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Résumé de la thèse

Le but de ce travail est de présenter des résultats à propos des noyaux sau-
vages étales. Soit p un nombre premier. Les noyaux sauvages étales d'un
corps de nombres F (qui sont dénotés par WK ét

2i(F ) avec i ∈ Z) sont des
généralisations cohomologiques de la p-partie du noyau sauvage classique
WK2(F ), qui est le sous-groupe de K2(F ) constitué par les symboles qui
sont triviaux pour tout symbole de Hilbert local. Ces noyaux sauvages étales
sont des Zp-modules et l'on sait qu'ils sont �nis lorsque i ≥ 1 (et même,
suivant les conventions, si i = 0) : on conjecture en plus qu'ils soient tou-
jours �nis (conjecture de Schneider). Dans la suite, on va supposer que cette
conjecture est satisfaite.

On va s'intéresser en particulier à deux problèmes. Le premier, qui est étu-
dié dans les Chapitres 2 et 3, est la déterminations des structures de groupe
qui sont réalisables comme noyaux sauvages étales. En d'autres termes, si
l'on se donne un corps de nombres F , un p-groupe abelien �ni X et un
nombre entier i ∈ Z, on peut se demander s'il existe une extension �nie
E/F telle que WK ét

2i(E) ∼= X. Une question semblable a été étudiée pour
les p-groupes des classes et il y a un relation précise entre les p-groupes des
classes et les noyaux sauvages étales. Par conséquent, on peut espérer tra-
duire les résultats classiques dans le contexte des noyaux sauvages étales.
Peut-être est-il intéressant de donner ici une courte récapitulation sur le
problème de réalisation classique pour les p-groupes des classes (voir [Ge]
et [Ya]). Essentiellement, deux techniques sont utilisées. D'un coté, pour un
corps de nombres F �xé, l'on étudie la p-tour des corps des classes de Hil-
bert de F : Yahagi a montré (voir [Ya] et [So]) que cette tour est in�nie si et
seulement s'il n'y a pas d'extensions �nies E/F dont le p-groupe des classes
soit trivial. De plus, si la tour est �nie, alors toute structure de p-groupe
abélien apparaît comme p-groupe des classes pour quelque extension �nie
E/F . De l'autre coté, une fois que l'on sait que pour un corps de nombres
F �xé, il existe une extension �nie dont le p-groupe de classes est trivial,
alors on peut se servir de la théorie du corps des classes et de la théorie
des genres pour trouver, pour n'importe quel p-groupe abélien �ni X, une
extension �nie E/F telle que le p-groupe des classes de E est isomorphe à X.

En e�et, la traduction du résultat de Yahagi dans le contexte des noyaux
sauvages étales n'est pas tout à fait immédiate : la relation entre le groupe
des classes et le noyau sauvage étale d'un corps de nombres F s'écrit dans le
langage de Γ-modules, où Γ est le groupe de Galois sur F de la Zp-extension
cyclotomique de F (µp). La façon la plus naturelle pour s'approcher du pro-
blème est donc de considérer le problème de réalisabilité pour les modules
d'Iwasawa. Ce problème a été étudié (parmi d'autres auteurs) par Ozaki
in [Oz] : il a montré que pour tout Λ-module �ni X, il existe un corps de
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nombres k tel que le module d'Iwasawa de k (c'est à dire la limite projective
des p-groupes des classes le long de la tour cyclotomique) est isomorphe à
X. Les techniques utilisées sont inspirées à celles de Yahagi et en fait elles
s'appuient d'une façon fondamentale du fait que p ne divise pas le nombre
des classes de Q. Pour obtenir la traduction de ce résultat en termes de
noyaux sauvages étales il faut considérer plutôt Q(µp) -plus précisément un
sous-corps convenable de Q(µp). Bien entendu, le nombre des classes de ce
sous-corps n'est plus premier avec p (du moment que p peut être irrégulier).
D'autre part, si p est régulier, la preuve d'Ozaki peut être adaptée (comme
l'on montre dans le Chapitre 2).

Pour traiter le cas mauvais (c'est à dire le cas où le nombre des classes
du sous-corps convenable comme dessus n'est pas étranger à p), on considère
des analogues des p-corps des classes de Hilbert et des p-tours des classes de
Hilbert qui ont été dé�nis par Jaulent et Soriano in [JS] pour i = 0 et géné-
ralisés par Assim in [As] (mais sous l'hypothèse que le corps de base contient
les racines p-ièmes de l'unité). Dans le Chapitre 3, on développe cette théorie
dans le cas général : le résultat plus important est que si WK ét

2i(Q) 6= 0 et
i est impair, alors l'analogue de la p-tour des classes de Hilbert de Q est
in�nie. Cette dernière condition est équivalente à la condition WK ét

2i(F ) 6= 0
pour tout corps de nombres F contenant le même sous-corps convenable de
Q(µp) dont on a parlé tout à l'heure. Il s'agit sans doute de la di�érence la
plus importante entre le cas classique des groupes des classes et celui des
noyaux sauvages étales : en d'autres termes, la non-�nitude de la tour n'im-
plique pas directement l'absence de corps de nombres avec noyau sauvage
étale trivial (à cause de la condition sur le sous-corps convenable, bien sûr).
Il se peut bien entendu que cette di�érence soit apparente et que l'on puisse
se passer de l'hypothèse sur le sous-corps. On ne s'intéresse pas ici de la
question classique sur les conditions su�santes a�n que la tour soit in�nie
(à la Golod-Shafarevic, voir [JS] et [As]) : de toute façon, comme l'on pourra
facilement deviner, une adaptation des résultats classiques ne devrait pas
être compliquée.

Le second problème auquel on s'intéresse dans ce travail est étudié en dé-
tail dans le Chapitre 4. On regarde de plus près la suite exacte de localisation
en K-théorie d'un corps de nombres F

0 −→ K2i(OF ) −→ K2i(F ) ∂−→
⊕
v �nite

K2i−1(kv) −→ 0 (1)

(où kv est le corps résiduel de F à la place v et la somme directe est prise
sur les places �nies de F ). On peut se poser la question de déterminer des
conditions nécessaires et su�santes a�n que la suite exacte soit scindée, une
motivation étant le théorème de Tate-Milnor (voir [Mil], Theorem 2.3) qui
a�rme que, si E est un corps de fonctions rationnelles à une variable, la suite



de localisation pour K2(E) (qui est tout à fait analogue à (1)) est scindée.
Revenant au problème de scission pour les corps de nombres, on est amené
naturellement à considérer, pour tout p premier, la p-suite exacte de locali-
sation, c'est à dire la partie p-primaire de la suite (1). Dans [Ba], Banaszak a
enoncé un théorème qui a�rme que la p-suite de localisation de K2i(F ) est
scindée si et seulement si div(K2i(F ))p = 0 (pour un groupe abélien M , l'on
dénote par div(M) le sous-groupe des éléments de hauteur in�nie). On sait
aussi que div(K2i(F ))p = WK ét

2i(F ). La trivialité de WK ét
2i(F ) est bien sûr

une condition nécessaire pour que la suite de localisation soit scindée : tou-
tefois la preuve de Banaszak ne semble pas complète. En e�et, en cherchant
un contre-exemple (c'est à dire un corps de nombres F tel que WK ét

2i(F ) = 0
mais la p-suite de localisation de K2i(F ) n'est pas scindée), on trouve une
condition nécessaire et su�sante pour que la i-ème suite soit scindée qui est
di�érente de celle de Banaszak. La di�érence entre cette nouvelle condition
et celle de Banaszak ne se voit pas au niveau des petits corps de nombres
(c'est à dire par exemple Q ou les corps quadratiques) : les contre-exemples
que l'on exhibe sont en verité di�ciles à trouver.

Dans le premier chapitre, on �xe les notations et on rappelle les résultats
connus qui servent comme motivation aussi bien que comme outils pour ce
travail. En particulier, les groupes de K-théorie et les noyaux sauvages étales
sont introduits et l'on décrit brièvement leur propriétés.

Mots-clés en français :
noyaux sauvages étales, théorie d'Iwasawa, théorie des genres, suite de loca-
lisation en K-théorie

Keywords :
étale wild kernels, Iwasawa theory, genus theory, K-theory localization se-
quence
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Chapter 1

Introduction

1.1 General description of the work

The aim of the present work is to prove some results about étale wild kernels.
Let p be an odd prime. Etale wild kernels of a number �eld F (which are
denoted WK ét

2i(F ) for i ∈ Z) are cohomological generalizations of the p-part
of the classical wild kernel WK2(F ), which is the subgroup of K2(F ) made
up by symbols which are trivial for any local Hilbert symbol. Etale wild
kernels are Zp-modules which are known to be �nite if i ≥ 1 (and even if
i = 0, depending on the chosen convention): actually they are conjectured to
be always �nite (the Schneider conjecture). In the following we will suppose
that this is always the case.

Two problems are studied in detail. The �rst, which is analyzed in Chap-
ter 2 and Chapter 3, is to determine which group structures are realizable for
étale wild kernels. In other words, given a number �eld F , a �nite abelian
p-group X and i ∈ Z, one can ask if there exists a �nite extension E/F such
that WK ét

2i(E) ∼= X. A similar problem has been studied for p-class groups
and there are precise relations between the p-class group and étale wild ker-
nels. Therefore one may expect to translate results from p-class groups to
étale wild kernels. It is maybe useful to give here a short account on the
classical realizability problem for p-class groups (see [Ge] and [Ya]). Essen-
tially two kind of techniques are used. On the one hand, for a �xed number
�eld F , one studies the Hilbert p-class �eld tower of F : it has been shown
by Yahagi (see [Ya] and [So]) that the Hilbert p-class tower of F is in�nite
if and only if there is no �nite extension E/F whose p-class group is triv-
ial. Furthermore, if the Hilbert p-class tower of F is �nite, then every �nite
abelian p-group structure appears as p-class group of some �nite extension
E/F . On the other hand, once we know that for a �xed number �eld F
there exists a �nite extension whose p-class group is trivial, then class �eld
theory and genus theory are used to exhibit, for any �nite abelian p-group
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X, a �nite extension E/F such that the p-class group of E is isomorphic to
X.

Actually, the translation of Yahagi's result in terms of étale wild kernels
is not immediate: the relation between the class groups and étale wild ker-
nels of a number �eld F is expressed in terms of Γ-modules structures, where
Γ is the Galois group over F of the cyclotomic Zp-extension of F (µp). The
most natural way to approach the problem is then to consider the realiz-
ability problem for Iwasawa modules. This problem is studied (among many
others) by Ozaki in [Oz]: he proved that for any �nite Λ-module X, there
exists a number �eld k such that the Iwasawa module of k (i.e. the projective
limit of p-class groups along the cyclotomic Zp-extension) is isomorphic to
X. The techniques used are inspired to those by Yahagi and actually Ozaki
makes fundamental use of the fact that p does not divide the class number
of Q. To get the translation of this result in terms of étale wild kernels one
has to consider Q(µp) -more precisely a suitable sub�eld of Q(µp) depending
on i- instead of Q. Here the problem is that the class number of this suitable
sub�eld is no more coprime with p (as p may be irregular). If this is not the
case anyway, the proof of Ozaki can be adapted as it is shown in Chapter 2.

In order to deal with the bad case (i.e. the case where the class number
of the suitable sub�eld above is not coprime with p), one considers analogues
of Hilbert p-class �elds and Hilbert p-class towers. These have been de�ned
by Jaulent and Soriano in [JS] for i = 0 and generalized by Assim in [As]
(but only for �eld containing µp). In Chapter 3 we develop this theory in the
general case: the main result is that if WK ét

2i(Q) 6= 0 and i is odd, then the
étale analogue of the Hilbert p-class tower of Q is in�nite. This is equivalent
to the fact that, for every number �eld F containing the suitable sub�eld of
Q(µp) as above, we haveWK ét

2i(F ) 6= 0. This is probably the main di�erence
between the classical class groups case and the étale wild kernels case: in
other words, the in�niteness of the tower does not seem to imply directly
that there do not exist �elds with trivial étale wild kernel (because of the
condition on that sub�eld). Maybe this hypothesis on the sub�eld is merely
a technical one. Here we do not treat the classical question of giving condi-
tion for the tower to be in�nite (in the spirit of Golod-Shafarevic inequalities,
see [JS] and [As]): anyway, as the reader may guess, an adaptation of the
classical results to the étale case should not be di�cult.

The second problem which is studied in this work is analyzed in Chapter
4. We focus on the K-theory exact localization sequence for a number �eld
F

0 −→ K2i(OF ) −→ K2i(F ) ∂−→
⊕
v �nite

K2i−1(kv) −→ 0 (1.1)

(here kv is the residue �eld of F at v and the sum is taken over the �nite
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primes of F ). One can asks for conditions in order for this exact sequence
to be split: one motivation for this question is the Tate-Milnor theorem (see
[Mil], Theorem 2.3) which states that, if E is a rational function �eld of
one variable, then the localization sequence for K2(E) (which is completely
analogous to (1.1)) always splits. Coming back to the splitting problem for
number �elds, one is naturally lead to consider separatedly for each prime p,
the p-localization sequence for K2i(F ), i.e. the p-primary part of the above
localization sequence. In [Ba], Banaszak stated a theorem which says that
the p-localization sequence for K2i(F ) splits if and only if div(K2i(F ))p = 0
(for an abelian group M , div(M) denotes the subgroup of divisible elements
of M , see Section 1.2). We also know that div(K2i(F ))p = WK ét

2i(F ). The
triviality of WK ét

2i(F ) is easily seen to be a necessary condition in order for
the localization sequence to be split but Banaszak's proof of su�ciency seems
to be incomplete. Actually looking for a counterexample (i.e. a number �eld
F such that WK ét

2i(F ) = 0 but the p-localization sequence for K2i(F ) does
not split), we found a necessary and su�cient condition for the i-th sequence
to be split which is di�erent from that of Banaszak. It turns out for exam-
ple that in the case F = Q Banaszak's condition is necessary and su�cient
(counterexamples are indeed of subtle nature).

In the rest of this chapter, we �x notation and recall known results which
serve at the same time as motivation and tools for our investigations. In
particular, K-groups and étale wild kernels are introduced and some of their
properties are listed.
Acknowledgements
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1.2 Basic notation

The following section is devoted to �x notation which will be used throughout
the rest of this work. Additional notation which is speci�c to a chapter will
be de�ned when needed.
Let F be a number �eld, n ∈ N a natural number, p an odd rational prime
and B an abelian group. Moreover we will always �x an algebraic closure F
of F and consider any of the extensions of F which appear as contained in
F . Then

• Zp is the ring of p-adic integers, i.e. the projective limit of Z/pnZ with
respect to projections;

• Ẑ is the projective limit of Z/nZ with respect to projections;

• Λ = Zp[[T ]] is the Iwasawa algebra in the indeterminate T ;

• Bp denotes the p-primary part of B;

• B[pn] is the subgroup of elements of B whose order divides pn;

• Div(B) denotes the maximal divisible subgroup of B;

• div(B) = {b ∈ B | ∀n ∈ N ∃ bn ∈ B : b = nbn} (div(B) is a sugroup
of B which is commonly called the subgroup of (in�nitely) divisible
elements or the subgroup of elements of in�nite height of B);

• r1(F ) (resp. r2(F )) denotes the cardinality of the set of real places
(resp. complex places) of F (in particular, if [F : Q] = d, then r1(F ) +
2r2(F ) = d);

• OF is the ring of integers of F ;

• O×F is the group of units of F ;

• ClF is the ideal class group of F ;

• Cl′F is the p-split ideal class group of F , i.e. the quotient of ClF by
the subgroup generated by classes represented by primes above p;

• p will generally denote a prime of OF and vp is the valuation attached
to p;
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• µF is the group of roots of unity contained in F ;

• µn is the group of n-th roots of unity contained in an algebraic closure
of F ;

• µp∞ = ∪n∈Nµpn ;

• F c is the cyclotomic Zp-extension of F ;

• ΓF = Gal(F (µp)c/F ) and (ΓF )p = Gal(F c/F );

• for any n ∈ N, Fn will usually denotes the n-th level of F c;

• AFn = (ClFn)p, A′Fn = (Cl′Fn)p and AF c is the inductive limit of the
An's with respect to maps of extension of ideals (to ease notation we
will also set AF = AF0);

• XF (resp. X ′F ) is the projective limit of the An's (resp. of the A′n's)
with respect to maps of norm of ideals;

• F cd is the maximal pro-p abelian extension of F c which is split every-
where;

• F cd is the maximal pro-p extension of F c which is split everywhere;

• κF : Gal(F/F ) → Z×p is the p-cyclotomic character of F (for any
ζ ∈ µp∞) and σ ∈ Gal(F/F ), then κF is de�ned by σ(ζ) = ζκF (σ));

• ω : (Z/pZ)× → Z×p is the Teichmüller character (see [Wa], �5.1); we
will also denote by ωF : Gal(F (µp)/F ) → Z×p the character which is
obtained composing ω with the natural identi�cation of Gal(F (µp)/F )
with a subgroup of (Z/pZ)×;

• C̃lF is the logarithmic class group of Jaulent (see [Ja3])

• if F is a CM �eld, F+ denotes its maximal real sub�eld and if ∆ =
Gal(F/F+) and B is a ∆-module we set as usual B+ = {b ∈ B | δb = b}
and B+ = {b ∈ B | δb = −b} where δ ∈ ∆ is complex conjugation.

If the �eld F under consideration is clear and no misunderstanding is possi-
ble, then we will often let the subscript F drop in the notation of ΓF , (ΓF )p,
κF , ... Similar notation is used if F is a p-adic �eld (whenever it makes
sense).
We now de�ne a notation which is classical (see for example [Wa], �6.3). Let
∆ be a �nite abelian group and denote by ∆̂ its character group. Let R be
a ring which contains the inverse of |∆| and all values of χ for any χ ∈ ∆̂.
For any χ ∈ ∆̂ set

εχ =
1
|∆|

∑
δ∈∆

χ(δ)δ−1 ∈ R[∆]
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The εχ's are called orthogonal idempotents of the algebra R[∆]: they satis�es
the following properties

1. ε2
χ = εχ;

2. εχεψ = 0 if χ 6= ψ;

3. 1 =
∑

χ∈∆̂
εχ;

4. εχσ = χ(σ)εχ

Let A be an abelian group which is a R[∆]-module. Then we de�ne Aχ =
εχA: note in particular that, thanks to property 4 and εχσ = σεχ since ∆
is abelian, Aχ is the submodule of A on which ∆ acts via σ(a) = χ(σ)a for
all σ ∈ ∆ (in other words Aχ is the eigenspace of σ with eigenvalues χ(σ)).
Moreover, again using the above properties, we have

A =
⊕
χ∈∆̂

Aχ

Of particular interest to us is the case where ∆ = Gal(F (µp)/F ) (in partic-
ular ∆ is a cyclic group of order dividing p− 1): then R can be taken to be
Zp. In this case

∆̂ = {ωiF |0 ≤ i < |∆|}

and, if A is a Zp[∆]-module, we set AωiF = Ai.
We will make use of Tate twists (see [Ta2]): we recall brie�y how they are
de�ned. Set GF = Gal(F/F ). The Tate module for F is the Zp[GF ]-module

Zp(1) = lim
←−

µpn

where the limit is taken over the maps µpn+1 → µpn de�ned by raising to the
p-th power. We set Zp(0) = Zp (which is considered a Zp[GF ]-module with
the trivial action) and, for every m ∈ N, we de�ne inductively

Zp(m) = Zp(m− 1)⊗Zp Zp(1)

Zp(−m− 1) = HomZp(Zp(1), Zp(−m))

again considered as a Zp[GF ]-module with the standard action de�ned on
tensor product and homorphisms groups. More generally for every Zp[GF ]-
module M and for every m ∈ Z, we de�ne

M(m) = M ⊗Zp Zp(m)

Actually M(m) is isomorphic (the isomorphism depending on the choice of
a Zp-generator of Zp(1)) to the module which is equal to M as an abelian
group and whose GF -module structure is given by the rule

σ · a = κ(σ)m.σ(a)
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for every a ∈ M (the de�nition of the rule makes sense for m ∈ Z because
κ(σ) ∈ Z×p is invertible).

