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”Essayer encore, rater encore, rater mieux”.
Samuel Beckett, Cap au Pire





Résumé

Cette thèse traite - en trois essais - de problèmes de choix de portefeuille
en situation d’information partielle, thématique que nous présentons dans une
courte introduction. Les essais développés abordent chacun une particularité
de cette problématique. Le premier (co-écrit avec M. Jeanblanc et V. La-
coste) traite la question du choix de la stratégie optimale pour un problème
de maximisation d’utilité terminale lorsque l’évolution des prix est modélisée
par un processus de Itô-Lévy dont la tendance et l’intensité des sauts ne sont
pas observées. L’approche consiste à réécrire le problème initial comme un
problème réduit dans la filtration engendrée par les prix. Cela nécessite la
dérivation des équations de filtrage non-linéaire, que nous développons pour
un processus de Lévy. Le problème est ensuite résolu en utilisant la program-
mation dynamique par les équations de Bellman et de HJB. Le second essai
aborde dans un cadre gaussien la question du coût de l’incertitude, que nous
définissons comme la différence entre les stratégies optimales (ou les richesses
maximales) d’un agent parfaitement informé et d’un agent partiellement in-
formé. Les propriétés de ce coût de l’information sont étudiées dans le cadre
des trois formes standard de fonctions d’utilités et des exemples numériques
sont présentés. Enfin, le troisième essai traite la question du choix de porte-
feuille quand l’information sur les prix de marché n’est disponible qu’à des
dates discrètes et aléatoires. Cela revient à supposer que la dynamique des
prix suit un processus marqué. Dans ce cadre, nous développons les équations
de filtrage et réécrivons le problème initial dans sa forme réduite dans la fil-
tration discrète des prix. Les stratégies optimales sont ensuite calculées en
utilisant le calcul de Malliavin pour des mesures aléatoires et une extension de
la formule de Clark-Ocone-Haussman est à cette fin présentée.

Une second partie de la thèse, indépdendante de la première, présente une
méthode de résolution numérique de problèmes d’optimisation stochastique.
Dans un essai (co-écrit avec B. Amzal et Y. Ebguy), un problème de calibration
jointe d’un modèle d’évalution de type Itô-Lévy à des prix d’actions et d’options
écrites dessus est discutée et résolue grâce à l’algorithme développée.

Mots Clefs: optimisation de portfeuille, information partielle, processus
de Lévy, processus marqué, marché incomplet, filtrage non-linéaire, observa-
tions discrètes, programmation dynamique, calcul de Malliavin.
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In this introduction, we present the main concepts used in decision theory
and study, from the point of view of a decision maker, the distinction between
risk and uncertainty. This leads to the setup of decision making under un-
certainty in which the robust Savage representation of preferences will be of
paramount importance. Finally, we precise the links between learning and
uncertainty and detail the setup of portfolio optimization under uncertainty.

1.1. Distinction Between Risk and Uncertainty

In the standard framework of decision theory, the starting point is a specifica-
tion of a (stochastic) model, a set of future scenarios (Ω,F) and a probability
measure P on these outcomes. However, in many circumstances, the decision
maker is not able to attribute a precise probability to future outcomes. This
situation has been called uncertainty, cf. Keynes (1921) [102], which differs
from risk when the choice of the probability measure is unique.

Since Knight (1921) [106], it is generally admitted that there exist two kinds
of uncertainty. Suppose an investor which may decide to invest in a financial
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position from the set X . The first uncertainty involves an increase in the dis-
persion (in terms of the moments) of the state variables distribution (which
is unique) that the decision maker thinks he/she faces. Additional informa-
tion is then required to precise the parameters of the probability distribution.
Such a process of information acquisition may take time. Instead, the second
uncertainty entails a decrease in his/her confidence about the possibly many
state variables model distributions. The process by which this uncertainty is
reduced resumes to the choice of one model distribution.

In the lines of Knight (1921) [106], the former type of uncertainty, which
can be reduced to a single distribution with known parameters, is risk, while
the latter type of uncertainty is true uncertainty. While risk and uncertainty
are clearly distinct concepts, they have not been treated separately in decision
making in an explicit way, at least until recently. This may be due to the
celebrated Savage theory of representation of preferences.

Remark 1.1.1 (Uncertainty and Incompleteness) We note that incom-
pleteness and uncertainty differs. The former concentrates on the precise spec-
ification of the historical probability distribution, while the latter concerns the
choice of one risk-neutral measure from one historical measure. Therefore,
uncertainty and incompleteness are different problems and an increase in un-
certainty does not entail an increase in incompleteness.

1.1.1 Savage Representation

Consider an investor whose attitude in face of uncertainty is described by a
preference relation � on the space X of financial positions. It is natural to
assume � is monotone in the sense that:

Y � X if Y (ω) > X (ω) , ∀ωεΩ

where � is the weak preference order induced by �. Under a suitable condition
of continuity, one can prove the existence of a numerical representation for the
preference relation �, i.e.: there exists a function u : X →R s.t.:

Y � X i.f.f. u (Y ) > u (X)

Savage (1954) [150] introduced a set of additional axioms which guarantee
that, when X represents the set of real random variables, there is a numerical
representation of the form:

u (X) = EP [U (X)] =
∫

ωεΩ

U (X (ω)) dP (ω) (1.1)

where U is a continuous function on R. The measure P is the subjective view
of the probabilities of events which is implicit in the preference relation �.
When U is an increasing concave function, U is termed a utility function.
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Under the Savage representation paradigm, the decision maker’s preferences
are represented by the expectation of some utility function which is computed
by means of a single probability measure. The uncertainty that the decision
maker faces is thus reduced to risk with some probability measure.

Remark 1.1.2 (Measure of Risk) The concept of a measure of risk, as in-
troduced by Artzner et al. (1999) [8], bears ressemblance with the represen-
tation (1.1) when u ≡ −l where l is a loss function and X is some financial
position. In the sense of [8], EP [l (X)] can then be seen as an extra capital
requirement to support the market risk X.

1.1.2 Ellsberg’s Paradox

In Ellsberg (1961) [58], a distinction between aversion to risk and aversion to
uncertainty is established. The resulting celebrated Ellsberg’s paradox is a
paradox in decision theory in which people’s choices violate the Savage axioms
of expected utility theory. It is generally taken to be evidence for aversion
against uncertainty.

Problem 1.1.3 (Ellsberg’s Problem) Suppose that you have an urn con-
taining 30 red balls and 60 other balls, either black or yellow. You don’t know
how many black or yellow balls there are, but the total number of black balls
plus the total number of yellow balls equals 60. The balls are well mixed so that
each individual ball is as likely to be drawn as any other. You are now given a
choice between two gambles:

Game Gamble A Gamble B
Ball Pay Red: $100 Black: $100

Also you are given the choice between these two gambles:

Game Gamble C Gamble D
Ball Pay Red/Yellow: $100 Black/Yellow: $100

Since the profits are exactly the same, it follows that you will prefer Gamble
A to Gamble B if and only if you believe that drawing a red ball is more likely
than drawing a black ball (according to expected utility theory). Similarly it
follows that you will prefer Gamble C to Gamble D if and only if you believe
that drawing a red or yellow ball is more likely than drawing a black or yellow
ball. If drawing a red ball is more likely than drawing a black ball, then drawing
a red or yellow ball is also more likely than drawing a black or yellow ball.

Problem 1.1.4 (Ellsberg’s Paradox) Supposing you prefer Gamble A to
Gamble B, it follows that you will also prefer Gamble C to Gamble D. And,
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supposing instead that you prefer Gamble D to Gamble C, it follows that you
will also prefer Gamble B to Gamble A. When surveyed, however, most people
strongly prefer Gamble A to Gamble B and Gamble D to Gamble C. Therefore,
some assumption of expected utility theory is violated.

Proof. Let R, Y and B denote the estimated probabilities of each color ball
s.t. R = 1/3. If you prefer Gamble A to Gamble B, by utility theory, it is
presumed this preference represents your estimate of expected utility. This is
represented in the following inequality:

1
3
U ($100) > B × U ($100)

Solving for B gives:
1
3
> B

If you also prefer Gamble D to Gamble C, the following inequality is similarly
obtained:

B × U ($100) + Y × U ($100) >
1
3
U ($100) + Y × U ($100)

Solving for B gives:

B >
1
3

Hence, a contradiction.

Ellsberg (1961) [58] experiments have established in a convincing and robust
way that decision makers generally prefer to act in settings in which they have
better information. In the classic two-urn experiments, agents tend to choose
to bet on the color of a ball drawn from an urn whose composition is known
rather than on the color of a ball drawn from an urn that contains black and
yellow balls in unknown proportion. These experiments have led to numerous
models of decision under uncertainty, such as the Choquet expected utility
model, cf. Schmeidler (1989) [154], or the multiple prior model, cf. Gilboa
and Schmeidler (1989) [77], capturing the fact that agents might have aversion
towards uncertainty. However, these models, while referring to the Ellsberg’s
experiments neglect an important aspect of these experiments: the information
available to the decision maker is not part of the modelling.

1.1.3 Robust Savage Representation

As proved by the Ellsberg’s paradox, the paradigm of expected utility, for-
malized in the representation (1.1), has a limited scope. Gilboa (1987) [76],
Gilboa and Schmeidler (1989) [77] and Schmeidler (1989) [154] weaken Savage’s
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axioms to settle debates caused by Ellsberg’s paradox. They axiomatize the
preference which is represented by the minimum among the expected utilities
each of which is computed by an element of some set of probability measures.
This preference is called the max-min expected utility or the Choquet ex-
pected utility. This is a natural extension of preference under uncertainty to
the case in which the information is too imprecise to be summarized by a sin-
gle probability measure. This type of uncertainty is also called the Knightian
uncertainty.

Definition 1.1.5 (Robust Savage Representation) A numerical represen-
tation U of the preference order � on X will be called a robust Savage repre-
sentation if it is of the form:

u (X) = inf
PεP

EP [U (X)] (1.2)

where P is a set of probability measures on (Ω,F) and U a utility function.

Remark 1.1.6 (Robust Measure of Risk) Following Foellemer and Schied
(2002) [68], we note that the concept of a robust measure of risk is in line with
the representation (1.2) when u ≡ −l where l is a loss function and X is
some financial position. Therefore supPεP E

P [l (X)] is the maximal, over all
models, capital requirement for holding the position X.

1.2. Discussion on Partial Information

In this section, we present some mathematical and financial material which
are pivotal to understand the partial information setup. In particular, we
will explore how and why partial information departs from the classical and
well-known complete information setup.

1.2.1 Classical Setup

The classical financial economical models - Markowitz (1952) [123], Merton
(1969, 1971, 1973) [125], [126], [127], Cox-Ingersoll-Ross (1985) [33] - usually
specify equilibrium quantities of interest: asset prices, interest rates and port-
folio rules, in terms of the moments of distribution of returns. The moments,
however, are unobservable to both real-world investors and empiricists, cf. De-
temple (1986) [48], Dothan and Feldman (1986) [53] or Gennotte (1986) [74].
Implementing and testing the so-called complete information models thus re-
quires the estimation of these moments. From a statistical perspective, this is
called the estimation procedure. The statistical production of these moment
estimates outside of the theoretical model raises various questions and prob-
lems, cf. Liptser and Shiryaev (2001) [118] and Frydman and Lakner (2003)
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[72]. One central issue is the consistency of the econometric assumptions of the
estimation procedure with the structure and hypothesis of the original model.

In financial economics, the issue of parameter estimation first arose from
an empirical and statistical perspective in the context of portfolio problems,
cf. Merton (1971) [126]. The portfolio problem under unknown mean and
variance was usually called the parameter uncertainty problem, cf. Detemple
(1986) [48], referring to the real-world situation where moments of asset returns
distributions are not observable. To better suit this situation, one solution is
to take into account the uncertainty in the determination of these quantities
by adapting the mathematical and statistical procedures. This is referred to
as the filtering problem, when one needs to compute estimators of unknown
quantities based on his/her available information in order to produce the best
estimator in the least squares sense, cf. Liptser et al. (2001) [118].

Mathematical Framework

Let a filtered probability space (Ω,F , (Ft)t∈[0,T ] , P ) and T > 0 a fixed time
horizon. Consider an economy which consists of two assets. The riskless asset is
denoted byB with return1 r, while the risky price process, henceforth the stock,
is an adapted positive process Y = (Yt)t∈[0,T ] which is a P−semimartingale.
The filtration (Ft)t∈[0,T ] denotes the model filtration, while:

Gt = σ (Ys, s ∈ [0, t])

represents the stock price filtration. Recalling the previously mentioned dis-
tinction between risk and uncertainty, we note that having access to F is
equivalent to be subject to risk while having access to G is the situation where
uncertainty matters, as G is less informative than F . In the following, we will
be interested in studying financial decisions when having access to G.

Departure from Complete Observation

In general, filtration F is not available to the agent who can only access the
stock price filtration G. Therefore, the uncertainty resumes to a situation
of limited information, as G ⊂ F . Within this setup, the investor cannot
disentangle - for example - the drift term from other sources of randomness.
More specifically, in the economy we consider, growth rates are altered by
infrequent large shocks and continuous small shocks. Investors observe changes
in returns but cannot perfectly distinguish their dynamics. Instead, he/she
needs to solve a signal extraction problem. This works as follows: As investors
do not have a perfect knowledge of the process associated with stock price
dynamics (uncertainty in the drift term, for example), they need to make

1We note that the return r can be deterministic or stochastic.
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proper estimates using all available data. As more data become available,
new information is incorporated into existing beliefs with a certain weight
to form posterior beliefs, through a Bayesian updating scheme. To be more
precise, the investors lack knowledge, not on the model distribution, but on
the parameters of the distribution. Therefore, the problem of reducing the
uncertainty by learning is equivalent to solve a filtering problem, cf. Liptser
and Shiryaev (2001) [118].

Portfolio Optimization

Thereafter, we consider the next problem: the investor wants to solve the
following expected utility problem:

u (x) = sup
φ∈A(x,G)

EP
[
U
(
Xφ

T

)]
(1.3)

where U is some utility function, X is the wealth process, φ is the investment
policy process which is defined on A (x,G), the set of G−admissible strategies
with initial capital x > 0 and P a probability measure on (Ω,G).

Remark 1.2.1 Problem (1.3) when moments are fully observable, i.e.: when
P is defined on (Ω,F) and the set of investment policies is given by A (x,F)
is commonly termed the Merton problem, cf. Merton (1971) [126].

1.2.2 Partial Information Setup

At each time, investors form estimates based on their available information and
use them to endogeneously determine moments of returns, conditional on their
observations. In other words, investors are engaged in continuous Bayesian
revisions, cf. Karni (2005) [101], using all available historical information to
determine, at each time, the posterior distributions of the unobservable market
factors. Their dependency on historical information, negates the Markovian
property. However, under certain conditions, we can recapture the Markovian
structure. These are related to the efficiency of the presentation of the histori-
cal information through the conditional moments. If the posterior distribution
has a finite number of moments and if these moments can be updated recur-
sively, we can recapture a Markovian structure and identify a proper state
vector solution. When the filter is not compact, that is, the posterior distribu-
tion has infinitely many moments, one might use an approximation, cf. Benes
and Karatzas (1983) [16] and Chiarella et al. (2001) [27].
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Parameterized Bayesian Family

We now define in a more concise way how uncertainty matters. For this, we
consider a random variable θ : Ω → R such that Y writes as follows:

Yt = θt+Wt

where W is a P−Brownian motion, independent of θ. Thereafter, the filtration
F = {Ft, t ∈ [0, T ]} denotes the P−augmentation of the enlarged filtration:

Ft = σ (Ws, s ∈ [0, t]) ∨ σ (θ)

Definition 1.2.2 (Enlarged Measure) Consider the (P,F)−martingale:

Λt = E (θW )t

where E denotes the Doléans-Dade exponential and define:

P̃T (A) ∆= EP [1A · ΛT ] , A ∈ GT

a probability measure equivalent to P on GT .

Let us also consider the
(
P̃T ,G

)
−martingale:

Λ̃t = E
ePT

[
dP

dP̃T

|Gt

]
= E

ePT [ΛT |Gt] = E
ePT

[
E
ePT [ΛT |Ft] |Gt

]
= E

ePT [Λt|Gt]

and suppose given a prior-probability distribution α on θ, so that:

α (A) = P [θ ∈ A] = P̃T [θ ∈ A] , A ∈ R

is the known distribution of the random variable θ under P and so P̃T . Then,
at a given time t ∈ [0, T ], the posterior distribution of θ under P , given the
observations Gt up to time t, is given by the Bayes’ rule, namely:

αt (A) = P [θ ∈ A|Gt] =
νt (A)
νt (R)

with:
νt (A) = E

eP T

[1θ∈AΛT |Gt] = E
eP T

[1θ∈AΛt|Gt]

The mean of the conditional distribution αt (·) is then given by:

θ̂t = E [θ|Gt] =
∫

R
xαt (dx)

which is the Bayes estimator of θ on the interval [0, t] w.r.t. the prior distri-
bution α, given the observations G[0,t]. Then, we may check that:

Ŷt = Yt −
∫ t

0

θ̂sds

is a (R,G)−Brownian motion, which is called the innovation process in filtering
theory, cf. Liptser and Shiryaev (2001) [118].
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Related Aspects

Absolute Continuity Hypothesis As it will be studied in the next Chap-
ters, the previous result derives (extensively) from the Girsanov’s theorem.
When considering stochastic processes in continuous time, it is only possible
to consider changes of probability measures between measures which are ab-
solutely continuous between each others. Therefore, it will not be possible
to learn on singular models. This happens, for example, when one considers
a Itô-Lévy model with a parameterization of the volatility coefficient which
entails a singular family of models of the form:

P = {Pσ : σε [σ, σ]}

Time Discretization of Information As previously said, the class of mod-
els on which learning will be applicable is restricted to the ones where a prop-
erty of absolute continuity between the reference and the parameterized mea-
sures, R and P θ respectively, holds. This entails that learning on the volatility
or jump amplitude of a Lévy process is not granted. As it will be thoroughly
developped in Chapter 2, this limitation is due to probabilistic arguments re-
lated to the Girsanov’s theorem and in particular to its (most commonly used)
continuous-time version. Nevertheless, this restriction can be bypassed when
working with discrete-time observations. Consider the filtration:

G (n) = σ ((Yτi
, τi) , τi 6 n)

which is the discrete (randomly sampled) version of Gt. Within such a setting,
one may assume, for example, that market data arrive according to a marked-
point process, cf. Chapter 4, thus allowing to learn on all dimensions of Y .

1.2.3 Properties of Partial Information

Reduction to the Full Observation Case

The previous discussion will be made more precise by deriving the mathe-
matical foundation of the equivalence principle via filtering. From Definition
1.2.2:

ΛT =
dR

dP̃T
|FT

We then have the following lemma, which - in a more general setup - will
be proved in Chapter 2 for the case of a Itô-Lévy process or in Chapter 4 for
the case of a marked point process.

Lemma 1.2.3 The random variable Λ̃t = 1/Λt satisfies:

ER
[
Λ̃t|GT

]
= 1, a.s., t ∈ [0, T ]

where G is the market information available to the investor.



12 1 Introduction

Let us now define the stochastic control problem:

ũT (x) = sup
φεA(x,G)

E
eP T
[
U
(
Xφ

T

)]
(1.4)

and we have the proposition.

Proposition 1.2.4 (Filtering Equivalence Principle) The optimal value
functions u (x) (1.3) and ũT (x) (1.4) admit the similar formal solution.

The problem (1.4) will be called the investor reformulation problem via
filtering. It expresses how and why the construction of a σ−algebra equivalent
economy, which is observationally equivalent to the original one, allows to
derive a solution to the optimization problem in a similar way.

Mathematical treatment of this question, in the case of a continuous (Wiener)
economy, was treated by Karatzas and Xue (1991) [99], Lakner (1998) [111]
or Pham and Quenez (2001) [139], using the martingale approach of the op-
timization problem through duality, and Lasry and Lions (1999) [113] via the
equipement of the dynamic programming approach.

From Continuous to Discrete Observations

As previously mentioned, the partial information framework requires the statis-
tical estimation of the unobservable moments estimates inside of the theoretical
model. When turning to the choice of an inference strategy, an important de-
bate in this area concerns the question of what sampling scheme to use, if any
is available and in any case what to do with the sampling times, cf. Ait-Sahalia
and Mykland (2003) [3]. The traditional answer, and the usual procedure done
in empirical finance, is to view the sampling as occuring at fixed discrete time
intervals, such as a day, a week or a month. However, this situation is, in some
circumstances, not realistic. In fact, all transaction-level data are available at
irregularly and randomly spaced times, as shown in Figure 1.1.

When a theorerical model is chosen to describe the factors of an economy,
it is spelled out in continuous time, even if the data are randomly spaced in
time. However, its estimation necessarily relies on discretely sampled data,
as they are the only kind of data available to the empiricists. By now, the
financial implications of the effects of the sampling discreteness are well-known,
cf. Ait-Sahalia (2002a) [1]. Moreover, various estimation methods that take
into account this effect have been designed, such as the ones of Ait-Sahalia
(2002b) [2], Ait-Sahalia and Mykland (2004) [4] or Duffie and Glynn (2004)
[57] which are based on modified versions of maximum likelihood or moments-
based methods where the sampling depends on an arrival intensity. Another
proposition is based on models of high-frequency data, see Andersen et al. [6],
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Figure 1.1: Distribution of the sampling intervals for Nokia, January 2000.

where the vector of stock prices is supposed to be observed only discretely
at random times, which in turn is modelized by a marked point process, cf.
Brémaud (1981) [20], as in Frey and Runggaldier (2001) [71].

In the following, we will examine and explain the additional effect that the
randomness of the sampling intervals may have when estimating a continuous-
time model with discrete data. From this, we will study, from the maximum
expected utility problem, the gain effects related to this additional information.
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Abstract. This paper studies the question of maximizing ter-
minal wealth from expected utility in a multidimensional jump-
diffusion model. The special feature of our approach is that the
investor only observes the vector of stock prices, therefore lead-
ing to a partial information framework. Resorting to non-linear
filtering and change of measure techniques, we show that the op-
timization problem can be rewritten such that coefficients depend
only on past history of observed prices. Through duality approach
of the problem, we derive the optimal value function. Then, by
resorting to the Bellman and the Hamilton-Jacobi-Bellman equa-
tions, we characterize the optimal investment policy. As examples,
special attention is given to the three more standard utility func-
tions for which the optimal value functions, investment strategies
and risk-premia processes are elicited.

2.1. Introduction

In this paper, we study the question of maximizing terminal wealth from ex-
pected utility in a partial information framework. This situation appears when
investors only observe the vector of stock prices and cannot disentangle the drift
term from the other sources of uncertainty. More specifically, in the economy
we consider, growth rates are altered by infrequent large shocks and contin-
uous small shocks. Investors observe changes in returns but cannot perfectly
distinguish their dynamics. Instead, they solve a signal extraction problem.

Motivated by recent findings which indicate the importance of jumps in
returns to fully capture the empirical features of equity index returns (Eraker
et al. 2003 [60]), we consider a market model where the stock price processes
follow a mixed jump-diffusion equation where the growth rate and the jump
time intensity are unobservable. This seems reasonable, since jumps are of-
ten generated by various external sources whose impact cannot completely be
analyzed. Also, the changing conditions on the drift and jump intensity are
modeled via a strong Markov process; see Duffie et al. (2003) [56]. This unob-
servable process may be interpreted as an environment process which collects
factors which are relevant for the stock price dynamics, like economical news,
political situations, technical progress.

The optimization problem with full information goes back to Merton (1971)
[126] who solved the question via the Bellman equation of dynamic program-
mig. For the case of complete markets, we refer to Karatzas et al. (1987)
[98] or Cox and Huang (1989) [34]. Models with incomplete information have
been investigated by Detemple (1986) [48], Dothan and Feldman (1986) [53]
and Gennotte (1986) [74] and deal with the case of a unobserved appreciation
rate, by using dynamic programming methods in the linear Gaussian filtering
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case. Lakner (1995, 1998) [122], [111] solved the partial optimization problem
via a martingale approach, provided characterization of the optimal strategy
via Malliavin calculus and worked out the special case of the linear Gaussian
model. In this essence, Pham and Quenez (2001) [139] treat the case of an in-
complete stochastic volatility model and Sass and Haussmann (2004) [149] the
case of hidden Markov model filtering. Any of these papers consider the case of
a jump-diffusion model. In fact, it would be more realistic to assume that the
stock price dynamics follow a jump-diffusion model. In fact, empirical work
has shown that log-returns are not generally normally distributed and that
the stock price process should contain a jump component. Recent references
on dynamic optimization with jumps include Jeanblanc-Picqué and Pontier
(1990) [94], Shirakawa (??), Bellamy (??) or Liu et al. (2003) [120]. Unlike
the present setup, the proposed market models are generally supposed to be
completely observable, in the sense where both the appreciation rate and the
jump intensity are observable. In this paper, we consider the situation where
both of them are unobservable and seek to optimize the Merton’s problem of
maximizing expected utility from terminal wealth.

In order to solve this problem, the common way is to use the filtering the-
ory, so as to reduce the stochastic control problem with partial information to
one with complete observation. It is then possible to solve this problem either
with the martingale approach, cf. Kramkov and Schachermayer (1999) [107] ,
or via stochastic control methods, cf. Framstad et all (1999) [70]. In this paper,
we combine stochastic filtering techniques and a martingale duality approach
to characterize the value function and the optimal portfolio of the optimiza-
tion problem. Nevertheless, as the reduced market model is not complete, we
complement the martingale approach by using the theory of stochastic control
to solve the problem explicitly. Section 2 states the framework and recall some
known results on portfolio optimization. Then, in Section 3, we show that
conditioning arguments can be used to replace the original partial information
problem by a full information one which depend only on past history of the
observed prices. Section 4 present derivation of the optimal wealth and value
function within partial information, as well as a formal proof of a solution of
the HJB equation of the problem. The special cases of power, logarithmic and
exponential utility functions are studied and explicit formulae for the value
functions and risk-premia processes are obtained.

2.2. Formulation of the Problem

2.2.1 The Economy

We consider an economy defined on the complete probability space (Ω,A, P )
for a finite time span [0, T ] with T ∈ (0,∞), equipped with a filtration A =
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(At)t∈[0,T ] satisfying the usual conditions and on which are defined all the
stochastic processes involved in this paper. In this market, 1 + m assets are
defined. The first one is a non-risky asset which pays no dividends. We refer
to it as the bank account and suppose that its price satisfies:

dS0
t = rtS

0
t dt, S

0
0 = 1

where (rt, t ∈ [0, T ]) is uniformly bounded. The m other assets are risky and
we refer to them as the stocks. Letting Si

t be the positive price at time t of the
ith asset, we define its return process by dRi

t =
(
Si

t

)−1
dSi

t and assume that its
evolution is modeled, for i ∈ ‖1;m‖, through the following equation:

dRi
t = µi

t (θt) dt+
m∑

j=1

{
σij
(
t, Ri

t

)
dW j

t + ωij
(
t, Ri

t

) (
dM j

t + λj
t (θt) dt

)}
where Ri

0 = r0i is a constant and the process (θt, t ∈ [0, T ]) stands for an
economic factor process. Here, W is a m−dimensional Brownian motion, M
is the compensated martingale of a m− dimensional inhomogeneous Poisson
process N , whose components have no common jumps: each N j is such that
M j

t = N j
t −

∫ t

0
λj

s (θs) ds with a R−valued intensity λj (θ). Also, processes
W and N are independent of each other and A−adapted. We denote by
F =(Ft)t∈[0,T ] the model information, which is the filtration generated by the
random processes W , N and θ, so:

Ft = σ (Ws, s ∈ [0, t]) ∨ σ (Ns, s ∈ [0, t]) ∨ σ (θs, s ∈ [0, t]) , Ft ⊂ At

In general, the economic factor process θ is not directly observable, which
resumes to: F is not available. This situation therefore entails that the means
of the continuous and counting processes are not observed.

Thereafter, we shall assume that the following assumptions are satisfied.

Assumption 2.2.1 For (i, j) ∈ ‖1;m‖ and t ∈ [0, T ] :

1. rt > 0, µi (t, x) ∈ R, a.s.,

2. µi
t (x) and λi

t (x) are F−adapted and uniformly bounded processes,

3. σij (t, x) and ωij (t, x) are known Borel functions satisfying Lispschitz
and growth conditions, such that σij (t, x) > 0 and ωij (t, x) > −1.

4. θ is a R−valued càdlàg homogeneous and A−adapted Markov process,

5. To avoid technical difficulties1, W and N are assumed to be independent
of θ and the possible jumps of θ are disjoint from those of N .

1If one assumes common jumps between the state process θ and the observations S, these
cannot be made independent under a transformation of measures, which is the method used
thereafter to derive the filtering equation; this is the method of the probability of reference.
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Using vector notations, the process Rt satisfies:

dRt = bt (θt) dt+ σtdWt + ωtdMt (2.1)

where:

bt (θt) =
(
b1t (θt) , ..., bmt (θt)

)ᵀ
, χt =

((
χ1

t

)ᵀ
, ..., (χm

t )ᵀ
)ᵀ
, χ = {σ, ω}

with bit (θt) ≡ bi
(
t, θt, R

i
t

)
= µi

(
t, θt, R

i
t

)
+ ωi

(
t, Ri

t

)
λᵀ (t, θt) and:

λt (θt) =
(
λ1

t (θt) , ..., λm
t (θt)

)
, σi

t =
(
σi,1

t , ..., σi,m
t

)
, ωi

t =
(
ωi,1

t , ..., ωi,m
t

)
Under Assumption 2.2.1, the coefficients in the SDE (2.1) are such that a
unique A−adapted solution exists that does not explode until time T , cf. Prot-
ter (1990) [140]. At this stage, we shall also assume that the m ×m−matrix
σt is invertible for all t ∈ [0, T ] and that µ (θ) and σ satisfy:∫ T

0

E [|µt (θt)|] dt <∞,

∫ T

0

E [|σtσ
ᵀ
t |] dt <∞, P − a.s. (2.2)

Finally, the m × m−matrix ωt is invertible, for all t ∈ [0, T ]. This implies
that, since there are no common jumps among the components of the counting
process N , there exists a one-to-one correspondence between the observation
of the size of a jump of S and the knowledge of which of the process N i,
i ∈ ‖1;m‖, has jumped at that time.

The excess return process dYt = dRt − rt1mdt, t ∈ [0, T ], reads:

dYt = [bt (θt)− rt1m] dt+ σtdWt + ωtdMt (2.3)

and we note that Y0 and Y0− are both constants.

