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Summary

The problem of the separated flows dynamics past obstacles at rest or moving bodies
is addressed by means of the study of two topics

• investigation on the existence of some steady solutions of the Euler equations
and of the Navier-Stokes equations at large Reynolds number, past bodies
characterized by a cusp;

• analysis of the unsteady wake behind a Vertical Axis Turbine (VAT).

The survey of such different flow regimes related to the separation phenomenon past
bluff bodies or bodies at incidence allowed to devise several numerical and analytical
techniques based on the evaluation of the vorticity field.

This work is divided into two parts, corresponding to the study of a steady and
an unsteady problem. In the first chapter the 2D incompressible steady flow past
a certain class of obstacles is taken into consideration. These obstacles consist in
symmetrical or unsymmetrical bodies which protrude from a wall and present a
sharp edge, where the non-singularity condition of the velocity (Kutta condition)
is enforced. A flat plate and a curved plate are the geometries taken into account
for the study of the flow field bounded in a channel, while a class of ’snow cornices’
is considered for the unbounded stream problem. The existence of a steady vortex
wake past past such bodies is analytically investigated by means of the potential flow
theory where the vorticity is modelled as point singularities. If a geometry admits
a point vortex solution in equilibrium and satisfies the Kutta condition, then this
solution is desingularized through some various numerical procedures converging on
the grid. The suggestion that the point vortex is interesting as it is the seed of a
family of distributed vortex patches is widely discussed and examined by means of
a continuation method.

In the second chapter, the unsteady flow field generated around a VAT is ad-
dressed through both an inviscid and a viscous analysis. The inviscid analysis is
carried out by means of a numerical-analytical procedure based on the conformal
mappings and the potential flow theory. Some simulations are performed on a single-
blade architecture, where an innovative blade section based on the vortex trapping
technology is tested. A theory to study the doubly-connected domain problem is
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devised and applied in the case of an impulsively started airfoil equipped with a
flap. In addition, a low-order model of the vortex wake is proposed for a two-blade
architecture of the turbine. The problem of evaluating the dynamical actions ex-
erted by the fluid on a system of moving bodies is solved by means of the theory of
the hydro-dynamical impulse of a vortex. Finally a method to compute the perfor-
mances of the turbine without knowing the pressure field is devised and analytically
verified.

A vortex-in-cell method is developed in order to solve the 2D viscous flow field
past the turbine. The bodies’ geometry is implicitly defined by means of a dis-
tance function, and the no-slip condition on the moving solid boundaries is enforced
through a penalization technique. Such numerical method is tested on the classical
2D circular cylinder benchmark for different Reynolds numbers. The forces exerted
on the bodies are evaluated by an impulse-based formulation of the Navier-Stokes
equation, which needs only the velocity field and its derivatives.

The conformal mappings used in this work and some remarks, examples, math-
ematical derivations are collected in the appendix.
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Chapter 1

Introduction

This work has not the ambition of treating in-depth the physics of the flow sepa-
ration nor of providing a phenomenology of flow control techniques. The problem
of the flow detachment past bluff bodies or surfaces at incidence is here studied
with the aim of devising a set of numerical and analytical methods which analyse
with accuracy the flow field around certain geometries and evaluate efficiently some
integral quantities, such as circulation, forces and moments.

The study and the stabilization of the vortex wakes and flows in a separated
regime for aeronautical, automotive, nautical and civil applications represent an
ambitious research field in fluid mechanics. Within this scenario, the unsteady or
massively separated flows are interesting since they are involved in several phenom-
ena which can provide some beneficial or harmful effects.

The high drag generated when a bluff body is immersed within a stream, for in-
stance a truck or the rear-view mirrors, is due to the unsteadiness of the separated
flow which produces a wake characterized by shedding of vortex structures and un-
balancing loads. Practically, the unsteady separation dissipates the available energy
through the kinetic energy exploited by the wake. The Vortex-Induced-Vibrations
(VIV) represents another field of interest for such flows. For instance, the uncon-
trolled separations from civil buildings, aerodynamic surfaces in stall conditions,
offshore constructions, stacks and transmission lines generate vibrations that could
form noxious interactions with the structure or noise. For such problems, several
passive and active control techniques are devised and widely discussed in the state
of the art of applied fluid mechanics, such as blowing/suction devices, trapping
cavities, synthetic jets, shape optimization and others.

On the other hand, the unsteadiness could be exploited with the aim of extract-
ing efficiently energy from the wind, even for low intensity streams and for high
variability of the operating conditions. In the last years the research concerning the
increase of the aerodynamic performances of the horizontal axis wind turbines has
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1 – Introduction

reached its top, whereas the major efforts have been devoted to improve the struc-
tural behaviour of the blades as compared the aeroelastic and fatigue loads [74]. On
the contrary the design of an efficient blade shape for a vertical axis wind turbine
is still an actual challenging task, where the turbine efficiency represents the most
sensible factor that makes advantageous the installation, for low wind speed regimes
above all.

These subjects show recurring features of the applied research combined with
the study of complex phenomena, such as unsteadiness, stability of a solution, non-
linearity and sensitivity to the initial conditions. With the aim of providing some
instruments which practically treat such problems, a careful modelling is needed re-
garding the computational cost and the accuracy of the simulation. The development
of techniques which combine numerical schemes on Cartesian grid with analytical
solutions based on the classical flow potential theory, can represent a good solution
to the problem of the simulation time requirements and the ordinary computational
resources.

Although the scenario of practical applications of the incompressible separated
flows is diversified, the vortex dynamics represents a common background where such
problems could be addressed. In particular the vorticity-based formulation of the
incompressible Euler and Navier-Stokes equations is an efficient tool for investigating
with accuracy some flow fields characterized by moving solid boundaries, multiply-
connected regions and geometrical singularities.

In this sense the present work is aimed to devise and collect a set of techniques
that allow to solve some examples of steady and unsteady separated flows.
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Chapter 2

Steady vortex patches past bodies

In this section we considered some flow models that can be of interest in the field
of separated flows past bluff bodies and passive control strategies. The inviscid
and incompressible flow assumption is based on the existence of steady unstable
solutions with closed streamlines at large Reynolds numbers (Batchelor (1956) [6],
[7]). The 2D Euler equations represent a simplified model that describes a rich
variety of phenomena in vortex-dominated flows, including equilibrium of the steady
solutions. These peculiarities make the Euler equations a suitable tool for devising
flow control techniques (Protas (2008) [54]).

In the 2D inviscid incompressible flows, the vorticity ω is constant on a ψ = const
streamline, that is ω = ω(ψ). The Euler model for an incompressible steady flow is
defined by the non linear Poisson equation

∇2ψ = −ω(ψ). (2.1)

The value of the vorticity on closed streamlines is not defined by far field boundary
conditions, so, for finite area wakes, this equation provides multiple solutions to
the separated flows past bluff bodies. The multiplicity of solutions is relevant to
different distributions of vorticity ω(ψ) which can be assumed for a region with closed
streamlines. In [7] Batchelor demonstrated that the limit solution of the viscous flow
for the Reynolds numbers tending to infinity is characterized by ω(ψ) = const in the
recirculating regions, i.e. the finite area wake reduces to a vortex patch. Batchelor
showed that the value of vorticity in this region is not arbitrary and can be found
by a boundary layer analysis. Moreover, the constant distribution of vorticity in the
recirculating region can be justified as the result of a large time diffusion of vorticity
from the shear layer until the steady solution.

Vortex patch solutions form a three parameter family, where the parameters are
the value of the vorticity ω, the vortex patch area A and the Bernoulli constant jump
∆H along the vortex layer that separates the rotational region and the external flow.
The circulation of the vortex is represented by γ = ωA.
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2 – Steady vortex patches past bodies

In the Prandtl-Batchelor flows these three parameters depend each other and
can be determined by taking into account of the body’s geometry. The area A
of the vortex patch corresponds to the whole recirculating region (for instance see
Saffman & Tanveer (1984) [64]). When the body presents a sharp corner, if the
separation is enforced at the edge (Kutta condition), the circulation γ, i.e. the
vorticity ω, is prescribed and the problem reduces its degrees of freedom to one.
Finally Chernyshenko (1993) [11] has shown that the cyclic boundary layer is a
constraint that removes the last degree of freedom, that is the Bernoulli constant
jump ∆H .

Wide literature is pertinent to this topic. Several examples and references can be
found in Sadovskii (1971) [61], Deem & Zabusky (1978) [21], Pierrehumbert (1980)
[51], Saffman & Szeto (1980) [63] and Saffman & Tanveer (1984) [64].

The present study concerns inviscid solutions that in a broad sense belong to
the Batchelor flow model. For the sake of simplicity we reduced the problem to
two parameters by neglecting the cyclic boundary layer. The vortex regions are
modeled as patches with ∆H = 0. The entire steady flow field past a bluff body
is then defined by the coupling of two inviscid regions: a rotational ω(ψ) = const
core and an external potential flow. Let us consider the figure 2.1 where Ω is the
flow domain, Ωv is a rotational region and ψs is the value of the streamfunction
on the boundary of the vortex ∂Ωv. The mathematical formulation of the model is
represented by the equation

∇2ψ = −ωH (ψs − ψ) (2.2)

where H(·) is a two level piecewise-constant distribution, ω is the constant vorticity
and ψs is the value of the streamfunction on the vortex boundary. According to this
model, the wake is a region with closed streamlines bounded by the body, the solid
wall and the interface with the external flow.

A lower order model of the 2D inviscid vortex dynamics past bodies is provided by
a point vortex system: the flow is described by an irrotational field with some vortex
singularities immersed within. Most solutions of flow control problems are related to
this model (Zannetti & Iollo (2003) [83] and Protas (2008) [54]). The relationship
between the point vortex model and the vortex patch model was investigated by
several authors. Examples and references can be found in Elcrat et al. (2000) [22],
Crowdy & Marshall (2004) [19], Zannetti & Chernyshenko (2005) [78] and Zannetti
(2006) [77]. Elcrat et al. consider the Föppl curve pertinent to the flow past a
semicircular bump, which is the locus of the point vortex in equilibrium. For this
simple geometry, they present some evidences that for each point vortex there is
a related family of vortex patches with increasing area A and the same circulation
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γ. They show that the point vortex solution is interesting as it is the seed of a
family of finite area vortex regions. If A is the parameter that defines a member
of the family, the point vortex corresponds to first element with A = 0 and the
Batchelor-like patch corresponds to the last one. In [77] the Föppl curve has been

Figure 2.1. Flow domain and vortex patch

generalized to any locally deformed wall, that is the locus of point vortices that
stand in equilibrium is defined for any arbitrary obstacle. There it is argued that,
as well as for the semicircular bump, a family of growing vortex patches can be
associated with each standing point vortex. It is also shown that when the obstacle
presents a sharp edge, then there is a finite number of standing point vortices that
satisfy the Kutta condition.

Our main conjecture is that if there is not one standing point vortex that satisfies
the Kutta condition, then the associated family of growing patches, including the
Batchelor-like patch, does not exist either. This supposition implies that cusped
obstacles without standing point vortices and respecting Kutta do not admit a finite
area wake at high Reynolds numbers.

The main purpose of this study is to verify this conjecture and, also, to show the
existence of vortex patch families located past certain cusped bodies. This chapter
is organized as follows: in section 2.1 the existence of standing vortex past wall-
mounted plates bounded in a channel is discussed with numerical and analytical
evidences; in section 2.2 we detected some complete vortex families past cusped
obstacles placed in an unbounded stream.
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2 – Steady vortex patches past bodies

2.1 Prandtl-Batchelor channel flows past plates

In this section we treat the flow past plates at normal incidence inside a parallel
wall channel. Some general references of the matter here presented can be found
in [27] and [29]. This problem is characterized by symmetry and the flow can be
studied in an half-plane, by replacing the symmetry line with a wall. In figure 2.2
the geometrical setting is presented: we considered a flat plate and a cambered plate
that protrude from the wall.

Figure 2.2. Geometries considered in the channel flow: Q∞ is the free stream
velocity, h is the reference length, H is the blockage. The Reynolds number
is defined as Re = Q∞h/ν.

Existence, uniqueness and stability of the solution at large Reynolds numbers
past the flat plate are recurrent and controversial concepts in the literature. It
started off with the Kirchoff’s free streamline model, where the wake past the plate
is modelled by a stagnation region. Later on, Batchelor introduced his model and
this subject has since been widely examined. Smith & Clark (1986) [67] showed that
past a flat plate there is not a standing point vortex satisfying the Kutta condition.
Chernyshenko & Castro (1993) [12] verified that for enough large values of Reynolds
number the steady eddy behind an isolated plate grows indefinitely with Re, that is
L ∝ Re where L is the closed wake length.

For a channel flow, Turfus (1993) [71] numerically detected a finite area vortex
patch by explicitly computing the shape of the recirculating region. The existence
of a closed solution was further investigated by Turfus & Castro (2000) [72], who
checked the compatibility of a cyclic boundary layer with the Batchelor-like solution
found by Turfus. In relation to this closed wake solution they proposed the existence
of a bifurcation branch in the graph representing the wake length versus the Reynolds
number. This conjecture would suppose that in the limit of the Reynolds number
tending to infinity there is a finite vortex patch past the flat plate.

In figure 2.3 we reported the schematic diagram in the (L,Re)-space proposed
by Turfus & Castro showing the bifurcation structure. The solid line represents the
eddy length for an isolated plate, as in Fornberg (1991) [25] and Chernyshenko &
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2.1 – Prandtl-Batchelor channel flows past plates

Castro (1993). The dotted line represents the solutions set for a channel flow: the
’upper’ branch indicates the open wake scenario at large Reynolds numbers, whereas
the ’lower’ branch points out the scenario of a closed wake Prandtl-Batchelor so-
lution. Recently Castro (2002) [10] obtained other computational results in accor-
dance with the secondary branch, but reported some difficulties in reaching a good
convergence on the grid beyond a certain Reynolds number.

Figure 2.3. Bifurcation branch graph. a) growing wake unbounded solution,
Chernyshenko & Castro (1993); b) closed wake bounded solution, Turfus & Castro
(2000); c) continued branch, growing wake bounded solution.

Known that for such flow no equilibrium exists for a point vortex, then we argue
that the respective standing vortex patch family does not exist either. In our opinion
the controversial results found in the literature arise from the short convergence of
numerical results. On the other hand, it can be shown that, for a curved plate, there
is a stationary point vortex respecting the Kutta condition, and some vortices of
finite area can be detected by means of a continuation procedure. In the following
section we present some analytical and numerical techniques in order to investigate
this problem.

2.1.1 Point vortex solutions

Let us consider the channel flow past a flat plate. The non-existence of a point
vortex standing in equilibrium was demonstrated in Zannetti (2006) [77] by means
of the generalized Föppl curve for any arbitrary body protruding from a wall. In
this case the equilibrium manifold and the manifold of the point vortices satisfying
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2 – Steady vortex patches past bodies

the Kutta condition do not intersect. It is demonstrated that a flat plate does not
admit a standing vortex that respects the Kutta condition at the plate tip. Some
examples of stabilization of this vortex wake are studied in [83].

Now we investigate the point vortex equilibrium for a cambered plate. The
geometry of the plate and the flow region are determined by the conformal mapping
illustrated in appendix A.1.1. Following [77], on the mapped ζ-plane the complex
potential w characterized by the uniform stream q and a point vortex with strength
γ and position ζ0, is introduced

w = q ζ +
γ

2πi
log

{

sinh[(ζ − ζ0)/2]

sinh[(ζ − ζ∗0 )/2]

}

As in [77] we determined the equilibrium manifold and the vortex strength at the
equilibrium points by imposing the vortex velocity to zero. On the physical z-plane,
where z = z(ζ), the Hamiltonian Hz is defined by following the approach adopted in
Zannetti & Franzese (1994) [79]. The locus of point vortices that respect the Kutta
condition is found by imposing at the edge the separation point, i.e. the velocity
is not singular. At the edge the mapping derivative is null (dz/dζ)ζ=0 = 0, then,
since the complex velocity is defined by (dw/dz)z(0), the condition to enforce on the
mapped plane is (dw/dζ)ζ=0. Therefore the intersections between the ’equilibrium
manifold’ and the ’Kutta manifold’ represent the positions of a standing point vortex
that satisfy the Kutta condition.

Figure 2.4 shows the vortex equilibrium locus, the Hamilton function contour
lines and the Kutta manifold. At the bottom of figure 2.4, the Hamiltonian field
shows two elliptic equilibrium points and an hyperbolic equilibrium point close to the
plate edge. The Kutta manifold crosses the right-hand-side elliptic fixed point, where
it is placed a standing point vortex. If the stream at infinity is taken unit, the vortex
circulation is γ = −14.153 and the position in the z-plane is z0 = 1.575 + i 0.844.

An alternative numerical technique was devised in order to evaluate the equi-
librium position of a vortex behind a bluff body in a channel. Let us consider a
rectangular flow domain Ω inside the channel, where Γn, Γs, Γe, Γw are the upper,
lower, right and left boundaries. The flow field generated by a vortex singularity
of circulation γ and position (xv,yv), immersed in a stream of undisturbed velocity
Q∞, is defined by the following PDE non-linear problem

∇2ψ = γδ (x− xv, y − yv) in Ω (2.3)

where ψ is the stream function, δ(·) is the Dirac delta function. We define the
conditions for a channel flow on the boundaries

ψ = 0, ψ ∈ Γs; ψ = Q∞H, ψ ∈ Γn (2.4)

8



2.1 – Prandtl-Batchelor channel flows past plates

Figure 2.4. Curved plate in a channel flow. At top the streamlines pattern is
traced and at bottom the Hamiltonian contour lines are shown. The dotted line
represents the equilibrium manifold.

∂ψ

∂n
= 0, ψ ∈ Γw;

∂ψ

∂n
= 0, ψ ∈ Γe (2.5)

. The equilibrium condition is expressed by the ODEs

ẋv = 0, ẏv = 0 (2.6)

By means of the Green function, the flow field is described by

ψ = ψ0 +
γ

2π

(

ψ′ + log
√

(x− xv)2 + (y − yv)2
)

(2.7)

where ψ0 is an auxiliary function that solves once and for all the Laplace problem,
with the physical boundary conditions 2.4 and 2.5. ψ′ is the preliminary Green
function (see [40]). Therefore ψ′ satisfies

∇2ψ′ = 0, in Ω (2.8)

ψ′ = − log
√

(x− xv)2 + (y − yv)2, ψ′ ∈ Γn ∪ Γs (2.9)

∂ψ′

∂n
= −

∂

∂n
(log

√

(x− xv)2 + (y − yv)2), ψ′ ∈ Γw ∪ Γe (2.10)
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2 – Steady vortex patches past bodies

The Green function of the operator ∇2 with the boundary conditions 2.4, 2.5 is then
ψ′ + log

√

(x− xv)2 + (y − yv)2.
The equilibrium position and the intensity of the point vortex are now investi-

gated. The finite velocity constraint at the edge of the plate is enforced in order to
compute the strength γ: the equation 2.7 is linear, then by fixing the location of
the vortex the flow field is uniquely determined. A model of the Kutta condition
has to be taken into account so that the separation point is at the plate tip, i.e.
the tangential velocities on the sides close to the edge have to be the same. The
tangential velocity can be defined by (∂ψ/∂n)± where ± indicates the side of the
plate at the cusp. The Kutta condition is then imposed through the equation

(

∂ψ

∂n

)+

= −

(

∂ψ

∂n

)−

(2.11)

The equilibrium condition is found when (ẋv,ẏv) = 0. The vortex velocity in a
Cartesian frame of reference is

ẋv =
∂

∂y
(ψ0 + γψ′)|(xv,yv) ẏv = −

∂

∂x
(ψ0 + γψ′)|(xv,yv) (2.12)

The PDE problem 2.3 with the boundary conditions 2.4, 2.5, the Kutta condition
2.11 and the equilibrium condition 2.12, represent a non-linear problem that can be
solved iteratively.

Our computations were performed by a FreeFem++ [52] script over an unstruc-
tured grid of 27247 triangles and P2 continuous finite element, that is P2h = {v ∈
H1(Ω)/∀K ∈ Th,v|K ∈ P2}. The number of the degrees of freedom is 55186 and the
number of the elements at the boundaries is 691. The vortex circulation computed
is γ =-14.190 and the position in the physical plane is z0 =1.578+i 0.845, this result
shows an appreciable agreement with the above analytical solution as well.

2.1.2 Distributed vortex solutions

The mathematical statement for the vortex patch problem is directly derived from
the equation 2.2 and is set as follows

∇2ψ = −ωH (ψ0 − ψ) , in Ω (2.13)

ψ = 0, ψ ∈ Γs; ψ = Q∞, ψ ∈ Γn (2.14)

ψ = Q∞y, ψ ∈ Γw;
∂ψ

∂n
= 0 or ψ = Q∞y, ψ ∈ Γe (2.15)

10



2.1 – Prandtl-Batchelor channel flows past plates

This problem is strongly non-linear and the numerical survey of the existence of
steady distributed vortices seemed sensitive to the initial conditions and was grid
dependent. It was usually solved by explicitly determining the geometry of the sep-
aratrix ψ0 ([64], [71], [5]), but some difficulties were reported when the patch tended
to the Batchelor-like solution for ψ0 → 0. On the other hand, the numerical tech-
niques presented in this work are based on approximating 2.13 on a grid, where the
separatrix is detected implicitly as a jump of vorticity. In the following paragraphs
we directly solved such a problem for the considered geometries by means of two
different numerical strategies.

The first technique, discussed in [26], was originally devised for the flat plate case.
In this work the non-existence of a Prandtl-Batchelor (ψs=0) solution was suggested
by various preliminary numerical results. These results are provided by a Newton-
based finite difference code, where a Schwarz domain-decomposition method [39] was
applied to overcome the memory requirement. The computations were performed on
two 833MHz Alpha 64-bit processors. A survey of the convergence on the grid was
performed until a maximum grid refinement of 44590 points. Starting from these
issues, we improved the Newton-Schwarz code by adopting a GMRES iterative solver
with an ILUT preconditioner [60]. The results here presented are computed with
a grid resolution of ≈ 500000 points, in the case of the maximum aspect-ratio flow
domain. Two controversial behaviours are found for such a problem. By imposing

Figure 2.5. Solution grid dependence. The solutions are computed on a more and
more fine grid and the wake tends to be open as the grid is refined.

a Neumann condition at downstream the vortical region opens from the plate tip; in
figure 2.5 the grid dependence of the solution is reported. In figure 2.6 we compared
the solutions obtained by imposing a Dirichlet condition at downstream, with three
different lengths of the computational domain. In this example the vortex region is
closed but grows when the domain size is increased, that is, the closing point of the
separatrix is not invariant with the domain size. Thus, the numerical simulations on
fine grids do not show any finite wake solution for a flat plate at normal incidence.

