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Résumé de la thése

Le but de ce travail est de présenter des résultats a propos des noyaux sau-
vages étales. Soit p un nombre premier. Les noyaux sauvages étales d’un
corps de nombres F' (qui sont dénotés par WKSH(F) avec i € Z) sont des
généralisations cohomologiques de la p-partie du noyau sauvage classique
WK, (F'), qui est le sous-groupe de Ks(F) constitué par les symboles qui
sont triviaux pour tout symbole de Hilbert local. Ces noyaux sauvages étales
sont des Z,-modules et I'on sait qu’ils sont finis lorsque i > 1 (et méme,
suivant les conventions, si ¢ = 0) : on conjecture en plus qu'ils soient tou-
jours finis (conjecture de Schneider). Dans la suite, on va supposer que cette
conjecture est satisfaite.

On va s’intéresser en particulier & deux problémes. Le premier, qui est étu-
dié dans les Chapitres 2 et 3, est la déterminations des structures de groupe
qui sont réalisables comme noyaux sauvages étales. En d’autres termes, si
I’on se donne un corps de nombres F', un p-groupe abelien fini X et un
nombre entier ¢ € Z, on peut se demander s’il existe une extension finie
E/F telle que WKS!(E) = X. Une question semblable a été étudiée pour
les p-groupes des classes et il y a un relation précise entre les p-groupes des
classes et les noyaux sauvages étales. Par conséquent, on peut espérer tra-
duire les résultats classiques dans le contexte des noyaux sauvages étales.
Peut-étre est-il intéressant de donner ici une courte récapitulation sur le
probléme de réalisation classique pour les p-groupes des classes (voir [Ge]
et |Yal). Essentiellement, deux techniques sont utilisées. D’un coté, pour un
corps de nombres F' fixé, I'on étudie la p-tour des corps des classes de Hil-
bert de F': Yahagi a montré (voir [Ya] et [So|) que cette tour est infinie si et
seulement §’il n’y a pas d’extensions finies F/F dont le p-groupe des classes
soit trivial. De plus, si la tour est finie, alors toute structure de p-groupe
abélien apparait comme p-groupe des classes pour quelque extension finie
E/F. De lautre coté, une fois que l'on sait que pour un corps de nombres
F fixé, il existe une extension finie dont le p-groupe de classes est trivial,
alors on peut se servir de la théorie du corps des classes et de la théorie
des genres pour trouver, pour n'importe quel p-groupe abélien fini X, une
extension finie £/ F telle que le p-groupe des classes de E est isomorphe a X.

En effet, la traduction du résultat de Yahagi dans le contexte des noyaux
sauvages étales n’est pas tout a fait immeédiate : la relation entre le groupe
des classes et le noyau sauvage étale d’'un corps de nombres F' s’écrit dans le
langage de I-modules, ot1 I est le groupe de Galois sur F' de la Zj-extension
cyclotomique de F'(pp). La facon la plus naturelle pour s’approcher du pro-
bleme est donc de considérer le probléme de réalisabilité pour les modules
d’'Iwasawa. Ce probléme a été étudié (parmi d’autres auteurs) par Ozaki
in [Oz] : il a montré que pour tout A-module fini X, il existe un corps de



nombres k tel que le module d’Iwasawa de k (c’est a dire la limite projective
des p-groupes des classes le long de la tour cyclotomique) est isomorphe a
X. Les techniques utilisées sont inspirées a celles de Yahagi et en fait elles
s’appuient d’une facon fondamentale du fait que p ne divise pas le nombre
des classes de Q. Pour obtenir la traduction de ce résultat en termes de
noyaux sauvages étales il faut considérer plutot Q(u,) -plus précisément un
sous-corps convenable de Q(y,). Bien entendu, le nombre des classes de ce
sous-corps n’est plus premier avec p (du moment que p peut étre irrégulier).
D’autre part, si p est régulier, la preuve d’Ozaki peut étre adaptée (comme
I'on montre dans le Chapitre 2).

Pour traiter le cas mauvais (c’est a dire le cas oi le nombre des classes
du sous-corps convenable comme dessus n’est pas étranger & p), on consideére
des analogues des p-corps des classes de Hilbert et des p-tours des classes de
Hilbert qui ont été définis par Jaulent et Soriano in [JS| pour i = 0 et géneé-
ralisés par Assim in [As| (mais sous ’hypothése que le corps de base contient
les racines p-iémes de l'unité). Dans le Chapitre 3, on développe cette théorie
dans le cas général : le résultat plus important est que si WK;f(Q) # 0 et
1 est impair, alors ’analogue de la p-tour des classes de Hilbert de Q est
infinie. Cette derniére condition est équivalente a la condition WKSH(F) # 0
pour tout corps de nombres F' contenant le méme sous-corps convenable de
Q(pp) dont on a parlé tout a I'heure. Il s’agit sans doute de la différence la
plus importante entre le cas classique des groupes des classes et celui des
noyaux sauvages étales : en d’autres termes, la non-finitude de la tour n’im-
plique pas directement 1’absence de corps de nombres avec noyau sauvage
étale trivial (a cause de la condition sur le sous-corps convenable, bien stir).
Il se peut bien entendu que cette différence soit apparente et que 1’on puisse
se passer de ’hypothése sur le sous-corps. On ne s’intéresse pas ici de la
question classique sur les conditions suffisantes afin que la tour soit infinie
(a la Golod-Shafarevic, voir [JS] et [As]) : de toute facon, comme 'on pourra
facilement deviner, une adaptation des résultats classiques ne devrait pas
étre compliquée.

Le second probléme auquel on s’intéresse dans ce travail est étudié en dé-
tail dans le Chapitre 4. On regarde de plus preés la suite exacte de localisation
en K-théorie d'un corps de nombres F

0 — K5(Op) — K2i(F) % @@ Kai-1(ky) — 0 (1)

v finite
(o1 ky est le corps résiduel de F' a la place v et la somme directe est prise
sur les places finies de F'). On peut se poser la question de déterminer des
conditions nécessaires et suflisantes afin que la suite exacte soit scindée, une
motivation étant le théoréme de Tate-Milnor (voir [Mil|, Theorem 2.3) qui
affirme que, si E est un corps de fonctions rationnelles & une variable, la suite



de localisation pour Ko(FE) (qui est tout a fait analogue & (1)) est scindée.
Revenant au probléme de scission pour les corps de nombres, on est amené
naturellement & considérer, pour tout p premier, la p-suite exacte de locali-
sation, c’est & dire la partie p-primaire de la suite (1). Dans [Bal|, Banaszak a
enoncé un théoréme qui affirme que la p-suite de localisation de Ko;(F) est
scindée si et seulement si div(Ks;(F)), = 0 (pour un groupe abélien M, 'on
dénote par div(M) le sous-groupe des éléments de hauteur infinie). On sait
aussi que div(Ky;(F)), = WKS(F). La trivialite de WKSH(F) est bien sir
une condition nécessaire pour que la suite de localisation soit scindée : tou-
tefois la preuve de Banaszak ne semble pas compléte. En effet, en cherchant
un contre-exemple (c’est & dire un corps de nombres F tel que WKS!(F) = 0
mais la p-suite de localisation de Ko;(F) n’est pas scindée), on trouve une
condition nécessaire et suffisante pour que la i-éme suite soit scindée qui est
différente de celle de Banaszak. La différence entre cette nouvelle condition
et celle de Banaszak ne se voit pas au niveau des petits corps de nombres
(c’est a dire par exemple Q ou les corps quadratiques) : les contre-exemples
que l'on exhibe sont en verité difficiles & trouver.

Dans le premier chapitre, on fixe les notations et on rappelle les résultats
connus qui servent comme motivation aussi bien que comme outils pour ce
travail. En particulier, les groupes de K-théorie et les noyaux sauvages étales
sont introduits et ’on décrit brievement leur propriétés.

Mots-clés en francais :
noyaux sauvages étales, théorie d’Iwasawa, théorie des genres, suite de loca-
lisation en K-théorie

Keywords :
étale wild kernels, Iwasawa theory, genus theory, K-theory localization se-
quence

Cette these & été preparée dans le cadre du projet de théses en cotutelle
entre la France et I'Ttalie. En particulier, le travail s’est déroulé a U'Institut
de Mathématiques de Bordeaux, Université Bordeaux 1, 351, cours de la
Libération - F 33405 Talence cedex, France, ainsi que au Dipartimento di
Matematica "Leonida Tonelli", Universita di Pisa, Largo Bruno Pontecorvo
5, 56100 Pisa, Italie.






Contents

1 Introduction
1.1 General description of the work . . . . . . ... ... ... ..
1.2 Basicnotation. . . .. ... ... ... ... ...
1.3 Algebraic K-theory of number fields . . . ... ... ... ..
1.4 Etalewild kernels . . . . . . . ... ... L.

2 Realizability of abelian p-groups as étale wild kernels
2.1 Generalization of a result by Ozaki . . . . .. ... ... ...
2.2 Structure of étale wild kernels . . . . .. ... ..o

3 Etale analogues of Hilbert class field
3.1 Etale analogues of Hilbert class field . . . .. ... ... ...
3.2 Etale analogues of class field towers . . . . . . ... ... ...
3.3 Examples . . . ...

4 Splitting of the K-theory exact localization sequence
4.1 Obstruction to splitting . . . . . .. ... ... ... ...,
4.2 Examples and non-examples . . . . . . ... ...



CONTENTS




Chapter 1

Introduction

1.1 General description of the work

The aim of the present work is to prove some results about étale wild kernels.
Let p be an odd prime. Etale wild kernels of a number field F' (which are
denoted WKS!(F) for i € Z) are cohomological generalizations of the p-part
of the classical wild kernel WKy (F'), which is the subgroup of Ks(F') made
up by symbols which are trivial for any local Hilbert symbol. Etale wild
kernels are Zy-modules which are known to be finite if ¢ > 1 (and even if
i = 0, depending on the chosen convention): actually they are conjectured to
be always finite (the Schneider conjecture). In the following we will suppose
that this is always the case.

Two problems are studied in detail. The first, which is analyzed in Chap-
ter 2 and Chapter 3, is to determine which group structures are realizable for
étale wild kernels. In other words, given a number field F', a finite abelian
p-group X and i € Z, one can ask if there exists a finite extension E/F such
that WK$HE) = X. A similar problem has been studied for p-class groups
and there are precise relations between the p-class group and étale wild ker-
nels. Therefore one may expect to translate results from p-class groups to
étale wild kernels. It is maybe useful to give here a short account on the
classical realizability problem for p-class groups (see |Ge| and [Ya]). Essen-
tially two kind of techniques are used. On the one hand, for a fixed number
field F, one studies the Hilbert p-class field tower of F: it has been shown
by Yahagi (see [Ya| and [So]) that the Hilbert p-class tower of F is infinite
if and only if there is no finite extension E/F whose p-class group is triv-
ial. Furthermore, if the Hilbert p-class tower of F' is finite, then every finite
abelian p-group structure appears as p-class group of some finite extension
E/F. On the other hand, once we know that for a fixed number field F'
there exists a finite extension whose p-class group is trivial, then class field
theory and genus theory are used to exhibit, for any finite abelian p-group
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X, a finite extension F/F such that the p-class group of FE is isomorphic to
X.

Actually, the translation of Yahagi’s result in terms of étale wild kernels
is not immediate: the relation between the class groups and étale wild ker-
nels of a number field F' is expressed in terms of I'-modules structures, where
I' is the Galois group over F' of the cyclotomic Zy,-extension of F'(y,). The
most natural way to approach the problem is then to consider the realiz-
ability problem for Iwasawa modules. This problem is studied (among many
others) by Ozaki in [Oz|: he proved that for any finite A-module X, there
exists a number field k such that the Iwasawa module of k (i.e. the projective
limit of p-class groups along the cyclotomic Zy,-extension) is isomorphic to
X. The techniques used are inspired to those by Yahagi and actually Ozaki
makes fundamental use of the fact that p does not divide the class number
of Q. To get the translation of this result in terms of étale wild kernels one
has to consider Q(p,) -more precisely a suitable subfield of Q(y,) depending
on - instead of Q. Here the problem is that the class number of this suitable
subfield is no more coprime with p (as p may be irregular). If this is not the
case anyway, the proof of Ozaki can be adapted as it is shown in Chapter 2.

In order to deal with the bad case (i.e. the case where the class number
of the suitable subfield above is not coprime with p), one considers analogues
of Hilbert p-class fields and Hilbert p-class towers. These have been defined
by Jaulent and Soriano in [JS] for i = 0 and generalized by Assim in [As]
(but only for field containing f1,). In Chapter 3 we develop this theory in the
general case: the main result is that if WKS!(Q) # 0 and 4 is odd, then the
étale analogue of the Hilbert p-class tower of Q is infinite. This is equivalent
to the fact that, for every number field F' containing the suitable subfield of
Q(up) as above, we have WKSH(F) # 0. This is probably the main difference
between the classical class groups case and the étale wild kernels case: in
other words, the infiniteness of the tower does not seem to imply directly
that there do not exist fields with trivial étale wild kernel (because of the
condition on that subfield). Maybe this hypothesis on the subfield is merely
a technical one. Here we do not treat the classical question of giving condi-
tion for the tower to be infinite (in the spirit of Golod-Shafarevic inequalities,
see |[JS] and |As]): anyway, as the reader may guess, an adaptation of the
classical results to the étale case should not be difficult.

The second problem which is studied in this work is analyzed in Chapter
4. We focus on the K-theory exact localization sequence for a number field
F
0
0 — K2(OF) — Ka(F) — @ Koi—1(ky) — 0 (1.1)
v finite

(here k, is the residue field of F' at v and the sum is taken over the finite
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primes of F'). One can asks for conditions in order for this exact sequence
to be split: one motivation for this question is the Tate-Milnor theorem (see
|Mil], Theorem 2.3) which states that, if £ is a rational function field of
one variable, then the localization sequence for Ko(FE) (which is completely
analogous to (1.1)) always splits. Coming back to the splitting problem for
number fields, one is naturally lead to consider separatedly for each prime p,
the p-localization sequence for Ky;(F), i.e. the p-primary part of the above
localization sequence. In [Bal, Banaszak stated a theorem which says that
the p-localization sequence for Ko;(F) splits if and only if div(Ko;(F)), =0
(for an abelian group M, div(M) denotes the subgroup of divisible elements
of M, see Section 1.2). We also know that div(Ky;(F)), = WKS{(F). The
triviality of WKSH(F) is easily seen to be a necessary condition in order for
the localization sequence to be split but Banaszak’s proof of sufficiency seems
to be incomplete. Actually looking for a counterexample (i.e. a number field
F such that WKS$HF) = 0 but the p-localization sequence for Ky;(F) does
not split), we found a necessary and sufficient condition for the i-th sequence
to be split which is different from that of Banaszak. It turns out for exam-
ple that in the case F' = Q Banaszak’s condition is necessary and sufficient
(counterexamples are indeed of subtle nature).

In the rest of this chapter, we fix notation and recall known results which
serve at the same time as motivation and tools for our investigations. In
particular, K-groups and étale wild kernels are introduced and some of their
properties are listed.
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1.2 Basic notation

The following section is devoted to fix notation which will be used throughout
the rest of this work. Additional notation which is specific to a chapter will
be defined when needed.

Let F be a number field, n € N a natural number, p an odd rational prime
and B an abelian group. Moreover we will always fix an algebraic closure F
of F' and consider any of the extensions of F' which appear as contained in
F. Then

e Z, is the ring of p-adic integers, i.e. the projective limit of Z/p"Z with
respect to projections;

e 7 is the projective limit of Z/nZ with respect to projections;

o A =Zp[T] is the Iwasawa algebra in the indeterminate T

e 3, denotes the p-primary part of B;

e Bp"] is the subgroup of elements of B whose order divides p";
e Div(B) denotes the maximal divisible subgroup of B;

e div(B) ={be€ B|Vn € N3b, € B:b=nb,} (div(B) is a sugroup
of B which is commonly called the subgroup of (infinitely) divisible
elements or the subgroup of elements of infinite height of B);

o 71 (F) (resp. r2(F')) denotes the cardinality of the set of real places
(resp. complex places) of F' (in particular, if [F': Q] = d, then r{(F) +
2ry(F) = d);

e Op is the ring of integers of F';
e O} is the group of units of F;
e Clp is the ideal class group of F

e Cl); is the p-split ideal class group of F, i.e. the quotient of Clg by
the subgroup generated by classes represented by primes above p;

e p will generally denote a prime of O and vy is the valuation attached
to p;
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e L is the group of roots of unity contained in F;

® i, is the group of n-th roots of unity contained in an algebraic closure
of I

® [ipoo = UneNipn;

e Fis the cyclotomic Z,-extension of F;

o I'r = Gal(F(up)¢/F) and (I'r), = Gal(F°/F);

e for any n € N, F,, will usually denotes the n-th level of F¢;

e Ap, = (Clg,)p, A’Fn = (Cl%n)p and Ape is the inductive limit of the
Ay’s with respect to maps of extension of ideals (to ease notation we
will also set Ap = Ap,);

e X (resp. X}) is the projective limit of the A,’s (resp. of the A]’s)
with respect to maps of norm of ideals;

e [“d is the maximal pro-p abelian extension of F¢ which is split every-
where;

o 7 is the maximal pro-p extension of F'¢ which is split everywhere;

e kp : Gal(F/F) — LY is the p-cyclotomic character of F (for any
¢ € pp) and o € Gal(F/F), then kp is defined by o(¢) = (*F(0));

e w: (Z/pZ)* — Z, is the Teichmiiller character (see [Wal, §5.1); we
will also denote by wp : Gal(F(up)/F) — Z, the character which is
obtained composing w with the natural identification of Gal(F'(pp)/F)
with a subgroup of (Z/pZ)*;

e Clyp is the logarithmic class group of Jaulent (see [Ja3])

e if ['is a OM field, F* denotes its maximal real subfield and if A =
Gal(F/FT) and B is a A-module we set as usual BT = {b € B|db = b}
and B* = {b € B|db = —b} where § € A is complex conjugation.