Remark 2.2.2 Note that the aforementioned framework is incomplete due to
the random jumps of prices modeled by a jump-diffusion process. In the special
case where the total number of randomness (Wiener and Poisson processes) is
equal to the number of risky assets, then the market will be complete.

Partial Information Setup

We now consider, as in Detemple (1986) [48] or Lakner (1995, 1998) [122],
[111], that some agents in the financial market have not access to the filtration
F and can only observe the assets prices. Thus, the observations are given by
the sequence

(
S0

t , S
i
t

)i∈‖1;m‖
t>0

and we denote by G =(Gt, t ∈ [0, T ]), with G  F ,
the P−augmentation of the market filtration generated by the 1 +m assets:

Gt = σ
((
S0

s , S
i
s

)
, i ∈ ‖1;m‖ , s ∈ [0, t]

)
and we assume that θ0 is independent of G∞. From a filtering perspective, θ0
is a random variable (which is a-priori fixed) and so F0 is not trivial.
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Assumption 2.2.3 The interest rate r is G−adapted.

Under this assumption, we have:

Gt = σ
(
Y i

s , i ∈ ‖1;m‖ , s ∈ [0, t]
)

Remark 2.2.4 By definition, the processes σt and ωt are Gt−adapted.

2.2.2 The Optimization Problem

Trading Strategies

By denoting φs =
(
φ1

s, ..., φ
m
s

)ᵀ the vector of fraction of wealth invested in
the m risky assets at time s, a self-financing trading strategy is a pair (x0, φ)
where x0 > 0 is the initial investment and φ is an Rm−valued and G−adapted
process such that the value/wealth process:

dXφ
t = Xφ

t− ((rt + φᵀ
t (bt (θt)− rt1m)) dt+ φᵀ

t σtdWt + φᵀ
t ωtdMt) (2.4)

with Xφ
0 = x0, is P−a.s. well defined. In the following, the notation Xx0,φ

t is
a shorthand for Xφ

0 = x0 and the wealth process Xφ
t , for t > 0, satisfies (2.4).

The class of admissible strategies (at time t) reads:

S (t)= {φ : [0, T ]× Ω → Rm,G−predictable

,∃K > −∞,∀s > t,
∫ s

t

φᵀ
udRu > −K

}
Remark 2.2.5 The numéraire investment is given by φ0

t = Xx0,φ
t −

∑m
i=1 φ

i
t.

Optimizing Terminal Wealth

A function U : R → R is called a utility function if it is strictly increasing,
strictly concave, of class C2 and satisfies:

U
′ (

0+
)

= ∞, U
′
(∞) = 0 (2.5)

and has reasonable asymptotic elasticity:

AE0+ (U) := lim inf
x→0+

xU
′
(x)

U (x)
> 1, AE+∞ (U) := lim inf

x→∞

xU
′
(x)

U (x)
< 1 (2.6)

The optimization problem the investor faces is to maximize the expected utility
of his/her terminal wealth over the class of admissible policies.
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Definition 2.2.6 Let U be a utility function. We then define:

JG
φ (t, x) ∆= EP

[
U(Xx,φ

T )|Gt

]
uG (t, x) = sup

φεS(t)

JG
φ (t, x) (2.7)

Then, for x0 > 0, a portfolio strategy φ∗ ∈ S (0) is optimal if:

uG (0, x0) = JG
φ∗ (0, x0)

From this, we note that JG
φ (t, x) is a Gt−measurable random variable, so

that JG
φ (0, x) and uG (0, x) depend on the random variable θ0. Also, the control

problem (2.7) is stated under partial information. In order to be solved, we
need to reduce it to a control problem with complete observation.

2.3. Mechanics of the Learning Process

2.3.1 Setup

Since the Markov process (θt, t ∈ [0, T ]) is not G−adapted, it is natural to
introduce the G−conditional law of the random variable θt, say:

πt (f) = EP [f (θt) |Gt] (2.8)

for any R−valued measurable function f such that EP [|f (θt)|] < ∞. By
construction, πt (f) is Gt−adapted.

We now recall Itô’s formula for jump-diffusions.

Definition 2.3.1 For a semimartingale xt and a twice differentiable function
f , Itô’s formula yields that the semimartingale f (xt) equals:

f (xt) = f (x0) +
∫ t

0

f
′
(xs−) dxs +

1
2

∫ t

0

f
′′

(xs−) d [xc, xc]s

+
∑
s6t

(
f (xs)− f (xs−)− f

′
(xs−) ∆xs

)
(2.9)

where xc denotes the continous part of x.
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Reference Measure

Following Kallianpur (1980) [96], which discusses the Wiener case, we introduce
a new measure P 0, termed the reference measure2. To this end, let:

Ht = 1−
∫ t

0

Hs− [aᵀ
s (θs) dWs + (1ᵀ

m − cᵀs (θs)) dMs] (2.10)

where 3,4:
as (θs) = σ∗s (bs (θs)− rs1m) , cs (θs) = λ∗s (θs) (2.11)

and the Poisson integral does not need to be taken in a predictable way, i.e.:
with a (1ᵀ

m − cᵀs (θs−)) integrand, as M and θ have no common jumps.

Proposition 2.3.2 Assume Assumption 2.2.1 and ln cs (θs) is (component-
wise) bounded on [0, T ]. Then Ht is a strictly positive (P,F)−martingale.

Proof. Let HW
t and HM

t be the unique solutions of:

dHW
t = −HW

t atdWt, dH
M
t = −HM

t (1− cs) dMt, H0 = 1

(in the one-dimensional case). By Itô’s formula, we have Ht = HW
t HM

t . From
Assumption 2.2.1, HW

t is a (P,F)−martingale. In addition, we can show that:

HM
t = e

R t
0 (1−cs)λsds

∏
06s6t

cs∆Ns

And as HW and HM are orthogonal, the conclusion follows.

From Proposition 2.3.2, we then have:

Proposition 2.3.3 On (Ω,F), we define the measure P 0 ∼ P by:

dP 0

dP
|FT

= HT (2.12)

The Girsanov transformation ensures that:

W 0
t = Wt +

∫ t

0

as (θs) ds is a
(
P 0,F

)
− Brownian motion (2.13)

M0
t = Mt +

∫ t

0

Dθ
s [1m − cs (θs)] ds is a

(
P 0,F

)
−martingale (2.14)

with Dθ
s =Diag(λs (θs)). Thus, Nt is an Ft−Poisson process with P 0−intensity

Diag(1m), so that M0
t = Nt − 1ᵀ

mt is the P 0−compensated martingale of N .
2The measure P 0 will be subsequently used to derive filtering equations via the reference

probability approach, cf. Kallianpur (1980) [96] for a presentation in the Wiener case.
3We note as (θs) and cs (θs) for all s ∈ [0, T ] to express the dependence of the processes

a and c on both the time variable s and on the unknown process θs.
4In the following, x∗ denotes the component-wise inverse of xεRk, k > 1.



2.3 Mechanics of the Learning Process 23

Then, the excess return process (2.3) is a P 0−local martingale of the form:

dYt = σtdW
0
t + ωtdM

0
t (2.15)

and one sees that the processes Y and θ get decoupled under the measure P 0,
i.e.: the unknown economic factor θ vanishes from the dynamics of Y .

We begin by proving a lemma which will be of paramount importance in
the following, extending a result of Pham and Quenez (2001) [139].

Lemma 2.3.4 The filtration G is the augmented filtration of (W 0,M0).

Proof. We rewrite (2.15) in the more convenient form:

ω∗t (dYt + ωtdt) = σtω
∗
t dW

0
t + dNt

∆= dY 0
t (2.16)

from which we get, using the fact that the predictable covariance process is
G−adapted, that (σtω

∗
t )2 dt+ dt is G−adapted. Besides, as right brackets are

adapted, it follows that (σtω
∗
t )2 dt + dNt is G−adapted which leads to Nt is

Gt−adapted. Then, by (2.16), W 0
t is G−adapted. Noting F0 the augmented

filtration of the processes (W 0, N), this implies that F0 ⊆ G. Conversely,
following Protter (1990) [140], as σ and ω are G−adapted processes and un-
der Assumption 2.2.1, we get that the unique solution of (2.16), say Y 0

t , is
F0

t −adapted, so that G ⊆ F0, hence yielding G = F0.

This result allows then to prove a theorem, which extends those of Liptser
and Shiryaev (2001) [118] or Brémaud (1981) [20] to the case of jump-diffusions.
By Itô’s calculus applied to (2.10), the

(
P 0,F

)
−martingale H−1

t reads:

H−1
t = 1 +

∫ t

0

H−1
s−
[
aᵀ

s (θs) dW 0
s +

(
(cᵀs (θs))

∗ − 1ᵀ
m

)
dM0

s

]
(2.17)

Theorem 2.3.5 We have:

EP 0 [
H−1

t |Gt

]
= 1 +

∫ t

0

EP 0 [
H−1

s−a
ᵀ
s (θs) |Gs

]
dW 0

s (2.18)

+
∫ t

0

EP 0 [
H−1

s−
(
(cᵀs (θs))

∗ − 1ᵀ
m

)
|Gs

]
dM0

s

for all t ∈ [0, T ].

Proof. In order to prove (2.18), it is sufficient to show that:

EP 0 [
H−1

t 1A

]
= EP 0

[Rt1A] (2.19)
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for any A ∈ Gt, where Rt denotes the right-hand side of (2.18), so that Rt =
EP 0 [

H−1
t |Gt

]
. Via the Martingale Representation theorem for G−martingales

w.r.t. Brownian motion W 0 and compensated Poisson process M0, as quoted
in Runggaldier (2003) [145], 1A is, for t > 0, of the form:

1A = M0 +
∫ t

0

UsdW
0
s +

∫ t

0

VsdM
0
s

∆= M0 +M0
t (2.20)

where U, V are G−predictable processes andM0 ∈ G0 is not a constant. Hence,
from the definition of R, representation (2.20) for 1A, (2.19) will follows from:

EP 0 [
H−1

t M0

]
+ EP 0 [

H−1
t M0

t

]
= EP 0

[RtM0] + EP 0 [
RtM0

t

]
or equivalently from:

EP 0
[∫ t

0

H−1
s dν0

s · M0

]
= EP 0 [

R0
tM0

]
(2.21)

EP 0
[∫ t

0

H−1
s dν0

s · M0
t

]
= EP 0 [

R0
tMt

0

]
(2.22)

with:

dν0
s = aᵀ

s (θs) dW 0
s +

(
(cᵀs (θs))

∗ − 1ᵀ
m

)
dM0

s

and:

R0
t =

∫ t

0

EP 0 [
H−1

s−a
ᵀ
s (θs) |Gs

]
dW 0

s +
∫ t

0

EP 0 [
H−1

s−
(
(cᵀs (θs))

∗ − 1ᵀ
m

)
|Gs

]
dM0

s

Using the definition of M0
t , (2.22) reads:

EP 0
[∫ t

0

(
H−1

s−a
ᵀ
sUs +H−1

s−
(
(cᵀs )∗ − 1ᵀ

m

)
Vs

)
ds

]
= EP 0

[∫ t

0

(
EP 0 [

H−1
s−Usa

ᵀ
s |Gs

]
+ EP 0 [

H−1
s−Vs

(
(cᵀs )∗ − 1ᵀ

m

)
|Gs

])
ds

]
(covariation terms being null) hence yielding:

EP 0
[∫ t

0

EP 0 [
H−1

s−Usa
ᵀ
s |Gs

]
ds

]
= EP 0

[∫ t

0

H−1
s−Usa

ᵀ
sds

]
EP 0

[∫ t

0

EP 0 [
H−1

s−Vs

(
(cᵀs )∗ − 1ᵀ

m

)
|Gs

]
ds

]
= EP 0

[∫ t

0

H−1
s−Vs

(
(cᵀs )∗ − 1ᵀ

m

)
ds

]
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by definition of conditional expectation, so that (2.22) holds true. Also, in
(2.21), we note that M0 ∈ G0 and similar arguments yield:

EP 0 [
R0

tM0

]
= EP 0

[∫ t

0

EP 0 [
H−1

s−a
ᵀ
s (θs)M0|Gs

]
dW 0

s

+
∫ t

0

EP 0 [
H−1

s−
(
(cᵀs (θs))

∗ − 1ᵀ
m

)
M0|Gs

]
dM0

s

]
= EP 0

[∫ t

0

H−1
s−a

ᵀ
s (θs)M0dW

0
s +

∫ t

0

H−1
s−
(
(cᵀs (θs))

∗ − 1ᵀ
m

)
dM0

s

]
which concludes the proof.

2.3.2 Resolution of Uncertainty

We now construct the restriction of P to G equivalent to P 0 on (Ω,G). In
this regard, consider the conditional version of the Bayes formula: for any
Ft−measurable and P 0−integrable random variable X, we have:

EP 0
[X|Gt] =

EP [HtX|Gt]
EP [Ht|Gt]

(2.23)

By setting X = 1/Ht in (2.23), we get:

Zt
∆= EP 0

[
1
Ht
|Gt

]
=

1
EP [Ht|Gt]

(2.24)

and we have the following result for the representation of Zt.

Proposition 2.3.6 The process Z is a positive G−martingale under P 0 and5:

Zt = 1 +
∫ t

0

Zs−
[
πᵀ

s (a) dW 0
s + (πᵀ

s (c∗)− 1ᵀ
m) dM0

s

]
(2.25)

with processes (a, c) given by (2.11).

Proof. Theorem 2.3.5 ensures that Z is a (P 0,G)−positive martingale. Then,
an application of (2.23) yields the desired result.

Then, from (2.12) and (2.24), we define, at least implicitly, the following
measure transformation on (Ω,G):

dP

dP 0
|GT

= ZT (2.26)

and as a consequence of the Girsanov theorem for semimartingales, we have:
5Thereafter, we note πs (f) ≡ EP [fs (θs) |Gs] for some process f .
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Lemma 2.3.7 For all t ∈ [0, T ]:

W t = Wt +
∫ t

0

σ−1
s [µs (bs)− πs (b)] ds is a (P,G)−Brownian motion (2.27)

M t = Mt +
∫ t

0

[λs (θs)− πs (λ)] ds is a (P,G)−martingale

Proof. Consider W 0 in (2.13) where as (θs) is as in (2.11). Then, as W 0 is
G−adapted, hence a G−Wiener process, the process:

W t
∆= W 0

t −
∫ t

0

σ−1
s (πs (b)− rs1m) ds

is a (P,G)−martingale with continuous trajectories and E[W 0] = 0. Thus, we
note that [W

k

t ,W
k

t ] = t and [W
k

t ,W
l

t] = 0 for all k 6= l and t ∈ [0, T ]. Then,
Levy’s Characterization theorem ensures that W is a Wiener process. In the
same way, consider the process (2.14), termed M0. We have:

M t
∆= M0

t −
∫ t

0

Dπ
s (1m − πs (λ)) ds

where Dπ
s =Diag(πs (λ)), is a (P,G)−martingale.

Remark 2.3.8 The processes W and M are called innovation processes in
filtering theory. To justify this for M , first note that dM t = dNt − πt (λ) dt.
Then, dNt is what one observed during the time [t, t + dt) while πt (λ) dt =
E [dNt|Gt] is what one would expect to happen in [t, t + dt) conditionally to
previous observations in Gt. Thus dNt − πt (λ) dt is what is really new.

Complete Observation Problem

By means of these innovation processes, we can describe the dynamics of
the partially observable excess return model (2.3) within the framework of a
complete observation model:

dYt = [πt (b)− rt1m] dt+ σtdW t + ωtdM t (2.28)

with the Gt−conditional counterpart of bt (θt) given by πt (b) = πt (µ)+ωtπt (λ).
In the same way, the reduced wealth process (2.4) satisfies:

dXφ
t = Xφ

t−
(
(rt + φᵀ

t (πt (b)− rt1m)) dt+ φᵀ
t σtdW t + φᵀ

t ωtdM t

)
(2.29)

and we note Xπ,x,φ
t as a shortand for Xφ

0 = x and Xφ
t follows (2.29).

We have thus reduced the partially observable stochastic control problem
(2.30) to a complete observation one. The reduced problem is as follows:
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Definition 2.3.9 Let U be a utility function. We then define:

Jφ (t, x) ∆= EP |Gt

[
U(Xπ,x,φ

T )
]

u (t, x) = sup
φεS(t)

Jφ (t, x) (2.30)

where P |Gt
is the restriction of P to Gt, cf. (2.26). Then, for an initial

endowment x0 > 0, a portfolio strategy φ∗ ∈ S (0) is optimal if:

u (0, x0) = Jφ∗ (0, x0)

The reduced problem (2.30) solves the original one (2.7). The main differ-
ence between these two control problems is that (2.7) depends on the whole
history G, while (2.30) depends on G only through π, i.e.: the filter contains the
necessary information to solve the control problem under partial information.

Remark 2.3.10 In (2.28) or (2.29), we do not have to know the filtering
equation for all functions f , but only for b and λ, so as to compute πt (b) and
πt (λ), cf. Appendix A.1 for the treatment of a particular case.

2.4. Portfolio Selection Problem

2.4.1 Optimal Value Function

Duality Theory

As shown by Kramkov and Schachermayer (1999) [107], the proof of a solution
to problem (2.30) relies upon solving the dual optimization problem:

v (y) = inf
Q∈Q

E

[
V

(
y
dQ

dP

)]
, y > 0 (2.31)

where Q is the set of equivalent martingale measures given by

Q =
{
Q ∼ P|G | Y is a local (Q,G)−martingale

}
and where the conjugate version of the utility function U (x) is defined by:

V (y) = sup
x∈R+

[U (x)− xy] , y > 0
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Martingale Measures

As a first step, we derive a suitable Martingale Representation theorem for
(P,G)−local martingales w.r.t. the innovation processes

(
W,M

)
.

Lemma 2.4.1 Let M be a (P,G)−local martingale with M0 = 0. Then, there
exist Rm−valued and G−adapted processes (A,B) s.t.:

Mt = M0 +
∫ t

0

Aᵀ
sdW s +

∫ t

0

Bᵀ
s dMs

Proof. From Bayes formula, the process M0 given by M0
t = MtH

−1
t , with H

given by (2.10), is a (P 0,G)−martingale. Then, from Lemma 2.3.4, an appli-
cation of the Martingale Representation Theorem for jump-diffusions, entails
that there exist Rm−valued and G−adapted processes (A0, B0) s.t.:

M0
t =

∫ t

0

(
A0

s

)ᵀ
dW 0

s +
∫ t

0

(
B0

s

)ᵀ
dM0

s

Then, by applying Itô’s formula to Mt = M0
t Ht and using Lemma 2.3.7:

As = Hs(A0
s −M0

s as (θs)), As = Hs(Bs −M0
s bs (θs))

which concludes the proof.

In the following, we will make the following assumption.

Assumption 2.4.2 The space K is such that (γ, ψ) are Rm−valued square
integrable processes satisfying P − a.s. the integrability conditions:∫ T

0

|γtγ
ᵀ
t | dt <∞,

∫ T

0

|ψt|πt (λ) dt <∞, ψt < 0, a.e. tε [0, T ]

Then, the process6:

Λt = 1−
∫ t

0

Λs−
[
(γπ

s )ᵀ
dW s + (1ᵀ

m − (ψπ
s )ᵀ) dMs

]
, Λ0 = 1 (2.32)

is a strictly positive (P,G)−local martingale. Also, when EP [ΛT ] = 1, it is a
martingale and then there exists a probability measure Q equivalent to P with:

dQ

dP
|GT

= ΛT (2.33)

6We note γπ
s and ψπ

s to make apparent the dependence on both time and the filter.
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Then, the Girsanov transformation ensures that:

Ŵt = W t +
∫ t

0

γπ
s ds is a (Q,G)− Brownian motion

M̂t = M t +
∫ t

0

Dπ
s [1m − ψπ

s ] ds is a (Q,G)−martingale

with Dπ
s =Diag(πs (λ)) and N is a (Q,G)−Poisson process with Gt−intensity

λπ
t = Dπ

t ψ
π
t . We can also elicite the martingale condition satisfied by Y .

Proposition 2.4.3 When:

πt (b)− rt1m = σtγ
π
t + ωtD

π
t (1m − ψπ

t ) (2.34)

the process Y is a (Q,G)−local martingale.

Value Functions

Thereafter, we note I (·) = (U
′
(·))−1, β· = exp

(
−
∫ ·
0
rsds

)
and Qy ≡ Q. The

following theorem is adapted from Owen (2002) [135].

Theorem 2.4.4 Let U be a utility function satisfying (4.6) and (4.7). Then:

1. There exists a unique measure Qy solution of the dual problem (2.31),

2. There exists a unique number ŷ s.t. EQby
[
βT I

(
ŷβT ΛQby

T

)]
= x0,

3. The optimal terminal wealth is given by X̂φ
T = I

(
ŷβT ΛQby

T

)
,

4. The optimal investment policy process is uniquely determined by:

βtX̂
φ
t = EQby

[
βT X̂

φ
T |Gt

]
= x0 +

∫ t

0

βsφ̂
ᵀ
sdRs (2.35)

Proof. The two first points follow from a classical duality criterion for opti-
mality, in the spirit of Kramkov and Schachermayer (1999) [107]. Then, we
note that under Qby, the wealth process (2.29) satisfies the equation:

d(βtX
φ
t ) = βtφ

ᵀ
t σtdŴt + βtφ

ᵀ
t ωtdM̂t (2.36)

Note that, as βtX
φ
t is a

(
Qby,G

)
−martingale, Lemma 2.4.1 entails that there

exist Rm−valued and square integrable processes (A,B) s.t.:

βtX
φ
t = x0 +

∫ t

0

Aᵀ
sdŴs +

∫ t

0

Bᵀ
s dM̂s (2.37)
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As (2.36) and (2.37) are equal, their difference:∫ t

0

[φᵀ
sσs −Aᵀ

s ] dŴs +
∫ t

0

[φᵀ
sωs −Aᵀ

s ] dM̂s

must be null, thus yielding the self-financing condition αᵀ
s = φᵀ

sσs, β
ᵀ
s = φᵀ

sωs

and so the desired form for βtX̂
φ
t under the measure Qby.

In the following, to lighten the notation, we let Qby ≡ Q.

Special Cases

Problem (2.30) will now be solved in the case of the three more standard utility
functions: power, logarithmic and exponential, defined by:

U (x) =

 xp/p
log x
−e−x

,
x ∈ R+, p ∈ (0, 1)
x ∈ R+

x ∈ R
(2.38)

These utility functions are of particular interest as, while in general, a
solution to (2.31) depends on y. for them, this dependence vanishes. In fact:

V (y) =

 −yq/q
− (1 + ln y)
y (ln y − 1)

,

y ∈ R, q = p
p−1

y ∈ R+

y ∈ R+

so that (2.31) reads:

v (y) =


yq/q infQ∈QE

[
−
(

dQ
dP

)q]
−1− ln y + infQ∈QE

[
− ln dQ

dP

]
y ln y + y infQ∈QE

[
dQ
dP ln dQ

dP

] (2.39)

The quantity appearing in the r.h.s. of (2.39) under the expectation term can
be called martingale distance measures, cf. Goll and Ruschendorf (2001) [78].

For the case of the utility functions (2.38), we then have the useful martin-
gale distance decomposition results7, which are related to problem (2.39).

Proposition 2.4.5 Case of power utility:

E [−Λq
t ] = E

[
q (1− q)

2

∫ t

0

γᵀ
s γsds+ ((ψᵀ

s )q − 1ᵀ
m − q (ψᵀ

s − 1ᵀ
m))λπ

t dt

]
(2.40)

7Proofs of these decompositions are developed in Appendix A.2.
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Case of logarithmic utility:

E [− lnΛT ] = E

[
1
2

∫ t

0

γᵀ
s γsds+ (ψᵀ

s − lnψᵀ
s − 1ᵀ

m)λπ
t dt

]
(2.41)

Case of exponential utility:

E [ΛT lnΛT ] = EQ

[
1
2

∫ t

0

γᵀ
s γsds+ (ψᵀ

s lnψᵀ
s − ψᵀ

s + 1ᵀ
m)λπ

t dt

]
(2.42)

where γ ≡ γπ, ψ ≡ ψπ and λπ
t ≡ πt (λ).

Resorting to Theorem 2.4.4 and Proposition 2.4.5, we can now determine
the optimal value functions in the case of our utility functions (2.38).

Proposition 2.4.6 The ”power” optimal value function is given by:

u (T, x) =
xp

p
EP

[∫ T

0

(
rt +

1
2
p (p− 1) (γπ

t )ᵀ
γt

)
dt

−
∫ T

0

(
(ψᵀ

t )−p − 1ᵀ
t + p (ψᵀ

t − 1ᵀ
n)
)
πt (λ) dt

]
The ”logarithmic” optimal value function reads:

u (T, x) = lnx+ EP

[∫ T

0

(
rt +

1
2

(γπ
t )ᵀ

γt

)
dt

+
∫ T

0

(ψᵀ
t − lnψᵀ

t − 1ᵀ
t )πt (λ) dt

]
The ”exponential” optimal value function writes:

u (T, x) = −e−x expEQ

[∫ T

0

(
rt +

1
2

(γπ
t )ᵀ

γt

)
dt

+
∫ T

0

(ψᵀ
t lnψᵀ

t − ψᵀ
t + 1ᵀ

n)πt (λ) dt

]}
From these, we note that in the complete observation case, i.e.: when

we know b and λ, the optimal value functions write similarly. The filtering
equivalence principle holds: the unknown drift bt and jump intensity λt are
replaced by the estimates πt (b) and πt (λ) in the optimal value functions.

Remark 2.4.7 In order to be amenable to computation, the optimal value
functions exhibited in Proposition 2.4.6 require that the risk-premia processes
are elicited. In Appendix A.2.1, we present them for the utilities (2.38).
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2.4.2 Optimal Trading Strategies

Bellman Equation

For the utilities (2.38), we note that an attractive factorization of Jφ (t, x) is
available. For a portfolio strategy φ ∈ S (t), one has:

Jφ (t, x) =


(xp/p) ηpow

φ (t)
log x+ ηlog

φ (t)
−e−xηexp

φ (t)
,

power
logarithmic
exponential

(2.43)

where the functions ηφ does not depend on x and reads:

ηpow
φ (t) = EP

[
exp

{
p

∫ t

0

dφ
π (s) ds+ p

∫ t

0

(
φᵀ

sσsdW s + ln (1m + φᵀ
sωs) dNs

)}]
ηlog

φ (t) = EP

[∫ t

0

dφ
π (s) ds−

∫ t

0

ln (1m + φᵀ
sωs)πs (λ) ds

]
ηexp

φ (t) = EP

[
exp

{
exp

{∫ t

0

dφ
π (s) ds+

∫ t

0

(
φᵀ

sσsdW s + ln (1m + φᵀ
sωs) dNs

)}}]
where:

dφ
π (s) ∆= rs + φᵀ

s (πs (b)− rs1m)− 1
2
φᵀ

sσsσ
ᵀ
sφs

If we define:
η• (t) ∆= sup

δ∈S(t)

η•φ (t)

then we have:

u (t, x) =

 (xp/p) ηpow (t)
log x+ ηlog (t)
−e−xηexp (t)

,
power

logarithmic
exponential

The Bellman equation then writes:

Definition 2.4.8 Let τ ∈ [t, T ] be a G−measurable stopping time. Then:

u (t, x) = sup
φ∈S(t)

EP
[
u(τ,Xx,φ

τ )
]

Logarithmic Utility This case is always the easiest one and can be solved
in a relatively direct way. We collect in next lemma the main results.

Lemma 2.4.9 (a) For all t ∈ [0, T ], x > 0, we have:

u (t, x) = log x+ ηlog (t)

where ηlog (t) = supφ∈S(t) η
log
φ (t).
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(b) Suppose that δ∗ maximizes:

δ 7→
∫ t

0

(
rs + δᵀ (πs (b)− rs1m)− 1

2
δᵀσsσ

ᵀ
s δ − ln (1m + δᵀωs)πs (λ)

)
ds

on [0, 1]⊗m, then φ∗ = (φ∗t ) ∈ S (t) is an optimal portfolio strategy for
the given portfolio problem under logarithmic preferences.

Proof. By definition of u (t, x), cf. (2.30), and expression of ηlog
φ (t), we deduce

point (a). Point (b) then follows directly.

From this, we note that in the case of complete observation, i.e.: when we
know b and λ, the optimal portfolio would be to invest a fraction δ∗ of the
wealth in the stocks, where δ∗ is the maximizer of:

δ 7→
∫ t

0

(
rs + δᵀ (bs − rs1m)− 1

2
δᵀσsσ

ᵀ
s δ − ln (1m + δᵀωs)λs

)
ds

on [0, 1]⊗m. The certainty equivalence principle holds, i.e.: the unknown drift
bt and intensity λt are replaced by the estimates πt (b) and πt (λ) in the optimal
portfolio strategy. This means, in this case, that the uncertainty in the drift
and jump intensity terms does not change the optimal portfolio strategy.

CRRA & CARA Utilities As a first step, we derive a semimartingale
representation of u (·). We suppose that u is sufficiently differentiable, so
that its derivatives w.r.t. X exist. We also introduce the operator Ax where
x={pow,exp} which acts on function v : [0, T ] → R and δ ∈ [0, 1]⊗m by:

Apowvδ (t) = v (t)
(
rt + δᵀ (πt (b)− rt1m) +

1
2

(p− 1) δᵀσsσ
ᵀ
s δ

)
+

1
p

(v (t−) (1 + δᵀωt)
p − v (t))πt (λ)

Aexpvδ (t) = v (t)
(
rt + δᵀ (πt (b)− 1m)− 1

2
δᵀσsσ

ᵀ
s δ

)
−
(
v (t−) e−(1+δᵀωt) − v (t)

)
πt (λ)

and we define the operator Hx for x={pow,exp} as:

Hxvδ (t) ∆= cx
∂

∂t
vδ (t) +Axvδ (t) , cx =

{ 1
p

−1
pow
exp
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Lemma 2.4.10 Let φ ∈ S (t) be an arbitrary portfolio strategy. Then:

du(t,Xφ
t ) = Hxηxδ (t) dt+ dMx,φ

t

where Mx,φ
t is a (P,Gt)−martingale.

Proof. cf. Appendix A.3.

From this, the HJB equation, for x={pow,exp}, reads:

0 = cx
∂

∂t
ηx

δ (t) + sup
δ∈[0,1]

Axηx
δ (t)

with boundary condition ηx
δ (T ) = 1. Then, we present a verification theorem.

Theorem 2.4.11 Suppose that δ∗ maximizes:

δ 7→ Axηxδ (t)

on [0, 1]⊗m. Then, φ∗ = (φ∗t ) ∈ S (t) is an optimal feedback portfolio strategy
for the given portfolio problem for CRRA and CARA utilities.