The second numerical technique is devised for the curved plate case and is subse-
quently described. We discussed, in 2.1.1, about the standing point vortex solution
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2 – Steady vortex patches past bodies

Figure 2.6. Dirichlet condition at downstream: the wake length depends on
the longitudinal domain size.

past a curved plate. By means of the following numerical method we continued on
ψs the point vortex solution in order to detect a finite vortex patch family. The new
solution method is based on the Schauder fixed point theorem (see, for instance,
[30]). Let us consider the notation in figure 2.1. The flow field can be solved as
ψ = ψ0 + ωψ′, that is the superposition of the potential solution ψ0, as in the point
vortex case, and a function ψ′. In particular ψ′ has to satisfy

∇2ψ′ = 0, in Ω − Ωv (2.16)

∇2ψ′ = 1, in Ωv (2.17)

ψ′ = 0, ψ ∈ Γs ∪ Γn (2.18)

∂ψ′

∂n
= 0 or ψ′ = 0, ψ′ ∈ Γw (2.19)

∂ψ′

∂n
= 0, ψ′ ∈ Γe (2.20)

where Ωv is the support of H (ψs − ψ). The vorticity ω is solved by imposing the
Kutta condition 2.11. The algorithm consists on iterating the equation

∇2ψn+1 = −ωnH (ψs − ψn) in Ω (2.21)

and this procedure has fixed points. The continuation parameter ψs is fixed a
priori. ψ0 is determined once and for all at the iteration 1, whereas ψ′n and ωn

12



2.1 – Prandtl-Batchelor channel flows past plates

Figure 2.7. Adaptative mesh refinement based on the vorticity and
streamfunction gradients.

Figure 2.8. Partial finite area vortex family obtained by desingularization of the
standing point vortex (left). Streamlines for the patch ψs = −0.8 (right).

can be determined when Ωv is given. At the n+1 iteration, the flow field defines
a new shape of the support Ωv until the convergence is gained. The numerical
results are obtained by a FreeFem++ code that works on the same unstructured
grid adopted for the point vortex case. The convergence on the grid is achieved by
an auto-adaptative mesh refinement (figure 2.7).

The numerical solution of the PDE 2.3 is introduced as initial guess and, by
varying ψs, we continued the finite vortex patch obtaining several elements with
increasing area. This procedure could not be completed for the whole vortices
family. For larger area vortex patches, the number of triangles generated by the
auto-adaptative mesh algorithm, in order to detect the vortex boundary, exceeded
the constraint of the computational resources, and the respective solutions could
not be computed. In other terms, an excessive memory requirement during the
adaptative mesh-generation step did not allow to complete the whole patches family.
On the left-hand side of figure 2.8 the ’partial’ vortex family is shown and on the
right-hand side the flow field for the vortex with ψs=-0.8 is reported. The vorticity
and the circulation computed for this case are ω =-7.069 and γ =-17.193.

13



2 – Steady vortex patches past bodies

2.2 Unbounded vortex patches past cusped bod-

ies

In section 2 a survey of the multiplicity of the closed-streamline equilibrium Euler
solutions was presented. By considering the Bernoulli constant jump as vanishing,
the space of the parameters that defines a standing vortex is relevant to two degrees
of freedom: circulation γ and area A, otherwise the value of the separatrix stream-
function ψs. When a cusped obstacle protrudes in the flow domain, if the solution
respects the Kutta condition, the space of the parameters reduces to one γ = γ(A).

In present section we investigate on the continuation of a given vortex patch
through the (γ,ψs) parameter space. In addition, we gave further numerical consis-
tency to the main conjecture about the non existence of finite wake when there is
not one standing point vortex respecting the Kutta condition.

In [28], an analytical proof is argued demonstrating that a finite vortical region
can be locally continued with respect to both vorticity and the separatrix streamline
ψs. In the following section, some examples that verify the existence of the entire
family from the point vortex to the Batchelor-like solution past certain cusped bodies
are illustrated. These results are obtained by a mixed analytical-numerical method
that allows to attain high accuracy with standard computational resources. A first
discussion on this procedure was presented in [80].

2.2.1 A family of cusped bodies

The sharp edge is a typical device that enforces the Kutta condition, thus avoiding
the uncontrolled separation phenomena. In the above section we discussed how the
breaking of symmetry of the flat plate allows to trap a point vortex and the related
vortex patch family. If we consider other symmetric cusped bodies, such as a semi-
circular bump (see Föppl (1913) [24], Elcrat et al. (2000) [22]) or a symmetric
Ringleb snow cornice (see Ringleb (1961) [58]), it is demonstrated that do not exist
standing point vortices with the starting separation point on the symmetry line.
In Zannetti (2006) [77] it is shown that even though such symmetric bodies do
not admit vortices in equilibrium, there are other symmetric cusped obstacles that
supply one or more standing vortices satisfying the Kutta condition.

Let us consider a generalization of the Ringleb snow cornice, which is represented
by the conformal mapping

z = ζ +
(−ζ1)

N+1

N(ζ − ζ1)N
(2.22)

that maps the upper ζ-half-plane onto a wall extending to infinity with a protruding
cusped body. The camber and the symmetry are determined by the index N and ζ1.

14



2.2 – Unbounded vortex patches past cusped bodies

Figure 2.9. Non-symmetrical and symmetrical snow cornices. T identifies the cusp.

If Re(ζ1)=0, the cornice is symmetric. The complex potential for the undisturbed
stream q∞ on the upper-half of the z-plane extending to infinity, having a point
vortex with a strength γ and location z0 immersed within, is defined by

w(z) = q∞z +
γ

2πi
log

(z − z0)

(z − 1/z∗0)
. (2.23)

where (·)∗ indicates the complex conjugate. In [77] it is verified by means of the Föppl
generalized curve that for the symmetric Ringleb cornice N = 1 the ’equilibrium
manifold’ and the ’Kutta manifold’ do not intersect. By increasing N , the number
of equilibrium loci crossing the ’Kutta manifold’ increases, therefore more standing
point vortices are found.

Two geometries are considered in following examples. In figure 2.9 the flow
domains obtained from the variation of the Ringleb’s cornice mapping are shown.
The body on the left-hand side is obtained by setting ζ1 = 0.2 − i 0.075, N = 1
while that on the right-hand side is obtained by fixing ζ1 = −i and N = 5. For
the first geometry, a single standing point vortex respecting Kutta was found (z1 =
0.045 − i 0.199, γ1 = −2.469). On the other hand the symmetric case presents
two intersections between the manifolds, corresponding to a ’low-energy’ solution
zL = 0.612 + i 0.310, γL=-4.810 and an ’high-energy’ solution zH = 4.544 + i 2.623,
γH = −32.964.

2.2.2 Numerical method

An accurate method to solve the non linear Poisson equation 2.13 in unbounded and
simply connected domains is here presented. We discussed in section 2.1.2 on the
high grid resolution that is required in order to detect accurately the vortex shape.
Since the physical domain extends to infinity, the computational domain should be
large in comparison to the rotational region, but, nevertheless, it should be finite.
Furthermore a direct numerical solution by finite differences or finite elements on a
limited computational domain would need some suitable artful boundary conditions.
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2 – Steady vortex patches past bodies

Let us consider the figure 2.1 where it is shown how the rotational core, defined
by the streamline ψs, is embedded in the potential flow. Our approach is based on
a domain decomposition strategy that allows to solve the flow domain Ω separating
a small internal sub-domain (i), pertinent to the sharp edge and the rotational core
Ωv, and the external flow field (e) extending to infinity. The internal region is solved
by an adaptation of the fixed-point algorithm described in section 2.1.2, while the
external flow is analytically solved by means of the potential flow theory.

An iterative procedure based on the Steklov Poincaré iteration (see [57]) matches
the solution between the two subdomains. If ∂c is the common line bounding two
computational regions, the inner subdomain is solved by imposing a Dirichlet bound-
ary condition ψi|∂c

= ψe|∂c
, and the outer subdomain is solved by fixing the Neumann

boundary condition (∂ψe/∂n)∂c
= (∂ψi/∂n)∂c

.

The method devised is based on conformally mapping the physical domain into
some transformed planes where both the numerical solution of the inner subdomain
and the analytical solution of the outer subdomain are straightforward. In figure
2.10a the z-plane is represented where a wall extending to infinity with a non-
symmetrical cusped obstacle is shown. The internal region (i) is bounded by ∂c and
the portion of wall between the points A,B. The external domain (e) is located above
the ∂c and the rest of the wall and extends to infinity. This cusped body is obtained
by applying the conformal mapping previously discussed on the upper half-λplane

z = λ+
(i)2

(λ+ i)
(2.24)

As shown in figure 2.10b, the boundary line ∂c on the physical z-plane is the result
of mapping a semi-circle on the λ-plane. A successive simple mapping transforms
the inner semi-circular region onto a unit semi-circle (figure 2.10c)

λ =
µ

a
+ b (2.25)

where the parameters a,b are such that λA = λ(−1) and λB = λ(1). By means
of a transformation based on the Jacobi elliptic sine-amplitude function sn (see
[70]), the upper half-µ-plane can be mapped onto the rectangle of the ζ-plane, as
presented in figure 2.10d. The rectangle is constituted by two half-ractangle, the
upper corresponding to the external region and the lower to the internal region.
Then the mapping function is

µ =
sn[ζ,m]

d
(2.26)

with m elliptic modulus and d a scaling parameter. The elliptic modulus m is the
complete elliptic integral of the first kind and K ′(m) = K(1 − m). The scaling
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2.2 – Unbounded vortex patches past cusped bodies

Figure 2.10. Mapping sequence.

factor d is a free parameter and defines the positions zC ,zD of the points C,D on the
physical plane; in our computations it is determined by imposing µB = sn[ζB,m]/d.

A numerical grid-based method is applied to solve the inner region. The lower
half rectangle of the ζ-plane can be appropriatly traced on an evenly-spaced Carte-
sian grid. For an accurate enforcement of the Kutta condition, the value of m has
to be chosen such that ζT coincides with a node. By letting the side CA of the
half-rectangle be divided into p elements and placing T onto the n-th node, it is
found that

ζT = −K(m) + i(n/p)K ′(m)/2, (2.27)

thus the equation

µT =
sn[−K(m) + i(n/p)K ′(m)/2,m]

sn[−K(m) + iK ′(m)/2,m]
(2.28)

is thus defined, which, by means of an iterative procedure, allows to compute the
proper value of the elliptic module m. On the left-hand side of figure 2.11 an
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2 – Steady vortex patches past bodies

Figure 2.11. Grid topology generated by the mapping (left). The cusp
coincides with a grid node (right).

example of the computational grid is shown. On the right-hand side a detail on the
connection between the edge and a grid node is reported.

The numerical procedure adopted to solve the inner region, discussed in section
2.1.2, is hence modified. The equation 2.13 can be adjusted such that it can be
solved on the transformed ζ-plane. If we define ζ = ξ + i η as the independent
variables and ∇2

ζ = ∂2
ξ + ∂2

η , it is easily demonstrated that the equation valid on the
ζ-plane is

∇2
ζψ = [−ωH(ψs − ψ)] /J in Ωi, (2.29)

where J = |dz/dζ |2 is the Jacobian of the transformation and Ωi is the ABCD
internal subdomain. Now we indicate as ΓAB, ΓCD, ΓAC , ΓBD respectively the
upper, the lower, left and right boundaries of the ζ-plane. On the boundaries we
have the following Dirichlet conditions

ψ = 0, ψ ∈ ΓAC ∪ ΓCD ∪ ΓBD (2.30)

ψ = ψe, ψ ∈ ΓAB, (2.31)

where ψe comes from the external subdomain. As discussed in 2.1.2, the flow field ψ
is obtained by ψ = ψ0 + ωψ′ for ψ ∈ Ωi, where ψ0 solves the Laplace problem with
proper boundary conditions and ψ′ satisfies the non linear problem deduced by the
equations 2.16, 2.17 and the homogeneous Dirichlet boundary conditions:

∇2
ζψ

′ = 0, in Ωi − Ωv (2.32)
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2.2 – Unbounded vortex patches past cusped bodies

∇2
ζψ

′ =
1

J
, in Ωv (2.33)

ψ′ = 0, ψ′ ∈ ΓAC ∪ ΓCD ∪ ΓDB ∪ ΓAB (2.34)

The Kutta condition is imposed on the transformed ζ-plane by setting as null the
tangential velocity

∂ψ

∂ξ

∣

∣

∣

ζT

= 0 (2.35)

The fixed-point iterations are performed on the equation

∇2
ζψ

n+1 =
1

J
[−ωnH (ψs − ψn)] (2.36)

that is the equation 2.21 transformed on the ζ-plane. A linear under-relaxation
factor fr is introduced, so that we have the following update ψn+1 = frψ

n +
(ψ0 + ωn+1ψ′n+1) (1 − fr).

The potential flow in the external region Ωe is analytically solved on the µ-plane.
The complex potential we is defined as

we(µ) = Q∞µ+

∞
∑

j=1

ajµ
−j , (2.37)

where aj ∈ R
1. If q∞ is the undisturbed velocity at infinity on the z-plane, Q∞ can

be defined as

Q∞ = q∞ lim
µ→∞

(

dz

dµ

)

=
q∞
a
. (2.38)

On the µ-plane, the subdomain Ωe corresponds for Im[µ] > 0 to the complement of
the unit semi-circle ∂c and the set −∞ < µ ≤ −1, 1 ≤ µ < ∞ for Im[µ] = 0 is the
image of the wall in the external subdomain. The complex potential 2.37, where aj

is a real coefficient, is defined such that the impermeability condition is satisfied on
the solid boundary, i.e. ψ|Im[µ]=0 = const.

Let us take µ = ρ exp(iφ); the boundary condition on the common line ∂c is
then imposed by deducing ψi from the inner region and by enforcing the Neumann
boundary condition

(

∂ψe

∂ρ

)

=

(

∂ψi

∂ρ

)

. (2.39)
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2 – Steady vortex patches past bodies

Since the normal to ∂c derivative on the µ-plane can be mapped to the normal
derivative on the ζ-plane by

(

∂ψe

∂ρ

)

=

(

∂ψi

∂η

)

/
∣

∣

∣

dµ

dζ

∣

∣

∣
(2.40)

and by setting

g(φ) =

(

∂ψe

∂ρ

)

ρ=1

(2.41)

the inner solution ψi|∂c
provides g(φ) in the interval 0 ≤ φ ≤ π. The wall imperme-

ability gets g(0) = g(π) = 0, thus g(φ) can be continued in the interval π < φ < 2π
by imposing a symmetry referred to the real axis. Since

Im

[

dwe

dµ
exp(iφ)

]

=

(

∂ψe

∂ρ

)

ρ=1

(2.42)

the equation 2.37 one the common boundary ΓAB becomes

g(φ) = Q∞ sinφ−
∞
∑

j=1

jaj sin(jφ). (2.43)

When this series is suitably truncated, the equation provides the coefficients aj ,
that are tuned with the boundary conditions. The Steklov-Poincaré-like algorithm is
performed solving iteratively the inner and the outer region until ψi and ψe converge
on ∂c. Here, the same under-relaxation factor fr adopted for the fixed-point solver
in the internal region is introduced, such that the updating formula becomes ψn+1

e =
(1 − fr)ψ̃

n+1
e + frψ

n
e , where ψ̃n+1

e = Im[wn+1
e (φ)].

The main computational cost of the present approach can be attributed to the
solution of the Poisson problem on the grid at each fixed-point iteration. The fast
Poisson solver is adopted here (Fishpack90 library [3]) and it allows to attain high
grid refinement with a standard performance PC. All our computations have been
done on AMD Athlon 64 3000+ 1.81 GHz CPU with 1 Gb RAM. Examples of the
CPU time required to solve the Batchelor problem starting from the point vortex
as initialization are shown in table 2.1.

Let Err%
2 (ψ|∂c

) be the error per cent in l2-norm, computed with ψe and ψi along
the common boundary ∂c. In figure 2.12 Err%

2 (ψ|∂c
) is reported versus the number

of Steklov-Poincaré iterations. The convergence threshold is set at 10−7.
Let us consider the non-symmetrical cusped body defined above in section 2.2.1.

For this case, we determined the standing point vortex satisfying Kutta (z1 =
x1 + iy1 = 0.045− i 0.199, γ1 = −2.469). We verified the accuracy of this numerical
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2.2 – Unbounded vortex patches past cusped bodies

fr iterations CPU time [s]
0.25 37 630
0.40 10 300
0.50 7 250
0.60 10 570
0.75 19 1270

Table 2.1. Steklov-Poincaré iterations and CPU time by varying the
under-relaxation factor.

Figure 2.12. Rate of convergence of the Steklov-Poincaré algorithm by varying
the under-relaxation factor fr. On the diagram, the ψ|∂c

error per cent in l2-norm
versus the iteration number is reported.

method comparing this analytical solution and the analogous numerical solution ob-
tained coupling the new far-field boundary conditions with the PDE 2.3 as discussed
in section 2.1.1. The boundary conditions 2.4-2.5 are modified into

ψ0 = 0, ψ′ ∈ ΓAC ∪ ΓCD ∪ ΓBD (2.44)

ψ0 = ψe, ψ
′ ∈ ΓAB (2.45)
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2 – Steady vortex patches past bodies

and the boundary conditions for the preliminary Green function 2.9-2.10 are altered
in

ψ′ = − log
√

(x− x1)2 + (y − y1)2, ψ0 ∈ ΓAC ∪ ΓCD ∪ ΓBD (2.46)

ψ′ = ψe − log
√

(x− x1)2 + (y − y1)2, ψ0 ∈ ΓAB. (2.47)

On the left-hand side of figure 2.13, the streamline pattern of the point vortex solu-
tion is shown. According to the l2-norm, the error of the stream function along the
common boundary ∂c is O (10−6) and the error on the value of the vortex circulation
is O (10−6) for a 1000×1000 grid. On the right-hand side of figure 2.13 the respective
Batchelor-like solution is illustrated.

Figure 2.13. Point vortex solution (left); Prandtl-Batchelor solution (right). The
dashed line represents the common boundary.

2.2.3 Examples of finite area vortex families

In this section we present some numerical results of growing vortex patches obtained
by means of the procedure discussed above. The obstacle considered is the symmet-
rical snow cornice described in section 2.2.1. Two standing point vortex solutions
satisfying the Kutta condition are admitted. By varying the free parameter ψs we
try to desingularize the point vortex into the Batchelor flow, in order to obtain the
entire patch family.

Let us consider the ’low-energy’ point vortex solution (zL = 0.612 + i 0.310,
γL=-4.810). The respective computed family of vortex patches is shown in figure
2.14 and the streamline pattern for the Batchelor-like solution is presented in figure
2.15. In figure 2.16 the trajectories - ’Kutta lines’ - taken by the entire vortex
patch family respecting the Kutta condition on two different parameters spaces are
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2.2 – Unbounded vortex patches past cusped bodies

Figure 2.14. Family of vortex patches desingularizing the ’low energy’
point vortex solution.

Figure 2.15. Flow field for the ’low-energy’ Batchelor-like solution.

presented. On the left-hand side, the trajectory of patches on the (ω,ψs)- parameter
space is shown. The entire curve cannot be displayed because the point vortex
solution reveals an infinity vorticity ω. The trajectory is completely shown in the
equivalent plane (γ, A) presented on the right-hand side, where γ is the circulation
and A the patch area. The trajectory starts at A = 0, pertinent to the point vortex,
and ends with the maximum area corresponding to the Batchelor-like solution.

Let us now consider the ’high-energy’ point vortex solution (zH = 4.544+i 2.623,
γH=-32.964). In this case, since the standing point vortex is further distant from the
cusp and the solid wall than the ’low-energy’ solution, the complete finite area vortex
family extends onto a larger support. We increased Ωi and the number of grid points
with the intent of keeping the same mesh refinement. The excessive computational
cost represented a limit to this continuation procedure. Starting from the point
vortex solution, the rotational core becomes larger and larger as ψs approaches to
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2 – Steady vortex patches past bodies

Figure 2.16. Trajectories in the parameter spaces.

Figure 2.17. Continuation from the ’high-energy’ point vortex solution.
On the left-hand side the vortex patches correspond respectively to
ψs = −24, − 18, − 10,− 7, − 5, − 4, − 3, − 2.5.

zero, but, if the inner domain Ωi is not large enough to contain the recirculating
region, the numerical method tends to be attracted by a solution belonging to the
’low-energy’ family.

On the left-hand side of figure 2.17, some finite vortex patches obtained from
the ’high-energy’ point vortex solution are illustrated. The continuation has been
interrupted since the resulting solutions would be related to the ’low-energy’ family.
On the right-hand side a streamline pattern for ψs = −2.5 is shown.

As final instance, we investigated about the solutions where the Kutta condition
is not respected. If the Kutta condition is not imposed, the space of the solution
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2.2 – Unbounded vortex patches past cusped bodies

acquires a degree of freedom, that is, a local displacement from the ’Kutta line’ can
be attained. If we introduce ω as a new free parameter, then a solution is defined
by an arbitrary choice of ψs and ω. The diagram reported at top of figure 2.18
illustrates, on the (ω, ψs) parameters space, the local perturbation from a solution
P that satisfies the Kutta condition. Two pair of solutions are investigated, both by
varying ω for ψs = ψs,P and by varying ψs for ω = ωP.

Since our numerical method sets the value of vorticity by the separation condi-
tion, the solutions A1, A2 are computed by imposing the separation point before the
sharp edge and behind it respectively, while an iterative procedure on ψs determines
the vortex patch areas corresponding to ωP. On the other hand, the solutions B1, B2

are obtained by placing the separation point in front of the cusp and behind it, and
letting ψs be fixed to ψs,P. In the table 2.2 the data associated to the solutions
shown in figure 2.18 are summarized.

solution ψs A Γ ω
P -0.5 0.189 -4.811 -25.481
A1 -0.646 0.221 -5.628 -25.482
A2 -0.392 0.163 -4.156 -25.481
B1 -0.5 0.227 -5.103 -22.456
B2 -0.5 0.156 -4.563 -28.593

Table 2.2. Data collection of the vortex patches obtained by a local perturbation
of a solution satisfying the Kutta condition.