We will not make use of deep results in Iwasawa theory (in particular
p-adic L-functions and the Main Conjecture will not be used): de�nitions,
notation and results used are classical (and hence will not be recalled here).
Of course they can easily be found in Chapter 13 of [Wa].
We will occasionally refer to two old conjectures in algebraic number theory.
The �rst is the Vandiver conjecture which says that p does not divide the
class number of the maximal totally real sub�eld of Q(µp). The second is the
Leopoldt conjecture which can be formulated in many di�erent equivalent
ways (see [NSW]): for example it predicts that there are exactly r2(F ) + 1
independent Zp-extensions of a number �eld F .

We end this section with a remark on cohomology: essentially three types
of cohomology will be used. If G is a pro�nite group and A is a dicrete G-
module, then H i(G, A) denotes the i-th standard group cohomology of G
with values in A (see [NSW]). Sometimes, if G is �nite, it will be convenient
to use Tate cohomology which is as usual denoted by Ĥ i(G, A). On the
other hand we will also make use of continuous cohomology (which was �rst
de�ned by Tate in [Ta2] but see also [NSW]): ifG is a pro�nite group and A is
a topological G-module, then H i

cts(G, A) denotes the i-th continuous group
cohomology of G with values in A (but we will often let the subscript cts drop
if no confusion can arise). Finally, we shall use étale cohomology: if X is a
scheme and F is a sheaf on the étale site of X, then H i

ét(X, F ) denotes the
i-th standard group cohomology of X with values in F (see [Mi1]). Actually
since we are going to consider only a�ne scheme, i.e. of the form Spec(R)
for some ring R, we will also write H i

ét(R, F ) for H i
ét(Spec(R), F ). We will

also use the following notation

H i
ét(OF [1

p ], Zp(j)) = lim
←−

H i
ét(OF [1

p ], µ⊗jpn )

It is certainly useful to keep in mind the following result, which is in fact
a part of more general theorems whose proofs can be found in [Mi1] (see
Example 1.7 of Chapter III) and [Mi2] (see Proposition 2.9 of Chapter II).

Theorem 1.2.1. Let S be the set of places of F made up by archimedean
primes and primes above p. Let GF,S denote the Galois group of the maximal
extension of F which is unrami�ed outside S. The following holds:

• H i
ét(F, µ

⊗j
pn ) = H i(F, µ⊗jpn );

• H i
ét(OF [1

p ], µ⊗jpn ) = H i(GF,S , µ
⊗j
pn ).

Here we denote with µ⊗jpn both a module and a sheaf (a notation which is
standard).
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1.3 Algebraic K-theory of number �elds

In this section we brie�y recall the de�nition of algebraic K-theory for rings
which are interesting in algebraic number theory, i.e. number �elds, ring of
integers and �nite �elds. We also brie�y discuss the relationships of algebraic
K-theory of those rings with étale cohomology and étale K-theory. We are
not going to give an exhaustive treatment or follow the historical evolution
of the subject (referring the reader to [Mil], [Ko2] and [We1]).
The de�nition of K-theory groups is due to Daniel Quillen. Let R be a ring
with 1. For any n ∈ N, let GLn(R) be the group of invertible n× n matrix
with coe�cients in R. Set

GL(R) = lim
−→

GLn(R)

the limit being taken with respect to the inclusion ιn,n+1 : GLn(R) →
GLn+1(R) de�ned by

ιn,n+1((mij)) =


mij if 1 ≤ i, j ≤ n
1 if i = j = n+ 1
0 otherwise

We consider R as a topological ring with the discrete topology. Then GL(R)
has a natural induced topology and we consider its classifying spaceBGL(R).
Then we perform the so called Quillen's +-construction, which is a topolog-
ical modi�cation of BGL(R) (and it won't be recalled here since it is rather
technical), obtaining a new topological space which we denote by BGL(R)+.
Then, for any n ∈ N,

Ki(R) = πi(BGL(R)+)

where πi(X) denotes the n-th homotopy group of the topological space X.
For any i ∈ N, Kn(R) is an abelian group. For i = 0, 1, 2, Ki(R) coincides
with the classical K-theory groups which were de�ned before.
Let R be a �nite �eld: in this case K0(R) = Z, K1(R) = R× and

Ki(R) =
{

0 if i is even and nonzero
cyclic of order |R|t − 1 if i = 2t− 1 is odd

(see [Qu]).
Choose now R = OF : in this case K0(R) = Z⊕ ClF , K1(R) = O×F and

Ki(R) =


�nite abelian group if i is even and nonzero
Z-module of rank r1(F ) + r2(F ) if i ≡ 1 (mod 4) and i > 1
Z-module of rank r2(F ) if i ≡ 3 (mod 4)

(see [Bo]). In some sense, one can think of even K-groups of OF as higher
analogues of ClF and of odd K-groups as analogues of O×F .
Finally if R = F we have K0(R) = Z, K1(R) = F× and

K2(F ) = F× ⊗Z F
×/〈x⊗ (1− x) |x ∈ F× r {1}〉
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An element in K2(F ) is called a symbol: if x, y ∈ F×, [x⊗ y] is denoted by
{x, y} (actually every symbol is of this form, see [Le]).
Moreover (see [Sou]) Ki(F ) = Ki(OF ) if i ≥ 3 is odd and there are short
exact sequences

0→ K2i(OF )→ K2i(F ) ∂2i−→ ⊕pK2i−1(OF /p)→ 0 (1.2)

(the sum being taken over the �nite primes of F ) which are called the K-
theory exact localization sequences (for algebraic number �elds). It shows, in
particular, that Div(K2i(F )) = 0. We have the following description of the
map ∂2 : K2(F )→ ⊕pK2i−1(OF /p), which is also called the tame symbol:

(∂2(x, y))p =
(

(−1)vp(x)vp(y)xvp(y)y−vp(x) mod p
)

p
(1.3)

Therefore K2(OF ) is also called the tame kernel. There are also analogues
of (1.2) if S is a �nite set of places of F (including the archimedean ones)
and one considers the ring OSF of S-integers of F : namely there are short
exact sequences of the form

0→ K2i(OSF )→ K2i(F ) ∂2i−→ ⊕p/∈SK2i−1(OSF /p)→ 0

Just as for the �rst three K-theory groups, higher K-theory groups are
interesting invariants of number �elds but in general they are very di�cult
to study. Conjecturally there is a strong relation between étale cohomology
and K-theory of ring of integers.

Conjecture 1.3.1. (Quillen-Lichtenbaum) Let p be an odd prime. For any
i ∈ N and j = 1, 2, there are isomorphisms

chi,j : K2i−j(OF )⊗Z Zp // Hj
ét(OF [1

p ], Zp(i))

The chi,j 's were de�ned by Soulé ([Sou]) and Dwyer and Friedlander (see
[DF]): they are called étale Chern characters. Tate (see [Ta2]) proved that
this holds if i = j = 2. In this case the étale Chern character is not di�cult
to describe: we have ch2,2 = h, where h is the isomorphism

h : (K2(F ))p // H2(F, Zp(2))p

de�ned by
h({a, b}) = dFa ∪ dF b

where dF : F× //H1(F, Zp(2)) is the connecting homomorphism of the long
exact cohomology sequence associate to the exact sequence

0 // Zp(1) // lim
←−

F
×

// F
×

// 0
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(the limit in the middle is taken with respect to pm-th powers). Moreover

h(K2(OF [1
p ])p) = H2

ét(OF [1
p ], Zp(2))

(H2
ét(OF [1

p ], Zp(2)) is �nite and injects in H2(F, Zp(2)) by in�ation).
Soulé proved that chi,j is surjective for any i and j. Also Dwyer and Fried-
lander proved the surjectivity of étale Chern characters making use of étale
K-theory (see [DF]). In general, for any i ∈ N and j = 1, 2, there are
surjective maps

chéti,j : K2i−j(OF )⊗Z Zp // K ét
2i−j(OF [1

p ])

and natural isomorphisms

K ét
2i−j(OF [1

p ]) ∼= Hj
ét(OF [1

p ], Zp(i)) (1.4)

which give chi,j if composed with chéti,j . Hence Conjecture 1.3.1 is equivalent
to the fact that chéti,j are isomomorphisms. The general case of the Quillen-
Lichtenbaum conjecture is a consequence of the Bloch-Kato conjecture whose
proof seems to be imminent thanks to the work of Rost, Voevodsky, Weibel
and others ([Ro], [Vo1], [Vo2], [Vo3]...).
We end this section by recalling a structural result for étale cohomology
groups of ring of integers of CM �elds containing µp. This is actually a
generalization of Coates' description of K2(OF ).

Theorem 1.3.2. Suppose that F is a CM �eld and µp ⊆ F . For any n ∈ N,
let Fn be the n-th level of F c and set Γn = Gal(F c/Fn). Then cohomological
restriction induces isomorphisms

H2
ét(OFn [1

p ], Zp(i+ 1))+ ∼=
(
H2
ét(OF c [

1
p ], Zp(i+ 1))+

)Γn
if i ≥ 1 is odd

H2
ét

(OFn [1
p ], Zp(i+ 1))− ∼=

(
H2
ét(OF c [

1
p ], Zp(i+ 1))−

)Γn
if i ≥ 1 is even

This gives isomorphisms

(A−F c(i))
Γn ∼= H2

ét(OF+
n

[1
p ], Zp(i+ 1)) if i is odd

(A−F c(i))
Γn ∼= H2

ét(OFn [1
p ], Zp(i+ 1))− if i is even

Proof. The proof of this result is maybe well-known but not so easy to �nd
in print: anyway everything can be deduced by [Co] without particular e�ort
so we only sketch the proof. For any i there are Γ-modules Hi and exact
sequences

0 // (Hi)Γn
//H2
ét

(OFn [1
p ], Zp(i+ 1))) // (H2

ét
(OF c [1

p ], Zp(i+ 1)))Γn // 0
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where the last map is cohomological restriction (this result is also proved
in [NQD], Proposition 4.4 (ii)). The arguments of the proof of Theorem 11
of [Co] apply and give that H+

i = 0 if i is odd and H−i = 0 if i is even.
The proof of the last assertion uses the same arguments which are used in
the proofs of Theorem 4 and Theorem 6 of [Co]: in this case, instead of
Theorem 2 of [Co] (which is due to Tate), one has to use Conjecture 1.4.4
(see next section) which is proved for i ≥ 2 in Théorème 5 of [Sou] (see
Remark 1.4.5).

If the Quillen-Lichtenbaum conjectures hold for p and F+
n we then have

(i odd)
(A−(i))Γn ∼= K2i(OF+

n
)p

1.4 Etale wild kernels

In this section we brie�y recall the de�nition of étale wild kernels of number
�elds. As in the preceding section we will not follow the historical evolution
of the subject (referring the reader to [Sc] and [Ba]). Etale wild kernels
are cohomological objects which represent the obstruction to a local-global
principle. They are in fact a particular case of Tate-Shafarevic groups (see
[NSW]).
Let S be a set of primes of F containing the archimedean ones. Denote by FS
the maximal subextension of F |F which is unrami�ed at each prime which
does not belong to S. Clearly FS |F is Galois and we set GS = Gal(FS |F ).
Let OF,S be the ring of S-integers of F . In this section M is a �nitely
generated discrete GS-module the order of whose torsion subgroup is a unit
in OF,S . Furthermore for prime p of F denote by Fp the completion of F at
p. There is an embedding ip : F ↪→ Fp. We choose an algebraic separable
closure Fp of Fp and an embedding F ↪→ Fp which is compatible with ip. We
set GFp = Gal(Fp|Fp): we have an inclusion GFp ↪→ GF (which comes from
F ↪→ Fp) which identi�es GFp with the decomposition group of one of the
primes of F which lies over p (in fact, the choice of an embedding F ↪→ Fp

corresponds to the choice of a prime of F which lies over p). In this situation,
M becomes a GFp-module. Composing with the canonical projection (which
is in fact restriction) we get a localization map GFp

// GS which allows us
to consider, for each j ≥ 0, the cohomological map

λj = λjS(F, M) : Hj(GS , M) −→
∏
p∈S

Hj(GFp , M)

In the following we are going to omit the references to S, F and M when no
ambiguity can appear. We set

Xj
S(F, M) = Ker(λjS(F, M))
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Now suppose that {Th, τhj}h∈I is an inverse system (over the inductive set
(I, ≤)) of �nite GS-module whose order is a unit in OF,S . Then

T = lim
←−

Th

is a topological GS-module (with respect to the pro�nite topology on T ). If
h ≤ k, then we have the commutative diagram

0 −→ Xj
S(F, Tk) −→ Hj(GS , Tk)

λj−→
∏

p∈S H
j(Gp, Tk)

↓ τ∗hk ↓ ↓ τ∗hk
0 −→ Xj

S(F, Th) −→ Hj(GS , Th)
λj−→

∏
p∈S H

j(Gp, Th)

where τ∗hk is the map induced in cohomology by τhk and the map

Xj
S(F, Tk) // Xj

S(F, Th)

is induced by the diagram (it is the restriction of τ∗hk to Xj
S(F, Tk)). From

this we can de�ne a morphism

λj = λjS(F, T ) = lim
←−

λjS(F, Th) : lim
←−

Hj(GS , Th) −→ lim
←−

∏
p∈S

H i(Gp, Th)

Then we de�ne
Xj

S, cts(F, T ) = lim
←−

Xj
S(F, Th)

This choice is motivated by the following.

Proposition 1.4.1. With the notation just introduced, there is an exact
sequence

0 −→Xj
S, cts(F, T ) −→ Hj

cts(GS , T ) −→
∏
p∈S

Hj
cts(Gp, T )

Proof. First of all we know that for every j ≥ 0 and every h ∈ I, both
Hj(GS , Th) and Hj(Gp, Th) (p ∈ S) are �nite and the same holds for
Xj

S(F, Th) because it is a subgroup of Hj
cts(GS , Th). Then we have the

equalities

H i
cts(GS , T ) = lim

←−
H i
cts(GS , Th) Hj

cts(Gp, T ) = lim
←−

Hj
cts(Gp, Th)

for every p ∈ S. Now observe that inverse systems of �nite groups have
the so called Mittag-Le�er property (see [NSW]): in particular the system
{Xj

S(F, Th), τ∗hk}h∈I (where the τ∗hk's are the cohomology maps induced by
the τhk's) has this property. Hence (see the end of the preceding section) we
have an exact sequence

0 −→ lim
←−

Xj
S(F, Th) −→ lim

←−
Hj(GS , Th) −→ lim

←−

∏
p∈S

Hj(Gp, Th)

which is exactly the result we were looking for, because inverse limits com-
mute with �nite products.
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De�nition 1.4.2. Let p be an odd prime and let Sp,∞ be the set made up
of primes above p and in�nite primes of F . Then, for any i ∈ Z, we denote
X2

Sp,∞
(F, Zp(i)) by WK ét

2i(F ) and call it the i-th étale wild kernel of F .

Remark 1.4.3. Using Tate's map h de�ned in the preceding section and
local duality, the morphism

λ2 : H2
cts(GS , Zp(2)) −→

∏
p∈S

H2
cts(Gp, Zp(2))

de�ning WK ét
2 becomes, provided that Sp,∞ ⊆ S,

λ2 : K2(OF )p −→
∏
p∈S

(µFp)p

where λ2 is de�ned by Hilbert symbol. One can extend this morphism to the
whole K2(OF ) and its kernel is called the classical wild kernel (often simply
denoted WK2(F )), since it is de�ned by means of Hilbert symbols instead
of tame symbols (see (1.3)). By de�nition WK2(F ) is a subgroup of K2(F )
and in fact

WK2(F )p = div(K2(F )p)

(this statement is due to Tate, see [Ta1], but it is actually proved in [Hu],
where also an accurate description of the case p = 2 can be found). Similar
statements hold for étale wild kernels (even without assuming the Quillen-
Lichtenbaum conjectures, which are higher analogues of Tate isomorphism):
more precisely WK ét

2i(F ) can be seen canonically as a subgroup of K2i(F )
and

WK ét
2i(F ) = div(K2i(F )p)

(see [Ba]).

Conjecture 1.4.4. (Schneider) For any i ∈ Z, WK ét
2i(F ) is �nite.

Remark 1.4.5. For any i ∈ Z, WK ét
2i(F ) is a �nitely generated Zp-module

(see [Sc]). Actually one has (see [Sc], �5, Satz 5)

WK ét
0 (F ) ∼= (Cl′F )p

In particular the Schneider conjecture holds for i = 0 (but see also Remark
1.4.7). One can also prove that the Schneider conjecture for i = −1 is
equivalent to the Leopoldt conjecture (see [Sc], �7, Lemma 1). Soulé proved
([Sou], Théorème 5) that the Schneider conjectures holds for i ≥ 2: actu-
ally the Schneider conjecture for i 6= 0 predicts exactly that the maximal
divisible subgroup of H1(F, Qp/Zp(i)) is isomorphic to (Qp/Zp)r2(F ) (resp.
(Qp/Zp)r1(F )+r2(F )) if i is even (resp. if i is odd).
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In the rest of this work, we will always assume that the Schneider con-
jectures hold for any i ∈ Z.

Etale wild kernels are objects of cohomological nature and their study can be
approached naturally via cohomological methods. There are two interesting
descriptions of étale wild kernels in terms of invariants of F (or F c).

Theorem 1.4.6. If i 6= 0, there is an isomorphism

WK ét
2i(F ) ∼=

(
X ′F (µp) ⊗Zp Zp(i)

)
ΓF

Proof. See [Sc], �6, Lemma 1.

Remark 1.4.7. Many authors prefer to de�ne the i-th étale wild kernel
as X ′F (µp)(i)ΓF (this de�nition di�ers from the original one only for i =
0). The anlogous formulation of the Schneider conjectures predicts then
that X ′F (µp)(i)ΓF is �nite for any i ∈ Z. Recall that (X ′F (µp))ΓF = C̃lF
and therefore this last formulation of the Schneider conjecture for i = 0 is
equivalent to the generalized Gross conjecture (see [Ja3]).

Next we recall a description of étale wild kernels which deals with induc-
tive limits rather than projective limits. The following theorem, which has
to be compared with Theorem 1.3.2, is actually a generalization of Theorem
3.5 of [Ko1] (an alternative proof of which can also be found in [Ja1]). For
a number �eld F , we denote by ĊF the quotient of the idéle group of F
de�ned in [Ko1] after Theorem 1.14. Then ĊF c denotes the direct limit of
ĊFn where Fn is the n-th level of F c/F .

Theorem 1.4.8. Suppose that F is a CM �eld and µp ⊆ F . For any n ∈ N,
let Fn be the n-th level of F c and set Γn = Gal(F c/Fn). Then cohomological
restriction induces isomorphisms

WK ét
2i(Fn)+ ∼=

(
WK ét

2i(F
c))+

)Γn
if i ≥ 1 is odd

WK ét
2i(Fn)− ∼=

(
WK ét

2i(F
c))−

)Γn
if i ≥ 1 is even

This gives isomorphisms

((ĊF c)−p (i))Γn ∼= WK ét
2i(F

+
n ) if i ≥ 1 is odd

((ĊF c)−p (i))Γn ∼= WK ét
2i(Fn)− if i ≥ 1 is even

Proof. The proof follows the original one (see Theorem 3.5,[Ko1]), just as in
Theorem 1.3.2.



