the scheme some kind of
upwind bias in the distributi which is one way to explain the stabilizing character of this
term. In particular, because r " is perpendicular to the edge opposite to i and points toward
node i, kiT is positive when i is downstream and negative when i is upstream. Then the constant
distribution coefficient ;  1{3 of the pure Galerkin FE formulation is modulated by a coefficient
that measures the power and the direction of the advection inside the element. One can look
at [89] or [3] for an energy stability study. It gives a better understanding of the stabilization
mechanism but also of the RD stability. One has to remember that the schemes with an upwind
character are always more stable, as they push the information in the direction of the advection
and therefore always dissipate the possible numerical errors.

RDS is a particular Galerkin Scheme The following idea has first been expressed in 1993
during the first von Karman Institute for Fluid Dynamics Lecture Series or in [28]. It consists
in claiming RDS is a particular finite element weak formulation with modified basis functions.
That for, we define what we call the Bubble Functions . Tt is defined over each element of the
mesh as the unique piecewise linear continuous form function taking value 1 at the barycentric
center of T and 0 over the edges, see Figure 4.3. We can then define

N T (4.13)

T a fitting parameter. The extra nodal

. In order the scheme stays conservative, we need

as a new linear form function over the element, with

form function IT T will also be denoted by IT

to ensure the following condition:

N,T 1A oo (4.14)

Let us apply the finite element theory to equation (4.1) with the approximated functional
space being spanned by the N; T We furthermore assume that

@ PMn@PMy; 7 37 L (4.15)
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Figure 4.3: (Bubble Function ) This shape function allows to modify the space of approximation
while maintaining the continuous representation of the variable becauseT|BT 0.

Then in P!, the scheme writes
» ~

@PMy;, ° N.Tdiv ®opmg dx 0

TPD; T
» T
Ndex,T—,
TPD; T I
T T,
i ’
TPD;

which is exactly the P! RD scheme. This formulation can be straightforwardly extended to 3D.
Unfortunately, we have trouble to extend this idea to higher order formulation. It would be

possible if

Tk Tk

| |
3 N (4.16)
T Tdiv IEthhq dx

T
i

were always de ned. But it is not always the case, as divIE hPUhg is no more constant in
Pk:k j 1, and can take positive as negative values inside T.

4.2 Properties of RDS

This section is devoted to the de nition of the numerical properties ofRDS . This will help
to understand the construction of the high order residual schemes that are going to be presented
in the next chapter.

4.2.1 Consistency

We start by verifying under which conditions the computed solution is really an approximation
of the weak solution of problem (4.1). The following Lax-Wendro -Like Theorem has been
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We have here used a convention that is going to be really useful in the rest of the manuscript.
In the last equation, 1 represents the generic outward unit normal to the edges of the triangle,
while 1 represents the inward normal to the edge opposite to node i, scaled by the length of thi
edge. If the distribution coefficients IT are uniformly bounded and the approximation of flux

is regular enough, assumption 4.2 is fulfilled. Unfortunately, this is not as simple for higher order
schemes, and we have to verify this hypothesis case by case. In the following, we just assume

that assumption 4.2 is always verified.

As an additional hypothesis, we need to define how regular the approximation E\Ih of IE must
be.

Assumption 4.3

The approximation ?4",1 of the ux I?! veri es:

i) ¥, is a continuous function from X Hinto X X,

i) For any sequenceuna, bounded inL8 pR2gindependently ofh and converging inL 2 .pR?q
to u, we have

rlliNH%}Phth I¥F>UCI}1_gOCpR2q 0:

As we have seen above, the PK projection of continuous flux IE is usually going to be used for

the flux approximation: - -

Fovg © B & (4.17)
iPM 5,

In this case, the two items of assumption 4.3 are always verified.

In the following theorem we ignore the boundary conditions or just assume they are homo-
geneous Dirichlet boundary conditions.

Theorem 4.4 ( Lax-Wendro Like )

Let puna, be a sequence of numerical solutions of (4.5) for some given meshg. We assume

that the meshes always verify assumption 4.1, and that the scheme satis es assumptions 4
and 4.3. We also assume there exist a constaft depending only onC; and Cs and a function
u PL2pR2%qsuch that

sup sup |uppxq| & C
h xPQ

%lﬂn%)ku Un kleochzq 0

Then u is a weak solution of (4.1).

1.2

Proof: Let Y be any C' function of R? with compact support in Q and T; its value at nodei. We
also de ne the Galerkin residual

wang | ¥ e (4.18)
T

where' ¥ stands for the k' order Lagrangian basis function at nodei. Let us take scheme system
(4.5), multiply by T; and sum over the degrees of freedom. We obtain:

D1 ) g 0

iPMy, TPD;
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If we swap the two summation indices, add and remove(\I'iTthin) and use the conservation
property

D (®fpung Tipupg) 2T 2T 0;

iPT

we get, with q being the number of DoFs in each element

= Z D@ ung TTpung pY Yy > Y Ulpudl O (4.19)

TPMh 1,jPT TPMy, iPT
~- J < ~ )
1

II

We rst begin with term I :

1l Z ZJ Zp>(qr: hpth’r ;dX (4.20a)
TPM}, iPT
J ( ;’iT)pxqr P (4.20b)

J mrqﬂmhqu J F ] i

J F I uqix (4.20¢)
[FeBaa [ (R 15T M

fﬁﬂr:(@mq ;;thhq) dx (4.20d)
J Bl o onig (4.20e)

In equation (4.20b), we just use the fact that > . T;' ¥ is the P* projection of C' test function
T. In equation (4.20c), we apply the Green formula, enjoying the compact support off and add
and remove the second integral. Equation (4.20d) is just a crafty redistribution of the terms, in
order to come to the last sought line.

The second integral in (4.20d) is bounggd by theL ' norm of p?Nr WWxﬁl‘quecause the
sequence ofl;, is bounded inL® norm and F;, is a continuous function onX . And since T is
a @ function in ©,

}?NT WTq}upqu onplg

BecauseY is C' with compact support in €, its gradient is uniformly hounded py a constant
independent of h. The third integral in (4.20d)) is then dominated by }F puq hpuhq}élﬁzq
which tends to 0 by assumption 4.3(ii), as}uy}s is bounded independently ofh, and u, Zﬁ'}lo u

in L2

loc”

Let give a look to term |. We rst obviously have

1
lm = > Y10 ung Ul puagl v Yy (4.21)
TPMy, ¢,jPT

and sinceT is Gl in ©, [T, Y| is dominated by h:sup}f Y}  Ch. Then

Ch
le == 3 > [opung ¥ pusq (4.22)
q rem, igPT
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and by assumption 4.2, we obtain
Ch?
le =— 3 M ui oy (4.23)
A 1pum, igPT

It is now quite a hard work to show this last estimation tends to zero with h. It would be very
easy if the u;, were C', but it is not the case here. The following lemma proves the last needed
limit. Its demonstration can be found in the appendix of [9].

Lemma 4.5

there exist a constantC independent ofh and u PL2 pqsuch that

loc

supsupjup,Xg ® C and  limku UpKg2preq O
h xP AN 0
Then

%H%( 20T Y s uj|> 0

TPMy, ,jPT

We considerQ € R?, a bounded domain, andpu;q, a sequence such thati;, P X 2 @. We assume

The hypothesis of the Lemma are exactly those of Theorem 4.4 which ends to demonstrate that:

> ol 0; @PM @

TPD;
fi f ?NYIE pucdx  opplq
and u is thus a weak solution of continuous equation (4.1). |

We have here presented the problem in the steady two dimensional scalar high order case. As
we have seen in the beginning of this section, the assumption 4.2 and 4.3 are usually automatically
verified by the RDS . The only thing we have to do is to ensure assumption 4.1 which depends
only on the meshing.

Vectorial Case: It is in fact possible to prove the same result for unsteady vectorial problems
in any space dimension, and that is what is done in the appendix of [9]. We have chosen not to
treat the complete demonstration mainly to avoid some really extensive notations and reduce the
length of the proof. For the vectorial problems, the only thing to do is to consider the vectorial
norm instead of the absolute value. The proof is otherwise similar. This proof can also be very
straightforwardly extended to more than two dimensions of space.

Unsteady Case: For the unsteady case, there is a bit more work to do depending on the
treatment of the time derivatives. As we observed in Section 3.2.3, there are two ways of treating
the unsteady problems. The first one is to consider the unsteady conservation law in space as
a steady conservation law in space-time. Then a two dimensional unsteady problem becomes a
steady three dimensional one, and this entirely fits the framework used in the theorem demon-
stration. Equation (4.5) is just expressed into prismatic elements, see Figure 3.11. On the other
hand, one would like to discretize the time derivative terms by finite differences and then obtain
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Figure 4.4: Cut through the shock of a Burger solution for di erent RD schemes. All the schemes
are going to be presented in Section 4.4. The LDA scheme is known to be non positive and we
can see that in the two over/under-shoots on both sides of the shock. The exact solution is of
course monotone. The right gure is just a zoom of the left one.

a time marching scheme that would solve a two dimensional space problem at each time step.
Equation

% I}‘ :|¥ pug O, @;tP  r 0;Ts (4.24)
is approximated by
THERLENT s
@PM y; '7t' Tpulgq O (4.25)
TPD;

The proof of the Lax Wendro -Like theorem now needs a test function C(] both in space and

n 1 n
time and prove that the term “-——" implies

» »
uB—dxdt Uo P;00dX  OmgrgP1a (4.26)
r 0;Ts

For the space dependent term, one has just to handle with integrals in space and time instead
of just space sums. More details are given in the appendix of [9].

4.2.2 Maximum Principle and Monotonicity Preserving Condition

As we have already seen in Chapter 2, solutions of conservation laws may lack regularity and
even be discontinuous. These discontinuities have always been a source of numerical instabilities
since the beginning of numerical computations, partly because the data are mostly represented
continuously. If we consider for example a strong shock and allow the solution tovershootor
undershootthe shock (see Figure 4.4), we are in fact introducing exciting frequencies inside the
scheme. And if it is not stable enough, the solution will blow up quickly starting from the region
of the shock. One may also control only the stability in a certain norm (let sayL?) but not
in another (for example L® ). Then during a certain amount of time steps, the distance of the
computed solution to the real one could decrease ih? norm, but exponentially grow in the L8
one. Such a situation always leads to a numerical blow up.
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Property 4.6 ( Local Extremum Decreasing )

The numerical scheme de ned in the previous equation is called Local Extremum Decreasing
(LED) if and only if
f},j ¥ 0; @J PMy: (4.32)

Proof: Let us suppose,u; is a local maximum. Then, u} u} is positive @ PD; and the quantity

>.pp, Gij (up  u7) is negative. At next time step, we will have : u7 Taoup,

Exactly like in the maximum case, ifu}’ is a local minimum, u? ' is obviously going to be
greater than u?’.

Eventually, if equation (4.32) is not true, it is always possible to build a vector of u?''s which
local extrema will be increased through this explicit scheme. |

In fact, the most important sentence in this proof is the last one. Because the Local Eztremum
Decreasing property does not ensure the explicit scheme to be stable, it just describes what is
not going to happen. It says that if the solution blows up, it won’t come from an increasing
of the extrema. The problem of stability is not solved however because this condition does not
prohibit another node to become an extremum, or a maximum to become suddenly a senseless
minimum. The maximum principle or the L8 stability is still not obtained.

Ensuring condition (4.32) is not easy. That is why we usually ensure a stronger but non
necessary condition, much easier to verify : the Sub-element LED, also called the Monotonicity
Preserving condition.

De nition 4.7 ( Monotonicity Preserving Property )

The above explicit scheme is called{onotonicity Preserving if

@PM ;@ PDi;@PT ¢ ¥0: (4.33)

There are two remarks to add to this definition. First, a Monotonicity Preserving scheme is
obviously Local Eztremum Decreasing. Second, we are going to see in Section 5.2 that under this
new condition, the explicit scheme verifies a discrete maximum principle under a CFL condition.
The scheme is then stable in L8 norm. Furthermore, we are also going to describe an implicit
method to solve differential system (4.28), and prove condition (4.33) is sufficient to ensure a
discrete maximum principle and then stability in L8 norm for the solution obtained by this
method. The solution of an implicit monotonicity preserving RDS is unconditionally stable!