2.2.4 Vortex-capturing airfoil

With minor variations, the above method can be used to solve the Batchelor flow
past an airfoil equipped with a vortex-capturing cavity [1]. We designed a test
symmetrical airfoil with a vortex cell by means of a chain of conformal mappings,
as described in appendix A.1.2. The airfoil is mapped from the physical z-plane
onto the real axis of the σ-plane, as shown in figures 2.19 and 2.20. The σ-plane
plays the same role as the µ-plane in section 2.2.2. The half-unit-circle defines two
subdomains and the mapping σ = sn[ζ,m]/d, which corresponds to 2.26, transforms
the mapped ζ-plane onto the σ-plane. In this geometrical setting the Steklov-
Poincaré procedure is adopted. The computation in the inner region is carried out
as above, while the external flow has a differently defined complex potential. With
reference to figure 2.20, we can notice that the physical infinity is mapped onto
σ = σ∞ and that the airfoil is mapped onto the real axis, with the point Q mapped
onto the point at infinity on the σ-plane. The complex potential we can be written

25



2 – Steady vortex patches past bodies

as

we =
M

σ − σ∞
+

M∗

σ − σ∗
∞

+
γ

2πi
log

(

σ − σ∞
σ − σ∗

∞

)

+

∞
∑

j=1

bjσ
−j + w0. (2.48)

The first two terms are a doublet and its mirror image, which represent the flow
velocity at the physical infinity, the third term is a vortex and its mirror image,
pertinent to a vortex at the physical infinity, and the fourth term is a series whose
coefficients are real, bj ∈ R1. The complex potential is such that ψe = const on the
real axis of the σ-plane, that is, the impermeability condition on the solid walls is
satisfied. The doublet momentum M is defined by the value of the asymptotic flow
velocity q∞ exp(iα), where α is the incidence, thus, as explained in appendix A.1.2,
it can be obtained by the equation:

q∞e−iα = lim
σ→σ∞

dwe/dσ

dz/dσ
. (2.49)

The value of the total circulation past the airfoil and trapped vortex is given by γ,
which is defined by enforcing the Kutta condition at the trailing edge, (dwe/dσ)σT

=
0. The series coefficients bj are found by enforcing the Neumann boundary condition
(dψe/dρ) = (dψi/dρ) along the common boundary ∂c, with σ = exp(iφ) and with
the g(φ) function now adopting the following form

g(φ) = Im

{

eiφ

[

−
M

(eiφ − σ∞)2
−

M∗

(eiφ − σ∗
∞)2

+
γ

2πi

(

1

eiφ − σ∞
−

1

eiφ − σ∗
∞

)]}

−
∞
∑

j=1

jbj sin(jφ).

The circulation at infinity and the coefficients bj of the truncated Laurent series
depend on each other nonlinearly. Therefore, for each Steklov-Poincaré iteration,
the computation of γ and bj is perfomed by means of a fixed-point algorithm that
converged in maximun 10 iterations.

Figure 2.21 shows an example of the streamline pattern as computed by this
method for a Batchelor-like solution trapped by the cavity. The dashed line traces
the boundary of the inner region Ωi.
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2.2 – Unbounded vortex patches past cusped bodies

Figure 2.18. Standing solutions obtained by a local displacement from
a point on the Kutta line. The vortex patch P is defined by ψs,P=-0.5,
AP=0.189, γP=-4.811, ωP=-25.481.
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2 – Steady vortex patches past bodies

Figure 2.19. z-plane.

Figure 2.20. σ-plane.

Figure 2.21. Streamlines at α = 5◦.
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2.2 – Unbounded vortex patches past cusped bodies

2.2.5 Mollified vortex families

In this section the existence of vortex solutions with non constant vorticity patch
past some cusped bodies is discussed. Let us consider the Euler model for an in-
compressible steady flow defined by the equation 2.1. The distribution ω(ψ) within
the recirculating region is not determined by the far field boundary conditions and
defines a multiplicity of solutions. Some vortex solutions characterized by vorticity
unconstant distribution are here computed. Such kind of cusped bodies admit

Figure 2.22. Mollified Heaviside function H̃(ψ).

Figure 2.23. Iso-vorticity lines. The solutions are pertinent to ǫ → 0 and
ǫ = 0.01, 0.05, 0.1 respectively.

some constant vorticity patches, and these solutions can be computed by means of
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2 – Steady vortex patches past bodies

a continuation starting from a point vortex standing in equilibrium and satisfying
Kutta (section 2.2.3).

For such families of steady finite area vortex patches we examined the existence
of solutions with non constant vorticity distribution. An investigation on these
solutions is carried out by modifying of the equation 2.2, such that an non constant
constant distribution ω = ω(ψ) is determined, that is

∇2ψ = −ωH̃ (ψs − ψ) (2.50)

where H̃(·) is a mollified Heaviside function which smoothes the vorticity jump ω
around the separatrix ψs. A one-parameter mollified Heaviside function defined as
H̃(ψ) = 1/2 tanh [−(ψ − ψs)/ǫ+ 1] is represented in figure 2.22 for four values of
the parameter ǫ. This function is introduced in the algorithm discussed in section
2.2.2 and some numerical solutions are computed.

For instance, we took into consideration a constant vorticity patch with ψs =
−0.5, obtained by the continuation from the low-energy point vortex solution. This
solution is the initialization of a successive mollification of the vorticity jump by
varying ǫ. In figure 2.23a the constant vorticity solution is shown. The other dia-
grams are referred to three arbitrary values of ǫ.

Since, for larger ǫ, the vorticity is spread on larger values of ψ, a shear of vorticity
tends to reach the boundary of the inner region Ωi and the numerical method does
not converge.
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2.3 Concluding remarks

In this chapter, some 2D steady vortex solutions of the incompressible Euler equa-
tions are found for some different classes of bodies at incidence. These obstacles are
characterized by a sharp edge where the separation is enforced.

A channel-flow is studied for a flat plate and a cambered plate. The curvature of
the plate represents a passive control technique that allows to stabilize the flow. For
a given plate bend, some point vortex solutions which are in equilibrium and satisfy
the Kutta condition are computed. Starting from these stable point vortex solutions,
through a numerical continuation procedure, it is possible to find a family of vortex
patches with constant vorticity. On the contrary, the flat plate does not admit
a point vortex solution in equilibrium that satisfies the Kutta condition, and no
vortex patches are found neither. This result is controversial because it contradicts
the Turfus’ conjecture about the existence of a Prandtl-Batchelor solution past a
flat plate at incidence in a channel.

A class of ’snow cornice’ obstacles is considered in an unbounded flow domain.
A numerical-analytical procedure is devised in order to solve efficiently the flow at
infinity and to attain an high order of accuracy nearby the recirculating region. Some
finite constant vorticity regions, starting from the desingularization of the point
vortex solution up to the Batchelor-like vortex patch, are computed. In addition, we
presented some remarks and numerical examples of the possibility of continuing one
of these vortex patches with steady Euler solutions characterized by a non-uniform
vorticity distribution.

We assumed A, that is ψs, to be the parameter defining an element of a vortex
patch family satisfying the Kutta condition. The point vortex solution is the first
element with A = 0, while the Prandtl-Batchelor solution is the last element with
constant vorticity in the entire region with closed streamlines. By means of a contin-
uation procedure, we associated the existence of point vortex solutions, in a stable
equilibrium state, with the existence of the whole family, both for unbounded flows
and bounded flows. In a more general case, without satisfying the Kutta condition,
the investigated examples show that vortex patch solutions of the Euler equations
can be continued relating to both the vorticity ω and the value of the streamfunction
defining the vortex core. In [28], the mathematical conditions under which vortex
patch solutions can be continued with respect to both the vorticity ω and value ψs

are widely discussed.
The results which we presented in this section, provided some evidences in favour

of the fact that if there is not a standing point vortex that satisfies the Kutta
condition, then the associated family of growing patches obtained by continuation,
including the limiting Prandtl-Batchelor solution, does not exist either. In other
terms this conjecture argues that if there is no point vortex solution, then there
exists no finite wake in the inviscid limit.
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2 – Steady vortex patches past bodies

Finally, the above method is adopted to solve the Batchelor flow past an airfoil
equipped with a suitable vortex-capturing cavity.
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Chapter 3

Vortex wake past a vertical axis

turbine

In this chapter the unsteady two-dimensional flow field around a vertical axis wind
turbine is studied. The main feature of a Vertical Axis Turbine (VAT) is a rotor
shaft that works vertically driven by two or more blades. The most important
applications of such turbines are in the field of the wind and hydraulic engineering.

The vertical axis turbines can be classified on the basis of the working principle
of the blades. Some turbines exploit the drag of the blades in order to move the
shaft. Such kind of turbines are defined as Savonius rotors, and the cup anemometer
represents a typical example of such as architecture. On the other hand, the lift-
based turbines work through the lift generated by the blades, which are in general
characterized by an airfoil section. Such kind of turbines are named Darrieus rotors.
We took into consideration the typical lift-based architecture as shown in figure 3.1.
Among the advantages of this type of turbine we have the independence of the wind
direction, the simple mechanical manufacturing and maintenance. On the other
hand, the principal drawbacks are the unsteady pulsating torque generated, the low
efficiency at high wind speeds compared to the horizontal axis architecture and the
profit to the micro wind power generation (< 100 kW) only. The main problem
encountered with the aerodynamics of a Darrieus architecture is the complicated
unsteady flow phenomena occurring during its working cycle. For each revolution the
blades undergo a highly unsteady relative motion with large variations of incidence
and absolute value of the relative velocity.

Let us consider a section that is normal to the shaft of the turbine, which rotates
with a constant angular speed Ω. The observer is fixed on a blade section with
a Cartesian orthogonal frame of reference with versors (i,j,k). The absolute flow
field is described on this moving frame of reference. Let q∞ be the wind velocity at
infinity, R the radius and θ(t) = (Ωt)k the angular position of a single blade. The
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3 – Vortex wake past a vertical axis turbine

Figure 3.1. Sketch of a Darrieus two-blade vertical axis wind turbine.

relative velocity is determined by Vr = q∞−Ωk∧R, where q∞ is a rotating vector
and the last term represents the translation velocity of the frame of reference. In
figure 3.2, the kinematics of the velocities is presented on the hodograph plane. If
Ω and q∞ are constant, the envelope of the relative velocity is identified by a circle
C, that gets larger as the rate q∞/ΩR increases.

The high and variable incidence of the stream generates a wide unsteady flow
regime and, unlike the wake past an horizontal axis turbine, the blade motion is
immersed in the wake generated. This complexity in the flow motion influences the
perfomance of the turbine: dynamic stall can occur and the consequent uncontrolled
flow detachment and vortex shedding result in high drag, low efficiency and unbal-
anced loads on the structure. Some recent techniques have been developed in order
to design wings and blade sections such that operate in unfavourable conditions,
such as in fully separated flow regime. The ongoing European research project [1]
devised this technique especially to control the stall on the aircraft wings, but in
general, as discussed above in chapter 2, the vortex trapping technique is attained
with the aim of preventing the vortex shedding past an arbitrary bluff body. The
vortex trapping technology consists of one or more vortex cells located on the profile,
which act as a passive control device capable of avoiding the vortex shedding, thus
enhancing the efficiency.

We propose to adopt these ideas with the aim of designing an unconventional
lift-based profile for a VAT architecture. Since, in the model shown in figure 3.2,
the incidence oscillates between opposite values, the traditional design consists of
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Figure 3.2. Velocity triangle on the odograph plane (u,v). The dashed line is the
locus of the relative velocity Vr for q∞/ΩR = 1/4.

symmetric blade sections which work at high angles of attack. We devised two iden-
tical cavities which are suitably located close to the leading edge in order to control
the flow by making two vortex cells. The separation of the flow is forced at two
cusped edges, two recirculating regions are generated and the reattachment of the
flow occurs at the smooth cavity end. In the spirit of the vortex-cell technology
developed by [1], we suppose that, at stall condition, the unsteadiness of the sepa-
ration points is avoided and the flow pattern with trapped vortices is preserved. In
addition, since at incidence the trapped vortices are not symmetric, the circulations
of two vortex structures are time dependent and the airfoil acts as an adaptative
airfoil that modifies its camber with the relative velocity. A preliminary design of
such an airfoil was devised by means of a sequence of conformal mappings and a
detailed report is presented in appendix A.1.3.

The aim of the present study is to survey on the vortex wake past the VAT
architecture and, generally, to develop a set of analytical and numerical strategies ad
hoc in order to describe the incompressible full unsteady flow past moving bodies. As
final purpose, the development of such tools can be addressed to study the behaviour
and performance of the new concept blade. We investigate on such problem by means
of two different approaches. In section 3.1 the analysis is devoted to the study
of the incompressible and inviscid flow field by means of a potential flow model.
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3 – Vortex wake past a vertical axis turbine

In section 3.2, the unsteady incompressible Navier-Stokes equations are solved in
terms of the vorticity equation. Both the methodologies consist of either mixed
analytical-numerical or only numerical simulations of two dimensional phenomena
governed by the incompressible Euler or Navier-Stokes equations. The solutions are
attained through a Lagrangian description of the trajectories of vortex particles that
approximate the distribution and the dynamics of the vorticity ([17]).

These two methods were devised with the aim of providing some efficient tools
in the project of a vertical axis turbine. In the pre-project phase and without high
computational resources, the inviscid analysis allow to determine the geometrical
features (chord/radius ratio, position of the vortex-cell edges) and to estimate the
performance of the turbine by varying the operating conditions. In a second phase,
the turbine provided by the inviscid model, can be tested on the viscous solver and
the aerodynamic design of the blade profile can be derived.
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3.1 Inviscid analysis

The 2D unsteady inviscid rotational flow past moving bodies is addressed. The
aim of this analysis is to develop a set of techniques which allow a modelization of
the separation and a realistic survey of the instabilities and interactions of vortex
structures in the wake past a vertical axis turbine.

The organization of this section is as follows. In section 3.1.1 we propose an
analytical-numerical approach based on the conformal mapping theory and the blob
vortex method that allows to describe the unsteady flow field. A vortex trapping
profile is tested on a vertical axis turbine with single-blade configuration and the
results are presented in section 3.1.2. Some first results referred to this topic were
presented in Zannetti et al. (2007) [81]. An investigation of the vortex dynamics in
a doubly connected domain is addressed in section 3.1.3, where the major reference
is Zannetti et al. (2008) [82]. These results represent the preliminary suggestion to
extend the analysis to the vortex wake past a two blades turbine configuration. In
section 3.1.4 a low-order formulation of the two-blade configuration is presented. Fi-
nally a technique devoted to the evaluation of the turbine performances is discussed
in section 3.1.5.

In this work, the airfoils adopted for the blade section of the vertical axis turbine,
are obtained by some classical transformations, such as Joukowski’s or Kármán-
Trefftz’s mappings, applied on one or two unit circles. On the other hand, it is
important to remark that, by means of the theory of functions of complex variables
(see, for instance, Moretti (1964) [43]), a generic simply connected region can be
described by a chain of conformal mappings and transformed onto a circle. More-
over, as shown by Ives (1976) [33], a general mixed analytical-numerical conformal
mapping method can be adopted to transform any doubly connected region with
two arbitrary airfoils into two circles. Therefore the present inviscid analysis could
be extended to a vertical axis turbine characterized by one or two blades with an
arbitrary section’s shape.

3.1.1 The blob vortex method

The inviscid model of two dimensional vortex shedding is based on the approximate
description of the free shear layers by vortex particles. According to Clements
(1973) [13] the vorticity is concentrated in point vortices and the flow is modelled
as a potential flow with point singularities immersed within (discrete or blob vortex
method). The unsteadiness of the flow field is such that the circulation around the
bodies changes and the vortex singularities are shed by the separation points. At
the beginning, the flow is at rest and the total circulation is null. Once the wind
blows or the bodies move, the wake is generated by the shed vortices.

The vortex shedding is based on generating vortices at constant time intervals
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3 – Vortex wake past a vertical axis turbine

in fixed locations close to the sharp edges. The circulation of each newly born
vortex is determined by satisfying the Kutta condition, that is, by imposing the
flow separation at the edges. As the vortex moves, the Kutta condition is not
respected anymore, but it is restored as soon as a new vortex is generated.

This discrete description of the continuous evolution of vortex sheets and its vali-
dation are widely discussed in literature (see Clements (1973) [13] Kuwahara (1973)
[38], Sarpkaya (1975) [65] and Kiya & Arie (1977) [36]. A general outline of the
inviscid vortex methods can be found in Peters (1993) [50]). In the cited literature,
a survey of the choice of the simulation parameters, such as release timing and dis-
tance d between the origin location and the edge, is provided. Though a possible
asymptotic steady solution is independent from this choice, these parameters play
an important role in the realistic description of the vortex shedding or transient
phenomena.

The vortex method here implemented follows the same criteria used in Zannetti
& Iollo (2003) [83]. If the wind velocity q∞ and the airfoil chord c are chosen as
reference velocity and reference length respectively, the distance d is ≈ 0.01, which
is in the range recommended in literature. The position of the vortex release is
located heuristically downstream from the sharp edge. The release of a new vortex
depends on its strength, which has to be larger than a prescribed value. In our
simulations the absolute value of the threshold for the vortex generation is 0.0001.
The time-marching is determined by a second order scheme with an integration
time-step ∆t = 0.001, while the release time is defined as ∆to = k ∆t where k is
chosen within the range 1 ÷ 10, depending on the simulation time.

The boundary conditions are deduced by the undisturbed velocity at infinity and
the body impermeability. According to [41], for a moving body, the impermeability
condition can be determined by imposing a suitable distribution of the streamfunc-
tion along the solid boundary. Let us define a frame of reference (x, y) fixed on
the body and the curvilinear abscissa s which marks a point (xb(s), yb(s)) on the
solid moving wall. Since this frame of reference moves rigidly with the body, it is a
relative frame of reference. The normal component of the absolute velocity is

∂ψb

∂s
= (u− Ωyb)

dyb

ds
− (v + Ωxb)

dxb

ds
(3.1)

where u,v and Ω are the translation and angular velocity components of the frame
of reference in rigid motion. By integrating, we obtain the streamfunction of the
absolute motion along the body

ψb(s) = uyb(s) − vxb(s) −
1

2
Ω
(

y2
b (s) + x2

b(s)
)

. (3.2)

It is important to remark that, although this boundary condition is described on a
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relative frame of reference, it is pertinent to the absolute flow field. In figure 3.3 a
sketch illustrating the adopted nomenclature is presented.

Figure 3.3. Deduction of the impermeability condition.

3.1.2 The single-blade model

We considered the flow past a turbine with a single blade, characterized by an airfoil
equipped with two trapping cavities, as described in appendix A.1.3. In a frame of
reference fixed on the blade, the complex potential can be defined on the ζ-plane,
where ζ = ρeiφ and the image of the blade section is the unit circle ζb(φ) = eiφ.
Let q∞e−iα be the complex velocity of the wind in the physical plane, the complex
potential w(ζ) is

w = Q∞e−iβζ +
Q∞eiβ

ζ
+

1

2πi

J
∑

j=1

γj log
ζ − ζj
ζ − 1/ζ∗j

+

N
∑

n=1

(an + ibn)

ζn−1
(3.3)

where Q∞e−iβ = limζ→∞ q∞e−iαdz/dζ and γj , ζj are the circulation and the position
of the vortex singularities. The last term is a Laurent series that contains only the
negative exponents. If the series is suitably truncated at a large value N , it can
be determined so that the motion of the blade is taken into account. The an, bn
coefficients are real and can be tuned by the stream function distribution on the
blade ψb, generally represented by equation 3.2. On the ζ-plane the image of the
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blade contour is ζ = eiφ, then the impermeability boundary condition is then set by

Im[w(ζ)]|ζ|=1 =

N
∑

n=1

bn cos(n− 1)φ− an sin(n− 1)φ

=uyb(φ) − vxb(φ) −
Ω

2
(x2

b(φ) + y2
b (φ))

(3.4)

where u = ΩR, v = 0, xb(φ) = Re[z(ζ(φ))] and yb(φ) = Im[z(ζ(φ))].
The circulation of the newly born vortices is determined by imposing the Kutta

condition at the sharp edges Ei = K, K∗, T. For a moving body the Kutta condition
is satisfied when the relative velocity is not infinite at the cusps Ei. By means of
the remarks discussed in appendix A.2.1, the Kutta condition is expressed by the
equations

Im

[

dw

dζ
eiφ

]

ζK

= 0, Im

[

dw

dζ
eiφ

]

ζK∗

= 0, Im

[

dw

dζ
eiφ

]

ζT

= 0. (3.5)

These three equations represent a linear system where the unknowns are the cir-
culations γK , γK∗, γT of the new vortices placed in the origin points close to the
cusps. Furthermore, for each generation, the number J of the vortices in the wake
is increased.

The vortex trajectories are computed by integrating in time the relative velocities
ζ̇∗r,v in the transformed ζ-plane and then by mapping the new locations on the
physical z-plane. Since the complex potential and the complex velocity are defined
in the transformed plane, the choice of integrating the vortex velocities in the ζ-plane
allows to save computational cost, because the vortex locations in the physical plane
can not to be conserved. According to the Routh rule (see, for instance, [77], [13])
the conjugate relative velocity of the vortex in the physical plane is

ż∗r,V =

[(

ζ ′∗ −
γ

4πi

d2z
dζ2

dz
dζ

)

1
dz
dζ

]

V

− q∗t,V (3.6)

where q∗t,V is the velocity in the vortex location due to the transport of the frame
of reference, and ζ ′∗V is the velocity that a free vortex should possess through the
advection on the transformed plane, that is

ζ ′∗V = lim
ζ→ζV

(

dw

dζ
−
γV

2πi

1

ζ − ζV

)

. (3.7)

The difference between ζ ′∗ and ζ̇∗ is meaningful. As regards ζ̇∗, it represents the
rate of change of a particle location in the transformed ζ-plane during its physical
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advection. On the other hand, ζ ′∗ is the advection velocity that a particle on the
ζ-plane would possess in virtue of the complex potential.

Finally the relative velocity of the vortex in the ζ-plane can be expressed by

ζ̇∗r,V =
ż∗r,V
(

dz
dζ

)∗

V

. (3.8)

In our simulations the numerical integration of the vortex trajectories was per-
formed on a distributed memory HP Linux cluster platform, equipped with 9 nodes
bi-dual core AMD Opteron 2.2 GHz. The Fortran library for the parallel communi-
cation is the free MPICH2 protocol.