Chapter 2

Realizability of abelian

p-groups as étale wild kernels

In this chapter we are going to study situations where the realizability prob-
lem for étale wild kernels has a positive answer. More precisely, we shall see
(Theorem 2.2.6) that if d is the largest divisor of p−1 such that i ≡ 0 (modd)
and the sub�eld of index d of Q(ζp) has trivial p-Sylow subgroup of the class
group, then, for any abelian p-group X, there is a number �eld k such that
WK ét

2i(k) is isomorphic to X. The proof of this result is achieved by us-
ing Schneider description of étale wild kernels (see Theorem 1.4.6) and then
adapting a result of Ozaki about the realizability problem for �nite Iwasawa
modules to this situation.

2.1 Generalization of a result by Ozaki

Let d be a divisor of p − 1 and let K(d) be the sub�eld of Q(ζp) such that
[Q(ζp) : K(d)] = d. Following the strategy of Ozaki ([Oz]) we are going to
prove the following result.

Theorem 2.1.1. If p does not divide the class number of K(d), then every
�nite Λ-module structure can be realized as p-split Iwasawa module for some
number �eld k containing K(d).

In fact, if we forget for a moment about the split condition, Theorem
2.1.1 for d = p − 1 is Theorem 1 in [Oz]: in this case, K(d) = Q and the
result tells every �nite Λ-module structure can be realized as Iwasawa mod-
ule for some number �eld k. Thus, the proof of Theorem 2.1.1 consists in a
careful rewriting of Ozaki's proof, substituting Q with K(d) and taking into
account the split conditions. As we will see these generalizations are not
di�cult to deal with and a large part of Ozaki's proof remains essentially
unchanged. Still, for the convenience of the reader we rebuild the proof from
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the beginning.

Remark 2.1.2. Note that if K(d) is not a totally real �eld, then it is a
CM -�eld. In fact, one proves easily that K(d) is totally real if and only
if d is even and it is CM if and only if d is odd. If k is a CM �eld, we
shall denote by k+ its maximal real sub�eld. If ∆ = Gal(k/k+) and A is a
∆-module we write A+ for A∆.

In the following, we �x d and we shall denote K(d) by K. Let Kn be the n-th
layer of Kc. The following notation will be used throughout this section.

• On is the ring of integers of Kn;

• En (resp. E′n) is the group of units (resp. Sn-units) of Kn (where Sn
is the set of primes over p in Kn);

• Cl′n is the p-split class group of Kn (and (Cl′n)p is its p-Sylow sub-
group).

• Wn = µKn is the group of roots of unity in Kn (thus Kn = {±1} if
d 6= 1 and Kn = µpn+1 otherwise).

Let Γ be a topological group isomorphic to Zp and set Λ = Zp[[Γ]]. For
every n ≥ 0 set Γn = Γ/Γp

n
. Let X be a �nite Λ-module. Then X is a

Z/pm0 [Γn0 ]-module for some m0, n0 ≥ 0. We seek for a number �eld k such
that the p-split Iwasawa module X ′k of the cyclotomic Zp-extension of k is
isomorphic to X. In other words we look for a number �eld k such that, if
kn is the n-th level of the cyclotomic Zp-extension of k, we have

X ′k = lim
←−

(Cl′kn)p ∼= X

The following lemma gives us a strategy to accomplish this task (we use the
notation just introduced also for an arbitary Zp-extension k∞/k).

Lemma 2.1.3. Assume that a Zp-extension k∞/k satis�es the following
three conditions:

• k∞/k is totally rami�ed at every rami�ed prime;

• (Cl′kn0
)p ∼= X as Γn0-module, viewing Cl

′
kn0

as Γn0-module by some
identi�cation Gal(k∞/k) = Γ;

• (Cl′kn0
)p ∼= (Cl′kn0+1

)p.

Then we have X ′k
∼= X as Λ-modules.

Proof. See [Fu].
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Now �x a topological generator γ of Γ and put γn = γmod Γp
n
. Let

r = dimFp X/(p, γn0 − 1) (2.1)

Then r is the number of minimal generators of X over Z/pm0 [Γn0 ]: this
follows from Nakayama's Lemma applied to the Z/pm0 [Γn0 ]-module X (note
that (Z/pm0 [Γn0 ], (p, γn0 − 1)) is a local ring). Hence there exists an exact
sequence of Z/pm0 [Γn0 ]-modules

0→ Rn0 → Z/pm0 [Γn0 ]⊕r → X → 0

Let π′n0+1, n0 be the natural map from Z/pm0 [Γn0+1]⊕r to Z/pm0 [Γn0 ]⊕r

induced by the natural projection Γn0+1 → Γn0 and put

Rn0+1 = π′
−1
n0+1, n0

(Rn0)

Then π′n0+1, n0 induces an isomorphism

Z/pm0 [Γn0+1]⊕r/Rn0+1
∼= X

De�ne the submodule R̃n0+δ (δ = 0, 1) of Z/pm0 [Γn0+δ]⊕r as follows

R̃n0+δ =
{

(αi)1≤i≤r+1 ∈ Z/pm0 [Γn0+δ]⊕r+1
∣∣∣

(αi)1≤i≤r ∈ Rn0+δ, αr+1
∼=

r∑
i=1

αi (mod γn0+δ − 1)
}

and put
X̃ = Z/pm0 [Γn0+1]⊕r/R̃n0+1

The natural injection X ↪→ X̃ which is given by

(xi)1≤i≤r mod Rn0+1 7→ (x1, . . . , xr,

r∑
i=1

xi) mod R̃n0+1 (2.2)

has cokernel isomorphic to Z/pm0 with trivial action of Γn0+1. Then the
natural map

πn0+1, n0 : Z/pm0 [Γn0+1]⊕r+1/R̃n0+1 → Z/pm0 [Γn0 ]⊕r/R̃n0

gives the isomorphism

X̃ = Z/pm0 [Γn0+1]⊕r+1/R̃n0+1
∼= Z/pm0 [Γn0 ]⊕r+1/R̃n0 (2.3)

since π−1
n0+1, n0

(R̃n0) = R̃n0+1.

Let g be the minimal number of generators of R̃n0+1 over Z/pm0 [Γn0+1] and
choose once and for all an integer N such that

[K+
N : Q] = [K+ : Q]pN ≥ g and N ≥ m0 (2.4)
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Now we �x an isomorphism Γ ∼= Gal(Kc/KN ) and we shall dentify the two
groups in the following (note that Γt = Gal(KN+t/KN )).
Let li (1 ≤ i ≤ r + 1) be distinct degree one primes of KN which split
completely in KN+n0+1, say li =

∏
γ∈Γn0+1

γLi, n0+1. Furthermore, we as-

sume that li decomposes completely in K̃N+n0+1 := KN+n0+1(µp). Set
m =

∏r+1
i=1 li and denote by Li, n0 the prime ideal of KN+n0 below Li, n0+1.

For t ≥ 0 denote by Lt the abelian p-extension of KN+t which is maximal
with respect to the following conditions

• the conductor of Lt/KN+t divides m;

• every prime above p splits completely in Lt/KN+t;

• the exponent of Gal(Lt|KN+t) is less than or equal to pm0 .

Since p - |Cl0| (and hence p - |Cln| for every n ≥ 0, see [Wa]), we have a
class �eld theoretic exact sequence of Γ-modules

E′N+n0+δ/p
m0

ρn0+δ−→ (ON+n0+δ/m)× /pm0
rn0+δ−→ Gal(Ln0+δ/KN+n0+δ)→ 0

for δ = 0, 1 where ρn0+δ is the natural map and rn0+δ is the map induced
by the reciprocity map.
The middle term of this exact sequence is isomorphic to Z/pm0 [Γn0+δ]⊕r+1

via the following map

[α] 7−→

 ∑
γ∈Γn0+δ

ϕ

((
α

γ̃L̃i, n0+δ

)
n0+δ

)
γ


1≤i≤r+1

(2.5)

Notation is as follows:

• γ̃ ∈ Gal(K̃N+n0+δ/K̃N ) is the image of γ via the natural isomorphism
Γn0+δ

∼= Gal(K̃N+n0+δ/K̃N ) where K̃N+n0+δ = KN+n0+δ(µp);

• L̃i,n0+1 are �xed primes of K̃N+n0+1 lying above Li,n0+1 and L̃i,n0 is
the prime below L̃i,n0+1 in K̃n0+1;

• ( · / · )n0+δ is the pm0-th power residue symbol for K̃N+n0+δ;

• ϕ is a �xed isomorphism µpm0
∼= Z/pm0 .

Note that µpm0 ⊆ K̃N by (2.4) hence(
α

γ̃L̃i,n0+δ

)
=

(
γ−1α

L̃i,n0+δ

)
n0+δ
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(this is a well known property of power residue symbol, see for example [Gr])
and that, ÕN+n0+δ being the ring of integers of K̃N+n0+δ,

ON+n0+δ/γLi,n0+δ
∼= ÕN+n0+δ/γ̃L̃i,n0+δ

since li decomposes completely in K̃N+n0+1.
In the following we shall identify (ON+n0+δ/m)× /pm0 and Z/pm0 [Γn0+δ]⊕r+1

via the above isomorphism. Then we get an exact sequence

E′N+n0+δ/p
m0

ρn0+δ−→ Z/pm0 [Γn0+δ]⊕r+1 rn0+δ−→ Gal(Ln0+δ/QN+n0+δ)→ 0

where ρn0+δ is given by

ρn0+δ(ε) =

 ∑
γ∈Γn0+δ

ϕ

((
ε

γ̃L̃i, n0+δ

)
n0+δ

)
γ


1≤i≤r+1

(2.6)

There is a commutative diagram

E′N+n0+1/p
m0

ρn0+1−−−−→ Z/pm0 [Γn0+1]⊕r+1
rn0+1−−−−→ Gal(Ln0+1/KN+n0+1) −−−−→ 0yNn0+1, n0

yπn0+1, n0

yresn0+1, n0

E′N+n0
/pm0

ρn0−−−−→ Z/pm0 [Γn0 ]⊕r+1
rn0−−−−→ Gal(Ln0/KN+n0) −−−−→ 0

Diagram 2.1

where E′N+n0+1 = E′N+n0+1/{±1} for δ = 0, 1, Nn0+1, n0 is the norm map
from KN+n0+1 to KN+n0 , πn0+1, n0 is induced and resn0+1, n0 is the restric-
tion. Commutativity is not di�cult to check using the properties of the
pm0-th power residue symbol and the reciprocity map.
So far, we have followed Ozaki's proof by simply replacing K by Q and units
by S-units when necessary. The proofs of the next lemmas, however, are
slightly modi�ed since they involve more directly the arithmetic (in partic-
ular, units) of K.

De�nition 2.1.4. Let k be an abelian number �eld whose conductor is pe.
We de�ne the cyclotomic units Ck (resp. S-cyclotomic units C ′k) of k as
follows

Ck =
〈
± 1, NQ(ζpe )/k

(
〈ζpe , ζ

1−a
2

pe
(1− ζape)
(1− ζpe)

|(a, p) = 1〉
)〉
∩ Ek

C ′k =
〈
± 1, NQ(ζpe )/k

(
〈ζpe , (1− ζape) |(a, p) = 1〉

) 〉
∩ E′k

Here Ek (resp. E′k) is the group of units (resp. of S-units, where S consists
of the unique prime above p in k) of k.
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Remark 2.1.5. The de�nition of Ck agrees with that of circular units of
Sinnott (see [Si], �4) as it is shown for example in [Oz2], Lemma 8 and
Lemma 9. In the following we set Cn = CKn and C ′n = C ′Kn .

Lemma 2.1.6. The quotient C ′
K+
n
/(C ′n)+ is a 2-group.

Proof. Set
A = NQ(ζpe )/Kn

(
〈ζpe , (1− ζape) |(a, p) = 1〉

)
and N = NKn/K

+
n
. Moreover ∆ = Gal(Kn/K

+
n ) and denote by N∆ the

algebraic norm. Then

(C ′n)+ = 〈±1, A∆〉 ∩ EK+
n

and
C ′
K+
n

= 〈±1, NA〉 ∩ EK+
n

One easily sees that N∆(A) = NA and that

|A∆/NA| and C ′
K+
n
/(C ′n)+

di�er only by a power of 2. Since A∆/N∆(A) = Ĥ0(∆, A), we know that it
is a 2 group (see [Mi3]).

Lemma 2.1.7. We have a surjective homomorphism En/Cn → E′n/C
′
n.

Moreover
C ′n/Wn(C ′n)+ −→ E′n/Wn(E′n)+

is injective and E′n/Wn(E′n)+ has order at most 2.

Proof. Consider the natural homomorphism En → E′n/C
′
n: Cn belongs to

its kernel, since Cn ⊆ C ′n (and clearly Cn ⊆ En). Hence we have a homo-
morphism En/Cn → E′n/C

′
n. Now note that

ηn = NQ(ζpn+1 )/Kn(1− ζpn+1)

generates the unique prime ideal above p in Kn. In particular every element
u ∈ E′n can be written u = ηbnv with b ∈ Z and v ∈ En. This proves
surjectivity.
Now observe that (C ′n)+ ⊆ (E′n)+ hence C ′n/Wn(C ′n)+ −→ E′n/Wn(E′n)+ is
well de�ned To prove that it is injective, we have to show that Wn(E′n)+ ∩
C ′n = Wn(C ′n)+. It is enough to prove Wn(E′n)+ ∩C ′n ⊆Wn(C ′n)+ the other
inclusion being clear. We have

Wn(E′n)+ ∩ C ′n ⊆Wn

(
(E′n)+ ∩ C ′n

)
since Wn ⊆ C ′n. Moreover (E′n)+ ∩ C ′n ⊆ (C ′n)+ hence we get the claim.
Finally, for the last assertion we can suppose that Kn is CM . We know
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that E2
n ⊆ WnE

+
n (see [Wa], Theorem 4.12). Now let σ be the generator of

Gal(Kn/K
+
n ) and set

η+
n = ηnσ(ηn)

Note that

σ(ηn) = σ(NQ(ζpn+1 )/Kn(1− ζpn+1)) = NQ(ζpn+1 )/Kn(σ(1− ζpn+1)) =

= NQ(ζpn+1 )/Kn(1− ζ−1
pn+1) = NQ(ζpn+1 )/Kn(−ζpn+1(1− ζpn+1)) = ζ ′ηn

where we denoted with σ also a generator of Gal(Q(ζpn+1)/Q(ζpn+1)+) and
ζ ′ ∈ Wn. Hence η+

n = ζ ′η2
n. Thus if u = ηnv ∈ E′n (with v ∈ En) we have

u2 = ζ ′−1η+
n v

2 hence

(E′n)2 ⊆Wn(E′n)+E2
n ⊆Wn(E′n)+

Lemma 2.1.8. 1. For any t ≥ 0, we have

E′N+t/p
m0 ∼= WN+t/p

m0 ⊕ Z/pm0 [Γt]⊕[K+
N :Q]

as Z/pm0 [Γt]-modules.

2. The norm map

Nn0+1, n0 : E′N+n0+1/p
m0 −→ E′N+n0

/pm0

is surjective.

Proof. By our hypothesis on the class number of Kn and Theorem 4.1 of [Si]
we know that [EN+t : CN+t] is not divisible by p. Hence by Lemma 2.1.7,
p - [E′N+t : C ′N+t] and we have

E′N+t/p
m0 ∼=

(
C ′N+t/{±1}

)
/pm0 (2.7)

Furthermore

C ′N+t/p
m0 ∼= WN+t(C ′N+t)

+/pm0 ∼= WN+tC
′
K+
N+t

/pm0

again by Lemma 2.1.7 and Lemma 2.1.6. Finally

WN+tC
′
K+
N+t

/pm0 ∼= WN+t/p
m0 ⊕ C ′

K+
N+t

/pm0

Now we have an isomorphism

Z[Gal(K+
N+t/Q)] ∼= C ′

K+
N+t

/{±1}
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as Z[Gal(K+
N+t/Q)]-modules: it is de�ned by

σ 7→ σ(η+
N+t)

where
η+
N+t = NQ(ζ

pN+t+1 )/K+
N+t

(1− ζpN+t+1)

Finally we have

Z[Gal(K+
N+t/Q)] ∼=

⊕
τ∈Gal(K+

N+t/Q)/Γt

Z[Γt]τ

which completes the proof of 1.
The second claim follows from (2.7) and the fact the the norm map

Nn0+1, n0 : C ′N+n0+1/{±1} −→ C ′N+n0
/{±1}

is surjective by de�nition.

Lemma 2.1.9. Let Ẽ′N+n0+1 be the S-units group of K̃N+n0+1 where S

consists of the unique prime above p in K̃N+n0+1. Then the natural map

E′N+n0+1/p
m0 → Ẽ′N+n0+1/p

m0

is injective.

Proof. From the exact sequence

0→ µpm0 −→ K̃×n+n0+1
pm0

−→ (K̃×n+n0+1)p
m0 → 0

we get the G = Gal(K̃N+n0+1/KN+n0+1)-cohomology sequence

K×n+n0+1
pm0

−→ (K̃×n+n0+1)p
m0 ∩Kn+n0+1 −→ H1(G, µpm0 )→ 0

Now H1(G, µpm0 ) = 0 since (|G|, p) = 1, hence

(K×n+n0+1)p
m0 = (K̃×n+n0+1)p

m0 ∩Kn+n0+1

and the lemma follows.

Lemma 2.1.10. For any Γn0+1-homomorphism

f : E′N+n0+1/p
m0 → Z/pm0 [Γn0+1]

there exist in�nitely many degree one primes L̃ of K̃N+n0+1 such that

f(ε) =
∑

γ∈Γn0+1

ϕ

((
ε

γ̃L̃

)
n0+1

)
γ
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for any ε ∈ E′N+n0+1 whose class in E′N+n0+1/p
m0 is ε. Furthermore, for

any �xed �nite abelian extension M/K̃N+n0+1 with

M ∩ K̃N+n0+1( pm0

√
E′N+n0+1) = K̃N+n0+1

and τ ∈ Gal(M/K̃N+n0+1) we can impose the condition(
M/K̃N+n0+1

L̃

)
= τ

on L̃.