If the field F' under consideration is clear and no misunderstanding is possi-
ble, then we will often let the subscript F' drop in the notation of ', (I'r),,
K, ... Similar notation is used if F' is a p-adic field (whenever it makes
sense).

We now define a notation which is classical (see for example [Wal, §6.3). Let
A be a finite abelian group and denote by A its character group. Let R be
a ring which contains the inverse of |A[ and all values of x for any x € A.
For any x € A set .

S > x(8)7 € R[A]
[ JSTAN
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The ¢,’s are called orthogonal idempotents of the algebra R[A]: they satisfies
the following properties

1. 5i = Ey;

2. eyey =01if x # 9
3.1=32 cAcx

4. ey0 = x(0)ey

Let A be an abelian group which is a R[A]-module. Then we define A, =
ey A: note in particular that, thanks to property 4 and e,0 = oe, since A
is abelian, A, is the submodule of A on which A acts via o(a) = x(o)a for
all 0 € A (in other words A, is the eigenspace of o with eigenvalues x(o)).
Moreover, again using the above properties, we have

A=A,
X€A

Of particular interest to us is the case where A = Gal(F'(yp)/F') (in partic-
ular A is a cyclic group of order dividing p — 1): then R can be taken to be
Zy. In this case

R = {whlo <i < [Al}
and, if A is a Z,[A]-module, we set Ay = As
We will make use of Tate twists (see [Ta2|): we recall briefly how they are
defined. Set Gp = Gal(F/F). The Tate module for F is the Z,[G ]-module

where the limit is taken over the maps ji,n+1 — pyn defined by raising to the
p-th power. We set Z,(0) = Z,, (which is considered a Z,[G r]-module with
the trivial action) and, for every m € N, we define inductively

Zp(m) = Zp(m — 1) ®z, Zy(1)
Ly(=m — 1) = Homg, (Zy(1), Zy(=m))

again considered as a Zp[Gp|-module with the standard action defined on
tensor product and homorphisms groups. More generally for every Z,[Gr|-
module M and for every m € Z, we define

M(m) = M ®z, Zy(m)

Actually M (m) is isomorphic (the isomorphism depending on the choice of
a Zy-generator of Zy(1)) to the module which is equal to M as an abelian
group and whose Gp-module structure is given by the rule

o-a=k(0)".0(a)
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for every a € M (the definition of the rule makes sense for m € Z because
k(o) € Z, is invertible).

We will not make use of deep results in Iwasawa theory (in particular

p-adic L-functions and the Main Conjecture will not be used): definitions,
notation and results used are classical (and hence will not be recalled here).
Of course they can easily be found in Chapter 13 of [Wal/.
We will occasionally refer to two old conjectures in algebraic number theory.
The first is the Vandiver conjecture which says that p does not divide the
class number of the maximal totally real subfield of Q(y,). The second is the
Leopoldt conjecture which can be formulated in many different equivalent
ways (see [INSW]): for example it predicts that there are exactly ro(F) + 1
independent Z,-extensions of a number field F'.

We end this section with a remark on cohomology: essentially three types
of cohomology will be used. If G is a profinite group and A is a dicrete G-
module, then H*(G, A) denotes the i-th standard group cohomology of G
with values in A (see [NSW]). Sometimes, if G is finite, it will be convenient
to use Tate cohomology which is as usual denoted by H'(G, A). On the
other hand we will also make use of continuous cohomology (which was first
defined by Tate in [Ta2] but see also [NSW]): if G is a profinite group and A is
a topological G-module, then HY, (G, A) denotes the i-th continuous group
cohomology of G with values in A (but we will often let the subscript cts drop
if no confusion can arise). Finally, we shall use étale cohomology: if X is a
scheme and .# is a sheaf on the étale site of X, then HZ (X, .#) denotes the
i-th standard group cohomology of X with values in .% (see [Mil]). Actually
since we are going to consider only affine scheme, i.e. of the form Spec(R)
for some ring R, we will also write H',(R, .7) for H.,(Spec(R), 7). We will
also use the following notation

HE(OF (3], Z,(§)) = lim (O [2], 15)

It is certainly useful to keep in mind the following result, which is in fact
a part of more general theorems whose proofs can be found in [Mil] (see
Example 1.7 of Chapter III) and [Mi2| (see Proposition 2.9 of Chapter II).

Theorem 1.2.1. Let S be the set of places of F' made up by archimedean
primes and primes above p. Let G g denote the Galois group of the mazimal
extension of I which is unramified outside S. The following holds:

o HYy(F, pyl) = H'(F, pyl);

o Hy(Or[], myl) = H'(Grys, ).

Here we denote with u?ﬁ

standard).

both a module and a sheaf (a notation which is
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1.3 Algebraic K-theory of number fields

In this section we briefly recall the definition of algebraic K-theory for rings
which are interesting in algebraic number theory, i.e. number fields, ring of
integers and finite fields. We also briefly discuss the relationships of algebraic
K-theory of those rings with étale cohomology and étale K-theory. We are
not going to give an exhaustive treatment or follow the historical evolution
of the subject (referring the reader to [Mil], [Ko2| and [Wel]).

The definition of K-theory groups is due to Daniel Quillen. Let R be a ring
with 1. For any n € N, let GL,(R) be the group of invertible n x n matrix
with coefficients in R. Set

GL(R) = lim GLy(R)

the limit being taken with respect to the inclusion tppt41 @ GLp(R) —
GLy+1(R) defined by

tny1((mi)) =< 1 ifi=j=n+1
0 otherwise

We consider R as a topological ring with the discrete topology. Then GL(R)
has a natural induced topology and we consider its classifying space BGL(R).
Then we perform the so called Quillen’s +-construction, which is a topolog-
ical modification of BGL(R) (and it won’t be recalled here since it is rather
technical), obtaining a new topological space which we denote by BGL(R)™.
Then, for any n € N,

Ki(R) = mj(BGL(R)™)

where 7;(X) denotes the n-th homotopy group of the topological space X.
For any ¢ € N, K,,(R) is an abelian group. For i =0, 1, 2, K;(R) coincides
with the classical K-theory groups which were defined before.

Let R be a finite field: in this case Ko(R) =Z, K1(R) = R* and

0 if 7 is even and nonzero
Ki(R) = { cyclic of order |R|' —1 ifi=2t—11is odd
(see [Qul).
Choose now R = Op: in this case Ko(R) =Z & Clp, K1(R) = O and
finite abelian group if ¢ is even and nonzero
K;(R) =< Z-module of rank r1(F) +ro(F) ifi=1 (mod 4) and i > 1
Z-module of rank ro(F) if i =3 (mod 4)

(see [Bol). In some sense, one can think of even K-groups of O as higher
analogues of Clr and of odd K-groups as analogues of Oj.
Finally if R = F' we have Ko(R) = Z, K1(R) = F* and

Ky(F) = F* @z F*/{z @ (1 — 2)|x € F* ~ {1}
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An element in Ky(F) is called a symbol: if z, y € F*, [z ® y] is denoted by
{z, y} (actually every symbol is of this form, see [Le]).
Moreover (see [Sou|) K;(F) = K;(Op) if i > 3 is odd and there are short

exact sequences
02;
0 — K2(OF) — Ky (F) == ®pK2i—1(OFp/p) — 0 (1.2)

(the sum being taken over the finite primes of F') which are called the K-
theory exact localization sequences (for algebraic number fields). It shows, in
particular, that Div(Ky;(F)) = 0. We have the following description of the
map 0o : Ko(F) — @pKo9—1(OF/p), which is also called the tame symbol:

(O2(z, y))p = ((—1)v” (2 () 3209 W)y =9 () miod P) (1.3)
P

Therefore Ko(OF) is also called the tame kernel. There are also analogues
of (1.2) if S is a finite set of places of F' (including the archimedean ones)
and one considers the ring O% of S-integers of F': namely there are short
exact sequences of the form

0 — Koi(O3) — Koi(F) LN BpgsKaim1(0p/p) — 0

Just as for the first three K-theory groups, higher K-theory groups are
interesting invariants of number fields but in general they are very difficult
to study. Conjecturally there is a strong relation between étale cohomology
and K-theory of ring of integers.

Conjecture 1.3.1. (Quillen-Lichtenbaum) Let p be an odd prime. For any
t € Nand j =1, 2, there are isomorphisms

chiy : Koy j(Or) @z Ly — HL,(Op[3], Z,(i))

The ch; j’s were defined by Soulé ([Sou|) and Dwyer and Friedlander (see
[DF]): they are called étale Chern characters. Tate (see [Ta2]) proved that
this holds if ¢ = j = 2. In this case the étale Chern character is not difficult
to describe: we have cho 2 = h, where h is the isomorphism

h: (Ko(F)),— H*(F, Zy(2)),

defined by
h({a, b}) =draUdpb

where dp : F*—H'(F, Z,(2)) is the connecting homomorphism of the long
exact cohomology sequence associate to the exact sequence

0—Zy(1) — limF* —F " —0

—
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(the limit in the middle is taken with respect to p™-th powers). Moreover
h(KQ(OF[%])IJ = Hegt(OF[%]y Zp(2))

(He?t((’)p[%], Z,(2)) is finite and injects in H?(F, Z,(2)) by inflation).

Soulé proved that ch; ; is surjective for any ¢ and j. Also Dwyer and Fried-
lander proved the surjectivity of étale Chern characters making use of étale
K-theory (see |DF]). In general, for any ¢ € N and j = 1, 2, there are
surjective maps

chily : Koi—j(O) ®z Zp — K5 _;(OF[3])

and natural isomorphisms

Kyi_;(Or[3]) = HL(Op(3], Zp(i) (1.4)
which give ch; ; if composed with chftj Hence Conjecture 1.3.1 is equivalent

to the fact that chiéfj are isomomorphisms. The general case of the Quillen-
Lichtenbaum conjecture is a consequence of the Bloch-Kato conjecture whose
proof seems to be imminent thanks to the work of Rost, Voevodsky, Weibel
and others ([Ro], [Vol], [Vo2], [Vo3]...).

We end this section by recalling a structural result for étale cohomology
groups of ring of integers of C'M fields containing u,. This is actually a
generalization of Coates’ description of K2(OF).

Theorem 1.3.2. Suppose that F' is a CM field and p, C F. For anyn € N,
let F, be the n-th level of F© and set I',, = Gal(F°/F,). Then cohomological
restriction induces isomorphisms

2 1 ; + o~ 2 1 . + Tno ;
HE(OF, ], Zp(i +1))" = (Hét(OFc[p}, Zp(i + 1)) ) if i > 1 is odd

I'n
H2 (O, 3], Zy(i + 1)) = (HZ(Ore[3], Z(i +1))7) " if i = 1is even
This gives isomorphisms

(Ape(D)'" = HE(Op+ 5], Zp(i+ 1)) if i is odd

(Ape (i)' = Hegt(an[%], Zp(i+1))~ if 1 is even

Proof. The proof of this result is maybe well-known but not so easy to find
in print: anyway everything can be deduced by [Co] without particular effort
so we only sketch the proof. For any ¢ there are I'-modules H; and exact
sequences

0— (Hi)r, — HZ(OF, (5], Zp(i+ 1)) — (HZ,(Op<[}), Zp(i+ 1)) —0
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where the last map is cohomological restriction (this result is also proved
in [NQD], Proposition 4.4 (ii)). The arguments of the proof of Theorem 11
of |Co| apply and give that H;" = 0 if i is odd and H; = 0 if i is even.
The proof of the last assertion uses the same arguments which are used in
the proofs of Theorem 4 and Theorem 6 of [Co]: in this case, instead of
Theorem 2 of [Co| (which is due to Tate), one has to use Conjecture 1.4.4
(see next section) which is proved for ¢ > 2 in Théoréme 5 of [Sou| (see
Remark 1.4.5). O

If the Quillen-Lichtenbaum conjectures hold for p and F, we then have
(7 odd)
(A7 (i)™ = Koi(Op+)p

1.4 Etale wild kernels

In this section we briefly recall the definition of étale wild kernels of number
fields. As in the preceding section we will not follow the historical evolution
of the subject (referring the reader to [Sc| and [Ba|). Etale wild kernels
are cohomological objects which represent the obstruction to a local-global
principle. They are in fact a particular case of Tate-Shafarevic groups (see
[NSW]).

Let S be a set of primes of F' containing the archimedean ones. Denote by Fg
the maximal subextension of F|F which is unramified at each prime which
does not belong to S. Clearly Fs|F' is Galois and we set Gg = Gal(Fg|F).
Let Opgs be the ring of S-integers of F. In this section M is a finitely
generated discrete Gg-module the order of whose torsion subgroup is a unit
in Opg. Furthermore for prime p of I’ denote by F}, the completion of F' at
p. There is an embedding i, : F' < F,. We choose an algebraic separable
closure Fy, of F, and an embedding F' < F}, which is compatible with i,. We
set G, = Gal(Fy|Fy): we have an inclusion Gp, < Gp (which comes from
F — Fy) which identifies G, with the decomposition group of one of the
primes of F' which lies over p (in fact, the choice of an embedding F' — F,
corresponds to the choice of a prime of F which lies over p). In this situation,
M becomes a Gr,-module. Composing with the canonical projection (which
is in fact restriction) we get a localization map G F, — Gs which allows us
to consider, for each j > 0, the cohomological map

Nj = My(F, M) : H(Gs, M) — [[ H(Gg,, M)
pesS

In the following we are going to omit the references to S, F' and M when no
ambiguity can appear. We set

I (F, M) = Ker(N,(F, M))
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Now suppose that {7}, 7 }ner is an inverse system (over the inductive set
(I, <)) of finite Gg-module whose order is a unit in Opg. Then

T =1lim7Ty

is a topological Gg-module (with respect to the profinite topology on T'). If
h < k, then we have the commutative diagram

, , by .
0 — HI]S(Fa Tk) I H](G57 Tk) — HpeS H](Gpa Tk)
l Thi l lT}tk
. . s .
0 — I(F,T,) — H/(Gs, Tn) — Hpes HI(Gyp, Ty,)
where 777, is the map induced in cohomology by 7j; and the map

T4 (F, T},) — IT(F, T),)

is induced by the diagram (it is the restriction of 7}, to IHfg(F, T})). From
this we can define a morphism

Aj = Ny(F, T) = im Xy(F, Ty) : lim HY (G5, Ty,) — lim [ [ H(Gp, T)
pesS

Then we define

H‘I?S‘ cts(F7 T) = I(Elmé'(Fv Th)

This choice is motivated by the following.

Proposition 1.4.1. With the notation just introduced, there is an ezact
sequence

0— ]-H{S' cts(F? T) cts GS? H cts GP’

pes

Proof. First of all we know that for every 7 > 0 and every h € I, both
Hj(Gg, Ty) and H’(Gy, T,) (p € S) are finite and the same holds for
111 g(F, T},) because it is a subgroup of H’, (Gs, T},). Then we have the
equahtles

Héts(G57 ) = hm Hcts(GSa Th) cts(GP’ ) - hmH

cts

(GP7 Th)

for every p € S. Now observe that inverse systems of finite groups have
the so called Mittag-Leffler property (see [NSW]): in particular the system
{IT(F, Tp), 7j5, ther (where the 7,7, ’s are the cohomology maps induced by
the 7%’s) has this property. Hence (see the end of the preceding section) we
have an exact sequence

0 — Um I (F, T},) — lim H/ (G, T},) — lim [ [ H/ (Gy, T,)
pes

which is exactly the result we were looking for, because inverse limits com-
mute with finite products. O
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Definition 1.4.2. Let p be an odd prime and let S, be the set made up
of primes above p and infinite primes of F. Then, for any i € Z, we denote
H_I%poo(F, Zp(i)) by WKEH(F) and call it the i-th étale wild kernel of F.