Proof. Let φ ∈ S (t) and Jφ be given by (2.43). From Lemma 2.4.10:

Jφ (T,XT ) = Jφ (t,Xt) +
∫ T

t

Hxηx
φs

(s) ds+Mx,φ
T −Mx,φ

t

As η satisfies the HJB equation, we get Hxηx
φs

(s) 6 0, so that:∫ T

t

Hxηx
φs

(s) ds 6 0

thus:
Jφ (T,XT ) 6 Jφ (t,Xt) +Mx,φ

T −Mx,φ
t (2.44)

Taking expectation in (2.44), and using the definition of Jφ at T , yields:

EP
[
U(Xφ

T )
]
6 Jφ (t, x)

Then, taking supremum over all admissible strategies gives u (t, x) 6 Jφ (t, x).
If φ is chosen to be φ∗ solution of the HJB equation, then

∫ T

t
Hxηx

φ∗s
(s) ds = 0

and so u (t, x) = Jφ∗ (t, x), which concludes the proof.

The next theorem states the existence of a solution of the HJB equation.
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Theorem 2.4.12 In case of CRRA and CARA utilities, the value functions
of problem (2.30) are given by (2.43) where η satisfies the HJB equation:

0 = cxηxδ (t) + sup
δ∈[0,1]

Axηxδ (t) , x={pow,exp}

with boundary condition ηxδ (T ) = 1. Moreover, φ∗t = δ∗ with δ∗ given by
Theorem 2.4.11, is an optimal portfolio strategy.

Proof. For t 6 t∗ 6 T , from Definition 2.4.8, we have:

u (t, x) > EP
[
u(τ ∧ t∗, Xφ

τ∧t∗ ,
]

(2.45)

From Lemma 2.4.10, we get:

u (τ ∧ t∗, Xτ∧t∗) = u (t, x) +
∫ τ∧t∗

t

Hxηx
φs

(s) ds+Mx,φ
τ∧t∗ −Mx,φ

t

Then, replacement in (2.45) yields:

EP

[∫ τ∧t∗

t

Hxηx
φs

(s) ds

]
6 0

or equivalently Hxηx
φ∗ (s) 6 0 for any φ∗ where δ ∈ [0, 1]. As η is continuous,

we obtain:
cxηx

δ (t) +Axηx
δ (s) 6 0

Finally, as δ is arbitrary, we can write:

cxηx
δ (t) + sup

δ∈[0,1]

Axηx
δ (s) 6 0 (2.46)

On the other hand, for ε > 0, it may exist a strategy φε s.t.:

u (t, x)− ε (t∗ − t) 6 EP
[
u(τ ∧ t∗, Xφ

τ∧t∗)
]

Again, from Lemma 2.4.10, we get:

−ε (t∗ − t) 6 EP

[∫ τ∧t∗

t

Hxηx
φε

s
(s) ds

]
or:

−ε 6 EP

[
1

t∗ − t

∫ τ∧t∗

t

Hxηx
φε

s
(s) ds

]
6 EP

[
1

t∗ − t

∫ τ∧t∗

t

sup
δ∈[0,1]

Hxηx
δ (s) ds

]
Since the function η is continuous and the constant ε is arbitrary, we deduce
supδ∈[0,1]Hxηx

δ (s) > 0, so that:

cxηx
δ (s) + sup

δ∈[0,1]

Axηx
δ (s) > 0

which in conjunction with (2.46) concludes the proof.
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2.5. Conclusion

In this article, we have investigated the question of optimal policies in a multi-
dimensional jump-diffusion model of incomplete market under the setup of
partial information. When the model is only partially observable, we have
extended the framework of Lakner (1998) [111] by allowing learning in the in-
tensity of the Poisson process. Moreover, resorting to the martingale approach
and the theory of optimal control, we are able to derive the Hamilton-Jacobi-
Bellman equation and then to identify an optimal investement strategy. The
usefulness of this approach has been proved by computing the optimal invest-
ment strategy in a discontinuous jump-diffusion model, extending previous
results which only deal with the continuous case.

Apart from the problem of optimal policies, another application of this work
are the problems of hedging in incomplete markets and of hedging default risk
when default is modelled in the reduced form setting and the market model is
incomplete. These will be studied in subsequent researches.
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A.1. Non-Linear Filtering

In this Appendix, we present a particular characterization of the unknown
economic factor process θ. Under the probability measure P , it satisfies:

dθt = m (t, θt) dt+ v (t, θt) dBt +
∫

Γ

w (t, θt−, z)N (dt, dz)

where m, v and w are bounded and continuous functions on R+ × R and
R+×R×Γ, B is a standard Brownian motion, N is a Poisson random measure,
independent of B, with mean rate E [N (t+ ∆, A)] − E [N (t, A)] = %∆ν (A),
where % is a real positive number (jump intensity) and ν is a probability mea-
sure (jump amplitude) on the space of jumps Γ. Also, B and N are indepen-
dent of W and N , which appear in the dynamics of Y , cf. (2.3). For any twice
continuously differentiable function f , Itô’s formula yields:

f (θt) = f (θ0) +
∫ t

0

Lf (θs) ds+
∫ t

0

f
′
(θs) v (s, θs) dBs

+
∫ t

0

J f (θs) ds+
∑
s6t

[f (θs)− f (θs−)] (A.1)
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where the differential operator L is given by:

Lf (x) = m (t, x) f
′
(x) +

1
2
v2 (t, x) f

′′
(x)

and:
J f (x) = −%

∫
Γ

[f (x+ w (s, x, z))− f (x)] ν (dz)

Special attention will also be given to the unnormalized filter:

Πt (f) = EP 0 [
f (θt)H−1

t |Gt

]
(A.2)

for all t ∈ [0, T ], where the probability measure P 0 and the P−martingale H
are defined via (2.10) and (2.12). Then, with the help of the conditional Bayes
formula, we explicit the relationship between πt and Πt as:

πt (f) =
EP 0 [

f (θt)H−1
t |Gt

]
EP 0

[
H−1

t |Gt

] =
Πt (f)
Πt (1)

(A.3)

A.1.1 Preliminary Results

Lemma A.1.1 For all t ∈ [0, T ], we have:

EP 0
[∫ t

0

f (θs−)H−1
s

[
aᵀ

s (θs) dW 0
s +

(
(cᵀs (θs))

∗ − 1ᵀ
m

)
dM0

s

]
|Gt

]
=
∫ t

0

Πs− (af) dW 0
s +

∫ t

0

Πs− ((c∗ − 1m) f) dM0
s (A.4)

Proof. In order to prove (2.18), we proceed as in Theorem 2.3.5. Letting:

Lt =
∫ t

0

f (θs−)H−1
s

[
aᵀ

s (θs) dW 0
s +

(
(cᵀs (θs))

∗ − 1ᵀ
m

)
dM0

s

]
Rt =

∫ t

0

Πs− (af) dW 0
s +

∫ t

0

Πs− ((c∗ − 1m) f) dM0
s

so that:

Lt
∆=
∫ t

0

f (θs−)H−1
s dν0

s

and noting that R is G−adapted, it is sufficient to show that:

EP 0
[Lt1A] = EP 0

[Rt1A] (A.5)

for any A ∈ Gt, so that Rt = EP 0
[Lt|Gt]. Via the Martingale Representation

theorem for G−martingales 1A is, for t > 0, of the form:

1A = M0 +
∫ t

0

UsdW
0
s +

∫ t

0

VsdM
0
s

∆= M0 +M
0

t
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where U, V are G−predictable processes and M0 ∈ G0 is not necessary a con-
stant. Hence, (A.5) reads:

EP 0
[LtM0] + EP 0

[
LtM

0

t

]
= EP 0

[RtM0] + EP 0
[
RtM

0

t

]
so that by using the definition of L and R, it is sufficient to prove:

EP 0
[∫ t

0

f (θs−)H−1
s dν0

s ·M0

]
= EP 0 [

R0
tM0

]
(A.6)

EP 0
[∫ t

0

f (θs−)H−1
s dν0

s ·M0
t

]
= EP 0

[
R0

tM
0

t

]
(A.7)

with:
dν0

s = aᵀ
s (θs) dW 0

s +
(
(cᵀs (θs))

∗ − 1ᵀ
m

)
dM0

s

and:

R0
t =

∫ t

0

EP 0 [
f (θs−)H−1

s−a
ᵀ
s (θs) |Gs

]
dW 0

s

+
∫ t

0

EP 0 [
f (θs−)H−1

s−
(
(cᵀs (θs))

∗ − 1ᵀ
m

)
|Gs

]
dM0

s

As M
0

t =
∫ t

0
UsdW

0
s +

∫ t

0
VsdM

0
s and that the intensity of M0 is 1, (A.7) reads:

EP 0
[∫ t

0

(
f (θs−)H−1

s−a
ᵀ
sUs + f (θs−)H−1

s−
(
(cᵀs )∗ − 1ᵀ

m

)
Vs

)
ds

]
= EP 0

[∫ t

0

EP 0 [
f (θs−)H−1

s−Usa
ᵀ
s |Gs

]
ds

+
∫ t

0

EP 0 [
f (θs−)H−1

s−Vs

(
(cᵀs )∗ − 1ᵀ

m

)
|Gs

]
ds

]
(covariation terms between W 0 and M0 being null), this equality holds true if:

EP 0
[∫ t

0

EP 0 [
f (θs−)H−1

s−Usa
ᵀ
s |Gs

]
ds

]
= EP 0

[∫ t

0

f (θs−)H−1
s−Usa

ᵀ
sds

]
and:

EP 0
[∫ t

0

EP 0 [
f (θs−)H−1

s−Vs

(
(cᵀs )∗ − 1ᵀ

m

)
|Gs

]
ds

]
= EP 0

[∫ t

0

f (θs−)H−1
s−Vs

(
(cᵀs )∗ − 1ᵀ

m

)
ds

]



40 Contents

These last equalities are obtained by definition of conditional expectation, so
that (A.7) holds true. Also, in (A.6), we note that M0 ∈ G0 and similar
arguments yield:

EP 0 [
R0

tM0

]
= EP 0

[∫ t

0

EP 0 [
f (θs−)H−1

s−a
ᵀ
s (θs)M0|Gs

]
dW 0

s

+
∫ t

0

EP 0 [
f (θs−)H−1

s−
(
(cᵀs (θs))

∗ − 1ᵀ
m

)
M0|Gs

]
dM0

s

]
= EP 0

[∫ t

0

f (θs−)H−1
s−a

ᵀ
s (θs)M0dW

0
s

+
∫ t

0

f (θs−)H−1
s−
(
(cᵀs (θs))

∗ − 1ᵀ
m

)
dM0

s

]

which concludes the proof.

A.1.2 Filtering Equation

The next theorem characterizes Π as the solution of a mixed SDE in a Kallianpur-
Striebel type formula, thus augmenting Pardoux (1989).

Theorem A.1.2 The unnormalized filter Πt =
(
Π1

t , ...,Π
m
t

)ᵀ satisfies:

Πt (f) = Π0 (f) +
∫ t

0

Πs (Lf) ds−
∫ t

0

Πs

(
%

∫
Γ

(f (·+ w (·, z))− f (·)) ν (dz)
)
ds

+
∫ t

0

Πs (af) dW 0
s +

∫ t

0

Πs− ((c∗ − 1m) f) dM0
s (A.8)

or in terms of the observations Y :

Πt (f) = Π0 (f) +
∫ t

0

Πs (Lf) ds−
∫ t

0

Πs

(
%

∫
Γ

(f (·+ w (·, z))− f (·)) ν (dz)
)
ds

+
∫ t

0

Πs (af)σ−1
s dYs +

∫ t

0

(
Πs− ((c∗ − 1m) f)−Πs− (af)σ−1

s ωs

)
(dNs − ds)
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Proof. First, we determine the form of f (θt)H−1
t , cf. (2.17) and (A.1). By

the Itô’s product rule for semimartingales, we have:

f (θt)H−1
t =

∫ t

0

f (θs−) dH−1
s +

∫ t

0

H−1
s−df (θs) +

[
f (θ) ,H−1

]
t

=
∫ t

0

f (θs−)H−1
s

[
aᵀ

s (θs) dW 0
s +

(
(cᵀs (θs))

∗ − 1ᵀ
m

)
dM0

s

]
+
∫ t

0

Lf (θs)H−1
s−ds+

∫ t

0

f
′
(θs) v (s, θs)H−1

s dBs

+
∫ t

0

H−1
s Jf (s) ds+

∫ t

0

H−1
s d(

∑
s6t

[f (θs)− f (θs−)])

+
[
f (θ) ,H−1

]
t

From the definition of Jf (t), we get:∫ t

0

H−1
s dJf (s) = −

∫ t

0

H−1
s %

∫
Γ

[f (θs + w (s, θs, z))− f (θs)] ν (dz) ds

and: [
f (θ) ,H−1

]
t
= f (θ0)H−1

0 +
∑
s6t

∆f (θs) ·∆H−1
s

+
∫ t

0

f
′
(θs) v (s, θs)H−1

s d 〈B,W 〉s = f (θ0)

Then, it follows:

f (θt)H−1
t = f (θ0) +

∫ t

0

f (θs−)H−1
s

[
aᵀ

s (θs) dW 0
s +

(
(cᵀs (θs))

∗ − 1ᵀ
m

)
dM0

s

]
+
∫ t

0

Lf (θs)H−1
s−ds+

∫ t

0

f
′
(θs) v (s, θs)H−1

s dBs +
∫ t

0

H−1
s dJf (t)

(A.9)

We are now interested in computing the five conditional expectations w.r.t.
(P 0,G) on the right-hand side of (A.9). We compute them in their order of
appearance. Obviously, the first one yields: Π0 (f) = EP 0

[f (θ0) |Gt]. For the
second one, thanks to Lemma A.1.1, we have:

EP 0
[∫ t

0

f (θs−)H−1
s

[
aᵀ

s (θs) dW 0
s +

(
(cᵀs (θs))

∗ − 1ᵀ
m

)
dM0

s

]
|Gt

]
=
∫ t

0

Πs− (af) dW 0
s +

∫ t

0

Πs− ((c∗ − 1m) f) dM0
s
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Similarly, we get:

EP 0
[∫ t

0

Lf (θs)H−1
s−ds|Gt

]
=
∫ t

0

Πs− (Lf) ds

Under P 0, the process θt is independent of Gt and so for Bt, yielding:

EP 0
[∫ t

0

f
′
(θs) v (s, θs)H−1

s dBs|Gt

]
= 0

Finally, we derive the last term:

EP 0
[∫ t

0

H−1
s dJf (s) |Gt

]
= −

∫ t

0

Πs−

(
%

∫
Γ

(f (·+ w (·, z))− f (·)) ν (dz)
)
ds

Collecting all these terms yields the desired result.

Useful in the following is the next lemma.

Lemma A.1.3 We have:

Π−1
t (1) = 1−

∫ t

0

Πs− (a)
Π3

s− (1)
(
Πs− (1) dW 0

s −Πs− (a) ds
)

−
∫ t

0

Πs− (c∗)− 1
Πs− (1)Πs− (c∗)

(
dNs −

Πs− (c∗)
Πs− (1)

ds

)
Proof. From Theorem A.1.2, it follows that:

Πt (1) = 1 +
∫ t

0

Πs− (a) dW 0
s +

∫ t

0

Πs− (c∗ − 1m) dM0
s

Using Itô’s formula for semimartingales, cf. (2.9), we take f (x) = x−1 and xt =
Πt (1). For the first term in (2.9), we have f (x0) = Π−1

0 (1) = 1. For the sec-
ond, we write

∫ t

0
f
′
(xs−) dxs = −

∫ t

0
Π−2

s− (1)Πs− (a) dW 0
s−
∫ t

0
Π−2

s− (1)Πs− (c∗ − 1m) dM0
s .

The third reads as 1
2

∫ t

0
f
′′

(xs−) d [xc, xc]s =
∫ t

0
Π−3

s− (1)Π2
s− (a) ds. Finally, for

the fourth term, we note that Π−1
s (1)−Π−1

s− (1) = ∆Π−1
s (1) = −Π−1

s− (1) Πs(c∗)−1
Πs−(c∗) ∆Ns,

so that: ∑
s6t

(
f (xs)− f (xs−)− f

′
(xs−) ∆xs

)
= −

∫ t

0

Πs− (c∗)− 1
Πs− (1)Πs (c∗)

dNs +
∫ t

0

Π−2
s− (Πs (c∗)− 1) dNs

Collecting all these terms yields the desired result.

The characterization of π resorts then to Theorem A.1.2 and Lemma A.1.3.
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Theorem A.1.4 The normalized filter πt =
(
π1

t , ..., π
m
t

)ᵀ satisfies:

dπt (f) =
(
πt(Lf)− πt−

(
%

∫
Γ

(f (·+ w (·, z))− f (·)) ν (dz)
))

dt (A.10)

+ (πt− (af)− πt− (a)πt− (f)) dW t +
(
πt− (c∗f)
πt− (c∗)

− πt− (f)
)
dM t

Proof. As πt (f) = Πt (f) Π−1
t (1), an application of Itô’s formula yields:

πt (f) =
∫ t

0

Πs− (f) dΠ−1
s (1) +

∫ t

0

Π−1
s (1) dΠs (f) +

[
Π (f) ,Π−1 (1)

]
t

Then, rearrangements yield the desired result.

Related Aspects

From Theorem A.1.4, πt (f) is a G−semimartingale with paths in the Sko-
rokhod space D[0,∞) (R), so that πt (f) is a right continuous process with limits
from the left (càdlàg). We then have the next uniqueness result.

Lemma A.1.5 πt (f) admits a unique solution with values in D[0,∞) (R).

Proof. To prove uniqueness of the normalized filter (A.10), we may follow Klie-
mann, Koch and Marchetti (1990) [104]. By formulating the filtering problem
as a filtered martingale problem, it is equivalent to a problem over the space
of measures. Then, we can apply Kurtz and Ocone (1988) [108] results about
the unique solution for a martingale problem. Finally, the uniqueness of the
filtered martingale problem gives the uniqueness of the filtering equation.

As the market is observed in continuous time, it is possible to completely
distinguish the continuous and discontinuous parts of the stock price process.

Corollary A.1.6 For jump time ti, the jumping filter equation reads:

πti (f) =
πti− (c∗f)
πti− (c∗)

− σ−1
ti
πti− (Bf) ∆= πJ

ti
(f) (A.11)

For t ∈ [ti, ti+1), the diffusing filter equation satisfies:

πt (f) = πti
(f) +

∫ t

ti

πs− (Df) ds+
∫ t

ti

σ−1
s πs− (Bf) dYs

∆= πD
t (f) (A.12)

where:

πt− (Pf) ∆=
πt− (c∗f)
πt− (c∗)

− πt− (f)

πt− (Bf) ∆= πt− (af)− πt− (a)πt− (f)

πt− (Df) ∆= πt(L0f)−σ−1
t

{
π∗t− (Bf) {πt(µ) + πt (λ)− rs1m} − π∗t− (Pf)πt (λ)

}
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A.2. Martingale Decompositions

Via the martingale approach of optimization, a solution to the control problem
(2.30) resorts to solve the dual (2.31), which is also equivalent to solve:

inf
Q∈Q

E

[
f

(
dQ

dP

)]
, f (x) =

 −xq power
− lnx logarithmic
x lnx exponential

cf. (2.39).

Power Utility

The q−Kakutani-Hellinger distance f (x) = xq admits the decomposition.

Proposition A.2.1 For q = p/ (p− 1) with p ∈ (0, 1):

E [−Λq
t ] = E

[
1
2
q (1− q)

∫ t

0

γᵀ
s γsds+ ((ψᵀ)q − 1ᵀ

m − q (ψᵀ − 1ᵀ
m))λtdt

]
Proof. The q−Kakutani-Hellinger distance is related to the Hellinger process
of order q as shown by Jacod and Shiryaev (2003) [93]. The result is then a
direct consequence of their Corollary IV.1.37.

Logarithmic Utility

The reverse entropy quantity f (x) = − lnx admits the decomposition.

Proposition A.2.2 We have:

E [− lnΛT ] = E

[
1
2

∫ t

0

γᵀ
s γsds+ (ψᵀ − lnψᵀ − 1ᵀ

m)λtdt

]
Proof. The proof relies on the computation of the canonical decomposition of
the P−submartingale lnΛT = Ut. An application of Itôs’ formula gives:

lnΛT = Ut −
1
2
〈U c〉t +

∑
s6t

(ln (1 + ∆Us)−∆Us) = Mt +At + Vt (A.13)

where Mt = Ut is a P−local martingale, At = −1/2 〈U c〉t is continuous and
increasing and Vt =

∑
s6t (ln (1 + ∆Us)−∆Us) is increasing but not pre-

dictable. Hence, (A.13) is not the canonical decomposition of lnΛT . Noting
that ∆Us = (ψᵀ

s − 1ᵀ
n)1n×m1{∆Ys 6=0}, we have:

ln (1 + ∆Us)−∆Us = ln (ψᵀ
s )1{∆Ys 6=0} − (ψᵀ

s − 1ᵀ
m)1{∆Ys 6=0}



A.2 Martingale Decompositions 45

which yields:
Vt = (lnψᵀ − ψᵀ + 1ᵀ

m)λt

or equivalently:

Vt = (lnψᵀ − ψᵀ + 1ᵀ
m)λt {= Kt}

+ (lnψᵀ − ψᵀ + 1ᵀ
m) ∗ (Nt − λt) {= Lt}

such that Vt has been decomposed into a P−local martingale Kt and a pre-
dictable process of finite variation Lt. Hence, it follows:

lnΛT = (Mt +Kt) + (At + Lt) (A.14)

= (Ut +Kt) +
(
−1

2
〈U c〉t + Lt

)
Taking conditional expectation w.r.t. P on both sides of (A.14) and noting
that the first parenthesis is a P−local martingale yields:

E [− lnΛT ] = E

[
1
2
〈U c〉t − (lnψᵀ − ψᵀ + 1ᵀ

m)λtdt

]
= E

[
1
2

∫ t

0

γᵀ
s γsds+ (ψᵀ − lnψᵀ − 1ᵀ

n)λtdt

]
which concludes the proof.

Exponential Utility

The entropic term f (x) = x lnx can be computed as follows.

Proposition A.2.3 We have:

E [ΛT lnΛT ] = EQ

[
1
2

∫ t

0

γᵀ
s γsds+ (ψᵀ lnψᵀ − ψᵀ + 1ᵀ

m)λtdt

]
Proof. As in Proposition A.2.2, the aim is to compute the canonical decom-
position of the P−submartingale ΛT lnΛT . An application of the integration
by parts formula yields:

d (ΛT lnΛT ) = Λt−d lnΛT + lnΛt−dHt + d [Λ, lnΛ]t

where the first and second right-hand side term are computed thanks to:

lnΛT = Ut −
1
2
〈U c〉t +Dt
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with Dt =
∑

s6t (ln (1 + ∆Us)−∆Us). For the third right-hand side term,
noting that dHt = Λt−dUt, yields:

d [Λ, lnΛ]t = Λt−d [U, lnΛ]t = Λt−

(
d [U ]t −

1
2
d [U, 〈U c〉]t + d [U,D]t

)
where:

[U,D]t =
∑
s6t

∆Us∆Ds =
∑
s6t

∆Us ln (1 + ∆Us)−
∑
s6t

(∆Us)
2

and as 〈U c〉 is continuous so [U, 〈U〉c] vanishes, we obtain:

[U, lnΛ]t = [U ]t −
∑
s6t

(∆Us)
2 +

∑
s6t

∆Us ln (1 + ∆Us)

= 〈U c〉t +
∑
s6t

∆Us ln (1 + ∆Us)

which in turn gives:

[Λ, lnΛ]t =
∫ t

0

Λs−d 〈U c〉s +
∑
s6t

Λs−∆Us ln (1 + ∆Us)

Hence, the computation of ΛT lnΛT reduces to:

ΛT lnΛT =
∫ t

0

Λs−dHs −
1
2

∫ t

0

Λs−d 〈U c〉s +
∫ t

0

Λs−dDs

+
∫ t

0

Λs− lnΛs−dHs +
∫ t

0

Λs−d 〈U c〉s +
∑
s6t

Λs−∆Us ln (1 + ∆Us)

=
∫ t

0

Λs− (1 + lnΛs−) dUs +
1
2

∫ t

0

Λs−d 〈U c〉s +
∑
s6t

Λs−f (1 + ∆Us)

= Mt +At + Vt

where f (ψ) = ψ lnψ − (ψ − 1) and Vt is increasing but not predictable. By
the same reasoning as in Proposition A.2.2, we decompose Vt into a local
P−martingale Kt and a predictable process of finite variation Lt. Noting that
f (1 + ∆Us) = f (ψᵀ

s )1n×m1{∆Ys 6=0}, we have:

Vt = Λ−f (ψᵀ)λt = Kt + Lt

= Λ−f (ψᵀ) ∗ (Nt − λt) + Λ−f (ψᵀ)λt

Hence the canonical decomposition of ΛT lnΛT follows:

ΛT lnΛT = (Mt +Kt) + (At + Lt) (A.15)
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Taking conditional expectation w.r.t. P on both sides of (A.15) and noting
that the first parenthesis is a P−local martingale yields:

E [ΛT lnΛT ] = E

[
1
2

∫ t

0

Λs−d 〈U c〉s − Λ−f (ψᵀ)λtdt

]
= EQ

[
1
2

∫ t

0

γᵀ
s γs + f (ψᵀ)λtdt

]
which concludes the proof.

A.2.1 Minimal Distance Premiums

A solution to (2.39) is equivalent to elicite the risk-premia processes subject to
the martingale condition (2.34). Thanks to previous Propositions, we are now
in place to specialize Girsanov parameters (γ, ψ).

Proposition A.2.4 Case of power utility:

γs =
σsΥs

q (1− q)
, ψs =

(
1m − Υs

q

) 1
q−1

Case of logarithmic utility:

γs = σsΥs, ψs =
1

1m −Υs

Case of exponential utility:

γs = σsΥs, ψs = exp (Υs)

where Υs solves (2.34).

Proof. Solving (2.31) reduces to optimize the canonical decomposition of a
constrained utility-distance based functional. Relying on Proposition 2.4.5, we
need to minimize a concave function subject to a convex constraint. Follow-
ing Rockafellar (1970) [143], it is enough to consider the Lagrangian function
and resort to the saddle point theorem where we let Υ to be a Rm−valued
Lagrange multiplier. From the first order conditions, we obtain the optimal
(γ, ψ) in terms of the Lagrange multiplier Υ which in turn satisfies the martin-
gale condition (2.34), say L (Υ). Furthermore, it can be verified that in each
case, the function L (Υ) is continuous and striclty increasing, thus admitting
a unique solution yielding the unicity of the elicited risk premiums.
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A.3. Optimization Results

In this Appendix, we collect results on optimization results, cf. Section 2.4.2.

Proof of Lemma 2.4.10. Noting Y φ
t = f(Xφ

t ) with f (x) = xp/p and f (x) =
−e−x in the CRRA and CARA cases respectively, Itô’s lemma yields:

dY φ
t = f

′
(Xφ

t )dXφ
t +

1
2
f
′′
(Xφ

t )d
[
Xφ,c

]
t

+
∑
s6t

(
f(Xφ

s )− f(Xφ
s−)− f

′
(Xφ

s−)∆Xφ
s−

)
so that:

dY pow,φ
t = (Xφ

t )p

(
rt + φᵀ

t (πt (b)− rt1m) +
1
2

(p− 1)φᵀ
t σtσ

ᵀ
t φt

)
dt

+ (Xφ
t )pφᵀ

t σtdW t + (Xφ
t−)p

(
(1 + φᵀ

t ωt)
p − 1

)
dNt

and:

dY exp,φ
t = e−Xφ

t

(
rt + φᵀ

t (πt (b)− rt1m)− 1
2
φᵀ

t σtσ
ᵀ
t φt

)
dt

+ e−Xφ
t φᵀ

t σtdW t − e−Xφ
t

(
e−(1+φᵀ

t ωt) + 1
)
dNt

As u(t,Xφ
t ) = f(Xφ

t )ηx
φt

(t), the integration by parts formula yields:

u(t,Xφ
t ) = u (0, x) +

∫ t

0

ηx
φs

(s) dY φ
s +

∫ t

0

Y φ
s

∂

∂s
ηx

φs
(s) ds

+
∑
s6t

(
Y φ

s η
x
φs

(s)− Y φ
s−η

x
φs

(s−)
)

Let us define:

Mφ,1
t =

∫ t

0

Y φ
s η

x
φs

(s)φᵀ
sσsdW s

and:
Mx,φ,2

t =
∑
s6t

(
Y φ

s η
x
φs

(s)− Y φ
s−η

x
φs

(s−)
)
−mx,φ

t

with:

mpow,φ
t =

1
p

∫ t

0

(Xφ
s )pηx

φs
(s) ((1 + φᵀ

sωs)
p − 1)πs (λ) ds

and:

mexp,φ
t =

∫ t

0

e−Xφ
s ηx

φs
(s)
(
e−(1+φᵀ

s ωs) + 1
)
πs (λ) ds
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Then, as Mφ,1
t and Mx,φ,2

t are Gt−martingales (boundedness conditions), we
note Mx,φ

t = Mφ,1
t +Mx,φ,2

t and the statement follows.
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Abstract. This chapter deals with the problem of the cost of
uncertainty associated with the utility maximization problem in a
complete market with multiple risky assets and unobservable divi-
dends in a Gaussian framework. This leads naturally to a partial
information setup from which filtering techniques can be applied.
Using a distortion power solution for the primal problem, we prove
that the value function can be expressed in terms of the solution
of a semilinear PDE, which is suggested by the dynamic program-
ming approach. An explicit solution is obtained for HARA utilities,
which we treat in a unified manner. Under these general results,
the links between both the optimal investment strategy and the
value function under full and partial information are explicited.
This allows then to draw some insights on the financial value of in-
formation: the minimal initial endowment an investor with partial
information must hold in order to attain the same expected utility
as under full information. We apply our approach to a two-assets
market model and discuss the numerical results in terms of optimal
investment strategy.

3.1. Introduction

Information acquisition is an irreversible process. Once apprised any given
fact, one cannot return to the state of ignorance. Therefore, information is a
crucial ingredient in the financial context of derivative pricing and of portfolio
optimization. Nevertheless, information is also a poorly understood concept.
The present work attempts to investigate the question of the financial value of
information in a utility-based manner. To this end, we consider the problem
of maximizing expected utility from terminal wealth in a Gaussian financial
market model under the respective hypotheses of full and partial information.