Some visualizations and results of the flow past the single-blade turbine are
presented subsequently. Let us consider an impulsively started motion, pertinent to
a turbine whose blade-chord to turbine-radius ratio is l/R = 1/2 and whose turbine-
speed to wind speed ratio is q∞/ΩR = 1/5. In figure 3.4 a frame of the simulation is
shown. The dots in the figure represent the point vortices. The different colours are
related to the spin, red for the counter-clockwise and blue for the clockwise. The
snapshot is taken at t = 27 and in the flow fields J = 38239 vortices are immersed.
The streamline patterns pertinent to the relative and the absolute motion are shown

Figure 3.4. Vortex wake (left). Trapping vortex cavities and interaction with the
wake (right). q∞/ΩR = 1/5, l/R = 1/2.

in figure 3.5. The cavities entrap two vortex structures that are unsymmetrical
because of the non-null angle of attack of the relative velocity. The snapshot is
taken at t = 0.01 and the starting vortex is only just released by the trailing edge,
as can be seen in the relative motion streamlines pattern is visible.
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3 – Vortex wake past a vertical axis turbine

By increasing the speed ratio q∞/ΩR the envelope of the relative velocity is
larger, as discussed in 3. The cavities operate at higher incidences and the vortex
structures captured by the cavities can detach. For instance, the figure 3.6 shows
two snapshots taken before and after the shedding of a vortex dipole, for a simulation
where q∞/ΩR = 1/2.

Figure 3.5. Streamlines field for a relative (left) and absolute frame of reference (right).

Figure 3.6. Detachment of a vortex dipole. Snapshots at t =
0.275, 0.325, 0.375. q∞/ΩR = 1/2, l/R = 1/2.

These numerical examples show that vortical structures are generated and trapped
by the cavities and that vortex shedding is prevented. In spite of the fact that this
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Figure 3.7. On the left-hand-side, evolution of the circulation for the rotat-
ing blade q∞/ΩR = 1/5, l/R = 1/2. On the right-hand-side, evolution of
the circulation for a still profile which experiences the same envelope of the
relative velocity.

Figure 3.8. Wake pattern for a non rotating motion with same envelope
of the relative velocity.

model is inviscid and does not take into account the incidental secondary separa-
tions, it allows the investigation of the physical vortex shedding phenomena. The
Kutta condition is able to model the main viscous effect causing the flow separation,
and the blob-vortex method represents an high order discrete approximation of the
inviscid unsteady vortex wake (see references cited in 3.1.1).

In figure 3.7 the history of the circulation is illustrated. In the picture on the
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left-hand-side the integral in time of the circulations generated by the internal,
external and trailing edge are presented versus the blade angular position θ = Ωt.
By applying the Kelvin theorem, the circulation around the blade results as the
opposite of the sum of the circulations of the wake vortices; in this figure it is
represented by the solid line. In spite of the symmetrical kinematics of the relative
velocity described by the hodograph plane 3, the blade circulation shows a non null
value with a positive average. Indeed, the motion of the blade is circular and, owing
to the wake effect, the internal side of the blade differently acts from the external
one.

In the picture on the right-hand-side of figure 3.7, we shown the evolution of the
circulation for the profile involved in another motion but with the same envelope of
the relative velocity. In this motion, the frame of reference is galileian and is fixed on
the profile; in other terms, the profile does not move and the relative velocity ’seen’
by the profile is equal to the absolute velocity. The absolute velocity corresponds
to the upstream velocity, which varies with time. In particular, the time history of
the upstream velocity is chosen so that it follows the same evolution of the relative
velocity experienced by the blade section in the simulation represented in figure 3.4.

The aim of this test is to compare two kinds of motion characterized by a different
flow dynamics but with the same kinematics of the relative velocity. In the case of
the rotating blade, illustrated in figure 3.4 and on the left-hand-side of figure 3.7, the
time evolution of the circulation shows that a variable lift with a non null average
is exerted on the blade profile, that is, on the average, the mechanical power on the
shaft is non null. In the case of the still profile, which whose the wake pattern is
displayed in figure 3.8, the history of the circulation around the body, i.e. the lift,
is periodic and its average value is approximately null (see the right-hand-side of
figure 3.7). This result is coherent with the fact that the profile does not move and
the upstream velocity is periodic.

3.1.3 Vortex wake past a two-elements airfoil

The study of the vortex motion in a region with a double connection is relevant to
several problems in aerodynamics and hydrodynamics, such as the flow past multiple
airfoils and the sea motion past islands. The theory of such kind of flows takes up
several references in literature, see, for instance Marshall & McDonald (2004), [34],
(2005) [35] and Crowdy & Marshall (2005) [20]. The vortex dynamics in such a
problem is the preliminary subject of the investigation of the flow past a two-bladed
vertical axis turbine.

We studied the transient flow motion past an airfoil equipped with a flap, initially
at rest. The matter here presented is suitably developed for the two-bladed vertical
axis turbine case by Ottino (2008) [48].
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Following the study of Ferrari (1930) [23] of the analytical solution of the po-
tential flow past a biplane section, the blob vortex method presented in 3.1.1 and
applied in 3.1.2 for a domain with a single connection, is here devised for a doubly
connected case.

With the aim of presenting an example, a suitable conformal mapping sequence
is practiced in order to map two circles on the ν-plane onto an airfoil with flap in
the physical z-plane. The image of the airfoil is defined as main circle (m), while
the image of the flap is the secondary circle (s). In addition, in order to describe
the flow field by means of the blob vortex method, a second mapping is needed: the
outer region of the two circles in the ν-plane is transformed into a rectangle on the
final χ-plane. More details are reported in appendix A.1.4.

As devised in [23], the complex velocity dw/dχ in the χ-plane (figure 3.9) must
have a second order pole to represent the wind velocity and first order poles to
represent the vortex singularities. On the χ-plane, the impermeability condition
of the solid boundaries have to be imposed through infinite reflections referred to
the vertical sides of the rectangle. Since the conformal mapping is periodic as
compared to the horizontal limits of the rectangle, the infinite reflections have to
be imposed with the horizontal boundaries as well. Therefore, the complex velocity
has to be determined by a doubly periodic function (see, for instance, [70]), with
the real semiperiod ω = a + b and the imaginary semiperiod ω′ = iπ. Now let us

Figure 3.9. χ-plane.

describe the asymptotic solution for the steady flow, where the vortex shedding at
the beginning is terminated and the circulation around two airfoils −Γ is equivalent
to the opposite circulation at infinity Γ. In this case, the flow field implies that the
complex velocity can have point vortex only at χ = 0 and χ = 2a. According to the
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double periodicity of the χ-plane, the complex velocity can be defined by means of
the Weierstrass elliptic functions, that is

dw

dχ
= −[Q∗

∞℘(χ) −Q∞℘(χ− 2a)] +
Γ

2πi
[ζ(χ) − ζ(χ− 2a)] + iκ (3.9)

where ℘ and ζ represent a first-order and second-order pole, respectively. The
constant κ ∈ R

1, according to the theory of the elliptic functions, is introduced,
since two elliptic functions characterized by the same poles only differ by a constant.

By taking into account the relations dζ(χ)/dχ = −℘(χ), d
dχ

log σ(χ) = ζ(χ) and
integrating the above equation, the complex potential becomes

w = Q∗
∞ζ(χ) −Q∞ζ(χ− 2a) +

Γ

2πi
log

σ(χ)

σ(χ− 2a)
+ iκχ, (3.10)

where Q∗
∞ can be determined by the complex velocity at infinity in the z-plane (see

for instance the Sec. 3.1.2), that is

Q∗
∞ = −2q∗∞

c(1 − zc)e
−iβ

τsτm

λT − λN + 1/λ∗T − 1/λ∗N
νT − νN + 1/ν∗T − 1/ν∗N

. (3.11)

The equation 3.9 is defined when Γ and κ are determined. By fixing the Kutta
condition at the two trailing edges Tm, Ts and solving the linear system, the flow
field is determined. Following 3.1.2, the Kutta condition can be enforced by

(

dw

dχ

)

χTm

= 0,

(

dw

dχ

)

χTs

= 0. (3.12)

If w = φ+i ψ, where φ is the velocity potential function and ψ is the stream function,
then γm = Re(wC − wD), γs = Re(wA − wB) are the circulations around the main
and the secondary airfoils, the total circulation around the whole airfoil with flap
is (γm + γs) = −Γ. By introducing the potential 3.10 and taking into account the
properties of the elliptic functions ζ(χ + 2ω′) = ζ(χ) + 2η′ and log σ(χ + 2ω′) =
log σ(χ) + 2η′χ, the circulations around the airfoils are

γm = −4iη′
[

Im

(

Q∞ +
Γa

2π

)]

− 2πκ, γs = −Γ − γm, (3.13)

where η′ = ζ (ω′).

Now the transient that follows the impulsive starting of the double airfoil is
studied. The asymptotic behaviour of the transient flow has to tend to the above
steady solution. The unsteady rotational flow field generated by the starting can
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3.1 – Inviscid analysis

be modelled by the blob vortex method discussed in section 3.1.1. In the following
computation, the choice of the numerical parameters has been carried out by taking
into account the prescriptions discussed in the previous section. At the initial time,
the flow is at rest and the total circulation is null. Once the motion is generated, the
vorticity begins being released and, by the Kelvin’s circulation theorem dΓ/dt = 0,
the total circulation is conserved.

Following the discrete approximation of the vorticity field, the complex velocity
on the transformed χ-plane is defined by

dw

dχ
= − [Q∗

∞℘(χ) −Q∞℘(χ− 2a)] +
1

2πi

N
∑

jm=1

γjm

[

ζ (χ− χjm
) − ζ

(

χ+ χ∗
jm

− 2a
)]

+
1

2πi

N
∑

js=1

γjs

[

ζ (χ− χjs
) − ζ

(

χ + χ∗
js
− 2a

)]

+ iκ(t)

(3.14)

and by integration the complex potential is

w = Q∗
∞ζ(χ) −Q∞ζ(χ− 2a) +

1

2πi

N
∑

jm=1

γjm
log

σ (χ− χjm
)

σ
(

χ+ χ∗
jm

− 2a
)

1

2πi

N
∑

js=1

γjs
log

σ (χ− χjs
)

σ
(

χ+ χ∗
js
− 2a

) + iκ(t)χ,

(3.15)

where the subscripts m, s indicate the vortices shed by the main and secondary
airfoils, N is the number of the released vortex couples , χjm,s

are their locations
and κ(t) ∈ R1 uniquely defines the elliptic function that, for now, it is unknown.
This function can be established by the Kelvin’s circulation theorem, that is, the
physical requirement that the sum of the bound and shed circulations past each
body must remain constant.

Therefore the sum of the bound circulation and shed circulation has to be null
for each airfoil, that is, γm +

∑

γjm
= 0 and γs +

∑

γjs
= 0. Referring to figure 3.9,

by integration around two airfoils

Re

(
∮

dw

dχ
dχ

)

= − (wC − wD) − (wA − wB) =
N
∑

jm=1,js=1

(γjm
+ γjs

) (3.16)

and by integration around each airfoil

(wC − wD) = γm, (wA − wB) = γs. (3.17)
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3 – Vortex wake past a vertical axis turbine

One of the two 3.17 can be adopted to compute the function κ(t), that is we can
enforce

(wC − wD) = −
N
∑

jm

γjm
, or (wA − wB) = −

N
∑

js

γjs
. (3.18)

Considering the presence of the branch cuts between the point singularities at χjm,s

and 2a − χ∗
jm,s

, it is better to employ the first of the equations 3.18 in order to
compute κ(t). By using the above quasi-periodicity properties of the Weierstrass
elliptic functions we obtain

κ(t) =
1

2π







N
∑

jm=1

γjm
+ 2

η′

iπ

2N
∑

jm,s

γjm,s

[

a− Re
(

χjm,s

)]

− 4iη′Im (Q∞)







, (3.19)

where the dependence on time of κ is hidden in the motion of the point singularities,
located in χjm,s

(t).

Figure 3.10. Wake pattern at t = 0.3 and t = 0.7.

In the blob vortex method, the Kutta condition is imposed when the vortex
singularities are shed, that is, the two equations (dw/dχ)χTm

= 0 and (dw/dχ)χTs
=

0 have to be set. At the same time, the equation 3.19 has to be imposed; therefore,
these three equations establish a 3 × 3 linear system which is solved at each vortex
generation, where the unknowns are κ, γNm

, γNs
.

The vortex advection is done by integrating in time the vortex velocities on the
transformed χ-plane and then on mapping the vortex locations on the physical plane
z-plane, as discussed in section 3.1.2. According to the Routh rule, the mapped
vortex velocity is similar to 3.8, that is

χ̇∗
j =

(

χ′∗
j −

γj

4πi

d2z/dχ2

dz/dχ

)

/J, (3.20)

where J is the mapping Jacobian J = |dz/dχ|2 and χ′∗
j can be expressed by through

the equation 3.7, that is

χ′∗
j = −[Q∗

∞℘(χj) −Q∞℘(χj − 2a)]

+
1

2πi

[

2N
∑

n=1,n 6=j

γnζ(χj − χn) −
2N
∑

n=1

γnζ(χj + χ∗
n − 2a)

]

+ iκ(t).
(3.21)
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3.1 – Inviscid analysis

Figure 3.11. Time evolution of the circulation around the secondary element (left)
and the main element (right).

A simulation of a transient flow has been computed for the same flow whose
asymptotic steady state was computed above. The main goal of the simulation
of the flow past an impulsively started double airfoil, is to reach the steady state
as the limit of the time dependent solution. In other terms, this test represents
a validation of the numerical integration of the velocities, which is performed to
compute the vortex trajectories. The figure 3.10 illustrates two snapshots of the
initial rolling up of the wakes released by the trailing edges of the two airfoils at
angle of incidence α = 5◦. The time history of the circulations around the airfoils is
presented in figure 3.11, where it is shown how the circulations asymptotically tend
to the stationary values.

3.1.4 Low order model for the two-blade turbine

In this section a low order mathematical model of two-dimensional unsteady flow
is addressed in order to describe the vortex wake past a vertical axis turbine. High
order simulations of such kind of flow through a blob vortex method have been
performed by Ottino in [48].

In this analysis the flow field is defined by a complex potential that takes into
consideration the doubly connected domain, as in 3.1.3, and the boundary condition
for moving bodies, as devised in [41]. The advection of the vortex singularities is
carried out by means of the discrete vortex method proposed by Clements (1973)
[13] (for more details see the sections 3.1.1, 3.1.2 and 3.1.3).

In the blob vortex model the vortex shedding is represented by vortex singulari-
ties with constant strength. The motion of the vortex is described by a local velocity
that is the complex velocity at the vortex location without the self-induced contri-
bution, and the Routh’s correction is introduced when the velocity is evaluated on
the mapped plane. When a vortex is generated, its circulation is once and for all
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3 – Vortex wake past a vertical axis turbine

determined by enforcing the Kutta condition at the sharp edges and the vortex is re-
leased if its intensity is high enough. At the succeeding time-step, the vortex moves
and the Kutta condition is not respected anymore until a new vortex is generated.
The choice of the release time is discussed in section 3.1.1 and generally depends on
the simulation time.

This approach represents an high-order model for the incompressible Euler equa-
tions. Since the number of the vortex singularities increases at each generation step,
the computational cost is an important drawback of this model. On the other hand,
a complete investigation of the performances of a vertical axis turbine would require
a large amount of simulation cycles, by varying the design parameters, such as the
chord-radius ratio c/R, the working ratio q∞/ΩR and the cavity shape in the case
of a trapping vortex blade section.

A low-order mathematical model that describes the separation in the presence
of sharp edges is now taken into account. We considered a technique where the
circulation of the discrete vortex arising close to a cusp is time dependent, that is
the nascent point vortex is connected to the edge by a feeding sheet. The discrete-
vortex/feeding-sheet combination allows to model a continuous vortex sheet shed by
the sharp edge by means of a reduced number of parameters.

Brown & Michael (1954) [8] argued that, if the point vortex with variable intesity
is advected by the local vortex velocity, the joint system point vortex/feeding sheet
experiences a force. Referring to the illustrations by Peters (1993) [50], the figure
3.12 shows a sketch of a feeding sheet that connects the point vortex with variable
strength V and the sharp edge T . The mathematical representation of the feeding
vortex sheet is a branch cut due to the logarithmic singularity representing the
vortex. We consider the unsteady Bernoulli’s equation for an irrotational flow (see
??) p+ρ∂φ

∂t
+V + 1

2
ρq2 = p0, where φ is the velocity potential and V is the potential

of an external conservative force. Since the velocity across the sheet is continuous,
if we enforce the Bernoulli’s equation at two limit points of the path l, the pressure
difference acting on the line connecting the edge to the point vortex is determined.
This static pressure jump is uniform along the sheet and is proportional to the rate
of the circulation. As reported in [50], the pressure force can be expressed by

Fp = iργ̇V (zV − zT ) (3.22)

where ρ is the fluid density. In [8] a Magnus force FM experienced by the point
vortex is suggested such that the system is force-free, that is

FM = −iργV (żV − z′V ) (3.23)

where z′V is the local velocity. The force balance yields the following equation that
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governs the motion of a variable strength point vortex

żV = z′V −
γ̇V

γV

(zV − zT ) , (3.24)

where the last term is the so-called Brown & Michael’s correction term. This force-
free reduced order model has been adopted in literature in discrete vortex methods
for predicting the loads due to the unsteady separation past bluff bodies or wings. On
the other hand, this model is able to balance the forces but let a spurious moment
to be introduced, as the figure 3.12 shows. This drawback is overcome in Howe
(1996) [32], where another vortex sheet modelization based on a modified Brown
& Michael’s equation is devised. A wide explanation of this model, references,
validations and comparisons with other reduced techniques are reported in [50],
Cortelezzi (1996) [16] and [32].

Figure 3.12. Feeding sheet (dashed line) between the sharp edge and the point vortex.

The vortex wake past the vertical axis wind turbine is now modelled by means
of the Brown & Michael equation 3.24. The two blade sections are obtained by a
chain of conformal mappings that maps the outer region of two profiles, identical and
symmetrycal to the axis, onto an annulus similar to the µ-plane obtained in A.1.4
for the airfoil with a flap. Finally, the flow region is mapped onto a rectangle on
the χ-plane (figure 3.13). The blades are indicated with the subscripts m, s and are
related to the interior and the exterior circles of the µ-plane annulus, respectively.

As discussed in [48], the trailing edges are defined by χT,m, χT,s, while the loca-
tions of the new point vortices are χV,m, χV,s where m,s denote the related generating
airfoil. The subscript j indicates a free point vortex. Q∞ is defined in the trans-
formed plane χ-plane and represents the momentum of the doublet corresponding
to the wind velocity in the physical z-plane. Following [48], the equation 3.14, which
describes the vortex motion in a doubly connected domain, is modified by taking
into account the moving boundaries, that is
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3 – Vortex wake past a vertical axis turbine

Figure 3.13. χ-plane.

dw

dχ
= −Q∗

∞℘(χ) +Q∞℘(χ+ ω) +
dw2

dχ
+ iκ

+
1

2πi

N−2
∑

j=1

γj

[

ζ(χ− χj) − ζ(χ+ χ∗
j − ω)

]

+
1

2πi
γm

[

ζ(χ− χV,m) − ζ(χ+ χ∗
V,m − ω)

]

+
1

2πi
γs

[

ζ(χ− χV,s) − ζ(χ+ χ∗
V,s − ω)

]

(3.25)

where η = ζ(ω), η′ = ζ(ω′) and N is total number of released vortices. The term
w2 is a series that does not add any singularities to the flow field, converges inside
the annulus of the µ-plane and allows to define the boundary conditions for moving
bodies. It is the version of the Laurent series with only negative exponents, discussed
in section 3.1.2, for doubly connected domain.

In the Brown & Michael numerical model the circulation of a nascent vortex
varies with time while it is advected by the flow field with the corrected velocity
3.24. As soon as the time derivative of the circulation becomes null, i.e. the intensity
does not change anymore, the vortex is shed with the constant strength and advected
with its local velocity. In addition, another vortex with variable strength is generated
close to the sharp edge. When a new vortex is going to be created, its intensity
increases and it is released only if the circulation threshold is reached.

Looking at the equation 3.25, the contribution of the variable strength vortices
to the flow field is provided by the last two terms, where γm = γm(t) and γs = γs(t).
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3.1 – Inviscid analysis

On the other hand, the vortices with constant intensities are represented by the
summation.

As presented in [48], at each time-step, the Kutta condition and the Kelvin’s
theorem around a profile have to be enforced, such that γm,γs and κ are computed
and the flow field is uniquely determined. The advection of the variable strength
vortices needs to evaluate the time derivatives of the circulations ˙γm,γ̇s. A wide
discussion and the mathematical derivations are reported in appendix A.2.2.

The heuristic choice of simulation parameters, such as release timing, location
and marching time-step is coherent with the indications discussed in section 3.1.1.
The absolute value of the generation threshold for the circulation is 0.001. In figure

Figure 3.14. Wake pattern represented by the high-order model (dots) and the
low-order model (crosses) at t = 36. The ”+” close to the trailing edges indicate
the variable intensity vortices.

3.14 we present a visualization of the wake issued by a turbine with the chord/radius
ratio c/R = 0.74 and with the operating ratio q∞/ΩR = 0.88.

In this picture the wake pattern computed by the reduced order model, marked
by crosses, is compared to the solution computed by [48], marked by dots. The
colour of the marks depends on the clockwise or counterclockwise spin. In the high-
order model the wake consists in N = 14200 point vortices, while in the low-order
model in N = 20. All the simulations have been performed on a distributed memory
HP Linux cluster platform, equipped with 9 nodes bi-dual core AMD Opteron 2.2
GHz. The high-order simulation run on 12 processors and spent ≈ 180 hours of real
time, while the low-order run on a single processor and spent ≈ 8 minutes. The
saving of the computational resources and processor run-time represents the major
advantage of the reduced-order model. The time history of the bound circulations
is presented in figure 3.15. The solid lines represent the low order simulation and
the dash-dotted line the high order simulation. The sub-scripts m,s indicate the
blade section around the circulation has been computed.
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3 – Vortex wake past a vertical axis turbine

Figure 3.15. Time history of the blade circulations computed by the high-order
model (h.o.) and the low-order model (B & M).