Proof. We have to distinguish to cases, namely d = 1 and d 6= 1: in the �rst
case Wn = 〈±1, µpn+1〉 while if d 6= 1, Wn = {±1}.
We treat �rst the case d = 1, we have K = Q(ζp), K̃n = Kn and γ̃ = γ
so we drop the tilde. Set qN = [K+

N : Q]. From Lemma 2.1.8, there exist
εj ∈ E′N+n0+1 (1 ≤ j ≤ qN ) such that

E′N+n0+1/p
m0 =

qN⊕
j=1

Z/pm0 [Γn0+1]εj ⊕ Z/pm0ζ (2.8)

where ζ = ζpN+n0+2 is a primitive pN+n0+2-th root of unity and εj , ζ ∈
E′N+n0+1/p

m0 are the classes of εj and ζ respectively.
Assume that

f(εj) =
∑

γ∈Γn0+1

cj, γγ and f(ζ) =
∑

γ∈Γn0+1

dγγ

We are going to show that there exist in�nitely many degree one primes L

of KN+n0+1 such that(
εj
γL

)
n0+1

= ϕ−1(cj, γ) (1 ≤ j ≤ qN , γ ∈ Γn0+1) (2.9)

(
ζ

L

)
n0+1

= ϕ−1(d1) (2.10)

Note that if the above conditions hold, then the conditions(
ζ

γL

)
n0+1

= ϕ−1(dγ) (γ ∈ Γn0+1)

also hold since(
ζ

γL

)
n0+1

=
(
ζ

L

)κ(γ−1)

n0+1

and dγ = κ(γ−1)d1
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Here κ : Γn0+1 → Z×p is the cyclotomic character: in particular γ(ζ) = ζκ(γ).
The �rst equality then comes from the well known properties of the pm0-
power residue symbol while the second equality is a consequence of the fact
that f is a Γn0+1-homomorphism.
For each 1 ≤ j ≤ qN , consider

Dj = KN+n0+1( pm0

√
γ−1εj | γ ∈ Γn0+1) and D0 = KN+n0+1( pm0

√
ζ)

It follows from (2.8) that the abelian extensions Dj/KN+n0+1 (1 ≤ j ≤ qN )
and D0/KN+n0+1 are independent and that

Gal(Dj/KN+n0+1) ∼=
⊕

γ∈Γn0+1

µpm0 σ 7→

(
σ pm0

√
γ−1εj

pm0
√
γ−1εj

)
γ∈Γn0+1

(2.11)

Gal(D0/KN+n0+1) ∼= µpm0 σ 7→
(
σ pm0
√
ζ

pm0
√
ζ

)
(2.12)

Now call D the compositum of the extension Dj (1 ≤ j ≤ qN ) and D0:
choose the automorphism σ ∈ Gal(D/KN+n0+1) which corresponds to the
(qN + 1)-uple(

(ϕ−1(c1, γ))γ∈Γn0+1 , (ϕ
−1(c2, γ))γ∈Γn0+1 , . . . , (ϕ

−1(cqN , γ))γ∈Γn0+1 , ϕ
−1(d1)

)
by (2.11). By �ebotarev density theorem, applied to the abelian extension
D/KN+n0+1 and to the automorphism σ, there exist in�nitely many primes
L in KN+n0+1 such that (2.9) and (2.10) are simultaneously satis�ed. Note
that we can also �nd in�nitely many primes L which split completely in
KN+n0+1/Q and satisfy (2.9) and (2.9) since the set of primes on KN+n0+1

which split completely in KN+n0+1/Q has density 1 (for �ebotarev density
theorem and this last result, see for example [Mi3]). An analogous kind of
reasoning applies to give the last part of the assertion of the lemma, still for
d = 1.
Now we consider the case d 6= 1: the strategy is the same but now we
have K̃n 6= Kn, Wn = {±1} and Lemma 2.1.8 shows that there exist εj ∈
E′N+n0+1 (1 ≤ j ≤ qN ) such that

E′N+n0+1/p
m0 =

qN⊕
j=1

Z/pm0 [Γn0+1]εj (2.13)

where we still set qN = [K+
N : Q] and εj , ζ ∈ E′N+n0+1/p

m0 is the class of εj .
Assume that

f(εj) =
∑

γ∈Γn0+1

cj, γγ



2.1 Generalization of a result by Ozaki 33

We are going to show that there exist in�nitely many degree one primes L

of KN+n0+1 such that(
εj

γ̃L̃

)
n0+1

= ϕ−1(cj, γ) (1 ≤ j ≤ qN , γ ∈ Γn0+1) (2.14)

For each 1 ≤ j ≤ qN , consider

D̃j = K̃N+n0+1( pm0

√
γ−1εj | γ ∈ Γn0+1)

It follows from (2.8) and Lemma 2.1.9 that the extensions D̃j/K̃N+n0+1

(1 ≤ j ≤ qN ) are independent and that

Gal(D̃j/K̃N+n0+1) ∼=
⊕

γ∈Γn0+1

µpm0 σ̃ 7→

(
σ̃ pm0

√
γ−1εj

pm0
√
γ−1εj

)
γ∈Γn0+1

(2.15)

Now call D̃ the compositum of the extension D̃j (1 ≤ j ≤ qN ): choose the
automorphism σ̃ ∈ Gal(D̃/K̃N+n0+1) which corresponds to the qN -uple(

(ϕ−1(c1, γ))γ∈Γn0+1 , (ϕ−1(c2, γ))γ∈Γn0+1 , . . . , (ϕ−1(cqN , γ))γ∈Γn0+1

)
by (2.15). As before, �ebotarev density theorem, applied to the extension
D̃/K̃N+n0+1 and to the automorphism σ̃, tells us that there exist in�nitely
many degree one primes L̃ in K̃N+n0+1 such that (2.9) are simultaneously
satis�ed. The last part of the assertion of the lemma for d 6= 1 follows easily.

Now we choose the prime L̃i, n0+1 and li. By (2.4) and Lemma 2.1.8, we can
�nd a surjective homomorphism of Z/pm0 [Γn0+1]- modules

h′ : E′N+n0+1/p
m0 → R̃n0+1

Composing h′ with the inclusion R̃n0+1 ↪→ Z/pm0 [Γn0+1]⊕
r+1

we get a map

h : E′N+n0+1/p
m0 −→ Z/pm0 [Γn0+1]⊕

r+1

whose image is R̃n0+1. Assume that the following condition is true for the
primes Li, n0+1 (1 ≤ i ≤ r + 1):

Condition A.

pri ◦ h(ε) =
∑

γ∈Γn0+1

ϕ

((
ε

γ̃L̃i, n0+1

)
n0+1

)
γ
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for 1 ≤ i ≤ r + 1 where pri : Z/pm0 [Γn0+1]⊕
r+1 −→ Z/pm0 [Γn0+1] denotes

the projection map onto the i-th component.

Lemma 2.1.10 tells us that there exist degree one primes Li, n0+1 of K̃N+n0+1

satisfying Condition A such that L̃i, n0+1's lie over distinct rational primes.
We choose the prime of KN (resp. KN+n0+δ) below L̃i, n0+1 as li (resp.
Li, n0+δ (δ = 0, 1)) and put m =

∏r+1
i=1 li. Then we have Im(ρn0+1) =

Im(h) = R̃n0+1 by (2.6). Hence rn0+1 induces the isomorphism

X̃ = Z/pm0 [Γn0+1]⊕
r+1
/R̃n0+1

∼= Gal(Ln0+1/KN+n0+1)

We have also

Gal(Ln0+1/KN+n0+1) ∼= Gal(Ln0/KN+n0) (2.16)

since Im(ρn0) = R̃n0 and

Gal(Ln0/KN+n0) ∼= Z/pm0 [Γn0 ]⊕r+1/R̃n0
∼= X̃

(look at Diagram 2.1 and use Lemma 2.1.8 as well as R̃n0+1 = π−1
n0+1, n0

(R̃n0)
and (2.3)). We identify Gal(Ln0+1/KN+n0+1) with X̃ via this isomorphism.
We regard X = Z/pm0 [Γn0+1]⊕r+1/Rn0+1 as a submodule of the module
X̃ = Z/pm0 [Γn0+1]⊕r+1/R̃n0+1 via the embedding given in (2.2) and de�ne
F to be the intermediate �eld of Ln0+1/KN+n0+1 with

X = Gal(Ln0+1/F ) (2.17)

Lemma 2.1.11. 1. There exists a unique cyclic extension k/KN of de-
gree pm0 with conductor dividing m and every prime above p splits.
Moreover F = kn0+1 = kKN+n0+1 and Ln0 ∩ kn0+1 = kKN+n0 = kn0.

2. For any 1 ≤ i ≤ r + 1 and any γ0 ∈ Γn0+1, the inertia subgroup
of γ0Li0, n0+1 in Gal(Ln0+1/KN+n0+1) is generated over Z/pm0 by the
element rn0+1 ((0, . . . , γ0, . . . , 0)) (γ0 at i0-th place and 0 everywhere
else).

3. The primes γLi, n0+δ (γ ∈ Γn0+δ, 1 ≤ i ≤ r + 1) are totally rami�ed in
kn0+δ/KN+n0+δ. In particular

Gal(Ln0+δ/KN+n0+δ) ∼= Gal(Ln0+δ/kn0+δ)×Gal(kn0+δ/KN+n0+δ)

Furthermore the primes li (1 ≤ i ≤ r + 1) are totally rami�ed in k.

4. Ln0+δ is the p-split genus p-class �eld of kn0+δ/KN+n0+δ for δ = 0, 1.
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Proof. 1. Since X̃/X is isomorphic to Z/pm0Z with trivial action (see
(2.2)), we deduce that F/KN is an abelian extension. Moreover

Gal(F/KN ) = Gal(F/KN+n0+1)× Ip

where Ip ⊆ Gal(F/KN ) is the inertia subgroup for the unique prime
of KN lying above p (clearly IpGal(F/KN+n0+1) = Gal(F/KN ) and
then one looks at cardinalities). Then we choose k as the �xed �eld
of Ip and one veri�es immediately that k has the required properties.
For the second assertion, it is clear by contruction that

F = kn0+1 = kKN+n0+1

For the analogous assertion on kn0 , we just remark that kn0 is the in-
ertia �eld of the primes lying over p in kn0+1/KN+n0 . This implies
Ln0 ∩ kn0+1 ⊆ kn0 and the reverse inclusion is clear since the con-
ductor of kn0 divides m, any prime above p splits in kn0/KN+n0 and
kn0/KN+n0 has exponent dividing pm0 (because all this happens in
k/KN ).

2. In order to identify the inertia subgroup of γ0Li0, n0+δ is better to
consider a convenient version of the morphism rn0+1: �rst of all we
know that

Z/pm0 [Γn0+1]⊕r+1 ∼= (ON+n0+1/m)×/pm0

the isomorphism being de�ned in (2.5). Secondly, it is well known (see
[Mi3]) that

(ON+n0+1/m)×/pm0 ∼= (K×N+n0+1)m/(K×N+n0+1)m, 1(K×N+n0+1)p
m0

m

where (K×N+n0+1)m (resp. (K×N+n0+1)m, 1) is the subgroup of K×N+n0+1

whose elements are coprime with m (resp. are congruent to 1 modulo
m). In the following we set

(K×N+n0+1)m/(K×N+n0+1)m, 1(K×N+n0+1)p
m0

m = (K×N+n0+1)m

Under this identi�cation it is easy to see that the subgroup generated
by (0, . . . , γ0, . . . , 0) gets indenti�ed with the subgroup

A =

{
[α] ∈ (K×N+n0+1)m

∣∣∣ ( α

γ̃L̃i, n0+1

)
= 1 ∀ γ 6= γ0, ∀ i 6= i0

}

Furthermore we know (see [Gr]) that the reciprocity map identi�es
Gal(Ln0+1/KN+n0+1) with

(IN+n0+1)T /(PN+n0+1)T,mSN+n0+1(IN+n0+1)p
m0

T
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where (IN+n0+1)T (resp. PN+n0+1)T,m) is the group of fractional ideals
(resp. principal fractional ideals) of KN+n0+1 which are coprime with
the support T of m (resp. which are coprime with the support T of m

and that can be generated by elements congruent to 1 modulo m). In
the following set

(IN+n0+1)T /(PN+n0+1)T,mSN+n0+1(IN+n0+1)p
m0

T = (IN+n0+1)T

Under this isomorphism it is known (see [Gr]) that the inertia subgroup
of γ0Li0, n0+1 corresponds to the subgroup generated by

(PN+n0+1)T, m
γ0Li0, n0+1

in (IN+n0+1)T which we simply denote by (PN+n0+1)T . Now we have

rn0+1 : (K×N+n0+1)m → (IN+n0+1)T

(which now is the map which sends an element in the principal ideal
generated by it) and we have to prove that rn0+1(A) = (PN+n0+1)T .
By de�nition (PN+n0+1)T is the smallest subgroup which contains
(PN+n0+1)T,m/γ0Li0, n0+1

and hence it is contained in rn0+1(A). Con-
versely, suppose that [α] ∈ A: then α is a pm0-th power modulo
γLi, n0+1 (for every γ 6= γ0 and i 6= i0). Then by Chinese Remain-
der Theorem we can �nd an element β ∈ (K×N+n0+1)m such that α is
congruent to βp

m0 modulo γLi, n0+1 (for every γ 6= γ0 and i 6= i0) and

(α) = (αβ−p
m0 )(βp

m0 ) ∈ (PN+n0+1)T, m
γ0Li0, n0+1

SN+n0+1(IN+n0+1)p
m0

T

3. Simple computations (using de�ntions and the fact that cγ /∈ (γn0+1−
1) for every c ∈ Z/pm0) show that (0, . . . , γ, . . . , 0) has order pm0

modulo R̃n0+1 and that((
Z/pm0Z(0, . . . , γ, . . . , 0) + R̃n0+1

)/
R̃n0+1

)
∩X = 0

Hence the prime γLi, n0+1 is totally rami�ed in kn0+1/KN+n0+1 and
Ln0+1/kn0+1 is an unrami�ed extension where every prime above p
splits. In particular the restriction

Gal(Ln0+δ/KN+n0+δ)→ Gal(kn0+δ/KN+n0+δ)

splits (the inertia subgroup of γLi, n0+1 being a subgroup of the group
Gal(Ln0+δ/KN+n0+δ) whose restriction is Gal(kn0+δ/KN+n0+δ)). The
remaining assertions easily follow from 1.
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4. Let L′ be the p-split genus p-class �eld of kn0+1/KN+n0+1 (which is
of course a Galois extension of KN+n0+1). Clearly Ln0+1 ⊆ L′. Now
we show L′ ⊆ Ln0+1: the subgroup of Gal(L′/KN+n0+1) which is gen-
erated by the inertia subgroup of the primes γLi, n0+1 in L′/KN+n0+1

coincides with the whole Gal(L′/KN+n0+1), since the γLi, n0+1's are
the only rami�ed prime and p - hKN+n0+1

. Now each of these inertia
subgroups has exponent pm0 (in fact it is isomorphic to the inertia
subgroup of the same prime in kn0+1/KN+n0+1 which is the whole
Gal(kn0+1/KN+n0+1)). Hence Gal(L′/KN+n0+1) has exponent pm0

and since the conductor of L′/KN+n0+1 divides m and L′/KN+n0+1

is split at every prime over p, we deduce L′ ⊆ Ln0+1. The proof is
analogous for Ln0 .

In the following we are going to prove that, in fact, Ln0+δ is the whole
p-split Hilbert p-class �eld of kn0+δ for δ = 0, 1. Once we have this, we know
that the cyclotomic Zp-extension over k is the desired Zp-extension (i.e. its
p-split Iwasawa module is isomorphic to X) because of Lemma 2.1.3, Lemma
2.1.11, (2.16) and (2.17).
Let Hn0+δ be the p-split Hilbert p-class �eld of kn0+δ for δ = 0, 1 and σ be
a generator of Gal(kn0+1/KN+n0+1). Then we have

Gal(Ln0+1/kn0+1) ∼= Gal(Hn0+1/kn0+1)/(σ − 1)

by Lemma 2.1.11. Denote by Li, n0+1 the unique prime of kn0+1 lying over
Li, n0+1 (Lemma 2.1.11). Set for a moment A = (Cl′kn0+1

)p and G = 〈σ〉 =
Gal(kn0+1/KN+n0+1). First of all note that

|AG| = |A|/|(σ − 1)A| (2.18)

Moreover {(
Li, n0+1, Hn0+1/kn0+1

)
, 1 ≤ i ≤ r + 1

}
⊆ AG

by well known properties of the Artin symbol. We have an injective map

AG/(AG ∩ (σ − 1)A) −→ A/(σ − 1)A ∼= Gal(Ln0+1/kn0+1)

and, if {(
Li, n0+1, Ln0+1/kn0+1

)
, 1 ≤ i ≤ r + 1

}
generates Gal(Ln0+1/kn0+1), this map is an isomorphism. In this case, by
(2.18), we must have

AG ∩ (σ − 1)A = 0 (2.19)

This means (σ − 1)A = 0 by Nakayama's lemma1. Hence, if{(
Li, n0+1, Ln0+1/kn0+1

)
, 1 ≤ i ≤ r + 1

}
1We consider A as an R-module where R = Z/prZ[G] and pr is the exponent of A. R is

a local ring with maximal ideal M = (1− σ, p) and by (2.19) we get (1− σ) ((1− σ)A) =
(1 − σ)A which implies in particular M ((1− σ)A) = (1 − σ)A and hence Nakayama's
lemma gives us the result.
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generates Gal(Ln0+1/kn0+1), Ln0+1 = Hn0+1 and this implies also Ln0 =
Hn0 since Hn0kn0+1 ⊆ Hn0+1 and Ln0+1 = Ln0kn0+1 (by 2.16).

Lemma 2.1.12. The restriction induces isomorphisms

Gal(Ln0+1/KN+n0+1)Γn0+1
∼= Gal(L0/KN )

and
Gal(Ln0+1/kn0+1)Γn0+1

∼= Gal(L0/k)

Proof. Let M be the intermediate �eld of Ln0+1/KN+n0+1 with

Gal(Ln0+1/M) = (γn0+1 − 1)Gal(Ln0+1/KN+n0+1)

γn0+1 being a generator of Γn0+1. Then

Gal(Ln0+1/KN+n0+1)Γn0+1 = Gal(M/KN+n0+1)

and M/KN is an abelian extension. Clearly we have L0KN+n0+1 ⊆M . Let
Ip ⊆ Gal(M/KN ) be the inertia subgroup of the unique prime of KN lying
over p. Then

Gal(M/KN ) = Gal(M/KN+n0+1)× Ip
and the �xed �eld of Ip is contained in L0. Therefore we have L0KN+n0+1 =
M and

Gal(Ln0+1/KN+n0+1)Γn0+1
∼= Gal(M/KN+n0+1) ∼= Gal(L0/KN )

since Ip = Gal(M/L0).
To show the second assertion, it is enough to show

(γn0+1 − 1)X = (γn0+1 − 1)X̃

because (γn0+1 − 1)X̃ = Gal(Ln0+1/L0KN+n0+1) by the �rst assertion and
L0 ∩ kn0+1 = k0. Let (xi) ∈ X̃ = Z/pm0 [Γn0+1]⊕r+1/R̃n0+1 be any element.
Since (

0, . . . , 0, (γn0+1 − 1)

(
r∑
i=1

xi − xr+1

))
we have

(γn0+1 − 1)((xi)) = ((γn0+1 − 1)xi)

=

(
(γn0+1 − 1)x1, . . . , (γn0+1 − 1)xr, (γn0+1 − 1)

r∑
i=1

xi

)

= (γn0+1)

(
x1, . . . , xr,

r∑
i=1

xi

)
∈ (γn0+1)X

Hence (γn0+1 − 1)X̃ ⊆ (γn0+1 − 1) and the other inclusion is trivial.
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Let L(p)
0 and L(p)

k be the maximal elementary abelian p-subextension of
L0/KN and L0/k respectively. Denote by k(p) the intermediate �eld of k/KN

with [k(p) : KN ] = p. Now note that

(Gal(kn0+1/KN+n0+1)Γn0+1)/p ∼= Z/p (2.20)

by Nakayama's lemma. Then we have

Gal(L(p)
0 /KN ) ∼= (Gal(Ln0+1/KN+n0+1)Γn0+1)/p

∼=
(

(Gal(Ln0+1/kn0+1)×Gal(kn0+1/KN+n0+1))Γn0+1

)
/p

∼= (Z/pZ)⊕r+1

by Lemma 2.1.12, Lemma 2.1.11, (2.1), (2.17) and (2.20). Moreover

Gal(L(p)
k /KN ) = Gal(L(p)

k /k)×Gal(k/KN ) (2.21)

because li is totally rami�ed in k/KN and L(p)
k /k is an unrami�ed extension

by Lemma 2.1.11. Hence L(p)
k = kL

(p)
0 : an inclusion is clear, the other comes

from the fact that the inertia �eld of li in L
(p)
k /KN is p-elementary abelian

by (2.21) and hence contained in L(p)
0 (and L(p)

k is the compositum of this
inertia �eld and k). Furthermore

(Gal(Ln0+1/kn0+1)Γn0+1)/p ∼= Gal(L(p)
k /k) ∼= Gal(L(p)

0 /k(p)) (2.22)

by Lemma 2.1.12, where isomorphisms are given by restriction. Suppose now
that {(

li, L
(p)
0 /k(p)

)
, 1 ≤ i ≤ r + 1

}
(2.23)

(li being the unique prime of k(p) lying over li) generates Gal(L(p)
0 /k(p)).