The typical example where our setup is applicable is when one considers the
case of a data provider (say Bloomberg, Datastream or Reuters) who wants to
assess the monetary value of its database, thus the price at which it should be
sold. Turning the problem from an agent with full information (having access
to the databases) to one with partial information (not having this access),
one has to quantify the minimal initial endowment an investor with partial
information must hold in order to attain the same expected utility as under
full information. In formula, the problem to solve reads:

Problem 3.1.1 Let F and G represent market model under full and partial
information, respectively; with associated filtration F and G with Gt ( Ft.
Also, θt represent an unobservable factor process, while mt = EP [θt|Gt].

Find Pt s.t. EP
[
uF (t, x, θt) |Gt

]
= uG (t, x+ Pt,mt)
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The extra initial endowment Pt will subsequently be called the financial
value of information. This is the fair price at which the data provider grant
subscription access to its database and at which the non-informed agent is
willing to acquire new information. The aim of this article is to provide explicit
characterization of Pt in the special case of a Gaussian market model.

The partial information situation appears when investors only observe the
vector of stock prices and cannot disentangle the drift term from other sources
of uncertainty. It goes back to Gennotte (1986) [74]. More specifically, in
the model economy we consider, dividend yields, represented by the stochas-
tic process θt, are altered by shocks and investors observe movements in the
returns level but cannot perfectly distinguished their sources. Instead, they
solve a signal extraction problem and, in our diffusion context, an estimator
of the dividend process, say mt, is given by the Kalman filter, cf. Liptser and
Shiryaev (2001) [118]. The optimization problem with full information was
pioneered and solved by Merton (1971) via the Bellman equation of dynamic
programming. Using the same approach and linear Gaussian filtering tech-
nique, models with incomplete information has been investigated by Detemple
(1986) [48]. Lakner (1998) [111] solved the optimization problem via the mar-
tingale approach and duality results and provided characterization of optimal
strategy on the special case of the linear Gaussian model.

Pham (2002) [138] or Zariphopoulou (2001) [158] provide an explicit rep-
resentation of the value function in terms of a distortion solution. In relation
to this litterature, in the present paper, we solved the optimization primal
problem via dynamic programming using distortion solutions and prove that
the value function can be expressed in terms of the solution of a semilin-
ear parabolic differential equation (PDE). An explicit solution is obtained for
HARA (Hyperbolic Absolute Risk Aversion) utilities, which we treat in a
unified manner. This solution is characterized by three ordinary differential
equations (ODE) and we investigate how one can pass from their representa-
tion under full information to their version under partial information. This
allows then to precisely investigate the links between the optimal investment
strategies, the wealth processes and the value functions under the full and
partial information frameworks and then to quantity two crucial terms: the
hedging demand and the precautionary demand for uncertainty. Eventually,
we draw some insights on the financial value of information in a utility-based
manner for CARA (Constant Absolute Risk Aversion) i.e.: exponential, CRRA
(Constant Relative Risk Aversion) i.e.: power and logarithmic risk preferences.

This paper is organized as follows. Section 2 states the partial information
framework, the filtering result and the utility maximization problem. Then, in
Section 3, the primal problem is solved via the dynamic programming approach
for both full and partial information and optimal portfolios are exhibited and
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compared. The question of the link between value functions under complete
and limited information is studied in Section 4, from which we give some
insights on the question of the financial value of information. Having obtained
rather general results, we study in Section 5 as a special case a two-assets
market model for which formulae are specialized and numerical aspects are
investigated. Section 6 concludes.

3.2. Preliminaries and Definitions

3.2.1 The Market

Let (Ω,A, P ) be a complete probability space. We assume throughout that all
stochastic processes are defined on a finite time horizon [0, T ]. Suppose that
W = (Wt)t>0 and W ∗ = (W ∗

t )t>0 are m−dimensional independent Wiener
processes and that A =(At)t>0 is the filtration generated by W and W ∗ which
satisfies the usual conditions. Here, At may be regarded as the model infor-
mation available at time t ∈ [0, T ].

Consider from now on a market with m tradable assets with prices Si =(
Si

t

)
t>0

for i ∈ ‖1;m‖. Here, Si -the price of the i−th risky asset - is assumed
to satisfy the differential equation:

dSi
t

Si
t

=
(
µi − θi

t

)
dt+ σi

SdWt, S
i
0 = si

0

where the volatilities σi
S = (σi,1

S , ..., σi,m
S )ᵀ for σi,j

S with j ∈ ‖1;m‖ and the
growth rate µi are constants. Moreover, the dividend yield θi =

(
θi

t

)
t>0

for
i ∈ ‖1;m‖ is assumed to follow a mean reverting process:

dθi
t = λi

(
δi − θi

t

)
dt+ σi

θdWt + ωi
θdW

∗
t , θ

i
0 ∈ R

with σi
θ = (σi,1

θ , ..., σi,m
θ )ᵀ, ωi

θ = (ωi,1
θ , ..., ωi,m

θ )ᵀ where, for (i, j) ∈ ‖1;m‖, σi,j
θ ,

ωi,j
θ , λi and δi are constants. For any C2−function f : R → R, we associate

with θi the infinitesimal generator Lθi , given by:

Lθif (y) = λi
(
δi − y

) ∂f
∂y

(y) +
1
2

((
σi

θ

)2
+
(
ωi

θ

)2) ∂2f

∂y2
(y) , y ∈ R

To ease the presentation, we introduce additional notation. First, the in-
stantaneous variances of the risky assets and of the dividends, respectively:

E [dSt/St · dSt/St] = σSσ
ᵀ
Sdt

∆= ΣSdt

E [dθt · dθt] = (σθσ
ᵀ
θ + ωθω

ᵀ
θ ) dt ∆=

(
Σθ + Ωθ

)
dt
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where the m × m volatility matrices σk = (σ1
k, ..., σ

m
k )ᵀ for k = {S, θ} and

ωθ = (ω1
θ , ..., ω

m
θ )ᵀ are constant and non-singular, hence invertible. Second,

the instantaneous covariances between the assets and the dividends read:

E [dθt · dSt/St] = σθσ
ᵀ
Sdt

∆= ΨθSdt

We also denote by dRt = (Diag (St))
−1
dSt the return process and by θt =(

θ1t , ..., θ
m
t

)ᵀ the dividend process, for all t ∈ [0, T ], i.e.:

dRt = (µ− θt) dt+ σSdWt, R0 = r0 (3.1)

dθt = Λ (∆− θt) dt+ σθdWt + ωθdW
∗
t , θ0 ∈ R (3.2)

with µ =
(
µ1, ..., µm

)ᵀ, Λ =Diag
(
λ1, ..., λm

)
, ∆ =

(
δ1, ..., δm

)ᵀ. Then, we
associate with the process θ the infinitesimal generator Lθ which is given, for
any C2−function f : Rm → R, by:

Lθf (y) = L0
θf (y) +

1
2

m∑
i,j=1

(
Σθ

ij + Ωθ
ij

) ∂2f

∂yi∂yj
(y) , y ∈ Rm (3.3)

with:

L0
θf (y) =

m∑
i,j=1

Λij (∆j − yj)
∂f

∂yi
(y) (3.4)

3.2.2 Information Structure

In this economy, we outline two ways to model investor’s information:

• full information: The investor observes both the asset prices and the div-
idend yields. Thus, the observations are given by the process (St, θt)t>0

and we denote by F =(Ft)t∈[0,T ] the P−augmentation of the filtration
generated by prices and returns and we write:

Ft = σ (Ss, θs, s ∈ [0, t])

• partial information: The investor does not have access to the filtration
F and can only observe the vector of stock prices. Thus, we denote by
G =(Gt)t∈[0,T ] the P−augmentation of the filtration generated by the
prices and we write:

Gt = σ (Ss, s ∈ [0, t])

Remark 3.2.1 We clearly have the inclusions Gt $ Ft. Also, we note that
this setup is the same as Detemple (1986) [48] or Lakner (1998) [111].

In the following, we will study investment decisions in the context of each
of these information structures, which will be denoted respectively F and G
financial markets. The fact is that when working under the F (resp. G)
financial market, all stochastic processes have to be F (resp. G) adapted.
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3.2.3 The Filtering Setup

Since, under the G−financial market, the Markov process θt, t ∈ [0, T ] , is not
observable, it is natural to introduce its Gt−conditional estimator vector by:

mt = E [θt|Gt]

and its conditional covariance matrix:

γt = E [(θt −mt) (θt −mt)
ᵀ |Gt]

Then, as the system (3.1)-(3.2) is conditionally Gaussian, the conditional law
of θt w.r.t. Gt is also Gaussian with mean mt and covariance γt and the pair
(m, γ) satisfies a system of linear equations given by the so-called Kalman
filter. Results from Liptser and Shiryaev (2001) [118] give1:

dmt = Λ (∆−mt) dt+
(
ΨθS − γt

)
ΣS∗ (dRt − (µ−mt) dt) (3.5)

dγt

dt
= Σθ + Ωθ − 2Λγt −

(
ΨθS − γt

)
ΣS∗ (ΨθS − γt

)ᵀ
(3.6)

and we note that (3.6) is a deterministic equation.

Remark 3.2.2 The filtering equation (3.5) bears an appealing structure. While
dRt is what one observed during the time [t, t + dt), (µ−mt) dt is what one
would expect to happen during [t, t+ dt) conditionally to previous observations
Gt. Thus dRt − (µ−mt) dt is what is new. Also,

(
ΨθS − γt

)
represents the

amount of variance that one would expect to happen during [t, t+dt) Therefore,(
ΨθS − γt

)
(dRt − (µ−mt) dt) represents what is really new.

The process W t = σ∗S(Rt −
∫ t

0
(µ−ms) ds) which also reads:

W t
∆= Wt − σ∗S

∫ t

0

(θs −ms) ds is a (P,G)− Brownian motion

This is the so-called innovation process in filtering theory (cf. Liptser and
Shiryaev (2001) [118]). From this, we can restate the return and dividend
processes dynamics w.r.t. the filtration G as:

dRt = (µ−mt) dt+ σSdW t

dmt = Λ (∆−mt) dt+
(
ΨθS − γt

)
σ∗SdW t

Hence, consider the differential operator Lm associated with the process m:

Lmf (y) = L0
mf (y) +

1
2

m∑
i,j,k,l=1

(
ΨθS

ki − γki (t)
)
ΣS∗

kl

(
ΨθS

lj − γlj (t)
) ∂2f (y)
∂yi∂yj

(3.7)
1In the following, ∗ denotes the inverse operation, hence ΣS∗ ≡ (ΣS)−1.
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for any C2−function f : Rm → R, and L0
m of the same form than (3.4) with θ

replaced by m. Finally, the conditional distribution of θt for all t ∈ [0, T ], say
P (θt ∈ A|Gt) =

∫
A
ρ (t, x) dx, is of the Gaussian type and writes:

ρ (t, x) = (2π)−m/2 (det γt)
−1/2 exp

(
−1

2
(x−mt) γ∗t (x−mt)

ᵀ
)

(3.8)

In the following, we suppose that the variance-covariance matrix γt is a sym-
metrical positive definite one and so γ∗t exists in (3.8).

3.2.4 The Optimization Problem

By denoting φs =
(
φ1

s, ..., φ
m
s

)ᵀ the vector of money amounts invested in the
m risky assets at time s, a self-financing strategy for the F (resp. G) finan-
cial market is a pair (x, φ) where x > 0 is the initial investment and φ is a
Rm−valued and F (resp. G) adapted process s.t. the value process:

Xφ
t = Xφ

0 +
∫ t

0

φᵀ
sdRs, X

φ
0 = x (3.9)

is P−a.s. well defined, which is ensured as long as the integrals involved in
(3.9) are. Then, associated with a pair (x, φ), the wealth process (3.9) satisfies
the differential representation:

dXφ
t = φᵀ

t

[
(µ− ϑt) dt+ σSdW

ϑ
t

]
(3.10)

with: (
H, ϑt,W

ϑ
t

)
=
{

(F , θt,Wt)(
G,mt,W t

) F−market
G−market

(3.11)

Besides, the class of H−admissible strategies for a given initial endowment
x > 0 is defined by:

S (H, x)= {φ : [0, T ]× Ω → Rm,H−predictable

,∃K > −∞,∀t, P (Xφ
t > K) = 1, Xφ

0 = x
}

Thus, associated with the process (3.10), we introduce, for any C2−function
f : R→ R and fixed y ∈ Rm, the differential operator LX,y:

LX,yf (x) =
m∑

i=1

φi (µi − yi)
∂f

∂x
(x) +

1
2

m∑
i,j=1

φiΣS
ijφj

∂2f

∂x2
(x) (3.12)

for x ∈ R.



58 3 Financial Value of Information

The Problem

A function U : R→ R will be called a utility function if it is strictly increasing,
strictly positive, of class C2 and satisfies:

U
′ (

0+
)

= ∞, U
′
(∞) = 0 (3.13)

The optimization problem the investor faces is to maximize the expected utility
from his/her terminal wealth over the class of admissible policies.

Definition 3.2.3 Let U be a utility function. Determine:

u (t, x, y) = sup
φ∈S(H,x)

EP
[
U(Xφ

T )|Xφ
t = x, ϑt = y

]
(3.14)

and find φ̂ which satisfies u (t, x, y) = EP [U(X
bφ
T )]. Then, we call φ̂ an optimal

investment strategy and X̂ = X
bφ the optimal wealth process.

3.3. Portfolio Selection Problem

3.3.1 Distortion Solution

In this economy, the investor has risk preferences expressed via a concave utility
function. In the following, we consider the three more standard cases:

U (x) =

 xa/a
−e−ax

log x
,
a ∈ (−∞, 1) , x ∈ R+

a > 0, x ∈ R
x ∈ R+

power (CRRA)
exponential (CARA)
logarithmic (Myopic)

(3.15)

and we introduce the parameter q ∈ (−∞, 1] varying with the utility function:

q =

 a/ (a− 1) , q < 1, q 6= 0
1
0

power
exponential
logarithmic

(3.16)

As is clear from (3.3) and (3.7), the operators associated with the processes m
and θ are formally close and so we can solve the optimization problem (3.14)
for F and G financial markets in a really general way. To this end, we note:

Lϑf (y) = L0
ϑf (y) +

1
2

m∑
i,j=1

Υij
∂2f

∂yi∂yj
(y) , ϑ = {θ,m}

and noting Φ = E [dRt · dϑt] /dt the correlation between (R,ϑ), we have2:

(Υ,Φ) =
{ (

Σθ + Ωθ,ΨθS
)

((ΨθS − γt) ΣS∗ (ΨθS − γt) ,ΨθS − γt)
F−market
G−market

(3.17)

2To lighten the notations, we omit the lower-script t in γ when writing (Υ,Φ).
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We can now state the distortion power solution for the primal optimization
problem (3.14). Similar idea was used to solve rather general problems by
Pham (2002) [138] or Zariphopoulou (2001) [158].

Proposition 3.3.1 Let q 6 1 be given by (3.16). Then, the value function
(3.14) of the primal optimization problem is given by:

u (t, x, y) =
{
U (x) exp (v (t, y))
U (x) + v (t, y)

,
q 6 1, q 6= 0

q = 0
(3.18)

where v ≡ v (t, y) : [0, T ]× Rm→ R satisfies the semilinear PDE:

vt + Lϑv =
{
q/2

∑m
i,j=1 ΣS∗

ij (µi − yi)
2 + w (y, vy, vyy)

−1/2
∑m

i,j=1 ΣS∗
ij (µi − yi)

2 ,
q 6 1, q 6= 0

q = 0
(3.19)

where:

w
(
y, z1, z2

)
=

m∑
i,j,k=1

qΦkiΣS∗
kj (µj − yj) z1

i +
1
2

m∑
i,j,k,l=1

(
qΦkiΣS∗

kl Φlj −Υij

)
z2
i

and boundary condition v (T, y) = 0.

Proof. The HJB equation for the optimization problem (3.14) reads as:

ut + max
φ∈Rm

LXu+
m∑

i,j=1

φiΦij
∂2u

∂x∂yj

+ Lϑu = 0 (3.20)

with u (T, x, y) = U (x) for (t, x, y) ∈ [0, T ]×R×Rm. The first order condition
for an optimal investment strategy is given by:

φ̂i = −u∗xx

m∑
j=1

ΣS∗
ij

(
(µi − yi)ux +

m∑
k=1

Φjk
∂2u

∂x∂yk

)
(3.21)

Inserting φ̂i into the HJB equation (3.20) yields the semilinear PDE:

ut −
1
2
u∗xx


m∑

i,j=1

(µi − yi) ΣS∗
ij ux +

m∑
i,j=1

ΦijΣS∗
ij

∂2u

∂x∂yj


2

+ Lϑu = 0 (3.22)

Then, we seek a solution to (3.22) in the form of (3.18). By direct substitution,
it is easy to see that v (t, y) satisfies the semilinear PDE given by (3.19).

Remark 3.3.2 By following Pham (2002) [138] or Zariphopoulou (2001) [158],
the proof can be made more precise. First, by establishing that the proposed
solution is a viscosity solution of the HJB equation and second by ensuring that
the value function is a classical solution of the HJB equation.
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3.3.2 Specializations

In the following, we present solutions of (3.18) in the case of full and partial
information and discuss how one can pass from one to another one.

Solution for a F-Market

A solution to (3.19) is derived in the next lemma.

Lemma 3.3.3 The F-solution v to (3.19) is given by:

v (t, y) = yᵀaty + bᵀt y + ct (3.23)

for all (t, y) ∈ [0, T ]× Rm, with boundary condition v (T, y) = 0 and where:

• q 6 1, q 6= 0 :

dat

dt
= 2atζ1at + 2ζ2at +

q

2
ΣS∗

dbt
dt

= 2atζ1bt + ζ2bt + 2ζ3at − qΣS∗µ (3.24)

dct
dt

=
1
2
btζ1bt + ζ3bt − Tr (ζ4at) +

q

2
Tr(ΣS∗µ2)

where:

ζ1 = qΦΣS∗Φᵀ − ζ4, ζ2 = Λ− qΦΣS∗, ζ3 = qΦΣS∗µ− Λ∆, ζ4 = Υ

• q = 0 :

dat

dt
= 2Λat −

1
2
ΣS∗

dbt
dt

= Λbt − 2Λ∆at + ΣS∗µ (3.25)

dct
dt

= −Λ∆bt − Tr (Υat)−
1
2
Tr(ΣS∗µ2)

with a (T ) = b (T ) = c (T ) = 0. One may note that a is a m ×m−matrix, b
is a m−vector while c is a scalar. Going back to (3.18), we have:

uF (t, x, θ) = U (x) exp (θᵀ
t atθt + bᵀt θt + ct) (3.26)

Proof. By plugging (3.23) into (3.19), we derive the desired ordinary dif-
ferential equations for the coefficients at, bt and ct, with terminal conditions
a (T ) = b (T ) = c (T ) = 0 since v (T, y) = 0 for all y ∈ Rm.

Remark 3.3.4 In the logarithmic case, q = 0, the ordinary differential equa-
tions a and b are invariant under full and partial information while c is affected
by learning through the covariance matrix Υ, cf. (3.25) and notation (3.17).
The case q 6 1, q 6= 0 will be deeply studied in subsequent sections.
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Solution for a G-Market

In the following, we will denote by at, bt and ct the ODE’s given in Lemma
3.3.3, (3.24), for a G−financial market, cf. notation (3.17), and we note:

uG (t, x,m) = U (x) exp
(
mᵀ

t atmt + b
ᵀ
tmt + ct

)
Lemma 3.3.5 The equations at, bt and ct satisfy:

dat

dt
= 2atζ

m
1 at + 2ζm

2 at +
q

2
ΣS∗

dbt
dt

= 2atζ
m
1 bt + ζm

2 bt + 2ζm
3 at − qΣS∗µ (3.27)

dct
dt

=
1
2
btζ

m
1 bt + ζm

3 bt − Tr (ζm
4 at) +

q

2
Tr(ΣS∗µ2)

where:
ζm
1 = (q − 1) ζm

4 , ζ
m
2 = Λ− q

(
ΨθS − γt

)
ΣS∗

ζm
3 = q

(
ΨθS − γt

)
ΣS∗µ− Λ∆, ζm

4 =
(
ΨθS − γt

)
ΣS∗ (ΨθS − γt

)ᵀ
Next, we present a result which will thereafter be of capital importance.

Lemma 3.3.6 The following identities, for q 6 1, q 6= 0, hold:

at = (1m − 2γtat)
∗
at

bt = (1m − 2γtat)
∗
bt

(3.28)

Proof. cf. Appendix B.1.2.

This gives the link between the F and G financial markets.

3.3.3 Optimal Policy

Eventually, the optimal investment policy can be further explicited.

Lemma 3.3.7 The optimal strategy φ̂ to problem (3.14), is given by:

φ̂t = A (x) ΣS∗ {µt − ϑt (1m − 1q 6=0 {2Φat}) + 1q 6=0 {Φbt}} (3.29)

with q as in (3.16) and Arrow-Pratt relative risk-aversion:

A (x) = − U
′
(x)

U ′′ (x)
=

 x/ (1− a)
1/a
x

power
exponential
logarithmic

(3.30)

or similarly:
φ̂t = A (x)ΣS∗ {(µt − ϑt) + 1q 6=0Φvϑ (t, ϑ)} (3.31)
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Proof. The result follows from direct substitution of (3.18) with v given by
(3.23) into (3.21). When q = 0, the formula simplifies (see below).

In Appendix B.1, we specialize (3.29) to the case of full and partial infor-
mation. This lead us to quantity two crucial terms which appear in the partial
case: the hedging and the precautionary demands for uncertainty.

3.4. Value of Information

As pointed out by several authors, cf. Lakner (1998) [111] or Pham and Quenez
(2001) [139], the optimal investment policy under partial information cannot
be derived from the full case by just replacing θ by its conditional version m,
cf. Propositions B.1.1 and B.1.4. This holds true only in the myopic logarith-
mic case, cf. Remark 3.3.4, a fact that is known as the certainty equivalence
principle, cf. Kuwana (1995) [110]. But what about value functions?

3.4.1 CARA and CRRA Utilities

The next result gives somes insights on this question.

Lemma 3.4.1 When q 6 1, q 6= 0, we have:

E [exp (θᵀ
t atθt + bᵀt θt) |Gt] = exp (dt) exp

(
mᵀ

t atmt + b
ᵀ
tmt

)
with dt given by:

dt =
1
2

(bᵀtD
∗
t γtbt − log detDt) (3.32)

where Dt = 1m − 2γtat.

Proof. From Section 3.2.3, we know that the Gt−conditional law of θt is
Gaussian with mean vector mt and covariance matrix γt and is given by (3.8).
Noting Dt = 1m − 2γtat and Γt = (2π)−m/2 (det γt)

−1/2, it follows that:

eF/G ∆= E [exp (θᵀ
t atθt + bᵀt θt) |Gt]

=
∫

Rm

exp (xᵀatx+ bᵀt x) ρ (t, x) dx

= Γt

∫
Rm

exp (xᵀatx+ bᵀt x) exp
(
−1

2
(x−mt) γ∗t (x−mt)

ᵀ
)
dx

= Γt

∫
Rm

exp (mᵀ
tD

∗
t atmt +D∗ᵀ

t bᵀtmt)× exp
(

1
2
bᵀtD

∗
t γtbt

)
× exp

(
−1

2
(x−D∗

t (mt + γtbt))Dtγ
∗
t (x−D∗

t (mt + γtbt))
ᵀ
)
dx
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Thus, we have:

eF/G = exp
(

1
2
bᵀtD

∗
t γtbt −

1
2

log detDt

)
× exp (mᵀ

tD
∗
t atmt +D∗ᵀ

t bᵀtmt)

which is the desired result.

The things are made clearer owing to the following useful lemma, which
is close in essence to Lemma 3.3.6 and is motivated by Lemma 3.4.1. For
the rest of this chapter, the upper-scripts cr and ca denote respectively the
Constant Relative and Constant Absolute (Risk Aversion) cases, corresponding
respectively to power and exponential preferences.

Lemma 3.4.2 The following identity, for q 6 1, q 6= 0,holds:

ct − ct − dt =
{Tr

(
q

1−q

(
1
2 log (1m + 2D∗

t γte
cr
t ) + ft

))
Tr (D∗

t γteca
t + ft)

,
q < 1, q 6= 0

q = 1
(3.33)

with dt as in (3.32) and ecr
t , e

ca
t and ft satisfying the ODE’s:

decr
t

dt
= −1− q

2
e1t + e2,cr

t − 2ecr
t e

0ecr
t (3.34)

and:
deca

t

dt
= −1

2
e1t + e2,ca

t (3.35)

where for x = {cr, ca}:

e0 = ΨθSΣS∗ΨθS −
(
Σθ + Ωθ

)
e1t =

(
1m − 2ΨθSat

)
ΣS∗ (1m − 2ΨθSat

)ᵀ
e2,x
t = 4ate

0ex
t + 2

(
Λ−ΨθSΣS∗) ex

t

and:
dft

dt
= e0ex

t (3.36)

Proof. The proof can be done in the same line as the one in Lemma 3.3.6,
although the computations are largely more involved and tedious.

We are now in position to define the financial value of information under
partial information and learning in a utility-based manner. The next result is
a ramification of Lemma 3.4.1 with the help of Lemma 3.4.2.
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Proposition 3.4.3 (CARA & CRRA cases) Let uF be given by (3.26), θ
by (3.2) and its G−version m by (3.5) and q 6 1, q 6= 0, then we have:

E
[
uF (t, x, θ) |Gt

]
= exp (−%cr,ca

t )uG (t, x,m)

with %cr,ca
t given by:

%cr,ca
t =

{Tr
(

q
1−q

(
1
2 log (1m + 2D∗

t γte
cr
t ) + ft

))
Tr (D∗

t γteca
t + ft)

,
q < 1, q 6= 0

q = 1
(3.37)

where ecr
t , e

ca
t and ft as in (3.34), (3.35) and (3.36) and so:

d%cr,ca
t

dt
= −q

2
Tr
{

(1m − 2γtat)
∗
γt

(
1m − 2ΨθSat

)
ΣS∗ (1m − 2ΨθSat

)ᵀ}
Proof. This is a direct application of Lemmas 3.4.1 and 3.4.2.

The quantity (3.37) can clearly be interpreted as the minimal monetary
amount that when added to the initial capital makes the investor indifferent
in terms of maximal terminal expected utility between learning about the div-
idend yields or not. We precise this point by noting:

E
[
uF (t, x, θ) |Gt

]
= uG (t, x̂t,m)

where:

x̂t =
{
x exp (−a∗%cr

t )
x+ a∗%ca

t

,
power (CRRA)

exponential (CARA)

Then, the difference x̂t − x > 0 can be interpreted as the cost of uncertainty.
This is the endowment an investor with partial information must hold in order
to attain the same expected utility as one with full information.

Remark 3.4.4 Under exponential utility, the financial value of information
x̂ may have an interpretation as an utility-based price. Following Hodges and
Neuberger (1989) [89] or Davis (1997) [37], the idea of utility-based valuation
is the following: a contingent claim is priced so that the investor’s utility re-
mains the same whether the optimal portfolio includes a marginal amount of
the derivative security or not. If there exists a unique solution ρs to:

u (t, x, ·) = u (t, x+ ρs, ·)

then, ρs is called the utility indifference selling (ask) price. Therefore, we have
the identification ρs = a∗%ca

t and ρs is the reservation price of an option which
pays off if m, the estimator of θ, is in fact equal to θ.
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3.4.2 Logarithmic Utility

When q = 0, the things are more simple as shown by Proposition 3.3.1 and
Lemma 3.3.3. Therefore, by mimicking the previous analysis, it follows.

Lemma 3.4.5 The following identity, for q = 0, holds:

ct = ct + Tr (γtat + gt)

with gt satisfying the ODE:

dgt

dt
=

1
2
ΣS∗γt (3.38)

Proof. The proof can be done as in Lemma 3.4.2.

We are now in position to define the financial value of information in the
myopic logarithmic case by following Proposition 3.4.3.

Proposition 3.4.6 (Logarithmic case) Let uF be given by (??), θ by (3.2)
and its G−version m by (3.5) and q = 0, then we have:

E
[
uF (t, x, θ) |Gt

]
= −%log

t + uG (t, x,m)

with %log
t given by:

%log
t = Tr (γtat + gt) (3.39)

where gt is given by (3.38) and so:

d%log
t

dt
= −Tr

{((
ΨθS − γt

)
ΣS∗ (ΨθS − γt

)ᵀ − (Σθ + Ωθ
))
at

}
Similarly as for the case of CARA and CRRA utilities, the quantity (3.39)

can be interpreted as the cost of uncertainty that when added to the initial
endowment yields the same terminal expected utility for an agent with partial
information than one with full information. We note:

E
[
uF (t, x, θ) |Gt

]
= uG (t, x̂t,m)

where:
x̂t = x exp(−%log

t ), logarithmic (Myopic)

Then, the difference x̂t − x > 0 is termed the financial value of information.
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3.5. Application

In the following, we conduct a simulation study to demonstrate the main char-
acteristics of the previously derived ”value of information” in the case of a
two-assets market model, cf. Appendix B.3 for more details and notations.

Table 3.1 presents the parameters values for four reference models. Using
this set of parameters for the two-asset model, we simulate stock price and
dividend yield and then use the Kalman filter to retrieve the true values, cf.
cf. Appendix B.3. Figure 3.1 presents some filtering results.

Case 1 Case 2 Case 3 Case 4
µ 0.08 0.08 0.08 0.08
σ 0.5 0.8 0.8 0.6
λ 3.1 3.1 4.1 5.1
δ 0.05 0.02 0.05 0.05
ω 0.1 0.6 1.2 0.6
ρ 0.7 0.7 −0.4 0.4

Table 3.1: Parameters values - Four reference models.
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Figure 3.1: Dividends, true and filtered - Four reference models.
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Expressions for (a, b, c)

Next, the solutions of the ODE’s (a, b, c) are derived.

Lemma 3.5.1 The equations (a, b, c) admit the representations:

• q 6 1, q 6= 0 :

a (t) =
a2

a3

exp (2a2 (T − t))− a4

exp (2a2 (T − t)) + a4
+
a1

a3

b (t) =
∫ T

t

(
2a5as − qξ2µ̃

)
exp

(
−a1 (s− t) + a3

∫ s

t

audu

)
ds

c (t) = −1
4
a3

∫ T

t

b2sds+ a5

∫ T

t

bsds− ρσω

∫ T

t

asds+
q

2
ξ2µ̃2 (T − t)

where:
a1 = λ− qρξω, a2 =

√
λ2 + qω2ξ2 − 2qλρξω

a3 = 2ω2
(
1− qρ2

)
, a4 =

a2 + a1

a2 − a1
, a5 = qρξωµ̃− λδ

• q = 0 :

a (t) =
ξ2

4λ
(exp (2λ (T − t))− 1)

b (t) =
∫ T

t

(
−2λδas + µ̃ξ2

)
exp (−λs) ds

c (t) = −λδ
∫ T

t

bsds− ω2

∫ T

t

asds−
ξ2µ̃2

2
(T − t)

Remark 3.5.2 To ease the presentation, we did not present here the exact
solutions of the ODE’s. Those are detailed in Appendix B.3.2.