Figure 3.16. Time history of the circulation and of its time derivative for the
variable intensity vortices. The left-hand side and right-hand side pictures are
pertinent to the vortices shed by the m and s blade, respectively.

The time history of the blade circulations computed by means of the reduced-
order model shows an agreement with the results of the high-order model, in terms
of phase, average values and amplitudes. An estimation of forces and torque through
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the impulse theory, discussed in section 3.1.6, represents another meaningful point
in order to compare the proposed models. This problem is the subject of an ongoing
research activity.

In figure 3.16 the time history of the circulation and of the circulation time
derivative for the variable-strength point vortices m,s is displayed. When the time
derivative of the circulation tends to zero, i.e. the strength of the vortex is going
to be constant, then the vortex is released and a new vortex is generated close to
the related trailing edge. As soon as a constant intensity vortex is released, the
nascent vortex has an intensity lower than the threshold and is not advected until
the circulation increases enough.

We presented here a low-order model which allows to simulate the inviscid un-
steady wake past a two-blades VAT with a minimum computational cost. This
method represents an efficient tool for the preliminary design of such kind of ma-
chinery.
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3 – Vortex wake past a vertical axis turbine

3.1.5 Forces and torque

The rigorous evaluation of the performances from the results, as given by the blob
vortex method, is not a simple task. It consists of computing the dynamical effects
of a rotational unsteady incompressible flow in a system of moving bodies. Many
contributions concerning this topic can be found in the literature. See, for instance,
Quartapelle & Napolitano (1982) [56], Wells (1998)[75], Pan & Chew (2002)[49],
Graziani & Bassanini (2002) [31], Protas (2007) [55] and references therein.

There are two methods that can be considered for deducing the dynamical actions
from the simulations performed with a blob vortex method. The first method is
based on integrating the pressure on the body’s solid walls by means of the unsteady
Bernoulli equation. The Blasius’ formulas discussed in [41] could be used for this
purpose. The main drawback of applying this approach in a blob vortex method
is determined by the strong noise that affects the pressure signal close to the solid
wall as a consequence of the vorticity concentrated in vortex singularities. The
second method is based on determining the dynamical actions by means of the time
derivatives of the linear and angular impulse of a fluid system (see, for instance,
[62]). This approach is most suitable for the present flow simulation and it is the
way that we intend to take into account. Subsequently, a general survey of the
evaluation of forces that the fluid exerts on a system of bodies moving rigidly is
presented.

The evaluation of the time dependent forces in viscous incompressible flow with-
out computing the pressure field is widely discussed in literature. Some references
can be found in Quartapelle & Napolitano (1982) [56], Noca et al. (1999) [46], Pan
& Chew (2002) [49] and Protas (2007) [55]. In particular in the seminal work [56]
the pressure variable is eliminated from the force equation at the cost of an addi-
tional variable, that is a solution of a Laplace problem. Noca et al. (1999) present
some closed formulations of the incompressible Navier Stokes equations, such that
the evaluation of the unsteady forces exerted on a moving body requires only the
information of the velocity field and its derivatives in a fluid region that includes
the body. These expressions are particularly popular both in the experimental tech-
niques, such as the Digital Particle Image Velocimetry (DPIV), and in the numerical
approaches, such as the ψ − ω methods, where the pressure field is not explicitly
determined.

Following [46], let us consider a solid moving body surrounded by an arbitrary
time dependent control volume V (t), that is defined by the external surface S(t), the
internal body surface Sb(t) and the branch-cut surfaces Su(t) (figure 3.17). The fluid
dynamic force exerted by the flow on the body can be evaluated by the momentum
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equation in integral form, that is

F = −
d

dt

∫

V (t)

u dV

+

∮

S(t)

n · [−p I− (u− uS)u + T] dS

−

∮

Sb(t)

n · (u− uS)u dS,

(3.26)

where n is the unit normal vector pointed outward, u is the flow velocity, uS is the
boundary velocity, i.e. internal body surface velocity, p is the pressure, the density
is unit and is omitted, I is the unit tensor, T the incompressible viscous stress tensor
T = µ(∇u +∇uT ) and µ is the dynamic viscosity. In addition, the moment MO of

Figure 3.17. Sketch of the control surfaces and volume enclosing a moving
body immersed in a free stream.

the force F referred to the origin O of the frame of reference is

MO = −
d

dt

∫

V (t)

x ∧ u dV

+

∮

S(t)

x ∧ {n · [−p I − (u− uS)u + T]} dS

−

∮

Sb(t)

x ∧ {n · (u− uS)u} dS,

(3.27)

By using some vectorial identities and basic transformations, the equation 3.26 is
modified by Noca et al. in three formulations that only require only the knowledge of
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the velocity and its derivatives in V (t). These three expressions have been validated
through some numerical and experimental applications. Referring to the terminology
proposed in [46], in section 3.2.4 we took into consideration the so-called ’impulse’
equation and ’momentum’ equation.

The ’impulse equation’ is the extension of the definition of hydrodynamical im-
pulse to a viscous flow, proposed by Saffman (1992) [62]. Indicating with N = 2 or
N = 3 the 2D or 3D flow, the equation is

F = −
1

N − 1

d

dt

∫

V (t)

x ∧ωωω dV

+

∮

S(t)

n · γγγimp dS

+
1

N − 1

d

dt

∮

Sb(t)

x ∧ (n ∧ u) dS −

∮

Sb(t)

n · (u− uSu) dS,

(3.28)

with

γγγimp =
1

2
u2I − uu −

1

N − 1
(u − uS)(x ∧ωωω) +

1

N − 1
ωωω(x ∧ u)

+
1

N − 1
[x · (∇ · T)I− x(∇ · T)] + T.

If we suppose that the flow at infinity is at rest, the body is substituted by a
distribution of image vorticity, and the control volume V (t) extends over the whole
space including the body, the equation 3.28 expresses the well-known invariance of
the hydrodynamical linear impulse, such that F = − 1

N−1
d
dt

I where I is the first
moment of the vorticity evaluated on V (t).

The ’momentum equation’ is an equivalent expression that involves the same
integrals as the equation 3.26, but does not require the pressure variable, namely

F = −
d

dt

∫

V (t)

u dV

+

∮

S(t)

n · γγγmomdS −

∮

Sb(t)

n · (u − uS)u dS,

(3.29)

where

γγγmom =
1

2
u2I + (uS − u)u −

1

N − 1
u(x ∧ωωω) +

1

N − 1
ωωω(x ∧ u)

−
1

N − 1

[(

x ·
∂u

∂t

)

I − x
∂u

∂t

]

+
1

N − 1
[x · (∇ · T)I − x(∇ ·T) + T] .
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Now, we will focus on the evaluation of the forces and moments in the case
of a control volume extending to infinity. Let us consider the flow field around a
system of moving bodies immersed in a free stream with a constant velocity q∞ at
infinity. For sake of simplicity the frame of reference is Cartesian and the position is
defined by X. By means of a Galileian transformation x = X−q∞ t, a new frame of
reference x can be introduced so that the infinity is at rest. A first trivial application
of this transformation is reported in appendix A.2.5. In addition we supposed that
the external forces vanish at infinity and the vorticity vanishes outside some finite
regions.

By following [62] and with the aforesaid hypothesis, it is important to remark
that at large distances the flow is irrotational, that is u = ∇φ, where the velocity
potential φ can be defined as the expansion

φ =

∞
∑

n=0

anSn(θ,λ)

rn+1
.

Sn(θ,λ) are harmonic surfaces, (r,θ,λ) are spherical, polar coordinates and an are
some real coefficents, which depend on the vorticity distribution. In the absence of
sources or sinks, a0 = 0 and the leading term goes with 1/r2. This hypothesis of
decay of the velocity allows to annul the surface integrals on S(t) in the equations
3.26 and 3.27, when the surface tends to infinity. Finally, the impermeability condi-
tion on the solid boundaries and the above consideration on the flow at the infinity
permit to replace the equations 3.26 and 3.27 with the following expressions

F = −
d

dt

∫

V∞

u dV (3.30)

MO = −
d

dt

∫

V∞

x ∧ u dV (3.31)

where the integrals determine the momentum and the angular momentum of the
whole flow field. Through the vectorial identity (see [62])

∫

V

x ∧∇ ∧ u dV = (N − 1)

∫

V

u dV +

∮

S

x ∧ (n ∧ u) dS

the time derivative of the integral in the equation 3.30 becomes

d

dt

∫

V∞

u dV =
1

N − 1

d

dt

∫

V∞

x ∧ωωω dV +
1

N − 1

d

dt

∮

Sb(t)

x ∧ (n ∧ u) dS. (3.32)

This equation is meaningful because it expresses how the force exerted on a body
is provided by two contributions: a volume integral, that includes the effects of the
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wake and the other bodies’ systems replaced by some image vorticity distributions
(see [62]), and a surface integral. The surface integral represents the contribution,
to the dynamical action, of a bound vorticity, that consists of a vortex sheet with
the strength defined by the tangential component on the boundaries of the absolute
velocity. In other terms, the body is replaced by a vortex dynamical equivalent and
the whole system ’flow field + bodies’ can be considered as a single fluid system.

Let us define the intensity of the bound vorticity as κκκ = n ∧ u, with n pointed
outward from the control surface, i.e. inward towards the solid body. The force is
then determined by

F = −
d

dt

[

1

N − 1

∫

V∞

x ∧ωωω dV +
1

N − 1

∮

Sb(t)

x ∧ κκκ dS

]

. (3.33)

The same approach can be applied to the moment equation 3.31. By replacing
the volume integral in the right-hand side with the following identity (see [62])

∫

V

x ∧ u dV = −
1

2

∫

V

r2ωωω dV −
1

2

∮

r2(n ∧ u) dS (3.34)

the moment equation becomes

MO = −
d

dt

[

−
1

2

∫

V∞

r2ωωω dV −
1

2

∮

Sb(t)

r2κκκ dS

]

. (3.35)

where r2 = x · x.
From the equations 3.33 and 3.35 the linear and angular hydrodynamical impulse

can be deduced. They are two natural invariants of the flow and, by indicating
with I the linear impulse and with A the angular impulse of the flow, we have
F = −dI/dt and MO = −dA/dt. If there are no bodies within the flow field, no
force and moment are exerted and the quantities I and A are conserved in time. As
discussed above, the two impulses take into account of the ’wake’ and the ’bound
vorticity’ contributions, therefore the invariants can be defined as I = Iw + Ibv and
A = Aw + Abv. By comparing these expressions with the right-hand sides of both
the equations 3.33 and 3.35, the following definitions easily can be found

Iw =
1

N − 1

∫

V∞

x ∧ωωω dV, Ibv =
1

N − 1

∮

Sb(t)

x ∧ κκκ dS

Aw = −
1

2

∫

V∞

r2ωωω dV, Abv = −
1

2

∮

Sb(t)

r2κκκ dS.

(3.36)

3.1.6 Performances evaluation

An approach devoted to the realistic evaluation of the turbine performance is now
taken into account. The estimation of the forces and torque exerted on the turbine’s
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shaft can be efficiently carried out by means of the impulse theory discussed in the
previous section.

As first consideration, a rough approximation of the forces could be attempted
by assuming the flow as quasi-steady, that is, by applying the Joukowski theorem
to the instantaneous blade circulation generated by the instantaneous asymptotic
relative velocity assumed as steady. Since the unsteadiness is an intrinsic feature of
such kind of flow field, as discussed in the introduction of chapter 3, this approach
however is deceptive. This method is now presented.

Let us consider the one-blade turbine described in section 3.1.2. In figure 3.18,
the trapped vortex blade circulation (solid line) is compared to the circulations the
blade would experience if the flow were steady. In particular, the dotted line is
related to a blade with trapped vortices, while the dash-dotted line is pertinent to a
blade without trapped vortices. The actual unsteady circulation is very far from the
steady ones and it does not allow for a realistic approximations of the performances
on the basis of a quasi-steady estimation. It shows a much smaller amplitude and a
different phase as a consequence of the transient nature of the flow and of the wake
effect.

Figure 3.18. Single blade turbine q∞/ΩR=0.2: steady and unsteady circulations
versus blade angular position

The steady circulation past the blade with trapped vortices has been computed
analytically by imposing the Kutta condition at the three edges of the blade for a
given relative velocity at infinity. It allows to compute the circulation at infinity and
the strength of the trapped vortices, which are assumed as point vortices located in
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3 – Vortex wake past a vertical axis turbine

equilibrium position. The vortex equilibria result as being stable. The method used
to determine the equilibrium positions of the trapped vortices and their stability is
described in [77] and discussed in section 2.2.

The comparison between the steady circulations, with and without the trapped
vortices, offers a clue on the effect of the trapped vortices. The amplitude of the
circulation related to the blade with trapped vortices is slightly larger than that
without trapped vortices, hence the effect of enhancing the turbine performances
should be small. Therefore, the main outcome expected by the trapped vortices is
the stall control rather than the perfomance improvement, which is however present.

It is important to remark that these assumptions need to be validated by the
full unsteady model, and the effect of the cavities on the blade’s performance would
have be verified through the explicit estimation of the evolution in time of the loads.

With the hydrodynamical impulse theory, the unsteady loads exerted on the
turbine can be evaluated. Let us take into consideration the 2D inviscid flow model
pertinent to the blob vortex method presented in section 3.1.1. In a Cartesian frame
of reference with versors i, j, k the relations 3.36 become

Iw =

∫

S∞

ω x ∧ k dS, Ibv =

∮

B

κ x ∧ k ds

Aw = −
1

2

∫

S∞

ω r2k dV, Abv = −
1

2

∮

B

κ r2k ds,

(3.37)

where S∞ indicates the supports where the vorticity takes place, B is the solid
boundary traced by the curvilinear coordinate s and κk = n ∧ u is the bound
vorticity. In the single-blade model presented in section 3.1.2, the blade section in
the physical z-plane is mapped onto a unit circle in the transformed ζ-plane. The
flow field was described through a complex potential w = w(z(ζ)) in which the
vorticity is modelled as some vortex singularities.

The frame of reference is fixed on the blade, ergo, by means of a Galileian
transformation, we can compute the absolute velocity of the flow with the infinity
at rest by subtracting the velocity of the stream. Indicating with Vabs the absolute
velocity, we can write

V∗
abs =

(

dw

dζ

1
dz
dζ

− q∞e−iα

)

(3.38)

where (·)∗ indicates the complex conjugate, q∞eiα is the free stream velocity evalu-
ated on the moving frame of reference in the physical plane. Now the bound vorticity
distribution can be determined. In figure 3.19, a sketch of the body contour is illus-
trated. According with the notation adopted in the conformal mappings, the normal
n is chosen outward form the wall and β is the angle evaluated in the physical plane.
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Figure 3.19. Bound vorticity evaluation

The basic property of conformal mappings of preserving the angles dz
dζ

=
∣

∣

∣

dz
dζ

∣

∣

∣
ei(β−φ),

allows to determine β depending on the angle between the normal and the body φ
on the transformed plane.

The tangential component of the absolute velocity is Vt = Im
[

V∗
abse

iβ
]

. Finally,
taking into account of the bound vorticity definition, we can write

κ = −Im





(

dw

dζ
− q∞e−iα dz

dζ

)

eiφ

∣

∣

∣

dz
dζ

∣

∣

∣



 (3.39)

The relations 3.37 can be easily adapted to the blob vortex method. If N is the
number of the free point vortices immersed in the flow field, the contribution of the
wake to the impulses is expressed by the following summations

Ix
w =

N
∑

i=1

γi yi, I
y
w = −

N
∑

i=1

γi xi, Aw = −
1

2

N
∑

i=1

γi

(

x2
i + y2

i

)

. (3.40)

The bound vorticity contribution is evaluated by means of an integral on the body
contour computed on the mapped plane. Being s = z(eiφ) and substituting ds =
∣

∣

∣

dz
dζ

∣

∣

∣
dφ in the line integrals of equations 3.37, the impulses related to the bound
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vorticity are

Ix
bv = −

∫ 2π

0

Im

[(

dw

dζ
− q∞e−iα dz

dζ

)

eiφ

]

yB(φ) dφ

Iy
bv =

∫ 2π

0

Im

[(

dw

dζ
− q∞e−iα dz

dζ

)

eiφ

]

xB(φ) dφ

Abv =
1

2

∫ 2π

0

Im

[(

dw

dζ
− q∞e−iα dz

dζ

)

eiφ

]

(xB(φ)2 + yB(φ)2) dφ

(3.41)

The set of equations 3.40 and 3.41 evaluate the linear and the angular impulse for
a 2D inviscid rotational flow field. By taking the time derivative of these quantities,
the forces and the moment of the forces, referring the origin of the frame of reference
for a moving body are computed. For instance, the above cited equations, represent
a straightforward and efficient approach to estimate the dynamical actions exerted
on the bodies by the flows simulated in the previous sections 3.1.2, 3.1.3 and 3.1.4.
In appendix A.2.6, a full analytical example of this procedure in computing the
dynamical actions on a moving body is reported.
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3.2 Viscous analysis

This part is devoted to present and validate a technique for the study of the unsteady
incompressible viscous flow interacting with moving bodies. This subject represents
a natural continuation of the previous inviscid analysis on the unsteady 2D flow past
bodies characterized by a rigid motion.

The outline of this work is as follows. The section 3.2.1 illustrates the numerical
solution of the vorticity equation based on a step of the Lagrangian advection of the
vortex particles and a step of diffusion computed on a Cartesian grid. The continuity
condition at the solid boundaries is enforced by means of a penalization technique.
In section 3.2.3, a survey of strategies to compute the aerodynamic forces acting on
the bodies is presented. A validation of the method is widely presented in 3.2.4,
where several test cases with the 2D circular cylinder benchmark have been carried
out. In section 3.2.5, some preliminary simulations of the wake past the vertical axis
turbine are discussed.

3.2.1 The vortex level-set flow model

The numerical simulation of a full unsteady incompressible viscous flow, with a set
of moving bodies immersed within, shows several difficulties for grid based methods.
The main drawbacks income from the re-grid procedure in tracing the body motion,
and from the high resolution necessary at the solid boundaries for high Reynolds
numbers.

An efficient and accurate technique necessary in order to simulate such a kind
of flow is represented by vortex methods (see, for instance, Cottet & Koumoutsakos
(2000) [17]). For our simulations, we followed the innovative approach proposed by
Coquerelle et al. (2006) [14] and Coquerelle & Cottet (2008) [15].

In these works, the Navier Stokes equation is defined in terms of a vorticity formu-
lation and the vorticity field is numerically determined by a particle discretization.
The no-slip condition at the solid wall boundaries is enforced by means of a penal-
ization model (Angot et al. (1999) [4]). The interaction of the incompressible fluid
with the rigid bodies is modelled through some level-set functions (see, for instance,
Sethian (1996) [66]) which follow the different interfaces immersed in a Cartesian
grid pattern and allow to manage the rigid motion and the collisions of the bodies.
This approach exhibits a wide set of applications, such as in the multi-phase fluid
dynamics and in more general problems of coupling between fluids and structures.
The simulation of the vortex wake behind a vertical axis turbine involve a single
phase fluid and a rigid rotation of two symmetrical straight blades immersed in an
undisturbed stream.

Following [17], the hybrids vortex methods are based on the combination of
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3 – Vortex wake past a vertical axis turbine

Lagrangian mesh-free schemes and Eulerian grid based schemes on the same flow
region. These two approaches numerically solve different terms of the governing
equations. An example of hybrid method is the Vortex-In-Cell (VIC) scheme: the
non linear advection is computed by tracking the trajectories of the Lagrangian par-
ticles through a set of ODEs, whereas an Eulerian grid is adopted to solve efficiently
the velocity field and the diffusive term.

The vortex level-set technique is a Vortex-In-Cell approach where the whole
fluid-solid set is studied as a single system, i.e. a single flow. The coupling between
the fluid and the solid boundaries is devised through a penalization method which
enforces the continuity condition and provides the no-slip condition for the vorticity
generation.

Let us consider a domainD with boundaries ∂D, where a single-phase fluid region
F (t) and a solid multi-connected region are defined S(t), such that F (t)∪S(t) = D.
The rigid motion valid in S(t) is formed by the linear velocity vG of a pole, for
instance the centre of mass, located in xG, and the angular velocity ΩΩΩ; the velocity
for each rigid set of bodies is then ū = vG + ΩΩΩ ∧ (x − xG). The incompressible 3D
Navier Stokes equation without external force fields

∂u

∂t
+ (u · ∇)u− ν∇2u +

1

ρ
∇p = 0 (3.42)

and the continuity equation
∇ · u = 0 (3.43)

are enforced in F (t). By considering the fluid-solid system as a single flow, the
governing equation in the whole region D is

∂u

∂t
+ (u · ∇)u − ν∇2u +

1

ρ
∇p = λχS(t)(ū − u) (3.44)

where u is a ’fluid’ velocity in F (t) and a u ’rigid’ velocity in S(t). On the right-
hand side, the penalization term is defined by the penalization parameter λ ≫ 1,
the rigid motion velocity ū and the characteristic function χS(t) capturing the solid
boundaries. The parameter λ has the dimension of the reciprocal of a time unit,
then the penalization term plays the role of an extra volume force term that induces
the velocity field within S(t) to become ū. A brief investigation on the correct
sign of the penalization term is reported in appendix A.2.3. A wide discussion
on the advantages and the accuracy of the penalization technique, references and
comparison with other immersed boundary approaches can be found in [4], Bruneau
& Mortazavi (2004) [9] and Mittal & Iaccarino (2005) [42].