Vectorial Case :  Finally, one would like to generalize these results in the case of vectorial
problems. In that case, the ¢j coefficients become matrices, and one would like to find a criterion
similar to (4.32), that would ensure the solution respects some maximum principle. But this is a
very hard task as it is complex to define what a local maximum is. A node can absolutely be a
local maximum for a variable and at the same time a local minimum for another variable. This
still stays as an open question, and we therefore define that for multidimensional problems, the
scheme is said to be monotonicity preserving when all the ¢j are positive in the sense

@ PM.,pRg M¥06 x Mx¥ 0, @PR" : (4.34)
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In fact, this definition has a meaning as it ensures in some way a discrete energy stability, see

[2].

4.2.3 Accuracy

As already discussed in section 3.1.2, an important property of a numerical scheme is its
accuracy. It is crucial to know how far the computed approximated function uy is from the
weak solution u of the continuous problem. In this subsection, we are going to analyze the two
dimensional steady scalar problem discretized by means of an approximation at fixed polynomial
degree k. The extension to 3D or vectorial problem is straightforward. The following arguments
also work for the time dependent case, when using space-time prismatic elements. They just
have to be adapted to the situation. If the time derivative terms are treated by finite differences,
one could use the following demonstration to analyze the accuracy in space, and then add the
study of accuracy in time of the chosen time stepping scheme to get the complete space-time
accuracy analysis.

It is impossible to determine }u  up}, as U is completely unknown. However, the injection
of the exact solution into the scheme gives a good estimation of the distance between up and
u . As problem (4.1) is solved through scheme (4.5), one can define the truncation error vector
pidpv , by

@PMn; i ®pfug (4.35)
TPD;

r'fu being still the PX projection of u . One could study the norm of this vector. We rather

prefer to study the quantity ©p ﬁu q called the truncation error, and defined for any test
function T P Gpq by:
epfug ~ Ty T N7 dfpfug (4.36)
iPM 5, iPM, TPD;

T is of course the value taken by the test function T at node i. We give then the following
definition:

De nition 4.8 (k™ order accuracy for steady problems )

A Residual Distribution Scheme is said to bek*" order accurate at steady state, if it veri es

©p fu g Oph“q

for any smooth exact solutionu , with ©p ,'ﬁu ggiven by (4.36).

As we did in Section 4.2.1, we need to define the Galerkin residual
» -

N
U] punq . K }\Ihp-lhqj)(;
K

i still stands for the k" order Lagrangian basis function at node i. If we swap the two
sums in (4.36), add and remove the Galerkin residual and use the fact that

where '

T 3lpung Tlpung T 3T o;
iPT
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we obtain

1 - R
Op fu q = ®pfuqg Tpfuqpli Tjq

q .
|0d68006600000000000000000000000MOOOOO00000000000000000000000
|
Tk
P p pu dY; (4.37)
[d3bodJo000000Moo000000000000N
I

5

We first start with term |l . Because u is the weak solution of (4.1),
»

’I’Ehr‘r M X 0
Q

and
»

:gth,'ﬁuq I?:Igqudx
Dy e y

rYg: E\Ihp‘ﬁuq I?!puqu
Q

N YW
Now, p ﬁu qis a PK approximation of u | |¥ is supposed to he continuous and r T‘ﬁ is bounded,
because T P Gp2g Then if F'} is an approximation of flux IE of order k 1, we have:

I Oph* g (4.38)

Let us now come to term |I. The number of degrees of freedom per element is bounded, as
k is fixed. The number of triangles in M }, is of order Oph 2qand because the gradient of Y is
bounded in 2, T; Yj  Ophg What gives:

| Oph g Ophg  Opdp su g Op¥ p fu qq (4.39)
But
» N .
wpfua ¥ Fhp b an
» ~ v PP
'K 'F':P—th,ﬁu q I\rt[:l?!qu dx
))T . . » m . o~
BT'!‘ P-thr'iu q I?glouq 1 dx Tr'!‘: ?th'ﬁu q I?!ruq dx
Omk Qq:

Then the truncation error Op r'ﬁu qis of desired order kK 1, if <I>iTp r'fu qis of order k 2.

We conclude by the following proposition, extended to d dimensions for sake of completeness:

Proposition 4.9 ( High Order Accuracy )

A Residual Distribution Scheme usingP¥ Lagrangian interpolation polynomial is of order



76 Chapter 4. Introduction to RDS

pk  1qif, when u is the weak solution of (4.5), the following two conditions are ful lled:
a) E\lh, the ux approximation, is of order gk 1g

b) For a problem in d spatial dimensions, the local nodal residuals verify:

op fu g Op* ‘g (4.40)

Condition (4.40) guarantees that the scheme has formally a Oph¥ lqerror. In practice, it is
absolutely not sure this convergence rate will be observed, unless some stability constraints are
also met. For example, we have proved the Galerkin scheme (that can be easily put into a RD
form) is always of the desired formal order. But it is also well known that this type of scheme is
unstable and diverges when the mesh is refined. In this sense, the conditions of Proposition 4.9
are only necessary.

4.2.4 Linearity Preserving Condition

As we have just seen in the previous subsection, reaching gk 1" accuracy needs in particular
that <I>iTp r'fu q Ophk 2g What we are going to see here is that this condition is in particular
achieved as soon as the distribution coefficients ,T are bounded independently of h. That is
what we call the Linearity Preserving Condition.

Let us give a look at the injection of the PK projection of an exact smooth solution u into

the element residual.
»

o
d'p Ku q r :E\Ihp Ku qx
»T v ~
ﬁ\lhp Ku q IEpu q 1 dx
BT
Omk Qq:

Then, if the distribution coefficients are bounded independently of h, the RD scheme reaches
the desired order. In that case

opkuqg [@Tpfuq Op* %q
and

Op fu g Op g

Furthermore, we have seen in Assumption 4.2 that if the distribution coefficients of an RDS
are bounded, the local nodal residuals q)iT depend continuously on the values of up at nodes
j PT, which is a required condition for Theorem 4.4.

De nition 4.10

A RD scheme is calledLinearity Preserving (LP ) if its distribution coe cients T de ned
in (4.3) are uniformly bounded independently ofh with respect to the solution and the data
of the problem:

T . T\ 0. ...
; C 8 4.41
Tmaﬁrinpagil i ; @ unup; (4.41)
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LP schemes satisfy by construction the necessary condition fgk 1¢" order of accuracy
of Proposition 4.9.

We will see further a method recasting automatically a non-LP scheme into a LP one. This
method will be used to transform any known RDS of any order of accuracy into a scheme having
the maximal order of accuracy.

4.3 Godunov Theorem

Before presenting some classical RD schemes, and analyze their properties, we wish to present
the following theorem that is restricting the panel of possible RD schemes for high order gen-
eralization. This theorem is going to be formulated in the scalar framework. Generalization to
vectorial valued problem is assumed. We first begin by the following definition:

De nition 4.11 ( Linear Scheme )

A Residual Distribution Scheme of the form (4.30) is said to belinear if all the ¢; are
independent of the numerical solution.

We recall from the introduction that the goal is here to build a numerical scheme that is
stable and of the maximal order of accuracy. If we consider a PK formulation, one wishes then to
obtain a scheme that is both pk 1" order accurate and monotonicity preserving. The following
theorem claims |50, 76]:

Theorem 4.12 ( Godunov )

A P¥ Residual Distribution Scheme that is bothpk  1g" order accurate (which meand.P )
and monotonicity preserving cannot be linear.

Proof: This proof is given here because it is valuable for aiRD scheme of any polynomial order of
approximation, applied on any type of element with q DoFs. It has been inspired by [114].

Let us consider anLP linear scheme on an element T havingy DoFs. Then the distribution
coecients T;iPTas well as thec;; are independent of the solutionu. We recall:

7

‘I)ZT ;T@T Z Ci; pd;  U;q: (442)
J i

Then by summing overi P T, one obtains:
dof 3T
iPT
Z Z RCij  Cjiqus
iPT jPT

> ki
PT
where k; coe cients are also independent ofu and moreover verifying

iPT

3,jPT
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what allows us to write
T Y kimy  uQ: (4.44)
J ot

Then by (4.42), one gets
Z Cij U U;q Z TKipu; UG (4.45)
j i j i

and by identi cation, because all the coe cients of the sums are independent ofu,

Cij Tk;: (4.46)

(2

Finally, that means that Z c;; 0 and at least onec;; is negative. This contradict the fact
JPT
that the scheme ismonotonicity preserving, see equation (4.33). |

4.4 Some RD schemes

We finish this chapter by a review of the different known Residual Distribution Schemes.
There exists three different types of them in the literature. They are classified as follows: the
four first schemes (N, LDA, Blended and PSI) are called multidimensional upwind, the fifth
(SUPQG) is called upwind and could have been presented along with the Finite Volume schemes
(FV) and the Lax-Wendroff scheme (LW ). Finally, the last presented Lax-Friedrichs (LxF)
scheme is known as a centered scheme. These three terms in italic are going to be explained in
the related subsections.

For each of these schemes we describe its main properties, advantages and drawbacks. We
shall also give some remarks on how easily each scheme can be extended to higher order. All of
these schemes have first been developed in the scalar framework, but when possible we will also
give their generalization to the system case.

4.4.1 Multidimensional Upwind Schemes

Scalar Case : A multidimensional upwind scheme is a scheme that respects the directional
nature of the advection. Let us consider the two dimensional scalar advection problem

% ~M 0; xPQ€R: (4.47)

~ represents at any point the direction of advection. A multidimensional upwind scheme is a
numerical scheme that distributes all the information downstream, or equivalently that sends no
information to the upstream nodes. An illustration is given on Figure 4.5. On this figure, we
also define 1 as the inward normal to the opposite edge of node i, scaled by the length of this
edge. Then the quantity

~

i
2

ki (4.48)
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Figure 4.5: Left: 1-Target triangle. Node 1 is the only downstream node. It receives the global
residual ®T entirely. Right: 2-Target triangle. Node 1 is upstream and receives nothing from
the global residual.

tells us if node i is upstream or downstream, depending on its sign. Even though a more general
formalism can be developed for a PDS, this geometrical interpretation only applies to the scalar
case. In this case, a multidimensional upwind scheme is characterized by the following property:

@ PM,;@PT;, k=od & o (4.49)

As one can see on Figure 4.5, there are only 2 possibilities for a P! triangle. It could be 1-Target
as on the left figure. In this case all the multidimensional upwind RD schemes reduce to the
same: they all send the totality of the global residual to the unique downstream node. Then P!
multidimensional upwind RD schemes just differ by the way they distribute the global residual
to the downstream nodes in the 2-Target triangles (right Figure).

Vectorial Case : In the system case, ~ is a vector of matrices, Kj is thus a m m matrix.
Because the system is hyperbolic, we have m eigendirections and their associated eigenvalues.
The system scheme is now called multidimensional upwind if it sends something only on the
eigendirections for which the associated eigenvalues are positive. There is no physical stream
anymore, as the diagonalization depends on the direction of fvj, but numerically, we can consider
that in this direction we have m characteristics directed by the m eigenvalues of kj, and that i
should receive no information on the eigendirection for which the characteristic curve is aiming
at the opposite side, see Figure 4.6.

Let us introduce some useful notations: in the following, if  is a diagonal matrix, then | |
is the diagonal matrix formed by the absolute values of the diagonal elements of . Now if
K R L is a diagonalizable matrix, then

K| R L

and we now define K K K K
7|2 I; and K 7|2 I:
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o >
. —
edg ? n;
Figure 4.6: (Multidimensional Upwind) One dimensional characteristic problem. 1; o 0,
3; 4 i 0. Then node i should receive information only on the eigendirections 3 and #4:

(I’IT 1 q);l' o 0.

When the problem is scalar, it is obvious that the absolute value notation coincide with the real

absolute value, and
k minpK; 0g Kk maxpK; 0g

4.4.2 The N-Scheme

The N (Narrow) scheme is a first order scheme, first designed by P.L. Roe ([100, 97], or
[89] page 86), very efficient in the case of pure advection equations. It has been since then the
basis for the construction of LP nonlinear positive discretizations (see PSI scheme, Subsection
4.4.5). Moreover, thanks to its multidimensional upwind character, it has the lowest numerical
dissipation among first-order schemes (see e.g. [89] p86). It is defined by the following local
nodal residuals:

oM k pui Ug (4.50)
where the “average” state 0 is obtained by recovering the conservation relation. In the P! case,
this gives

N £ o S
; P uiq Up ki q
iPT iPT iPT
» » e
K s YWN

ol ~ M dx ui ~irrtlodx
T TipT

’ Kiuj:

iPT

And because ki  k; ki and
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we have:

a (4.51)

A big problem of this scheme, is that nothing ensures ;pp k; to be non null. This appear
in particular in the regions where the advection phenomena becomes negligible. For example,
the problem is encountered for the Euler equations near stagnation points. These points being
isolated, one applies in practice a numerical flux to bypass the problem. Anyway we will use the
following notation

N k. (4.52)

The N scheme is then recast into the form
o "k Nk; i ujg (4.50)
jPT
which shows immediately that the N-Scheme is monotonicity preserving. And we have

d' Kk Nk, ¥0, @jPT:

Finally, there is no way of controlling the bounds of the ratio

T
T o
| @T ’

and the N scheme is not LP . The N-Scheme always stays first order accurate, and there is then

no need to generalize it to higher order polynomial approximation. All of this will be discussed
in Subsection 4.4.5 describing its associated LP scheme.