From Sections 3.3 and 3.4, the investment strategy and the value function
(for both F and G-financial markets) are computed in terms of the triplet
of ODE’s (a, b, c). As they are of paramount importance, we present some
numerical aspects relative to their computation and shape.

Shape Properties As is clear from previous lemma, the functions (a, b, c)
bear similarities in the power and exponential cases, only varying in the q−para-
meter, while the logarithmic case can be analyzed separately. For power risk
preferences, (a, b, c) are influenced by the agent’s risk attitude which is ex-
pressed via the a−parameter and in turn via q as q = a/ (a− 1).
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Figure 3.2: Functions (a,b,c) - Four cases - Power utility (a = −5).
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Figure 3.3: Functions (a,b,c) - Four cases - Power utility (a = 0.8).

The investor is said to be conservative if a ∈ (−∞, 0), cf. Figure 3.2,
and agressive if a ∈ (0, 1), cf. Figure 3.3. Even if the shape of the (a, b, c)
functions are similar in these two cases, their levels are quite different. The
conservative agent always obtain higher levels (in absolute terms) for all of
these ODE’s whatever the model used to compute the functions. Then, we
note that an agent with exponential preferences, cf. Figure 3.4, yields similar
levels pattern as a conservative power investor (at least in the case a = −5).
Considering the four reference models, we observe that the function a decreases
as the model becomes more volatile: case 3 with the highest variance (σ, ω)
parameters always yields the lowest a−level. The rate of mean-reversion (λ)
also plays an important role: it causes increase in the a−level, cf. case 4. The
same ordering can be observed for the b function and the variance and mean
reversion parameters show importance again.

The things are quite different for the c function; which only enters in the
computation of the optimal primal and dual value functions. For power and
exponential risk preferences, the highest volatile model (case 4) yields higher
levels than in the other cases, but in all cases we observe a smaller dispersion
than in the situation of the (a, b) functions.

In the logarithmic case, cf. Figure 3.5, the same shape analysis can be
conducted. The main divergence lies in the relative gaps between the four
considered models. The difference in levels between each ones seem to be more
marked for this utility function than the two others. This may be due to the
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Figure 3.4: Functions (a,b,c) - Four cases - Exponential utility.
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Figure 3.5: Functions (a,b,c) - Four cases - Logarithmic utility.

myopic behaviour of the investor who as being less strategic towards his/her
environment, then suffers more from his/her financial model.

Remark 3.5.3 From Lemma B.2.4, we know that (a, b) enter in the computa-
tion of the dual optimizer, which is the risk neutral Radon-Nikodym derivative.
Therefore, these can be interpreted as factors for the market price of risk (ψ)
due to the incompleteness introduced by the dividend process. In the logarithmic
case, the agent acts as if ρ = 0, complete market, and so ψ = 0.

Value of Information

In order to be able to compute the financial value of information, cf. Proposi-
tion 3.4.3, we need analytical solutions to the equations (ecr, eca, f, g).

Lemma 3.5.4 The solutions of (ecr, eca, f, g) are given by:

ecr
t = at +

1
2ω2 (ρ2 − 1)

(
ẽ2

exp
(
2ẽ2 (T − t)

)
− ẽ3

exp (2ẽ2 (T − t)) + ẽ3
− ẽ1

)

eca
t = −1

2
ξ2
∫ T

t

(1− 2ρσωas) exp
(
−2e2 (s− t)− 4e1

∫ s

t

audu

)
ds
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with:

ẽ1 = ρξω − λ, ẽ2 =
√
ξ2ω2 (2ρ2 − 1) + λ (λ− 2ρξω), ẽ3 =

ẽ2 − ẽ1

ẽ2 + ẽ1

and:

ft = −ω2
(
1− ρ2

) ∫ T

t

esds, gt =
1
2
ξ2
∫ T

t

γsds

Proof. The only difficulty is in solving ecr
t . In fact, it does not admit a direct

solution as for eca
t . Instead, noting ẽt = at − ecr

t , we make use of the relation:

dẽt

dt
= −2ω2

(
1− ρ2

)
ẽ2t + 2 (λ− ρξω) ẽt −

1
2
ξ2

whose solution is given by:

ẽt =
1

2ω2 (ρ2 − 1)

(
ẽ1 − ẽ2

exp
(
2ẽ2 (T − t)

)
− ẽ3

exp (2ẽ2 (T − t)) + ẽ3

)

Hence, using the identity ẽt = at − ecr
t yields the desired result.

Following Proposition 3.4.3 and 3.4.6, the financial value of information for
power, exponential and logarithmic utilites is given by:

%t =


q

1−q

(
1
2 log (1− 2D∗

t γte
cr
t ) + ft

)
D∗

t γte
ca
t + ft

γtat + gt

,
q < 1, q 6= 0

q = 1
q = 0

which is easily calculable thanks to Lemmas 3.5.1 and 3.5.4.

Simulation Study We now present some numerical results relative to the
computation of the relative cost of uncertainty x̂t/x:

x̂t/x =


exp (−%cr

t a
∗)

1 + %ca
t a

∗/x

exp(−%log
t )

,
power

exponential
logarithmic

This represents the factor which allow to pass from the initial wealth under
full information to this under partial information. Figure 3.6 represents this
quantity in the case of exponential risk preferences when x = 1 and for various
risk aversion parameter a ∈ (0, 1). We observe that as time evolves, the cost of
uncertainty (logically) decreases and increases when the risk aversion is near
zero which is then close to the myopic (logarithmic) case.

It is well-known that the portfolio selection problem under exponential pref-
erences is independent of the investor’s initial wealth. To a certain extent, our
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Figure 3.6: Relative cost of uncertainty x̂t/x - Exponential utility.

simulation study rediscovers this finding. In fact, the low cost of uncertainty
for exponential investors may be due to the wealth invariance property of this
utility function.

In the case of logarithmic utility, cf. Figure 3.7, we observe the same pattern
but at a higher level. It seems that this higher cost of uncertainty is directly
linked to the non-strategic behavior of the investor; a stylized fact which is
typical of these risk preferences and which is recovered under the exponential
utility setup in the limiting case a→ 0.

Finally, for the case of power utility, we consider again the four reference
models and vary the risk aversion parameter in the interval [−5, 0.8] which in
the extremes correspond respectively to a conservative agent and an aggressive
one. We note that the cost of uncertainty is higer than in the exponential case
but lower than for logarithmic preferences.

3.6. Conclusion

This chapter has investigated the question of the financial value of information
in a utility-based manner. Working with a two-factor correlated model for
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Figure 3.7: Relative cost of uncertainty x̂t/x - Logarithmic utility.

stock price and dividend, we demonstrate how one can analyze the cost of
uncertainty when using a partially observable version of this model relatively
to an investor with full information. From an economical perspective, our
results are of interest for data providers which aim to assess the monetary
value of their databases and for practitioners who have to decide between the
relative costs of learning or subscribing. The financial value of information is
then the fair price at which the two agents agree to transact.

From a theoretical perspective, the distortion technique has been used to
derive a solution of the primal and dual problems and we have proved that
the related value functions can be expressed in terms of the solution of a semi-
linear PDE. Moreover, we are able to treat different preferences in a unified
framework using the q−parameter which is related to the definition of the op-
timal measure in the dual formulation of the portfolio optimization problem.
Also, the convenient framework of our linear Gaussian model allow us to ob-
tain tractable versions of the filter equations from the so-called Kalman filter.
Eventually, we completely characterize the optimal investment strategy, the
wealth process and the risk-neutral martingale measure in terms of the elicited
semilinear PDE. On a fundamental perspective, as our approach is largely de-
pendend on these hypotheses, it cannot be extended to other specifications.
In fact, it is not clear how to simplify the HJB equation in the presence of
more factors (such as a stochastic volatility) and to obtain easy-to-use filtering
equations in the presence of nonlinear dynamics (such as a CEV model). The
same remarks hold true in the more complicated case of a Lévy model.

Nevertheless, to obtain a more satisfactory model for empirical applica-
tions, further extensions would be necessary. For example, time-dependent
parameters would surely more precisely describe the time-inhomogeneity of
the series and stochastic interest rates could also be considered.
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B.1. Optimal Strategies

In this Section, we derive, from (3.31), optimal strategies in the case of full and
partial information. Eventually, this will allow to quantity two crucial terms:
the hedging demand and the precautionary demand for uncertainty.

To motivate this, we note that, under logarithmic utility, direct substitution
of m for θ in (3.29) does not change the formula for the optimal portfolio:

φ̂log
t = A (x) ΣS∗ (µt − ϑt)

This does not hold true for CRRA (q < 1, q 6= 0) and CARA (q = 1) utilities
as learning affects strategies via the covariance matrices Φ and Υ, cf. (3.17).

B.1.1 Full Information Case

This corresponds to the case of a F−financial market.

Proposition B.1.1 For a F−financial market and q 6 1, q 6= 0, we have:

φ̂F
t = A (x) ΣS∗ {µt − θt

(
1m − 2ΨθSat

)
+ ΨθSbt

}
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It one wants to compare the optimal strategy when q 6 1, q 6= 0 from the
myopic case q = 0, one notes from (3.31) that:

φ̂F
t = φ̂log

t +A (x) ΣS∗ΨθSvθ (t, µ− θ)

where the first term (µt − θt) (in φ̂log
t ) is the (traditional) myopic mean-

variance term while the second (new) term ΨθSvθ (t, µ− θ) represents the
hedging demand against fluctuations in the market price of risk.

To complete the picture, the ordinary differential equations (at, bt, ct), t ∈
[0, T ], given in Lemma 3.3.3, (3.24), are specialized using the notation (3.17):

dat

dt
= 2atζ

θ
1at + 2ζθ

2at +
q

2
ΣS∗

dbt
dt

= 2atζ
θ
1bt + ζθ

2bt + 2ζθ
3at − qΣS∗µ (B.1)

dct
dt

=
1
2
btζ

θ
1bt + ζθ

3bt − Tr(ζθ
4at) +

q

2
Tr(ΣS∗µ2)

where:
ζθ
1 = qΨθSΣS∗ΨθS − ζθ

4 , ζ
θ
2 = Λ− qΨθSΣS∗

ζθ
3 = qΨθSΣS∗µ− Λ∆, ζθ

4 = Σθ + Ωθ

Remark B.1.2 When q = 0, (a, b) are given by (3.25) and c satisfies:

dct
dt

= −Λ∆bt − Tr(ζθ
4at)−

1
2
Tr(ΣS∗µ2)

B.1.2 Partial Information Case

By following the same line of arguments, one should yield similar results for a
G−financial market. Nevertheless, we are here interested in a slightly different
question: How one can pass from solutions of a F−financial market to those of a
G−financial market? This will aim to study the impact of partial information.

We begin by presenting the proof of Lemma 3.3.6 that we recall here:

Lemma B.1.3 The following identities, for q 6 1, q 6= 0, hold:

at = (1m − 2γtat)
∗
at

bt = (1m − 2γtat)
∗
bt
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Proof. Let Dt = 1m − 2γtat. By direct computation, we have:

dat

dt
= D∗

t

[
dat

dt
+ 2at

dγt

dt
at

]
D∗

t

= D∗
t [2at{ζθ

1 +
·
γt}at + 2ζθ

2at + q/2ΣS∗]D∗
t (B.2)

We proceed by computing each term in (B.2). The third one gives:

D∗
t

{
q/2ΣS∗}D∗

t

= D∗
t

{
q/2ΣS∗ (1 +D2

t −D2
t

)}
D∗

t

= D∗
t

{
q/2ΣS∗ (1−D2

t

)}
D∗

t + q/2ΣS∗

= D∗
t

{
2qΣS∗γt (1− γtat) at

}
D∗

t + q/2ΣS∗ ∆= T3

Noting that ζθ
2 −Dtζ

m
2 = 2γtζ

m
2 at − qγtΣS∗, the second term reads as:

D∗
t {2ζθ

2at}D∗
t

= D∗
t {2(ζθ

2 −Dtζ
m
2 )at +Dt2ζm

2 at}D∗
t

= D∗
t {2(2γtζ

m
2 at − qγtΣS∗)at}+ 2ζm

2 atD
∗
t

∆= T2

and similarly as ζθ
1 +

·
γt − ζm

1 = −2γtζ
m
2 + qγtΣs∗γt, the first term yields:

D∗
t {2at(ζθ

1 +
·
γt)at}D∗

t

= D∗
t {2at(ζθ

1 +
·
γt − ζm

1 )at + 2atζ
m
1 )at}D∗

t

= D∗
t {2at(−2γtζ

m
2 + qγtΣs∗γt)at}D∗

t +D∗
t atζ

m
1 atD

∗
t

∆= T1

Hence, we conclude:

T1 + T2 + T3 = 2D∗
t atζ

m
1 atD

∗
t + 2ζm

2 atD
∗
t + q/2ΣS∗ =

dat

dt

The same calculations hold for bt which conclude the proof.

We can now state the G−optimal investment policy.

Proposition B.1.4 For a G−financial market and q 6 1, q 6= 0, we have:

φ̂G
t = A (x) ΣS∗ {µt −mt

(
1m − 2

(
ΨθS − γt

)
at

)
+
(
ΨθS − γt

)
bt
}

or using Lemma 3.3.6 and noting Dt = 1− 2γtat :

φ̂G
t = A (x) ΣS∗ {µt − (mt + γtbt)D∗

t

(
1m − 2ΨθSat

)
+ ΨθSbt

}
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Proof. The proof can be done by a direct substitution of Lemma 3.3.6.

This proposition allows then to separate the optimal investment strategy
between a (traditional) myopic part which does not take into account the effect
of learning and which is essentially equal to the one under full information when
θ is replaced by its conditional version m, i.e. the mean-variance term, and a
(new) precautionary part for uncertainty. So:

φ̂G
t = A (x) ΣS∗ {µt −mt

(
1m − 2ΨθSat

)
+ ΨθSbt − φh

t

}
where φh

t represents the precautionary term:

φh
t = (2mtat + bt)D∗

t γt

(
1m − 2ΨθSat

)
Remark B.1.5 When q = 0, as at = at and bt = bt, we have:

uG (t, x,m) = U (x) + (mᵀ
t atmt + bᵀtmt + ct)

where (a, b) are given by (3.25) and c satisfies:

dct
dt

= −Λ∆bt − Tr(ζm
4 at)−

1
2
Tr(ΣS∗µ̃2)

B.2. Optimal Terminal Wealth

Relying on (3.18) for the solution of the primal problem, we can state the
solution of the dual one via by resorting to arguments from duality theory, cf.
Kramkov and Schachermayer (1999) [107] or Owen (2002) [135]. To this end,
the conjugate Ũ (·) of the utility function U (·) satisfies:

Ũ (z) = sup
x∈dom(U)

(U (x)− xz) , z > 0 (B.3)

For the three considered utility functions (3.15), Ũ : R+ → R is given by:

Ũ (z) =

 −zq/q
(z/a) (log (z/a)− 1)

− (1 + log z)
,

power
exponential
logarithmic

(B.4)

and the dual value function of (3.14) is defined by:

ũ (t, z, y) = inf
Q∈M(H)

EP

[
Ũ

(
z
dQ

dP

)
|ϑt = y

]
(B.5)

where M (H) is the set of equivalent martingale measures defined as:

M (H) = {Q ∼ P | S is a (Q,H)− local martingale}
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where H = {F ,G} depending on the informational type of the considered
financial market (F or G), with density processes dQ/dP |Ht = Mt, t ∈ [0, T ].
The following result is a ramification of Proposition 3.3.1.

Proposition B.2.1 The dual value function ũ (t, z, y) is given by:

ũ (t, z, y) =


Ũ (z) exp (v (t, y))(1−q)

Ũ (z)− (z/a) v (t, y)
Ũ (z) + v (t, y)

,
q < 1, q 6= 0

q = 1
q = 0

(B.6)

Proof. From duality theory, we know that the dual value function is the
convex conjugate of the primal value function, so:

ũ (t, z, y) = sup
x∈dom(U)

(u (t, x, y)− xz) , z > 0 (B.7)

In particular, if x∗ attains the supremum in (B.7), then ux (t, x∗, y) = z. Re-
sorting now to the solution of the primal problem (3.18), it follows:

z =
{
U

′
(x∗) exp (v (t, y))
U ′ (x∗) + v (t, y)

,
q 6 1, q 6= 0

q = 0

Or, equivalently:

x∗ =
{
I (z/v (t, y))
I (z − v (t, y))

,
q 6 1, q 6= 0

q = 0

where I (·) = (U
′
(·))−1. Inserting x∗ into (B.7) and using the identity Ũ (z) =

U (I (z))− zI (z), yields:

ũ (t, z, y) =
{
Ũ (z/ exp (v (t, y))) exp (v (t, y))

Ũ (z) + v (t, y)
,
q 6 1, q 6= 0

q = 0

Eventually, the specific form of Ũ , cf. (B.4), yields the desired result.

For all t ∈ [0, T ] and y ∈ Rm, consider:

ψt ≡ ψ (t, y) =
{

ΣS∗{(µt − y) + Φvy (t, y)}
ΣS∗ (µt − y)

,
q 6 1, q 6= 0

q = 0

Then, the optimal portfolio process φ̂t = φ̂(t, X̂t, ϑt) is given by:

φ̂t = A(X̂t)ψt
∆= A(X̂t)ψ (t, ϑt) , ϑ = {θ,m} (B.8)

We are now in position to characterize the optimal terminal wealth.
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Lemma B.2.2 The optimal terminal wealth is given by:

X̂T =


x exp

{
q

(∫ T

0
ψtdRt −

q

2
∫ T

0
ΣSψtΣSψᵀ

t dt

)}
x+

1
a

∫ T

0
ψtdRt

exp
(∫ T

0
ψtdRt

) ,
q < 1, q 6= 0

q = 1
q = 0

(B.9)
with q = 1− q.

Proof. From (3.10) and (B.8), we have:

d(X̂t) = A(X̂t)ψtdRt

where we have used the relation dRt = dSt/St = (µt − ϑt) dt + σSdW
ϑ
t , with

the notation (3.11). The Arrow-Pratt risk-aversion is given by:

A (x) =
{
xq

1/a
,
q < 1, q = 0

q = 1
with q =

{
1− q

1
,
q < 1, q 6= 0

q = 0

Hence, for q < 1, q = 0, by using Itô’s formula, it follows:

log(XT ) = log(X0) + q

(∫ T

0

ψtdRt −
q

2

∫ T

0

ψtψ
ᵀ
t d [R]t

)

which is the desired result since d [R]t = ΣSΣSdt. When q = 1, we have:

XT = X0 +
1
a

∫ T

0

ψtdRt

from which we conclude the proof.

Remark B.2.3 The formula (B.9) holds true for both F and G financial mar-
kets. To specialize the result for each one, we can rely on Proposition B.1.1
for the case of full information and Proposition B.1.4 for the case of partial
information. These propositions also allow to pass from ψF to ψG, thus proving
the existing link between the terminal optimal wealths X̂F

T and X̂G
T .

To complete the picture, we compute the likelihood ratio of the dual mar-
tingale measure optimizer of problem (B.5). To do so, we rely on the classical
relation between the dual optimizer and the optimal terminal wealth:

X̂T = I

(
z
dQ̂

dP

)
, z > 0 (B.10)
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where I (·) = (U
′
(·))−1 is given by:

I (z) =

 z−(1−q)

− log (z/a) /a
1/z

,
power

exponential
logarithmic

and z is related to the initial wealth x by z = ux (0, x, y) or x = −ũz (0, z, y).

Lemma B.2.4 The Radon-Nikodym derivative of the dual optimizer satisfies:

log
dQ̂

dP
=


−v (0, y)−

∫ T

0
ψtdRt +

1− q

2
∫ T

0
ΣSψtΣSψᵀ

t dt

−1
a
v (0, y)− 1

a

∫ T

0
ψtdRt

−
∫ T

0
ψtdRt

,
q < 1, q 6= 0

q = 1
q = 0

(B.11)

Proof. We demonstrate the result for q < 1, q 6= 0 (power utility). The
proofs for other preferences follow the same lines of reasoning. Using (B.6)
and as x = −ũz (0, z, y), we have x = z−(1−q) exp (−v (0, y))−(1−q), so that
(B.9) becomes:

X̂T = z−(1−q) exp

{
−v (0, y)−

∫ T

0

ψtdRt +
1− q

2

∫ T

0

ψtψ
ᵀ
t d [R]t

}−(1−q)

which is equal to (B.10) since I (z) = z−(1−q).

Remark B.2.5 As for the terminal optimal wealth, the Radon-Nikodym deriva-
tive (B.11) holds true for both F and G financial markets. The specialization
for each one is ensured by ψF and ψG and rely on Propositions B.1.1 and B.1.4.

B.3. Practical Considerations

In this Section, we present some computations and considerations which are
related to the application presented in Section 3.5.

B.3.1 Expressions for Filters

To cast previous notation, we note:

ΣS = σ2, Σθ + Ωθ = ω2, ΨθS = ρσω, µ̃ = µ− r

Then, the filter equations are given by:

dmt = λ (δ −mt) dt+ (ρσω − γt) ξ2 (dRt − (µ−mt) dt) , m0 ∈ R (B.12)
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dγt

dt
= ω2 − 2λγt − ξ2 (ρσω − γt)

2
, γ0 = 0 (B.13)

where ξ = σ∗.

We obtain mt as the solution of (B.12). Letting:

Φ (t) = exp
(
−λt−

∫ t

0

υsds

)
, Φ (0) = 1

then, mt is determined, for t ∈ [0, T ], cf. Kloeden and Platen (1999) [105], via:

m (t) = Φt

[
m0 +

∫ t

0

Φ∗sυs

(
dYs − (µ− 1

2
σ2)ds

)
+ λδ

∫ t

0

Φ∗sds
]

(B.14)

with υs = ρξω − ξ2γs. Also, γt, cf. (B.13), has an explicit solution which is:

γ (t) =
γ2

ξ2
exp (2γ2t)− γ3

exp (2γ2t) + γ3
− γ1

ξ2
(B.15)

where:

γ1 = λ− ρξω, γ2 =
√
λ2 + ω2ξ2 − 2λρξω, γ3 =

γ2 − γ1

γ2 + γ1
(B.16)

We also note that Φt can be written in the more convenient form:

Φ (t) =
(1 + γ3) exp (γ2t)
exp (2γ2t) + γ3

, t ∈ [0, T ]

B.3.2 Solutions for ODE’s

Expressions for (a, b, c)

For the case of full information, from (B.1), ODE’s (a, b, c) satisfy:

• q 6 1, q 6= 0 :

·
at = 2ω2

(
qρ2 − 1

)
a2

t + 2 (λ− qρξω) at +
q

2
ξ2

·
bt = 2ω2

(
qρ2 − 1

)
atbt + (λ− qρξω) bt + 2 (qρξωµ̃− λδ) at − qξ2µ̃

·
ct =

1
2
ω2
(
qρ2 − 1

)
b2t + (qρξωµ̃− λδ) bt − (ρσω) at +

q

2
ξ2µ̃2

• q = 0 :

·
at = 2λat −

1
2
ξ2,

·
bt = λbt − 2λδat + ξ2µ̃,

·
ct = −λδbt − ω2at −

1
2
ξ2µ̃2
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Also, the equations (ecr, eca, f, g) satisfy:

·
e
cr

t = −1− q

2
ξ2 (1− 2ρσωat)

2 + 4ate
1ecr

t + 2e2ecr
t − 2ecr

t e
1ecr

t

·
e
ca

t = −1
2
ξ2 (1− 2ρσωat)

2 + 4ate
1eca

t + 2e2eca
t

with:
e1 = −ω2

(
1− ρ2

)
, e2 = λ− ρξω

and:
·
f t = −ω2

(
1− ρ2

)
et,

·
gt =

1
2
ξ2γt

Case q 6 1, q 6= 0

Subsequently, we give more insights on Lemma 3.5.1.

Function a Another representation for at is given by:

a (t) =
a2

a3
tanh (a2 (T − t) + ã4) +

a1

a3

with:

ã4 =
1
2

log
(
a2 − a1

a2 + a1

)
Then, we note that a2 > a1 as long as qρ2 < 1. Thus, for the case q < 1, q 6= 0,
we apply the modification:

q =
{

1− a
a/ (a− 1) ,

a ∈ (0, 1)
a ∈ (−∞, 0)

Therefore, a2 > |a1| and thus ã4 is well defined for all choices of the parameters.
Also, as a

′

t < 0 for all t ∈ [0, T ] and a (T ) = 0, at is non-negative and mono-
tonically non-increasing. It is then clear that bt and ct will be non-positive
and monotonically non-decreasing since b (T ) = 0 and c (T ) = 0.

Remark B.3.1 In the case q = 0, the same analysis can be conducted for
functions (a, b, c) and the conclusions are similar.

Function b We begin with three results useful in computations.

Lemma B.3.2 For u ∈ [t, s], let As
t = exp

(
−a1 (s− t) + a3

∫ s

t
audu

)
, then:

As
t = exp (a2 (t− s))

exp (2a2 (T − t)) + a4

exp (2a2 (T − s)) + a4
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Lemma B.3.3 For t ∈ [0, T ], let A2 (t) =
∫ T

t
As

tds, then:

A2 (t) =
exp (a2 (t− T ))

a2
√
a4

(n (0, 0)− n (t, T )) (a4 + exp (2a2 (T − t)))

with:
n (x, y) ∆= arctan (

√
a4 exp (a2 (x− y)))

Lemma B.3.4 For t ∈ [0, T ], let A1 (t) =
∫ T

t
As

tasds, then:

A1 (t) =
exp (a2 (3T − t)) + a4 exp (a2 (T + t))

d (T, T )
− exp (2a2T ) + a4 exp (2a2t)

d (t, T )

+
a1 (n (0, 0)− n (t, T ))

a2a3

(
exp (a2 (T − t))

√
a4

+ exp (a2 (t− T ))
√
a4

)
with:

d (x, y) ∆= a3 (a4 exp (2a2x) + exp (2a2y))

With the help of the previous lemmas, we can now derive an explicit solu-
tion for bt. For t ∈ [0, T ], we have:

b (t) = 2a5A1 (t)− qξ2µ̃A2 (t)

Expressions for
(
a, b, c

)
To complete the picture, for the case of partial information from (3.27), we
have when q 6 1, q 6= 0:

·
at = 2 (q − 1) Υma2

t + 2 (λ− Λm) at +
q

2
ξ2

·
bt = 2 (q − 1) Υmatbt + (λ− Λm) bt + 2 (Λmµ̃− λδ) at − qξ2µ̃

·
ct =

1
2

(q − 1) Υmb
2

t + (Λmµ̃− λδ) bt −Υmat +
q

2
ξ2µ̃2

with:
Υm = (ρσω − γt)

2
ξ2, Λm = q (ρσω − γt) ξ2

while when q = 0, (a, b) are invariant and we have:

·
ct = −λδbt −Υmat −

1
2
ξ2µ̃2

Nevertheless, solutions for
(
a, b, c

)
cannot be derived as easily as for (a, b, c).

Thus, we use the identities elicited in Lemmas 3.3.6, 3.4.2 and 3.4.5.
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Lemma B.3.5 The equations
(
a, b, c

)
satisfy:

at / bt =
{
D∗

t at / D
∗
t bt

at / bt
,
q 6 1, q 6= 0

q = 0

and:

ct − ct − dt =


q

q−1

(
1
2 log (1 + 2D∗

t γte
cr
t ) + ft

)
D∗

t γte
ca
t + ft

ct + γtat + gt

,
q < 1, q 6= 0

q = 1
q = 0

with Dt = 1m − 2γtat and dt = 1
2

(
D∗

t γtb
2
t − logDt

)
.



86 Contents



4

Optimal Policies from Discrete Prices

Agenda

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2 Model and Assumptions . . . . . . . . . . . . . . . . . . . . . . 90

4.2.1 The Economy . . . . . . . . . . . . . . . . . . . . . . . . 90
4.2.2 The Information Structure . . . . . . . . . . . . . . . . 91
4.2.3 The Optimization Problem . . . . . . . . . . . . . . . . 94

4.3 Optimization Results . . . . . . . . . . . . . . . . . . . . . . . . 97
4.3.1 Extension of Clark Formula . . . . . . . . . . . . . . . . 97
4.3.2 The General Result . . . . . . . . . . . . . . . . . . . . 98
4.3.3 The Optimal Strategy . . . . . . . . . . . . . . . . . . . 100
4.3.4 Options Hedging . . . . . . . . . . . . . . . . . . . . . . 102

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104



88 4 Optimal Policies from Discrete Prices

Abstract. We study the questions of optimal portfolios and
hedging strategies in a market where the asset log-price Y follows
a diffusion model whose coefficients are unobservable and are given
in terms of a Markov process θ. This leads naturally to a partial
information setup, where the strategies are measurable w.r.t. the
observations. Nevertheless, the proposed framework departs from
the usual one as the stock price is observed only discretely at ran-
dom times (τn)n>1. While quite natural, these hypotheses lead to
special optimization and filtering approaches. In the above set-
ting, the investor problem can be approached by considering that
the wealth process is subject to shocks produced by a multivariate
point process given by the observations (τn,∆Yτn

)n>1. And from
a filtering perspective, the optimal filter for θ based on these point
observations requires a thorough treatment. Eventually, by resort-
ing to the martingale approach of the stochastic control problem
through duality and use of Malliavin calculus for random measures,
we fully characterize the investment policy process. To this end, we
derive an extension of Clark’s formula for random measures under
an equivalent change of measure. As examples, optimal portfolios
are given for power, logarithmic and exponential utility functions
and hedging strategies for contingent claims will be derived.

4.1. Introduction

Understanding the joint dynamics of the stock price and of the investment
policy processes is of paramount importance. In fact, the increasing avail-
ability of high frequency data allows investors to analyze how the complex
interactions among various market participants affect investment decisions.
Empirical researchers, however, face challenges when analyzing irregularly and
frequently-sampled data, cf. Ait-Sahalia and Mykland (2004) [4]. From a sta-
tistical perspective, tools employed in time-series analysis are not well-suited
while the lack of a theoretical framework applicable to utility maximization
under transaction level data is more serious. The present work attempts to
reconcile continuous-time modeling and discrete-time observations in tackling
the utility maximization problem.