Remark 1.4.3. Using Tate’s map h defined in the preceding section and
local duality, the morphism

A : cts(GSv - H cts GP? ))
pes

defining WKS' becomes, provided that S, o C S,

A2t Ko(OF)y — H(/’LFp )p
pes

where Ao is defined by Hilbert symbol. One can extend this morphism to the
whole K2(Op) and its kernel is called the classical wild kernel (often simply
denoted WK (F')), since it is defined by means of Hilbert symbols instead
of tame symbols (see (1.3)). By definition WK>(F') is a subgroup of Ks(F)
and in fact

WK (F)p = div(Ka(F)p)

(this statement is due to Tate, see [Tal|, but it is actually proved in [Hu],
where also an accurate description of the case p = 2 can be found). Similar
statements hold for étale wild kernels (even without assuming the Quillen-
Lichtenbaum conjectures, which are higher analogues of Tate isomorphism):
more precisely WKS!(F) can be seen canonically as a subgroup of Ko;(F)
and

WK (F) = div(K2(F),)

(see |Bal).
Conjecture 1.4.4. (Schneider) For any i € Z, WKS!(F) is finite.

Remark 1.4.5. For any i € Z, WKS!(F) is a finitely generated Z,-module
(see [Sc|). Actually one has (see [Sc|, §5, Satz 5)

WEKGH(F) = (Clp)p

In particular the Schneider conjecture holds for i = 0 (but see also Remark
1.4.7). One can also prove that the Schneider conjecture for i = —1 is
equivalent to the Leopoldt conjecture (see [Sc|, §7, Lemma 1). Soulé proved
(|[Sou|, Théoreme 5) that the Schneider conjectures holds for i > 2: actu-
ally the Schneider conjecture for ¢ # 0 predicts exactly that the maximal
divisible subgroup of H'(F, Q,/Z,(i)) is isomorphic to (Q,/Z,) ") (resp.
(Qp/Z,)*(F)472(F)) if j is even (resp. if i is odd).
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In the rest of this work, we will always assume that the Schneider con-
jectures hold for any i € Z.

Etale wild kernels are objects of cohomological nature and their study can be
approached naturally via cohomological methods. There are two interesting
descriptions of étale wild kernels in terms of invariants of F' (or F°).

Theorem 1.4.6. If i £ 0, there is an isomorphism

WESHF) 2 (Xp,) @2, (D))

I'r
Proof. See [Sc], §6, Lemma 1. O]

Remark 1.4.7. Many authors prefer to define the ¢-th étale wild kernel
as X};(up)(i)r‘F (this definition differs from the original one only for i =
0). The anlogous formulation of the Schneider conjectures predicts then
that X},(“ )(i)ry is finite for any i € Z. Recall that (X}(Mp))pF = Clp
and therefore this last formulation of the Schneider conjecture for ¢ = 0 is
equivalent to the generalized Gross conjecture (see [Ja3]).

Next we recall a description of étale wild kernels which deals with induc-
tive limits rather than projective limits. The following theorem, which has
to be compared with Theorem 1.3.2, is actually a generalization of Theorem
3.5 of |Kol| (an alternative proof of which can also be found in [Jal]). For
a number field F, we denote by Cp the quotient of the idéle group of F
defined in [Kol] after Theorem 1.14. Then Cpe denotes the direct limit of
Cr, where F), is the n-th level of F¢/F.

Theorem 1.4.8. Suppose that F' is a CM field and p, C F. For anyn € N,
let F, be the n-th level of F¢ and set T',, = Gal(F°/F,). Then cohomological
restriction induces isomorphisms

, , I
WKSH(F,) T = (WKSE(FC)W) if i > 1 is odd

WK (F,)~ = <WK§§(FC))_>Fn if i > 1 is even
This gives isomorphisms
((Cpe), () = WKSHE)  ifi> 1 4s odd
((C’Fc);(i))r’l ~ WKSHF,)~ if i > 1 is even

Proof. The proof follows the original one (see Theorem 3.5,|[Kol]), just as in
Theorem 1.3.2. O



Chapter 2

Realizability of abelian
p-groups as €étale wild kernels

In this chapter we are going to study situations where the realizability prob-
lem for étale wild kernels has a positive answer. More precisely, we shall see
(Theorem 2.2.6) that if d is the largest divisor of p—1 such that ¢ = 0 (mod d)
and the subfield of index d of Q((p) has trivial p-Sylow subgroup of the class
group, then, for any abelian p-group X, there is a number field k such that
WKS!(k) is isomorphic to X. The proof of this result is achieved by us-
ing Schneider description of étale wild kernels (see Theorem 1.4.6) and then
adapting a result of Ozaki about the realizability problem for finite Iwasawa
modules to this situation.

2.1 Generalization of a result by Ozaki

Let d be a divisor of p — 1 and let K9 be the subfield of Q(,) such that
[Q(¢p) : K9] = d. Following the strategy of Ozaki (|Oz]) we are going to
prove the following result.

Theorem 2.1.1. If p does not divide the class number of K9 then every
finite A-module structure can be realized as p-split lwasawa module for some
number field k containing K@

In fact, if we forget for a moment about the split condition, Theorem
2.1.1 for d = p — 1 is Theorem 1 in [Oz]: in this case, K@ — Q and the
result tells every finite A-module structure can be realized as Iwasawa mod-
ule for some number field k. Thus, the proof of Theorem 2.1.1 consists in a
careful rewriting of Ozaki’s proof, substituting Q with K(® and taking into
account the split conditions. As we will see these generalizations are not
difficult to deal with and a large part of Ozaki’s proof remains essentially
unchanged. Still, for the convenience of the reader we rebuild the proof from
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the beginning.

Remark 2.1.2. Note that if K@ is not a totally real field, then it is a
CM-field. In fact, one proves easily that K@ is totally real if and only
if d is even and it is CM if and only if d is odd. If k is a CM field, we
shall denote by k™ its maximal real subfield. If A = Gal(k/k™) and A is a
A-module we write AT for A®.

In the following, we fix d and we shall denote K by K. Let K,, be the n-th
layer of K€¢. The following notation will be used throughout this section.

o (0, is the ring of integers of K;

e E, (resp. E!) is the group of units (resp. Sp-units) of K, (where S,
is the set of primes over p in K,);

e Cl, is the p-split class group of K,, (and (C1}), is its p-Sylow sub-
group).

o W, = uk, is the group of roots of unity in K, (thus K, = {£1} if
d# 1 and K, = p,n+1 otherwise).

Let I" be a topological group isomorphic to Z, and set A = Z,[I']. For
every n > 0 set I, = I'/TP". Let X be a finite A-module. Then X is a
Z/p™0 [Ty, ]-module for some mg, ng > 0. We seek for a number field & such
that the p-split Iwasawa module X, of the cyclotomic Z,-extension of k is
isomorphic to X. In other words we look for a number field k such that, if
ky is the n-th level of the cyclotomic Zy-extension of k, we have

X, =1lim(Cl, )p = X
The following lemma gives us a strategy to accomplish this task (we use the
notation just introduced also for an arbitary Z,-extension ko /k).

Lemma 2.1.3. Assume that a Z,-extension koo/k satisfies the following
three conditions:

o koo/k is totally ramified at every ramified prime;

o (Clﬁgno )p = X as T'py-module, viewing C’l;%0 as Tpy-module by some
identification Gal(koo/k) =T';

° (Cl;cn0 )p = (Cl;cnoﬂ)P‘
Then we have X,’C = X as A-modules.

Proof. See |Ful. O
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Now fix a topological generator v of I' and put 7, = ymodI'?". Let

r= dime X/(p, Tno — 1) (2'1)

Then r is the number of minimal generators of X over Z/p™°[I',,]: this
follows from Nakayama’s Lemma applied to the Z/p™°[I',,,]-module X (note
that (Z/p™[Tpel, (P, Yne — 1)) is a local ring). Hence there exists an exact
sequence of Z/p™°[I',,,]-modules

0— Rpy — Z/p™[[p]®" — X — 0
Let 7/po+1,n, be the natural map from Z/p™ [Tpo+1]%" to Z/p™0 [Ty, ]®"
induced by the natural projection I'y, 41 — 'y, and put
~1
Rno—i-l = 7T/n0+1,n0 (Rno)
Then 7'y 41, n, induces an isomorphism
Z/p™ [Crg41]™"/Rug1 = X

Define the submodule §n0+5 (6 =0, 1) of Z/p™[[)y45]%" as follows

Rugvs = {(%)19’3%1 € Z/p" [Tnors] ™ ’

.
(i )1<i<r € Rngts, Qg1 & Zai (mod Yng+5 — 1)}
i=1

and put B B
X =Z/p"°[Cng+1]™"/ Ryy1

The natural injection X — X which is given by

T
($i)1§i§r mod Rno-‘rl = (:Cl, N ZCE,) mod Rn0+1 (2.2)
i=1

has cokernel isomorphic to Z/p™° with trivial action of I'y,4+1. Then the
natural map

Tng+1,n0 * Z/pmo [Fno-i-l]@r—i_l/ﬁno-&-l - Z/pmo [Fno]ear/éno

gives the isomorphism

X = Z/pmo [Fn0+1]®T+l/§no+1 = Z/pmo [FNO]@TJrl/ﬁno (2'3)

. -1 5
SICE 041, mg (Rno) = Rn0+1' _
Let g be the minimal number of generators of Ry,+1 over Z/p™°[['y,+1] and
choose once and for all an integer N such that

K5 :Q=[K":Q]pN >g and N >mg (2.4)
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Now we fix an isomorphism I' = Gal(K°¢/Ky) and we shall dentify the two
groups in the following (note that I'; = Gal(Kn4¢/Kn)).-

Let [; (1 < i < r+ 1) be distinct degree one primes of Ky which split
completely in Knypnot1, say [; = HvanOH vLi, no+1- Furthermore, we as-

sume that [; decomposes completely in K N4no+1 = KnNing+1(tp). Set
m= H:ill [; and denote by £; ,, the prime ideal of Knp, below £; ny+1-
For ¢t > 0 denote by L; the abelian p-extension of Kx,; which is maximal
with respect to the following conditions

e the conductor of L;/ Ky divides m;
e every prime above p splits completely in L;/Kn4¢;
o the exponent of Gal(L:| K n4¢) is less than or equal to p™o.

Since p { |Clp| (and hence p 1 |Cl,| for every n > 0, see [Wal), we have a
class field theoretic exact sequence of I'-modules

Png+s Tng+6
Efv+n0+5/pm0 = (ON+TL0+5/m)X /pmO - Gal(Lno+5/KN+n0+5) —0

for 6 = 0, 1 where pp,4s is the natural map and r,,s is the map induced
by the reciprocity map.

The middle term of this exact sequence is isomorphic to Z/p™° [T, 45 ® !
via the following map

a] — __* 2.5
! WGFZ,LOM(’D ((rfygiv"ﬁ‘;)nom) ! (2

1<i<r+1
Notation is as follows:

IS Gal(f(N+@+5/I~(N) is the image of v via the natural isomorphism
Lrgts = Gal(Knnots/Kn) where Kningt+s = KNing+5(tip);

o £ no+1 are fixed primes of Knipnyo4+1 lying above £;,,,41 and £; 5, is
the prime below £; ,,+1 In Kpy41;

® (- /)ng+s is the p™o-th power residue symbol for I~(N+n0+5;
e ¢ is a fixed isomorphism p,mo = Z/p™.

Note that p,mo C Ky by (2.4) hence

:7'21',77,0-"-6 2i,n0+5 no+5
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(this is a well known property of power residue symbol, see for example [Gr])
and that, On4p,4s being the ring of integers of Knyng+s,

ONtno+6/7Limo+s = ONtngrs/VEino+s

since [; decomposes completely in K N+no+1-
In the following we shall identify (On ypno15/m)™ /p™ and Z/p™0 [Ty 15]E
via the above isomorphism. Then we get an exact sequence

Pngo+8 Tno+9
E;V+n0+6/pm0 = Z/pmo[rn0+6]@T+1 = Gal(Ln0+6/QN+no+6) — 0

where py,,+s is given by

e
s = T o((5) ) 26)
'Yern0+6 ’YS'L’ no+6 no+o0 .

1<i<r+1

There is a commutative diagram

—_— Pn Tn
E§V+no+1/pm0 L) Z/pmo[rnoJrl]@TJrl - Gal( n0+1/KN+nO+1) — 0

JVNnO-Fl,'n,O lﬂ'no+1,n0 J{T'esnoi»l,no

N+no/p A) Z/pmo [Fno]@r+l & Gal(Lno/KN+n0) — 0
Diagram 2.1

where By, = By, 4 /{F1} for 6 =0, 1, Nygt1,p, is the norm map
from Kning+1 t0 KNings Tng+1,no 15 induced and resy 41, pn, is the restric-
tion. Commutativity is not difficult to check using the properties of the
p™0-th power residue symbol and the reciprocity map.

So far, we have followed Ozaki’s proof by simply replacing K by Q and units
by S-units when necessary. The proofs of the next lemmas, however, are
slightly modified since they involve more directly the arithmetic (in partic-
ular, units) of K.

Definition 2.1.4. Let k be an abelian number field whose conductor is p°.
We define the cyclotomic units Cy, (resp. S-cyclotomic units C}) of k as
follows

o = (21 Nagon (60 67 g lan = 1) ) B

Ci = (1 Nogeoyn (G (1= ) (e, p) = 1)) YN B}

Here Ey, (resp. E}) is the group of units (resp. of S-units, where S consists
of the unique prime above p in k) of k.
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Remark 2.1.5. The definition of C} agrees with that of circular units of
Sinnott (see [Si], §4) as it is shown for example in [Oz2], Lemma 8 and
Lemma 9. In the following we set C,, = Ck,, and C, = C .

Lemma 2.1.6. The quotient C}(:{/(C’,’l)* is a 2-group.

Proof. Set
A = N@(Cpe)/Kn (<Cpev (1 - C;)le) ’((I, p) = 1>)

and N = Ny +. Moreover A = Gal(K,/K;) and denote by Na the
algebraic norm. Then

(Ch)F = (£1, A%) N By

and

One easily sees that Na(A) = NA and that
|A%/NA| and  Cp./(Cp)*

differ only by a power of 2. Since A2/Na(A) = HO(A, A), we know that it
is a 2 group (see [Mi3]). O

Lemma 2.1.7. We have a surjective homomorphism E,/C, — E! /C/.
Moreover

C/Wi(Cp) " — By /Wa(E;)*
is injectie and E, /W, (E!)" has order at most 2.

Proof. Consider the natural homomorphism E, — E! /C/: C, belongs to
its kernel, since C,, C C/, (and clearly C,, C E,). Hence we have a homo-
morphism E,,/C,, — E),/C),. Now note that

M = NQ(C 1) /K (1 = Gprt1)

generates the unique prime ideal above p in K,,. In particular every element
u € E!, can be written u = n%v with b € Z and v € E,. This proves
surjectivity.

Now observe that (C/)* C (E},)" hence C} /W,,(C/)T — E//W,(E!)T is
well defined To prove that it is injective, we have to show that W,,(E/)*t N
C! = W,(C/)*. Tt is enough to prove W, (E.)* NC/ C W,,(C/)" the other
inclusion being clear. We have

Wa(E)TNC, CW, ((E,)" nCy)

since W,, C C,. Moreover (E/)T N Cl, C (C/)* hence we get the claim.
Finally, for the last assertion we can suppose that K, is CM. We know
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that E2 C W, E;" (see [Wa|, Theorem 4.12). Now let o be the generator of
Gal(K, /K, ) and set
My = 10 ()

Note that
(1) = O(NQ(C 1)/ Kn (1= Cprt1)) = NQ(C 1)/ (0(1 = Gprin)) =

= No(¢nen)/Kn (1= Clit) = No( i)/ (=G (1= Guin)) = ('

where we denoted with o also a generator of Gal(Q((pn+1)/Q(¢pm+1)T) and
¢’ € W,,. Hence i = ('n2. Thus if u = n,v € El, (with v € E,) we have
u? = ¢'""'n;tv? hence

(Ep)? CWi(E)TE2 C Wy(E),)"T

Lemma 2.1.8. 1. For any t > 0, we have
+,
BNyt /p™ Wit /p™ @ Z/p™ IR
as Z/p"° I']-modules.

2. The norm map

. / 7710 / 770
Nno-&-l,no . EN+n0+1/p EN+n0/p
18 surjective.