Vectorial Case : In the vectorial case, the matrix N is defined easily by equation (4.52)
outside the vicinity of the stagnation points, and there is then no difficulty defining the nodal
residuals by (4.50). Because the sum, product and inversion of matrices conserve the positivity
in the sense of (4.34), the vectorial N-Scheme is monotonicity preserving but it is still not LP .

4.4.3 The LDA Scheme

The LDA (Low Diffusion A) scheme is a multidimensional upwind scheme with bounded

distribution coefficients:
PLPA LDA gT. DA k; N: (4.53)

Because it respects the LP condition, it is automatically second order. But on the other hand,
in can be written as in (4.27) with

oA k; NK;: (4.54)

As one can see, there is no way of determining the sign of the ¢j, and the scheme does not
verify the monotonicity preserving condition. Non physical oscillations appear in the computed
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solutions when they show discontinuities. As presented on Figure 4.4 in subsection 4.2.2, the
numerical solution owvershoots or undershoots the exact one in the region of the shock. However,
it is a very interesting scheme, because it is very little dissipative and gives excellent results on
regular enough test cases. This is the reason why this scheme has received a lot of attention in
the past decade. The same arguments stay valid in the case of a vectorial problem.

High Order Formulation : Another main drawback of this method is that it is not easy
to generalize to PX formulation, k j 1. Let us keep the example of the scalar advection problem
(4.47) to illustrate this. The scheme can easily be extended to 2D P? problems, with
7 W,
ki ' fdx;
T

' 2 being the P? Lagr%ng% function associated to node i. In that particular case, the scheme is

well defined, because +r"' 2dx is non null for all the degrees of freedom i. But if we go now to

a 3D problem, -
v 2 ' v 1 2 WI\I v 1

- TN .
i iRy Igar'y o ortypty 1g 0 1:::3
YiN 3 T
and because r ' | is constant over the tetrahedron and 1 tdx Zl we have
» W

N, _
r'ydx 0, i 1:::3: (4.55)

7~

T

Then the values of the solution on the vertices of the tetrahedra do not contribute to the scheme:
they can be arbitrary! And we have the same problem if we consider a 2D P? problem on triangles.
If we look at numbering convention given on Figure 3.7 page 50, because basis function at DoF 10

is symmetric over the triangle, one has:
» et

e,

r'fdx 0; (4.56)
T

and the value of the solution at the barycentric center of each triangle is useless. In order to
bypass this problem, we use today the sub-triangulation. Here is the process and its illustration
in the case of a 2D P? problem.

Cut the triangle into 4 sub-triangles Ty; Ty ; Ty ; Tyv , as shown on Figure 4.7

For each of sub-triangle Tx , compute a second order global residual
o X Uj rtidx; X Ly, (4.57)
i1 Tx

Compute the first order distribution coefficients in Tx using

~ :WX

ijX 2’ C JPTX; X LV (4.58)
Distribute the global residual
» m v » YY’N
T ~irUpdx ~irupdx; (4.59)
T x | Tx

by sub-triangle, using equation (4.53).
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Figure 4.7: Convention of numbering of theP? sub-triangles.

Because it uses the rst order distribution coe cients by sub-triangles, this method is always
de ned and takes into account the value of the solution at every degree of freedom. The price to
pay is the complexity of the algorithm: instead of computing 1 global residual and distributing
it to M DoFs, one has to interpolatek? global residuals on the sub-triangles and distribute
each of them to the 3 associated DoFs.

444 The Blended Scheme

In the last years, there have been many studies trying to create a new class of schemes by
blending two types of schemes, one being monotonicity preserving but ndiP (as the N-Scheme),
the other one being on the contraryLP but not monotone (as the LDA-Scheme). One can nd
good examples of these schemes in [7, 2].

The idea is to de ne a new scheme by
PN op1o1g PA; (4.60)

wherel of course depends on the solutiom,. Then the challenge is to nd the correct criterion

de ning the blending parameter I, in order to avoid the inconveniences of the schemes one is
blending and only keep their advantages. One can also see the blending parameter as a poten-
tiometer that favors the LDA scheme in the regular region and takes advantage of the robustness
of the N scheme in the discontinuous areas. Very interesting things have been discovered in this
direction, in particular that the PSI scheme (or N-Limited Scheme) we are going to describe in
the next paragraph can be seen as an appropriate blending between the N and the LDA schemes
(see [2]).

445 The PSI Scheme

The PSI (Positive Streamline Invariant) scheme of Struijs [113] in certainly the most successful
RD scheme ever designed, for it isnultidimensional upwind, conservative LP , monotonicity
preserving and maximal compact It actually comes from the N-scheme, which is why it is
often called the limited N-scheme As we have already seen, the N-scheme monotonicity
preserving but does not provide bounded distribution coe cients. We then would like to build

new distribution coe cients ,T ;i PT, such that:

o

iPT i ’ 1, in order to keep the conservative property;
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Limit the first order distribution coefficients in Tx

Txil
Tx; :
! Tx;1
JPTx ]
Distribute the global residuals
Q)TX;Q .Tx; (I)TX;Z. X [0 1V:
i ; A AVA

First this procedure is rather complex, and it is much more difficult to implement than
the procedure of generalization of the Lax-Friedrichs scheme to higher order, presented in the
following Subsection 4.4.7. The next problem of this algorithm, is that the limited first order
distribution coefficients IT X+ are not those of the second order scheme. Therefore, nothing
anymore guarantees the scheme to be monotonicity preserving and this new PSI scheme has
pretty much the same properties as the extended LDA scheme, except it is more complex to
deal with. It is nowadays globally agreed that the PSI scheme does not present an easy enough

generalization to higher order.

4.4.6 The SUPG Scheme

Let us come to the simply upwind schemes. These schemes are not multidimensional upwind
in the sense they do not verify condition (4.49). But they have an upwind character as they take
into account the physics of the problem and always give a greater importance to nodes situated
downstream. As we have already seen in subsection 4.1.3, the SUPG (Streamline Upwind Petrov
Galerkin) scheme can be expressed as an RD scheme when P! formulation is used. The scheme
writes: o7 » VR Y

ppUPe =N poir ' KqTpTir ufqdx; (4.62)

T

which can be seen as a centered homogeneous residual distribution (the Finite Element Galerkin

scheme) plus a streamline dissipative term that have of course some upwind properties, as ex-
plained at the end of the part concerning Petrov-Galerkin formulation in Subsection 4.1.3.

If we give a look to the P! case, the matrix ~ being defined in subsection 4.1.3, it is classical
calculation to determine the distribution coefficients

T - T

supe 1 Kk 1, Kk

- °o i _ 4.63
I 3 |'T| 3 jPTkaTJ ( )

It is then straightforward the iSUPG are bounded, and the scheme is LP . But unfortunately,
the SUPG in not monotonicity preserving and the scheme provides parasitic oscillations around
the regions of discontinuity.

Higher Order Formulation : On the other hand, this scheme is quite easy to generalize to
PX formulations (k j 1) and to three dimensional problems. The only difficulty is to find the
right quadrature formula for the dissipative term. This is a point that is discussed further in the
manuscript, see Section 5.3 page 103.
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4.4.7 The Lax-Friedrichs Scheme

We finally come to the scheme that is going to be used widely in the rest of this thesis. It is
called the Lax-Friedrichs scheme (LxF) and referred as the Rusanov scheme in the literature. It
is called a centered scheme because it does not give a greater importance to one node or another
following some geometrical or physical criteria. Its formulation stays symmetrical relatively to
the degrees of freedom of the element. Its convergence is usually slower, because it does not
include totally the physics of the problem, and the solution propagates slower in the domain.
The main advantage of this scheme is its flexibility and its straightforward generalization to any
type of elements (quadrangles, tetrahedra, hexahedra, aso... ) and any type of discretization
(PX, QK, or whatever). As we are going to see, it is also monotone and first order, and can be
turned into an LP scheme easily, using the same technique recasting the first order N-scheme
into the LP PSI scheme. The problem in this case is that when limiting the LxF scheme, the
resulting discrete algebraic system may be ill-posed, and the discrete solution of the pseudo
time-stepping scheme is not going to converge toward the expected steady solution. We show in
the next chapter that this comes from the fact the LxF scheme is totally centered, and that, as
in the centered Galerkin case, it needs an additional upwind bias to fully converge.

If q denotes again the number of degrees of freedom in the element T, the scheme writes:

1 >
oPF  — o7 Ty uygq (4.64)
It is obviously conservative and it is monotonicity preserving as soon as the scheme parameter

T is large enough. To illustrate this, let us consider the discretization by a P¥ Lagrangian
approximation of the steady conservation law in quasi-linear form:

~ZI“U 0: (4.65)

The unknown u may be scalar or vectorial.
» s

o r updx
T » <
Cu ke
iPT T
T kku; T K ug
iPT jPT
Then, we can rewrite the scheme as
opF — i ug (4.66)
jer @
which is exactly the form of equation (4.27), with
T Rk
o —: (4.67)

And because Rjk is always diagonalizable, if condition

@PMn ¥ K ;@PT (4.68)
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is met, the scheme is Local Extremum Decreasing, which means monotone when a CFL condition
is provided. denotes here the spectral radius in the case of a vectorial problem. If the problem
is scalar, one just has to ensure

@PMn  T¥KS@PT (4.68)

Higher Order Scalar Discretization : As one can also see in (4.64), there is absolutely no
restriction on @, and the scheme can be applied on any kind of elements. In particular, it works
perfectly for higher order discretization. But on the other hand, there is nothing ensuring that
the distribution coefficients

LxF
T (I)i

I (PT
are bounded. It is well known this scheme is only first order as it is. The Rusanov scheme is
also very dissipative and this comes from the second term of (4.64). This term tends to diminish
everywhere the gradient and thus dissipate very much the solution. One can check that on Figure
5.4 page 106.

However, by limiting this scheme as done for the PSI scheme, one obtains the Limited Lax-
Friedrichs scheme (LLxF) that is still compact, very flexible, monotonicity preserving, and this
time formally pk  1g" order accurate. This would be the ultimate conservative scheme, if the
associated algebraic was not ill-posed. In order to bypass this problem, we are going to add a
streamline dissipative term, similar to the one used in the SUPG scheme, and this is one of the
main point of the next chapter.
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Chapter 5

Construction of a High Order Residual
Distribution Scheme

In this chapter, we are going to deal with the general case of a system of conservation laws.
As in Chapter 2, m denotes the size of the vector of variables: U P D € R™. The system
of conservation laws is usually the Euler system and then m d 2, where d is the spatial
dimension of the problem. We do not allow U to take any value in R™ because the physics often
add some constraints on the unknowns: the density , the internal energy €, the temperature T,
the pressure p, aso... must for example stay positive. D represents these constraints.

--2
D U p; ; EqQPR™; | O;E J%i 0

We are also considering only the steady solution of the PDS and the continuous system writes:

Find U PD; such that I?{ :I¥ pdg 0, @ PQ (5.1)

Boundary Conditions.

This chapter mainly focuses on the Lax-Friedrichs scheme presented in Subsection 4.4.7. This
is the scheme that has been used in most of the calculations carried out during this thesis. As we
have seen in the previous paragraph, the first order LxF scheme, first designed for P! triangles,
can be easily generalized to higher order polynomial representation in any kind of polyhedral cell.
Along the following section, we explain step by step how the steady solution of (5.1) is obtained
with this high order scheme. The theory is mainly developed on P? triangles, but details could
be given for even higher representation of the data in triangles or for Q¥ approximation. In
most of cases, the generalization is straightforward. The first section deals with the details of
computation of the total and nodal residuals already theoretically seen in Subsection 4.1.1. More
details are given about the limitation technique recasting any RD scheme into an LP one. In
a second section, we speak about the practical resolution of the non linear problem obtained in
Section 5.1. We examine the several choices we have to reach the steady state solution of the
problem. A third chapter is going to present the main drawback of the LxF method and the way
we nowadays get around it. The limited LxF scheme often leads to an ill-posed linear problem
that prevents the solution to converge. This problem is cured with an additional stabilization
term and we here explain its inconveniences and how we evaluate it numerically. In a last section,

89
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we present the main boundary conditions we need for the simulations of Euler or Navier-Stokes
problem, and we detail their practical implementation. Finally this chapter ends by a short
summary of the main points of the high order RDS implementation.