This objective will be meet by putting two hypotheses. First, we propose a
continuous-time model of stock prices where the coefficients - drift, volatility,
jumps times and sizes - of the asset log-price Y are unobservable and driven
by a strong Markov process θ. Under this setting, θ represents the latent
market factors that affect Y and that are not captured by its modeling, cf.
Runggaldier (2004) [146]. This difference matters as while the randomness
generated by Y captures the systematic risk attached to the asset price, the
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random shocks induced by θ represent the idiosyncratic risk that cannot be
perfectly hedged. Second, as in Frey and Runggaldier (2001) [71], we suppose
that the vector of stock prices is observed only discretely at random times
(τn)n>1. This assumption is prompted so as to reflect the discrete nature of
high-frequency data, see Andersen et al. (2003) [6].

From now on, we note that the present paper is in sharp contrast to most of
the previous litterature. The optimization problem with full information goes
back to Merton (1971) [126] who solved the question via the Bellman equa-
tion of dynamic programming. For the case of complete markets, a rigorous
mathematical treatment is presented in Karatzas et al. (1987) [98]. Models
with incomplete information have been investigated by Detemple (1986) [48]
or Lakner (1995, 1998) [122], [111] who solved the optimization problem via
a martingale approach, provided characterization of optimal strategy via the
Malliavin calculus on the Wiener space and worked out the special case of
the linear Gaussian model. Under this framework, partially observable market
models are only uncertain in the growth rate which is altered by shocks whose
magnitude cannot be distinguished from other sources of randomness, as deeply
investigated by Pham and Quenez (2001) [139]. The key mathematical tool
of this approach is the Girsanov theorem for semimartingales (cf. Jacod and
Shiryaev, 2003 [93]) which allows to perform absolutely continuous changes of
measures, thus avoiding learning in the volatility or jump components of the
stock price process, cf. Jeanblanc, Lacoste and Roland (2005) [95] for more
details on this approach.

While quite natural, the previous hypotheses lead to non standard opti-
mization and filtering approaches. In the above setting, the investor prob-
lem can be approached by considering that the wealth process is subject to
shocks produced by a multivariate point process given by the observations
(τn,∆Yτn

)n>1. From a financial perspective, this implies that the market be-
comes incomplete. Moreover, the optimal filter for θ based on these point
observations is out of the scope of classical filtering techniques, cf. Liptser
and Shiryaev (2001) [118], and has to be solved as a non-linear filtering prob-
lem. To this end, we prove a Kallianpur-Striebel type equation for both the
normalized and unnormalized filters.

As the market we consider is incomplete, we follow the common approach
used in derivative pricing or hedging to base the prices or hedges on a mini-
mal distance martingale measure, as proposed by Delbaen and Schachermayer
(1996) [44]. Further, Kramkov and Schachermayer (1999) [107] show that an
optimal portfolio can be expressed by the solution of a dual variational problem
which is related to those of finding a minimal distance martingale measure. In
the present paper, we exploit this martingale technique of portfolio optimiza-
tion to derive explicit representations of the investment policy and hedging
strategy processes in terms of stochastic integrals and Malliavin derivatives
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for random measures, following a version of this calculus introduced and de-
velopped by Lokka (2003) [121]. Central in obtaining such formulae is an
extension of the Clark-Ocone-Haussmann formula (Clark formula henceforth),
Clark (1970) [30], Ocone (1984) [133], Haussmann (1979) [87], for random mea-
sures. Moreover, in the context of portfolio optimization problems, we have
to look at the Clark formula under an equivalent change of measure. This
derivation has previously been done by Ocone and Karatzas (1991) [134] for
Itô processes. In this paper, we derive such a formula for random measures.
As examples, we provide solutions of the Girsanov quantities appearing in the
determination of the minimal distance martingale measures for the three more
standard utility functions: power, logarithmic and exponential.

The remainder of this paper is organized as follows. Section 2 states the
framework and gives some preliminary results on information structure, mar-
tingales measures and portfolio optimization. Section 3 provides the filtering
setup in a multivariate point process framework and detail the filter equations
attached with it. Section 4 then gives our main results which are the exten-
sion of Clark formula and the derivations of investment policy and hedging
strategy processes. Special attention will be given to the three standard utility
fonctions and quadratic hedging of Asian options will be considered as a case
study. We conclude in Section 5.

4.2. Model and Assumptions

4.2.1 The Economy

On the filtered probability space
(
Ω,F = (Ft)t∈[0,T ] , P

)
- all stochastic pro-

cesses being (Ft)t>0−adapted, we consider, on [0, T ] with T ∈ (0,∞), a finan-
cial market consisting of two assets. The riskless security reads:

Bt = exp
(∫ t

0

rsds

)
where (rt, t ∈ [0, T ]) is a uniformly bounded process. The risky asset satisfies:

S̄t = S̄0e
Ȳt , S̄0 ∈ R+ (4.1)

with Ȳt of the form:

Ȳt =
∫ t

0

(
b (u, θu)− 1

2
σ2 (u, θu)

)
du+

∫ t

0

σ (u, θu) dWu (4.2)

where (θt, t ∈ [0, T ]) stands for an economic factor process, which is in general
not observable. W is a standard Brownian motion, while b and σ are bounded
and continuous functions on R+ × R with values in R and R+ respectively.
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From this setup, the filtration F will denote the model information, i.e.:
the filtration on which are defined all the stochastic processes.

4.2.2 The Information Structure

We now consider the situation where the agent has not access to the filtration
F but only observes the risky price S̄. This is the classical partial information
framework, as studied by Detemple (1986) [48] or Lakner (1995, 1998) [122],
[111]. Furthermore, we depart from this setup by considering as in Frey and
Runggaldier (2001) [71] that the prices S̄ are only available at random times
(τn)n>1. As F S̄ = F Ȳ , we will denote by (G (n))n>1 the market filtration:

G (n) =
(
σ
(
τk,∆Ȳτk

)
, τk 6 τn

)
where ∆Ȳτn

= Ȳτk
− Ȳτk−1 . The observations process

(
τn,∆Ȳτn

)
n>1

is a multi-
variate marked point process, cf. Proposition 4.2.2, with the counting measure:

µ (dt, dy) =
∑
n>1

δ{τn,∆Ȳτn} (dt, dy)

From this, we introduce the continuous counterpart of (G (n))n>1, say:

Gt = σ (µ ([0, s] ,X ) , s 6 t,X ∈ B (R))

and we note that Gτn
= G (n) for any n > 1. Besides, we shall consider the

filtration Fθ
t = σ (θs, s 6 t) generated by the state variable θ as well as:

Ht = Fθ
t ∨ Gt

As only the filtration G is available, θ is not observable. Therefore, we
introduce the G−conditional density of the random variable θ by:

πt (f) = EP [f (θt) |Gt]

for any R−valued measurable function f s.t. EP [|f (θt)|] <∞.

Remark 4.2.1 In Appendix C.1, we present a possible parameterization for
the economic factor process θ. And in Appendix C.1.2, we derive the semi-
martingale representation of π for this setup. This is of some interest if one
is willing to handle the numerical/statistical part of the problem.
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Observations Process

Let (Nt, t ∈ [0, T ]) be the counting process with interarrival times (τn − τn−1)n>1

with τ0 = 0. We suppose that Nt admits an Ht−measurable intensity λ (t, θt)
being a bounded and non-negative function. Let:

Nt =
∑
n>1

1{τn6t}

and note that Gt = G (Nt). We then define the discrete log asset price by:

Yt
∆= ȲτNt

(4.3)

Suppose now that the process N jumps at t. By (4.3), Y has a jump of size
Ȳt− ȲτNt−

. Then, by (4.2), we know that, conditionally on Ht, this quantity is

normally distributed with mean b̂t ≡ b̂
(
τNt− , t

)
and variance σ̂2

t ≡ σ̂2
(
τNt− , t

)
,

what we note φt (dx) ≡ φτNt− ,t (dx) ≡ φ
(
b̂t, σ̂

2
t ; dx

)
, where:

b̂ (s, t) =
∫ t

s

(
b (u, θu)− 1

2
σ2 (u, θu)

)
du, σ̂2 (s, t) =

∫ t

s

σ2 (u, θu) du

We now define in a more concise way the observations process
(
τn,∆Ȳτn

)
n>1

.
Following Brémaud (1981) [20], it can be viewed as a multivariate point pro-
cess.

Proposition 4.2.2 Denote by µ the integer valued random measure associated
to the observations

(
τn,∆Ȳτn

)
n>1

, s.t. ∀t ∈ [0, T ]:

µ (dt, dy) =
∑
n>1

δ{τn,∆Ȳτn} (dt, dy)

Also, the (P,Ht)−predictable compensator of µ is given by:

νP
H (dt, dy) = λt (θt)φt (dy) dt

where φt (dy) is the mark of the marked point process and λt (θt) = λ (t, θt−)
is the (P,Ht)− intensity of the point process Nt.

From these, we recast (4.3) in the line of (4.1), say St = S0e
Yt , so that:

St = S0 +
∫ t

0

Su−

∫
X

(ex − 1)µ (du, dx) (4.4)
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G−Characteristics

The joint distribution of
(
τn+1, Ȳτn+1

)
, given Fθ

t ∨G (n) with τn+1 < t, writes:

P
(
τn+1 6 t, Ȳτn+1 6 y|Fθ

t ∨ G (n)
)

=
(
1− e−Λn(t)

)
In (y) (4.5)

with:

Λn (t) =
∫ t

τn

λs (θs) ds, In (x) =
∫ x

−∞
φτn,t (z − Yτn) dz

We introduce:

ψn (f ; t, x) = EP
[
f (θt) e−Λn(t)φτn,t (x− Yτn

) |Fθ
τn

]
ψn (f ; t) =

∫
R
ψn (f ; t, x) dx = EP

[
f (θt) e−Λn(t)|Fθ

τn

]
Lemma 4.2.3 The (P,G)−compensator of µ is given by:

νP
G (dt, dy) ∆= γ (λ; t, y) dtdy =

∑
n>0

1]τn,τn+1] (t)
πτn (ψn (λ; t, y))
πτn

(
ψn (λ; t)

) dtdy
where πt (f) = EP [f (θt) |Gt], cf. Section C.1.1.

Proof. Owing to (4.5), the regular conditional distribution of
(
τn+1, Ȳτn+1

)
given

G (n), say Gn (t, y) = 1
dt

1
dyP

(
τn+1 6 t, Ȳτn+1 6 y|G (n)

)
is an increasing func-

tion. From Proposition 3.4.1 of Lipster and Shiryaev (2001) [117], we have:

νP
G (dt, dy) =

∑
n>0

1]τn,τn+1] (t)
Gn (dt, dy)
Gn ([t,∞),R)

from which the desired result follows.

We then have the following characterization.

Proposition 4.2.4 Under the condition:∫ T

0

∫
X

(ex − 1)2 νP
G (dt, dx) <∞, P − a.s.

S is a (P,G)−semimartingale with decomposition St = S0 +Mt +At where:

At =
∫ t

0

∫
X
Su− (ex − 1) νP

G (du, dx)

is a predictable process with bounded variation and:

Mt =
∫ t

0

∫
X
Su− (ex − 1)

(
µ (du, dx)− νP

G (du, dx)
)

is a locally square integrable local martingale.

Remark 4.2.5 Equivalently, we may write dSt = St−
∫
X (ex − 1)µ (dt, dx).
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4.2.3 The Optimization Problem

Since the agent has only access to the filtration G, we modify the classical
definition by restricting our attention to strategies (δt, t ∈ [0, T ]) adapted to
the filtration G. Then, the wealth process reads:

dXδ
t =

(
Xδ

t − δt
)
rtdt+ δt

dSt

St−
, Xδ

0 = x0 ∈ R+

and the class of admissible policies is given by:

A (x)=
{
δ : [0, T ]× Ω → R,∃K > −∞,∀t, P (Xδ

t > K) = 1, Xδ
0 = x

}
In the following, let βt = B−1

t = exp
(
−
∫ t

0
rsds

)
.

Definition 4.2.6 A self-financing strategy (δt, t ∈ [0, T ]) is called (Q,G)− ad-
missible - for a probability measure Q ∼ P - if it is a G−predictable process
and if the discounted wealth βtX

δ
t is a (Q,G)−martingale.

Optimzing Terminal Wealth

A fonction U : R→ R will be called a utility function if it is strictly increasing,
strictly concave, of class C2 and satisfies:

U
′ (

0+
)

= ∞, U
′
(∞) = 0 (4.6)

and has reasonable asymptotic elasticity:

AE0+ (U) ∆= lim inf
x→0+

xU
′
(x)

U (x)
> 1, AE+∞ (U) ∆= lim inf

x→∞

xU
′
(x)

U (x)
< 1 (4.7)

The optimization problem the investor faces is then as follows.

Definition 4.2.7 Let U be a utility function. Determine:

u (x) = sup
δ∈A(x)

EP
[
U
(
Xδ

T

)]
(4.8)

and find δ̂ which satisfies u (x) = EP [U(Xbδ
T )]. Then we call δ̂ the optimal

investment strategy and X̂ = X(δ̂) the optimal wealth process.

Associated Dual Problem

From Kramkov and Schachermayer (1999) [107], we know that a solution to
problem (4.8) relies upon solving the dual optimization problem:
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Definition 4.2.8 The dual version of the primal problem (4.8) writes:

v (y) = inf
Q∈Q

EP

[
V

(
y
dQ

dP

)]
, y > 0 (4.9)

with V (y) the conjugate version of the utility function U (x) given by:

V (y) = sup
x∈R+

[U (x)− xy] , y > 0

and Q the set of equivalent martingale measures:

Q =
{
Q ∼ P : βtX

δ
t is a local (Q,G)−martingale

}
Martingale Measures

Let us state the following proposition.

Proposition 4.2.9 Let Ψ be a G−predictable, X−marked process, s.t.:∫ t

0

∫
X
|Ψu (x)| ν (dx) du <∞, P − a.s., t ∈ [0, T ]

When Ψu (x) > 0, P − a.s., the process:

Λt = 1 +
∫ t

0

∫
X

Λu− (Ψu (x)− 1)
(
µ (du, dx)− νP

G (du, dx)
)

(4.10)

is a strictly positive G−local martingale. Also, when EP [ΛT ] = 1 and:∫ t

0

∫
X

Ψu (x) νP
G (du, dx) <∞, P − a.s.

there exists a probability measure Q ∼ P with:

dQ

dP
|Gt = Λt

and the (Q,Gt)−compensator of µ is given by:

νQ
G (du, dx) = Ψu (x) νP

G (du, dx)

From this, we can now characterize the martingale condition for βtX
δ
t .

Proposition 4.2.10 The probability measure Q belongs to Q iff:∫
X

(ex − 1) Ψt (x) νP
G (dt, dx) = rt, P − a.s. (4.11)

and: ∫ T

0

∫
X

(ex − 1) Ψt (x) νP
G (dt, dx) <∞, P − a.s.
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Proof. Under Q, we have d
(
βtX

δ
t

)
= βtδt (dSt/St− − rtdt), so that:

dSt

St−
− rtdt =

∫
X

(ex − 1)
(
µ− νQ

G

)
(dt, dx)

+
∫
X

(ex − 1) Ψt (x) νP
G (dt, dx)− rtdt

Then, as from Proposition 4.2.4, S is a special P−semimartingale, then it is a
Q−local martingale under the above conditions.

By using the Itô’s formula, (4.10) can equivalently be written as the solution
of the exponential Doléans-Dade equation, say:

Λt = exp
(∫ t

0

∫
X

lnΨu (x)µ (du, dx)−
∫ t

0

∫
X

(Ψu (x)− 1) νP
G (du, dx)

)

Optimal Strategy

The following theorem, adapted to Owen (2002) [135], is central in the deriva-
tion of the optimal strategy. We note I (·) = (∂U (·))−1 and βt = B−1

t .

Theorem 4.2.11 Let U be a utility function satisfying (4.6) and (4.7). Then:

1. There exists a unique solution Qy to the dual problem (4.9),

2. There exists a unique number ŷ s.t. EQby

[βT I (ŷβT ΛT )] = x0,

3. The optimal terminal wealth is given by X̂δ
T = I (ŷβT ΛT ),

4. The optimal investment policy process is uniquely determined by:

βtX̂
δ
t = EQby

[
βT X̂

δ
T |Gt

]
= x0 +

∫ t

0

∫
X
βuδ̂u

dSu

Su−
(4.12)

where, under Qby:

dSu

Su−
=
∫
X

(ex − 1)
(
µ− νQby

G

)
(du, dx)

In general, the optimal martingale measure Qy depends on the parameter
ŷ, which therefore reads Qby. Nevertheless, to lighten the notation, we will omit
it in the following and write Qby ≡ Q and νQby

G ≡ νQ
G .
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4.3. Optimization Results

4.3.1 Extension of Clark Formula

Following Appendix C.2 which presents essential material on Malliavin calculus
for random measures, we recall the Clark-Ocone-Haussmann formula.

Theorem 4.3.1 (Lokka [121]) Let F ∈ L2 (P,GT ) ∩ D1,2, then:

F = EP [F ] +
∫ T

0

∫
X
EP [Dt,xF |Gt−]

(
µ− νP

G
)
(dt, dx)

where E [Dt,xF |Gt−] is the G−predictable projection of Dt,xF .

Our aim is now to represent Q−random variables as stochastic integrals
w.r.t. the compensated measure (µ− νQ

G ). Following lemma will be helpful.

Lemma 4.3.2 Let F ∈ L2 (P,GT ) ∩ D1,2, then:

Dt,x (ΛTF ) = ΛT

(
Dt,xF

∫
X

Ψt (x) ηt (dx) + F

∫
X

(Ψt (x)− 1) ηt (dx)
)

where ηt (dx) ∆= (µ− νQ
G ) (dt, dx).

Proof. By the chain rule (C.8), we have:

Dt,x (ΛTF ) = ΛT ·Dt,x (F ) + F ·Dt,x (ΛT ) +Dt,x (ΛT ) ·Dt,x (F )

Then, we get:

Dt,xΛT = ΛT

∫
X

(Ψt (x)− 1) ηt (dx)

which concludes the proof.

We now state our Clark’s formula extension result.

Theorem 4.3.3 Let F ∈ L2 (Q,Gt) ∩ D1,2, then ΛTF ∈ D1,2 and:

F = EP [ΛTF ] +
∫ T

0

∫
X
EQ [F |Gt−]

(
Ψ−1

t (x)− 1
)
(µ− νQ

G ) (dt, dx)

+
∫ T

0

∫
X

1
Λt
EQ [Dt,x (ΛTF ) |Gt−] (µ− νQ

G ) (dt, dx) (4.13)
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Proof. For a G−measurable random variable F and a G−martingale Λ given
by (4.10), the conditional version of the Bayes formula reads:

EQ [F |Gt] =
1
Λt
EP [ΛTF |Gt]

Applying Clark’s formula on ΛTF , cf. Theorem 4.3.1, yields:

EQ [F |Gt]
∆= Zt =

1
Λt
Ut = Λ−1

t Ut

with:

Ut = EP [ΛTF ] +
∫ t

0

∫
X
EP [Du,x (ΛTF ) |Fu−]

(
µ− νP

G
)
(du, dx)

d
(
Λ−1

t

)
= Λ−1

t−

∫
X

(
Ψ−1

t (x)− 1
)
(µ− νQ

G ) (dt, dx)

By Itô’s product rule, we get d (Zt) = Λ−1
t dUt +UtdΛ−1

t +d
[
U,Λ−1

]
t
, so that:

dZt = Λ−1
t

∫
X
EP [Dt,x (ΛTF ) |Ft−] (µ− νQ

G ) (dt, dx)

+ UtΛ−1
t−

∫
X

(
Ψ−1

t (x)− 1
)
(µ− νQ

G ) (dt, dx)

Then, integrating over [0, T ] and noting that:

ZT = EQ [F |GT ] = F

Z0 = EQ [F |G0] = EQ [F ]

yield the desired result.

4.3.2 The General Result

Consider a GT−measurable random variable B s.t.:

EQ [βTB] = EP [ΛTβTB] = x0

where x0 > 0. Furthermore, recalling notation from Section 4.2.3, we assume
that there exists a unique portfolio process δ ∈ A (x) s.t. the wealth process
Xδ satisfies Xδ

0 = x0 and Xδ
T = B, P−a.s. Then:

βtX
δ
t = EQ [βTB|Gt] (4.14)

This setup arises in the theory of hedging of contingent claims where B corre-
sponds to the payoff of a derivative (written on the underlying S) and so the
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portfolio Xδ is the one that attains the given level of wealth B. Using (4.12)
and if the martingale condition (4.11) is satisfied, then (4.14) reads:

EQ [βTB|Gt] = EP [ΛTβTB] +
∫ t

0

∫
X
βsδu (ex − 1) (µ− νQ

G ) (du, dx)

Then, we derive the hedging portfolio δ under partial information.

Proposition 4.3.4 We have:

δ̂t =
β−1

t∫
X (ex − 1) ηt (dx)

{∫
X
EQ [βTB|Gt−]

(
Ψ−1

t (x)− 1
)
ηt (dx) (4.15)

+
∫
X
EQ [Ψt (x)Dt,x (βTB) + (Ψt (x)− 1) (βTB) |Gt−] ηt (dx)

}

where ηt (dx) ∆= (µ− νQ
G ) (dt, dx).

Proof. We impose the conditions of Theorem 4.3.3 and let F ∆= βTB. Then,
we obtain the desired formula for δ̂ by identification with (4.13).

In (4.15), the first integral term may be viewed as a mean-variance one,
as in a continuous-time setting, while the second integral term accounts for
intertemporal hedging terms. It can be decomposed in two parts: the first
takes into account the variations in the discount factor, while the second comes
from variations in the risk-premia process.

Remark 4.3.5 Portfolio (4.15) is the hedging strategy for the contingent claim
B when prices are only observed at random times. As the market we consider
is incomplete, this result needs again to be specialized by a proper choice of the
equivalent martingale measure and so the elicitation of the Girsanov quantity
Ψ. This result can be connected to this of Frey and Runggaldier (2001) [71]
which deal with the same type of problem but under a different framework.
Special attention is given, in the litterature, on the existence of the minimal
entropy martingale measure, which is defined as follows:

H (Q|P ) = EP

[
dQ

dP
log

dQ

dP

]
, Q� P

so that, cf. Definitions 4.2.7 and 4.2.8:

sup
δ∈A(x)

EP
[
U
(
Xδ

T

)]
= − exp

(
− inf

Q∈Q
H (Q|P )

)
= − exp (−H (Q∗|P ))
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4.3.3 The Optimal Strategy

Proposition 4.3.4 is now specialized to the case where B = X̂δ
T , i.e.: optimal

wealth from expected terminal utility, thanks to Theorem 4.2.11.

Theorem 4.3.6 If ŷ is the unique number such that EQby

[βT I (ŷβT ΛT )] = x0,
then X̂δ

T = I (ŷβT ΛT ) and the optimal investment policy is given by:

δ̂byt =
β−1

t∫
X (ex − 1) ηt (dx)

{∫
X
EQ [βT I (ŷβT ΛT ) |Gt−]

(
Ψ−1

t (x)− 1
)
ηt (dx)

+
∫
X
EQ

[
Ψt (x)βT

(
IΨ

T (x)− I (ŷβT ΛT )
)
|Gt−

]
ηt (dx)

+
∫
X
EQ [(Ψt (x)− 1)βT I (ŷβT ΛT ) |Gt−] ηt (dx)

+
∫
X
EQ

[
IΨ

T (x)Dt,xβT |Gt−
]
ηt (dx)

}
(4.16)

where:

IΨ
T (x) = I

(
ŷβT ΛT + ŷΛT

(
〈Ψt (x)− 1〉ηt

βT + 〈Ψt (x)〉ηt
Dt,xβT

))
with:

〈g〉ηt
=
∫
X
g (x) ηt (dx)

Proof. From Proposition 4.3.4, let BT
∆= I (ŷβT ΛT ) and CT

∆= ŷβT ΛT .
Clearly B,C ∈ D1,2 and I is differentiable. By the chain rule (C.8):

Dt,x (βTBT ) = βT ·Dt,xI (CT ) + I (CT ) ·Dt,xβT +Dt,xI (CT ) ·Dt,xβT

and as:

Dt,xCT = ŷ (βT ·Dt,x (ΛT ) + ΛT ·Dt,x (βT ) +Dt,x (ΛT ) ·Dt,x (βT ))

= ŷΛT

(
〈Ψt (x)− 1〉ηt

βT + 〈Ψt (x)〉ηt
Dt,x (βT )

)
we get:

Dt,xI (CT ) = I
(
CT + ŷΛT

(
〈Ψt (x)− 1〉ηt

βT + 〈Ψt (x)〉ηt
Dt,xβT

))
− I (CT )

so that:
Dt,x (βTBT ) =

(
IΨ

T (x)− I (CT )
)
βT + IΨ

T (x)Dt,xβT

thus yielding the desired result.

We now make the assumption.
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Assumption 4.3.7 Let r follows the dynamics:

rt = r0 +
∫ t

0

∫
X
ruh (u, x)

(
µ− νP

G
)
(du, dx)

where h is a G−measurable, X−integrable function. Then, for t 6 u:

Dt,xru =
∫
X
rth (t, x) ηt (dx) +

∫ u

t

∫
X
Dt,xrsh (s, x) ηs (dx)

From this, we then have:

Dt,xβT = βT

(
e−

R T
t

Dt,xrudu − 1
)

Proposition 4.3.8 Under Assumption 4.3.7, (4.16) reads:

δ̂byt =
β−1

t∫
X (ex − 1) ηt (dx)

{∫
X
EQ [βT I (ŷβT ΛT ) |Gt−] Ψ−1

t (x) ηt (dx) (4.17)

+
∫
X
EQ

[
Ψt (x)βTIΨ

T (x)
(
e−

R T
t

Dt,xrudu − 1
)
|Gt−

]
ηt (dx)

}
where:

IΨ
T (x) = I

(
ŷβT ΛT + ŷΛT

(
〈Ψt (x)− 1〉ηt

βT + 〈Ψt (x)〉ηt

(
e−

R T
t

Dt,xrudu − 1
)))

The same interpretation than in (4.15) applies. The first integral term is
a traditional mean-variance one, while the second accounts of both the varia-
tions in the interest rate and risk-premia processes and may be interpreted as
hedging terms. Interestingly, this decomposition is of the same nature than in
the continuous-time setting, cf. Detemple et al. (2003) [49].

Remark 4.3.9 In the case of the three more standard utility functions: power,
logarithmic and exponential risk preferences, (4.17) can be specialized. Let:

U (x) =

 xp/p
lnx
−e−x

,
xεR+, pε (0, 1)
xεR+

xεR
, I (y) =

 yq

y−1

− ln y
,

yεR, q = p
p−1

yεR∗
yεR+

Then, direct replacements in (4.17) yields the desired investment policy. The
only thing that remains to be done is to specialize the risk-premia process Ψ.

Extension to Non-Zero Consumption

We conclude this section by extending the previous results to the case where we
maximize expected utility from consumption, thus considering the problem1:

uc (x) = sup
(δ,c)∈A(x)

EP

[∫ T

0

U (t, ct) dt

]
(4.18)

1For more details on the optimization setup, cf. Section 4.2.3.
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for a utility function U : [0, T ]×R→ R of class C0,2 such that U (t, ·) satisfies
the properties of a utility function, a portfolio process δt and a consumption
process ct which is assumed to be R+−valued and Gt−adapted. Assume that
the following integrability condition is satisfied:∫ T

0

(δ2t + ct)dt <∞, P − a.s.

This problem has been addressed by Karatzas et al. (1987) [98].

Theorem 4.3.10 Problem (4.18) admits a unique solution (δ̂, ĉ) ∈ A (x) s.t.:

ĉt = I (t, ŷβtΛt)

where ŷ is determined via:

x0 = EQ

[∫ T

0

βtI (t, ŷβtΛt) dt

]

and associated wealth process is given by:

βtX̂t +
∫ t

0

βsĉsds = EQ
[
βT X̂T |Gt

]
= x0 +

∫ t

0

∫
X
βuδ̂u (ex − 1) ηu (dx)

Then, analogously to Theorem 4.3.6, we have.

Theorem 4.3.11 The optimal portfolio from consumption is given by:

δ̂byt =
β−1

t∫
X (ex − 1) ηt (dx)

{∫
X
EQ

[∫ T

t

βuI (ŷβuΛu) ds|Gt−

]
Ψ−1

t (x) ηt (dx)

+
∫
X
EQ

[∫ T

t

Ψu (x)βuIΨ
u (x)

(
e−

R u
t

Dt,xrsds − 1
)
du|Gt−

]
ηt (dx)

}
(4.19)

Proof. The computation is in the same vein as in Theorem 4.3.6 where we
have set F =

∫ T

0
βtI (t, ŷβtΛt) dt and apply the same computations.

4.3.4 Options Hedging

In this section, we will prove the usefulness of the extension of the Clark’s
formula and of the general trading strategy, cf. (4.15). We will build the
risk-minimizing hedging under partial information of various options written
on the underlying S, which is assumed to follow the dynamics (4.4).
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We will consider the case where r = 0, so β = 1, so that (4.15) reads:

δ̂t =
1∫

X (ex − 1) ηt (dx)

{∫
X
EQ [B|Gt−]

(
Ψ−1

t (x)− 1
)
ηt (dx)

+
∫
X
EQ [Ψt (x)Dt,xB + (Ψt (x)− 1)B|Gt−] ηt (dx)

}
where Ψ, cf. Proposition 4.2.10, satisfies:∫

X
(ex − 1) Ψt (x) νP

G (dt, dx) = 0

Before going further, we note that the time t 6 T price of an option with
strike K written on S with payoff f is given by:

Vf (0, T,K) =
1
2π

∫
R
Lf (R+ iu)φST−t

(iR− u) du

where Lf is the Laplace transform of f (with real part R) and φ is the char-
acteristic function of the process S, cf. Carr and Madan (1998) [24].

Example 4.3.12 Let B = (ST −K)+. Then:

Dt,xB = (exST −K)+ − (ST −K)+

= exStE

[(
ST−t −

K

exSt

)+

|Gt

]
− StE

[(
ST−t −

K

St

)+

|Gt

]

The problem reduces then to the computation of the prices of two options.