Then Gal(Ln0+1/kn0+1) is generated by{(
Li, n0+1, Ln0+1/kn0+1

)
, 1 ≤ i ≤ r + 1

}
(2.24)

over Z/pm0 [Γn0+1] since(
Li, n0+1, Ln0+1/kn0+1

)
7→
(
li, L

(p)
0 /k(p)

)
under the restriction map of (2.22) and then one applies Nakayama's lemma2.
Hence we are going to choose the li's in such a way that the set in (2.23)
generates Gal(L(p)

0 /k(p)).
Let Ii (for 1 ≤ i ≤ r + 1) be the inertia subgroup of Gal(L(p)

0 /KN ) for

2Let A = Gal(Ln0+1/kn0+1) (which is a Γn0+1-module) and let B be the submodule
of A which is generated by the set in (2.24). If B → A/(p, γn0+1 − 1) is surjective, then
B + (p, γn0+1 − 1)A = A which implies A = B by Nakayama's lemma.
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the prime li. Then we have Ii ∼= Z/pZ: for, li rami�es in k(p) by Lemma
2.1.11 (i.e. Ii is nontrivial) and the inertia group of li in Gal(L(p)

k /KN ) is
cyclic. Hence Ii (which is the image under restriction the inertia group of li

in Gal(L(p)
k /KN )) is cyclic of order p, since L(p)

0 /KN is elementary abelian.
Therefore

Gal(L(p)
0 /KN ) =

r+1⊕
i=1

Ii

(since p - hKN implies that
∏
Ii = Gal(L(p)

0 /KN ) and Gal(L(p)
0 /KN ) ∼=

(Z/p)⊕r+1). Hence L
(p)
0 /KN is the composite of the abelian extensions

K
(p)
N (li)/KN (1 ≤ i ≤ r+1) of degree p with conductor li and the restriction

induces the isomorphism

Gal(L(p)
0 /k(p)) ∼=

r⊕
i=1

Gal(K(p)
N (li)/KN ) (2.25)

(the restriction is injective since k(p), being rami�ed at lr+1, is disjoint with
the compositum of the K(p)

N (li) for 1 ≤ i ≤ r). Assume the following condi-
tions on li (1 ≤ i ≤ r + 1):

Condition B. The prime l2 is inert in K(p)
N (l1). If 3 ≤ i ≤ r + 1, then the

prime li splits in K
(p)
N (lj) for all j such that 1 ≤ j ≤ i − 2 and is inert in

K
(p)
N (li−1).

Then via the isomorphism of (2.25)(
L

(p)
0 /k(p)

l2

)
7→ (σ1, . . .), 〈σ1〉 = Gal(K(p)

N (l1)/KN )

and for every 3 ≤ i ≤ r + 1(
L

(p)
0 /k(p)

lj

)
7→ (1, . . . , 1, σi−1, . . .), 〈σi−1〉 = Gal(K(p)

N (li−1)/KN )

Therefore the set in (2.23) generates Gal(L(p)
0 /k(p)), which implies that

Ln0+δ = Hn0+δ for δ = 0, 1 under condition B. Condition B is clearly equiv-
alent to the following:

Condition B'. The prime L̃2, n0+1 is inert in K(p)
N (l1)K̃N+n0+1. For every

3 ≤ i ≤ r + 1, the prime L̃i, n0+1 splits in K
(p)
N (lj)K̃N+n0+1 for all j such

that 1 ≤ j ≤ i− 2 and is inert in K(p)
N (li−1)K̃N+n0+1.
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Now we choose L̃1, n0+1 such that Condition A is satis�ed. This is al-
lowed by Lemma 2.1.10. Next we choose L̃2, n0+1 such that Condition A
and Condition B' are satis�ed: this is allowed once more by Lemma 2.1.10
sinceKN (l1)K̃N+n0+1 and K̃N+n0+1( pm0

√
E′N+n0+1) are linearly disjoint over

K̃N+n0+1. It is clear therefore that we can perform inductively this kind of
choices, in order to get primes L̃i, n0+1 (1 ≤ i ≤ r + 1) which satis�es both
Condition A and Condition B'. This concludes the proof and k is a number
�eld whose p-split Iwasawa module is isomorphic to X.

2.2 Structure of étale wild kernels

In this section we prove the main result of the chapter. First we recall some
result about projective limits.

Lemma 2.2.1. Let {Xn}n∈N be a surjective projective system of pro�nite
groups. Then there is a natural isomorphism

lim
−→

Homc(Xn, R/Z) ∼= Homc(lim←−Xn, R/Z)

where Homc denotes the group of continuos homomorphisms (and the projec-
tive limit has the projective limit topology while R/Z has the quotient topol-
ogy).

Proof. See [RZ], Lemma 2.9.3 and Lemma 2.9.6.

Lemma 2.2.2. Let Γ be a topological group which is isomorphic to Zp and
set Λ = Zp[[Γ]] and Γn = Γp

n
where the latter denotes the closed subgroup

generated by the pn-th powers. Let X be a (Hausdor�) compact Λ-module.
Then

X = lim
←−

XΓn

Proof. We know that X is isomorphic to a projective limit of �nite abelian
p-groups (see [NSW], Chapter V, Proposition 5.2.4). We are going to use
Pontrjagin duality as stated for example in [NSW]: in particular for a Haus-
dor�, abelian and locally compact topological group A we set

A∨ = Homc(A, R/Z)

If A is a pro�nite group then

A∨ = Homc(A, Q/Z)

(see [RZ], Lemma 2.9.6) and if, further, A is pro-p-�nite then

A∨ = Homc(A, Qp/Zp)
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(if f : A → Q/Z is a continuos homorphism, then Ker(f) is an open sub-
group, hence it has �nite index which has to be a power of p, see [RZ],
Theorem 2.1.3). In the following we are going to use this for A = X or
A = XΓn .
Now observe that, since X is a compact Γ-module, Homc(X, Qp/Zp) is a
discrete Γ-module hence

Homc(X, Qp/Zp) =
⋃
n∈N

Homc(X, Qp/Zp)Γn = lim
−→

Homc(X, Qp/Zp)Γn

Then we have

X = X∨∨ = (Homc(X, Qp/Zp))∨ =
(

lim
−→

Homc(X, Qp/Zp)Γn
)∨

=

=
(

lim
−→

Homc(XΓn , Qp/Zp)
)∨

=
(
Homc(lim←−XΓn , Qp/Zp)

)∨
=

= (lim
←−

XΓn)∨∨ = lim
←−

XΓn

where we used Lemma 2.2.1 (the system {XΓn} is clearly surjective).

Lemma 2.2.3. Let G be a pro�nite group and let {Xn}n∈N be a projective
system of �nite (discrete) G-modules. Set

X = lim
←−

Xn

Then
lim
←−

(Xn)G = XG

Proof. X is clearly a topological G-module and it is compact since it is
pro�nite. Now observe that(

lim
−→

X∨n

)G
= H0(G, lim

−→
X∨n ) = lim

−→
H0(G, X∨n ) = lim

−→
(X∨n )G

(see [NSW], Proposition 1.5.1). Then(
lim
←−

(Xn)G
)∨

= lim
−→

((Xn)G)∨ = lim
−→

(X∨n )G =
(

lim
−→

X∨n

)G
=
(
X∨
)G = (XG)∨

and taking duals we get the claim.

Let F be a number �eld and set L = F (µp) and ∆ = Gal(L/F ). Note
that ΓF = Gal(Lc/F ) is naturally isomorphic to (ΓF )p × ∆. Observe that
Lc coincides with Lcn: in particular Lcdn = Lcd.

De�nition 2.2.4. Let k be a number �eld and let kn be the n-th stage of the
cyclotomic Zp-extension kc of k. Then for each i ∈ Z we set

WK ét
2i(k

c) def= lim
←−

WK ét
2i(kn)



2.2 Structure of étale wild kernels 43

The following result is known (see [KM]): the last part of the argument
(interchanging the twist with the Galois action) is due to Lichtenbaum.

Proposition 2.2.5. We have

WK ét
2i(L

c) ∼= X ′L(i) WK ét
2i(F

c) ∼=
(
X ′L(i)

)
∆

Proof. We have

WK ét
2i(L

c) = lim
←−

WK ét
2i(Ln) ∼= lim

←−

(
X ′Ln(i)

)
Γn

= lim
←−

(
X ′L(i)

)
Γn

= X ′L(i)

where the last equality comes from Lemma 2.2.2.
For the second statement we have

WK ét
2i(F

c) = lim
←−

WK ét
2i(Fn) ∼= lim

←−

(
X ′Ln(i)

)
Γn×∆

=

= lim
←−

((
X ′L(i)

)
Γn

)
∆

=
(

lim
←−

(
X ′L(i)

)
Γn

)
∆

=
(
X ′L(i)

)
∆

and we used Lemma 2.2.3. On the other hand((
X ′L(i)

)
∆

)∨ =
(
Homc(X ′L(i), Q/Z)

)∆ =
(
Homc(X ′L, Q/Z)(−i)

)∆ =

= Homc(X ′L, Q/Z)ωi(−i) = Homc(X ′L/〈δ − ω−i(δ)〉X ′L, Q/Z)(−i) =

= Homc

(
(X ′L/〈δ − ω−i(δ)〉X ′L)(i), Q/Z

)
=
(
(X ′L/〈δ − ω−i(δ)〉X ′L)(i)

)∨
Hence (

X ′L(i)
)

∆
= (X ′L/〈δ − ω−i(δ)〉X ′L)(i)

which shows in particular that if i ≡ 0 (mod |∆|) then

WK ét
2i(F

c) ∼= X ′F (i)

since (X ′L)∆ = X ′F . More generally, for arbitrary i, since δ ∈ ∆ acts as
multiplication by ω−i(δ) on X ′L/〈δ − ω−i(δ)〉X ′L, it is easy to see the group
norm induces an isomorphism

X ′L/〈δ − ω−i(δ)〉X ′L ∼= (X ′L)ω−i

which gives (
X ′L(i)

)
∆
∼= (X ′L)ω−i(i)

Theorem 2.2.6. Let d be the greatest common divisor of p − 1 and i. If p
does not divide the class number of K(d), then every �nite abelian p-group
structure appears as WK ét

2i(k) for some number �eld k.
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Proof. Suppose the hypothesis is satis�ed. Choose a �nite p-group X which
we consider as Λ-module with trivial action and choose k as in the proof of
Theorem 2.1.1: in particular X ′k ∼= X as trivial Λ-modules. Now

WK ét
2i(k) ∼= X ′k(ζp)(i)Γ

where Γ ∼= Gal(k(ζp)c/k) = ∆ × Γp and ∆ = Gal(k(ζp)c/kc) and Γp =
Gal(kc/k). As in the proof of the preceding proposition, we have, since
i ≡ 0 (mod |∆|) and Γp acts trivially on Xk,

X ′k(ζp)(i)Γ = (X ′k(ζp)(i)∆)Γp
∼= (X ′k(i))Γp

Now the action of Γp is trivial on X ′k, therefore the action of Γp on X ′k(i) is
given by

γ.x = κ(γ)ix

On the other hand we see that in the construction of k, if pm0 is the exponent
of X, then

κ(γ) ≡ 1 (mod pm0)

(since k contains (K(d))N withN ≥ m0, see (2.4)). Therefore Γp acts trivially
on X ′k(i) and we get the result.

For example, since p - hQ, for every i ≡ 0 (mod p−1), every �nite abelian
p-group structure can be realized as WK ét

2i(k) for some number �eld k (in
particular this holds for the logarithmic class group, provided the generalized
Gross conjecture is true). More generally, for i even, the Vandiver conjecture
predicts that p doe not divide the class number of K(d). In the next chapter
we are going to study to what extent the condition of the theorem has to be
considered as necessary.



Chapter 3

Etale analogues of Hilbert class

�eld

This chapter is devoted to identifying those �elds for which not every abelian
p-group structure can be realized as étale wild kernel of some �nite extension.
We follow the strategy which is used in the classical case of class groups: an
étale analogue of Hilbert class �eld is de�ned and its basic properties are
described. Then we pass to étale analogues of Hilbert class �eld towers and
we try to clarify the relation between �elds with in�nite class �eld towers
and a negative answer to the realizability problem (Section 3.1 and Section
3.2 generalize the results of [JS] and [As]). We end with a partial result on
the étale analogue of Hilbert theorem 94.

3.1 Etale analogues of Hilbert class �eld

Let F be a number �eld and set L = F (µp). Put Γp = Gal(Lc/L) and ∆ =
Gal(L/F ): then Γp is (non canonically) isomorphic to Zp as a topological
group and ∆ is (canonically) isomorphic to a subgroup of (Z/pZ)×. Set Γ =
Gal(Lc/F ): then Γ is a procyclic group and we have a canonical isomorphism

Γ ∼= Γp ×∆

Note that Lcd/F is a Galois extension and we have a split exact sequence of
pro�nite groups

0 // X ′L // Gal(Lcd/F ) π−→ Γ // 0 (3.1)

(this sequence splits since the p-cohomological dimension of Γp ×∆ is 1, see
[Se], I.�3.4). Now, X ′L(i)Γ is the Galois group of an extension F (i)/Lc since

X ′L(i)Γ = X ′L(i)
/

(1− γ)X ′L(i) = X ′L

/
(1− κi(γ)γ)X ′L (3.2)
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if γ is any topological generator of Γ and (1−κi(γ)γ)X ′L is a closed subgroup
of X ′L. Moreover F (i)/F is Galois too since (1−κi(γ)γ)X ′L is a Γ-submodule
of X ′L with standard action (since γ(1− κi(γ)γ) = (1− κi(γ)γ)γ). Further-
more, as before, we get a split exact sequence

0 // X ′L(i)Γ −→ Gal(F (i)/F ) πi−→ Γ // 0 (3.3)

Let γ be a �xed topological generator of Γ: consider the closed subgroup 〈γ̃〉
generated by a preimage γ̃ of γ by πi in Gal(F (i)/F ) and let Fγ̃/F be the
extension which is �xed by 〈γ̃〉. Note that Fγ̃ is a complement of Lc in F (i)
over F : in fact Fγ̃Lc = F (i) and Fγ̃ ∩ Lc = F . This easily follows from the
next lemma

Lemma 3.1.1. The closed subgroup 〈γ̃〉 generated by γ̃ is an in�nite pro-
cyclic group and πi induces an isomorphism of topological groups (πi)|〈γ̃〉 :
〈γ̃〉 // Γ (in particular (3.3) is split by (πi)|〈γ̃〉).

Proof. Set G = Gal(F (i)/F ) and let Gp = π−1
i (Γp). Then we have a com-

mutative diagram with exact rows

0 −−−−→ X ′L(i)Γ −−−−→ G
πi−−−−→ Γ −−−−→ 0∥∥∥ y y

0 −−−−→ X ′L(i)Γ −−−−→ Gp
πi−−−−→ Γp −−−−→ 0

Note that Gp is the pro-p-Sylow of Gp since Γp is the pro-p-Sylow of Γ. Now
take a preimage γ̃ of γ by πi. Then

〈γ̃〉 ∩Gp
πi−→ Γp (3.4)

is surjective: clearly γ̃|∆| ∈ 〈γ̃〉 ∩Gp and 〈γ̃|∆|〉
πi−→ Γp is surjective because

the image of (πi)|〈γ̃|∆|〉 contains a dense subgroup and it is compact (being the
image of the compact 〈γ̃|∆|〉 by the continuous map πi) hence closed (since
Γp is compact). Moreover 〈γ̃|∆|〉 is pro-p-cyclic hence isomorphic to Zp: thus
the map in (3.4) is an isomorphism, being a surjective map between pro-p-
cyclic groups. Now also 〈γ̃〉 πi−→ Γ is surjective (same argument as above).
The claim of the lemma is then easily achieved by noticing that πi induces
an injection from 〈γ〉/〈γ̃〉 ∩Gp to Γ/Γp.

We also have [Fγ̃ : F ] = |X ′L(i)Γ| which is the index of the closed sub-
group generated by γ̃. Evidently Fγ̃ depends on the choice of γ̃. In order to
avoid this non natural choice, we de�ne F̃ as the compositum of the �elds
Fγ̃ as γ̃ runs through the preimages of γ by πi in Gal(F (i)/F ). Note that
F̃ /F is �nite, since X ′L(i)Γ is �nite and then F̃ /F is the compositum of
�nitely many �nite extensions of F . Note that F̃ does not depend on the
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choice of the topological generator γ of Γ (use for example Lemma 3.1.1). In
the following we will denote by Ĩ (or ĨF if we want to stress on the �eld in-
volved) the closed subgroup of Gal(F (i)/F ) which corresponds to F̃ : then Ĩ
is the intersection of the closed subgroups generated by a preimage of γ by πi.

Before describing the properties of F̃ we prove the following proposition
about F (i).

Proposition 3.1.2. Let E/F be a �nite extension: then F (i) ⊆ E(i).

Proof. First of all we prove the assertion if E ⊆ F (ζp)c. In this case X ′E(ζp) =
X ′F (ζp) (and hence X ′E(ζp)(i) = X ′F (ζp)(i)). Now ΓE is in a natural way a
closed subgroup of ΓF : this means that

IΓE ⊆ IΓF and hence IΓEX
′
F (ζp)(i) ⊆ IΓFX

′
F (ζp)(i)

(where IΓE ⊆ Zp[ΓE ] and IΓF ⊆ Zp[ΓF ] are augmentation ideals). Since
E(i) corresponds to IΓEX

′
F (ζp)(i) and F (i) to IΓFX

′
F (ζp)(i), we deduce that

F (i) ⊆ E(i).
Now we drop the assumption E ⊆ F (ζp)c: let F ′ = E ∩ F (ζp)c. From
what we have just seen, we know that F (i) ⊆ F ′(i) and obviously F ′(ζp)c ∩
E = F ′. Hence we can suppose that E ∩ F (ζp)c = F . Now we have to
prove that F (i) ⊆ E(i): in other words, we need to show that γ ∈ ΓE
acts as multiplication by κ(γ)−i on Gal(F (i)E(ζp)c/E(ζp)c) (since E(i)/Ec

is precisely the maximal subextension of E(ζp)cd/E(ζ)c whose Galois group
is a ΓE-module with that action). But this is quite clear: let γ ∈ ΓE and
x ∈ Gal(F (i)E(ζp)c/E(ζp)c). Let α ∈ F (i): we have

γ.x(α) = γ̃xγ̃−1(α) = (γ̃xγ̃−1)|F (i)
(α) = (x|F (i)

)κ(γ)−i(α) = xκ(γ)−i(α)

where γ̃ is a lifting of γ in Gal(F (i)E(ζp)c/E). If α ∈ E(ζp)c, then obviously

γ.x(α) = α = xκ(γ)−i(α)

hence γ.x = xκ(γ)−i as we claimed.

The extension F̃ /F enjoys some remarkable properties (with respect to
WK ét

2i(F )) which we are going to describe in the following. If we think about
WK ét

2i(F ) as an analogue of the p-Sylow of the p-split class group of F , then
F̃ is the analogue of the p-split Hilbert class �eld of F .

Proposition 3.1.3. F̃ is a �nite Galois extension of F which is trivial
exactly when X ′L(i)Γ is.