5.1 Total and Nodal Residual - Limitation

5.1.1 Global Residual

The scheme first starts with the evaluation of the Global Residual or Element Residual, which
is given by
» .

ol div '?fhpuhq dx (5.2a)
))T ~
I?! hpU hgn ds: (5.2b)
BT

As remarked in the preamble, T has not to be a triangle, and this is valid for any kind of
numerical approximation. Now, the Lax-Wendroff Theorem of subsection 4.2.1 and Proposition
4.9 enforce conditions on the flux approximation. These conditions are met when approximating
the exact flux by its k' order Lagrangian projection

"EhpUq R K, (5.3)

iPM 5,

where

I?!i I?!pUiq ¥ U pxiqq

Then, the approximated flux IE h is a k! order polynomial over the edges and by construction,
see section 3.2, we have the exact number of degrees of freedom on the edges to represent uniquely
this polynomial. Formulation (5.2) is thus totally suitable to compute the Element Residual by

~

IE »
5 5 |

o7
edgePBT  iPedge KMedgek  edge

' Kds  :Medge; (5.4)

which ig just a linear combination of the values taken by IE at the DoFs of T, with coefficients
m edge' !‘ds. These integrals are simple to evaluate and their values are identical for every
triangle. They can be precomputed. Hereafter we report the exact quadrature of the Global
Residual for kK 1:::3 in a triangle, the numbering being defined on Figure 3.7 page 50, and
iti being the inward normal to the opposite edge of i when it is a vertex of T, or the outward

normal to the edge i is belonging to when it is an extra DoF.

PL. v

P2 v
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P3. v

(5.7)

All of this is obviously true in the case of quadrangles. The extensions of these interpolations to
any kind of configuration is obvious. As oge can notice, for P? triangle, the value of the global
residual does not depend of the value of F 9. This is however not really a problem as node
10 will still play a role in the LxF nodal residual and receive a part of the global residual after
limitation. This remark is general for all the extra DoF's that are situated inside the elements.

5.1.2 Local Nodal Residual

Now we have computed the global residual, we wish to distribute it to the nodes via the first
order Lax-Friedrichs nodal residuals. In fact, these signals are only used to build the higher order
Limited Lax-Friedrichs scheme. We recall first order LxF nodal residual for q degrees of freedom

1 £l
opf — 9T 77 Ui Ujq ; (5.8)

which is obviously conservative. The big deal here is to compute well the parameter T. As
we have seen in Subsection 4.4.7, T ensures monotonicity preservingr condition when it is large
enough. But on the other hand, if it is too large, the centered term £- will become insignificant
compared to the second term jpTFiJi Ujq related to the local gradient of the solution. The
larger T is, the less related to the physics of the problem the scheme is. One wishes then to
find the finest criterion to define 7. As we have seen in Subsection 4.4.7, a necessary condition

1S

T¥ K @PT: (5.9)

Fortunately, the eigenvalues of the kj matrices are known in the case of the Euler System (see
Subsection 2.2.9) and this condition is recast into:

T maxpkeik  GQq:max jedgej (5.10)
iPT edge

where ¢ denotes the speed of the sound at point i.

5.1.3 Limitation Techniques

Finally, the LxF scheme is only first order and we wish to obtain a higher order one. Which
means we need to get at least the LP condition. In 4.4.5, we have already presented a procedure
turning the first order N scheme into the impressive high order PSI scheme. We first begin by
adapting this algorithm to the case of the vectorial LxF scheme and then discuss other possibilities
of limitations.

Scalar Case :  In the scalar case, we begin by defining the first order Distribution Coefficients:
‘1>iLZF . T i
iT T if © 0, (511)

0; else.
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and use the limitation technique already presented in (4.61) to get the gk 1d" order Distribution
Coefficients:

P (5.12)

We recall that this formula is always defined as iPT JT ¥ 1if ®T 0. Using this procedure,

the new limited scheme with distribution coefficients has the following properties:

The scheme is conservative

5

i L (5.13)
iPT
The scheme is linearity preserving . ; is always defined because = jT ¥ 1 when
®T 0 and:
O ; @& 1: (5.14)

If the first order scheme is monotonicity preserving then the pk  1d" order one is as
well because
@PT; :T¥o: (5.15)

If one has

(D!_XF T (I)T

[ Gjpdi  Uqg
jPT

with positive G coefficients, one obtains

o @ G Ug
jPT

where rG; ¥ 0; @] PT.

System Case : As soon as the residuals are multidimensional, the Distribution Coefficients
become matrices, and the procedure is much more complex. Of course, one could limit the
residual line by line (or equivalently one unknown after another) and this works quite well (see
[8, 92]). The main advantage of this choice is to be able to maintain some constraints directly
on the variables, for example positivity for the density. But in the case of the Euler equations,
it works actually much better to limit the characteristic variables (|10] page 106). To do so,
we first project the nodal residuals on the left eigenvectors L of the hyperbolic problem (5.1),
evaluated using the average state:

and in the direction tangential to the stream Ry (5. t denotes here the mean velocity in the

triangle je. the velocity vector associated to U. The left eigenvectors are defined in Subsection
2.2.9. The q projected residuals for a given linear form L; CIJJ!'XF are then limited using scalar
formula (5.12), with
Li oPF Li oPF
J J

PLXF LipbTq
J

o

jer Li
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This gives g limited coefficients Xjj ; ] 1:::9. The limited vector Py is then reconstructed
as the vector having coordinates X q .., in the basis of the m right eigenvectors Rj, duals
of the Ljs. This last paragraph dealing with the limitation of multidimensional RD scheme is
summarized in algorithm 1.

Algorithm 1 Vectorial Limitation
for i 0tomdo

forall j PT do
., L;pplefq
i 2 Lipé’Tq
Xij DY — piqur
Pid
jPT
end for
end for
forall j PT do
’ }m
(I>j by Xijj Ri
[
end for
Geometrical Representation in the Scalar 2D P! Case : Ideally, one would like the

limitation also takes into account the Upwind property. This would provide a stable pk 1"
order scheme, a perfect scheme. There exists such a limitation technique in the scalar 2D P!
case and we need a geometrical representation to illustrate it, see Figure 5.1. On the left part
of the figure is represented the Struijs limitation (5.12) for P! triangles. In the scalar case, the
three distribution coefficients IT define a unique point B in R? by its barycentric coordinates in
T. For the Struijs limitation, there are three main regions for B. B can be first situated inside
the triangle (zone 1). In that case, all the | are positive and smaller than 1, and if we denote
B the image of B by the limitation process, one has: B B. B can also be in zone 2,3 or 4.
In that case, one ,T is positive and the to other are negative. Then ; land ; 0 @ i
B is limited toward the closest vertex to B. Finally, the most complex situation is when B
is in zone 5,6 or 7. In that case, one IT is negative and the two other are positive. Then, the
limitation provides 0 and B is situated on the edge opposite to node i. Furthermore,
Struijs limitation technique conserves the ratio between the two strictly positive distribution

coefficients: .

KoK
As shown on the left on Figure 5.1, B is limited along the straight line joining B and node i
and B is then situated at the intersection between this straight line and the edge opposite to
i. Unfortunately, nothing ensures the new distribution point B to be downstream. In the case
of Figure 5.1 for example, it is thoroughly possible B stays in region 4, as point By. B is then
node 3 which is the upstream node, and this is exactly the opposite situation of the Upwind
property (4.49).

An Upwind Limitation : If we want to turn the scheme into an upwind scheme, the
limitation technique has to depend somewhere of =, the direction of advection. One possibility
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Figure 5.1: Geometrical interpretation of the limitation technique. Point B has barycentric
coordinates |; J; 1 . The geometrical transformation B PNB depends of the area in which
lies B. On the right is presented the classical Struijs limitation technique while on the right

figure we illustrate a try for an upwind limitation.

is the following: in the scalar P! case, if one considers the unique line defined by B and direction
vector 7, it crosses the straight lines defined by the edges of T at 2 or 3 points. If the advection
speed is parallel to one edge, we consider that the intersection point is situated at 8 . We then
define B 'as the one of the three intersection points that is situated the farther downstream from
B. If all the intersection points are situated upstream with respect to B, we set B! B. Then
B is obtained as the Struijs limitation of the barycentric point B' This is shown on the right
part of Figure 5.1. This gives a very efficient scheme in P! and for a two dimensional domains.
The iterative convergence is as fast as for a classical upwind scheme (N Scheme, LDA scheme)
and the result is good whereas no stabilization have been used. To assess this we have computed
a very simple pure advective problem on the unit square r0; 1s* for constant vertical advection

~ p0;lg -

g ~:|Wu 0

o, UPK; 0q sin?ph x q (5.16)

upiyq upl;yq 0

The upper boundary is let free. We have run this second order test case on 5 different triangular
grids having 10, 20, 40, 80 and 100 nodes on each boundary respectively. On Figure 5.2, we have
represented above the isolines of the solutions on the finest grid and the iterative convergence.
The solution is nice and the iterative convergence is fast. Below is presented the grid convergence.
The slope is indeed only 1:45. But if we compare these results with the ones that will be presented
in Subsection 6.2.1, we see they are everywhere better. The result is clear: the upwind limitation
is much faster and gives better results. Moreover, this new limitation technique does not fulfill
condition (5.15), because the barycentric point B is allowed to change zone (for example from
zone (4) to zone (5) for point By on the right part of Figure 5.1). Then, it should not be
monotonicity preserving anymore. But in practice, we observe that the solution is smooth and
stays bounded between its initial extremal values.

Unfortunately, its generalization to other cases that P! scalar problems is not easy at all. We
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Figure 5.2: P! results for scalar problem (5.16) obtained with LxF scheme limited by the limi-
tation technique illustrated on the right part of Figure 5.1. Above are given the isolines of the
solution on the nest grid as well as its iterative convergence. Below is shown a comparison
in term of grid convergence between this new scheme and the classical one that is going to be

detailed next.
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with | " being a pseudo time stepping parameter which dimension is

time
n .
r! i S

area

This parameter is useful to ensure the L® stability of the scheme, as we will now see.

Scalar Case :  If one uses formulation (4.27) on page 72, one has:
@PMp; ut b1 T g oW 1T g (5.21)

Gj being defined like in (4.31), page 72 as:

3 ol (522
TPD,XD;

T

*
with Ci]'- coming from the first order scheme and | 4 ¥ 0 when T 0or i

i i 0 else,

representing the limitation process. Because equation (5.10) ensures all & to be positive and

the sum of the barycentric coefficients being 1, u’ !is a mean value of the uj” . if and only
JFD;
if
1
O ! Mlo — (5.23)
Gi
jPD;

It is then sure

@PMp;  min ul = uf Iy max uf';
jPM 3 iPM

and therefore
@PN;@PMp; inf uppq & uf' & sup uppxg
xPQ xPQ

which is the L8 stability of the numerical solution.

In practice, it is complex and not needed to compute the G; though, because we have a
stronger but non necessary criterion that ensures L® stability. As seen in (4.67), page 86, for the

T and because 08 T & 1,

LxF scheme the first order monotonicity coefficients verify ’ o] i

jPT

1 1
E) - E) T
Gij
jPD; TPD;

¥ 0:

Then a good and easy estimation of the pseudo time stepping parameter ! to ensure the
monotonicity of the scheme is

n (5.24)

TPD;
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System Case : Unfortunately, the same reasoning cannot be done in the system case, because
the G are now matrices. We then keep the stability criterion (5.24) and use it as it is in the
mutidimensional problem because ' are scalar quantities. In practice, the explicit LxF scheme
applied to a vectorial problem has always given stable results so far.

Advantages and Drawbacks of the Explicit Formulation : The main advantages of the
explicit method are that it is very robust and easy to implement. As soon as condition (5.23) is
fulfilled, the scheme starts to converge. Very complex cases with very sharp discontinuities can be
easily computed. And the explicit scheme can be coded in a couple of hundred lines. One just has
to: read the mesh and do the geometry (elements areas, edges normals, extra DoFs....), initialize
the solution, and at each time step compute the local nodal residuals and update the solution,
taking into account the boundary conditions. An iteration is then computationally costless. But
on the other hand, the convergence is very slow and one has to perform a lot of iterations to
reach the steady state of equation (5.18). The convergence rate is measured by a norm of vector

TPD, @;rpiJ”q iPM - We usually use the L? norm. For a same given problem, the explicit
version of the scheme requires 10 to 100 times more iterations than the implicit version to fully
converge. The difference comes mainly from the pseudo time step. While explicit scheme time
step is restricted for stability, we show the implicit scheme is unconditionally positive. At the
end of an implicit simulation, the pseudo time steps can be arbitrarily large. Furthermore, the
domain of influence of a node during an iteration of an explicit scheme is just its direct neighbors.
The solution propagates inside the domain at the speed of the advection. Whereas in the implicit
scheme the solution is updated globally and nodes far from the boundaries are already updated
at iteration 2.