Noting by f1 (ST ) = St

(
ST−t − K

St

)+

and f2 (ST−t) =
(
ST−t − K

exSt

)+

their
respective payoffs, their prices read:

V1

(
0, T − t,

K

St

)
=

1
2π

∫
R
L1 (R+ iu)φST

(iR− u) du

V2

(
0, T − t,

K

exSt

)
=

1
2π

∫
R
L2 (R+ iu)φST−t

(iR− u) du

so that:

EQ [B|Gt−] = St−V1

(
0, T − t,

K

St−

)

EQ [Dt,xB|Gt−] = exSt−V2

(
0, T − t,

K

exSt−

)
− St−V2

(
0, T − t,

K

St−

)
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Thus, we have:

δ̂t =
St−∫

X (ex − 1) ηt (dx)

{∫
X
V1

(
0, T − t,

K

St−

)(
Ψ−1

t (x)− 2
)
ηt (dx)

+
∫
X

(
exV2

(
0, T − t,

K

exSt−

)
− V1

(
0, T − t,

K

St−

))
Ψt (x) ηt (dx)

}
Example 4.3.13 Let B =

(
(ST −K)+

)n

, n ∈ N∗.Then:

Dt,xB =
(
(exST −K)+

)n

−
(
(ST −K)+

)n

which can be be computed as in previous example.

4.4. Conclusion

This article has investigated the question of optimal portfolios and hedging
strategies from prices observed at random times. Turning the problem into one
w.r.t. the random measure associated with the observations process, we have
been able then to apply the martingale technique of portfolio optimization. The
originality of the approach is to extend the traditional, continuous time, partial
information framework which allow only to learn about the drift parameters
of Wiener or Poisson processes, cf. Jeanblanc, Lacoste and Roland (2005) [95].
Under the proposed framework, it becomes possible to learn about stochastic
volatility or jump amplitude components.

Our general result, the derivation of the optimal investment for a portfolio
that attains a certain given level of wealth, is not reduced to the computation of
optimal policies. We can use it to obtain hedging strategies for contigent claims
for general payoff functions, thus enriching the result of Frey and Runggaldier
(2001) [71] to a more general setup. Moreover, for power, logarithmic and
exponential risk preferences, we may compute risk-premia processes in a fairly
straightforward fashion, thus turning them to be solved by a numerical scheme.

From an estimation perspective, the proposed model presents some chal-
lenges. Usual inference and simulation methods may fail to properly estimate
the parameters of the model and to compute the filtering equations. Relying
on Crisan et all (1998) [35], particle methods may be well suited. Finally,
the study of the convergence of the investment policy computed from discrete
observations to this with continuous ones may help to understand the discrete
trading effect. We will treat these questions on future researches.
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C.1. Filtering Results

In this Appendix, we study a special dynamics for the process θ and present the
semimartingale decomposition of the filter equation. To this end, we assume
that the economic factor process θ satisfies, under P , the equation:

dθt = m (t, θt) dt+ v (t, θt) dBt +
∫

Γ

w (t, θt−;x)N (dt, dx)

where m, v and w are bounded and continuous functions on R+ × R and
R+ × R × Γ, B is a standard Brownian motion, independent of W , N is
a Poisson random measure, independent of B and of W , with mean rate
E [N (t+ dt,A)] − E [N (t, A)] = %dtν (A), where % is a real positive num-
ber (jump intensity) and ν is a probability measure (jump amplitude) on the
space of jumps Γ ⊂ R. We also suppose that habitual Lipschitz and growth
conditions for existence of a unique F−adapted solution, cf. Protter (1990)
[140], are verified. For a bounded C2 function f , the generator L of θ reads:

Lf (x) = m (t, x) f
′
(x) +

1
2
v2 (t, x) f

′′
(x)

+
∫
X

(
f (x+ w (u, x, z))− f (x)− f

′
(x)w (u, x, z)

)
%ν (dz) (C.1)
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C.1.1 The Problem

We introduce the G−conditional density of the random variable θ by:

πt (f) = EP [f (θt) |Gt]

for any R−valued measurable function f s.t. EP [|f (θt)|] <∞.

From Section 4.2.2, this setup can be solved as a non-linear filtering problem
with measurements generated by

(
τn, Ȳτn

)
n>1

, so that the discrete asset log
price Y is a pure-jump process with unobservable factor process θ.

We now introduce a further definition related to random measures and
conditional expectation, cf. Chapter 3 in Liptser and Shiryaev (1989) [117].

Definition C.1.1 To each random measure µ and probability measure P , one
can relate the associated Doléans measure MP

µ with:

MP
µ (dω; dt, dx) = P (dω)µ (ω; dt, dx)

Then, for any non-negative G−measurable function X = X (ω; t, x):

MP
µ (X) = E [X ∗ µ∞] = E

[∫ ∞

0

∫
X
X (ω;u, x)µ (ω; du, dx)

]
Denote by P (G) the predictable σ−algebra on Ω× [0,∞) w.r.t. G and set:

P (G) = P (G)⊗ B (R)

The non-negative P (G)−measurable function MP
µ

(
X|P (G)

)
is called the con-

ditonal expectation of X w.r.t. the measure MP
µ and the σ−algebra P (G) if

for any bounded non-negative P (G)−measurable function Z = Z (ω; t, x):

MP
µ (ZX) = MP

µ

(
ZMP

µ

(
X|P (G)

))
(C.2)

When the random measure µ possesses a compensator ν, we have MP
µ (X) =

MP
ν (X), so that (C.2) then reads MP

ν (ZX) = MP
µ

(
ZMP

µ

(
X|P (G)

))
.

The next version of the Martingale Representation theorem will be useful.

Lemma C.1.2 Let M be a (P,G)−local martingale with M0 = 0. Then, there
exists an integrable G−predictable, X−marked process H (u, x) s.t.:

Mt =
∫ t

0

∫
X
H (u, x) (µ− ν) (du, dx)

From Lemma 4.8.1 in Lipster and Shiryaev (1989) [117], one can take:

H (u, x) = MP
µ

(
∆Mu|P (G)

)
(u, x)
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Besides, if f
′
and f

′′
exist and are bounded, Itô’s formula yields:

f (θt) = f (θ0) +
∫ t

0

Lf (θu) du+
∫ t

0

f
′
(θu) v (u, θu) dBu

+
∫ t

0

∫
X

(f (x+ w (u, x, z))− f (x)) (N−%) (du, dz) (C.3)

where L is given by (C.1).

C.1.2 The Filtering Equation

In the following, we derive a semimartingale representation of the filter.

Theorem C.1.3 The conditional filter πt (f) satisfies:

dπt (f) = πt (Lf) dt

+
∫
X

∑
n>0

1]τn,τn+1] (t)
πτn

(ψn (f ; t, x))
πτn

(ψn (1; t, x))
− πt− (f)

(µ− νP
G
)
(dt, dx)

Proof. Denote by Lt the martingale defined by:

Lt = f (θt)− f (θ0)−
∫ t

0

Lf (θu) du

cf. (C.3), so that:

πt (f) = E [f (θ0) |Gt] + E

[∫ t

0

Lf (θu) du|Gt

]
+ E [Lt|Gt]

Set:

Mt = E [Lt|Gt] + {E [f (θ0) |Gt]− π0 (f)}

+
{
E

[∫ t

0

Lf (θu) du|Gt

]
−
∫ t

0

πs (Lf) ds
}

and note that each of the three terms entering in the definition of M is a
G−martingale. From this, we then note that ∆Mt = πt (f) − πt− (f). Then,
as M is a (P,G)−martingale, Lemma C.1.2 applies and we obtain:

MP
µ

(
∆Mu|P (G)

)
(u, x) = MP

µ

(
πu (f)− πu− (f) |P (G)

)
(u, x)

From Lemma 4.10.2 in Liptser and Shiryaev (1989) [117], we have:

MP
µ

(
πu (f) |P (G)

)
(u, x) = MP

µ

(
f |P (G)

)
(u, x)
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and as πu− (f) is P (G)−measurable, it follows that:

MP
µ

(
∆Mu|P (G)

)
(u, x) = MP

µ

(
f |P (G)

)
(u, x)− πu− (f)

From Definition C.1.1, the conditional expectation MP
µ

(
f |P (G)

)
(u, x) is de-

fined, for any P (G)−measurable function φ, via:

MP
µ (φ (u, x) f (θu)) = MP

µ

(
φ (u, x)MP

µ

(
f (θu) |P (G)

))
As:

MP
µ (φ (u, x) f (θu)) = MP

ν (φ (u, x) f (θu))

and noting, thanks to Lemma 4.2.3, that:∫ ∞

0

∫
X
φ (u, x) f (θu) νP

G (du, dx)

=
∑
n>0

∫ τn+1

τn

∫
X
φ (u, x) f (θu)

Gn (u, x)
Gn ([u,∞),R)

dudx

=
∑
n>0

∫ τn+1

τn

∫
X
φ (u, x)

E
[
f (θu)λu (θu) e−Λn(u)φτn,u (y − Yτn

) |G (n− 1)
]

E
[
λue−Λn(u)|G (n− 1)

] dudx

=
∫ ∞

0

∫
X
φ (u, x)

γ (fλ;u, x)
γ (λ;u, dx)

νP
G (du, dx)

Taking expectations, this means that:

MP
µ

(
f (θu) |P (G)

)
=
γ (fλ;u, x)
γ (λ;u, x)

thus yielding:

H (u, x) =
γ (fλ;u, x)
γ (λ;u, x)

− πu− (f)

which, thanks to Lemma 4.2.3, concludes the proof.

In practical situations, the following Corollary will be of pivotal importance.

Corollary C.1.4 The filter presents a more convenient recursive structure
which follows the jump times (τn)n>1. In fact, for any jump time τn:

πτn
(f) =

πτn−1 (ψn−1 (f ; τn, Yτn))
πτn−1 (ψn−1 (1; τn, Yτn))

(C.4)

and for t ∈ [τn, τn+1):

πt (f) = πτn
(f) +

∫ t

τn

πs (Lf) ds (C.5)
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Remark C.1.5 The filter πt (f) may be solved numerically via two ways. The
first one uses the recursive structure of the filter and so equations (C.4)-(C.5),
which can be computed in a relatively easy way. The second path resorts to
branching particle system, cf. Crisan et all (1998) [35], which consists in
constructing weighted empirical measures which converge to the optimal filter.

C.2. Primer on Malliavin Calculus

This appendix is inspired by Lokka (2003) [121] who derived a Clark-Ocone-
Haussmann formula for random measures with a derivative (Malliavin) opera-
tor D defined by its action on the chaos representation of L2 functionals.

We begin with the following useful lemma.

Lemma C.2.1 (Lokka [121]) The linear span of random variables:

exp
(∫ t

0

∫
X

lnΨu (x)µ (du, dx)−
∫ t

0

∫
X

(Ψu (x)− 1) νP
G (du, dx)

)
(C.6)

where Ψ is a G−predictable process, is dense in L2 (P,GT ).

Crucial in the following is the definition of the integral:

In (fn) ∆=
∫

[0,T ]n×Xn

fn (t1, ..., tn;x1, ..., xn) d (µ− ν)⊗n

for constants f0 ∈ R s.t. I0 (f0) = f0 and for each n ∈ N∗ and f ∈ L2 ([0, T ]n ×Xn).
And we introduce the set D1,2 ⊂ L2 (P ) by:

D1,2
∆=

{
F =

∞∑
n=0

In (fn) :
∞∑

n=0

n · n! ‖fn‖2n <∞

}
Then, we can define a linear operator D : D1,2 → L2 ([0, T ]n ×X × Ω) by:

Dt,xF
∆=

∞∑
n=1

nIn−1 (fn (·, t, x)) (C.7)

for F =
∑∞

n=0 In (fn) where fn (·, t, x) = fn (t1, ..., tn−1, t, x1, ..., xn−1, x). On
Ω, we define the canonical random measure:

ω (A×B) ∆= µ (ω,A×B)

and define the transformations:

ε−(t,x)ω (A×B) = ω (A×B ∩ (t, x)c)

ε−(t,x)ω (A×B) = ε−(t,x)ω (A×B) + 1A (t)1B (x)

which consists of removing or adding a mass at (t, x), respectively.
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Proposition C.2.2 For F ∈ Ω, Dt,xF = F ◦ ε+(t,x) − F .

The following chain rules will be helpful in computations.

Lemma C.2.3 If f is differentiable and F,G, FG ∈ D1,2 and f (G) ∈ D1,2:

Dt,x (FG) = Dt,xF ·G+ F ·Dt,xG+Dt,xF ·Dt,xG (C.8)

and:
Dt,xf (G) = f (G+Dt,xG)− f (G) (C.9)
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In this introduction, we discuss numerical solutions for a class of Maxi-
mization of Expected Utility (MEU) problems. Except in some special cases,
such problems cannot be solved numerically. One approach is to turn them
into their probabilistic formulation and then resort to simulation-based algo-
rithms. Relying on Monte-Carlo Markov Chain and particle system methods,
we present an original alternative for MEU problems.

5.1. Maximization of Expected Utility

Subsequently, we recall the general framework in which are embedded expected
utility problems. The maximization is done over some design (or control) space
d ∈ D. The experiment is defined by a model pd (y|θ), i.e.: a distribution of the
vector y ∈ Y of observables, conditional on some unknown parameter vector
θ ∈ Θ. The model may depend on the design (or control) parameter d, hence
the subscript d. From a Bayesian perspective, the model is completed by a
prior distribution p (θ) over the parameter vector. Utility is a function of the
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form u (d, y, θ). Since the design (or control) parameter d has to be chosen
before observing the experiment, we need to maximize the expectation of u (·)
w.r.t. (y, θ). Therefore, the maximum expected utility (MEU) problem reads
as:

d∗ = arg max
d∈D

U (d) (5.1)

where:

U (d) =
∫
Y×Θ

u (d, y, θ) pd (y, θ) dθdy

and so U (d) is the expected utility for action d.

Remark 5.1.1 Note that even if the optimization of interest is interpreted in
terms of the maximization of a utility function U , it is straightforward to adapt
it to the case of the minimization of a loss function L, for example by writting
minU (d) = max (K − U (d)) for a properly chosen constant K.

A traditional method to evaluate problems of the form of (5.1) is to use
backward induction via the dynamic programming principle, cf. De Groot
(1970) [38] or hybrid ones combining forward simulation and backward induc-
tion. More precisely, if the structure of the problem satisfies some assump-
tions, cf. Fleming and Soner (1993) [65], a dynamic programming principle
(DPP) holds. From this, we can derive the DPP (under general hypothesis) or
Hamilton-Jacobi-Bellman (HJB) equation (under Markov hypothesis). When
no closed-form solution is available, the DPP allows a direct numerical eval-
uation of the HJB equation. Since the incepit of the theory, numerous and
powerful methods have been developped. Those rely either on Markov chain
methods, cf. Kushner and Dupuis (1992) [109], or finite difference methods, cf.
Lapeyre et al. (2006) [112]. But these can perform poorly in high dimension.
Another recently borned proposition for solving such problems is quantization
algorithm, cf. Pagès et al. (2004) [136].

5.1.1 Joint Integration Issue

Problems of the form of (5.1) require first to integrate the uncertainty to com-
pute expected utility and then to integrate. When turning to numerical as-
pects, a joint issue arises. Expect in some special cases, neither the integration
nor the maximization can be solved analytically. Also, the aforementionned al-
gorithms: grid approximation, finite difference or quantization, cannot handle
this joint uncertainty-utility integration in a same loop. The two integrations
have to be separated and done at different times, resulting in an additional
amount of computational time and greater complexity. To cope with this, we
propose a methodology based on simulation-based algorithms.
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5.1.2 Monte-Carlo Method

As previously said, the utility function U (d) may be costly to compute and so
(5.1) does not allow a closed-form solution and classical optimization methods
are not practicable. An attempt to cope with this is to resort to simulation-
based methods. Typically, these are based on the observation that the integral
U (d) is easily evaluated by Monte Carlo simulation. In fact, in most setups,
the model distribution pd (y, θ) = pd (y|θ) p (θ) is available for sampling, then
allowing an approximation of U (d) by:

Û (d) =
1
M

M∑
i=1

u (d, yi, θi) →
M→∞

U (d)

where {(yi, θi) , i = 1, ...,M} is a sample from yi ∼ pd (y|θi) and θi ∼ p (θ).

Muller and Parmigiani (1996) [130] were the first to propose a fully numer-
ical optimal Bayesian scheme to solve (5.1). We briefly outline the procedure.
In a first step, one selects some designs (or controls) di ∈ D, either in a simula-
tion context or in a grid. Then, one simulates experiments (yi, θi) ∼ pdi

(y, θ),
one for each chosen design. For each chosen experiment (di, yi, θi), we evaluate
the observed utility ui = u (di, yi, θi). Then, in a scatterplot of di and ui, the
integration in (5.1) can be replaced by a simple scatterplot smoothing Û (d)
and the optimal design can be read off as the mode of the smooth curve, cf.
Figure 5.1 (taken from Muller and Parmigiani (1996) [130]).

Figure 5.1: Simulated utilities ui. Left chart: one-dimensional problem; right
chart: bivariate design parameter d.

Nevertheless, this procedure generally fails, principally in high dimension,
when the number of designs d is numerous and that the problem may trap in
local minimums. Another approach may be developped.



116 5 Simulation-Based Algorithms

5.2. MCMC and Particle Methods

We propose one which resort to Markov-Chain Monte Carlo methods, cf. Ap-
pendix D, and particle systems. The key idea is that MCMC are well suited
to approximate U (d) in high dimension and particle systems, by generating a
large number of designs d, may circumvert local minima issues.

5.2.1 Stochastic Optimization

The key idea, originally developed by Muller (1998) [131], is to consider U as a
probability density function, up to a multiplicative constant, over the decision
space D and to generate a sample from this distribution, the mode of which
corresponds to the optimal decision d∗. This is made possible by the fact that
the utility function u is bounded, positive and continuous. As U is costly to
compute in practice, we need to introduce an augmented (artificial) probability
distribution h (omitting the variable θ to lighten the notation) over (D,Y):

h(d, y) ∝ u(d, y)p(y|d)

We can compute h explicitly since p(y|d) and u(d, y) are both easy to
compute. By definition, the marginal of h on d is proportional to U , so:∫

Y
h(d, y)dy ∝ U(d)

We are now in the context where MCMC simulation methods, cf. Robert
and Casella (2004) [142], apply. From these, we can generate a sample from h
and then from U . As we are interested in the mode of U , this method is not
very efficient especially since dimensionality of our problem may be relatively
high (dimD can be up to 10), cf. Chapter 6, and since our surface may be
quite complex. As a consequence, we need to improve the mode search.

5.2.2 Simulated Annealing

A classical improvement of this approach is given by the simulated annealing
algorithm that we can easily adapt. The seminal idea, used in Brooks and
Morgan (1995) [21] or in Muller (1998) [131], is to simulate a sample from UJ ,
where J is a large integer. This will obviously sharpen the top of utility surface
and concentrate simulations closer to the mode, as shown in Figure 5.2.

Theoretically, we could use the same fixed value of J for all iterations, but
this is not efficient in high dimensional cases. We can also use a cooling schedule
that makes J(n) increase up to +∞ when n→ +∞. If the simulation method
is of Metropolis-Hastings type, we know, from Geman and Geman (1984) [73],
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Figure 5.2: Concentration of Simulated Samples around the Mode of Utility
Surface.

that the asymptotic condition that ensures convergence to the mode is:

J(n) <
log n

m (supd U(d)− infd U(d))

where m = dimD. Following a similar idea as in our MEU context, we intro-
duce a new joint augmented distribution hJ on D × YJ defined as:

hJ(d, d1, .., dJ) ∝
J∏

j=1

u(d, yj)p(yj |d)

Assuming independence on the yj variables, we keep the key property:∫
Y
...

∫
Y
hJ(d, y1, ..., yJ) dy1...dyJ ∝ U

J(d)

so that a sample from hJ would marginally gives us a sample from UJ . The
limits of MCMC methods, especially in high dimension and when implemented
with simulated annealing, are definitely problems of local modes which can
trap Markov chains, cf. Andrieu et al. (2000) [7]. In most of the practical
implementations, the utility surface is rather complicated and high-dimensional
and so we are very concerned by such limits. We propose here an original
algorithm based on Interacting Particle System (IPS) methods, cf. Del Moral
et al. (2001) [41], exploiting all the improvements exposed above, for a better
exploration of D, and then for a more efficient marginal mode search of hJ .

5.2.3 A Particle Approach

This section describes an original alternative to standard MCMC for MEU
problems. The method is based on recent developments on particle filters, cf.
Doucet et al. (2001) [54], and population Monte Carlo simulations, cf. Cappé
et al. (2004) [23]. To simulate a sample from hJ , we no longer produce one
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Markov chain (d(n), y
(n)
j )j=1..J like in Muller’s (1998) [131] algorithm, but we

generate instead N parallel chains (d(n)
i , y

(n)
i,j )i=1..N,j=1..J . Using the vocabu-

lary from sequential MCMC theory, each couple (d(n)
i , y

(n)
i,j ) is called a particle,

and the set of N Markov chains is called an Interacting Particle System (IPS).
Our interest is not to produce a sample to approximate the target distribution
but rather to simulate particles close to the mode(s). Figure 5.3 illustrates the
mechanism of the proposed MCMC with IPS algorithm.

Figure 5.3: Mechanism of the MCMC with IPS Algorithm.

This algorithm is done in three steps:

• importance sampling: the idea, cf. Geweke (1989) [75], is to generate,
at each iteration n, an approximated weighted sample from hJ ,

• selection procedure: it is performed to duplicate particles closer to the
modes of the target distribution while eliminating the others. A standard
selection procedure can be a sampling importance resampling scheme, as
described in Rubin (1988) [144] or Smith and Gelfand (1992) [155]. This
selection procedure has been widely studied and applied in the literature
about particles methods for sequential MCMC, cf. Doucet et al. (2001)
[54]. Note that other ways of selection are possible, cf. Carpenter et al.
(1999) [25] or Liu et al. (1998) [119], but we won’t discuss them here,
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• Markov step: an independent random walk step with hJ as target
distribution is also added for each particle, to avoid degeneracy problems.

At each step (importance sampling, selection procedure, Markov step) and
for any iteration n, this would generate a sample (ξ(n)

i )i=1..N from hJ such
that as N → +∞, the following Monte Carlo approximation:

1
N

N∑
i=1

φ(ξ(n)
i ) →

N→∞

∫
φ(ξ)hJ(ξ)dξ

for any measurable and bounded function φ, holds. The interest of this ap-
proach is to get a rich sample from hJ . The obvious drawback is that this
iterative scheme for fixed J and N would cumulate noise, so that the ap-
proximation would worsen with iterations. This point has been underlined in
developments of non-sequential population MCMC algorithms, cf Cappé et al.
(2004) [23] or Chopin (2002) [28]. However the interest of such iterative algo-
rithms is fully recovered when the target distribution changes with iterations,
like in sequential MCMC or particle filter algorithms. In our case, this holds
since we add a simulated annealing effect, so that J grows with iterations n.
Note that in this situation, we don’t have anymore constraints about the form
of the cooling function J(n) to get the convergence of the algorithm, as we will
see it in the convergence Appendix E. When no confusion is possible, we will
keep writing J instead of J(n), for lighter notation.

5.3. Particle Algorithm with Simulated Anneal-
ing

Previous developements lead to an original algorithm for stochastic optimiza-
tion that encompasses simulated annealing into an interacting particle ap-
proach. As Markov step, a common and convenient choice will be to use a
Metropolis-Hastings step1, since it is easy to implement in practice, cf. Robert
and Casella (2004) [142]. Furthermore, we need to choose two random walk
jump functions over D:

• q1,n as transition kernel for the importance sampling step,

• q2,n for the Metropolis-Hastings jump.

These functions can be widely different. For example, q1,n could have a
smaller variance to allow a narrow scale exploration at the importance sampling
step, and a larger scale one at the Metropolis-Hastings step2. With these

1We will afford a simplification in the theoretical part, cf. Appendix E.
2We will precise these choices in Chapters ?? and 6.
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notations, the weights for importance resampling (multinomial law) are given
by:

w
(n)
i ∝

∏J
j=1 u(d̃

(n)
i , ỹ

(n)
ij )

q1,n(d(n−1)
i , d̃

(n)
i )

The detailed algorithm can be written as follow:

Algorithm 5.3.1 (General Particle Optimization Algorithm) We have:

1. Initialization: Start with a sample (d(0)
i )i=1..N at t = 0. Set J = J(0).

2. Importance Sampling Step: For each i = 1...N and j = 1...J :

(a) simulate d̃(1)
i from K1,1(d

(0)
i , . ) and (ỹ(1)

ij ) from p(y|d̃(1)
i ),

(b) compute ũ(1)
i =

∏J
j=1 u(d̃

(1)
i , ỹ

(1)
ij ) and w(1)

i ∝ ũ
(1)
i /K1,1(d

(0)
i , d̃

(1)
i ).

3. Selection Step: Resample (d̂(1)
1 , .., d̂

(1)
N ) from (d̃(1)

1 , .., d̃
(1)
N ) from a multino-

mial distribution with weights w(1)
i , note û(1)

i the corresponding utilities.

4. Metropolis-Hastings Step: For each i = 1...N and J = 1...J :

(a) simulate d
(1)

i from K2,1(d̂
(1)
i , . ) and (d

(1)

ij ) from p(y|d(1)

i ),

(b) compute u
(1)
i =

∏J
j=1 u(d

(1)

i , d
(1)

ij ) and the acceptance rates αi =

min(1, (u(1)
i K2,1(d

(1)

i , d̂
(1)
i ))/(û(1)

i K2,1(d̂
(1)
i , d

(1)

i ))),

(c) set d(1)
i = d

(1)

i with probability αi and d(1)
i = d̂

(1)
i elsewhere.

• We loop the last three steps until J is sufficiently large to allow mode
determination.

5.3.1 A Resampling Markov Algorithm

From now on, we can notice an important particular case of this general al-
gorithm. By removing the importance sampling step, we can only consider
loops of multinomial resampling and Markov steps. Indeed, if one gets, at
the beginning of loop n, an approximated sample from πn, it becomes an ap-
proximated sample from πn+1 after resampling and Markov rejuvenating. We
assume that J(n) > J(n − 1) to give a sense to the resampling, which means
that, in this case, the cooling schedule is at least linear. In this setup, the
resampling weights have a much simpler form:

w
(n)
i ∝

J(n)∏
j=J(n−1)+1

u(d(n)
i , y

(n)
ij )
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where y(n)
ij are additional independent draws from p(y|d(n)

i ). The Markov tran-
sition, denoted Kn in this case, is the same as in the general algorithm. Below,
we take the Metropolis-Hastings Markov step to describe the algorithm. An
obvious advantage of this resampling algorithm is a substantial saving of com-
putation time, which may be used to improve the Markov kernel (like using
adaptive Markov transitions). A practical drawback lies in the exploration of
the utility surface in the most complex multimodal cases. However, we will
see that this algorithm is also theoretically more stable, as we will prove an
uniform convergence theorem for it, when a linear form for the cooling schedule
is provided, cf. Appendix E.

Algorithm 5.3.2 (Resampling-Markov Algorithm) We have:

1. Initialization: Start at t = 0 with a sample (d(0)
i , y

(0)
i1 )i=1..N drawn by

importance sampling like in Step 2 of Algorithm 5.3.1. Set J = J(0) = 1.

2. Reweighting: For each i = 1...N and j = 1...J :

(a) simulate independent additional data (yij)j=J(0)−1..J(1) from p(y|d(0)
i ),

(b) compute the new weights w(1)
i ∝

∏J(1)
j=J(0)+1 u(d

(1)
i , y

(1)
ij ),

3. Selection Step: Resample (d̂(1)
1 , .., d̂

(1)
N ) from (d(0)

1 , .., d
(0)
N ) with a multino-

mial distribution with weights w(1)
i , note û(1)

i the corresponding utilities.

4. Metropolis-Hastings Step: For each i = 1...N and j = 1...J :

(a) simulate d
(1)

i from K1(d̂
(1)
i , . ) and (d

(1)

ij ) from p(y|d(1)

i ),

(b) compute u
(1)
i =

∏J
j=1 u(d

(1)

i , y
(1)
ij ) and the acceptance rates αi =

min(1, (u(1)
i K1(d

(1)

i , d̂
(1)
i ))/(û(1)

i K1(d̂
(1)
i , d

(1)

i ))),

(c) set d(1)
i = d

(1)

i with probability αi and d(1)
i = d̂

(1)
i elsewhere.

• We loop the last three steps along n.
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Appendix (Chapter 5)

In this Appendix, we review Markov Chain Monte-Carlo (MCMC) algo-
rithms, their theoretical underpinnings and convergence properties. More de-
tails on this can be found in Robert and Casella (2004) [142].

D.1. MCMC Methods

Central in the study of MCMC methods is the ergodic theorem which is the
analog for Markov chains of the law of large numbers for random variables.

Theorem D.1.1 (Ergodic Theorem) Let (Xn) be a Markov chain on the
finite space E, homogeneous and irreducible. Let also µ be its unique invariant
law. Then, for all initial law for X0 and any function f : E → R, we have:

1
n+ 1

(f (X0) + ...+ f (Xn))
p.s.→

n→∞

∫
E

f (x)µ (dx)

Monte-Carlo algorithms allow to give an approximation of the integral∫
E
f (x)µ (dx) by sampling a series (Xn) of random variables, independent

and with same distribution µ, via the law of large numbers approximation:∫
E

f (x)µ (dx) ' 1
n

(f (X1) + ...f (Xn))

In practice, there may exist situations where sampling from µ is not easy
at all, especially in high dimension problems. Instead, it is relatively easier
to simulate a Markov chain with stationary distribution µ. If this chain is
irreducible, the ergodic Theorem D.1.1 then ensures the convergence, in the
place of the law of large numbers approximation. A general scheme to construct
such a Markov chain is given by the Metropolis-Hastings algorithm, cf. Robert
and Casella (2004) [142] for a more complete presentation.
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D.1.1 Metropolis-Hastings Algorithm

The general principle is as follows. We aim to construct a Markov chain with re-
versible measure µ, i.e.: with transition matrix q (x, y) satisfying µ (x) q (x, y) =
µ (y) q (y, x), where µ (x) > 0,∀x ∈ E. The easier way to proceed is to use a
positive symetric function k (x, y) s.t.:

q (x, y) =
k (x, y)
µ (x)

, x 6= y (D.1)

and q (x, x) = 1 −
∑

x6=y q (x, y). To be sure that (D.1) is always positive, we
can choose a irreducible Markovian matrix p (x, y) and let:

k (x, y) = µ (x) p (x, y) ∧ µ (y) p (y, x) , x 6= y

From this, q (x, y) 6 p (x, y) and:∑
x6=y

q (x, y) 6 1

Another advantage of this situation is that it comes:

q (x, y) = p (x, y) ∧ µ (y)
µ (x)

p (y, x)

and so:

q (x, y) ∝ µ (y)
µ (x)

which may be largely easier to compute than µ (x). The choice of the matrix
q (x, y) depends on the structure of the problem. Some simplifactions arises
when p (x, y) = p (y, x), cf. Metropolis et al. (1953) [129], and so:

q (x, y) =
(
µ (y)
µ (x)

∧ 1
)
p (x, y) (D.2)

The Metropolis-Hastings algorithm consists in a two-step procedure. The
construction of the Markov chain (Xn) can be described as follows.