Proof. By our hypothesis on the class number of K, and Theorem 4.1 of [Si]
we know that [Eni¢ : Cnyy] is not divisible by p. Hence by Lemma 2.1.7,
p1[Ey, : Cyyyl and we have

Ej /p™ = (Chyy/{E1}) /p (2.7)

Furthermore
Chae /D™ = Wit (Clyyy) T /™ = WN+tC}<$+t/ pmo
again by Lemma 2.1.7 and Lemma 2.1.6. Finally
W Cley /D™ = Wiyt /p™ ® Cls [p™
N+t N+t
Now we have an isomorphism

ZIGal(Ky /O] = Ces /1)
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as Z[Gal(Kf,,/Q)]-modules: it is defined by

o= (k1)
where
+
nN+t — NQ(CPN+t+1)/K1<\|}+t(1 - CpN+t+1)
Finally we have
Z|Gal(K ., /Q)] = . Z[T)T
TeGal(K{,,/Q)/T:

which completes the proof of 1.
The second claim follows from (2.7) and the fact the the norm map

Nno+1,n0 CJ/V+n0+1/{il} - CJ/V-s-nO/{il}
is surjective by definition. O

Lemma 2.1.9. Let E! be the S-units group of IN{N+n0+1 where S

N+no+1 »
consists of the unique prime above p in Knipo+1. Then the natural map

! mo il mo
EN+n0+1/p — ENing+1/P
15 1njective.
Proof. From the exact sequence

P (K

p™mo
n+nog+1 ) —0

1 X
0 — ppmo — Kn+no+1

we get the G = Gal(f?NJrnOH/KNJmOH)—cohomology sequence

7 (K]

X
K n+ng+1

n+no+1 )me N Kn+n0+1 — Hl(G7 Mpmo) — 0

Now HY(G, pymo) = 0 since (|G|, p) = 1, hence
(K§+no+1)pm0 = (K;+no+1)pm0 N Kytng+1
and the lemma follows. O

Lemma 2.1.10. For any I',,,+1-homomorphism

[ E5V+n0+1/pm0 — Z/p™°[Cpg41]

there exist infinitely many degree one primes [y of I?NJF,LOH such that

fe= > @((%)nm)v

YE g +1
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for any ¢ € Ey,, ., whose class in Ey, . . /p™ is €. Furthermore, for
any fized finite abelian extension M/IN(N_HIOH with

Mn KN+n0+1( \O/ E;v+n0+1) KN-I-no-i-l

and 7 € Gal(M/Knng+1) we can impose the condition
M/KN+710+1 _
£

Proof. We have to distinguish to cases, namely d = 1 and d # 1: in the first
case Wy, = (%1, ppny1) while if d # 1, W, = {£1}.

We treat first the case d = 1, we have K = Q((p), K, = K, and 7 = v
so we drop the tilde. Set gv = [K3 : Q]. From Lemma 2.1.8, there exist

on E

€j € ENJrn 41 (1 <4 <qw) such that

EN fnos1/P™ @Z/p Chnot+1]85 © Z/p™C (2.8)
where ¢ = (,N+ng+2 IS a primitive pNt0+2th root of unity and €4, (=
E;VJrnOH/p ° are the classes of ¢; and ( respectively.

Assume that

f(&) = Z ¢,y and  f(C Z dyy

Y€l ng+1 Y€l ng+1

We are going to show that there exist infinitely many degree one primes £
of KNyng+1 such that

Es _ .
() o) (1<5<ans 7€ Dugst) (2.9)
no+1

L
<é>no+1 = o Hdy) (2.10)

Note that if the above conditions hold, then the conditions

¢ o
<7£>n0+1 =¢ (dy) (v €Tng+1)

also hold since

()= (O o
— == and d, = k(y ")d;
7£ no+1 L no+1 !
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Here £ : 'y, 41 — Z, is the cyclotomic character: in particular v(¢) = ¢rm,
The first equality then comes from the well known properties of the p™o°-
power residue symbol while the second equality is a consequence of the fact
that f is a I'y,41-homomorphism.

For each 1 < j < qu, consider

Dj = Kninot1 (P37 17 € Tngy1) and Do = Ky ngr1(?"V/<)

It follows from (2.8) that the abelian extensions D;/Knino+1 (1 < j < gn)
and Do/ Kpnn,+1 are independent and that

~ o "/ e
Gal(Dj/Kningt1) = €D o o e (2.11)
'VEFHO+1 v 5‘7 'YEFn(H»l
~ o "V
Gal(Do/Kangi) = pyrs 7> (Tl ) (212)

Now call D the compositum of the extension D; (1 < j < gn) and Dy:
choose the automorphism o € Gal(D/KN4ny+1) which corresponds to the
(v + 1)-uple

(o 1) MY o ) M RSO () NS CY)

by (2.11). By Cebotarev density theorem, applied to the abelian extension
D/KNiny+1 and to the automorphism o, there exist infinitely many primes
£in Knyngt+1 such that (2.9) and (2.10) are simultaneously satisfied. Note
that we can also find infinitely many primes £ which split completely in
KNino+1/Q and satisty (2.9) and (2.9) since the set of primes on Knno+1
which split completely in Kxn,41/Q has density 1 (for Cebotarev density
theorem and this last result, see for example [Mi3|). An analogous kind of
reasoning applies to give the last part of the assertion of the lemma, still for
d=1.

Now we consider the case d # 1: the strategy is the same but now we
have K, # K,,, W,, = {£1} and Lemma 2.1.8 shows that there exist ¢; €

E§V+no+1 (1 < j < qn) such that

qN
E§V+no+1/pm0 = @ Z/pmo [Fno—i-l}gfj (213)
j=1

where we still set gv = [KR‘, : Q] and g5, € Efv+n0+1/pm0 is the class of €.

Assume that
fE) = Z Gy

Y€ ng+1
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We are going to show that there exist infinitely many degree one primes £
of KN4no+1 such that

E; _ .
(}) o) (1<j<av.yEeTmy)  (214)
/7’8 no+1

For each 1 < j < qp, consider

Dj = Kning+1(""V/ 77 1€ |7 € Tngt1)

It follows from (2.8) and Lemma 2.1.9 that the extensions ﬁj/I?NJrnoH
(1 < j < gqu) are independent and that

- _ P /7—15 .
Gal(Dj/KN+n0+1) = @ Hpmo g = (pmo\/T]> (215)
Y€l Ry +1 T Y€ ng+1

Now call D the compositum of the extension 15j (1 <j < gn): choose the
automorphism ¢ € Gal(D/Kpnny+1) which corresponds to the gn-uple

(™ emDrerngins (972D vemmgrns o (27 (Can 1) veTagss )

by (2.15). As before, Cebotarev density theorem, applied to the extension
D/KnNynyt1 and to the automorphism &, tells us that there exist infinitely
many degree one primes £ in K N-+ng+1 such that (2.9) are simultaneously
satisfied. The last part of the assertion of the lemma for d # 1 follows easily.

O

Now we choose the prime EZ no+1 and [;. By (2.4) and Lemma 2.1.8, we can
find a surjective homomorphism of Z/p"°[I'),,+1]- modules

h': E;\H-no-&-l/pmo — Rngt1
Composing h’' with the inclusion Eno_i'_l — Z/p™° [Fn0+1}@r+1 we get a map
r+1

h: E§V+no+1/Pm0 — Z/p™[Cpy1a]”?

whose image is En0+1. Assume that the following condition is true for the
primes £; o1 (1 <i<r+1):

CONDITION A.

5
€T 41 YEino+1/ o1
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for 1 <i <r+4 1 where pry : Z/p™[[pos1]® " — Z/p™[Cpy11] denotes
the projection map onto the i-th component.

Lemma 2.1.10 tells us that there exist degree one primes £; ,4+1 of K N+no+1
satisfying Condition A such that Ei7n0+1’S lie over distinct rational primes.
We choose the prime of Ky (resp. Kpning+s) below Ei’n0+1 as [; (resp.
Lingts (0 = 0,1)) and put m = H:;rll li. Then we have Im(pp,+1) =

Im(h) = Ryy+1 by (2.6). Hence rp4+1 induces the isomorphism

X = Z[p™ [Pno-&-l]@TH/fino—&-l = Gal(Lng+1/KN4no+1)

We have also

Gal(Lno+1/KN+n0+1) = Gal(Lno/KN-i-no) (2'16)

since Im(pn,) = Ry, and

Gal(Lno/KN-i-no) =Z/p™° [Fno]®r+1/§no =X

(look at Diagram 2.1 and use Lemma 2.1.8 as well as EMH = 777:01+17n0(]§n0)

and (2.3)). We identify Gal(Lpg+1/KN4ng+1) with X via this isomorphism.
We regard X = Z/p™ [[poq1]®" ! /Ryyq1 as a submodule of the module
X =Z/p™[Cpy+1]®" T/ Ryy41 via the embedding given in (2.2) and define
F' to be the intermediate field of Ly +1/KN4ng+1 With

X = Gal(Lngs1/F) (2.17)

Lemma 2.1.11. 1. There exists a unique cyclic extension k/Ky of de-
gree P with conductor dividing m and every prime above p splits.
Moreover F' = kpy+1 = kKN4no+1 and Ly, N kpgr1 = EKN4ny = kng-

2. For any 1 < ¢ < r 41 and any vy € D'yyy1, the inertia subgroup
of 0Ly, no+1 1 Gal(Lpg+1/KNtng+1) s generated over Z/p™° by the
element rpy41 ((0, ..., Y0, ..., 0)) (0 at ig-th place and O everywhere
else).

3. The primes L ng+s (7 € Tngys, 1 <@ <7+ 1) are totally ramified in
kno+o/KN4ng+s- In particular

Gal(Ln0+5/KN+no+5) = Gal(Lno+5/kno+5) X Gal(kno+5/KN+no+5)
Furthermore the primes [; (1 <1i < r+ 1) are totally ramified in k.

4. Lpgts is the p-split genus p-class field of kny+s/KNing+s for 6 =0, 1.
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Proof. 1. Since X/X is isomorphic to Z/p™Z with trivial action (see
(2.2)), we deduce that F'/Ky is an abelian extension. Moreover

Gal(F/Ky) = Gal(F/KN-ng11) % I

where I, C Gal(F/Ky) is the inertia subgroup for the unique prime
of K lying above p (clearly I,Gal(F/KNiny+1) = Gal(F/Ky) and
then one looks at cardinalities). Then we choose k as the fixed field
of I, and one verifies immediately that k has the required properties.
For the second assertion, it is clear by contruction that

F = kno-i—l = kKN+no+1

For the analogous assertion on k,,, we just remark that k,, is the in-
ertia field of the primes lying over p in kny+1/KN4n,.- This implies
Lpy N kpo+1 € ky, and the reverse inclusion is clear since the con-
ductor of ky, divides m, any prime above p splits in k,,/Kntn, and

kny/KN+4n, has exponent dividing p™° (because all this happens in
k/Kn).

2. In order to identify the inertia subgroup of oL, n,+s is better to
consider a convenient version of the morphism r,,41: first of all we
know that

Z/p" Cngr1] ¥+ = (O g1 /m)* /p™

the isomorphism being defined in (2.5). Secondly, it is well known (see
[Mi3]) that

(0N+n0+1/m)x/pm0 = (K]>\<f+n0+1)m/(K]>\<f+no+1>m:1(KJ>\<7+n0+1)£:LO

where (K3, 4 1)m (vesp. (K, 1)m 1) is the subgroup of K5 .,
whose elements are coprime with m (resp. are congruent to 1 modulo
m). In the following we set
M0
(KJ>\<f+n0+1)m/(KJ>\<f+n0+1)m71(K1f/+n0+1)£1 = (K]>\</+n0+1)m
Under this identification it is easy to see that the subgroup generated
by (0, ..., Y0, ..., 0) gets indentified with the subgroup

A_{[a]emﬂml)m’ <a> =1V v # v, Vz‘yéz'o}

VEi no+1

Furthermore we know (see |Gr|) that the reciprocity map identifies
Gal(LnO—l-l/KN—i-no—i—l) with

mo

(UN+no+1)T/ (PN+no+1)T, wSN+no+1(IN+no+1) 7
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where (IN4ng+1)7 (resp. PNing+1)T,m) is the group of fractional ideals
(resp. principal fractional ideals) of Kn4pno+1 which are coprime with
the support 7" of m (resp. which are coprime with the support 7" of m
and that can be generated by elements congruent to 1 modulo m). In
the following set

mo

(INtno+1)T/ (PN 410+ 1)T, 0SNtno+1 (UN4no+1)r - = (INtno41)T

Under this isomorphism it is known (see |Gr|) that the inertia subgroup
of v0Liy, no+1 corresponds to the subgroup generated by

(PN+710+1)T, —_—n
0Ly, ng+1

in (IN4ng+1)r which we simply denote by (Pnino+1)7. Now we have

Tno+1 + (KN g 1)m = (IN4ngt1)T

(which now is the map which sends an element in the principal ideal
generated by it) and we have to prove that r,,+1(A) = (PN4ng+1)7T-
By definition (Pn4no+1)r is the smallest subgroup which contains
(PN-4no+1)T, m/~08y ng1 and hence it is contained in rpg4+1(4). Con-
versely, suppose that [a] € A: then « is a p™°-th power modulo
vLi no+1 (for every v # ~o and i # ip). Then by Chinese Remain-
der Theorem we:ncan find an element 3 € (KJanoH)m such that « is
congruent to BP"° modulo v&; .41 (for every v # o and i # ip) and

mo

(@) = (@B77"°) (") € (PN4no+1)7T, — - SNtngt1 (IN-4ng41)fp
Y0~ig, ng+1

. Simple computations (using defintions and the fact that ¢y ¢ (yno4+1 —

1) for every ¢ € Z/p™°) show that (0, ..., 7, ..., 0) has order p"°
modulo Ry, and that

((Z/meZ(o, e 0) §n0+1) /ﬁnm) NX=0

Hence the prime v£; ,,,+1 is totally ramified in kp,41/Knyno+1 and
Lyg+1/kng+1 18 an unramified extension where every prime above p
splits. In particular the restriction

Gal(Lno+5/KN+no+5) - Gal(kno+5/KN+n()+5)

splits (the inertia subgroup of v£; n,+1 being a subgroup of the group
Gal(Lpg+s/KNtng+s) whose restriction is Gal(kng+s5/KN+no+s)). The
remaining assertions easily follow from 1.
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4. Let L' be the p-split genus p-class field of kpo4+1/KNtng+1 (which is
of course a Galois extension of Ky yp,+1). Clearly Ly, 41 € L'. Now
we show L' C Ly, +1: the subgroup of Gal(L'/Knny+1) which is gen-
erated by the inertia subgroup of the primes v£; po41 in L'/Knyng+1
coincides with the whole Gal(L'/Knny+1), since the v£; no+1's are
the only ramified prime and p t hg Ny Now each of these inertia
subgroups has exponent p™° (in fact it is isomorphic to the inertia
subgroup of the same prime in kp,41/KN+no+1 which is the whole
Gal(kng+1/KN4no+1))- Hence Gal(L'/Kpnyny,+1) has exponent p™°
and since the conductor of L'/Knyno+1 divides m and L'/ Kning+1
is split at every prime over p, we deduce L' C Ly, 41. The proof is
analogous for Ly,,.

O

In the following we are going to prove that, in fact, L, s is the whole
p-split Hilbert p-class field of k;,,1s for 6 = 0, 1. Once we have this, we know
that the cyclotomic Zy-extension over k is the desired Z,-extension (i.e. its
p-split Twasawa module is isomorphic to X ) because of Lemma 2.1.3, Lemma
2.1.11, (2.16) and (2.17).

Let H,,+s be the p-split Hilbert p-class field of k45 for 6 =0, 1 and o be
a generator of Gal(kpy+1/K N4ng+1)- Then we have

Gal(Ln0+1/kno+1) = Gal(Hno+1/kno+1)/(U - 1)

by Lemma 2.1.11. Denote by E@ no+1 the unique prime of k,,4+1 lying over

Li no+1 (Lemma 2.1.11). Set for a moment A = (CZ;CnOJ,»l)p and G = (o) =
Gal(kng+1/KN4ng+1)- First of all note that
A% = |Al/I(0 — 1)A] (2.18)

Moreover
{ (€ not1s Hng1/kng+1), 1 <i <r+1} C A9
by well known properties of the Artin symbol. We have an injective map
ACJ(AC 1 (0= 1)A) — A/(0 = 1)A = Gal( L1 /by 1)
and, if
{(€i,no+15 Lng41/kngs1) » 1 <i <r+1}
generates Gal(Ly,4+1/kng+1), this map is an isomorphism. In this case, by

(2.18), we must have
AN (c-1)A=0 (2.19)

This means (o — 1)A = 0 by Nakayama’s lemma'. Hence, if
{(E’i,n0+17 Ln0+1/kn0+l) ) 1 S 1 S r+ 1}

!We consider A as an R-module where R = Z/p"Z[G] and p" is the exponent of A. R is
a local ring with maximal ideal .# = (1 — o, p) and by (2.19) we get (1 —0) ((1 —0)A) =
(1 — o)A which implies in particular .# ((1 —0)A) = (1 — o)A and hence Nakayama’s
lemma gives us the result.
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generates Gal(Lpy+1/kng+1), Lng+1 = Hpny+1 and this implies also L, =
H,, since Hy kny+1 € Hpgt1 and Lygy1 = Lpgkng+1 (by 2.16).

Lemma 2.1.12. The restriction induces isomorphisms
Gal(Lno+1/KN+no+1)Fn0+1 = Gal(LO/KN)

and
Gal(Lna-i-l/km)-i-l)Fno-&-l = Gal(LO/k)

Proof. Let M be the intermediate field of Ly,+1/KN+ng+1 With
Gal(Lng+1/M) = (Yng+1 — 1)Gal(Lng+1/KNtng+1)
Yno+1 being a generator of I'y, 1. Then
Gal(Lng+1/KN4no+1)Tng 11 = Gal(M/KN1ng+1)

and M /Ky is an abelian extension. Clearly we have LoKnyno+1 C M. Let
I,, C Gal(M/Kn) be the inertia subgroup of the unique prime of Ky lying
over p. Then

Gal(M/KN) = Gal(M/KN+nO+1) X Ip

and the fixed field of I, is contained in Ly. Therefore we have LoKnny+1 =
M and

Gal(Lng+1/KN+no+1)Tng 11 = Gal(M/KN1no+1) = Gal(Lo/Kn)

since I, = Gal(M/Ly).
To show the second assertion, it is enough to show

<7n0+1 - 1)X = (7710-1—1 - 1))?

because (Ypop1 — 1)X = Gal(Lng+1/LoK N, no+1) by the first assertion and
LoN k‘n0+1 = ko. Let (mz) eX = Z/pmo [Fn0+1]®r+1/Rno+1 be any element.