5.2.2 The Implicit Scheme

At each time step, the solution of the numerical scheme is updated using:

urt oup 1"t ofpul lg @PMag: (5.25)
TPD;
Scalar Case : We first start by demonstrate that this scheme in its scalar version is uncon-

ditionally positive. As for the explicit scheme, we suppose it can be put into the form (4.27).

Property 5.1 ( Unconditional Positivity )

For any pseudo time stepA , if the nodal residuals can be expressed as {#.27), the scheme
(5.25) in its scalar form veri es the global discrete maximum principle

@PM y; jl’Fl"l'\%nh ut = ufl | Jmax uf! (5.26)

Proof: We start by de ning the vector of unknown U™ by
@PM p;pU"g  uf;
and the two constant vectorsU . and U7}, . by

PM y; n. ¢ min u?; n @ maxu?:
@ h wmznq JPAM, 9 maz% PM,
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Then one can writeU”. o U Un

min max*

If one considers equation (4.27), scheme (5.25) is reformulated into:
AU™ 1 BU" (5.27)
with

Ny

Aii or Ypep,Gi Ay G
Bi Bij O

n
w;

¢;; being de ned by (4.31), page 72. Matrix B has only positive coe cients, then
AU™ ' BU™¥ BU" AUD . . (5.28)

min min*

If the scheme isLocal Extremum Decreasing the ¢;; are all positive and A is diagonal dominant.
This implies A is invertible and A ' has only positive coe cients [118]:

A ¥0; @j PMy:

We can then multiply both sides of (5.28) by A ' and obtain the lower part of equation (5.26).
A similar reasoning for the upper part gives the complete result. |

Vectorial Case : Once more, this demonstration can not be extended to the system case at
that moment. In fact, all the reasonning can be generalized to vectorial unknowns except one
thing. Let us explain this point and start the generalization of the proof.

We suppose the system has m unknowns and the mesh has n degrees of freedom. Then the
problem has size n:m, the vector of unknowns having n components, each one of them being a
vector of size m. We build then Up,;, and UJ,, such that

@PM p; pdfing @ pU"g ®pUp,.q:

Equation (5.25) is recast into

AU" 1 BU" (5.29)
with °

where | is the identity matrix and §; are m m positive matrices in the sense of (4.34), because
the scheme is supposed to be Local Extremum Decreasing. Thus, equation (5.28) is still true,
with A being a diagonal block dominant matrix. What is missing is a theorem showing that A
must be invertible and that A ! has only positive blocks.

Anyway, by experience the implicit scheme behaves perfectly in the system case. The initial
extrema are maintained troughout the simulation whatever the pseudo time step could be.

Practical Computation : Of course, as only U" is known, it is impossible to compute
<I>|T[:1Jﬂ lg But the residuals depend continuously of the values of the solution and it is then
possible to linearize the values of the local nodal residuals by

Bo pU"q

dTpu" 'q @ pung T uptoup (5.30)

jPM
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Thus, if one uses notation
AUP U U (5.31)

and the fact that the ®] only depends on the values of the solution at the degrees of freedom of
T, equation (5.25) is rewritten into

L > Bb;rwnq AUn > > Bq);rwnq
|

I BU; BU,

AU T @lpupg  (5.32)
i TPD; jPD; TPD;XD; i
joi

TPD;

which is a matrix system in AU". | is the m d 2 identity matrix and the right hand side
(RHS ) is the ezplicit residual.

Bl g

BU;
For example, limitation formula (5.12) is not everywhere differentiable. Once more we have
here several solutions, each one of them having its advantages and drawbacks. To understand
well why many possibilities are offered, let us give a look to the huge matrix of problem (5.32),
defined by d 2 blocks. Because the scheme is unconditionally stable, we look at the matrix for

different values of | ' PR . This matrix is sparse. We have ,in everywhere on the diagonal and
the pd 2g pd 2gblock at line i and row j is non null if and only if node i and j are direct
neighbors (belonging to a same element). The smaller the time steps ! [ are, the more dominant
the diagonal coefficients are. Thus at the limit ! " N 0, we obtain the fully eaplicit scheme. On

the other hand, if we consider ! ' going to infinity, the scheme turns into something looking as

The main point is at this time to compute the Jacobians of the nodal residuals:

Un 1 Up f1pan bof pung

which is the global formulation of a Newton scheme. It is well known that the Newton scheme
does not always converge. But when it does, it converges very well (in a quadratic manner).
We need to be close enough to the solution to be in its basin of attraction. For this reason, in
the implicit case ! ' does not ensure the stability but can be seen as a potentiometer between
robust but slow fully explicit scheme and powerful, fast but possibly unadapted Newton scheme.
Then the Jacobians forming the big matrix are descent directions, and because we just aim
for the steady state, these directions do not need to be exact. This is very interesting because
computing the Jacobians exactly is expensive. We present here the different ways to approximate
these Jacobians.

5.2.3 First Order Jacobians

In a first approach, we approximate the exact Jacobians by the Jacobians of the first order

nodal residuals (5.8) page 91, where T is considered to be constant. The matrices of the vector
of matrices —— have been given in the case of a 2D domain in Subsection 2.2.9. Let us compute
line i of the linearized problem. The Jacobians write
$ -
— & ¢ Wiggigm pa 19T ifj i
_— N (5.33)
BUj Pl T . P
% g wj@pujo;nj I ifj i
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where the vector w is the set of coefficients of the linear combination of the |¥ j:Rj in the
computation of ®T, see equations (5.5), (5.6) and (5.7). We recall that f; is the inward normal
to the opposite edge of i when it is a vertex of T, or the outward normal to the edge i is belonging
to when it is an extra DoF. We give here the vector w in the PX case

k 1
wr Ll
2°2’2
k 2
W 112'2'23
3 !3’3’3
k 3
W rl 1'13'3'3'33305
11’18’8’8,871
Remark 5.2

In the fourth order case, we can notice the zero at the last component of corresponding
to the 10*" node situated inside the triangle. This will be also the case for all the degrees of
freedom that do not lie on the edges of T. It is however not a bad news, because the di usive
part of the Laz-Friedrichs scheme is still distributing something to these nodes. The value of
these nodes being involved in the global scheme they cannot be arbitrary.

Because the —— are known, these Jacobians are easy to compute and this method is relatively

fast. The problem is that the descent direction is really too different from the exact Newton one.
The quadratic convergence of the Newton method is never met in that case. But compared to
the explicit scheme, the method is really efficient in terms of the number of iterations and of the
CPU time. One starts with small time steps in order to be sure to go toward the steady solution
and as soon as the residual "2 K pp, (IDiT[iJ "q P hkg is enough reduced, one increases the
time steps an switches to the pseudo Newton method.

A practical study of the different methods of resolution is done on the 3D Bump test case
presented in Subsection 7.3.1, page 151. In particular, we compare the efficiency of these linear
Jacobians with the ones we are presenting next, that are a bit more complex to compute, but
that tremendously help to reach the Newton quadratic convergence.

5.2.4 Finite Difference Jacobians

Another approach that has been developed during this thesis is to evaluate the Jacobian
by finite differences. The problem is that it is 2 to 3 times more expensive than the previous
method. In this case the quadratic convergence can be met and the steady state is obtained
much faster, especially when machine zero is sought. In the case of the first order Jacobian, the
convergence rate usually slows down when approaching the machine zero ("o @ 10 ©), whereas
in the case of finite differences, it tends to accelerate. All the following discussion is illustrated
by the 3D bump problem presented in subsection 7.3.1, page 151. One can especially give a look
to Figures 7.11 and 7.12 page 153, for a comparison between this Jacobian approximation and
the one described in last subsection.
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The Jacobian matrices are filled in line by line. Line | P vi; mw(I!" variable) of the pd  2q
pd 2qblock situated at line i and row j is filled in with

T

Toyn - Toyn
(I)| p“l IV]| q (I)| FiJ q : (534)

where Vi is a vector having the same size as U", having 1 on the line corresponding to the |th

variable of node j, and zeros everywhere else. T represents the vector transposition. | is the
finite difference parameter. Its value determines the precision of the approximation and depends
on the variable considered. It should not be too small in order to avoid round off problems, and
not too big in order to obtain an accurate Jacobian. In our computations, we usually use the
following heuristic formula

| maxpl0 %10 *: maxjUfljq (5.35)
iPM g

As one can see, this method requires to compute w times more nodal residuals than the
explicit scheme. It is expensive, but Figures 7.11 and 7.12 page 154 shows it is worth it, in terms
of CPU time or iterations. The main drawback of this method is pretty much the same as the
one of the Newton method. At the beginning of a simulation, the domain is usually initialized
with a homogeneous constant solution which is far away from the steady solution. One has
then to start with very small time steps in order to converge robustly. Then why use a complex
expensive method to finally use a scheme equivalent to the explicit one ? That is why, in some
cases we start with the first order Jacobian implicit method until the global residual has been
divided by a certain amount (between 10 and 100), and then switch to the faster finite difference
method.

5.2.5 Exact Jacobians

Finally, we have investigated a third method which is nowadays a total failure. We have not
found so far the reasons why this method is not working, even if it seems promising on the paper.
It should be faster than the finite differentiate and cost less in term of calculations. The idea
is to differentiate the program that generates the residual with respect to some input variables
(the nodal value of the solution in our case). This can be done automatically with the INRTA
software TAPENADE?, see [62]. To explain quickly how it works, here is an example with the
following Fortran 95 code:

SUBROUTINE test(x,f)
REAL, DIMENSION(:), INTENT(in) :: x
REAL, INTENT(out) :: f
f=SUM(x**2)

END SUBROUTINE test

then TAPENADE sends back

“http://tapenade.inria.fr:8080/tapenade/index.jsp
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SUBROUTINE TEST_D(x, xd, f, fd)
IMPLICIT NONE
REAL, DIMENSIONC(:), INTENT(IN) :: x
REAL, DIMENSIONC(:), INTENT(IN) :: xd
REAL, INTENT(OUT) :: f
REAL, INTENT(OUT) :: fd
REAL, DIMENSION(SIZE(x)) :: arg1
REAL, DIMENSION(SIZE(x)) :: arg1d
INTRINSIC SUM
arg1d(:) = 2*x*xd
arg1(:) = x**2
fd = SUM(arg1d(:))
f = SUM(arg1(:))

END SUBROUTINE TEST_D

Bf
which still compute f as a function of X, but also the directional derivatives §:Xd . Then the

following main program

PROGRAM main
REAL, DIMENSION(5) X
REAL = f,fd
x=(/ 1.0, 5.0, 3.0, 1.0, 6.0 /)

CALL test_d(x,(/1.0,0.0,0.0,0.0,0.0/),f,fd)
PRINT*, f,fd
END PROGRAM main

prints on the screen
72:000000 2:0000000

and if one uses p{0:0; 2:0; 0:0; 0:0; 0:0{q for xd , one gets
72:000000 10:0000000

We have applied this software to the procedure that computes the nodal residuals and asked
to differentiate it exactly with respect to vector U". The critical non differentiable points have
been regularized. For example, the abso}'ute value function is replaced by

o xj; i jxjE”
iXj X2 "2 g (5.36)

o s
Unfortunately, we have not been able to compute one single simple case with this method. The
simulation crashes after a finite number of iterations. It would be interesting to go further into
this approach, as it is less expensive that the finite differences and should show some better
convergence.

5.3 Convergence Problems and Stabilization Term

The main reason we have been looking for a “upwinding Limitation” is that it is a sure cure
to the main flaw of the Limited Lax-Friedrichs scheme (LLxF). In order to illustrate this flaw,
we make use of the two following scalar problems:
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1. Circular Advection: the domain is the square r0; 18> and the scalar solution verifies

$
& Bu Bu . .

upd;yq cos’pyqg @ P10;ls

The advection speed ~ Xy is circular and the exact solution is just the rotation of

the entering profile at x 0.