The penalized formulation of the Navier Stokes equation is a typical context
where the implicit definition of the interfaces is natural and effective. Let us define
φ as a signed distance function that is negative inside S(t) and positive outside. The
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characteristic function can then be defined by χS(t) = H(φ), where H(·) is a suitable
step function (appendix A.2.4). Following Sethian (1996) [66], the dynamics of an
implicit surface is governed by an Hamilton-Jacobi equation with the form φt +
H(∇φ) = 0 where H is an hamiltonian function which is space and time dependent
(see [69]). Since we consider a set of rigidly moving bodies, the level-set function
has to satisfy

∂φ

∂t
+ (ū · ∇)φ = 0 (3.45)

and φ keeps unalterated the signed distance function.
Finally, let us consider the penalized Navier Stokes equation in the vorticity

formulation. By applying the curl to the equation 3.44, we obtain

∂ωωω

∂t
+ (u · ∇) ωωω = (ωωω · ∇)u + ν∇2ωωω + λ∇∧ [H(φ)(ū− u)] . (3.46)

Let d/dt(·) be the notation pertinent to the material derivative and by expanding
the penalization term, the equation becomes

dωωω

dt
= (ωωω · ∇) u + ν∇2ωωω + λH(φ) (ω̄ωω − ωωω) + λδ(φ) [∇φ ∧ (ū− u)] (3.47)

where δ(φ) is the 1D Dirac delta function, ω̄ωω = 2 ΩΩΩ and ∇φ corresponds to the
unit normal pointed inwards. The last two terms play a significant physical role in
the model. The first term clears the vorticity difference within the bodies, whereas
the second member represents a vorticity generation term that is localized on the
solid boundaries (bound vorticity, see [62]) and allows the no-slip condition to be
imposed. The penalized vorticity equation 3.47 means that the rate of change of
the vorticity, advected by the fluid in a Lagrangian frame of reference, is governed
by the diffusive effects, the stretching effects, the production of bound vorticity and
the vorticity cancellation within the solid bodies.

In vortex methods (see [17]) the rate of change of vorticity is modelled by means
of discrete vortex particles, such that the solution of the equation 3.47 is localized
only in the rotational regions of the flow field. This is the most important advantage
of the vortex methods, that is the computational efforts are naturally addressed only
to specific flow field zones. The vorticity field ωωω is represented by a set of particles

ωωω(x) =
N
∑

p=1

νp ωωωp ζ (x − xp) (3.48)

where N is the number of particles, xp is the location and νp, ωωωp are the volume
(constant due to the incompressibility constraint) and the strenght of a generical
particle p. In addition, ζ(·) is a smooth distribution function such that

∫

ζ(x)dx = 1,
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3 – Vortex wake past a vertical axis turbine

which acts on the vortex support. The vortex particle advection can be described
in the Lagrangian formulation by the following ODE

dxp

dt
= u (xp,t) . (3.49)

Since the incompressible velocity field is divergence-free, from the vector field theory
(see, for instance, [68]) we can define a vector potential ψψψ, such that

u = ∇∧ψψψ (3.50)

The vector potential ψψψ is a 3D extension of the so-called streamfunction ψ employed
in chapters 2 and 3. The following vectorial identity allows to establish a relation
between the streamfunction and the vorticity field

∇∧ (∇∧ψψψ) = ωωω = ∇(∇ ·ψψψ) −∇2ψψψ,

and, by imposing that the potential vector be solenoidal ∇ · ψψψ = 0, the equation
becomes

∇2ψψψ = −ωωω. (3.51)

The velocity field can be derived from a given vorticity field by means of the equation
3.51, a set of boundary conditions on ∂D and the definition 3.50. A discussion on
the choice of a suitable set of boundary conditions is reported in the subsequent
section 3.2.2.

The set of equations 3.45, 3.46 or 3.47, 3.48, 3.49, 3.50 and 3.51 with boundary
conditions, represents the flow model of the level-set vortex method. The governing
equation 3.46 (or 3.47) is in a dimensional form. A non-dimensional formulation can
be inferred by introducing the following set of non-dimensional quantities, based on
the reference length lref , the reference time tref and the reference velocity uref =
lref/tref

x̃ = x/lref , t̃ = t/tref , ũ = u/ uref

ω̃ωω = ωωω tref , λ̃ = λ tref , ∇̃(·) = ∇(·) lref

where the notation (̃·) indicates a non-dimensional quantity. Since the fluid is in-
compressible, the density ρ is considered unit. Defining the Reynolds number as
Re = uref lref/ν and replacing the non-dimensional quantity in the equation 3.46,
the non-dimensional penalized vorticity equation reads

∂ωωω

∂t
+ (u · ∇) ωωω = (ωωω · ∇)u +

1

Re
∇2ωωω + λ∇∧ [H(φ)(ū− u)] , (3.52)

where the (̃·) notation has been suppressed for clarity.
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3.2.2 The level-set Vortex-In-Cell algorithm

In the previous section, we discussed how the level-set vortex method is a variation
of a VIC technique. The VIC method is an hybrid technique that combines a
particles mesh-free approach with a grid-based scheme to solve different members
of the same governing equation. Taking into account the VIC scheme proposed in
[14], in this section an algorithm is devised, with the aim of improving the accuracy
and validating this method with standard benchmarks.

The present method is based on a viscous splitting algorithm, that is a technique
used in order to manage successively the inviscid and the viscous processes of the
governing equation. In [17] a wide and detailed discussion on the accuracy of this
algorithm is reported. Considering a discretization in time tn = n∆t applied to
the equation 3.46 or 3.47 where tn+1 is the time level to compute, each integration
step ∆t is formed by two substeps. During the first substep, the vortex elements
are advected by the local flow velocity. From the new vortex particles’ locations,
the vorticity field is remeshed on the grid by means of an interpolation procedure.
During the second substep, the diffusion operates on the new vortex locations on
the grid and corrects the vorticity field. Since the governing equation exhibits a
penalization term, an additional substep has to be introduced such that the vorticity
field takes into account the no-slip condition at the solid boundaries.

It is important to remark that the interpolating-remeshing scheme is a funda-
mental tool for the accuracy of the whole method. A wide analysis on the remeshed
particle methods in comparison with other numerical schemes and some references
therein, can be found in [17] and in Cottet & Weynans (2006) [18]; here it is shown
how the remeshed particle methods are equivalent to a class of high order finite
differences schemes without the constraint of the CFL condition.

For the sake of simplicity, let us consider that the domain D is two-dimensional
and is meshed by an orthogonal Cartesian equispaced grid, where ∆x ∼ ∆y ∼ h and
the particles’ volume is νp = ∆x∆y. In our work, we adopted the M ′

4 smoothing
interpolation formula that is third order accurate (see, for instance, [17]). The M ′

4

scheme can be described, for instance, by the following 1D interpolation kernel

M ′
4(x̃) =







0 if |x̃| > 2
1
2
(2 − |x̃|)2(1 − |x̃|) if 1 ≤ |x̃| ≤ 2

1 − 5x̃2

2
+ 3|x̃|3

2
if |x̃| ≤ 1,

(3.53)

where x̃ = x/∆x and x is the distance from the point to interpolate. In this 1D
example, the influenced stencil consists of four surrounding grid points. In the 2D
case, the M ′

4 scheme takes into account of the sixteen closest grid points around the
particle to interpolate/remesh.
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The algorithm is now discussed by studying an iteration in time. Let us consider
that the flow field is known at the time level tn and both the vorticity and the
velocity field are defined on the grid. The particles trajectories 3.49 are integrated
for the time-step ∆t by means of a fourth order Runge-Kutta scheme (RK4). During
a time-step ∆t, for each RK substep, the velocity is interpolated from the grid
onto the updated particle’s position. As soon as the final location of a particle is
determined, a remesh procedure assigns the new vorticity field on the grid. In the
present method, all the interpolation (grid points to particles) or remesh (particles
to grid) procedures are carried out by means of the aforesaid formula 3.53.

Let ∆t and ∆tconv be the time-steps associated to solve the diffusive and the
convective phenomena respectively. The quality of the numerical simulation also
depends on choice of these time-steps. Following Ploumhans et al. (2000) [53], a
cell Reynolds number in vortex methods can be defined as Reh = |ω|h2/ν and
a good resolution requires Reh = O(1), so that the principal viscous scales are
detected. On the other hand, the diffusive phenomena are solved with accuracy by
imposing ν∆t/h2 = O(1). Multiplying these two conditions, we obtain an accurate
choice of the convective time-step ∆tconv ∼ 1/|ω|. This condition is used with
the aim of making more stable the advection at large Reynolds numbers as well.
These assumptions are adopted to choice a suitable convective time-step for the
RK4 scheme.

In the present method, the RK4 scheme operates for a convective time-step that
is defined by ∆tconv ∼ 1/|ωn

max|, where ωn
max is the maximum absolute valued of

the vorticity field at tn. Being k = ∆t/∆tconv, the RK4 scheme is then successively
applied for k-times, and the iterated remeshing steps allow to distribute the vorticity
onto the grid.

Let us consider the motion of a solid wall into the level-set VIC algorithm. The
level-set function φ is defined as a signed distance function, that is, its zero level
corresponds to the body’s wall. At t0, the signed distance function is initialized as
a scalar value on a support Sφ defined on the grid points. The body’s trajectory
can be evaluated by integrating the equation 3.45. Since the motion defined by ū is
rigid, φ does not change and it is not necessary a reinitialization procedure.

The equation 3.45 can be interpreted as a material derivative dφ/dt = 0, and
the motion can be integrated through a lagrangian method. For each time-step, the
locations representing the support Sφ, where φ is defined, are advected by ū. From
these new positions, the signed distance function is remeshed on the grid and the
body’s boundary is hence transported. Moreover, if the rigid motion is prescribed,
the trajectory is known a priori and the signed distance function can be constructed
and stored at starting once and for all.

Let us take to handle the remaining parts in the governing equation 3.46. Since
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the stretching term vanishes for 2D flows, we consider now the viscous and penal-
ization contributions. The diffusive term is integrated onto the grid by means of
an Euler explicit scheme, while the laplacian is evalutated, with a second order
accuracy, by the standard centred finite differences five points stencil.

Figure 3.20. Particles interpolation scheme. The circle’s size denotes the strenght
of the particle and the solid circles represent the advected particles. a) vortex
particles and velocity field; b) advection step; c) remesh-diffusion step.

The discretization and the integration of the penalization term affect the choice
of the penalization parameter λ, and the larger the value of λ, the better the quality
of the penalization, i.e. the quality of the boundary condition at the fluid/solid
interface. An Euler explicit time discretization does not allow to use λ > 1/∆t, and
as a result several tests have been carried out therein.

On the other hand, following [15], an implicit Euler time discretization for the
penalization term in the Navier Stokes equation yields

un+1 =
un + λH(φ)∆t ūn

1 + λH(φ)∆t

Finally the vorticity field at the time-step tn+1 is evaluated on the grid by taking
the curl ωn+1 = ∇ ∧ un+1 and computing the derivatives through the second order
centred finite differences approximations.

The problem of evaluating the velocity field and the boundary conditions is now
taken into account. Being ωn+1, the updated vorticity field, the stream function field
is computed by solving the linear Poisson equation 3.51 on the Cartesian orthogonal
grid with boundary conditions on ∂D. In our simulations, a Fast Poisson Solver is
adopted (Fishpack90 library [3]). A multigrid solver (for instance, Mudpack library
[2]) can be recommended for higher grid refinement and parallel computations, even
though there is loss in efficiency.
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In vortex methods, boundary conditions are explicitly used only to solve the Pois-
son equation and are enforced on the non-primitive variable ψ. A wide investigation
on the boundary conditions for such kinds of problems is also reported in Mortazavi
(1997) [44] and Mortazavi & Giovannini (2001) [45]. In general, a drawback of grid-
based vortex methods is represented by the accurate choice of boundary conditions
for the velocity field. The Eulerian-Lagrangian domain decomposition (see [17]) is
an hybrid technique that can overcome the boundaries’ constraint: an Eulerian grid-
based vortex method solves the regions of the flow field where the velocity/vorticity
gradients are important, whereas a pure Lagrangian approach is performed in the
regions where the convection is prevalent.

In the present method, on the upstream and downstream boundaries, a Neumann
condition is enforced. On the lower and upper boundaries, a Dirichlet condition
settles the flow mass rate. The direct enforcement of a given velocity distribution
as boundary condition, for instance a ground effect or a parabolic velocity profile at
upstream, can be implicitly carried out by means of the penalization term. Through
a suitable level-set function within the flow field, we can define an arbitrary region
where a fixed velocity distribution is settled. For instance, a 2D channel flow can
be simulated by means of two horizontal strips, where ū = 0, along the lower and
upper boundaries.

A blockage effect arising from the boundary conditions has been observed in
terms of an increased shedding frequency and a distorted wake near the downstream
boundary. Indeed the validation tests in the case of the 2D flow past a circular
cylinder have been carried out in an extended domain, such that the blockage effects
are negligible (see section 3.2.4).

In figure 3.20 the particle interpolating/remeshing scheme is illustrated, and the
algorithm devised for the level-set vortex method is summarized below.
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initialization n = 0 - time-step

1. stream function initialization (on grid)

2. preliminary velocity and vorticity field (on grid)

3. penalization (on grid):

• implicit penalization substep

• penalized vorticity field and Poisson problem

• penalized velocity field

marching n = 1 - time-step

1. advection of the particles (RK4):

• for each RK sub-step the velocities are interpolated from the grid to the
particles

• vorticity remesh (particles → grid)

2. explicit diffusion substep (on grid)

3. Poisson problem (on grid)

4. preliminary velocity field (on grid)

5. rigid motion of the distance function

6. penalization (on grid):

• implicit penalization substep

• penalized vorticity field and Poisson problem

• penalized velocity field

marching n = 2 - time-step
. . .

73



3 – Vortex wake past a vertical axis turbine

3.2.3 Forces evaluation

A survey of the evaluation of the unsteady forces exerted on moving bodies is above
reported in section 3.1.5. The advantage of the level set penalization technique
is in the aptitude to handle moving interfaces. The ’one-shot’ penalization here
devised allows to track the solid boundary with an accuracy of O(∆x), and the exact
detection of the wall is not straightforward. The forces and moments computation
by means of an explicit integration of pressures and viscous stresses is not simple,
because it depends on the accuracy of the velocity gradients close to the fluid/solid
interfaces.

Connected to the vortex methods, where the pressure field is not necessarily
derived, the theory of the hydrodynamic impulse offers a closed formulation for
computing the unsteady forces experienced by a moving body immersed in an in-
compressible and rotational flow (see section 3.1.5). The main advantage provided
by the impulse theory is that the forces can be determined without requiring the
pressure field and the integration of stresses along the rigid boundaries. Indeed, the
linear impulse I and the angular impulse A are natural invariants of the flows, with
the condition that external body forces, vorticity and velocity vanish at infinity. For
viscous flows the invariance of I and A exists on condition that flow is unbounded,
because the effect of viscosity at the boundaries is equivalent to an extra body force.
A more detailed discussion on the impulse theory and references therein are reported
in [62].

Since in the Vortex-In-Cell method the velocity and vorticity fields are supported
on a mesh, and the flow field can be determined only within the boundaries of the
computational domain D, the forces’ computation through the hydrodynamic im-
pulse is not straightforward. In the case of a set of bodies immersed in a stream,
the wake generated is naturally convected out of the boundaries, the outgoing vor-
ticity is lost and the hydrodynamic impulses of the whole flow field can not to be
evaluated.

This drawback can be overcome by means of the ’impulse’ equation 3.28 or the
’momentum’ equation 3.29 discussed in section 3.1.5, where the forces can be com-
puted by evaluating the velocity field or its derivatives within a prescribed control
volume. In section 3.2.4 the aforesaid equations are used to validate the level set vor-
tex method on the classical benchmark of 2D incompressible flow past the circular
cylinder.

3.2.4 2D circular cylinder test case

The literature about the classical benchmark of the bluff body aerodynamics is
wide. A deepened survey of this subject with several physical remarks and references
therein can be found in Williamson (1996) [76].
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3.2 – Viscous analysis

Here, we present some results of the numerical simulations of an incompressible
flow past a 2D circular cylinder performed by the level set vortex method by varying
the Reynolds number. Three ranges of Reynolds numbers are taken into account.

A low Reynolds analysis has been carried out for (Re = 60÷200), where the flow
is laminar and without 3D wake instabilities [76]. We investigated the capability
of the numerical method to predict the correct vortex shedding frequencies and the
steady solutions for Re < Recrit ≈ 49, where Recrit marks the bifurcation point of the
wake instability. Moreover, the time evolution of CD and CL for Re = 100 and Re =
200 is provided and is compared with the results found in literature. In Ploumhans
& Winckelmans (2000) [53] the flow past an impulsively started 2D circular cylinder
at Re = 550 was studied through a high resolution vortex method. The vorticity
field and the CD time history are compared with the simulations provided by the
present method. The highest Reynolds number tested here is Re = 9500, for an
impulsively started cylinder. The vorticity pattern and the drag time history are
compared with the numerical simulations of Koumoutsakos & Leonard (1995) [37]
yielded by a vortex method.

Figure 3.21. Computational domain D = F ∪ S, where F is the fluid region
and S is the solid body region.

The computational domain and the geometrical setup are shown in figure 3.21,
where D is a rectangle delimited by its boundaries ΓD. The diameter d of the circular
cylinder is unit, the free stream q∞ is unit and the Reynolds number is defined
by Re = q∞d/ν. The whole computational domain is meshed by an equispaced
Cartesian orthogonal grid.

For the subsequent simulations of the wake past the circular cylinder, the flow
field is computed by solving the Poisson problem 3.51 with a Neumann condition
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at downstream ΓD

DA and upstream ΓD

BC , while a Dirichlet condition of the stream-
function over ΓD

AB and ΓD

CD. In particular, the potential flow around the cylinder is
considered and the value of the associated streamfunction is enforced over ΓD

AB and
ΓD

CD, that is

ψ = q∞y

(

1 −
(d/2)2

x2 + y2

)

.

The undisturbed stream q∞ passing through the cylinder is used as initialization.

Figure 3.22. Convergence on grid test (left). Effect of the penalization
parameter λ (right).

At first, the convergence on grid of the present method is verified. We considered
an impulsively started cylinder at Re = 550. The numerical simulation was stopped
at the instant time t = 3 and the l2-norm of the velocity is plotted along a section
xs = 1.5 of the flow field. By increasing the grid refinement the velocity profiles
converge to a single curve, as presented in the left-hand side picture in figure 3.22.
The penalization parameter has been set to λ = 1010 and the space discretizations
are reported in figure.

By varying the penalization level, the velocity profiles at t = 3 obtained along
a section xs = 0 through the cylinder are plotted in figure 3.22 on the right-hand
side picture. We compared in terms of the quality of penalization the implicit
penalization based on the equation 3.52 to the explicit penalization (see section
3.2.2). Practically, the explicit penalization allows to use λ ≤ 1/∆t, whereas the
implicit penalization is unconditionally stable for high values of the penalization
parameter [15]. The velocity profiles computed by the implicit penalization for three
values of λ are compared to the profile obtained by the explicit penalization. For

76



3.2 – Viscous analysis

λ > 106 the quality of the penalization does not get better. The space discretization
adopted here is h = 0.005, but some tests have been carried out show that the
quality of the penalization improves with higher grid refinement.

The numerical validations, illustrated in figure 3.22, are referred to the initial
transient of an impulsively started circular cylinder. Since these tests were ob-
tained at t=3, when the vortex wake is not fully developed, the simulation is not
so influenced by the computational domain boundaries. Therefore both tests were
performed on a rectangular computational domain D = [−1.5, 4.5] × [−2.5, 2.5].

Let us consider the low Reynolds analysis. At low Reynolds numbers, the viscous
effects are predominant, so that the choice of the time discretization has to take
into account the fine-resolution of the diffusion phenomena. Following [53] the non-
dimensional time-step ∆t is determined by the condition ∆t/(h2 Re) ∼ O(1).

Various tests have been carried out by increasing the blockage ratio d/(yD −yA),
and a growth of the shedding frequency has been noticed. The size of the compu-
tational domain is chosen such that the effects of the boundaries on the shedding
frequencies are negligible. The subsequent simulations have been performed on a
flow region enclosed in the rectangle D = [−7.5, 25] × [−7.5, 7.5] with 3250 × 1500
grid points (h = 0.01). The penalization is enforced by means of the implicit for-
mulation 3.52 and the penalization parameter is λ = 1010.

The flow regime is laminar and the solution is steady and stable for Re < Recrit.
In figure 3.23, the streamlines of the steady solution at Re = 13.05 is shown. On the
left-hand side, a picture of an experimental visualization is reported (see van Dyke
(1982) [73]) and the the equivalent frame computed by the present method is shown
on the right-hand side.

Figure 3.23. Streamlines at Re = 13.05
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3 – Vortex wake past a vertical axis turbine

By increasing the Reynolds number, the flow regime is still laminar but the
steady solution becomes unstable when Re > Recrit. On the left-hand side picture
of figure 3.24, the amplitude Aω of the fluctuation of the vorticity reported at the
arbitrary monitoring point P = (2.5, 0.5) is plotted by varying Re. Since for a
flow regime close to the bifurcation point Recrit the wake instabilities grow slowly,
for Re < 60 the numerical simulation, without introducing any perturbation, did
not show the wake oscillations within a reasonable computation time. However,
the critical Reynolds number can be extrapolated through the amplification factor
curve. Being St = fd/q∞ the Strouhal number, where f is the vortex shedding

Figure 3.24. Amplification factor Aω curve (left). Strouhal-Reynolds curve (right).

frequency, a comparison between the numerical and the experimental St versus Re
curve is shown on the right-hand side of figure 3.24. The experimental data are
given by [76]. An estimation of the average relative error between the curves yields
≈ 0.6%.

The evaluation of forces has been carried out by means of the ’momentum equa-
tion’, discussed in section 3.2.3 (the mathematical derivation for the 2D circular
cylinder test case is presented in appendix A.2.7). We investigated on the averaged
values and the amplitudes of the fluctuations of drag and lift coefficients for flows
at Re = 100 and Re = 200. The following results were obtained: at Re = 100
C̄D = 1.40, ∆CD = 0.01, ∆CL = ±0.32. At Re = 200 C̄D = 1.44, ∆CD = 0.05,
∆CL = ±0.75. In figure 3.25, the time history of CD and CL for the flow past the
circular cylinder at Re = 200 is shown. These quantities can be well-compared with
the results in literature. For instance some numerical results at the same Reynolds
numbers and references therein can be found in Russell & Jane Wang (2003) [59].
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Figure 3.25. Time evolution of the drag and lift coefficients at Re = 200.

These two simulations have been performed on the computational domain D =
[−3.75, 12.5] × [−3.75, 3.75] with h = 0.005 and the penalization parameter is
λ = 1010. The control volume is enclosed by the rectangle V = [−1.75, 3.25] ×
[−1.75, 1.75].

Figure 3.26. Time evolution of the drag coefficient for the impulsively started
cylinder at Re = 550 (left) and at Re = 9500 (right).