Since
(07 oy 0, 7n0+1 - 1 (Z T — xr+1))
we have

(Yno+1 — D((xi)) = ((Wno+1 — )zi)

r
:<(’7n0+1 - 1)5617 ey (’7n0+1 - 1):67“7 (’7n0+1 - ]‘) Zl’;

1=1
= (Yno+1) <:ﬂ1, ey Ty Z:m) (Yno+1) X

Hence (Yng+1 — 1)X C (Yno+1 — 1) and the other inclusion is trivial. O
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Let Lgp ) and Lép ) be the maximal elementary abelian p-subextension of
Lo/Ky and Lo/k respectively. Denote by k) the intermediate field of k/K y
with [k®) : Ky] = p. Now note that

(Gal(kn0+1/KN+710+1)F7L0+1)/p = Z/p (2'20)

by Nakayama’s lemma. Then we have

Gal(L¥ /Kn) 2 (Gal(Lugs1 /K N-ng+1)lngs1)/P

= ((Gal(Lng+1/Fng 1) % Gallkng 1/ K g 1)) ) /9
(2/p2)®" !

I

by Lemma 2.1.12, Lemma 2.1.11, (2.1), (2.17) and (2.20). Moreover
Gal(L\ /K x) = Gal(LP) /k) x Gal(k/Ky) (2.21)

because [; is totally ramified in k/ Ky and L,(f ) /k is an unramified extension
by Lemma 2.1.11. Hence L,(Cp) = kL(()p): an inclusion is clear, the other comes
from the fact that the inertia field of [; in Lép ) /Ky is p-elementary abelian

by (2.21) and hence contained in Lép)

inertia field and k). Furthermore

(and L,(cp) is the compositum of this

(Gal(Lng 11/ kng41)r01)/p = Gal(L{P /) 2 Gal(LP /KP)  (2.22)

by Lemma 2.1.12, where isomorphisms are given by restriction. Suppose now
that )
{([ Lgm/w)) 1<i<r+ 1} (2.23)

(I; being the unique prime of k® lying over [;) generates Gal(L((]p)/k(p)).
Then Gal(Lyy+1/kng+1) is generated by

{ (&€, no+1> Lng41/knot1), 1 <i<r+41} (2.24)

over Z/p™0 'y +1] since

(Ei7n0+1, Ln0+1/kn0+1) — <I17 L(()p)/k'(p)>

under the restriction map of (2.22) and then one applies Nakayama’s lemma?.

Hence we are going to choose the [;’s in such a way that the set in (2.23)
generates Gal(Lép)/k:(p)).
Let I; (for 1 < i < r 4 1) be the inertia subgroup of Gal(Lép)/KN) for

’Let A = Gal(Lng+1/kng+1) (which is a T'py+1-module) and let B be the submodule
of A which is generated by the set in (2.24). If B — A/(p, Yno+1 — 1) is surjective, then
B+ (p, Yng+1 — 1)A = A which implies A = B by Nakayama’s lemma.
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the prime [;. Then we have I; = Z/pZ: for, |; ramifies in k® by Lemma
2.1.11 (i.e. I; is nontrivial) and the inertia group of [; in Gal(L{”/Ky) is
cyclic. Hence I; (which is the image under restriction the inertia group of [;

in Gal(L,(cp)/KN)) is cyclic of order p, since L((Jp)/KN is elementary abelian.

Therefore
r+1

Gal(LY /K ) = @I

(since p { hg, implies that [[I; = Gal(L¥/Ky) and Gal(L{/Ky) =
(Z/p)®rt1). Hence L((]p)/KN is the composite of the abelian extensions

K](\f)([i)/KN (1 < i <r+1) of degree p with conductor [; and the restriction
induces the isomorphism

Gal(LP kW) = @Gal L)/ Kn) (2.25)

(the restriction is injective since kP being ramified at .11, is disjoint with

the compositum of the K](\f)([@-) for 1 < ¢ <r). Assume the following condi-
tionson [; (1 <i<r+41)

CoNDITION B. The prime [y is inert in K](\Z;)(Il). If 3 <i<r+1, then the
prime [; splits in K](\I;)([j) for all j such that 1 < j < i — 2 and is inert in
KP(1;_y).

Then via the isomorphism of (2.25)

®) /1.(p)
(LO/k) r—>(0’1,...), <O’1> :Gal(KJ(\I;)([l)/KN)

D)

and for every 3<i<r+1

) /1.0p)
Ly~ kP
<O/> = (1, ey 1, Oj—1y-- .), <Ui—1> = Gal(K](\f)([Z_l)/KN)

[

Therefore the set in (2.23) generates Gal(LE)p )/ k@), which implies that
Lyy+s = Hypy+s5 for 6 = 0, 1 under condition B. Condition B is clearly equiv-
alent to the following:

CONDITION B’. The prime £, _no+1 is inert in K )([1)I~(N+n0+1 For every
3 <1t <r+1, the prime Ql’no_i'_l splits in K )([ )KN+nO+1 for all j such
that 1 < j < i — 2 and is inert in K](&)([i_l)f?wnoﬂ.
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Now we choose El,no+1 such that Condition A is satisfied. This is al-
lowed by Lemma 2.1.10. Next we choose £ p,+1 such that Condition A
and Condition B’ are satisfied: this is allowed once more by Lemma 2.1.10

since KN(ll)I?NJFnOH and kN+n0+1( P Bl ) are linearly disjoint over

+no+1
KN ings1. It is clear therefore that we can perform inductively this kind of
choices, in order to get primes £; no+1 (1 <4 < r+ 1) which satisfies both
Condition A and Condition B’. This concludes the proof and k is a number
field whose p-split Iwasawa module is isomorphic to X.

2.2 Structure of étale wild kernels

In this section we prove the main result of the chapter. First we recall some
result about projective limits.

Lemma 2.2.1. Let {X,,}nen be a surjective projective system of profinite
groups. Then there is a natural isomorphism

lim Hom.(X,,, R/Z) = Hom,(lim X,,, R/Z)

where Hom, denotes the group of continuos homomorphisms (and the projec-
tive limit has the projective limit topology while R/Z has the quotient topol-

0gy)-
Proof. See |RZ|, Lemma 2.9.3 and Lemma 2.9.6. O

Lemma 2.2.2. Let I' be a topological group which is isomorphic to Z, and
set A = Z,[T] and Ty, = TP" where the latter denotes the closed subgroup
generated by the p"-th powers. Let X be a (Hausdorff) compact A-module.
Then

X = @Xpn

Proof. We know that X is isomorphic to a projective limit of finite abelian
p-groups (see [NSW], Chapter V, Proposition 5.2.4). We are going to use
Pontrjagin duality as stated for example in [NSW]: in particular for a Haus-
dorff, abelian and locally compact topological group A we set

AY = Hom,(A4, R/Z)
If A is a profinite group then
AY = Hom,.(4, Q/Z)
(see |[RZ], Lemma 2.9.6) and if, further, A is pro-p-finite then

AY = Hom, (A, Qp/Zy)
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(if f: A— Q/Z is a continuos homorphism, then Ker(f) is an open sub-
group, hence it has finite index which has to be a power of p, see [RZ],
Theorem 2.1.3). In the following we are going to use this for A = X or
A=Xr, .

Now observe that, since X is a compact I'-module, Hom.(X, Q,/Z,) is a
discrete I'-module hence

Hom, (X, Qp/Zp) = U Hom,(X, Qp/Zp)F" = liLnHomc(X, Qp/Zp)Fn
neN

Then we have

X = X" = (Hom.(X, Qp/Zp))v = (h_H}Homc(X’ QP/ZP)Fn)v B

v v
- (hm Hom,(Xr., @,,/Zp)) - (Homc(lim Xr,, @p/zp)) -
= (lim X, )" = lim Xr,,
where we used Lemma 2.2.1 (the system {Xp, } is clearly surjective). O

Lemma 2.2.3. Let G be a profinite group and let {X,, }nen be a projective
system of finite (discrete) G-modules. Set

X =lim X,
Then
lim(X,)q = Xg
Proof. X is clearly a topological G-module and it is compact since it is
profinite. Now observe that
G
(hmx,y) = H(G, lim X)) = lim H°(G, XV) = lim(X")C

(see [INSW]|, Proposition 1.5.1). Then

(m(X,)6) " = tim (X,)6)" = lm(x)% = (1mx)) " = (x¥)¢ = (x6)"

—

and taking duals we get the claim. O

Let F' be a number field and set L = F'(u,) and A = Gal(L/F'). Note
that I'r = Gal(L¢/F') is naturally isomorphic to (I'r), x A. Observe that
L¢ coincides with L¢: in particular L& = L,

Definition 2.2.4. Let k be a number field and let k,, be the n-th stage of the
cyclotomic Zy-extension k¢ of k. Then for each i € Z we set

W KSH(KS) < lim W KS! (k)



2.2 Structure of étale wild kernels 43

The following result is known (see [KM]): the last part of the argument
(interchanging the twist with the Galois action) is due to Lichtenbaum.

Proposition 2.2.5. We have

WKSHLS) = X (i) WES(F®) = (XL(0)) o

Proof. We have
WEKS{(L) = lim WK$!(L,) = lim (X7, (i), = lm (X7(i)), = X7()

where the last equality comes from Lemma 2.2.2.
For the second statement we have

WKSHF€) = lim W K$!(F,,) = lim (X7, (i)) XA =

—

=tim (X30)y,, ), = (tim (X7.0)y,, ) | = (X20) 5
and we used Lemma 2.2.3. On the other hand

((X1,(8) ,)" = (Hom (X}, (3), Q/Z))* = (Home(X}, Q/Z)(~i))" =

= Homc (X7, Q/Z) (i) = Hom(X7,/(6 — w™'(8)) XL, Q/Z)(—i) =
— Hom, ((X}/{6 — w~(8)) X1)(0), Q/2) = (X316 — ' (6) X))
Hence
(XL(0) 5 = (X1/{6 — w™'(8)) X1)(2)
which shows in particular that if i = 0 (mod |A|) then
WEEH(FY) = Xp(i)

since (X7)a = X. More generally, for arbitrary i, since 6 € A acts as
multiplication by w™"(4) on X} /(0 —w™"(4))X7], it is easy to see the group
norm induces an isomorphism

X1/(6 —w T (0) X = (XL )i
which gives
(X2(1) o = (XL)ui(2)
O
Theorem 2.2.6. Let d be the greatest common divisor of p—1 and ©. If p

does not divide the class number of K9, then every finite abelian p-group
structure appears as WK (k) for some number field k.
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Proof. Suppose the hypothesis is satisfied. Choose a finite p-group X which
we consider as A-module with trivial action and choose k as in the proof of
Theorem 2.1.1: in particular X = X as trivial A-modules. Now

WESE (k) = Xp 0 (i)r

where I' = Gal(k((p)/k) = A x T, and A = Gal(k((p)°/k¢) and '), =
Gal(k¢/k). As in the proof of the preceding proposition, we have, since
i =0 (mod |Al) and I', acts trivially on Xy,

Xiiep) (Dr = X,y (Da)r, = (X ()r,

Now the action of T’y is trivial on X, therefore the action of ') on X (i) is
given by A
v = k()

On the other hand we see that in the construction of k, if p™0 is the exponent
of X, then
k(y) =1 (mod p™°)

(since k contains (K(4)y with N > my, see (2.4)). Therefore T, acts trivially
on X} (i) and we get the result.
O

For example, since p { hg, for every i = 0 (mod p—1), every finite abelian
p-group structure can be realized as WKS! (k) for some number field k (in
particular this holds for the logarithmic class group, provided the generalized
Gross conjecture is true). More generally, for i even, the Vandiver conjecture
predicts that p doe not divide the class number of K(@. In the next chapter
we are going to study to what extent the condition of the theorem has to be
considered as necessary.



Chapter 3

Etale analogues of Hilbert class
field

This chapter is devoted to identifying those fields for which not every abelian
p-group structure can be realized as étale wild kernel of some finite extension.
We follow the strategy which is used in the classical case of class groups: an
étale analogue of Hilbert class field is defined and its basic properties are
described. Then we pass to étale analogues of Hilbert class field towers and
we try to clarify the relation between fields with infinite class field towers
and a negative answer to the realizability problem (Section 3.1 and Section
3.2 generalize the results of [JS] and [As]). We end with a partial result on
the étale analogue of Hilbert theorem 94.

3.1 Etale analogues of Hilbert class field

Let F' be a number field and set L = F(up). Put I') = Gal(L¢/L) and A =
Gal(L/F): then I', is (non canonically) isomorphic to Z, as a topological
group and A is (canonically) isomorphic to a subgroup of (Z/pZ)*. Set ' =
Gal(L¢/F): then T is a procyclic group and we have a canonical isomorphism

r=r,xA

Note that L¢¢ /F is a Galois extension and we have a split exact sequence of
profinite groups

0— X} — Gal(L/F) =5 T —0 (3.1)

(this sequence splits since the p-cohomological dimension of I';, x A is 1, see
[Se], 1.§3.4). Now, X/ (i)r is the Galois group of an extension F'(i)/L¢ since

Xp(i)r = X5.() /(1= )XL0) = X; /(0 = K ()0X, (3.2)
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if v is any topological generator of I' and (1 — (7)) X/ is a closed subgroup
of X} . Moreover F(i)/F is Galois too since (1—x'(y)y) X/ is a I-submodule
of X} with standard action (since v(1 — £(7)7y) = (1 — k*(7)7)7). Further-
more, as before, we get a split exact sequence

0— X} (i)r — Gal(F(i)/F) =T —0 (3.3)

Let v be a fixed topological generator of I': consider the closed subgroup ()
generated by a preimage ¥ of v by m; in Gal(F'(i)/F) and let F5/F be the
extension which is fixed by (7). Note that Fy is a complement of L¢ in F'(i)
over F': in fact F5L¢ = F(i) and F5 N L° = F. This easily follows from the
next lemma

Lemma 3.1.1. The closed subgroup (y) generated by v is an infinite pro-
cyclic group and m; induces an isomorphism of topological groups (m)K
(y) — T (in particular (3.3) is split by (7;)|))-

)

Proof. Set G = Gal(F(i)/F) and let G, = 7; 1(T';). Then we have a com-

mutative diagram with exact rows

0 —— X, (i)r G —~- T 0
0 —— X, (i)r Gp —— T, 0

Note that G, is the pro-p-Sylow of G, since I'}, is the pro-p-Sylow of I'. Now
take a preimage ¥ of v by m;. Then

NG, 5T, (3.4)

is surjective: clearly 712 € () NG, and (F14!) ™% T, is surjective because
the image of (m;)|(51a/y contains a dense subgroup and it is compact (being the
image of the compact (F12!) by the continuous map ;) hence closed (since
I', is compact). Moreover (F1A1Y is pro-p-cyclic hence isomorphic to Zyp: thus
the map in (3.4) is an isomorphism, being a surjective map between pro-p-
cyclic groups. Now also () —= T is surjective (same argument as above).
The claim of the lemma is then easily achieved by noticing that m; induces
an injection from (v)/(7) N G)p to I'/T). O

We also have [Fy : F] = | X} (i)pr| which is the index of the closed sub-
group generated by 7. Evidently F5 depends on the choice of 7. In order to
avoid this non natural choice, we define F as the compositum of the fields
F5 as 7 runs through the preimages of v by m; in Gal(£'(i)/F'). Note that
F/F is finite, since X/ (i)r is finite and then F/F is the compositum of
finitely many finite extensions of F'. Note that F does not depend on the



3.1 Etale analogues of Hilbert class field 47

choice of the topological generator « of I' (use for example Lemma 3.1.1). In
the following we will denote by I (or I if we want to stress on the field in-
volved) the closed subgroup of Gal(#'(i)/F') which corresponds to F: then I
is the intersection of the closed subgroups generated by a preimage of v by ;.

Before describing the properties of F we prove the following proposition
about F'(7).

Proposition 3.1.2. Let E/F be a finite extension: then F(i) C E(i).