2. Burger Equation:  the domain is Q r 0;1s* and the scalar problem writes

$
i Bu Bu
bo— u— O ;yq PQ
% By ug, O @p yq
,oup0g 1 2x; @Po;ls (5.38)
0/ upd;yq 1 @ P 10;1s
0

upl; yq 1; @ Pi0;1s
The exact solution is given by a fan in region
tpyqPQ;ya xandy® 1 xu;

a vertical shock starting at point p0:5;0:5q and two constant plateau at value 1 and 1 on
both sides.

As one can see on Figure 5.3, the convergence rate of the LLxF scheme for problem (5.37) is
really poor compared to the first order LxF scheme or the PSI one. And if we look at the solution
on Figure 5.4, the isolines are all wiggled. It is absolutely not a problem of stability, because we
have shown the scheme is L8 stable. It is a problem of convergence: we can see that through
the fact that the scheme has not reached the steady state. What is even more interesting is
looking to the solution of (5.38) that shows discontinuities and that is also represented on Figure
5.4. Here we see that the shock is well resolved, in one cell, and that the wiggles only appear
in the smooth regions. They apparently do not come from the discontinuity but from some
spurious modes the scheme is not able to dump. This is a general remark about this problem,
as the discontinuities are always well handled and the wiggles always occur in the smooth parts
of the flow. Then the full convergence is never reached and, even if the limited version of the
LxF scheme is theoretically second order, only first order is observed in practice. We are next
going to see qualitatively the origin of these spurious modes and describe concretely the way we
overcome this problem.

5.3.1 Nature of the Problem

The problem we are encountering is a difficult problem for which we can unfortunately provide
only qualitative answers. Let us come back to a scalar problem for sake of simplicity. If we
first neglect the boundary conditions or consider them included into the nodal residuals, we have
already seen the scheme reads

o pung 0; @PM (5.39)
TPD;
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Figure 5.3: Iterative convergence curve for problem (5.37) treated with the second order PSI
scheme, the first order Lax-Friedrichs scheme and the theoretically second order limited version
of the Lax-Friedrichs scheme.
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Figure 5.4: Isolines of the solution of problem (5.37) and (5.38) obtained with the non limited
(rst row) and the limited (second row) version of the Lax-Friedrichs scheme, and with the
second order PSI scheme (third row). It is clear the non limited version of the LxF scheme is
very dissipative and thus rst order. The limited version should be second order, but because of
the appearance of spurious modes, we do not get convergence to machine zero and the solution
is nally rst order. The PSI solution is used as a reference.
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Figure 5.5: This gure illustrate equation (5.42). In the case of the simply limited LxFscheme,
it can occur that some nodei receives no information from its direct neighbours.

Figure 5.6: The SUPG-like term ensures every node to receive a certain signal by its upwind
property.
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properties as ~, it is conceivable to use a constant instead, as u? o Or simply h. What have
been observed numerically is that the more effort is done, the more efficient the stabilization term
is. A scheme using matrix N for = will converge faster that its twin using h instead. However,
for simplicity, we are usually going to consider that =  h in the following.

Finally, as we have seen through the examples given in Subsection 5.3.1, the spurious modes
occur only in the smooth regions. And the price to pay to converge with help of this new
dissipative term is to loose the formal monotonicity. We can explain that quickly in the scalar
explicit case. The scheme writes now:

» XK

. . YW
T 117 T& h por'Eddx !
jPD;s T N
> E YW m
D fol h portEger Fgax o (5.46)
jPD,  TPD,XD, T
u! Lis a barycenter of the uj”; j P Dj and the sum of the barycentric coefficients is 1. The
scheme verifies a maximum principle if and only if
)) Ly~ e~
s YN YN _
e th:r'!‘qp:r'}‘qjx ¥0, @ i

TPD,XD;

This condition is unreaghable,as there must exist an element T in Whicgl |

T
i

0.

T 0f
YW

0, and as soon as P :r ' !‘quX i 0, there exists ] PT such that TP ' ikqp":r ' J!(q:ix

Now, there are two things: the stabilized scheme is not positive anymore, which is preoc-
cupying for problems with shocks, and the limited first order scheme behaves well around the
discontinuities. The solution is thus to stabilize the scheme only in the smooth regions. This is
done by multiplying the dissipation term (5.44) by a shock-capturing function 1pX;upq defined
by "

1; where up is smooth

T h; in the discontinuities (5.47)

There are many possible choices for the parameter 1. The best choice we have experimented
so far is

TR
T 1 max maxmax% ; (5.48)

iPT TPD; jPT Juj] JuT)
where " 10 !2 or any positive number near to machine zero, and ar p et Ui a{p jer 1a

One could notice this formulation is not compact anymore, as the value at node i does not depend

only on the values at its direct neighbours. In fact, there is a way of computing this formula that

maintains the maximal compactness of the scheme. This is presented in Algorithm 2. The trick

is to add an extra variable  that allows to compute the compact part inside the parenthesis of

Equation (5.48). The rest of the formula is evaluated only at next time step by copying " into
and using (5.49).

In the case of a multidimensional problem, Algorithm 2 can however not be used as it is.
Equations (5.50) and (5.51) are only valid in the case of a scalar problem. For vectorial problems,
the shock capturing is then only based on one variable, and we usually compute it by replacing
the quantity u by the density or the entropy component.
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Algorithm 2 Sketch of the implementation of one of the possible shock capturing function. The
evaluation of T (cf. equation (5.48)) is kept compact by updating and swapping the monitors
and .
1: Initialize by 1 for all DoFs,
2: Set " 10 12
3: for each iteration k do
40 Set 0 for each

5.  for each element T do
6: Evaluate the local shock capturing coefficient 1, with
1 ; 4
T max (5.49)
7: Evaluate a mean value in T ,
Uj
ar T (5.50)
1
jPT
8: Evaluate |
u ur
T max — - 5.51
AT (5:51)

9: for~ each P’I do

10: maxp ; 19
11: end for

12:  end for

13:  Swap : o

14: end for
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5.3.3 Stabilization Term Computation

The goal of this section is to explain the practical computation of term (5.44). One first looks
for an exact quadrature formula. If one uses a PX polynomial representation, the integrand is of
polynomial order gk 1¢f, and one needs a quadrature formula of at least gk 1¢f-th order of
accuracy. Term (5.44) is computed as

T e > ~ Y’Y"SIk ~ Y’Y’Nk
Di  hiTj 7 Pg THXqGr ' iXqd TPXqOGr UpXqd (5.52)
X 4P quad

The problem is that a quadrature formula of gk 1¢f-th order of accuracy represents quickly
a tremendous amount of quadrature points when K is growing. Then the question is: do we
really need an exact quadrature, and if not, what is the criterion on the quadrature formula
ensuring the dissipation term to play its role 7 To answer this question, we need to define what
the necessary properties of this term are. First, the term has to be of the same magnitude of
accuracy as the nodal residuals. As we have already seen in the previous subsection, if we inject
the PK projection of the solution of the continuous problem into the dissipation term, all the
terms of the quadrature sum will be of the desired order of accuracy.

7~ Ty

SR ¢\ ~ ¥R
hiTj 1 “mXqqr ' £mqd  “XqGr U Xqd  Oph* 2g @qP quad:

Second, we have to ensure the term has some dissipative properties, because we want it to
distribute some information toward the ill-posed nodes and then dump the spurious modes. In
other word, we need the following bilinear form
T - , ~_ W I
Di pu;vg  hiTj 1 lq TPXqGr UpXqq  TXqOr VXqQ (5.53)
x 4P quad

to be positive definite. This reduces to ensure

Dlpu;uqg 0 U ~MN o (5.54)

This condition is met when all the weight coefficients | q are positive and the quadratyge formula
uses enough quadrature points to define uniquely the pk  1d" order polynomial r Up. The
computation of the stabilization term is sumed up in the three following points:

The formal order of accuracy is unconditionally met;

@Paquad;! qj 0, for example, ! 4 is always 1 or m;
Quadrature formula uses kpx 19 quadrature points:
2
k 1
#tquadu y

and if we finally consider the general case of a vectorial problem, the practical computation of
the stabilization term writes:

kpe 1a(2 W N
DI hiTj r Uj ~poar' (mqd  “mqar ' fmqg (5.55)
q 1l jPT
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Order 213 4 5

DoF 316(10| 15

'T 3619 12

D! 1[3] 6] 10
Consistent | 1 | 6 | 16 | jj

Table 5.1: This tabular shows the number of quadrature points needed to compute the global
residual and the dissipation term. Line Dit shows the number of points needed in our formulation,
and line “Consistent” shows the number of points needed when an exact quadrature would have
been used. The bottom right box just tells this number is very big in the 5" order case. We
have not find a quadrature rule integrating exactly a 2D polynomial of order 16!

One can compare on Tabular 5.1 the number of quadrature points needed in an exact quadrature
formula with the number of quadrature point strictly necessary. With this small trick, we have
very much reduced the computational cost of this dissipation term.

In the case of an implicit scheme, one wishes to find the Jacobian matrix associated to this
extra term. That for, we make the hypothesis that the advection is constant (or at least not
depending on the value of the solution) and the Jacobian is straightforward. The contribution
of the dissipation to the it line and j row of the left hand side matrix is given by

krk} 19{2 . m m
Noissp §  hiTj 7 o 0e (o SV IR s (PXC { e AV (5.56)
al jPT

Finally, one can look at Figures 5.7, and 5.8 to observe the effects of this additional term on
the isolines of the solution, as well as on the associated convergence curve. The convergence is
completed to machine zero and the obtained solution is much better. The results are of the same
quality as those obtained with the PSI scheme.

5.4 Boundary Conditions

At this stage, we have not been much speaking about the boundary conditions. They have
been mostly neglected for sake of simplicity. It is a difficult topic because their construction
is often intuitive and their explanation never totally rigorous. In CFD, there are two types
of boundary conditions: the strong and the weak ones. The strong boundary conditions are
bound to the Dirichlet condition: uypxq 0; x P B . A value is strongly imposed to one
or several variables of the solution. This is the case of the supersonic inflow or the solid wall
boundaries. They are interesting because the boundary condition is reliably exactly imposed.
Nevertheless, these conditions are not very much appreciated because they are not fully consistent
with the global formulation of the scheme. The scheme comes from the weak formulation of the
continuous problem and one needs then to start from here to build the boundary conditions.
What we generally obtain is an extra boundary flux to distribute to the degrees of freedom lying
on the border of . This is what we call the weak boundary conditions.
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Figure 5.7: lterative convergence for the stabilized Lax-Friedrichs scheme. The machine zero is
reached and the theoretical second order of the scheme is met, as illustrated below.

Figure 5.8: Iterative convergence for the stabilized Lax-Friedrichs scheme. The machine zero is
reached and the theoretical second order of the scheme is met, as illustrated below.
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This works in the implicit case with the appropriated matrix lines, but we also have a second
possibility. Instead of changing the right hand side, we can maintain it to zero and replace the
line of the diagonal block of the matrix corresponding to the velocity at i by

uwall 1 0 0
uil;vall 01 0 (558)

This has exactly the same effect.

5.4.3 Slip Wall Boundary Conditions

As we have already said in the previous subsection, in the case of Fuler simulations the fluid
is considered to be non viscous, and it is not stuck to the walls. The fluid is nevertheless still
not able to pass through the walls and the no-slip condition is changed into the slip condition
tn 0.

As explained in Subsection 2.1.5, page 20, U is the solution of problem (5.1) with boundary

conditions, if it verifies, for any ' P C'pq

» o » .

FN: I?! pU qdx ' IH pJgn ds 0; (5.59)
BQ

Q »

o FN:'F-[pqux

TRM ), T BTXBS

'Ingo;ﬁds 0

with 1t being the outward unit normal to the boundary. We here consider that the same boundary
condition is applied to the whole edge of Q. In the reality, there are usually many different
boundary conditions to apply to the problem, and one has then to split the contour integral
into the right pieces. Now, U}, approximates the exact solution as the unique solution of th

Spanipy , ' :‘ verifying (5.59) for any shape function ' ; associated to node i. If i is situated
inside €2, ' ; has a compact support in Q and the right integral in (5.59) is zero. The scheme
reduces to gather the signals coming from the different elements of Dj. But if i lies on the
boundary, the right integral is not null anymore and its role is to enforce the slip wall boundary

fluz, which is given for the Euler equations by

0

\ n

¥ U Qom0 Enz : (5.60)
0

Then for a DoF on the boundary, after applying the Green formula inside T to the left integral,

the weak formulation over the mesh M y, reads:
» .