Let us consider the test case of the 2D flow around an impulsively started circular
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cylinder at Re = 550. The comparison between the CD time evolutions computed
by the ’momentum equation’ method and the ’hydrodynamical impulse’ method is
shown in the picture on the left-hand side of figure 3.26. As discussed in sections 3.1.5
and 3.2.3, the hydrodynamical impulse of a vortex is an invariant of the flow if the
velocity and the vorticity at infinity are null. On the contrary, in our computations,
a free stream q∞ is considered at infinity while the frame of reference is fixed on the
body. The impulse theory can be applied here only if the velocity at infinity is re-
moved by the Galileian transformation illustrated in appendix A.2.5, and if the com-
putational domain is large enough thus the wake does not perturb the downstream
boundary. Therefore the simulations were stopped at t=6, when the boundaries are
not influenced by the growing vortex wake yet. The CD versus time curves for two

Figure 3.27. Iso-contours of vorticity for t = 1, 3, 5 for the impulsively
started cylinder at Re = 550.

methods above are plotted in figure 3.26 (left). The curves coincide by increasing
the grid refinement, in accordance with the references in literature (Koumoutsakos
& Leonard (1995) [37] and Ploumhans & Winckelmans (2000) [53]). The figure
3.27 shows the iso-contours of vorticity which are in fine accordance with [53]. The
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Figure 3.28. Iso-contours of vorticity for t = 1, 1.5, 2, 2.5, 3, 3.5 for the impulsively
started cylinder at Re = 9500.

computational domain for this simulation is D = [−3.75, 12.5] × [−3.75, 3.75] with
h = 0.005 and the penalization parameter is λ = 109.

The last simulation on the circular cylinder benchmark was carried out in the
case of flow around the impulsively started cylinder at Re = 9500. Some numerical
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results obtained by a vortex method can be found in Koumoutsakos & Leonard
(1995) [37]. The Reynolds number is higher than the previous cases and the flow is
physically characterized by typical 3D structures (see [76]). Since at large Reynolds
numbers the convective phenomena become predominant, the integration time-step
is not chosen by the condition ∆t/(Re h2) ∼ O(1), but it is heuristically reduced
to ∆t = 0.005. In figure 3.28, six snapshots at the times = 1, 1.5, 2, 2.5, 3, 3.5 of
the iso-contours of vorticty are shown and are in good accordance with the results
of the simulations provided in [37]. Since the Reynolds number is larger than the
previous cases, an higher grid refinement is taken into account in order to trace the
smaller scales in the flow field.

In the picture on the right-hand side of figure 3.26 the evolution in time of
the drag coefficient is reported, where the computation has been carried out by
means of the ’momentum equation’. The computational domain for this simulation
is D = [−1.5, 4.5] × [−2.5, 2.5] with h = 0.0025 and the penalization parameter is
λ = 109. In accordance with [37], the time is non-dimensionalized and it is based
on the cylinder radius.

3.2.5 Preliminary simulations of the vertical axis turbine

Here, we present some simulations of the two dimensional vortex wake past a vertical
axis turbine (VAT). The level set vortex method discussed in sections 3.2.1 and 3.2.2
is set in order to manage the rigid motion of a two bladed VAT. The flow regimes
at two Reynolds numbers are taken into account.

The unsteady forces and torque exerted on the shaft still have not been com-
puted, but the preliminary tests carried out on the circular cylinder benchmark
(see section 3.2.4) suggest that the level set vortex method allows the performance
evaluation of the VAT. By means of the time history of the unsteady loads, a dy-
namical simulation of the turbine immersed in a variable stream and coupled with
the characteristic curve of a braking group would be possible.

The results here presented are related to an impulsively started VAT, which is
enforced to rotate with a constant angular velocity Ω and is immersed in a stream
with velocity q∞ at infinity. R is the blade radius and c is the airfoil chord.

We discussed, in section 3.2.2, that in the simulation of a set of solid bodies
that move rigidly, the numerical integration of equation 3.45 is not necessary. At
starting of the computation, the signed distance function φ is defined and stored
once and for all only over a local support Sφ. For each time-step, Sφ moves rigidly
and, at the new location, φ is remeshed on the grid by means of the M ′4 scheme
3.53. The blade section used in our vertical axis turbine is a symmetrical Kármán-
Trefftz airfoil with a slightly smoothed trailing edge. In figure 3.29, some levels of
the distance function φ that define the airfoil are shown on a coarser grid than the
implemented one. If the frame of reference is fixed on the turbine’s rotation axis
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Figure 3.29. Distance function φ iso-contours. The dashed rectangle Sφ

is the support of φ.

Figure 3.30. Iso-vorticity lines of the wake past the VAT at Re = 1000. Snapshots
at times t = 3.8, 11.4, 19.1 26.7 in seconds.

then the computational domain is D = [−6, 6] × [−3.5, 3.5] with 3001 × 1751 grid
points (∆h = 0.004). The penalization parameter is λ = 1010. The non-dimensional
chord and free stream are unit, while the blade radius is 1.5 and the angular velocity
is 1.5. The Poisson problem 3.51 is solved by setting these boundary conditions: on
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3 – Vortex wake past a vertical axis turbine

the upstream/downstream boundaries a Neumann condition is imposed, and on the
horizontal boundaries a Dirichlet condition sets the flow mass rate through the flow
domain.

Figure 3.31. Averaged-in-time streamlines for the VAT at Re = 1000. The iso-lines
are represented in the relative frame of reference.

The Reynolds numbers for a realistic simulation of a medium/small wind or
water turbine can be located in the wide range 104 ÷ 106, where the flow is in a
transitional regime and is dominated by convective phenomena. The choice of the
integration time-step would be such that ∆t is small enough for a vortex particle to
move only a fraction of the space discretization h.

However such Reynolds numbers would need a grid refinement which is not
achieved in the present work. Two simulations are perfomed in the range of the
Reynolds numbers which was verified above for the circular cylinder benchmark. A
reasonable Reynolds number for a VAT can be defined by choosing the blade section
chord c as reference length and the maximum relative velocity V max

rel as reference
velocity, where V max

rel = |q∞| + |ΩR| (see figure 3.2 in section 3).
A low Reynolds number case is simulated. We considered a wind turbine with

a blade section chord c = 0.2 m, radius R = 0.3 m, rotating with Ω = 0.185
rad/s and immersed in a stream q∞ = 0.025 m/s. The respective Reynolds number
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Figure 3.32. Iso-vorticity lines of the wake past the VAT at Re = 10000. Snapshots
at times t = 0.38, 1.14, 1.91, 2.67 in seconds.

is 1000 (νair = 1.6 10−5 m2/s at 20◦C). As dicussed in 3.2.4, at low Reynolds
numbers the time step is assumed by taking into account that the viscous effects
are predominant. For this simulation we assumed ∆t = 0.001. In figure 3.30 four
snapshots representing the iso-contours of vorticity are reported.

In the introduction 3 we discussed on the unsteadiness of the flow field around
a vertical axis turbine. A meaningful description of the flow around the turbine
can be provided by evaluating the averaged-in-time stream function field, for a fully
developped wake. For such representation, the frame of reference is centred on
turbine’s axis and rotates jointly with the blades. In figure 3.31 the averaged-in-
time stream function for the Re=1000 simulation is shown. The average is computed
for a simulation time of ≈ 250 s, that is equivalent to ≈ 7.5 rounds of a blade.

An higher Reynolds number case for a wind turbine operating at low-wind speed
is provided by considering the previous VAT geometry with the working conditions
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Ω = 1.85 rad/s and q∞ = 0.25 m/s. The respective Reynolds number is 10000. The
integration time step is chosen to be ∆t = 0.0002. In figure 3.32 four snapshots of
the simulation are presented.

All the computations have been performed on a single CPU of a node bi-dual
core AMD Opteron 2.2 GHz, and the runtime required for the simulation of a blade
loop is ≈ 24 hours.
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3.3 Concluding remarks

The survey of the wake past a vertical axis turbine immersed in a stream, pro-
vided the opportunity to devise some numerical and analytical tools which allow to
simulate efficiently the inviscid and the viscous flow field around a set of moving
bodies.

The inviscid analysis is addressed by means of a blob vortex method which
allowed to simulate the two-dimensional rotational unsteady flow field with an high
order of accuracy. Though the present method is valid in the limit of an inviscid
model and does not take into account the local occurrence of secondary separations,
it is able to describe correctly the vortex shedding past bluff bodies. In fact, since
the main viscous effect causing the separation is modelled by the Kutta condition,
inertia rather than viscosity governs the global instability of the vortex shedding
phenomena.

A first simulation was carried out on a single-blade Darrieus turbine with a
trapping vortex blade section designed analytically. The numerical examples show
that vortical structures are generated and trapped by the cavities and that vortex
shedding is prevented. The two-blades architecture is not taken into account here,
but a preliminary study on the vortex motion in a doubly connected domain is
presented. The flow field has been transformed, by conformal mapping, into a
doubly periodic domain where the complex velocity is defined by an elliptic function,
which is unique once an additive time-dependent function κ(t) is determined. This
function is evaluated through the Kelvin theorem, that is through the fact that the
sum of the bound and shed circulations past each body has to remain constant. As
a realistic example, the impulsive start of an airfoil-flap section is simulated through
the blob vortex method.

The wake past the two-blades turbine is described by means of a low-order model
in order to overcome the drawback of an excessive cost in computing time. The
quality of the simulation has been compared with the corresponding high order
simulation. The blade section considered is not equipped with the trapping cavities
technology, but this extension can be implemented in a straightforward manner.

A survey of the forces and moments exerted by the fluid on a set of moving
bodies in a free stream is given. Through the computation of the linear and angular
impulse of the wake vorticity in the whole flow domain and of the bound vorticity
at the walls of the moving bodies, the forces and the moments are determined. A
general definition of the linear and angular impulse for the flow model simulated by
the blob vortex method is given. An analytical example is provided by determining
the unsteady loads exerted by the potential flow field on the shaft of a one-bladed
VAT with elliptical blade section.

The application of the impulse theory to the low-order model of the two-blades
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turbine provides an efficient tool to design a VAT in the pre-project phase. The
integration of the performance evaluation method into the reduced-order model is
now in progress.

The viscous analysis is carried out through an hybrid vortex method (Vortex-In-
Cell scheme), where the continuity condition at the solid boundaries is enforced by
means of a penalization technique. The definition of the solid boundaries is made
implicitly through a level-set function, which moves rigidly, immersed in a Cartesian
equispaced grid. Following Noca et al. (1999) [46], for the present method, the forces
can be evaluated without any information on the pressure field, but only through
the knowledge of the velocity and vorticity fields.

The numerical method is validated by means of several test cases performed at
different Reynolds numbers on the classical 2D circular cylinder benchmark. At first
the convergence on the grid of the method and the quality of the impermeability
condition have been verified. The vortex shedding frequency, in a range of Reynolds
numbers where the flow is still 2D (Re < 180), is detected and compared with
the experimental data found in literature. The time evolution of the drag and lift
coefficients is computed for two Reynolds numbers in the 2D laminar regime, and
the results are well compared with the literature. For higher Reynolds numbers,
Re=550 and Re=9500, the impulsively started circular cylinder test is considered.
The vorticity fields at different times and the time history of the drag coefficient are
evaluated and compared with the data in literature.

Finally, the above method is implemented for the vertical axis turbine simulation.
Two examples of the vortex wake at different Reynolds numbers are reported. By
taking into account of the preliminary results provided by the inviscid method,
the evaluation of the turbine’s performance and the study of the effect of trapping
cavities represent a goal of the ongoing research activity.
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A.1 Mappings

A.1.1 Curved plate in a channel

The conformal mapping that transforms a channel with a wall-mounted strip onto
a channel without obstacles is presented here. In figure A.1, the mapping chain
is illustrated. The map operates on a strip on the ζ-plane. The half-τ -plane is
obtained by

τ = (τ − τ∞)eζ + τT

where τT and τ∞, respectively, are the images of the tip of the plate and the point
at the infinity. The segment A-B on the real axis is mapped onto a circular arc
on the σ-plane using the inverse of the elementary mapping τ = σ + 1/σ. Then a
translation/normalization transforms the σ-plane into the λ-plane

λ = σ|i− λc| + λc

where λc is the centre of the entire circle. Another Joukowskii mapping and a
successive normalization map the circle on the λ-plane onto a curved plate on the
µ-plane

ν = 1
2

(

λ− 1
λ

)

µ = Im [µT] ν + Re [µT]

The physical z-plane is obtained by z =logµ. Two free parameters, µc and the
reference length yT , determine the camber and the height of the plate. In our
examples µc =-2 and yT =1.3.

A.1.2 Vortex-capturing airfoil

The mapping chain z → ζ is described here. The generated airfoil section results in
a variation of the Kármán-Trefftz profile. As shown in figure A.2, the trailing edge
T of the airfoil in figure 2.19 is mapped onto the quasi-circle on the λ-plane by the
Kármán-Trefftz mapping

z/A− 1

z/A+ 1
=

(

λ− λT

λ− (λN + δ)

)τ

where τ = (2π − ǫ)/π, ǫ is the trailing edge angle, A is a scaling factor and λN + δ
identifies a point located inside the airfoil, close to the leading edge. On the µ-
plane (figure A.3), the quasi-circle is mapped onto the unit circle and the cusp K is
smoothened through the following modified Ringleb’s mapping

λ = µ+
a

µ− µ′
K
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Figure A.1. Mapping chain: ζ → τ → σ → λ→ µ→ z -plane.

where µ′
K is a point in the circle, close to µK , a ∈ C1, which is determined by

enforcing (dλ/dµ)µK
= 0. The region outside the unit circle is mapped onto the

upper half-χ-plane by means of a bilinear mapping

χ =
cµ+ d

µ+ e
,

where the three coefficients c,d,e are determined by imposing the three conditions
µ(∞) = −i, µ(0) = µK , µ(χB +χs) = i and χs is a real parameter which defines the
width of the region ABCD. The first condition associates the point Q in the µ-plane
with the point at infinity on the χ-plane. χA and χB are two free parameters that
define the boundaries of the common line ∂c on the solid wall. By means of the
following simple mapping A and B are moved respectively to −1 and 1

χ = c1σ + c2.
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Figure A.2. z-plane (left) and λ-plane (right).

Figure A.3. µ-plane (left) and χ-plane (right).

In figure A.4, the σ-plane is shown. σ∞ is the image of the infinity in the physical
plane. The separatrix between the outer region and the inner region is traced as an
half unit circle here. The Jacobi elliptic sine-amplitude function 2.26 maps the unit
circle onto the rectangle in the ζ-plane (figure A.4).
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Figure A.4. σ-plane (left) and ζ-plane (right).

Finally the relation between the doublet momentum M and the physical asymp-
totic flow velocity is taken into account. The equation 2.49 yields the following
formula

M = q∞e−iα 2Ac1
(δ + λN − λT )τ

(ec− d).

A.1.3 Wind turbine vortex-capturing blade section

According to the Riemann mapping theorem, the airfoil can be conformally mapped
from the physical complex z-plane onto the unit circle of the transformed ζ-plane by
an analytical ζ = ζ(z) where limz→∞ ζ(z) = ∞. The blade section designed for the
vertical axis turbine is determined by the following mapping chain that transforms
the unit circle in the ζ-plane onto the airfoil in the z-plane. The sequence is shown
in figure A.5.

The position of the cusps is defined by the points K and K*, where (·)* represents
the complex conjugation. The unit circle is then mapped onto a quasi-circle in the
λ-plane by means of a variation on the Ringleb’s mapping

λ(ζ) = ζ +
a

ζ − ζK1

+
a∗

ζ − ζK∗

1

where a,a∗ ∈ C1, ζK1
and ζK∗

1
are two points within the circle and close to the images

ζK , ζK∗ of the cusps. The coefficients are computed by enforcing the singularities in
K, K*, that is (dλ/dζ)ζK

= (dλ/dζ)ζK∗
= 0. The point T identifies the position of

the airfoil’s trailing edge. The airfoil is generated on the intermediate z1-plane by
the Kármán-Trefftz mapping

z1 − 1

z1 + 1
=

(

λ− λT

λ− (λN + δ)

)τ

, τ =
2π − ǫ

π
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Figure A.5. Mapping sequence for a trapping vortex blade section.
ζK = exp(i 1.175) and ζK1

= 0.93 exp(i 1.05).

where ǫ is the trailing edge angle, λT and λN are the images on the λ-plane of the
trailing and leading edge T, N and λN + δ is a point close to the nose. A final scale
factor A = z1,N − z1,T transforms and overturns the airfoil in z1-plane on the unit
chord profile on the physical z-plane

z = z1/A

The mapping chain z = z{z1[λ(ζ)]} depends on the choice of the four parameters
ǫ, ζK1

, ζK , δ that allows a wide family of symmetrical airfoils to be generated.

A.1.4 Airfoil with a flap

In this section we illustrate two conformal mappings. The first map allows to trans-
form two circles onto a couple of airfoils and it is a derivation of the biplane section
studied by Ferrari (1930) [23]. The second map transforms the region outside of two
circles onto the region inside a rectangle.

Let us consider two circles of the complex ν-plane, as shown in figure A.6. The
main circle (m) is unit and centred at the origin, while the secondary circle (s) is
located in (xs, 0) and the radius is rs. The secondary element can be mapped onto
an airfoil, while the main circle remains the same, mapped by

λ− λTs

λ− λNs

λ− 1/λ∗Ts

λ− 1/λ∗Ns

=

(

ν − νTs

ν − νNs

ν − 1/ν∗Ts

ν − 1/ν∗Ns

)τs

,

where νTs
is located on the secondary circle and represents the trailing edge, νNs

is
inside the circle and τs = (2π− ǫs)/π with ǫs as trailing edge angle. The parameters
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λTs
and λNs

can be found by regularity conditions of the mapping. The λ2-plane is
obtained by means of the following scaling/translation

λ2 = λ1(1 − zc) + zc

where λ1 = λeiβ is the λ-plane rotated by β. In the λ2-plane, the main circle is
centred in zc and is scaled such that it crosses the point λ2 = 1 at Tm. The inner
point zc defines the camber and the thickness of the main airfoil. Indeed, the last
mapping transforms the main circle onto a Kármán-Trefftz airfoil and the secondary
element onto the final shape of the flap in the physical z-plane

z − 1

z + 1
=

(

λ2 − 1

λ2 + 1

)τm

where τm = (2π − ǫm)/π with being ǫm the trailing edge angle.

Figure A.6. Mapping sequence to map two circles onto an airfoil with a flap.

The second mapping sequence is displayed in figure A.7. Since the circles of the
ν-plan are two members of a family of Apollonius circles, we can determinate the foci

d+c, d−c by means of the formulas d = (x2
s − r2

s + 1) /2xs and c =
√

(xs − d)2 − r2
s

(see [23]).
The circles are translating and scaled such that the foci are located in ν1 = ±1,

by means of the mapping ν1 = (ν − d)/c. The Möbius mapping

µ =
ν1 + 1

ν1 − 1

maps the region outside the two circles onto the region included between two con-
centric circles on the µ-plane. The external circle with radius ρs > 1 corresponds to
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Figure A.7. Mapping sequence to map the region outside two circles onto a rectangle.

the secondary airfoil, while the circle ρm < 1 is the image of the main airfoil. On
the µ-plane, the image of the physical infinity is in the point µ = 1. The final map

χ = log(µ)

transforms the annulus into the rectangle with boundaries [−b, a] × [−π,π], where
b = − log (ρm) and a = log(ρs).

The mapping chain χ→ z allows to map the left boundary CD of the rectangle
onto the main circle (m) and the right boundary AB onto the secondary circle (s),
while the origin on the χ-plane is the image of the physical infinity. The horizon-
tal boundaries of the rectangle AD and BC are periodic and correspond to a line
connecting the airfoils in the z-plane.
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A.2 Mathematical derivations

A.2.1 Kutta condition

The deduction of the Kutta condition generically applied in the blob vortex method
is presented here. Let us define z = x+iy, ζ = ρeiφ and x = x(ρ,φ), y = y(ρ,φ). The
Kutta condition is satisfied when the relative velocity is not singular at the cusp,
that is (∂ψr/∂ρ)ρ=1 = 0 in the transformed ζ-plane. Therefore the Kutta condition
can be expanded into

(∂ψr/∂ρ)ρ=1 =

(

∂ψr

∂x

∂x

∂ρ
+
∂ψr

∂y

∂y

∂ρ

)

ρ=1

= 0 (A.1)

where ∂ψr/∂y and −∂ψr/∂x are the components of the relative velocity in the phys-
ical plane. The following identity is obtained by the Cauchy-Riemann conditions

dz

dζ
eiφ =

∂x

∂ρ
+ i

∂y

∂ρ

and it can be used in the expression

(u− iv)
dz

dζ
eiφ =

(

u
∂x

∂ρ
+ v

∂y

∂ρ

)

+ i

(

u
∂y

∂ρ
− v

∂x

∂ρ

)

.