Proof. First of all we prove the assertion if E C F((p)°. In this case X,E(Cp) =
X;“(Cp) (and hence XJIE(CP).(i) = X%((p)(i))' Now I'p is in a natural way a
closed subgroup of I'p: this means that

Ir, C Ir, and hence IFEXJIV(Cp)(w - [FFX}?‘(QP)(i)

(where It, C Zy[I'g| and I, C Z,['r] are augmentation ideals). Since
E(i) corresponds to IFEX},(CP)(Z‘) and F(i) to IFFX},(CP)(Z'), we deduce that
Now we drop the assumption E C F((y)% let F' = E N F(()°. From
what we have just seen, we know that F(i) C F’(i) and obviously F’((,)¢N
E = F'. Hence we can suppose that £ N F((,)¢ = F. Now we have to
prove that F'(i) C E(i): in other words, we need to show that v € T'g
acts as multiplication by x(vy)™" on Gal(F(i)E((y)¢/E((p)°) (since E(i)/E*
is precisely the maximal subextension of E((,)!/E(¢)¢ whose Galois group
is a I'g-module with that action). But this is quite clear: let v € 'y and
xz € Gal(F(i1)E(()¢/E(()¢). Let a € F(4): we have

ya(a) = 7271 (a) = G710 (@) = (31" (@) = 250 (a)
where 7 is a lifting of v in Gal(F'(1) E((p)°/E). If a € E((p)¢, then obviously

vr(a) =a= J:“(V)_i(oz)

hence 7.z = 27" as we claimed. O

The extension F /F enjoys some remarkable properties (with respect to
WKS!(F)) which we are going to describe in the following. If we think about
WKS!(F) as an analogue of the p-Sylow of the p-split class group of F, then
F is the analogue of the p-split Hilbert class field of F.

Proposition 3.1.3. Fisa finite Galois extension of F which is trivial
ezactly when X7 (1)r is.

Proof. First of all note that, by definition, F /F is trivial exactly when
X (1)r is. We are left to show that I is a normal subgroup of Gal(F(i)/F)
but this is clear since, for every o € Gal(F(:)/F) and every preimage 7 of
a topological generator v of I' by m;, we have o(3)o~! = (070~1) (use for
example Lemma 3.1.1) and 070! is still a preimage of v by ;. O
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Note that I' acts on X (¢)r by conjugation and the action is given by
v ="

for every x € X7 (i)r (use for example (3.2)). This means precisely that, if
v is a preimage of v by m;, we have

Fay L = g7

Any another preimage of v by ; is of the form yz with € X/ (i)r. Note
that, for every positive h € N

(Fa)t = gXi= )3 (3.5)

a formula which can be readily proved by induction on A. This lead us to in-
troduce the following definition which will be very useful in the computation
of the degree [F : F.

Definition 3.1.4. Let a € Z; and let v, denote the valuation on Z, such
that vy(p) = 1. Ifa # 1, let s € N be such that vy(a — 1) = s and, for

every nonzero n € N, let d,(a) be the multiplicative order of a modulo p™™*.
T

Moreover set d, (1) = p".
The next lemma explains the relation between d,, and (3.5).
Lemma 3.1.5. For every a € Z; we have

h
dp(a) =min{h € Nyh > 1| Zaj =0 (mod p"™)}
j=1
Suppose further that a # 1 and v,(a — 1) = s > 0: then d,(a) = p™.

Proof. If a =1, it is clear that d,,(a) = p™. If a # 1, then the first assertion
is an immediate consequence of the following chain of equivalences

h—1
a" =1 (mod p"™*) & (a — 1)(2 a’) =0 (mod p"**) &
§=0

Now suppose that a # 1 and vp(a — 1) = s > 0: we can take a # 1. First
of all note that the class of a belongs to the cyclic subgroup of order p™ in
(Z/p**t™Z)* since a is congruent to 1 modulo p* and s > 0. In particular

a?" =1 (mod p"T*)

On the other hand, the class of a does not belong to the cyclic subgroup of
order p"~!in (Z/p*T™Z)* since a is not congruent to 1 modulo p**!. Hence
the class of a generates the cyclic subgroup of order p™ in (Z/p**t"Z)* which
implies that d,(a) = p". O
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Definition 3.1.6. Suppose that X (i)r # 0, call ep(i) the ezponent of
X7(0)r and set tp(i) = vp(er(i)) (hence tp(i) > 0). Furthermore set
55(0) = vp(s() " — 1) and

h
hp(i) =min{h € N, h > 1| Y k()7 =0 (mod ep(i))}
j=1

Finally set rp(i) = vy(hp(i)) and let dp(i) be defined by hp(i) = p"*Ddp(i)
(in particular we have (dp(i), p) = 1).

We remark once and for all that hp(7) is defined only it X7 (i)p # 0 (when
no misunderstanding is possible, we will not stress on this). As an example,
we have hp(0) = er(0) and in general hp(i) > 1. Sometimes we shall simply
write e(i), (i), h(i) and s(i) (if no ambiguity arises). By Lemma 3.1.5 we
must have

h(i) = dyay ((7) ™) (3.6)
and, if s(i) > 0, then h(i) = e(i). Note that we also have
(Fz)hO) =3O (3.7)

by (3.5).
Proposition 3.1.7. Suppose that X (i)r # 0. Then
I=@F")
In particular [F : F] = h(1)| X7 (i)r|. Moreover
Gal(F/F N L°) =~ X} (i)r
and hence [F N L¢: F] = h(i).

Proof. Recall that we already know that h(i) = dy;(k(7) ") (see (3.6)). We

have I = (3%) for some a € Z. Let x € X1 (i)r such that the order of  is
e(): then we also have I = ((3x)®) with b € Z. Then there exists ¢ € Z such
that

()t = 5

This means that , B
anj:l k(y)™Y c <§>

hence

> k()7 =0 (mod ei)) (3.8)

b
J=1

If ¢ # 0, this is equivalent (as in the proof of Lemma 3.1.5) to

/Q(’y)_ib =1 (mod pt(i)-i-s(i))
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By definition of dy)(r(7)™"), we therefore deduce that b = h(i)q for some
q € Z and the same conclusion holds true in the case i = 0 (since h(0) = ¢(0)
and (3.8) holds). Hence

I =(Fx)) € F"®)

On the other hand 4 ' B

(F2)"y = Gy C T
since (3.7) shows that (7)) is contained in any of the closed subgroups
which are generated by a prelmage of a topological generator of I' by 7,

hence in their intersection I. Hence I = (3(9).
For the remaining assertions, just note that

Gal(F/F N L°) = IX7 (i) /T = X1 (i)r/(I 0 X1 (i)r) = X7,(i)r

since I N X} (i)r € (3) N X} (i)r is trivial (here 7 is any of the preimages
of a topological generator of I' by m;) and I is normal in Gal(F(i)/F) by
Proposition 3.1.3 (hence the isomorphism theorem applies). O

Remark 3.1.8. The proof of Proposition 3.1.7 in the case ¢ = 0 can be
found in [JS].

Lemma 3.1.9. We have ﬁ(Cp)c = F(i).
Proof. Clearly ﬁ(Cp)C C F(i). To conclude note that
[F(i) : F()] = [WKSHF)| = [F: F(G) N F] = [F(G)°: F(G)]
by Proposition 3.1.7. O

The following lemmas are very easy but we quote and prove them since
they will be used often henceforth. If a € Z,;, then we denote by ordy(a) the
order of the class defined by a in (Z/pZ)*.

Lemma 3.1.10. Suppose that F % F. Then we have
[FNF(G) : F] = dr(i) = ordy(k(7r) ")

Proof. The first equality is clear by Proposition 3.1.7. In order to prove the
second, set a = r(yr) !, ¢ = ordy(a) and write as before h(i) = p"Dd(i) for
the order of @ modulo p!@+5() In particular

(ad(i))pr(i) = a? =1 (mod p)

which shows that q|d(7). Now observe that a? belongs to the p-Sylow sub-
group of (Z/p"+s Z)Z)X This implies that there exists some m such that
a??™ =1 (mod p*D+5(). Hence h(i)|qp™, which implies d(i)|q. O
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Lemma 3.1.11. We have

[F(¢p) + F] = ordp((yr)) = ordy(r(vr) ™) (ordy(k(7r)), 1)

Proof. Set a = k(yr) and ¢ = ord,(a). The cyclotomic character gives an
injective homomorphism

k2 Gal(F((p)/F) — Z,

Note that F'(¢,) is the fixed field of the p-Sylow subgroup of Gal(F(¢,)¢/F).
Hence in order to prove the first equality we have to show that a? generates
the p-Sylow of x(Gal(F'((,)/F)). But this is clear since the p-Sylow sub-
group of Z, is the subgroup of elements which are congruent to 1 modulo p.
To prove the second equality, set = ord,(a™*) and note that

. q

(@) @D = (a%) " @D =1 (mod p)

and this implies
q

(g, 7)

7
On the other hand
q ! r = q T

(¢, 17) ‘ (g, 1) (¢, 17)

and this concludes the proof. O

—r

a” " =1 (mod p) = qlir =

The following proposition describes the properties of F /F with respect
to ramification.

Proposition 3.1.12. ﬁ/F is a locally cyclotomic extension. If moreover
there is only one prime above p in F((p)¢, then F/F N F ()¢ is unramified
everywhere and totally split at every prime above p.

Proof. The fact that F /F is locally cyclotomic is clear from the definition.
Clearly, if there is only one prime above p in F / FNF (¢p)¢ is everywhere
unramified except perhaps at primes above p: furthermore, if it is unramified
at primes above p, then it has to be split at those primes. So, supposing
that there is only one prime above p in F((,)¢, we prove that ﬁ/ﬁ NEF(¢)°
is unramified at every prime above p. Let p be the prime above p in F / Fn
F(¢,)¢ and let T be the inertia group of p in F(i)/F N F(¢,)¢ (which is easily
seen to be an abelian extension by (3.5) and Proposition 3.1.7). First of all,
note that I N X7 (¢)r = 0 (since otherwise there would exist a field F” such
that F((,)¢ € F' C F(i) ramified at primes above p). Now observe that
F(Cp)c/ﬁ NF((p)¢ is totally ramified at p (there cannot be inertia) and this,
together with X7 (¢)rNI = 0 proves that m; induces an isomorphism between
I and I. In particular I is procyclic and we call « a fixed topological
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generator of I. Let v be a topologial generator of T' such that v*) = 7(a).
If 74 is any preimage of 7 by m;, then

T=(3"9) 2 () = 1
(mi(a) = m(F*®) implies a = 37 since X N T = 0). O

Remark 3.1.13. One can ask if these étale analogues of the Hilbert class
field share other interesting properties with the classical case. For example,
Hilbert Theorem 94 says that the extension map Clp — Cl'HED is trivial,
where H}, is the p-split Hilbert class field of F. In our context the problem
is then to see whether the natural map

WEg{(F) — WEY{(F)

is always trivial. Unfortunately the answer to this question is negative. A
counterexample can be given using a recent result of R. Validire. Suppose
that p = 37 and i = 31 and choose F' = Q((,): then WKS!(F) is cyclic of
order p (since X5 (i)r is). Furthermore X/ is isomorphic (as a topological
group) to Z, (see [Wa]). Therefore Gal(F.4/F¢) is pro-p-free and in fact
isomorphic to X% (see [Gr]). Now F/F is a locally cyclotomic extension,
thanks to Proposition 3.1.12. Now, applying Théoréme 4.2.8 of [Va|, we see

that, if we set G = Gal(F/F), the natural map
WEg (F) — WEKg{(F)S

is an isomorphism.

3.2 Etale analogues of class field towers

Now we can define the étale analogue of class field towers as follows. Set
Fio=F, F;1 = F; o and inductively F; ;11 = F; j. Moreover

(0.9}
Fio = |J Fiy
7=0

Of course Fj o/ F can be infinite: in fact it is finite if and only if there exists
n € N such that X}Tm(cp)(i)p = 0. In this case Fj o = Fj .

The following results shows that dp, (i) and 7, (i) behave quite differ-
ently along the tower.

Proposition 3.2.1. We have F; j 1o N F; j11(¢) = Fijq1 for every j > 0
and in particular, if F; oo/ F is nontrivial,

[Fioo N F(Gp) : F] = [Fin N F(Gp) : F] = dp(i)
and dp, (i) = 1 for every j > 1 (which implies [F; j 1 NES; F ;] = p i (i))
In particular, F; /F is infinite if and only if for every j > 1 we have
TF; ; (Z) > 1.
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Proof. In order to prove F; j1oNF; j11((p) = Fi j4+1 for every j > 0 we argue
as follows. We have

ordy (K(VF, j41)) = [Fij+1(Gp) t Figal = [Fij (&) Fijv1 0 Fij(Gp)] =

[Fi;(Cp) & Fijl
[Fij+1 N EF;5(G) « Fijl

(first equality comes from Lemma 3.1.11, the others are easy to check). But

[Fi3(Cp) = Fij] = ordp(k(VE; ;)

by Lemma 3.1.11 and
[Fijr1 N Fij(G) 2 Figl = dr, (1)

by Lemma 3.1.10 (we can suppose Fj j11/F;; nontrivial since otherwise the
claim of the proposition is trivially verified). Hence

Ordp("i(’yFi,j )
sz’,j (Z)

again by Lemma 3.1.11. Moreover

Ordp(ﬂ(’YFi,j+1)) = = (Ordp(ﬂ(’yFi,j))7 7’) (39)

—iy Ordp("i(f}/Fi,jJrl)) . (Ordp(’{(’yFi,j))v Z) .
Ordp(K(FyFi’j-’_l) )_ <Ordp(’£(7Fi,j+1))7 Z) B (Ordp(’%(’yFi,j))? Z) =1

by Lemma 3.1.11 and (3.9) (the latter is used to get both the numerator and
the denominator of the last ratio). Hence by Lemma 3.1.10 (or trivially if
Fi7j+2 = Fi7j+1), [E,j+2 N Fi,j—&—l(Cp) : Fi7j+1} = 1, which is what we wanted.
Now we prove that F; j11 NF((p) = F;1 NF((p). This is immediate by what
we have just proved, since for every j > 1,

Fig1 NF(G) € (Fige1 N Fiy(G) NF(G) = Fig NF(G)
and the other inclusion is trivial. This shows that
[Fioo NF(Gp) + F] = [Fi1 NF(Gp) 2 F] = dp(i)

if F; oo/F is nontrivial. The last claim of the proposition follows from the
remark after Definition 3.1.6. O

Definition 3.2.2. In the following we set F; = F; o N F((p): in particular
F, = F if F; &/ F is trivial, otherwise [F; : F| = dp(i).
Remark 3.2.3. Note that, if Fi,j—i—l #* Fi,j; then [Fi,j+1 N FZ-C : Fi,j N

Ff] = p'fis @ Moreover Fi «/F; is a (pro-)p-extension since Fj;/Fj is a
p-extension for every j > 0.
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Theorem 3.2.4. The following assertions are equivalent:

e there exists a finite extension E/F such that F; C E and X};(Cp)(i)p is
trivial;

o Fi/F is finite.

Proof. (Same strategy as in the proof of Théoréme 4 of [JS]). Clearly the
second condition implies the first one (with £ = Fj ). In order to prove
the other direction, suppose that there exists a finite extension E/F such
that XCE(CP)(Z')F =0and F; C E. By Proposition 3.1.2 and Lemma 3.1.9, we
deduce F(i) C E(i) = E(¢p)¢ and F;1(¢p)¢ = F(i). In particular Fj1((,)¢ C
E(¢p)¢. Now suppose inductively that F; ;((,)¢ C E((p)¢: we shall prove that
Fij+1(6)¢ € E(Gp)¢. Since F; C E implies that E'F; j/E is a p-extension,
we deduce that F; ; C E°. Now

X}z(gp)c(i) = XCEFivj(gp)c(i)

Furthermore
' = Gal(E°/E) x Gal(E(Cp)C/EC)

and
ek, = Gal((EF;;)°/EF; ;) x Gal(E((p)°/E°)

Hence

;E(Cp)c(i)FE =0= XJ/E(Cp)C (i)Gal(E(Cp)C/EC) =0= X’E‘(Cp)c(i)FEF' =0

2]
which implies (EF; ;)(i) = EF; ;((p)¢ = E(¢p)¢. Thus, again using Lemma
3.1.9 and Proposition 3.1.2,
Fijn1(Gp)® = Fij(i) € (BFi5)(0) = E(G)°

Then by induction, we have Fj ;((,)¢ € E((p) for every j > 0, which means
Fi oo(¢p)¢ € E(p)¢: in particular we deduce that F; oo(¢p)¢/F((p)¢ is finite
since E((p)¢/F ()¢ is finite. This implies that Fj o /F is finite. O

Note that if i = 0 (mod p—1), then the condition F; C E is automatically
satisfied since F; = F' and therefore we find the result of Théoréme 4 of [JS].

Proposition 3.2.5. We have Fj (i) = Fjoo((p)® and Ff /Ff is every-
where split. If F; oo/ F is infinite, then Ff C F; oo and F; oo/ Ff is infinite.

Proof. From Lemma 3.1.9, we know that
Fij+1(Gp)" = Fij(7)
We deduce that

Fioo(®) = | Fij()) = | Fij+1(4)° = Fino(G)°

jEN jEN
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Note that F; |/ F; is everywhere split (because Fj j+1((p)¢/Fi;(Cp)¢ is ev-

erywhere unramified by Lemma 3.1.9 and [F ;((p)¢ : F;] is coprime with
p). This shows that Ff  /Ff is everywhere split.
If F; o/ F is infinite, then, by Proposition 3.2.1, for every j > 0 we have

J
[Fi:j+1 N Fz‘c : Fz] = HpTFi,k(i) > pj
k=0

(see the remark after Proposition 3.2.1). This shows that F¢ C F; o. More-
over

[Fij+1t Fija N FY] = |Xp () (@)
which shows that Fj o, /FF is infinite. O
Now we are ready to give a necessary condition for the tower to be finite.