' Kidiv ¥ hPJhq dx (5.61)
» ~ ~

i IEhFJUthu:n 0q IEhFith nds 0

BT XBQ2
which is the residual distribution plus a additional boundary term enforcing flux

5

TPD;

t:n
ut:n
R
ho:n

IE sipPJ ;g IE PU qpain 0g IE puq n (5.62)
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on the boundary edges. h  E  p{ denotes the specific enthalpy.

Without any further explanation, this is exactly what we do in the case of a RDS. We first
compute the global residuals and distribute them to their respective DoFs. Afterward, we go all

over the edges of M , lying on the boundary, compute the terms
» .

B fdee ' :‘IE sippJ "; mqds; (5.63)
edge
d add them to the residual of the corresponding boyndary DoFs. One has to remark that as
@nh is built as the PX projection of the continuous flux F , the computation of this term is just a
linear combination of the values of the enforced flux at the degrees of freedom of the edge, which
coefficients are the i line of the symmetric mass matrix

»
M ij 'k kds: (5.64)

0

The computational formula writes:

~

Biedge ) M K ; IE hpJj Qpun 0g IE hPJjq :Redge (5.63)
j Pedge |

where Redge is still the outward normal to the boundary but its norm is the length (jedgej) of
the considered edge.

5.4.4 Far-field Conditions

In CFD, we are often simulating problems that require infinite large domains. We can of
course not consider these domains entirely and we then use large computational domains such
that the boundaries are far enough from the simulated aerodynamic object. It is therefore
usual to consider these external boundaries as if they were situated at the infinity and that the
solution is almost constant around these boundaries. We wish then to impose a far-field flux on
these edges, as if the domain were drown in a infinite space filled with a homogeneous steady
state. Because the equations are invariant by Galilean transformation, this will act as if the
aerodynamic object was moving at the speed at infinity in a steady domain.

We have seen in Subsection 2.1.9 that the good way of treating boundary conditions is to
enforce the external conditions only on the entering characteristics, and to let the solution be
on the outgoing characteristics. In the case of the two dimensional Euler equations and for a
subsonic flow, there are usually 3 entering characteristics and 1 outgoing one. Furthermore,
we assume that the solution is constant enough on the vicinity of the boundary such that the
advection is constant, and the flux can be approximated by
& q

BU

Now the flux crossing an edge has two components. Because the problem is hyperbolic, if Nedge
is the outward normal scaled by the length of the edge, one has

IE PU gRedge “pJ GRedge U (5.66)
K PUinedgeqU

¥ g

Uu ~puqU: (5.65)

PU;nedge qU K PU;nedge qU ’
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The last two terms represent the outgoing and ingoing flux respectively. Following, what has
just been said, we want the ingoing flux to be the flux at infinity and the outgoing one to be the
flux related to the solution. This is called the Steger-Warming flux and it is defined by

~

IE SW FU ) U g, nqQ K pU;an 8 K pU;an . (5.67)

If we follow the arguments in previous subsection 5.4.3, one needs to add the contributions of
the edges sharing i to the residuals of a node i of the boundary. They write

» . .
edgeSW k . .
B ti IESWFiJn’UB-“'edgeq Iﬁhwnqﬁedge ds
edge
»
k
' I K

sage pU;nedgequB Uq ds: (5.68)

Once more the flux is supposed to be of the same polynomial order as the solution, and the
Steger-Warming contribution is computed as

gedessW ko Kot imeged®® U0 (5.69)
j Pedge I

Boundary Condition Jacobians : In the case of an implicit scheme, one needs to compute
the Jacobians of these boundary contributions and add them at the right place in the matrix
of the problem. For the Steger-Warming boundary condition, it is not a difficult task, as the
additional Jacobian at line i and row j is

k .
M ij KPUj?nz'jQ' (5.70)
This is also valid for the previous slip wall boundary condition. In this case, one has first to
compute the Jacobian of the imposed flux,

ég slip .

Jslip BU

and the Jacobian of the boundary contributions at line i and row j writes

M K i JsippJi; nG (5.71)

5.5 Summary of the Effective Implementation

Here is a quick summary of this chapter. The goal is to fully describe in a couple of lines
the way the Limited Stabilized Lax-Friedrichs scheme is implemented is P2. U represents the
numerical solution at pseudo time-step n. The proposed method is implicit. For explicit scheme,
just remove the items dealing with the left hand side matrix. The solution is either scalar or
vectorial. Difference will be given when needed. Except RHS which represents the Right Hand
Side (also called the explicit residual), all the notation have been already presented.
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For all the elements T of the mesh do:

Compute the Global Residual along the edges of T
3 @ ) 6 o
s i > 2
I6 ! §|¥ i
i1 P4

q)T

Compute T as

T . ; ;
ik : d
maxpkerik G max jedge]

and for each degree of freedom of T, compute the Nodal Residual
1 >
q);I' 6 q)T T pUi Uj q
jPT

In the case of a vectorial problem, apply algorithm 1 page 93. In the scalar case, compute
the first order Distribution Coe cients

T 9
1 @T ’
limit them
T
. |
1
. T
iPT J
and get the second order Nodal Residual
S L
Compute the Stabilization Term
a2 ViR ViR
DI jTj® 1 Uj “pa@r ' fmqd  ~PXoGr ' [Xqd

al jpPT
Assemble the left hand side matrix, using either the first order Jacobians or the finite
difference Jacobians with the matrix associated to the stabilization term
ok 1af2 il ViR
) B s ~ AR ~ VK
PJDissip q; [N XqQr = i Xqq Xqdr = jXqq
ql jpPT
Gather the received signals

@PT; RHSp@q & D/

For all the edges lying on the boundary do:

Compute and distribute to the DoFs of the edge the associated Boundary Flux | in the
case of a weak boundary condition. Add the boundary flux Jacobians to the left hand side
matrix. In the case of a strong boundary condition, do nothing. These conditions must be
treated after all the weak boundary conditions have been covered.

Apply the strong boundary conditions and their effects on the matrix.
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Solve the obtained system, update the solution and go to next time step!
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New Developments and Illustrations
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Chapter 6

Hybrid Meshes

One of the main advantages of the RD Lax-Friedrichs scheme we are presenting in this thesis,
is its easy generalization to any type of polyhedral element. Using the QX basis functions defined
in Chapter 3 on any convex quadrangle, we discuss in this chapter the extension of the LLxF
to the computations on hybrid meshes. As we shall see, the use of such meshes presents some
interest when looking at the accuracy of the obtained solution and the computational time. So
far, the method has only been developed for 2D problems, but we are convinced the results we
are showing stay valuable for 3D meshes containing hexahedra.

6.1 Formulation of the Stabilized LLxF Scheme on Quadrangles

6.1.1 Global and Nodal Residuals

We recall that for any convex quadrangle Q there exists a unique Q' diffeomorphism '
transforming the reference element ® r 0;1¢ into Q, completely described by formula (3.11).
The QX basis functions defined on the reference element are transported to Q thanks to ' and
we obtain pk  1¢ basis functions on Q that are polynomial of order k along the edges of Q and
that verify:

@j PQ; QFfpjq

The fact that the restriction of our approximated function is polynomial of the right order on
the edges is very useful, because one just has to use the degrees of freedom of the edges and the
right weight coefficients to compute the Global Residual of Q as a contour integral. This is
shown on Figure 6.1.

We now have all the necessary elements to formulate the Lax-Friedrichs scheme on quadran-
gles, thus obtaining the first order distribution coefficients that we limit in order to obtain the
pk  1g" order distribution coefficients. As one can see, nothing really changes compared to the
triangular formulation, and the extension is straightforward. Concerning the Stabilization Term,
there are some differences with respect to the PX case. The next paragraph is devoted to this
aspect.

123



124 Chapter 6. Hybrid Meshes

Figure 6.1: Global Residual computation inQ', Q2 and Q3 quadrangles.

6.1.2 Stabilization Term Computation

As we have seen in Subsection 5.3.3, th8tabilization Term is calculated via a quadrature
formula. In order to be e cient, we need enough quadrature points to de ne the gradient of
the solution uniquely in the quadrangle. The problem is that the form functions are de ned as
the QX functions over the reference quadrangle composed with th&"' transformation ' . We
recall that the Jacobian of this transformation is denoted by J. Moreover, the gradient of a
QX function does not have to beQ* '. The only thing that is sure is that the gradient of the
solution is a QX function and we are going to use all the DoFs of the quadrangle as quadrature
points, in order for the Stabilization Term to have some dissipative properties. Thestabilization
Term is computed as follows:

» rs e r~
D2 he  ~ e~

» Q

3 3 W _
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If denotes the inverse function of , one has
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h Vertices Triangles Quadrangles
0.1 114 190 36 7
0.05 468 858 128 365
0.025 1784 3410 | 480 1465
0.0125 T 15236 | 1982 6627
0.01 11454 22510 | 2858 9826

Table 6.1: Number of vertices, triangles and quadrangles constituting the different meshes used
for the grid convergence. The left number in the column Triangles corresponds to the number
of triangles in the triangular mesh, while the right one is the number of triangles in the hybrid
grid. Hybrid grids have then about two times less elements than the triangular twin ones.

Figure 6.2: Coarser hybrid grid and the 4" order solution obtained on the finest hybrid grid for
problem (6.3).

other points, the slope of the mean square straight line is now 1:8, which is far better. Another
very interesting remark is that for the same number of vertices and the same sought order of
accuracy, the hybrid grid is generally doing a better job. This being true above all for the finest
grid (h P t0:0125; 0:01u). We explain that the following way: if we consider a convex quadrangle,
we can divide it into two triangles. If we make use of a PX approximation on the triangles, we are
going to add extra DoFs on the edges and inside the triangles. But if we now recombine these
two triangles, we obtain exactly the quadrangle with its Q¢ DoFs. And in the case of triangles
the approximation of the exact solution is piecewise polynomial of order K, while in the case of
the quadrangle, for the same number of DoFs, we have the approximation of polynomial order
k, plus the mixed terms coming from the QX framework. Then the global finite dimensional
subspace of approximation for the triangular mesh is included in the subspace of approximation
for the quadrangular grid, and it is correct that the approximation is better with quadrangles
than with triangles.

Finally, one would also like to compare the two simulations in term of computational time.
The CPU time (in seconds) needed for 1000 iterations are reported on Table 6.2. The compu-
tation on the hybrid grid is almost always faster, except for the 4" order approximation on the
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Figure 6.3: Mesh convergence for the simple constant advection problem (6.3). The mean square
slope are calculated with the errors measured on the hybrid meshes (represented by circles,
squares and triangles). The star points correspond to the same simulations on triangular grids
(same problem, same number of vertices).






6.2. Numerical Results 129

6.4. For all the test cases, the solution is going to be null outside the disk of radius %. Then,
the advected form will be imposed only on boundary plgand the value 0 will be maintained on

boundaries p2q and p3qg

We are going to impose a shape function on boundary plg with compact support in r %; 0s,
and observe the advected function on the output boundary r0; 1s We start by the regular function

4 x
.8 .
sin® — 6.5
: (6.5)
on boundary plg If value 0 is maintained on the other inflow boundaries, the exact solution is
obviously "
sin® 4 5 ifr x2 y?
0; else

3
1 (6.6)

The value of the solution at the degrees of freedom of the output edge X r 0;1sare represented
on Figure 6.5 for 2" and 3™ order simulations. First thing, even if the mesh is rather coarse, the
3 order simulation gives a very fine result for all the grids. There is no big difference between
the meshes in that case. Tt is much interesting to look at the 2" order approximation. In all
cases, the scheme is diffusive. But what is clear is that the more quadrangles are used in the
grid, the less diffusive the output function is. This confirms the remarks made in the previous
subsection: the quadrangle approximation uses a wider space of approximation and is then more
accurate.

We now consider a discontinuous solution. The input form function on boundary plqis the
characteristic function of interval r%; %s, (1,3 JPK|gand the exact solution is given by

a
10, if: or x2 y2 3

0:0; else (6.7)

The output degrees of freedom are plotted on Figure 6.6. As before, the solutions on grids
containing quadrangles are very slightly better. The discontinuities are a bit better resolved.
But we have been testing this case above all to check the behaviour of the scheme in presence of
discontinuities. As we said in Subsection 5.3.2, the stabilization term destroys the monotonicity
preserving property of the LLxF scheme, and we should use a shock capturing function to
annihilate the effects of this term in the vicinity of discontinuities. Here we have set uniformly
equal to 1. However, the 2"
oscillations. On the 3" order simulation, we can see that some over- and undershoots appear at
points 1, 2 and 3. These oscillations could have been almost completely eliminated with a good
shock capturing function . But, the global behaviour of the stabilized limited Lax-Friedrichs
scheme is rather good, the oscillations are almost insignificant. Eventually, it is important to
notice that the formulation on triangles seems to be a bit more stable as the overshoot at point
2 is nonexistent for triangular grid.

order simulation is very good and we can not really see any spurious

6.2.3 Higher Order Efficiency

We now come to the system case. We consider an Eulerian Mach 0:3 flow around a unit
sphere. The computational domain is r 10;108’. It is maybe not big enough, as we are going
to see in the following. We have built many different grids for this problem. They are built
on the approximation of the sphere boundary with 10, 20, 40, 80 and 100 points respectively.
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Figure 6.4: TriTri, TriQua and QuaQua meshes used for Problem (6.4). The green edges
plg P2gand p3q are the in ow boundaries.
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Figure 6.6: Value of the solution at the DoFs situated on the output boundary for2" and 3
order approximation. The input function is r%;%Sp|x|q.
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Figure 6.8: Convergence of the lift coe cient. Each color denotes an order of accuracy, stars are
the triangular grids, circles and squares the hybrid ones and lines are the mean square straight
lines of the circles and squares set.

