Thèse soutenue

Méthodologie d’analyse de fiabilité basée sur des techniques heuristiques d’optimisation et modèles sans maillage : applications aux systèmes mécaniques

FR  |  
EN
Auteur / Autrice : Jhojan Enrique Rojas
Direction : Abdelkhalak El HamiDomingos Alves Rade
Type : Thèse de doctorat
Discipline(s) : Mécanique
Date : Soutenance le 04/04/2008
Etablissement(s) : Rouen, INSA en cotutelle avec Universidade Federal de Uberlândia
Ecole(s) doctorale(s) : École doctorale sciences physiques mathématiques et de l'information pour l'ingénieur (Saint-Etienne-du-Rouvray, Seine-Maritime ; ....-2016)
Partenaire(s) de recherche : Laboratoire : Laboratoire de mécanique de Normandie (Saint-Etienne-du-Rouvray, Seine-Maritime ; 1993-....)
Jury : Président / Présidente : Eduardo de Cursi Souza
Examinateurs / Examinatrices : Abdelkhalak El Hami, Domingos Alves Rade, Eduardo de Cursi Souza, Noureddine Bouhaddi, Valder Steffen, Raquel Leandro Rade Santini
Rapporteurs / Rapporteuses : Noureddine Bouhaddi, Valder Steffen

Résumé

FR  |  
EN  |  
PT

Les projets d'Ingénierie Structurale doivent s’adapter aux critères de performance, de sécurité, de fonctionnalité, de durabilité et autres, établis dans la phase d’avant-projet. Traditionnellement, les projets utilisent des informations de nature déterministe comme les dimensions, les propriétés des matériaux et les charges externes. Toutefois, la modélisation des systèmes structuraux complexes implique le traitement des différents types et niveaux d'incertitudes. Dans ce sens, la prévision du comportement doit être préférablement faite en termes de probabilités puisque l'estimation de la probabilité de succès d'un certain critère est une nécessité primaire dans l’Ingénierie Structurale. Ainsi, la fiabilité est la probabilité rapportée à la parfaite opération d'un système structural donné durant un certain temps en des conditions normales d'opération pour trouver le meilleur compromis entre coût et sécurité pour l’élaboration des projets. Visant à pallier les désavantagés des méthodes traditionnelles FORM et SORM (First and Second Order Reliability Method), cette thèse propose une méthode d’analyse de fiabilité basée sur des techniques d’optimisation heuristiques (HBRM, Heuristic-based Reliability Method). Les méthodes heuristiques d’optimisation utilisées par cette méthode sont : Algorithmes Génétiques (Genetic Algorithms), Optimisation par Essaims Particulaires (Particle Swarm Optimisation) et Optimisation par Colonie de Fourmis (Ant Colony Optimization). La méthode HBRM ne requiert aucune estimation initiale de la solution et opère selon le principe de la recherche multi-directionnelle, sans besoin de calculer les dérivées partielles de la fonction d’état limite par rapport aux variables aléatoires. L’évaluation des fonctions d’état limite est réalisée en utilisant modèles analytiques, semi analytiques et numériques. Dans ce but, la mise en oeuvre de la méthode de Ritz (via MATLAB®), la méthode des éléments finis (via MATLAB® et ANSYS®) et la méthode sans maillage de Galerkin (Element-free Galerkin sous MATLAB®) a été nécessaire. La combinaison d’analyse de fiabilité, des méthodes d’optimisation et méthodes de modélisation, ci-dessus mentionnées, configure la méthodologie de conception fiabiliste proposée dans ce mémoire. L’utilisation de différentes méthodes de modélisation et d’optimisation a eu pour objectif de mettre en évidence leurs avantages et désavantages pour des applications spécifiques, ainsi pour démontrer l’applicabilité et la robustesse de la méthodologie de conception fiabiliste en utilisant ces techniques numériques. Ce qui a été possible grâce aux bons résultats trouvés dans la plupart des applications. Dans ce sens, des applications uni, bi et tridimensionnelles en statique, stabilité et dynamique des structures explorent l’évaluation explicite et implicite des fonctions d’état limite de plusieurs variables aléatoires. Procédures de validation déterministe et analyses stochastiques, et la méthode de perturbation de Muscolino, donnent les bases de l’analyse de fiabilité des applications en problèmes d’interaction fluide-structure bi et tridimensionnelles. La méthodologie est particulièrement appliquée à une structure industrielle. Résultats de applications uni et bidimensionnelles aux matériaux composites stratifiés, modélisés par la méthode EFG sont comparés avec les obtenus par éléments finis. A la fin de la thèse, une extension de la méthodologie à l’optimisation fiabiliste est proposée à travers la méthode des facteurs optimaux de sûreté. Pour cela, sont présentes des applications pour la minimisation du poids, en exigent un indice de fiabilité cible, aux systèmes modélisés par la méthode de EF et par la méthode EFG.