Theorem 3.2.6. If F; o/ F is finite and nontrivial, then X};i 18 finite. More-
over if X};Z_ is trivial, then Fj o/ F is trivial.

Proof. Set A; = Gal(F((p)/F;). We have |A;| = [F((p) : F]/dp(i) and
i =0 (mod |A;|) (3.10)
since by (3.6), k(i) = dy;(k(y)™") and therefore

ih(i) = 0 (mod ordy(k(v))) <« id(i) =0 (mod ord,(k(7)))
d Ordp(’%(’)/)))
d(i)

and (3.10) follows by Lemma 3.1.11. Now X7, oo(CP)(i)F = 0: here

& =0 (mo

' = Gal(F;00(Gp)/ Fioo) =2 A x Gal(Fjo0((p)°/ Fi oo ($p))

By Nakayama’s lemma we deduce that X%_w(cp)(i)Ai = 0 which means

(XF OO(CP)(Z'))A’? = 0 (since |A;| is coprime with p). This means that

(X%a,oo@p))& =0

by (3.10) which is equivalent to Xj. = 0. This implies in particular that
X, is finite. ’

Note that if Fj . /F is nontrivial, then FZ-C,I/FZ»C is an abelian p-extension
everywhere split (see the proof of Proposition 3.2.5) of degree |X;—,(Cp)(i)p|:
therefore if F; o /F is nontrivial, then X ]’;z is nontrivial. O
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Remark 3.2.7. Theorem 3.2.6 is a generalization of Proposition 3 of [As|
which tells that if p, C F (hence F; = F) and if F; o/F is finite, then X},
is finite. If F' = Q((p), it is well known that X7}, is finite if and only if it is
trivial (which is equivalent to p being regular): in fact suppose that X7 is
finite. This means that X, = 0 (since X has no finite A-submodule, see
[Wa]): hence |(Clr), | = 1. But this implies that |(Clr),;| = 1 and hence
X' = 0. Therefore, if p is irregular, the tower of Q({p,) has to be infinite (for
any ).

Remark 3.2.8. Let F'/F be the subextension of F'((,)/F which has degree
ordy,(k(y)7%): thus F' = F; if F; o /F is nontrivial. Set A’ = Gal(F'/F):
then Fj o/ F is trivial if and only if X7, (i)a = 0. This is easy to prove since

Xy (0 = 0 4= Xpo ) ())a = 0 = Xp(i)ar =0

(where A = Gal(F((p)/F)) because i = 0 (mod |Gal(F(¢y)/F")|) as in the
proof of Theorem 3.2.6.

Theorem 3.2.9. The following conditions are equivalent

1. F; o/ F is finite and nontrivial;
2. EGd/(Fi)C is finite and nontrivial.
Moreover if F; o/ F is finite, then EOd =Ff

Proof. Suppose that Fj »/F is infinite: then F¢ C F; o and Fj oo/Ff is an

infinite subextension of F; o, C ECd by Proposition 3.2.5.
Now suppose that Fj o, /F is finite and nontrivial: then

Xle,oo(Cp) (/I/)F = 0

As in the proof of Theorem 3.2.6, one sees that X };1 = 0 and this implies

that Gal(Fi,ooCd/Fifoo) is trivial, by well-known properties of pro-p-groups,
since
Gal(Fy oo™ [FE)™ = X,

This means that ECd/ (F;)€ is finite since ECdFifoo C Fi’ooCd: actually, one
sees immediately that ECd = F¥f O

2,00°

The following result deals with the absolute case, namely F' = Q: in that
case there are no nontrivial finite towers.

Proposition 3.2.10. Let i be odd and suppose that X@(Cp)(i)r £ 0. Then
Qi.00/Q is infinite.
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Proof. Suppose that Q; »./Q is finite and nontrivial: then X’ ~is finite by
Theorem 3.2.6. Since ¢ is odd, Q; is a CM-field. This can be easily seen
using Lemma 3.1.10 and Lemma 3.1.11 since

Qi is a CM field <= [Q((p) : Q] is odd

and ) )
p— p— .
Q&) : Qi = = — = (i, p—1 3.11
) U= g T g,y PV G
Then we know that (Xg, )~ has no finite A-submodules (see [Wa], Proposition
13.28) and hence (Xg,)~ = 0. But this implies (Xg,)™ = 0 and therefore

X@, = 0. This is a contradiction, by Theorem 3.2.6. O

Remark 3.2.11. Proposition 3.2.10 and Theorem 3.2.4 tell us that, if ¢
is odd and WKSH(Q) # 0, then for every number field F containing Q;,
WKS!(F) is nontrivial. Furthermore note that Vandiver’s conjecture implies
WKSH(Q) = 0 for any ¢ > 1 (in particular the tower is finite, being trivial).
If something weaker holds, namely if Greenberg’s conjecture holds for real
subfields of Q((p), then I do not know whether or not the tower Qg; oo /Q is
finite. For, Q9; is a totally real field and Greenberg’s conjecture then tells
that X . 1s finite. But, in general the converse of Theorem 3.2.6 needs not
to hold true hence we cannot conclude that Q; o /Q is finite.

Remark 3.2.12. Using Proposition 2.3 in [KM], one can prove that, for any
i > 1 such that F; . /F is infinite, there is no p-extension E/F such that
WKSH(E) = 0. Details are as follows: first of all, if i = 0 (mod ord,(k(yr))),
then note that F; = F' and we conclude by Theorem 3.2.4. If instead we
have i # 0 (mod ord,x(yr)), then the corestriction map

WEKSH(E) — WESH(F)

is surjective: this follows from Proposition 2.3 in [KM] and the fact that a p-
group is solvable. Since WKS!(F') is nontrivial, WK (E) has to be nontrivial
as well.

The following is a standard genus-theoretic criterion for Fj/F to be
finite (see [JS|, Proposition 11).

Proposition 3.2.13. If X}, is (finite) cyclic, then Fj o /F is finite.

Proof. (See Proposition 11 of [JS]) Set N = (Ff?)d: then N is a Galois pro-
p-extension of Ff¢ which is also Galois over Ff. Set G = Gal(N/Ff) and
H = Gal(FCd/Fc) then G/H acts on H by conjugation. Let o a generator
of G/H: (1 — o)H is then the Galois group of the maximal subextension of
N/Ff4 which is abelian over Ff. By definition of ¢, we have (1—o)H = H,
which implies H = 0 (in other words N = F). Now F;oFf/F is an
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abelian p-extension which is everywhere split therefore Ffd - Fingfd C N.
Then Fi,gFfd = Ffd and therefore Fy C Ffd: actually, one easily proves
that F¢; C F¢? for every j > 1, which implies Ff,, C Ff%. Since Ff/Ff is
finite, we conclude that F; o /F is finite. O

Example. The preceding proposition gives a way to produce finite towers
which are nontrivial. Let F' = Q(v/d) with d a squarefree positive integer.
Suppose that

e p remains inert in F

(Clp), is cyclic and nontrivial;

the natural map X — (Clr), is an isomorphism;
o Fy=F;
e WKS{(F) # 0.

The first three hypotheses imply that X}, is cyclic and nontrivial. In fact
the first implies that there is only one prime p above p which is principal
and hence the natural map (Clr), — (ClF), is an isomorphism. Hence we
have a commutative diagram

Xr —— (Clp)p

| |

Xy —— (Clr),

where the upper horizontal arrow is an isomorphism thanks to the third
hypothesis and the same holds for the right vertical arrow. Now the left
vertical arrow is surjective and hence an isomorphism too. Therefore by
the second hypothesis X7, is cyclic (and isomorphic to (Clp),). Then, by
Proposition 3.2.13, Fj »/F is finite thanks to the fourth hypothesis. The
fifth hypothesis then assures that Fj o /F is nontrivial.

Now take for instance p = 3 and d = 257: the field F = Q(V/d) satisfies the
first three hypotheses (see [KS1| and [KS2], we have (Clr)s = Clp cyclic
of order 3, or apply [Fu] because (Clr)s = (Clp,)s, the isomorphism being
given by the norm). If 7 is even the fourth hypothesis is satisfied. Now
observe that, thanks to Corollaire 5 of [JM], the last hypothesis is equivalent
to the nontriviality of Cl r (which is the logarithmic class group defined by
Jaulent, see [Ja3]). There is an exact sequence

0— Clp(p) — Clp —2 (Cly), —> degpDE/(degpp)Z, —0

(see |DS], §3, also for the definitions of the right and left-hand terms of this
sequence). We have Clp(p) = 0 because of the first hypothesis (see [DS],
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Lemme 4) and it can be shown that also degrDl/(degrp)Z, = 0 (see the
proof of Proposition 4.2.5 at the end of the next chapter, where a similar
computation is explained in detail). Hence ¢ is an isomorphism, which
implies that the last hypothesis is satisfied.

3.3 Examples

1. We show by an example that Q; # Q((,). Choose p = 683 and ¢ = 31:
then A_; = Ags1 # 0 since 683|Bs2. On the other hand i|p — 1 (since
682 = 31 - 22) and hence d(i) < p —1 (in fact d(i) = 22).

2. We consider the case p = 37 and i = 31. Then Q; ~,/Q is infinite since

Qi = Q(¢) and
(An)s = Z/p"Z

(here A,, is the p-Sylow subgroup of CI1(Q((yn))) which implies Xq, =
Zy (norms are surjective). In particular there is no finite extension
of F/Q such that WKE(E) = 0 and p, € E. We also know that
WKE(Q) = Z/37Z, provided that the Quillen-Lichtenbaum conjecture
holds (in fact it predicts that Kga(Z) = Z/37Z). Then I = (771
(since h(i) = d(i) = p — 1), which implies in particular that Q(¢,) C
Qi
Let us have a closer look, just to identify in this case some of the object
we described above. First of all note that Q; 1/Q((p) is the p-Hilbert
class field of Q((p) (by Proposition 3.1.12). Now note that

WESHQ(G)) = WKSH(Q) = Z/pZ (3.12)
In fact
WESHQ(G)) = X, (i), = X, (i)r = WKE(Q)

since Gal(Q((p)¢/Q°) = (Z/pZ)* acts trivially on Xq,)(4) (recall that
Cl(Q(¢pn)) has only the (p — 1 — i)-component). We note in passing
that we cannot deduce by a codescent argument that WK (Q;1) # 0
since the canonical map

WEK2i(Qi1)cai(@i1/00¢,)) — WK2(Q((p))

is not surjective (see [KM], example 2.5: in this case, it is even the
trivial map). We know that

[QG)i1 = QG| > IWES(Q(G)) = p

One easily proves that [Q({y)i1: Q(¢p)] = p®. Furthermore

Q(¢2) CQ(¢)ir but Q(¢ps) # Q(Ep)i
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Moreover it is not difficult to see that

Qi1 CQ(¢p)in but  Q(¢p2) # Qi

hence

Gal(Q(G)i1 /) = (Z/pZ)?
Hence Q(¢p)i,1 = Qi1(¢p2)-



Chapter 4

Splitting of the K-theory exact
localization sequence

As recalled in Section 1.3 there is an exact localization sequence

0 — K5i(Op) — K2i(F) % @@ Kai-1(ky) — 0

v finite

where k, is the residue field of F at v and the sum is taken over the finite
primes of F. We remark that Ko;_1(k,) is cyclic of order |k,|* — 1 by Quillen
calculation.

The problem studied in this chapter is to determine necessary and sufficient
conditions in order for this sequence to split. This problem has positive
answer (i.e. the sequence always splits) if E is a rational function field of
one variable (Tate-Milnor theorem, see [Mil]). Clearly one can consider the
analogous problem on the induced exact sequence on p-primary parts (we
call it the p-localization sequence for Ko;(F')). This has been studied by
Banaszak in [Ba|: he stated a theorem which said that the p-localization
sequence for Ko;(F') splits if and only if div(K2;(F)), = 0. Recall that
for an abelian group M, div(M) denotes the subgroup of divisible elements
of M and that div(Kay;(F)), = WKS{(F) (see Remark 1.4.3). Banaszak’s
condition is obviously a necessary one, since both the right and the left
terms of the sequence have trivial group of divisible elements. However the
proof of the converse, in Banaszak’s paper, seems to be incomplete. It turns
out that there is a counterexample, namely there is a field F' such that
WKSH(F) = 0 but the p-localization sequence for Ko;(F) does not split. In
fact we shall state a necessary and sufficient condition for the i-th sequence to
be split and then we will be able to produce a counterexample by using this
result. Our structure theorem tells also that in the case F' = Q, Banaszak’s
theorem holds, i.e. the p-localization sequence for Ky;(F) splits if and only
if WKSHF) = 0.
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4.1 Obstruction to splitting

In the rest of this chapter ¢ is a positive integer. As in the introduction
we are going to consider the p-localization sequence for Ko;(F) (where p is
as usual an odd prime): since K;(OF), = Kgi(OF[]lD])p we have the exact
sequence

0 — K2(OF)y — Koi(F 2, @KQz 1 —0 (4.1)
ofp

This exact sequence has (at least conjecturally) a cohomological counterpart.
More precisely (see [Ta2| for the case ¢ = 1 and [Ba| for the general case)
there is a commutative diagram with exact rows

KQi(OF)pC KQ?(F)p % @vj(p K2i71<kv)p
ét . Hét :
K3 (OF(;]) K5 (F)p —————— Gupp Ko _1 (ko)
Y v bl

HY(Or[3], W(i + 1))/ Dive—— HY(F, W (i + 1))/ Div — @y, H (ky, W (i)

) 0 )

H*(Op[L], T(i + 1) HX(F, T(i + 1))y —— ®yppy H' (k, T(4))
Diagram 4.1: Relationship between K -theory and étale cohomology.

We use notation defined in Chapter 2 with some modification (mainly
for typographical convenience): T'(i) = Z,(i), W (i) = Qp/Zy(i), v = chffo,
0 is cohomological connecting homomorphism (in fact isomorphism) relative
to the exact sequence

0= T(i) — Qi) — W(i) — 0

and 0 o+ is the natural isomorphism in (1.4) (7 and 7 are defined similarly).
Direct sums are over all finite places of F' which do not divide p. Recall that
the Quillen-Lichtenbaum conjecture predicts that the v’s are indeed isomor-
phisms (and Tate (see [Ta2]) proved that this holds if i = 1). Note that the
kernels of the two v’s are equal and of finite order since Ky;(OF) is finite.

In the following we shall consider the exact sequence

0 — H*(Op[L], T(i+1)) — H(F, T(i+ 1)), — € H' (kv, T(i)) — 0

vip
(4.2)
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instead of (4.1): we will refer to it as the i-th cohomological p-localization
sequence for F' (we will not stress on ¢ unless it is necessary). The following
proposition shows that there is no difference between considering (4.1) or
(4.2), even without using the Quillen-Lichtenbaum conjecture.

Proposition 4.1.1. The i-th cohomological p-localization sequence for F
splits if and only the p-localization sequence for Koi(F') splits.

Proof. Banaszak ([Ba|, Proposition 2) proved that
Ksi(Or), == K5{(Or[1]) (4.3)
is split surjective. We are going to prove the analogous result for the map
K2i(F)p — gf(F)p (4-4)

with the same strategy as Banaszak, taking into account that the groups
involved are no more finite (but still torsion). First of all there is a commu-
tative diagram

Koi(F, Z/p"Z) —— Ky(F)[p"] —— 0

K§H(F, Z/p"Z) —— K§{(F)[p"] —— 0

with exact rows and surjective vertical maps (see [Ba|, Diagram 1.6). This
implies that the kernel C; of the map Ko;(F), — K$H(F), is a pure subgroup.
i.e. for each n € N we have

C; N Ko (F)E ="

Moreover C; is finite since it coincides with the kernel of the map in (4.3),
as follows easily from the properties of Diagram 4.1 which we listed above.
Hence Theorem 7 of [Ka| tells us that the map in (4.4) is split. In fact, this
is equivalent to the fact that the map

doyo .
Koi(F), 25 H(F, T(i + 1)), (4.5)
is split.
Now suppose that (4.2) splits: then using the fact that (4.5) splits, a simple
diagram chasing in Diagram 4.1 shows that (4.1) is split too. O

We are going to describe the obstruction to splitting of the cohomological
p-localization sequence for F' in terms of coinvariants of twisted p-parts of
the class groups of the fields F;, = F(u,n), following [Hu|. We denote by pn
the group of p"-th roots of unity in an algebraic closure of F' (however in the
following p,» may denote the group of p"-th roots of unity in an algebraic
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closure of a field other than F' and we shall not stress on that).

For typographical convenience, we set
Qi = (HX(OF[L), TG+ 1) N HAF TG+ D)) [HX(Op[L], T + 1)

These groups are the obstructions to the existence of a splitting for the
cohomological p-localization sequence for F. Note that, from the definition
of 2, i, we have €y ; = 0.

Lemma 4.1.2. The i-th cohomological p-localization sequence for F splits if
and only if for every n € N we have ,, ; = 0.