Figure 6.9: lterative convergence for all the meshes of the sphere problem. On the left are the
iterative curves of the second order simulation whereas the right gure corresponds to the third
order ones.
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Figure 6.10: Same60 isolines of created numerical entropy for second order scheme (up-left),
second order scheme on the third order sub-triangulated mesh (up-right) and third order scheme
(below).
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the quadrature points. For the dissipation term, the reasoning is the same than in Subsection
5.3.3. The accuracy of the scheme is always maintained and the term is dissipative if and only if
we have enough quadrature points to define the gradients a unique way. Equation (5.55) is still
valid, but the gradients of the basis functions are different and have to be recomputed. Finally,
the slip wall boundary contribution on the sphere edge is calculated as (5.63), with a 4" order
quadrature because once more the boundary fluxes and the normals are quadratic functions of
the coordinates.

We have plotted on Figure 6.11 the same entropy contours for the second order, the third order
and the third order with parametric boundaries solutions as well as the lift convergence curve.
For the entropy isolines, the result is pretty clear: compared to second order, the third order
simulation reduces the numerical entropy production, even more when using the isoparametric
representation of the boundaries. In the last case, the entropy production is almost insignificant
compared to the P! computation. Unfortunately, things do not improve as far as the convergence
of the lift coefficient is concerned. The 3™ order slope is not reached as expected, and the slope
of the mean square straight line is even worse than in the case of the linear representation of the
boundaries. However, except for the finest grid, all the point for the isoparametrical simulation
are situated beneath those of the previous 3™ order simulation. As in the case of the linear
representation of the boundaries, the scheme has not fully converged, and this may be due to a
lack of maturity of the hybrid scheme.
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Figure 6.11: Entropy isolines and lift coefficient convergence for the sphere problem. Up-Left
figure is the entropy contours for second order simulation, Up-Right is for third order simula-
tion with linear representation of the boundaries. Down-Left is for third order simulation with
isoparametrical elements. Each of these figures represents the same 50 levels of isolines. Finally,
the down right figure compares the lift coefficient between the linear and the isoparametrical
representation of the boundaries.
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Chapter 7

3D Simulations

This chapter is devoted to the simulation of the Euler equation in three dimensions. Even if
we are going to treat only steady Euler test cases, we first start by generalizing the construction
of the unsteady Navier-Stokes system done for a two dimensional domain in Section 2.2. The
three dimensional steady Euler system is obtained by ignoring the time dependent terms and
remove the viscous effects. The speed has now three components u;v and w and the vector of
unknowns is

u

u Voo (7.1)
w
E

The three dimensional unsteady Navier-Stokes equations read:

% div IEpUq pKijU;q div K:m : (7.2)

where, using ; to denote the i!" column of the 3 3 identity matrix,

~ UI
IF‘[ pFi;FaFaq; Fi uig pi ;i 1:::3
PE  pyi

is the advection flur and K is ad  d diffusive matrix of m  m (m d 2) matrices that are
detailed in Appendix A. In Appendix B we have also reported the Jacobians of the advective

flux A Wl’ B —2andC —>. The diagonalization of the 3D advection speed in any

direction 1 is also given. The left and right eigenvectors as well as the eigenvalues are needed
for example to define the limitation over the characteristic components of the residual.

3D computations are much more complex compared to the 2D ones. First of all, the result
is harder to analyze. It is much more complicated to find a local irregularity (for example a
problem on the boundary) in a three dimensional solution than in a 2D one. In 2D, one can
represent and see all the points of the domain globally. But in 3D, the only thing we can watch
are slices of the solution. In a second time, it is really much easier to reach the limit of a
processor capacity with a 3D computation. It is not uncommon that a node has 100 neighbours
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in a P? simulation on tetrahedra. Then each line of the matrix needs about 40kBytes of RAM.
Multiplied by the approximately 3n DoFs (n being the number of vertices), this represents 0:1n
MBytes to load just the matrix of the linear system in the RAM of the computer. Then if n is
larger than 10° the computation cannot be done on a single processor. In order to distribute this
memory load between several processors, we have been developing a parallelized version of the
code. We make here a small parenthesis to present the implementation and the performances of
the parallelization of the RD schemes.

7.1 Parallelization

Parallel computing is a form of computation in which many calculations are carried out
simultaneously, operating on the principle that large problems can often be divided into smaller
ones, which are then solved concurrently ("in parallel") [11]. In our case, one of the good feature
of the Residual Distribution Schemes is they are compact. That means that at each time step,
the value of a degree of freedom is updated using only the values of its direct neighbours (the
DoFs sharing the same elements). If we have the possibility to use n processors, we can then
divide the mesh into n load balanced sub-domains (containing approximately the same number
of DoFs) and ask to each of the processors to update the values of the DoFs of one single
domain only. We will call inner degrees of freedom, the set of DoFs of a sub-domain whose
direct neighbours are all lying in this sub-domain. For these DoFs, their values can be updated
independently of the values of the DoFs of the other sub-domains. As we said in the beginning:
“they are solved concurrently”. The problem comes from the DoF's lying on the vicinity of the
edge of each sub-domain. For these nodes, the processors have to share some data in order their
values are correctly updated. If this is not done a smart enough manner, the computation is
certainly not going to be n time faster, which is one of the main goals of the parallelization. For
example, if we do the so called synchronized parallelization, each processor waits for the others
when he is done with his task, and the memory sharing is realized only when all the processors
have finished their computing. This is not an efficient technique at all. In fact, the size of the
problem is usually very big compared to the number of processors available. This means that the
number of inner degrees of freedom is very large compared to the quantity of data the processor
has to share. Then, one can renumber the elements of the sub-domains such that the elements
having a node on the edge of the sub-domain have the larger number. When the processor starts
the iteration, it can simultaneously update the values of the inner degrees of freedom and share
the needed updated values (during the previous iteration). This is possible because on modern
processors, the algebra unit is always separated from the communication one. This technique is
called the asynchronized parallelization and provide a much better speedup.

7.1.1 Domain Decomposition

For the domain decomposition, we have been using Scotch, which is a “Software package and
libraries for sequential and parallel graph partitioning, static mapping, and sparse matriz block
ordering, and sequential mesh and hypergraph partitioning” °, developed at INRIA Bordeaux
Sud-Ouest by Francois Pellegrini [77, 78, 79]. It is available under the CeCILL-C free/libre

Shttp://www.labri.fr/perso/pelegrin/scotch/scotch_en.html
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software license [29], which has basically the same features as the GNU LGPL (“Lesser General
Public License”). The main characteristics of Scotch for domain decomposition are the following:

Balance of the computation load across processors,
Minimization of the inter-processor communication cost,

Treatment in OMeggedd

As we have seen in the previous section the load balancing is a very important step. During
a computation, it is not really to be desired some processor has one or more iterations in advance
compared to the others. To prevent such a situation, we still have to synchronize all the processors
at the end of an iteration. If the load balancing is well done, the computational cost of such
a procedure is negligible. But it is costly when a processor is much slower than the others. In
this case, all the processors are going to compute globally at the same speed as the slowest one.
The quality of the domain decomposition is also quantified by the inter-processor communication
cost. This results from the exchange between the processors of the values lying on DoFs whose
direct neighbours are not all in the same domain. Because the RDS are compact, all these special
DoF's are situated in a stripe which width does not exceed one element. We will call this region
the overlap. Then minimizing the inter-processor communication cost is equivalent to minimize
the number of DoFs situated in the overlap, which can be simply done by minimizing the length
of the separating surface between the domains.

In a first attempt of parallelization, we have not chosen a good solution, though. We have
decomposed the mesh element by element, and balanced the processors load by taking into
account only the vertices of the mesh. This is not the best choice as soon as we want to execute
a higher order simulation, because we were generating the higher order mesh on the already
decomposed domain. Nothing ensures the load balancing is maintained and it is pretty sure
there exist splitting ways using some extra DoFs that minimize much better the overlapping
areas. Thanks to the work of Cédric Lachat, during his Master degree internship at INRTA
Bordeaux, we are today first generating the higher order mesh and only then do the domain
decomposition with Scotch. However, this work is too recent and all the results presented in this
chapter are using the previous solution. That is also why the next Subsection about the overlap
treatment assumes that the domain decomposition has been done on the first order mesh.

7.1.2 Overlap Treatment

All the arguments of this section are illustrated on Figures 7.3, 7.4 and 7.5. Let us first give
a look at Figure 7.3. We have two domains, one blue, one red, each one of them belonging to a
different processor that will be called simply the blue and red processor respectively. The mesh is
P2 and all the degrees of freedom lying on the splitting way belong to the blue processor. In order
to update well their values, the blue processor has to know the values of all its direct neighbours.
In particular, it has to know the values of the green DoFs (see Figure 7.4), that belongs actually
to the red processor. The same thing on the red side, see Figure 7.5. To update correctly the
values of the nodes situated at a distance of less than one element from the separating edges, the
red processor has to know the good values of the nodes lying on the separating edges. Then the
blue domain is extended by one element width and the red one is extended by the separating
edges. However, the values of these green ghosts nodes are not updated at all in the associated
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Figure 7.1: A example of a domain decomposition on 16 processors for a subsonic NACA012
mesh.
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Figure 7.2: Detail around the stagnation point of the upper gure.
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Figure 7.4: Blue processor computational domain. The blue degrees of freedom are the updated
values. The green ones are the ghosts nodes needed to update the values of the blue points
correctly.

Figure 7.5: Red processor computational domain. The red degrees of freedom are the updated
values. The green ones lying on the separating edges are the ghosts nodes needed to update the
values of the red points correctly.
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Figure 7.6: Speedup curve for,2,4,8,16 and 32 processors on &:5 ne P2 NACAO012 simulation.
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Figure 7.7: Numbering convention forP' and P? tetrahedra. When splitting the tetrahedron
into sub-tetrahedra, the inside rhombohedron is split by its7 9 diagonal.

E\Ih being a P function, this last integral is just a linear combination of the uxes on the
DoFs sharing the face, the coe cients being the integral of the 3D Lagrangian basis function
over the considered faces. Thglobal residualis computed in practice as:

In P,

In P2,

One can notice that in P2, the vertices of the tetrahedron do not interfere into the computation of
the global residual However, their values will still be used in the rest of the distribution process.

Otherwise, the rest of the scheme is almost straightforward. The Lax-Friedrichs rst order
residual is easily generalized to tetrahedra, the limitation is done following algorithm 1 page 93
and the stabilization term is computed using enough quadrature points in order the gradients
are de ned uniquely.
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Figure 7.10: Comparison of the isolines of the horizontal velocity u of the second (black) and
third order (red) solutions of the 3D bump problem.

Figure 7.11: Residual L! norm convergence plotted with respect to the number of iterations for
the schemes using finite difference and first order matrices.
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Figure 7.12: ResidualL' norm convergence plotted with respect to the CPU time (in seconds)
for the schemes using nite di erence and rst order matrices.
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Figure 7.13: 2 solutions of the three dimensional Blunt Airfoil problem. The top one is the second
order one, and the bottom one represents the solution obtained with a second order scheme on
the subdivision of the third order mesh. Color palette represents the entropy while the isolines
are based on the density component of the solution.
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Figure 7.14: Third order solution for the Blunt Airfoil problem. As for Figure 7.13, the color
palette represents the entropy while the isolines are based on the density component of the
solution.
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7.3. Numerical Results
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Figure 7.16: Zoom on the mesh at the end of the wing. We can see the representation of the
body is very poor, there are even holes near the trailing edge. This could possibly explain why
the third order simulation crash suddenly after a small convergence.

Figure 7.17: Pro le of pressure around the wing az 0.



























































































