Proof. First of all note that, by de�nition, F̃ /F is trivial exactly when
X ′L(i)Γ is. We are left to show that Ĩ is a normal subgroup of Gal(F (i)/F )
but this is clear since, for every σ ∈ Gal(F (i)/F ) and every preimage γ̃ of
a topological generator γ of Γ by πi, we have σ〈γ̃〉σ−1 = 〈σγ̃σ−1〉 (use for
example Lemma 3.1.1) and σγ̃σ−1 is still a preimage of γ by πi.
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Note that Γ acts on X ′L(i)Γ by conjugation and the action is given by

γ.x = xκ(γ)−i

for every x ∈ X ′L(i)Γ (use for example (3.2)). This means precisely that, if
γ̃ is a preimage of γ by πi, we have

γ̃xγ̃−1 = xκ(γ)−i

Any another preimage of γ by πi is of the form γ̃x with x ∈ X ′L(i)Γ. Note
that, for every positive h ∈ N

(γ̃x)h = x
∑h
j=1 κ(γ)−ij γ̃h (3.5)

a formula which can be readily proved by induction on h. This lead us to in-
troduce the following de�nition which will be very useful in the computation
of the degree [F̃ : F ].

De�nition 3.1.4. Let a ∈ Z×p and let vp denote the valuation on Zp such
that vp(p) = 1. If a 6= 1, let s ∈ N be such that vp(a − 1) = s and, for
every nonzero n ∈ N, let dn(a) be the multiplicative order of a modulo pn+s.
Moreover set dn(1) = pn.

The next lemma explains the relation between dn and (3.5).

Lemma 3.1.5. For every a ∈ Z×p we have

dn(a) = min{h ∈ N, h ≥ 1 |
h∑
j=1

aj ≡ 0 (mod pn)}

Suppose further that a 6= 1 and vp(a− 1) = s > 0: then dn(a) = pn.

Proof. If a = 1, it is clear that dn(a) = pn. If a 6= 1, then the �rst assertion
is an immediate consequence of the following chain of equivalences

ah ≡ 1 (mod pn+s)⇔ (a− 1)(
h−1∑
j=0

aj) ≡ 0 (mod pn+s)⇔

⇔ (a− 1)(
h∑
j=1

aj) ≡ 0 (mod pn+s)⇔
h∑
j=1

aj ≡ 0 (mod pn)

Now suppose that a 6= 1 and vp(a − 1) = s > 0: we can take a 6= 1. First
of all note that the class of a belongs to the cyclic subgroup of order pn in
(Z/ps+nZ)× since a is congruent to 1 modulo ps and s > 0. In particular

ap
n ≡ 1 (mod pn+s)

On the other hand, the class of a does not belong to the cyclic subgroup of
order pn−1 in (Z/ps+nZ)× since a is not congruent to 1 modulo ps+1. Hence
the class of a generates the cyclic subgroup of order pn in (Z/ps+nZ)× which
implies that dn(a) = pn.
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De�nition 3.1.6. Suppose that X ′L(i)Γ 6= 0, call eF (i) the exponent of
X ′L(i)Γ and set tF (i) = vp(eF (i)) (hence tF (i) > 0). Furthermore set
sF (i) = vp(κ(γ)−i − 1) and

hF (i) = min{h ∈ N, h ≥ 1 |
h∑
j=1

κ(γ)−ij ≡ 0 (mod eF (i))}

Finally set rF (i) = vp(hF (i)) and let dF (i) be de�ned by hF (i) = prF (i)dF (i)
(in particular we have (dF (i), p) = 1).

We remark once and for all that hF (i) is de�ned only ifX ′L(i)Γ 6= 0 (when
no misunderstanding is possible, we will not stress on this). As an example,
we have hF (0) = eF (0) and in general hF (i) > 1. Sometimes we shall simply
write e(i), t(i), h(i) and s(i) (if no ambiguity arises). By Lemma 3.1.5 we
must have

h(i) = dt(i)(κ(γ)−i) (3.6)

and, if s(i) > 0, then h(i) = e(i). Note that we also have

(γ̃x)h(i) = γ̃h(i) (3.7)

by (3.5).

Proposition 3.1.7. Suppose that X ′L(i)Γ 6= 0. Then

Ĩ = 〈γ̃h(i)〉

In particular [F̃ : F ] = h(i)|X ′L(i)Γ|. Moreover

Gal(F̃ /F̃ ∩ Lc) ∼= X ′L(i)Γ

and hence [F̃ ∩ Lc : F ] = h(i).

Proof. Recall that we already know that h(i) = dt(i)(κ(γ)−i) (see (3.6)). We
have Ĩ = 〈γ̃a〉 for some a ∈ Z. Let x ∈ XL(i)Γ such that the order of x is
e(i): then we also have Ĩ = 〈(γ̃x)b〉 with b ∈ Z. Then there exists c ∈ Ẑ such
that

(γ̃x)b = γ̃ac

This means that
x
∑b
j=1 κ(γ)−ij ∈ 〈γ̃〉

hence
b∑

j=1

κ(γ)−ij ≡ 0 (mod e(i)) (3.8)

If i 6= 0, this is equivalent (as in the proof of Lemma 3.1.5) to

κ(γ)−ib ≡ 1 (mod pt(i)+s(i))



50 Etale analogues of Hilbert class �eld

By de�nition of dt(i)(κ(γ)−i), we therefore deduce that b = h(i)q for some
q ∈ Z and the same conclusion holds true in the case i = 0 (since h(0) = e(0)
and (3.8) holds). Hence

Ĩ = 〈(γ̃x)b〉 ⊆ 〈γ̃h(i)〉

On the other hand
〈(γ̃x)h(i)〉 = 〈γ̃h(i)〉 ⊆ Ĩ

since (3.7) shows that 〈γ̃h(i)〉 is contained in any of the closed subgroups
which are generated by a preimage of a topological generator of Γ by πi,
hence in their intersection Ĩ. Hence Ĩ = 〈γ̃h(i)〉.
For the remaining assertions, just note that

Gal(F̃ /F̃ ∩ Lc) ∼= ĨX ′L(i)Γ/Ĩ ∼= X ′L(i)Γ/(Ĩ ∩X ′L(i)Γ) ∼= X ′L(i)Γ

since Ĩ ∩ X ′L(i)Γ ⊆ 〈γ̃〉 ∩ X ′L(i)Γ is trivial (here γ̃ is any of the preimages
of a topological generator of Γ by πi) and Ĩ is normal in Gal(F (i)/F ) by
Proposition 3.1.3 (hence the isomorphism theorem applies).

Remark 3.1.8. The proof of Proposition 3.1.7 in the case i = 0 can be
found in [JS].

Lemma 3.1.9. We have F̃ (ζp)c = F (i).

Proof. Clearly F̃ (ζp)c ⊆ F (i). To conclude note that

[F (i) : F (ζp)c] = |WK ét
2i(F )| = [F̃ : F (ζp)c ∩ F̃ ] = [F̃ (ζp)c : F (ζp)c]

by Proposition 3.1.7.

The following lemmas are very easy but we quote and prove them since
they will be used often henceforth. If a ∈ Z×p , then we denote by ordp(a) the
order of the class de�ned by a in (Z/pZ)×.

Lemma 3.1.10. Suppose that F̃ 6= F . Then we have

[F̃ ∩ F (ζp) : F ] = dF (i) = ordp(κ(γF )−i)

Proof. The �rst equality is clear by Proposition 3.1.7. In order to prove the
second, set a = κ(γF )−i, q = ordp(a) and write as before h(i) = pr(i)d(i) for
the order of a modulo pt(i)+s(i). In particular

(ad(i))p
r(i) ≡ ad(i) ≡ 1 (mod p)

which shows that q|d(i). Now observe that aq belongs to the p-Sylow sub-
group of (Z/pt(i)+s(i)Z)×. This implies that there exists some m such that
aqp

m ≡ 1 (mod pt(i)+s(i)). Hence h(i)|qpm, which implies d(i)|q.
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Lemma 3.1.11. We have

[F (ζp) : F ] = ordp(κ(γF )) = ordp(κ(γF )−i) (ordp(κ(γF )), i)

Proof. Set a = κ(γF ) and q = ordp(a). The cyclotomic character gives an
injective homomorphism

κ : Gal(F (ζp)c/F ) −→ Z×p

Note that F (ζp) is the �xed �eld of the p-Sylow subgroup of Gal(F (ζp)c/F ).
Hence in order to prove the �rst equality we have to show that aq generates
the p-Sylow of κ(Gal(F (ζp)c/F )). But this is clear since the p-Sylow sub-
group of Z×p is the subgroup of elements which are congruent to 1 modulo p.
To prove the second equality, set r = ordp(a−i) and note that

(a−i)
q

(q, i) = (aq)−
i

(q, i) ≡ 1 (mod p)

and this implies
r
∣∣∣ q

(q, i)

On the other hand

a−ir ≡ 1 (mod p) ⇒ q|ir ⇒ q

(q, i)

∣∣∣ i

(q, i)
r ⇒ q

(q, i)

∣∣∣r
and this concludes the proof.

The following proposition describes the properties of F̃ /F with respect
to rami�cation.

Proposition 3.1.12. F̃ /F is a locally cyclotomic extension. If moreover
there is only one prime above p in F (ζp)c, then F̃ /F̃ ∩ F (ζp)c is unrami�ed
everywhere and totally split at every prime above p.

Proof. The fact that F̃ /F is locally cyclotomic is clear from the de�nition.
Clearly, if there is only one prime above p in F̃ /F̃ ∩ F (ζp)c is everywhere
unrami�ed except perhaps at primes above p: furthermore, if it is unrami�ed
at primes above p, then it has to be split at those primes. So, supposing
that there is only one prime above p in F (ζp)c, we prove that F̃ /F̃ ∩ F (ζp)c

is unrami�ed at every prime above p. Let p be the prime above p in F̃ /F̃ ∩
F (ζp)c and let I be the inertia group of p in F (i)/F̃ ∩F (ζp)c (which is easily
seen to be an abelian extension by (3.5) and Proposition 3.1.7). First of all,
note that I ∩X ′L(i)Γ = 0 (since otherwise there would exist a �eld F ′ such
that F (ζp)c ⊆ F ′ ⊆ F (i) rami�ed at primes above p). Now observe that
F (ζp)c/F̃ ∩F (ζp)c is totally rami�ed at p (there cannot be inertia) and this,
together with X ′L(i)Γ∩I = 0 proves that πi induces an isomorphism between
Γh(i) and I. In particular I is procyclic and we call α a �xed topological
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generator of I. Let γ be a topologial generator of Γ such that γh(i) = π(α).
If γ̃ is any preimage of γ by πi, then

Ĩ = 〈γ̃h(i)〉 ⊇ 〈α〉 = I

(πi(α) = πi(γ̃h(i)) implies α = γ̃h(i) since X ∩ I = 0).

Remark 3.1.13. One can ask if these étale analogues of the Hilbert class
�eld share other interesting properties with the classical case. For example,
Hilbert Theorem 94 says that the extension map Cl′F

// Cl′H′F
is trivial,

where H ′F is the p-split Hilbert class �eld of F . In our context the problem
is then to see whether the natural map

WK ét
2i(F ) −→WK ét

2i(F̃ )

is always trivial. Unfortunately the answer to this question is negative. A
counterexample can be given using a recent result of R. Validire. Suppose
that p = 37 and i = 31 and choose F = Q(ζp): then WK ét

2i(F ) is cyclic of
order p (since X ′F (i)Γ is). Furthermore X ′F is isomorphic (as a topological
group) to Zp (see [Wa]). Therefore Gal(F cd/F c) is pro-p-free and in fact
isomorphic to X ′F (see [Gr]). Now F̃ /F is a locally cyclotomic extension,
thanks to Proposition 3.1.12. Now, applying Théorème 4.2.8 of [Va], we see
that, if we set G = Gal(F̃ /F ), the natural map

WK ét
2i(F ) −→WK ét

2i(F̃ )G

is an isomorphism.

3.2 Etale analogues of class �eld towers

Now we can de�ne the étale analogue of class �eld towers as follows. Set
Fi,0 = F , Fi,1 = F̃i,0 and inductively Fi,j+1 = F̃i,j . Moreover

Fi,∞ =
∞⋃
j=0

Fi,j

Of course Fi,∞/F can be in�nite: in fact it is �nite if and only if there exists
n ∈ N such that X ′Fi,n(ζp)(i)Γ = 0. In this case Fi,∞ = Fi,n.

The following results shows that dFi,j (i) and rFi,j (i) behave quite di�er-
ently along the tower.

Proposition 3.2.1. We have Fi,j+2 ∩ Fi,j+1(ζp) = Fi,j+1 for every j ≥ 0
and in particular, if Fi,∞/F is nontrivial,

[Fi,∞ ∩ F (ζp) : F ] = [Fi,1 ∩ F (ζp) : F ] = dF (i)

and dFi,j (i) = 1 for every j ≥ 1 (which implies [Fi,j+1∩F ci,j : Fi,j ] = p
rFi,j (i))

In particular, Fi,∞/F is in�nite if and only if for every j ≥ 1 we have
rFi,j (i) > 1.
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Proof. In order to prove Fi,j+2∩Fi,j+1(ζp) = Fi,j+1 for every j ≥ 0 we argue
as follows. We have

ordp(κ(γFi,j+1)) = [Fi,j+1(ζp) : Fi,j+1] = [Fi,j(ζp) : Fi,j+1 ∩ Fi,j(ζp)] =

=
[Fi,j(ζp) : Fi,j ]

[Fi,j+1 ∩ Fi,j(ζp) : Fi,j ]

(�rst equality comes from Lemma 3.1.11, the others are easy to check). But

[Fi,j(ζp) : Fi,j ] = ordp(κ(γFi,j ))

by Lemma 3.1.11 and

[Fi,j+1 ∩ Fi,j(ζp) : Fi,j ] = dFi,j (i)

by Lemma 3.1.10 (we can suppose Fi,j+1/Fi,j nontrivial since otherwise the
claim of the proposition is trivially veri�ed). Hence

ordp(κ(γFi,j+1)) =
ordp(κ(γFi,j ))

dFi,j (i)
= (ordp(κ(γFi,j )), i) (3.9)

again by Lemma 3.1.11. Moreover

ordp(κ(γFi,j+1)−i) =
ordp(κ(γFi,j+1))

(ordp(κ(γFi,j+1)), i)
=

(ordp(κ(γFi,j )), i)
(ordp(κ(γFi,j )), i)

= 1

by Lemma 3.1.11 and (3.9) (the latter is used to get both the numerator and
the denominator of the last ratio). Hence by Lemma 3.1.10 (or trivially if
Fi,j+2 = Fi,j+1), [Fi,j+2 ∩ Fi,j+1(ζp) : Fi,j+1] = 1, which is what we wanted.
Now we prove that Fi,j+1∩F (ζp) = Fi,1∩F (ζp). This is immediate by what
we have just proved, since for every j ≥ 1,

Fi,j+1 ∩ F (ζp) ⊆
(
Fi,j+1 ∩ Fi,j(ζp)

)
∩ F (ζp) = Fi,j ∩ F (ζp)

and the other inclusion is trivial. This shows that

[Fi,∞ ∩ F (ζp) : F ] = [Fi,1 ∩ F (ζp) : F ] = dF (i)

if Fi,∞/F is nontrivial. The last claim of the proposition follows from the
remark after De�nition 3.1.6.

De�nition 3.2.2. In the following we set Fi = Fi,∞ ∩ F (ζp): in particular
Fi = F if Fi,∞/F is trivial, otherwise [Fi : F ] = dF (i).

Remark 3.2.3. Note that, if Fi,j+1 6= Fi,j , then [Fi,j+1 ∩ F ci : Fi,j ∩
F ci ] = p

rFi,j (i). Moreover Fi,∞/Fi is a (pro-)p-extension since Fi,j/Fi is a
p-extension for every j ≥ 0.
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Theorem 3.2.4. The following assertions are equivalent:

• there exists a �nite extension E/F such that Fi ⊆ E and X ′E(ζp)(i)Γ is
trivial;

• Fi,∞/F is �nite.

Proof. (Same strategy as in the proof of Théorème 4 of [JS]). Clearly the
second condition implies the �rst one (with E = Fi,∞). In order to prove
the other direction, suppose that there exists a �nite extension E/F such
that X ′E(ζp)(i)Γ = 0 and Fi ⊆ E. By Proposition 3.1.2 and Lemma 3.1.9, we
deduce F (i) ⊆ E(i) = E(ζp)c and Fi,1(ζp)c = F (i). In particular Fi,1(ζp)c ⊆
E(ζp)c. Now suppose inductively that Fi,j(ζp)c ⊆ E(ζp)c: we shall prove that
Fi,j+1(ζp)c ⊆ E(ζp)c. Since Fi ⊆ E implies that EFi,j/E is a p-extension,
we deduce that Fi,j ⊆ Ec. Now

X ′E(ζp)c(i) = X ′EFi,j(ζp)c(i)

Furthermore
ΓE = Gal(Ec/E)×Gal(E(ζp)c/Ec)

and
ΓEFi,j = Gal((EFi,j)c/EFi,j)×Gal(E(ζp)c/Ec)

Hence

X ′E(ζp)c(i)ΓE = 0⇒ X ′E(ζp)c(i)Gal(E(ζp)c/Ec) = 0⇒ X ′E(ζp)c(i)ΓEFi,j
= 0

which implies (EFi,j)(i) = EFi,j(ζp)c = E(ζp)c. Thus, again using Lemma
3.1.9 and Proposition 3.1.2,

Fi,j+1(ζp)c = Fi,j(i) ⊆ (EFi,j)(i) = E(ζp)c

Then by induction, we have Fi,j(ζp)c ⊆ E(ζp)c for every j ≥ 0, which means
Fi,∞(ζp)c ⊆ E(ζp)c: in particular we deduce that Fi,∞(ζp)c/F (ζp)c is �nite
since E(ζp)c/F (ζp)c is �nite. This implies that Fi,∞/F is �nite.

Note that if i ≡ 0 (mod p−1), then the condition Fi ⊆ E is automatically
satis�ed since Fi = F and therefore we �nd the result of Théorème 4 of [JS].

Proposition 3.2.5. We have Fi,∞(i) = Fi,∞(ζp)c and F ci,∞/F
c
i is every-

where split. If Fi,∞/F is in�nite, then F ci ⊆ Fi,∞ and Fi,∞/F ci is in�nite.

Proof. From Lemma 3.1.9, we know that

Fi,j+1(ζp)c = Fi,j(i)

We deduce that

Fi,∞(i) =
⋃
j∈N

Fi,j(i) =
⋃
j∈N

Fi,j+1(ζp)c = Fi,∞(ζp)c
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Note that F ci,j+1/F
c
i,j is everywhere split (because Fi,j+1(ζp)c/Fi,j(ζp)c is ev-

erywhere unrami�ed by Lemma 3.1.9 and [Fi,j(ζp)c : F ci,j ] is coprime with
p). This shows that F ci,∞/F

c
i is everywhere split.

If Fi,∞/F is in�nite, then, by Proposition 3.2.1, for every j ≥ 0 we have

[Fi,j+1 ∩ F ci : Fi] =
j∏

k=0

p
rFi,k(i) ≥ pj

(see the remark after Proposition 3.2.1). This shows that F ci ⊆ Fi,∞. More-
over

[Fi,j+1 : Fi,j+1 ∩ F ci ] = |X ′Fi,j(ζp)(i)Γ|

which shows that Fi,∞/F ci is in�nite.

Now we are ready to give a necessary condition for the tower to be �nite.

Theorem 3.2.6. If Fi,∞/F is �nite and nontrivial, then X ′Fi is �nite. More-
over if X ′Fi is trivial, then Fi,∞/F is trivial.