Now the equation A.1 can be replaced by

Im

[

(ur − ivr)
dz

dζ
eiφ

]

= 0

where (ur − ivr) = dw/dz − (ut − ivt) and (·)t indicates the transport component
of the velocity. By taking into account that dw/dz = (dw/dζ)/(dz/dζ), the Kutta
condition is

Im

{[

dw

dζ
− (ut − ivt)

dz

dζ

]

eiφ

}

= 0

and, since in the cusp (dz/dζ)ζEi
= 0, we obtain

Im

[

dw

dζ
eiφ

]

ζEi

= 0. (A.2)
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A.2.2 Circulation time derivatives in the low order model

The linear system to compute the time derivatives γ̇m, γ̇s, κ̇ is addressed here. Let
us consider the linear system discussed in 3.1.3, where the strengths of the arising
point vortices and κ(t) are determined by enforcing the Kutta condition at two
trailing edges and by applying the Kelvin theorem around a profile. In [48] this
linear system is devised for the two-blade VAT and it is reported subsequently. By
referring to figure 3.13, the Kutta conditions and the Kelvin theorem around the
blade section m are imposed by the equations

Im

(

dw

dχ

)

χT,m

= 0, Im

(

dw

dχ

)

χT,s

= 0, wC − wD = −
N
∑

jm=1

γjm

where jm indicates the point vortices shed by the m blade. These equations form a
3 × 3 linear system Ax = b, where the vector of the unknowns is xT = (γm,γs,κ).
By exploiting the quasi-periodic properties of the Weierstrass elliptic functions (see
3.1.3) the coefficients ai,j of the matrix A are

a1,1 = Im

{

1

2πi

[

ζ (χT,m − χV,m) − ζ
(

χT,m + χ∗
V,m − ω

)]

}

a1,2 = Im

{

1

2πi

[

ζ (χT,m − χV,s) − ζ
(

χT,m + χ∗
V,s − ω

)]

}

a1,3 = 1

a2,1 = Im

{

1

2πi

[

ζ (χT,s − χV,m) − ζ
(

χT,s + χ∗
V,m − ω

)]

}

a2,2 = Im

{

1

2πi

[

ζ (χT,s − χV,s) − ζ
(

χT,s + χ∗
V,s − ω

)]

}

a2,2 = 1

a3,1 =
η′

πi
[2 Re (χV,m) − ω] − 1

a3,2 =
η′

πi
[2 Re (χV,s) − ω]

a3,3 = 2π
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and the right-hand side vector bT = (b1,b2,b3)

b1 = − Im

[

−Q∗
∞℘ (χT,m) +Q∞℘ (χT,m + ω) +

(

dw2

dχ

)

χT,m

]

+ Im

{

1

2πi

N−2
∑

j=1

γj

[

ζ (χT,m − χj) − ζ
(

χT,m + χ∗
j − ω

)]

}

b2 = − Im

[

−Q∗
∞℘ (χT,s) +Q∞℘ (χT,s + ω) +

(

dw2

dχ

)

χT,s

]

+ Im

{

1

2πi

N−2
∑

j=1

γj

[

ζ (χT,s − χj) − ζ
(

χT,s + χ∗
j − ω

)]

}

b3 = − 4iη′Im (Q∞) −
η′

πi

N−2
∑

j=1

γj [2 Re (χj) − ω] +

Nm−1
∑

jm=1

γjm

where N is the number of the shed point vortex, and Nm is the number of the point
vortex released by the m profile. By deriving in time the above linear system, we
obtain

a1,1γ̇m + a1,2γ̇s + a1,3κ̇ = ḃ1 − ȧ1,1γm − ȧ1,2γs − ȧ1,3κ

a2,1γ̇m + a2,2γ̇s + a2,3κ̇ = ḃ2 − ȧ2,1γm − ȧ2,2γs − ȧ2,3κ

a3,1γ̇m + a3,2γ̇s + a3,3κ̇ = ḃ3 − ȧ3,1γm − ȧ3,2γs − ȧ3,3κ

(A.3)

Since the frame of reference is fixed on the axis and rotates jointly with the blades,
the time dependent variables are χV,s, χV,m, χj , Q∞ and the complex conjugates

99



A – Derivations

χ∗
V,s, χ

∗
V,m, χ∗

j , Q
∗
∞. The derivation in time of the matrix coefficients ai,j yields

ȧ1,1 = Im

{

1

2πi

[

℘ (χT,m − χV,m) χ̇V,m + ℘
(

χT,m + χ∗
V,m − ω

)

χ̇∗
V,m

]

}

ȧ1,2 = Im

{

1

2πi

[

℘ (χT,m − χV,s) χ̇V,s + ℘
(

χT,m + χ∗
V,s − ω

)

χ̇∗
V,s

]

}

ȧ1,3 = 0

ȧ2,1 = Im

{

1

2πi

[

℘ (χT,s − χV,m) χ̇V,m + ℘
(

χT,s + χ∗
V,m − ω

)

χ̇∗
V,m

]

}

ȧ2,2 = Im

{

1

2πi

[

℘ (χT,s − χV,s) χ̇V,s + ℘
(

χT,s + χ∗
V,s − ω

)

χ̇∗
V,s

]

}

ȧ2,2 = 0

ȧ3,1 =
2η′

πi
Re (χ̇V,m)

ȧ3,2 =
2η′

πi
Re (χ̇V,s)

ȧ3,3 = 0

(A.4)

and the right-hand side

ḃ1 = − Im

[

−
dQ∗

∞

dt
℘ (χT,m) +

dQ∞

dt
℘ (χT,m + ω)

]

+ Im

{

1

2πi

N−2
∑

j=1

γj

[

℘ (χT,m − χj) χ̇j + ℘
(

χT,m + χ∗
j − ω

)

χ̇∗
j

]

}

ḃ2 = − Im

[

−
dQ∗

∞

dt
℘ (χT,s) +

dQ∞

dt
℘ (χT,s + ω)

]

+ Im

{

1

2πi

N−2
∑

j=1

γj

[

℘ (χT,s − χj) χ̇j + ℘
(

χT,s + χ∗
j − ω

)

χ̇∗
j

]

}

ḃ3 = − 4iη′Im

(

dQ∞

dt

)

−
η′

πi

N−2
∑

j=1

γj [2 Re (χ̇j)] .

(A.5)

where χ̇V,m, χ̇V,s, χ̇j are the relative point vortex velocities on the χ-plane.
As discussed in section 3.1.4, the Brown & Michael velocity correction for a point

vortex with a variable strength is

ż∗V = z
′∗
V −

γ̇V

γV

(zV − zT )∗ (A.6)
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where z′V is the velocity for a point vortex of constant strength, determined by the
Routh rule (see the equation 3.6). Being qT = i Ωz the transfer velocity of the frame
of reference, the complex conjugate of the relative velocity on the physical plane is
determined by

˙z∗r,V = ż∗V − q∗T . (A.7)

By exploiting the chain rule dz
dt

= dz
dχ

dχ

dt
and replacing in A.6, the relative velocity of

the variable intensity point vortex becomes

χ̇∗
V = AV − γ̇VBV (A.8)

where

AV =

(

χ′∗ −
γ

4πi

d2z/dχ2

dz/dχ

)

V

1

JV

+
iΩz∗

(dz/dχ)∗

BV =
γ̇V

γV

(zV − zT )∗

(dz/dχ)∗
.

This definition can be used in the equations A.4 and A.5 in order to replace χ̇V,m,
χ̇V,s, χ̇j. Finally the linear system A.3 becomes

(a1,1 − α1,1γm) γ̇m + (a1,2 − β1,1γs) γ̇s + a1,3κ̇ = ḃ1 − α1,2γm − β1,2γs

(a2,1 − α2,1γm) γ̇m + (a2,2 − β2,1γs) γ̇s + a2,3κ̇ = ḃ2 − α1,2γm − β2,2γs

(a3,1 − α3,1γm) γ̇m + (a3,2 − β3,1γs) γ̇s + a3,3κ̇ = ḃ3 − α1,3γm − β3,2γs

(A.9)

where

α1,1 =Im

{

1

2πi

[

℘ (χT,m − χV,m)B∗
Vm

+ ℘
(

χT,m + χ∗
V,m − ω

)

BVm

]

}

α1,2 =Im

{

1

2πi

[

℘ (χT,m − χV,m)A∗
Vm

+ ℘
(

χT,m + χ∗
V,m − ω

)

AVm

]

}

α2,1 =Im

{

1

2πi

[

℘ (χT,s − χV,m)B∗
Vm

+ ℘
(

χT,s + χ∗
V,m − ω

)

BVm

]

}

α2,2 =Im

{

1

2πi

[

℘ (χT,s − χV,m)A∗
Vm

+ ℘
(

χT,s + χ∗
V,m − ω

)

AVm

]

}

α3,1 =
2η′

πi
Re
(

B∗
Vm

)

α3,2 =
2η′

πi
Re
(

A∗
Vm

)

101



A – Derivations

β1,1 =Im

{

1

2πi

[

℘ (χT,m − χV,s)B
∗
Vs

+ ℘
(

χT,m + χ∗
V,s − ω

)

BVs

]

}

β1,2 =Im

{

1

2πi

[

℘ (χT,m − χV,s)A
∗
Vs

+ ℘
(

χT,m + χ∗
V,s − ω

)

AVs

]

}

β2,1 =Im

{

1

2πi

[

℘ (χT,s − χV,s)B
∗
Vs

+ ℘
(

χT,s + χ∗
V,s − ω

)

BVs

]

}

β2,2 =Im

{

1

2πi

[

℘ (χT,s − χV,s)A
∗
Vs

+ ℘
(

χT,s + χ∗
V,s − ω

)

AVs

]

}

β3,1 =
2η′

πi
Re
(

B∗
Vs

)

β3,2 =
2η′

πi
Re
(

A∗
Vs

)

If a new vortex whose the intensity is lower than the prescribed threshold is
going to be generated, the vortex is not shed up to the next evaluation and the flow
field is characterized by a single vortex with variable intensity. Therefore, the size
of the problem A.3 is reduced to two unknowns, thus it forms a 2× 2 linear system.

A.2.3 Sign of the penalization term

Let us consider the incompressible penalized Navier Stokes equation 3.44. In the
solid bodies the penalization term is greater than the other members of the equation,
such that it tends to enforce u = ū. It is important to notice that the penalization
term cannot to be defined as λχS(t)(u − ū).

Since for λ≫ 1 within the solid region S(t) the convective, diffusive and pressure
terms are negligible, that is, the penalized Navier-Stokes equation becomes

∂u

∂t
= λ(ū − u). (A.10)

For the sake of simplicity, this equation can be reduced in terms of a one-dimensional
dynamical system

ẍ = λ(ū− ẋ).

We replace ẏ = ±(ẋ− ū) in order to study the sign of the right-hand side, and the
equation becomes

ÿ = ∓λẏ. (A.11)

The general solution of equation A.11 is then y = a0e
∓λt + b0 where a0, b0 are the

constants determined by the initial and boundary conditions. Therefore the solution
is stable only for the replacement ẏ = ẋ− ū.
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A.2.4 Mollified step function

The step characteristic function has to be defined such that the signed distance
function φ < 0 inside the solid body and φ > 0 outside (see [47]). Being ǫ =
max(∆x, ∆y), a smoothed step function can be defined as

H(φ) =







1 if φ < −ǫ
1
2
− φ

2ǫ
− 1

2π
sin
(

πφ

ǫ

)

if −ǫ ≤ φ ≤ ǫ
0 if φ > ǫ

and its analytic derivative yields the related smoothed delta function

δ(φ) =







0 if φ < −ǫ

− 1
2ǫ
− 1

2ǫ
cos
(

πφ

ǫ

)

if −ǫ ≤ φ ≤ ǫ
0 if φ > ǫ

The parameter ǫ establishes the extent of the band where the step is smeared.

A.2.5 Impulse and force exerted on a vortex immersed in a

stream

With the aim of applying the hydrodynamic impulse theory to compute the forces
and the moments of a vortex system, a more than trivial example is illustrated here.

Let us consider a 2D incompressible inviscid and irrotational flow. The flow field
is described on the complex plane z = x+ iy by means of the potential flow model
with vortex singularities immersed within. A vortex singularity with strength γv

and location zv is placed in a free constant stream q∞. The complex potential w is

w = q∞z +
γv

2πi
log(z − zv)

and the conjugate vortex velocity is determined by the complex velocity without the
self-induction part, namely

ż∗v =

(

dw

dz

)

−
γ

2πi

1

z − zv

= q∞

where (·)∗ indicates the complex conjugate. The result is trivial, that is the point
vortex is transported by the free stream and moves with q∞.

Following Saffman (1992) [62], the 2D linear hydrodynamic impulse is defined
by I =

∫

ω x ∧ k dS, and for a vortex singularity it becomes I = γ x ∧ k. Since
the impulse is an invariant of the flow only if the velocity, the vorticity and the
external forces vanish at infinity, we apply a Galileian transformation and the frame
of reference is transported downstream with q∞, so that the infinity is at rest. In
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Figure A.8. Galileian transformation to define the impulse. The point vortex
immersed in the free stream q∞ (left) is equivalent to the point vortex that moves
backward with velocity −q∞ (right).

this new frame of reference the point vortex does not move, its linear impulse does
not vary in time, therefore no forces are exerted on the vortex.

Now let us take in consideration a ’whisk’, that is a point vortex γv embedded in
the location zv, immersed in the free stream q∞. Another Galileian transformation
is applied such that in the new frame of reference the velocity at infinity is null and
the linear impulse represents an invariant of the flow (see figure A.8). If zv(t) =
xv(t) + iyv(t) and zv(0) = x0 + iy0, the Galileian transformation is

xv(t) = x0 − q∞t, yv(t) = y0

and describes the motion of the constrained vortex with a constant velocity −q∞.
Therefore the linear impulse is

Ix = γv y0, Iy = −γv (x0 − q∞t)

and the force on the ’whisk’ is obtained by F = −dI/dt

Fx = 0, Fy = −γv q∞

that corresponds with the well-known Magnus’ effect.

A.2.6 Forces and torque exerted by the fluid on a rotating

and translating ellipse

The impulse theory is applied here to evaluate the forces and the torque exerted by
the fluid on a moving ellipse with a constant rigid rotation and translation.

This application is meaningful because it represents an analytical validation of
the procedure discussed in section 3.1.6. Such a kind of rigid motion is the same as
the one described in section 3.1.2 for the single blade.
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Let us consider an ellipse rotating with constant angular velocity Ω and immersed
in a free stream q∞. The geometrical setting is illustrated in figure A.9. The flow field
is studied by means of the potential flow theory and conformal mappings. Following
the section 3.1.2, the complex potential of the flow field is defined on a frame of
reference fixed on the body. In particular, the ellipse on the physical z0-plane can
be mapped onto a unit circle on the ζ-plane by the elementary mapping z0 = ζ+λ/ζ
and, if a point on the circle is identified by ζB = eiφ, the corresponding point on the
ellipse is z0,B = (λ+ 1) cosφ+ i(1− λ) sinφ. The complex potential w = w[z0(ζ)] is

Figure A.9. Sketch of the geometrical setup.

defined on the mapped plane and has to take into account the permeability condition
for moving bodies expressed by the equation 3.2. The variable streamfunction on
the ellipse contour is given by

ψB(φ) = (1 − λ)ΩR sinφ− Ωλ cos2 φ+ Ωλ sin2 φ+ ψB,0 (A.12)

where ψB,0 is a constant that can be taken off. Since limζ→∞

∣

∣

∣

dz0

dζ

∣

∣

∣
= 1, the velocities

at infinity on the mapped and in the physical planes are equivalent. The complex
potential is determined by the equation 3.3 with the conditions that no vortex is
generated and that there are no free vortices in the flow. The complex potential is
written as

w(ζ) = q∞e−iβζ + q∞eiβ 1

ζ
+

∞
∑

n=1

(an + ibn) ζ−(n−1), (A.13)

where β = −(π
2

+ Ωt). By imposing the boundary condition Im[w(eiφ)] = ψB(φ),
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the series coefficients are easily determined. All the coefficients are null except

a2 = −(1 − λ)ΩR, b3 = −Ωλ.

Finally the complex potential reads

w(ζ) = iq∞eiΩtζ −
[

iq∞e−iΩt + (1 − λ)ΩR
] 1

ζ
− iΩλ

1

ζ2
. (A.14)

The dynamical action on the body is only due to the bound vorticity, hence the
linear and angular impulses are determinated by means of the relations 3.41. Such
equations are valid if the frame of reference is at rest with respect to the infinity, a
Galileian transformation has to be introduced. The transformation of coordinates
is given by the complex equation

zB = ReiΩt + z0,BeiΩt+ π
2 − q∞t (A.15)

In figure A.10, the trajectory of the ellipse described in the absolute frame of ref-
erence z-plane centred in O is illustrated. Following 3.41 the components of the

Figure A.10. Galileian transformation.

hydrodynamical impulse become

Ix = −

∫ 2π

0

Im

[(

dw

dζ
− q∞e−iα dz0

dζ

)

eiφ

]

yB(φ) dφ

Iy =

∫ 2π

0

Im

[(

dw

dζ
− q∞e−iα dz0

dζ

)

eiφ

]

xB(φ) dφ

A =
1

2

∫ 2π

0

Im

[(

dw

dζ
− q∞e−iα dz0

dζ

)

eiφ

]

(xB(φ)2 + yB(φ)2) dφ
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and, by integrating on the unit circle contour, finally we have

Ix = − π
[

(1 + λ)2q∞ cos2 Ωt+ (1 − λ)2q∞ sin2 Ωt+ (1 − λ)2ΩR sin Ωt
]

Iy = − π
[

(1 + λ)2q∞ cos Ωt sin Ωt− (1 − λ)2q∞ sin Ωt cos Ωt− (1 − λ)2ΩR cos Ωt
]

A =π
[

2λq∞t sin 2Ωt− (1 − λ)2q∞R(Ωt cos Ωt− sin Ωt) + 2Ωλ2 + 2(1 − λ)2ΩR2
]

Being F = −dI/dt and MO = −dA/dt, the forces and the moment with respect to
the origin O are

F x = − π
[

4λq∞Ω sin 2Ωt− (1 − λ)2Ω2R cos Ωt
]

F y = π
[

4λq∞Ω cos 2Ωt+ (1 − λ)2Ω2R sin Ωt
]

MO = − πq∞
[

2λq∞ sin 2Ωt+ 4λq∞tΩ cos 2Ωt+ (1 − λ)2Ω2tR sin Ωt
]

.

Since the moment of the force is known on the point O, it can be transferred onto
the point P where the centre of the rotation is located. The moment in P is trivially
obtained by

MP = MO + F yq∞t = −2πλq2
∞ sin 2Ωt,

while the forces are unvaried, thus FX = F x, F Y = F y.
By supposing that the ellipse is a blade section of a vertical axis turbine operating

in a potential irrotational flow, the power Π received on the shaft is provided by the
scalar products Π = F ·uP + MP ·ΩΩΩP , where uP and ΩΩΩP are the linear and angular
velocity of the point P where the forces and moment are applied. Therefore, the
power extracted from the flow field is

Π = MP Ω − FXq∞ = π
[

2λq2
∞Ω sin Ωt− π(1 − λ)2Ω2Rq∞ cos Ωt

]

(A.16)

It is remarkable that for λ = 0, the ellipse reduces to a unit circle on the physical
z-plane. In this case MP = 0 and the forces applied on the shaft become FX =
πΩ2R cos Ωt, F Y = πΩ2R sin Ωt, which correspond to the forces expressed by the
’added mass’ of a circle multiplied by the centrifugal acceleration (see for instance
[41]).

By means of the first law of thermodynamics applied to this model, we verified
that the mechanical power exerted on the system −Π has to be equivalent to the
kinetic power of the fluid Πk

f . Following [41], the kinetic energy of the fluid, when
the stream at infinity is at rest, can be expressed by the relation

Tf = −
i

4

∫

B

w dw∗. (A.17)

Let us consider the complex potential A.14. By subtracting the contribution of the
undisturbed stream iq∞eiΩtζ , the complex potential is defined on a moving galileian
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frame of reference so that the infinity is at rest. This new complex potential is
integrated along the unit circle contour in the equation A.17, that is

Tf = −
1

4

∫ 2π

0

w(φ)

(

dw

dζ

)∗

e−iφdφ (A.18)

Finally the kinetic power of the fluid is given by

Πk
f =

dTf

dt
= π

[

−2λq2
∞ω sin 2Ωt+ (1 − λ)2Ω2Rq∞ cos Ωt

]

, (A.19)

that is equivalent to −Π.

A.2.7 The ’momentum equation’ applied to the 2D circular

cylinder benchmark

The ’momentum equation’ 3.29 is the tool adopted in order to validate the level set
vortex method on the 2D flow past the circular cylinder test case. The aim of this
validation is to compute the time history of the aerodynamic coefficients CD and
CL by varying the Reynolds number.

Figure A.11. Computational domain Ω and control volume V . ABCD is the
fluid region that is integrated.

The figure A.11 shows the test case setup, the control volume and surfaces con-
sidered. Let Fx, Fy and u, v be the Cartesian components of the force F and of the
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A.2 – Mathematical derivations

velocity u, respectively. If d is the cylinder diameter and q∞ is the free stream ve-
locity, we establish d as reference length and q∞ as reference velocity. The Reynolds
number is then determined by Re = q∞d/ν. With this reference quantities and by
taking into account the fact that the cylinder does not move and the control volume
is fixed, i.e. uS = 0, V (t) = V , S(t) = S and Sb(t) = Sb, the 2D non-dimensional
’momentum equation’ reads

F = −
d

dt

∫

V

u dV +

∮

S

n · γγγmomdS −

∮

Sb

n · uu dS, (A.20)

where

γγγmom =
1

2
u2I−uu−u(x ∧ ω kkk)−

[(

x ·
∂u

∂t

)

I− x
∂u

∂t

]

+[x · (∇ · T)I − x(∇ ·T) + T] ,

with

T =
1

Re

(

∇u + ∇uT
)

.

The non-dimensional force F scales as ∼ ρq2
∞d, thus the aerodynamic coefficients

becomes CD = 2Fx and CL = 2Fy.

Since on the solid wall the no-slip condition is enforced, the line integral along
Sb is negligible due to order of accuracy of the scheme, thus the components of the
force exerted on the cylinder are

Fx = −
d

dt

∫

ABCD

u(1 −H(φ)) dxdy+

∫ B

A

[

uv + vωy − y
∂u

∂t
+

1

Re

(

2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)

y −
1

Re

(

∂u

∂y
+
∂v

∂x

)]

dx+

∫ C

B

[

1

2
(v2 − u2) − uωy − y

∂v

∂t
+

1

Re

(

2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)

y +
2

Re

(

∂u

∂x

)]

dy+

∫ D

C

[

−uv − vωy + y
∂u

∂t
−

1

Re

(

2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)

y +
1

Re

(

∂u

∂y
+
∂v

∂x

)]

dx+

∫ A

D

[

−
1

2
(v2 − u2) + uωy + y

∂v

∂t
−

1

Re

(

2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)

y −
2

Re

(

∂u

∂x

)]

dy
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Fy = −
d

dt

∫

ABCD

v(1 −H(φ)) dxdy+

∫ B

A

[

1

2
(v2 − u2) − vωx+ x

∂u

∂t
−

1

Re

(

2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)

x−
2

Re

(

∂v

∂y

)]

dx+

∫ C

B

[

−uv + uωx+ x
∂v

∂t
−

1

Re

(

2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)

x+
1

Re

(

∂v

∂x
+
∂u

∂y

)]

dy+

∫ D

C

[

−
1

2
(v2 − u2) + vωx− x

∂u

∂t
+

1

Re

(

2
∂2u

∂x2
+
∂2u

∂y2
+

∂2v

∂x∂y

)

x+
2

Re

(

∂v

∂y

)]

dx+

∫ A

D

[

uv − uωx− x
∂v

∂t
+

1

Re

(

2
∂2v

∂y2
+
∂2v

∂x2
+

∂2u

∂x∂y

)

x−
1

Re

(

∂v

∂x
+
∂u

∂y

)]

dy
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