Proof. 1t is not difficult to realize (see [Ba|, proof of Proposition 2) that the
i-th cohomological p-localization sequence splits if and only if

H(F, T(i+ 1))p[p"] — @D H' (ky, T(3))[p"]
vip

is surjective for every n € N. Using the snake lemma, we get an exact
sequence

H(F, T(i + 1))p[p"] ——— SuppH " (b, T(0)[p"]

H(F, T(i+1)),/p"; [| — H*(Or (5], T(i +1))/p"

Hence the surjectivity of the first map is equivalent to I = 0 and therefore
to the injectivity of the third map. Since the kernel of this map is exactly
i, we are done. O

We are going to use the following notation: for n € N, set F,, = F(upn)
and I',, = Gal(F,,/F). If w is a place in F,,, then denote by (ky,). the residue
field of F, at w.

Lemma 4.1.3. Let vt p be a place in F. For every n, m € N, there are of
isomorphisms of I'p,-modules

@ 7 ((kn)w: TP = @D HO (K, 115)

wlv wlv

and
H?*(OF,[2], T(i))/p" = H*(OR, [3], 1)
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Proof. Both assertions come from the cohomology sequence corresponding
to the exact sequence
0—T(i) 25 T(6) — p&i—0

together with H°((ky)w, T'(i)) = 0 (it is a finite Z,-module on which mul-
tiplication by p" acts injectively) and HS(OFM[%], T(i)) = 0 (the Galois
group of the maximal extension of F,, which is unramified outside p has
p-cohomological dimension less or equal to 2). Since conjugation commutes
with the connecting homomorphism, this proves that, for any fixed wpl|v in
F,, there is a D,-module homomorphism (D, being the decomposition group
at vin F,/F)

H ((km)wos T(0)[p"] 2 HO((kin)wos Hpr)
and a I';,-isomorphism
H (O, [1], T())/p" = HX(Or, [, u2)

Furthermore

B H ((km)w, T(@))[p"] = Indp H ((Fm)uw,, T(0))[p"]

wlv

for any fixed wop|v in F), and

P HO((km)w: 15 = Indiy HO((km)uwo p51)
wlv

This concludes the proof. ]

Lemma 4.1.4. Let v {p be a finite place of F. If w is a place of F,, above
v, then, for every i > 0, the corestriction homomorphisms

HO((kn)as pit) — HO (ko i)
are surjective.
Proof. Note that
HO(ky, Mf?rf) = H((kp)w, M%)Gal((kn)w/kv)
and use [We2], Lemma 3.2 and Remark 3.2.1. O

Lemma 4.1.5. Let c : @w‘p /,L?,f — /,L?,f be the codiagonal map (Cu)w —
[L, Gw- Then c is a surjective map of I',-modules and H:(I',, Kerc) = 0.

Proof. See |Ke|, Lemma 6.5, for the case i = 2. The general case follows
easily (see also [We2|, Lemma 3.2 and Remarks 3.2.1). O
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Lemma 4.1.6. For every n € N, the corestriction map induces an isomor-
phism
H?*(OR,[1], pgi)r, — H*(OF[1], pii)

Proof. Apply [We2|, Proposition 2.2 to the group of the maximal extension
of F' which is unramified outside p, using the fact that it has p-cohomological
dimension less or equal to 2. O

We now recall the definition of the map
Jui s Clg, @ i — HA(Op, [2], u&i) (16)

(see [Hul, [Ke|, [We2]). If ¢ € ppn and [2] is the class of the ideal 2 in CI7, ,

we have

Jn, 1 ([ ® ) = h (2" (mod Ko(OF,)0"))

where 2 € Ky(F,), goes to ((*® (mod Py))w (here Py, is the prime
ideal correspondig to w) under the map induced by Hilbert symbols and
h: Ky(OF,),/p" — H*(OF, [ I, mi ?) is the map defined in [Ta2]. For i > 2,
Jn,i 1s defined observing that

H?(OF, [3], pgn*) = H*(OR, [1], ppi) © pgi ™

Proposition 4.1.7. (Keune-Weibel) For every n € N there is the following
exact sequence of I'y-modules

0— Cl%n ® /"Lp In, i H2(0Fn[ ®z+l @M@n N N?Z =0

Moreover, taking coinvariants by 'y, gives

0— (Clp, ® N%)r = HQ(OF[ ®Z+1 @“p ®1)Fn 0

Proof. See [Ke| Theorem 6.6, for the case i = 2. The general case follows
easily (for instance see Proposition 4.1 of [We2| and use Lemma 4.1.5 and
Lemma 4.1.6). O

Theorem 4.1.8. The i-th cohomological p-localization sequence for F (or
equivalently the p-localization sequence for Koi(F')) splits if and only if for
every n € N we have

®1 —
(Clp, ® upi)rn =0
Proof. Thanks to Lemma 4.1.2 it will be sufficient to show that

(Cly, © pE) = Qs



4.1 Obstruction to splitting 67

for every n € N. There is a commutative diagram of I',,-modules (those on
the bottom line have trivial action) with exact rows

H*(Op, 3], T(i + 1)) —— H2(F,, T(i + H@H T(i))
H(Op[], T + 1)) H(F, T(i +1) @H .

where cor is the (cohomological) corestriction. Following [Hu|, Section 3,
we consider a part of the commutative diagram induced by snake lemma,
namely

P H ((kn)w, TE)P") —2 HA(Op, [, T(i + 1)) /p"
wip
B H (k. TE)P"]  —— H2Op[L], T(i +1))/p"
vip

Using Lemma 4.1.3 we can write

D s L HOp, Y, 48T
wip
@ H ko, T@)P"] —— HXOp[L], &™)

vip

A straightforward verification shows that we can split the map I, ; by

T @ug — Cl, ®u?ﬁ
wip
which is defined by
7(Cod) = 3Pl @ G

wip

(B, is the prime ideal corresponding to w). Note that 7 is surjective since
elements of the form [JB,,]®(y (With ¢, running in pi,n) generates Cly ®ufﬁf.
In fact we have I, ; = Jp ; om where J,, ; is the map in (4.6). We know that

ImIl = Qn,i
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Hence, n = cor? o J,, ; defines a I';,-homomorphism
Cl/Fn & M?% - Qn,i

By Lemma 4.1.4, we know that cor! is surjective, therefore 7 is surjective.
Moreover taking coinvariants we get a map

e (Clp, ® pi) . — Qi
This map is injective by Proposition 4.1.7 and this concludes the proof. O

Remark 4.1.9. K. Hutchinson pointed out to me that if u, C F', then
the splitting criterion of Theorem 4.1.8 is independent of ¢. In fact, in this
situation, I'), is a cyclic p-group and hence by Nakayama’s lemma

(Cl%n ® uf?i)F =0 Clp, @ s = 0 Cllp, /p" =06 (Cllp, )p = 0

n

In particular, still supposing that p, C F, if (Cl%), # 0, then the p-
localization sequence for Ky(F') does not split. Here is another proof of
this (partial) result.

Proposition 4.1.10. Let p be any prime and suppose p, C F. If (Cly), #
0, then the p-localization sequence for Ko(F') does not split.

Proof. Let U be a finite place of F' which does not lie over p: since p divides
|(k )p| (F' contains the p-th roots of unity), we can choose an element (z of
order p in k. We identify (z with the sequence in Bop K 1(ky)p which has 1
everywhere except at v where it has (z. Now suppose that the p-localization
sequence for Ko (F) splits: then there exists an element x of order p in Ks(F)
such that d(x) = (5. Since F' contains the p-th roots of unity, we can find
an element az € F* and a p-th root of unity ¢ € F such that z = {(, az}
(see |Ta2|). Now from the definition of 0 we see that

v(az) Z 0 (mod p), v(ag) =0 (mod p) if v#7and v{p

Hence
() = aypy "

where a is an ideal of I, a, is a product of prime ideals of F' which lie over
p and py is the prime ideal of F' which corresponds to ©. In particular the
class of py is trivial in Cl7,/CIlP since U(ay) is invertible modulo p. The
same holds for every prime ideal of F' (not dividing p) since T was chosen
arbitrarily. Hence Cl%/Cl}:P has to be trivial, which implies p { |Cl%| giving
a contradiction. O
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4.2 Examples and non-examples

First of all we analyze the simplest case, namely F' = Q. Let A, denote
the p-Sylow subgroup of Q(uy»). Let K, be the n-th level of the cyclotomic
Zp-extension of Q. Set A, = Gal(Q(pp»)/Ky) and for every j € Z, let (Ay);
denote the w/-component of A,, where w : A,, — Z; denotes the Teichmuller
character (notation as in [Wa|, §6.3). As in Chapter 2 we set

Ip = Gal(Q(¢p)/Q(Gp))  T'= Gal(Q(¢)/Q)

We need the following well known result: for an even more general version of
the first statement, see [KM]|. For the second statement, see [Ko2|, Corollary
9.3.

Proposition 4.2.1. Suppose that i, j > 1 and i = j (mod p — 1). Then
WKSH(Q) = 0 if and only if WK;;(Q) = 0. Moreover, if A is the p-Sylow of
the class group of Q(pp), then WKSHQ) = 0 if and only if A_; = 0.

Proof. From Schneider’s isomorphism (see [Sc|, §6) we know that
WKS$/(Q) = Xg,)(i)r

where Xq(,,)(i) denotes the i-th Tate twist of Xg(,,). Now I' = T, x A
where A = Gal(Q(p,)¢/Q°) = (Z/pZ)*. In particular, setting X = Xq
we have

Hp)>

X()r,xa = (X(0)a)p, = X-i(dr,
where X_; denotes the w™*-component of X where w : A — Z, is the
Teichmiiller character. Now by Nakayama’s lemma

X,i(i)pp =0& X,Z(’L) =0 X_,=0

Since X_; = 0 if and only if X_; = 0, then WKS/(Q) = 0 if and only if
WKS;(Q) = 0. In order to prove the second assertion it will be enough to
prove that X_; = 0 if and only if A_; = 0. But this comes again from
Nakayama’s lemma since

A, =0& (X—i)Fp =0 X_,=0
[

Remark 4.2.2. Incidentally Proposition 4.2.1 gives, together with a result
of Banaszak, a proof using wild kernels of the celebrated result of Kurihara
(|[Ku]) about sufficient conditions for the Vandiver conjecture to be true:
more precisely Kurihara proved that, for every n € N,

K4n(Z)p =0= (Al)—2n =0 (47)
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(recall that the Vandiver conjecture predicts precisely that (A;)_9, = 0 for
every n). Now, in order to prove (4.7) by means of Proposition 4.2.1, we have
to check that if Ky,,(Z), = 0, then WK (Q) = 0. We know that WKL (Q)
is isomorphic to (div(K4,(Q))), (see [Ba|, Theorem 3), namely

W, (Q) = (ﬂ K4n(@)7"> = () (Kun(Q)p)" = [] (Kan(Q)p)"

p reN seN

This subgroup is contained in K4,(Z), since we have the exact localization
sequence

0 — Kan(Z)p — Kan(Q)p — @K4n—1(Fq)p —0
q7#p

and, for every prime ¢, Ka,—1(Fy), is a finite (cyclic) group. Hence
Kin(Z)p = 0= WK{,(Q) & (A1)-20 =0

Ezample. Take F' = Q: note that F,, = Q(ppn) and I';, = Gal(Q(ppn)/Q).
Moreover, for every n € N, (C’l(’Q(M ))p = (Clg(uyn))p = An. For every n > 1

pT

<An ®M§"Z>Fn B <(An ®M§;)An>c 1

By Nakayama’s lemma

(o), )

Furthermore

we have

(Kn/Q)

. =0 <= (An ® Mffif)An =0

(An ® M;?vf)An = (An)p—l—i

Moreover, as in the second part of the proof of Proposition 4.2.1, it is easy
to see that for any n > 1

(Ap)p—1-i =0 <= (A1)p-1-i =0

Hence the p-localization sequence for Ko;(Q) is split if and only if (A1)p—1—;
is trivial. Therefore, by Proposition 4.2.1, the p-localization sequence for
K5;(Q) is split if and only if WKS!(Q) is trivial (see also [Ba], Corollary 2).

The condition that WK5(F), = 0 implies the splitting of the p-localization
sequence for Ky(F) for a large class of field. To give an example, we first
recall a structure result of Keune (a similar assertion can be proved with the
results of [Sc]|, §6).
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Theorem 4.2.3. (Keune) There is an isomorphism
WI(F), = (Cly, @ pipr )y,

for each v such that p(Fy), C py, for all w|p in Fy. and, furthermore, p" kills
the p-primary part of Ko(Op).

Proof. See |Ke|, Theorem 6.6. O

Proposition 4.2.4. Let F' be quadratic field. Then for each (odd) prime p,
the p-localization sequence for Ko(F') splits if and only if WKy (F), = 0.

Proof. Clearly only one of the implication has to be shown (see Introduction).
If WK5(F'), = 0, then by the well known formula (coming from Moore exact
sequence) which expresses the relation between the orders of K2(Op) and
WK (F') (see for example |Bal), we have

T, l1(E2),|
n(E),)

Suppose first that p # 3: then both the denominator and the numerator
are trivial (because F' is quadratic). Hence K»(Op), is trivial and therefore
the p-localization sequence for Ks(F') trivially splits. In the case p = 3 and
F =Q(us), K2(Op)s is again trivial (by a calculation of Tate, see also [Ke],
3.8) and we conclude as before.

Now suppose that p = 3 and F # Q(u3). Then the denominator of (4.8)
is again trivial. Clearly the numerator must be a divisor of 3 which implies
that 3 kills Ko(Op)s. Since again pu(Fy)s C us for each v|3 in F, it follows
from Theorem 4.2.3 that for each r > 1 we have

|K2(OF),| = (4.8)

(Cl, ® pr)p, = WK (F)3 =0

Hence by Theorem 4.1.8 we see that the p-localization sequence for Ks(F)
splits. O

Anyway in general the condition WKS!(F), = 0 is weaker than the condition
of Theorem 4.1.8, as we will show in the next example. First we need the
following criterion.

Proposition 4.2.5. Let F//Q be finite Galois extension such that
o 11, CF;
o (Clp)p=Z/pL;
e cvery prime over p in F(u,2)/F is totally splil.

Then WKy (F'), is trivial but the p-localization sequence for Ko(F') does not
split (and the same holds for the p-localization sequence for Koi(F), i > 1).
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Proof. We are going to use the language and the results developed in [Ja3].
For any F/Q finite and Galois (even not satisfying the hypotheses) we have
an exact sequence (see |DS], §3)

0 — Clp(p) — Clp =% (Clp), — degpDt/(degpp)Zy, — 0
where p is any prime of F' over p. Moreover
degpDl = p[F N Q° : QJZ, (4.9)
where @c is the cyclotomic Z-extension of Q and
degpp = fy-degp = [F,NQ%: Q) - p

where @g is the compositum of the Zg-extensions of Q, for every rational
prime q. Now we want to compare [Fﬂ@c : Q] and [Fy ﬂ@; : Qp]. Suppose
that v, ([F'N Q° : Q]) = ¢ and that the first stage F of the cyclotomic Zy,

extension of F' is totally split at every prime p above p: this means that
(F1)p = Fp. In particular vy([Fp, N Qp : Qp]) > ¢+ 1. In other words

degpDl/(degpp)Zy = Z/p°Z

with s > 1. Therefore, if (Cl},), = Z/pZ, we have Clp = 0. Since p, C F,
we can use the isomorphism (see for example [Ja2|)

11y @ Clp = WKy (F) /pWEKy(F)

to deduce that WK3(F), = 0. On the other hand (Cl}), is non trivial,
hence Proposition 4.1.10 (or Theorem 4.1.8) tells us that the p-localization
sequence for Ks(F') does not split. O

Ezample. (Computations are performed using the PARI package, [PA]).
We have to find a field satisfying the hypotheses of Proposition 4.2.5. We
proceed as follows: we take p = 3 and we choose a prime ¢ such that
¢ = 1 (mod 3): this ensures that Q((y;) has exactly one subextension of
degree 3 which we call E. Let K be the subextension of degree 3 of Q(uyg):
then F'K is an abelian number field whose Galois group is isomorphic to
(Z/37)%. Now, if the order of 3 modulo ¢ is not divisible by 3, then E has
to be totally split at 3. In particular, if F’ # K is any of the subextension
of degree 3 of EK, then EK/F’ is totally split at 3. We may then choose
F = F'(u3): then the first and the third hypotheses of Proposition 4.2.5 are
satisfied. So we are left to find such an ¢ with the additional requirement
that (Cl)s is cyclic of order 3.

Choose ¢ = 61: of course we have 61 = 1 (mod 3) and 3 has order 10
modulo 61. Choose F’ the subextension of EK defined by the polyno-
mial X3 — 183X — 783 (one can check that F’ has conductor 3 - 61): then
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F = F'(u3) = Q(0) where 6 is a root of the polynomial X% —793X3+226981.
There is only one (totally ramified) prime above 3 in F' and it is principal.
Computations give Clp = Z/39Z and then (Cl})s = Z/3Z. Then by Propo-
sition 4.2.5, we deduce that WKy(F')s = 0 but the 3-localization sequence
for Ko(F') does not split and K2(Op)s = Z/37Z.
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