Proof. Set ∆i = Gal(F (ζp)/Fi). We have |∆i| = [F (ζp) : F ]/dF (i) and

i ≡ 0 (mod |∆i|) (3.10)

since by (3.6), h(i) = dt(i)(κ(γ)−i) and therefore

ih(i) ≡ 0 (mod ordp(κ(γ))) ⇔ id(i) ≡ 0 (mod ordp(κ(γ)))

⇔ i ≡ 0 (mod
ordp(κ(γ))

d(i)
)

and (3.10) follows by Lemma 3.1.11. Now X ′Fi,∞(ζp)(i)Γ = 0: here

Γ = Gal(Fi,∞(ζp)c/Fi,∞) ∼= ∆i ×Gal(Fi,∞(ζp)c/Fi,∞(ζp))

By Nakayama's lemma we deduce that X ′Fi,∞(ζp)(i)∆i = 0 which means

(X ′Fi,∞(ζp)(i))
∆i = 0 (since |∆i| is coprime with p). This means that

(
X ′Fi,∞(ζp)

)∆i

= 0

by (3.10) which is equivalent to X ′Fi,∞ = 0. This implies in particular that
X ′Fi is �nite.
Note that if Fi,∞/F is nontrivial, then F ci,1/F

c
i is an abelian p-extension

everywhere split (see the proof of Proposition 3.2.5) of degree |X ′F (ζp)(i)Γ|:
therefore if Fi,∞/F is nontrivial, then X ′Fi is nontrivial.
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Remark 3.2.7. Theorem 3.2.6 is a generalization of Proposition 3 of [As]
which tells that if µp ⊆ F (hence Fi = F ) and if Fi,∞/F is �nite, then X ′F
is �nite. If F = Q(ζp), it is well known that X ′F is �nite if and only if it is
trivial (which is equivalent to p being regular): in fact suppose that X ′F is
�nite. This means that X−F = 0 (since X−F has no �nite Λ-submodule, see
[Wa]): hence |(ClF )−p | = 1. But this implies that |(ClF )+

p | = 1 and hence
X ′F = 0. Therefore, if p is irregular, the tower of Q(ζp) has to be in�nite (for
any i).

Remark 3.2.8. Let F ′/F be the subextension of F (ζp)/F which has degree
ordp(κ(γ)−i): thus F ′ = Fi if Fi,∞/F is nontrivial. Set ∆′ = Gal(F ′/F ):
then Fi,∞/F is trivial if and only if X ′F ′(i)∆′ = 0. This is easy to prove since

X ′F (ζp)(i)Γ = 0⇐⇒ X ′F (ζp)(i)∆ = 0⇐⇒ X ′F ′(i)∆′ = 0

(where ∆ = Gal(F (ζp)/F )) because i ≡ 0 (mod |Gal(F (ζp)/F ′)|) as in the
proof of Theorem 3.2.6.

Theorem 3.2.9. The following conditions are equivalent

1. Fi,∞/F is �nite and nontrivial;

2. Fi
cd
/(Fi)c is �nite and nontrivial.

Moreover if Fi,∞/F is �nite, then Fi
cd = F ci,∞.

Proof. Suppose that Fi,∞/F is in�nite: then F ci ⊆ Fi,∞ and Fi,∞/F ci is an
in�nite subextension of Fi,∞ ⊆ Fi

cd
by Proposition 3.2.5.

Now suppose that Fi,∞/F is �nite and nontrivial: then

X ′Fi,∞(ζp)(i)Γ = 0

As in the proof of Theorem 3.2.6, one sees that X ′Fi,∞ = 0 and this implies

that Gal(Fi,∞
cd
/F ci,∞) is trivial, by well-known properties of pro-p-groups,

since
Gal(Fi,∞

cd
/F ci,∞)ab = X ′Fi,∞

This means that Fi
cd
/(Fi)c is �nite since Fi

cd
F ci,∞ ⊆ Fi,∞

cd
: actually, one

sees immediately that Fi
cd = F ci,∞.

The following result deals with the absolute case, namely F = Q: in that
case there are no nontrivial �nite towers.

Proposition 3.2.10. Let i be odd and suppose that X ′Q(ζp)(i)Γ 6= 0. Then
Qi,∞/Q is in�nite.
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Proof. Suppose that Qi,∞/Q is �nite and nontrivial: then X ′Qi is �nite by
Theorem 3.2.6. Since i is odd, Qi is a CM -�eld. This can be easily seen
using Lemma 3.1.10 and Lemma 3.1.11 since

Qi is a CM �eld ⇐⇒ [Q(ζp) : Qi] is odd

and
[Q(ζp) : Qi] =

p− 1
[Qi : Q]

=
p− 1

ordp(κ(γ)−i)
= (i, p− 1) (3.11)

Then we know that (X ′Qi)
− has no �nite Λ-submodules (see [Wa], Proposition

13.28) and hence (X ′Qi)
− = 0. But this implies (X ′Qi)

+ = 0 and therefore
X ′Qi = 0. This is a contradiction, by Theorem 3.2.6.

Remark 3.2.11. Proposition 3.2.10 and Theorem 3.2.4 tell us that, if i
is odd and WK ét

2i(Q) 6= 0, then for every number �eld F containing Qi,
WK ét

2i(F ) is nontrivial. Furthermore note that Vandiver's conjecture implies
WK ét

4i(Q) = 0 for any i ≥ 1 (in particular the tower is �nite, being trivial).
If something weaker holds, namely if Greenberg's conjecture holds for real
sub�elds of Q(ζp), then I do not know whether or not the tower Q2i,∞/Q is
�nite. For, Q2i is a totally real �eld and Greenberg's conjecture then tells
that X ′Qi is �nite. But, in general the converse of Theorem 3.2.6 needs not
to hold true, hence we cannot conclude that Qi,∞/Q is �nite.

Remark 3.2.12. Using Proposition 2.3 in [KM], one can prove that, for any
i ≥ 1 such that Fi,∞/F is in�nite, there is no p-extension E/F such that
WK ét

2i(E) = 0. Details are as follows: �rst of all, if i ≡ 0 (mod ordp(κ(γF ))),
then note that Fi = F and we conclude by Theorem 3.2.4. If instead we
have i 6≡ 0 (mod ordpκ(γF )), then the corestriction map

WK ét
2i(E) −→WK ét

2i(F )

is surjective: this follows from Proposition 2.3 in [KM] and the fact that a p-
group is solvable. SinceWK ét

2i(F ) is nontrivial,WK ét
2i(E) has to be nontrivial

as well.

The following is a standard genus-theoretic criterion for Fi,∞/F to be
�nite (see [JS], Proposition 11).

Proposition 3.2.13. If X ′Fi is (�nite) cyclic, then Fi,∞/F is �nite.

Proof. (See Proposition 11 of [JS]) Set N = (F cdi )cd: then N is a Galois pro-
p-extension of F cdi which is also Galois over F ci . Set G = Gal(N/F ci ) and
H = Gal(F cdi /F

c
i ): then G/H acts on H by conjugation. Let σ a generator

of G/H: (1− σ)H is then the Galois group of the maximal subextension of
N/F cdi which is abelian over F ci . By de�nition of F

cd
i , we have (1−σ)H = H,

which implies H = 0 (in other words N = F cdi ). Now Fi,2F
cd
i /F

cd
i is an
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abelian p-extension which is everywhere split therefore F cdi ⊆ Fi,2F
cd
i ⊆ N .

Then Fi,2F
cd
i = F cdi and therefore F ci,2 ⊆ F cdi : actually, one easily proves

that F ci,j ⊆ F cdi for every j ≥ 1, which implies F ci,∞ ⊆ F cdi . Since F cdi /F
c
i is

�nite, we conclude that Fi,∞/F is �nite.

Example. The preceding proposition gives a way to produce �nite towers
which are nontrivial. Let F = Q(

√
d) with d a squarefree positive integer.

Suppose that

• p remains inert in F ;

• (ClF )p is cyclic and nontrivial;

• the natural map XF → (ClF )p is an isomorphism;

• Fi = F ;

• WK ét
2i(F ) 6= 0.

The �rst three hypotheses imply that X ′F is cyclic and nontrivial. In fact
the �rst implies that there is only one prime p above p which is principal
and hence the natural map (ClF )p → (ClF )′p is an isomorphism. Hence we
have a commutative diagram

XF −−−−→ (ClF )py y
X ′F −−−−→ (ClF )′p

where the upper horizontal arrow is an isomorphism thanks to the third
hypothesis and the same holds for the right vertical arrow. Now the left
vertical arrow is surjective and hence an isomorphism too. Therefore by
the second hypothesis X ′F is cyclic (and isomorphic to (ClF )p). Then, by
Proposition 3.2.13, Fi,∞/F is �nite thanks to the fourth hypothesis. The
�fth hypothesis then assures that Fi,∞/F is nontrivial.
Now take for instance p = 3 and d = 257: the �eld F = Q(

√
d) satis�es the

�rst three hypotheses (see [KS1] and [KS2], we have (ClF )3 = ClF cyclic
of order 3, or apply [Fu] because (ClF )3

∼= (ClF1)3, the isomorphism being
given by the norm). If i is even the fourth hypothesis is satis�ed. Now
observe that, thanks to Corollaire 5 of [JM], the last hypothesis is equivalent
to the nontriviality of C̃lF (which is the logarithmic class group de�ned by
Jaulent, see [Ja3]). There is an exact sequence

0 // C̃lF (p) // C̃lF
ϕ−→ (Cl′F )p −→ degFD`/(degF p)Zp // 0

(see [DS], �3, also for the de�nitions of the right and left-hand terms of this
sequence). We have C̃lF (p) = 0 because of the �rst hypothesis (see [DS],
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Lemme 4) and it can be shown that also degFD`/(degF p)Zp = 0 (see the
proof of Proposition 4.2.5 at the end of the next chapter, where a similar
computation is explained in detail). Hence ϕ is an isomorphism, which
implies that the last hypothesis is satis�ed.

3.3 Examples

1. We show by an example that Qi 6= Q(ζp). Choose p = 683 and i = 31:
then A−i = A651 6= 0 since 683|B32. On the other hand i|p − 1 (since
682 = 31 · 22) and hence d(i) < p− 1 (in fact d(i) = 22).

2. We consider the case p = 37 and i = 31. Then Qi,∞/Q is in�nite since
Qi = Q(ζp) and

(An)5
∼= Z/pnZ

(here An is the p-Sylow subgroup of Cl(Q(ζpn))) which implies XQi
∼=

Zp (norms are surjective). In particular there is no �nite extension
of E/Q such that WK ét

62(E) = 0 and µp ⊆ E. We also know that
WK ét

62(Q) ∼= Z/37Z, provided that the Quillen-Lichtenbaum conjecture
holds (in fact it predicts that K62(Z) = Z/37Z). Then Ĩ = 〈γ̃p−1〉
(since h(i) = d(i) = p − 1), which implies in particular that Q(ζp) ⊆
Qi,1.
Let us have a closer look, just to identify in this case some of the object
we described above. First of all note that Qi, 1/Q(ζp) is the p-Hilbert
class �eld of Q(ζp) (by Proposition 3.1.12). Now note that

WK ét
2i(Q(ζp)) ∼= WK ét

2i(Q) ∼= Z/pZ (3.12)

In fact

WK ét
2i(Q(ζp)) ∼= XQ(ζp)(i)Γp = XQ(ζp)(i)Γ

∼= WK ét
2i(Q)

since Gal(Q(ζp)c/Qc) ∼= (Z/pZ)× acts trivially onXQ(ζp)(i) (recall that
Cl(Q(ζpn)) has only the (p − 1 − i)-component). We note in passing
that we cannot deduce by a codescent argument that WK2i(Qi,1) 6= 0
since the canonical map

WK2i(Qi,1)Gal(Qi,1/Q(ζp)) −→WK2i(Q(ζp))

is not surjective (see [KM], example 2.5: in this case, it is even the
trivial map). We know that

[Q(ζp)i, 1 : Q(ζp)] ≥ |WK ét
2i(Q(ζp))| = p

One easily proves that [Q(ζp)i,1 : Q(ζp)] = p2. Furthermore

Q(ζp2) ⊆ Q(ζp)i,1 but Q(ζp3) 6= Q(ζp)i,1
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Moreover it is not di�cult to see that

Qi,1 ⊆ Q(ζp)i,1 but Q(ζp2) 6= Qi,1

hence
Gal(Q(ζp)i,1/Q(ζp)) ∼= (Z/pZ)2

Hence Q(ζp)i,1 = Qi,1(ζp2).



Chapter 4

Splitting of the K-theory exact

localization sequence

As recalled in Section 1.3 there is an exact localization sequence

0 −→ K2i(OF ) −→ K2i(F ) ∂−→
⊕
v �nite

K2i−1(kv) −→ 0

where kv is the residue �eld of F at v and the sum is taken over the �nite
primes of F . We remark that K2i−1(kv) is cyclic of order |kv|i−1 by Quillen
calculation.
The problem studied in this chapter is to determine necessary and su�cient
conditions in order for this sequence to split. This problem has positive
answer (i.e. the sequence always splits) if E is a rational function �eld of
one variable (Tate-Milnor theorem, see [Mil]). Clearly one can consider the
analogous problem on the induced exact sequence on p-primary parts (we
call it the p-localization sequence for K2i(F )). This has been studied by
Banaszak in [Ba]: he stated a theorem which said that the p-localization
sequence for K2i(F ) splits if and only if div(K2i(F ))p = 0. Recall that
for an abelian group M , div(M) denotes the subgroup of divisible elements
of M and that div(K2i(F ))p = WK ét

2i(F ) (see Remark 1.4.3). Banaszak's
condition is obviously a necessary one, since both the right and the left
terms of the sequence have trivial group of divisible elements. However the
proof of the converse, in Banaszak's paper, seems to be incomplete. It turns
out that there is a counterexample, namely there is a �eld F such that
WK ét

2i(F ) = 0 but the p-localization sequence for K2i(F ) does not split. In
fact we shall state a necessary and su�cient condition for the i-th sequence to
be split and then we will be able to produce a counterexample by using this
result. Our structure theorem tells also that in the case F = Q, Banaszak's
theorem holds, i.e. the p-localization sequence for K2i(F ) splits if and only
if WK ét

2i(F ) = 0.
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4.1 Obstruction to splitting

In the rest of this chapter i is a positive integer. As in the introduction
we are going to consider the p-localization sequence for K2i(F ) (where p is
as usual an odd prime): since K2i(OF )p = K2i(OF [1

p ])p we have the exact
sequence

0 −→ K2i(OF )p −→ K2i(F )p
∂−→
⊕
v-p

K2i−1(kv)p −→ 0 (4.1)

This exact sequence has (at least conjecturally) a cohomological counterpart.
More precisely (see [Ta2] for the case i = 1 and [Ba] for the general case)
there is a commutative diagram with exact rows

K2i(OF )p

ν

��

� � // K2i(F )p

ν

��

∂ // // ⊕v-pK2i−1(kv)p

ν

��

K ét
2i (OF [ 1

p ])

γ

��

� � // K ét
2i (F )p

γ

��

∂ét
// // ⊕v-pK

ét
2i−1(kv)

γ

��

H1(OF [ 1
p ], W (i+ 1))/Div

δ

��

� � // H1(F, W (i+ 1))/Div

δ

��

// // ⊕v-pH
0(kv, W (i))

δ

��

H2(OF [ 1
p ], T (i+ 1)) � � // H2(F, T (i+ 1))p // // ⊕v-pH

1(kv, T (i))

Diagram 4.1: Relationship between K-theory and étale cohomology.

We use notation de�ned in Chapter 2 with some modi�cation (mainly
for typographical convenience): T (i) = Zp(i), W (i) = Qp/Zp(i), ν = chéti,0,
δ is cohomological connecting homomorphism (in fact isomorphism) relative
to the exact sequence

0→ T (i)→ Qp(i)→W (i)→ 0

and δ ◦ γ is the natural isomorphism in (1.4) (ν and γ are de�ned similarly).
Direct sums are over all �nite places of F which do not divide p. Recall that
the Quillen-Lichtenbaum conjecture predicts that the ν's are indeed isomor-
phisms (and Tate (see [Ta2]) proved that this holds if i = 1). Note that the
kernels of the two ν's are equal and of �nite order since K2i(OF ) is �nite.

In the following we shall consider the exact sequence

0→ H2(OF [1
p ], T (i+ 1))→ H2(F, T (i+ 1))p →

⊕
v-p

H1(kv, T (i))→ 0

(4.2)



4.1 Obstruction to splitting 63

instead of (4.1): we will refer to it as the i-th cohomological p-localization
sequence for F (we will not stress on i unless it is necessary). The following
proposition shows that there is no di�erence between considering (4.1) or
(4.2), even without using the Quillen-Lichtenbaum conjecture.

Proposition 4.1.1. The i-th cohomological p-localization sequence for F
splits if and only the p-localization sequence for K2i(F ) splits.

Proof. Banaszak ([Ba], Proposition 2) proved that

K2i(OF )p
ν−→ K ét

2i(OF [1
p ]) (4.3)

is split surjective. We are going to prove the analogous result for the map

K2i(F )p
ν−→ K ét

2i(F )p (4.4)

with the same strategy as Banaszak, taking into account that the groups
involved are no more �nite (but still torsion). First of all there is a commu-
tative diagram

K2i(F, Z/pnZ) −−−−→ K2i(F )[pn] −−−−→ 0y ν

y
K ét

2i(F, Z/pnZ) −−−−→ K ét
2i(F )[pn] −−−−→ 0

with exact rows and surjective vertical maps (see [Ba], Diagram 1.6). This
implies that the kernel Ci of the mapK2i(F )p → K ét

2i(F )p is a pure subgroup.
i.e. for each n ∈ N we have

Ci ∩K2i(F )p
n

p = Cp
n

i

Moreover Ci is �nite since it coincides with the kernel of the map in (4.3),
as follows easily from the properties of Diagram 4.1 which we listed above.
Hence Theorem 7 of [Ka] tells us that the map in (4.4) is split. In fact, this
is equivalent to the fact that the map

K2i(F )p
δ◦γ◦ν−→ H2(F, T (i+ 1))p (4.5)

is split.
Now suppose that (4.2) splits: then using the fact that (4.5) splits, a simple
diagram chasing in Diagram 4.1 shows that (4.1) is split too.

We are going to describe the obstruction to splitting of the cohomological
p-localization sequence for F in terms of coinvariants of twisted p-parts of
the class groups of the �elds Fn = F (µpn), following [Hu]. We denote by µpn
the group of pn-th roots of unity in an algebraic closure of F (however in the
following µpn may denote the group of pn-th roots of unity in an algebraic
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closure of a �eld other than F and we shall not stress on that).

For typographical convenience, we set

Ωn,i =
(
H2(OF [1

p ], T (i+ 1)) ∩H2(F, T (i+ 1))p
n

p

)/
H2(OF [1

p ], T (i+ 1))p
n

These groups are the obstructions to the existence of a splitting for the
cohomological p-localization sequence for F . Note that, from the de�nition
of Ωn, i, we have Ω0, i = 0.

Lemma 4.1.2. The i-th cohomological p-localization sequence for F splits if
and only if for every n ∈ N we have Ωn, i = 0.

Proof. It is not di�cult to realize (see [Ba], proof of Proposition 2) that the
i-th cohomological p-localization sequence splits if and only if

H2(F, T (i+ 1))p[pn] −→
⊕
v-p

H1(kv, T (i))[pn]

is surjective for every n ∈ N. Using the snake lemma, we get an exact
sequence

H2(F, T (i+ 1))p[pn] // ⊕v-pH
1(kv, T (i))[pn] ED

BC I
ooH2(F, T (i+ 1))p/pn; [] // H2(OF [1

p ], T (i+ 1))/pn

Hence the surjectivity of the �rst map is equivalent to I = 0 and therefore
to the injectivity of the third map. Since the kernel of this map is exactly
Ωn, i, we are done.

We are going to use the following notation: for n ∈ N, set Fn = F (µpn)
and Γn = Gal(Fn/F ). If w is a place in Fn, then denote by (kn)w the residue
�eld of Fn at w.

Lemma 4.1.3. Let v - p be a place in F . For every n, m ∈ N, there are of
isomorphisms of Γm-modules⊕

w|v

H1((km)w, T (i))[pn] ∼=
⊕
w|v

H0((km)w, µ⊗ipn)

and

H2(OFm [1
p ], T (i))/pn ∼= H2(OFm [1

p ], µ⊗ipn)
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Proof. Both assertions come from the cohomology sequence corresponding
to the exact sequence

0 // T (i)
pn−→ T (i) −→ µ⊗ipn

// 0

together with H0((kn)w, T (i)) = 0 (it is a �nite Zp-module on which mul-
tiplication by pn acts injectively) and H3(OFm [1

p ], T (i)) = 0 (the Galois
group of the maximal extension of Fm which is unrami�ed outside p has
p-cohomological dimension less or equal to 2). Since conjugation commutes
with the connecting homomorphism, this proves that, for any �xed w0|v in
Fn there is a Dv-module homomorphism (Dv being the decomposition group
at v in Fn/F )

H1((km)w0 , T (i))[pn] ∼= H0((km)w0 , µ
⊗i
pn)

and a Γm-isomorphism

H2(OFm [1
p ], T (i))/pn ∼= H2(OFm [1

p ], µ⊗ipn)

Furthermore⊕
w|v

H1((km)w, T (i))[pn] = IndΓm
Dv
H1((km)w0 , T (i))[pn]

for any �xed w0|v in Fn and⊕
w|v

H0((km)w, µ⊗ipn) = IndΓn
Dv
H0((km)w0 , µ

⊗i
pn)

This concludes the proof.

Lemma 4.1.4. Let v - p be a �nite place of F . If w is a place of Fn above
v, then, for every i ≥ 0, the corestriction homomorphisms

H0((kn)w, µ⊗ipn) −→ H0(kv, µ⊗ipn)

are surjective.

Proof. Note that

H0(kv, µ⊗ipn) = H0((kn)w, µ⊗ipn)Gal((kn)w/kv)

and use [We2], Lemma 3.2 and Remark 3.2.1.

Lemma 4.1.5. Let c :
⊕

w|p µ
⊗i
pn → µ⊗ipn be the codiagonal map (ζw)w 7→∏

w ζw. Then c is a surjective map of Γn-modules and H1(Γn, Ker c) = 0.

Proof. See [Ke], Lemma 6.5, for the case i = 2. The general case follows
easily (see also [We2], Lemma 3.2 and Remarks 3.2.1).
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Lemma 4.1.6. For every n ∈ N, the corestriction map induces an isomor-
phism

H2(OFn [1
p ], µ⊗ipn)Γn

∼−→ H2(OF [1
p ], µ⊗ipn)

Proof. Apply [We2], Proposition 2.2 to the group of the maximal extension
of F which is unrami�ed outside p, using the fact that it has p-cohomological
dimension less or equal to 2.

We now recall the de�nition of the map

Jn, i : Cl′Fn ⊗ µ
⊗i
pn −→ H2(OFn [1

p ], µ⊗i+1
pn ) (4.6)

(see [Hu], [Ke], [We2]). If ζ ∈ µpn and [A] is the class of the ideal A in Cl′Fn ,
we have

Jn, 1([A]⊗ ζ) = h
(
xp

n
(mod K2(OFn)p

n

p )
)

where x ∈ K2(Fn)p goes to (ζw(A) (mod Pw))w (here Pw is the prime
ideal correspondig to w) under the map induced by Hilbert symbols and
h : K2(OFn)p/pn → H2(OFn [1

p ], µ⊗2
pn ) is the map de�ned in [Ta2]. For i ≥ 2,

Jn, i is de�ned observing that

H2(OFn [1
p ], µ⊗i+1

pn ) = H2(OFn [1
p ], µ⊗2

pn )⊗ µ⊗i−1
pn

Proposition 4.1.7. (Keune-Weibel) For every n ∈ N there is the following
exact sequence of Γn-modules

0→ Cl′Fn ⊗ µ
⊗i
pn

Jn, i−→ H2(OFn [1
p ], µ⊗i+1

pn ) −→
⊕
w|p

µ⊗ipn
c−→ µ⊗ipn → 0

Moreover, taking coinvariants by Γn gives

0→
(
Cl′Fn ⊗ µ

⊗i
pn
)

Γn

Jn, i−→ H2(OF [1
p ], µ⊗i+1

pn )→ (
⊕
w|p

µ⊗ipn)Γn
c−→ (µ⊗ipn)Γn → 0

Proof. See [Ke] Theorem 6.6, for the case i = 2. The general case follows
easily (for instance see Proposition 4.1 of [We2] and use Lemma 4.1.5 and
Lemma 4.1.6).

Theorem 4.1.8. The i-th cohomological p-localization sequence for F (or
equivalently the p-localization sequence for K2i(F )) splits if and only if for
every n ∈ N we have (

Cl′Fn ⊗ µ
⊗i
pn
)

Γn
= 0

Proof. Thanks to Lemma 4.1.2 it will be su�cient to show that(
Cl′Fn ⊗ µ

⊗i
pn
)

Γn
∼= Ωn, i
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for every n ∈ N. There is a commutative diagram of Γn-modules (those on
the bottom line have trivial action) with exact rows

H2(OFn [1
p ], T (i+ 1)) � � //

cor2

��

H2(Fn, T (i+ 1))p // //

cor2

��

⊕
w-p

H1((kn)w, T (i))

cor1

��

H2(OF [1
p ], T (i+ 1)) � � // H2(F, T (i+ 1))p // //

⊕
v-p

H1(kv, T (i))

where cor is the (cohomological) corestriction. Following [Hu], Section 3,
we consider a part of the commutative diagram induced by snake lemma,
namely ⊕

w-p

H1((kn)w, T (i))[pn]
In, i−−−−→ H2(OFn [1

p ], T (i+ 1))/pnycor1

ycor2⊕
v-p

H1(kv, T (i))[pn] Ii−−−−→ H2(OF [1
p ], T (i+ 1))/pn

Using Lemma 4.1.3 we can write⊕
w-p

µ⊗
i

pn
In, i−−−−→ H2(OFn [1

p ], µ⊗
i+1

pn )ycor1

ycor2⊕
v-p

H1(kv, T (i))[pn] Ii−−−−→ H2(OF [1
p ], µ⊗

i+1

pn )

A straightforward veri�cation shows that we can split the map In, i by

π :
⊕
w-p

µ⊗
i

pn → Cl′Fn ⊗ µ
⊗i
pn

which is de�ned by
π((ζw)w) =

∑
w-p

[Pw]⊗ ζw

(Pw is the prime ideal corresponding to w). Note that π is surjective since
elements of the form [Pw]⊗ζw (with ζw running in µpn) generates Cl′Fn⊗µ

⊗i
pn .

In fact we have In, i = Jn, i ◦ π where Jn, i is the map in (4.6). We know that

Im Ii = Ωn, i
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Hence, η = cor2 ◦ Jn, i de�nes a Γn-homomorphism

Cl′Fn ⊗ µ
⊗i
pn → Ωn, i

By Lemma 4.1.4, we know that cor1 is surjective, therefore η is surjective.
Moreover taking coinvariants we get a map

η :
(
Cl′Fn ⊗ µ

⊗i
pn
)

Γn
−→ Ωn, i

This map is injective by Proposition 4.1.7 and this concludes the proof.

Remark 4.1.9. K. Hutchinson pointed out to me that if µp ⊆ F , then
the splitting criterion of Theorem 4.1.8 is independent of i. In fact, in this
situation, Γn is a cyclic p-group and hence by Nakayama's lemma(

Cl′Fn ⊗ µ
⊗i
pn

)
Γn

= 0⇔ Cl′Fn ⊗ µ
⊗i
pn = 0⇔ Cl′Fn/p

n = 0⇔ (Cl′Fn)p = 0

In particular, still supposing that µp ⊆ F , if (Cl′F )p 6= 0, then the p-
localization sequence for K2(F ) does not split. Here is another proof of
this (partial) result.

Proposition 4.1.10. Let p be any prime and suppose µp ⊆ F . If (Cl′F )p 6=
0, then the p-localization sequence for K2(F ) does not split.

Proof. Let v be a �nite place of F which does not lie over p: since p divides
|(k×v )p| (F contains the p-th roots of unity), we can choose an element ζv of
order p in k×v . We identify ζv with the sequence in ⊕v-pK1(kv)p which has 1
everywhere except at v where it has ζv. Now suppose that the p-localization
sequence for K2(F ) splits: then there exists an element x of order p in K2(F )
such that ∂(x) = ζv. Since F contains the p-th roots of unity, we can �nd
an element αv ∈ F× and a p-th root of unity ζ ∈ F such that x = {ζ, αv}
(see [Ta2]). Now from the de�nition of ∂ we see that

v(αv) 6≡ 0 (mod p), v(αv) ≡ 0 (mod p) if v 6= v and v - p

Hence
(αv) = apapp

v(αv)
v

where a is an ideal of F , ap is a product of prime ideals of F which lie over
p and pv is the prime ideal of F which corresponds to v. In particular the
class of pv is trivial in Cl′F /Cl

′
F
p since v(αv) is invertible modulo p. The

same holds for every prime ideal of F (not dividing p) since v was chosen
arbitrarily. Hence Cl′F /Cl

′
F
p has to be trivial, which implies p - |Cl′F | giving

a contradiction.
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4.2 Examples and non-examples

First of all we analyze the simplest case, namely F = Q. Let An denote
the p-Sylow subgroup of Q(µpn). Let Kn be the n-th level of the cyclotomic
Zp-extension of Q. Set ∆n = Gal(Q(µpn)/Kn) and for every j ∈ Z, let (An)j
denote the ωj-component of An where ω : ∆n → Z×p denotes the Teichmüller
character (notation as in [Wa], �6.3). As in Chapter 2 we set

Γp = Gal(Q(ζp)c/Q(ζp)) Γ = Gal(Q(ζp)c/Q)

We need the following well known result: for an even more general version of
the �rst statement, see [KM]. For the second statement, see [Ko2], Corollary
5.3.

Proposition 4.2.1. Suppose that i, j ≥ 1 and i ≡ j (mod p − 1). Then
WK ét

2i(Q) = 0 if and only if WK ét
2j(Q) = 0. Moreover, if A is the p-Sylow of

the class group of Q(µp), then WK ét
2i(Q) = 0 if and only if A−i = 0.

Proof. From Schneider's isomorphism (see [Sc], �6) we know that

WK ét
2i(Q) ∼= XQ(µp)(i)Γ

where XQ(µp)(i) denotes the i-th Tate twist of XQ(µp). Now Γ = Γp × ∆
where ∆ = Gal(Q(µp)c/Qc) ∼= (Z/pZ)×. In particular, setting X = XQ(µp),
we have

X(i)Γp×∆ = (X(i)∆)Γp
∼= X−i(i)Γp

where X−i denotes the ω−i-component of X where ω : ∆ → Z×p is the
Teichmüller character. Now by Nakayama's lemma

X−i(i)Γp = 0⇔ X−i(i) = 0⇔ X−i = 0

Since X−i = 0 if and only if X−j = 0, then WK ét
2i(Q) = 0 if and only if

WK ét
2j(Q) = 0. In order to prove the second assertion it will be enough to

prove that X−i = 0 if and only if A−i = 0. But this comes again from
Nakayama's lemma since

A−i = 0⇔ (X−i)Γp = 0⇔ X−i = 0

Remark 4.2.2. Incidentally Proposition 4.2.1 gives, together with a result
of Banaszak, a proof using wild kernels of the celebrated result of Kurihara
([Ku]) about su�cient conditions for the Vandiver conjecture to be true:
more precisely Kurihara proved that, for every n ∈ N,

K4n(Z)p = 0⇒ (A1)−2n = 0 (4.7)
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(recall that the Vandiver conjecture predicts precisely that (A1)−2n = 0 for
every n). Now, in order to prove (4.7) by means of Proposition 4.2.1, we have
to check that if K4n(Z)p = 0, then WK ét

4n(Q) = 0. We know that WK ét
4n(Q)

is isomorphic to (div(K4n(Q)))p (see [Ba], Theorem 3), namely

WK ét
4n(Q) ∼=

(⋂
r∈N

K4n(Q)r
)
p

=
⋂
r∈N

(K4n(Q)p)
r =

⋂
s∈N

(K4n(Q)p)
ps

This subgroup is contained in K4n(Z)p since we have the exact localization
sequence

0→ K4n(Z)p → K4n(Q)p →
⊕
q 6=p

K4n−1(Fq)p → 0

and, for every prime q, K4n−1(Fq)p is a �nite (cyclic) group. Hence

K4n(Z)p = 0⇒WK ét
4n(Q)⇔ (A1)−2n = 0

Example. Take F = Q: note that Fn = Q(µpn) and Γn = Gal(Q(µpn)/Q).
Moreover, for every n ∈ N, (Cl′Q(µpn ))p = (ClQ(µpn ))p = An. For every n ≥ 1
we have (

An ⊗ µ⊗
i

pn

)
Γn

=
((

An ⊗ µ⊗
i

pn

)
∆n

)
Gal(Kn/Q)

By Nakayama's lemma((
An ⊗ µ⊗

i

pn

)
∆n

)
Gal(Kn/Q)

= 0⇐⇒
(
An ⊗ µ⊗

i

pn

)
∆n

= 0

Furthermore (
An ⊗ µ⊗

i

pn

)
∆n

∼= (An)p−1−i

Moreover, as in the second part of the proof of Proposition 4.2.1, it is easy
to see that for any n ≥ 1

(An)p−1−i = 0⇐⇒ (A1)p−1−i = 0

Hence the p-localization sequence for K2i(Q) is split if and only if (A1)p−1−i
is trivial. Therefore, by Proposition 4.2.1, the p-localization sequence for
K2i(Q) is split if and only if WK ét

2i(Q) is trivial (see also [Ba], Corollary 2).

The condition that WK2(F )p = 0 implies the splitting of the p-localization
sequence for K2(F ) for a large class of �eld. To give an example, we �rst
recall a structure result of Keune (a similar assertion can be proved with the
results of [Sc], �6).
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Theorem 4.2.3. (Keune) There is an isomorphism

WK2(F )p ∼=
(
Cl′Fr ⊗ µpr

)
Γr

for each r such that µ(Fw)p ⊆ µrp for all w|p in Fr and, furthermore, pr kills
the p-primary part of K2(OF ).

Proof. See [Ke], Theorem 6.6.

Proposition 4.2.4. Let F be quadratic �eld. Then for each (odd) prime p,
the p-localization sequence for K2(F ) splits if and only if WK2(F )p = 0.

Proof. Clearly only one of the implication has to be shown (see Introduction).
If WK2(F )p = 0, then by the well known formula (coming from Moore exact
sequence) which expresses the relation between the orders of K2(OF ) and
WK2(F ) (see for example [Ba]), we have

|K2(OF )p| =
∏
v|p |µ(Fv)p|
|µ(F )p|

(4.8)

Suppose �rst that p 6= 3: then both the denominator and the numerator
are trivial (because F is quadratic). Hence K2(OF )p is trivial and therefore
the p-localization sequence for K2(F ) trivially splits. In the case p = 3 and
F = Q(µ3), K2(OF )3 is again trivial (by a calculation of Tate, see also [Ke],
3.8) and we conclude as before.
Now suppose that p = 3 and F 6= Q(µ3). Then the denominator of (4.8)
is again trivial. Clearly the numerator must be a divisor of 3 which implies
that 3 kills K2(OF )3. Since again µ(Fv)3 ⊆ µ3 for each v|3 in F , it follows
from Theorem 4.2.3 that for each r ≥ 1 we have(

Cl′Fr ⊗ µ3r
)

Γr
∼= WK2(F )3 = 0

Hence by Theorem 4.1.8 we see that the p-localization sequence for K2(F )
splits.

Anyway in general the conditionWK ét
2i(F )p = 0 is weaker than the condition

of Theorem 4.1.8, as we will show in the next example. First we need the
following criterion.

Proposition 4.2.5. Let F/Q be �nite Galois extension such that

• µp ⊆ F ;

• (Cl′F )p ∼= Z/pZ;

• every prime over p in F (µp2)/F is totally split.

Then WK2(F )p is trivial but the p-localization sequence for K2(F ) does not
split (and the same holds for the p-localization sequence for K2i(F ), i ≥ 1).
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Proof. We are going to use the language and the results developed in [Ja3].
For any F/Q �nite and Galois (even not satisfying the hypotheses) we have
an exact sequence (see [DS], �3)

0→ C̃lF (p)→ C̃lF
ϕ−→ (Cl′F )p −→ degFD`/(degF p)Zp → 0

where p is any prime of F over p. Moreover

degFD` = p[F ∩ Q̂c : Q]Zp (4.9)

where Q̂c is the cyclotomic Ẑ-extension of Q and

degF p = f̃p · deg p = [Fp ∩ Q̂c
p : Qp] · p

where Q̂c
p is the compositum of the Zq-extensions of Qp for every rational

prime q. Now we want to compare [F ∩ Q̂c : Q] and [Fp∩ Q̂c
p : Qp]. Suppose

that vp([F ∩ Q̂c : Q]) = t and that the �rst stage F1 of the cyclotomic Zp
extension of F is totally split at every prime p above p: this means that
(F1)p = Fp. In particular vp([Fp ∩ Q̂c

p : Qp]) ≥ t+ 1. In other words

degFD`/(degF p)Zp ∼= Z/psZ

with s ≥ 1. Therefore, if (Cl′F )p ∼= Z/pZ, we have C̃lF = 0. Since µp ⊆ F ,
we can use the isomorphism (see for example [Ja2])

µp ⊗ C̃lF ∼= WK2(F )/pWK2(F )

to deduce that WK2(F )p = 0. On the other hand (Cl′F )p is non trivial,
hence Proposition 4.1.10 (or Theorem 4.1.8) tells us that the p-localization
sequence for K2(F ) does not split.

Example. (Computations are performed using the PARI package, [PA]).
We have to �nd a �eld satisfying the hypotheses of Proposition 4.2.5. We
proceed as follows: we take p = 3 and we choose a prime ` such that
` ≡ 1 (mod 3): this ensures that Q(ζ`) has exactly one subextension of
degree 3 which we call E. Let K be the subextension of degree 3 of Q(µ9):
then EK is an abelian number �eld whose Galois group is isomorphic to
(Z/3Z)2. Now, if the order of 3 modulo ` is not divisible by 3, then E has
to be totally split at 3. In particular, if F ′ 6= K is any of the subextension
of degree 3 of EK, then EK/F ′ is totally split at 3. We may then choose
F = F ′(µ3): then the �rst and the third hypotheses of Proposition 4.2.5 are
satis�ed. So we are left to �nd such an ` with the additional requirement
that (Cl′F )3 is cyclic of order 3.
Choose ` = 61: of course we have 61 ≡ 1 (mod 3) and 3 has order 10
modulo 61. Choose F ′ the subextension of EK de�ned by the polyno-
mial X3 − 183X − 783 (one can check that F ′ has conductor 32 · 61): then
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F = F ′(µ3) = Q(θ) where θ is a root of the polynomial X6−793X3+226981.
There is only one (totally rami�ed) prime above 3 in F and it is principal.
Computations give ClF ∼= Z/39Z and then (Cl′F )3

∼= Z/3Z. Then by Propo-
sition 4.2.5, we deduce that WK2(F )3 = 0 but the 3-localization sequence
for K2(F ) does not split and K2(OF )3

∼= Z/3Z.
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