Algorithm D.1.2 (Metropolis-Hastings Algorithm) We have:

1. If Xn = x, sample Yn ∼ p (x, y). When Yn = y, let:

p =
µ (x) p (y, x)
µ (y) p (x, y)

∧ 1

2. Sample Zn s.t. P (Zn = 1) = p, then:

Xn+1 =
{

Xn = x
Yn = y

if Zn < 1
elsewhere

Remark D.1.3 Algorithm D.1.2 when (D.2) do not hold, i.e.: p (x, y) 6=
p (y, x), is referred as the Hastings (1970) [86] algorithm.



6

Joint Calibration of Option Pric-
ing Models

Agenda

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2 Pricing Models Driven by Affine Jump Diffusions . . . . . . . . 129

6.2.1 Affine Jump Diffusions . . . . . . . . . . . . . . . . . . . 129
6.2.2 Market Price of Risk Specifications . . . . . . . . . . . . 131
6.2.3 Affine Pricing Jump Diffusions . . . . . . . . . . . . . . 132
6.2.4 Towards a Well-Posed Optimization Problem . . . . . . 133

6.3 Reliability of the Joint Procedure . . . . . . . . . . . . . . . . . 137
6.3.1 Implementation Issues . . . . . . . . . . . . . . . . . . . 137
6.3.2 Application to a Simulated Data Set . . . . . . . . . . . 138

6.4 Real-World Risk Premiums Investigation . . . . . . . . . . . . . 141
6.4.1 Models Specification . . . . . . . . . . . . . . . . . . . . 142
6.4.2 Parameters Estimation using Cross-Section . . . . . . . 143
6.4.3 Premiums Estimates and Option Prices Effects . . . . . 145
6.4.4 Aversion to Model Misspecification . . . . . . . . . . . . 148

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Note: This chapter is an adapted version of a co-authored paper with B.
Amzal and Y. Ebguy.



126 6 Joint Calibration of Option Pricing Models

Abstract. This chapter develops a new joint calibration pro-
cedure where both implied and historical distributions are simul-
taneously used. We closely link it to the minimization of measures
of risk under uncertainty or robust problems. We focus on the
class of affine jump-diffusion models to derive a parametric formu-
lation of the problem. From both theoretical and practical points
of view, we are concerned with the quantitative assessment of the
financial risk to build a robust and efficient pricing system. As
a loss function, we choose the sum of a classical least-square cost
and of a regularizing term of relative entropy. Then, in order to
develop a computationally efficient methodology, we translate it
into its probabilistic counterpart in a general context of maximiza-
tion of expected utility (MEU). This leads us to the development
of simulation-based algorithms in line with Monte-Carlo Markov
Chains (MCMC) methods. To avoid their traditional shortcom-
ings like local mode trapping, we consider an original alternative
derived from Interacting Particle Systems (IPS). A new theoreti-
cal framework for this method is provided and convergence results
are established. This algorithm is applied to simulated data and
to a EuroStoxx 50 data set. We extensively discuss these results
and interpret them notably in terms of risk aversion and models
perception.

6.1. Introduction

Stocks or interest-rate derivatives are priced under the risk neutral measure
while the statistical measure is used to model the underlying on which the
option is written. Classical calibration approaches such as those of Avellaneda
(1998) [11] or Bates (1996) [14] only resort to the implied measure to fit the
observed smile of volatility ignoring information available in the historical mea-
sure. Thus, one may wish to build a joint calibration procedure where both
implied and historical distributions are simultaneously used. It is worth noting
that several attempts have been made to answer these questions as in Chernov
and Ghysels (2000) [26] or in Eraker (2004) [61], but these papers didn’t dis-
play satisfying results: the risk premiums were erratic, and their interpretation
not obvious. In this article, we make a new attempt to build a bridge between
these two worlds. We propose a calibration method using the joint information
from market prices of some options as well as of the corresponding stocks on
which the positions were written.

We consider an original prediction/calibration problem. For example, at
time t, we want to predict some option prices on the coming days. It con-
sists of predicting the underlying value with its dynamics under the historical
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probability and then calculating the corresponding option prices with the risk-
neutral actualized expectation. In that sense, the a posteriori problem to solve
reads as follows. Given a set of data and a chosen day in this time series, what
are the historical and risk-neutral measures that would have implied the best
prediction for the option prices quoted on the days following the chosen one?
This calibration is a kind of prediction in-sample. Formally, this is expressed
in the following inverse problem:

Definition 6.1.1 (Joint Calibration) Given a set of stock prices and liquid
call options written on this stock, say {Y ∗t , C∗ (Yt, Ti,Ki)} for i = {1...I} and
t = {1...T}, find two random measures Q ∈ Q, the risk-neutral one, and
P ∈P, the historical one, such that the observed option prices are given by the
P−expectation of their theoretical prices on stock values simulated under P:

C∗ (Y ∗t , Ti,Ki) = B(t, Ti)EP
t−1

[
CQ(Y P

t , Ti,Ki)|Yt−1

]
(6.1)

• Y P
t is simulated under P from Y ∗t−1 at time t− 1,

• B(t, Ti) is the discount factor at time t with maturity Ti,

• CQ(Y P
t , Ti,Ki) is the theoretical price under the risk-neutral measure Q

of the option considered with strike Ki, maturity Ti and spot value Y P
t .

The spaces of probability measure P and Q need to be specified so that
both measures are equivalent and that arbitrage opportunities are avoided.
This goal is normally met by assigning market price of risk process(es) to the
dynamics of the state variable(s) as described by Harrison and Kreps (1979)
[84] and Harrison and Pliska (1981) [85]. This results in the fact that if a
process is within the class of affine jump-diffusion, cf. Duffie et al. (2003)
[56], under the objective probability measure, the market price of risk specifi-
cation ensures that it is within the same class under the equivalent martingale
measure and vice-versa. The bridge alluded to earlier will also be achieved
through the assignment of market prices of risk. This enables one to preserve
equivalence of measures and precludes arbitrage opportunities. Therefore, our
joint calibration approach will succeed if we manage to separate the impact
of the historical parameters and that of the risk-neutral ones. It could help
one both to calibrate models and to determine parameters usually estimated
roughly from historical data with a better understanding of their impact and
of their evolution.

But, at this stage, the inverse problem (6.1) is ill-posed, cf. Engl et al.
(1996) [59]. Indeed, it is under-determined: the knowledge of a finite numbers
of option prices is not enough to characterize the risk neutral measure. There
might be no solution or an infinite number of solutions, not necessarily in the
class of models we were expecting it to be. Traditionally, in the calibration
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issue, this obstacle is bypassed by minimizing the in-sample quadratic pricing
error, cf. Christoffersen and Jacobs (2001) [29]. Inspiring ourselves from that
idea to obtain a practical solution, we resort to minimizing a measure of risk, or
more precisely to minimize the expectation of a loss-function L, defined on Q,
the probability measure space to be chosen. The concept of a measure of risk
advanced in Artzner et al. (1999) [8] and refined in Foellmer and Schied (2002)
[68] and in a large subsequent literature has gained widespread acceptance in
the option pricing industry. This approach focuses on the measure of the
quantitative risk involved in a financial position. The goal is now to find:

(P,Q) = arg min
(P,Q)

EP [L (Q)] (6.2)

This formulation has a mathematical sense if the loss function has good proper-
ties. But it could seem numerically difficult to solve. Usual ways of optimizing
a function like BFGS gradient-descent method would be here non-efficient be-
cause of the too numerous calculations of the expectation needed. We thus
have to resort to other numerical methods. Following the fast development of
computers, simulation techniques have appeared to be a more and more inter-
esting alternative for analytic or algebraic approach of optimization problems.
MCMC algorithms have been widely developed and applied this last decade
for Bayesian problems, cf. Robert and Casella (2004) [142], in finance as well
as in many other fields of application. The optimization issue is transformed
into a simulation one, cf. Section 5.1, from which particle methods appear to
be adapted to our problem. A recently born algorithm, presented in Section
5.3, inspired by Interacting Particle Systems which doesn’t demand any calcu-
lation of the expectation is used. New powerful convergence properties which
help us for the practical implementation are proved in Appendix E. We note
that this departs from the methodology recently presented in Ben Hamida and
Cont (2004) [17].

The remainder of the chapter is organized as follows. Section 2 sets the
jump-diffusion models considered and defines P and Q, which gives a para-
metric formulation of the optimization problem. In Section 2, we also explain
the choice of our loss-function, adding to the traditional least-squares cost, an
entropy term, regularizing the problem. In Section 3, this algorithm applied
to some specific and largely used option pricing models derived from Section 2,
and the numerical results obtained with simulated data are discussed. In sec-
tion 4, a real-world application is given and risk premiums analysis is derived.
At end, section 5 concludes.
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6.2. Pricing Models Driven by Affine Jump Dif-
fusions

We begin with some definitions and properties of affine jump-diffusion models.
Moreover, we precise the spaces of probability measures P and Q on which
the optimization is made and we discuss market price of risk specifications and
absence of arbitrage for this class. Finally, we parametrize the joint calibra-
tion problem for a specific family of stochastic volatility with jumps models.
Throughout this section, P corresponds to the historical probability, and Q to
the risk-neutral one.

6.2.1 Affine Jump Diffusions

Let (Ω,F ,P) be a probability space on which are defined the two following
independent random processes: a d−dimensional standard Brownian motion
(Wt)t>0 and a d−dimensional compound Poisson process (Nt)t>0. We also
suppose that there is a Markov process Y taking values in some open subset
D of Rd and satisfying the following theorem, cf. Duffie et al. (2003) [56]. Let
an affine jump-diffusion (AJD) be given by:

dYt = µ (Yt, t) dt+ Σ (Yt, t) dWt + dÑt

= µ (Yt, t) dt+ Σ (Yt, t) dWt +
∫
D
N (dy, dt)− ν (dy, dt) (6.3)

where µ : D → Rd and Σ : D → Rd×d are deterministic functions, while
Ñt is a compensated Poisson process with compensator ν (dy, dt). The Lévy
measure ν dictates how jumps occur. In a finite activity setup, jumps arrive
with intensity λ : D → Rd with λ <∞ and are distributed according to a fixed
probability distribution m on Rd, with ν (dy, dt) = λ(y)dm (y, t).

Theorem 6.2.1 (AJD Characterization) An AJD process satisfies:

• (affinity) Drift, squared volatility and intensity are all affine such that
the determining triplet of characteristics κ = (µ,Σ, λ) writes as follows:

µ = k0 (t) + k1 (t) · Y
ΣΣᵀ = h0 (t) + h1 (t) · Y (6.4)

λ = l0 (t) + l1 (t) · Y

• (ode-s) Coefficients are such that solutions β and α to the following sys-
tem of ordinary differential equations exist:

β′ (t) = −k1 (t)ᵀ
β (t)− 1

2
β (t)ᵀ

h1 (t)β (t)− l1 (t)
∫
D
eβ(t)·ydm (y)− 1



130 6 Joint Calibration of Option Pricing Models

α′ (t) = −k0 (t)ᵀ
β (t)− 1

2
β (t)ᵀ

h0 (t)β (t)− l0 (t)
∫
D
eβ(t)·ydm (y)− 1

with boundary conditions β (T ) = u and α (T ) = 0, where u ∈ Rd.

• Then, for each u ∈ Rd, the discounted characteristic function process

φκ (u, Yt, t, T ) = EQ
(
e−r(T−t)eu·YT |Ft

)
(6.5)

has exponential affine form in X, namely

φκ (u, Yt, t, T ) = exp (α (t) + β (t) · Yt)

Let us consider a contingent claim written on Y whose profile is given by
a final cash amount g (YT ) ≡ g (YT , ·) and whose value at time t is:

Pt = EQ
t

[
e−r(T−t)g (YT , T,K)

]
The general result stated above allows a direct pricing of such claim, in

the case of affine pay-off functions in the factor Y , via Fast Fourier transform,
cf. Carr and Madan (1998) [24], methods. In fact, we can use the general
result in Theorem 6.2.1 to compute characteristic function distributions and
then numerically invert them to recover the corresponding density function.
This leads to a general call option formula for AJD stock price models:

Proposition 6.2.2 (Option Pricing) Let us consider a call option on a func-
tion g of the underlying factor expiring at time T and striking at price K. For
any non-decreasing function1 h, the price of the call is then:

Pt = EQ
t

[
e−r(T−t) (g (YT )−K)+

]
= fg (−h (K))−Kf1 (−h (K)) (6.6)

with 1 the identity function and where:

fg (y) = EQ
t

[
e−r(T−t)g (YT ) I{−hog(YT )6y}

]
(6.7)

can be calculated by inverting its Fourier transform as

F [fg] (u) =
∫

R
eiuxEQ

t

[
e−r(T−t)g (YT ) I{−hog(YT )6x}

]
dx

= EQ
t

[
e−r(T−t)g (YT )

∫
R
eiuxdxI{−hog(YT )6x}

]
= EQ

t

[
e−r(T−t)g (YT ) eiu(−hog(YT ))

]
where h has to be chosen such that the expectation (6.7) is of the form (6.5).

1h is s.t. g (YT ) 6 K ⇔ h (g (YT )) > h (K).
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6.2.2 Market Price of Risk Specifications

The following proposition is a consequence of Girsanov transformation for semi-
martingales, cf. Jacod and Shiryaev (2003) [93]. In all the sequel, we use the
notation f ∗ ν meaning that we integrate the function f w.r.t. the measure ν
(both being defined on R+ × Rd).

Proposition 6.2.3 (Girsanov Change of Measure) Let Y be an AJD with
P−characteristics

(
µP,ΣP, νP). For any probability measure Q � P, there ex-

ist a predictable function Λ3 > 0 and a predictable Rd−valued process Λ1 such
that Q−characteristics of Y are given by:

µQ = µP + ΣP · Λ1 + (Λ3 − 1) ∗ νP

ΣQ = ΣP (6.8)

νQ = Λ3 · νP

Λ1 and Λ3 are called the Girsanov quantities of Q with respect to P relative
to Y . Intuitively, Λ3 describes how the jump distribution of Y , cf. Esche (2003)
[62], changes when we turn from the historical measure P to the risk-neutral
one Q and Λ1 together with Λ3 determines the change in drift.

To give a deeper insight of market price of risk specifications, one can
express the density process ZQ of Q with respect to P explicitly in terms of Λ1

and Λ3. If we denote the Doleans-Dade exponential E , we have the following
proposition based on weak representation property for semi-martingales, cf.
Jacod and Shiryaev (2003) [93].

Proposition 6.2.4 Let Y be an AJD. If Q� P with Girsanov quantities Λ1

and Λ3, the density process of Q w.r.t. P is given by ZQ = E
(
NQ) with:

NQ
t =

(
Λ1 · Y c + (Λ3 − 1) ∗

(
mP − νP))

t
(6.9)

If P exists and is solution of a martingale problem for the process (6.3),
existence of the quantities Λ1 and Λ3 is sufficient neither for the existence of
the implied probability measure Q nor for its equivalence to P, cf. Jacod and
Shirayev (2003) [93]. However, these two properties are jointly entailed by the
following necessary and sufficient conditions:

E
(
NQ)

· > 0, EP [E (NQ)
t

]
= 1 (6.10)

The existence of an equivalent martingale measure implies the absence of
arbitrage opportunity, cf. Delbaen and Schachermayer (1994) [43]. Our specifi-
cation for market price of risk in AJD models precludes arbitrage opportunities
and the models under both measures are of the same class.
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Theorem 6.2.5 (Equivalence between AJDs) Let (Ω,F ,P) be a probabil-
ity space containing a d−Brownian motion

(
W P

t

)
t>0

and a d−compensated

Poisson process (ÑP
t )t>0 such that there exists a stochastic process (Yt)t>0 sat-

isfying (6.3). Then, there exists a measure Q equivalent to P such that:

dYt = µQ (Yt, t) dt+ Σ (Yt, t) dW
Q
t + dÑQ

t (6.11)

such that (WQ
t )t>0 is a Q−Brownian motion and (ÑQ

t )t>0 a Q−compensated
Poisson process.

6.2.3 Affine Pricing Jump Diffusions

In (Ω,F ,P) we suppose that Y is the price process, strictly positive, of a
security that pays no dividend. The state process is Z = (Y, V )ᵀ where V
is the volatility process. Under the statistical measure P, the dynamics of Z
characterized by the triplet

(
µP,Σ, νP) is given by:

dZt

Zt−
= µP

t (γ) dt+ Σt (γ) dW P
t +

∫
NP (dz, dt)− νP (γ) (dz, dt) (6.12)

where W P and NP are respectively a Brownian motion and a Poisson process,
while νP (dz, dt) = λPdmP (z, t) is the random measure attached with jumps
which arrive with intensity λ and mark according to the probability distribu-
tion mP. The probability measure P is completely defined by the parameters
γP of the Brownian motion and of the Lévy measure, so that we have the set
of P−parameters:

γP =
(
γ
(
W P) , γ (νP))

Given a specification of
(
µP,Σ, νP) such that a solution of (6.12) exists, we

may consider the existence of an equivalent martingale measure Q by specifying
market price of risk Λ1 and Λ3 which satisfies equations (6.8). Under this
measure, Z is an affine jump diffusion with triplet

(
µQ,Σ, νQ) such that:

dZt

Zt−
= µQ

t (γ) dt+ Σt (γ) dWQ
t +

∫
NQ (dz, dt)− νQ (γ) (dz, dt) (6.13)

Similarly, the measure Q can be specified by a set of Brownian motion and
Lévy measure parameters, so that we define the set of Q−parameters:

γQ =
(
γ
(
WQ) , γ (νQ))

By Girsanov’s theorem for AJD processes, cf. Proposition 6.2.3, we define
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the market price of risk Λ = (Λ1,Λ3) as solutions of the following system:

µQ
t = µP

t (γ) + Σt (γ) · Λ1 +
∫

(Λ3 (z)− 1) dmP (z, t)

WQ = W P −
∫

Λ1dt

λQdmQ (z, t) = Λ3 (z) · λPdmP (z, t)

Remark 6.2.6 This presentation of a specific affine jump-diffusion framework
raises attention to a number of common pricing models. The general formu-
lation (6.12), or (6.13), includes the pioneering models of Black and Scholes
(1973) [19] or Merton (1976) [128] in the univariate case. Another widely
studied specification is the class of stochastic volatility models with the deriva-
tion of Heston (1993) [88], Bates (1996) [14] and in a jump-diffusion approach
those of Eraker (2004) [61].

Finally, to cast specifications (6.12) and (6.13) into an estimation frame-
work, we define the set of parameters involved in our optimization procedure:

γ =
(
γQ,Λ

)
∈ Rm

At this stage, the objective is to estimate the model-dependent set of pa-
rameters γ. What remains to be done to have a full formulation of the problem
is to choose a relevant loss function.

6.2.4 Towards a Well-Posed Optimization Problem

Regularizing by Relative Entropy

A natural loss function L(γ) interesting for the risk minimization (6.2) is the
quadratic pricing error, cf. Christoffersen and Jacobs (2001) [29]. The problem
would then become. Given a data set D = {Y ∗t , C∗ (Y ∗t , Ti,Ki)}, find:

γ∗ = arg min
γ∈Rm

L(γ)

with:
L(γ) =

∑
i,t

ωiEYt|γ,Y ∗
t−1

|Cγ
t (Yt, Ti,Ki)− C∗ (Y ∗t , Ti,Ki)|

2

where:

• ωi are the weights, to be chosen by the decision maker,

• Yt is simulated under Pγ , the objective measure given γ knowing Y ∗t−1,

• Cγ
t (Yt, Ti,Ki) is the t−time theoretical price with spot Yt, maturity Ti

and strike Ki under Qγ , the pricing measure induced by γ.
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But, as Cont and Tankov (2004) [32] noticed, from which this subsection
is widely inspired, this formulation, though giving a statistical sense to the
problem, doesn’t resolve the uniqueness and stability issues. Indeed, L is not
convex, so many local minima might exist or some flat directions might make
the solution get unstable. It is an ill-posed problem, cf. Engl et al. (1996)
[59]. The usual way to cope with that issue is to introduce, as in Cont and
Tankov (2004) [32], a penalization term, namely the relative entropy of the
pricing measure Qγ with respect to some prior model Q0 explicitly given by:

It (Qγ |Q0) = EQγ

[
log

dQγ

dQ0
|Ft

]
The relative entropy has a few interesting properties which make it relevant

to use as a penalization term:

• Financial issue: if Qγ is not absolutely continuous w.r.t. the prior,
It (Qγ |Q0) becomes infinite. Thus, if the prior is well chosen, we can
impose good properties to Qγ . For example, we might take an auxiliary
simpler diffusion model, which will be easier to calibrate.

• Numerical aspect: It (Qγ |Q0) is convex in the different parameters, so the
penalization term has a convexification impact on the surface to optimize
which brings stability to the solution(s).

• Information-theoretic foundation: minimizing It (Qγ |Q0) corresponds to
adding the least possible information to the prior to fit in the best way
with the option prices (and implicitly with the historical evolution of the
underlying). So it introduces a tradeoff between the accuracy of the fit
(information contained in option prices) and the numerical stability of
the results (information contained in the prior). It could therefore also
be interesting to take the objective measure as a prior.

The following result shows that in the case where the measures are gener-
ated by affine jump-diffusions, the relative entropy can be expressed in terms
of the Girsanov parameters and Q0−characteristics of X = log Y .

Proposition 6.2.7 (Relative Entropy) If Qγ � Q0 with Girsanov quanti-
ties Λ1 and Λ3, the entropy process of Qγ w.r.t. Q0 is explicitly given by:

It (Qγ |Q0) =
1
2
EQγ

[Λ1 · Σ] + EQγ [
f (Λ3) ∗ νQ0

]
(6.14)

where f (y) = y log (y)− (y − 1).

Proof. Denote by T = TQγ

= E (N) the density process with respect to Q0.
The canonical decomposition of the Q0−submartingale T log (T ) is T log (T ) =
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M +A with:

M =
∫
Z− (1 + log T−) dN + (T−f (Λ3)) ∗

(
mQ0 − νQ0

)
A =

1
2

∫
T−d 〈N c〉+ (T−f (Λ3)) ∗ νQ0

where M is a local Q0-martingale and A is predictable and of finite variation,
cf. Appendix ?? and especially Proposition A.2.3. The quadratic variation
〈N c〉t = Λ1 · Σ is the same under both measures Q0 and Qγ . Hence:

It (Qγ |Q0) = EQ0 [Tt log Tt] = EQ0 [At]

=
1
2
EQγ

[Λ1 · Σ] + EQγ [
f (Λ3) ∗ νQ0

]
which gives the desired result.

The Well-Posed Optimization Problem

Let us consider the following regularized problem, where α is the weight given
to the accuracy (or to the stability):

γ∗ = arg min
γ∈Rm

Lα(γ)

with:

Lα(γ) =
∑
i,t

ωiEYt|γ,Y ∗
t−1

|Cγ
t (Yt, Ti,Ki)− C∗ (Y ∗t , Ti,Ki)|

2 + αIt (Qγ |Q0)

The role of α is clearly important and its value should depend on the data
used (which governs the shape of the function to be optimized) and on the
loss of precision due to the introduction of the entropy term. This corresponds
to what is called an a posteriori choice of α. We won’t detail here the way
to determine a good value for α, the interested reader will refer to Cont and
Tankov (2004) [32]. Their determination is based on the Morozov discrepancy
principle, as described in Engl et al. (1996) [59]. This way to determine α
gives the convergence of the solution towards a minimum entropy least squares
solution when the error level allowed alluded to earlier tends to zero. There
are two main advantages for this new formulation:

• The first one is that it transforms the ill-posed problem into a well-posed
one. The existence of the solution is easy to prove. Let us give here an
idea of the proof. We assume simple conditions on the jumps and on the
normal laws of the Brownians to prevent the underlying level from being
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multiplied by more than 100 from one day to another (which is always
satisfied in practice). Then the corresponding prices of the options are
bounded. So the least squares term is bounded. Besides, the entropy
term explodes as soon as the parameters are far from the prior ones. So
the infimum of Lα is in a compact set. As Lα is continuous with respect
to γ, this infimum is a minimum. For α big enough, we could show that
this solution is unique. We now seek γ in a compact set Γ ⊂ Rm

• In the neighborhood of the minimum, the surface to explore is more
convex which helps one to locate the minimum sought.

Now, we can say that the problem is well-posed in the two senses of the
term: theoretically because it has an admissible solution and practically be-
cause it will be easier to solve.

Casting the MEU Setup

Subsequently, we cast the general framework in which we embed our optimiza-
tion problem into the general context of maximization of expected utility, cf.
Section 5.1. Our idea is based on a practical point of view of calibration: we
want to interpret such calibration or inference problem as a decision one. In-
deed, given our data set D = {Y ∗t , C∗ (Y ∗t , Ti,Ki)} we define a utility function
to be maximized, namely UD(γ) or more simply U(γ), such that:

• if we denote u the joint utility with:

u(γ, y) = M−

∑
i,t

ωi |Cγ
t (Yt, Ti,Ki)− C∗ (Y ∗t , Ti,Ki)|

2 + αIt (Qγ |Q0)


• if the parameter γ is the chosen one for calibration in Γ,

• if Y ∈ Y is the vector of predictive data (Yt , t = 1..T ) drawn from density
distribution pD(Y |γ) ≡ p(Y |γ) and defined as:

p(Y |γ) = δY ∗
1
⊗ p(Y2 |Y ∗1 , γ)⊗ ...⊗ p(YT |Y ∗T−1, γ)

where Y, the space of underlying variables, is taken without loss of gen-
erality as R+ (for stochastic volatility models, the dimension is 2)

• if the constant M is such that u is strictly positive, then:

γ∗ = arg max
γ∈Γ

U (γ) = arg max
γ∈Γ

Ep(Yt|γ,Y ∗
t−1) [u (γ, y)]

where u is bounded and continuous over Γ.
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We are now facing a utility maximization problem, in the statistical sense
of it. However, the utility function U (γ) is very costly to compute in our
case, and classical optimization methods (like gradient methods) would not be
practicable. We then propose to use an alternative based on a Markov Chain
Monte Carlo with Interacting Particle System algorithm, cf. Section 5.3.

6.3. Reliability of the Joint Procedure

In this section, we present practical applications of the particle algorithm to the
introductory joint calibration Problem 6.1, in order to test on simple examples
the effectiveness of the method. For this purpose, we calibrate the historical
and risk-neutral parameters of two affine pricing models: Black-Scholes and
Heston model (with latent stochastic volatility).

Remark 6.3.1 We termed estimation the determination of the parameters of
interest, even if we work within a decision analysis framework. Nevertheless, it
does not refer to the estimation in the statistical sense, and confidence intervals
do not really make sense in such a context.

6.3.1 Implementation Issues

Two Markov kernels K1,n and K2,n are required, as well as the number N
of particles and the cooling schedule J(n). As Markov proposals, we simply
choose truncated normal random walks as evoked in Section E.5. As for sample
size N , central limit type inequalities would lead us to typical values of order
N = 10, 000 particles to give accurate Monte-Carlo integral approximations.
However, as we are not interested by integral approximations but only by the
mode of target distributions, this number might be too large for our purpose.

In practice, it appears that N below 1, 000 gives good results in most cases.
Specifically, we take N = 500. Note that this sample size should obviously be
larger for the RM Algorithm 5.3.2, since in practice, it suffers more from de-
generacy. As cooling schedule, our theoretical arguments suggest a logarithmic
form for small values of J , and a linear form for large ones, when the algorithm
is almost reduced to the RM Algorithm 5.3.2. For computational convenience,
we simply take a linear cooling scheme from 1 to 31 by a time-step of 2.

In the computation of the objective function L defined in Section 6.2.4, we
choose weights of the form:

ωi =
1

Vega (Ti,Ki)

where Vega(·) is the Black-Scholes vega of the option computed using the
market implied volatility. The interest of this weight, as noted by Cont and
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Tankov (2004) [32], is that it converts errors in price in errors in implied
volatility, thus rescaling all terms entering in L to the same order of magnitude.

For each day of our sample, we need to produce an estimate of the spot
volatility level. A practical way to obtain this was to evaluate this volatility
from an historical analysis. The statistical estimate used was a moving empiri-
cal average variance in order to capture day-to-day effects and both persistence
and clustering of volatility.

Regarding the entropy term, it caused numerical problems linked to the
choice of the constant added to make U positive. Indeed, after 3 iterations, the
entropy term explodes and the calculation of the coefficient α gets hazardous
so we could not use in a satisfying way the advantages of the entropy. However,
the expected convexification effect was actually observed these 3 first iterations.

6.3.2 Application to a Simulated Data Set

Using Black-Scholes Model

In the first simulation study, we generated a panel of stocks and option prices
using the well-known Black and Scholes (1973) [19] model. One main advantage
of this specification is its simplicity which allows to precisely test the cross-
sectional effect. Following market price of risk specification enlightened in
Section 6.2, we fix P and Q parameters respectively to:

(µ;σ) = (0.08; 0.4) , (µ∗ = r;σ) = (0.037; 0.4)

A 30−days long returns series was simulated under P−parameters and option
prices were computed under the measure Q using the Black-Scholes formula.
The maturity of theses options was one year and we used 21 equidistant strikes
from 30 to 50 for a spot being at 40.

Our approach to capture cross-sectional effect is made to produce indepen-
dent estimations with different stocks returns length, beginning from a short
horizon of 5 days and iteratively by a time-step of size 5 reaching a 30 days
long horizon. We estimate volatility σ, (historical) drift µP and market price of
risk λ parameters. The estimates are reported in Table 6.1. They correspond
to optimal parameter estimates, i.e.: the value corresponding to the minimum
of our utility functional (overall option fit).

A number of broad points emerge from Table 6.1. Longer time horizons
provide significant pricing improvement than shorter horizons, as the LSE’s
(least square error) of the pricing errors are relatively stable even though the
parameters from time T = 5 to time T = 30 days are progressively larger and
more difficult to identify. Once again, let us recall that we constrain the risk-
neutral parameters to be time-consistent with the objective measure dynamics
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Horizon (days)
Parameters T = 5 T = 10 T = 15 T = 20 T = 25 T = 30
µP (0.08) 0.068 0.074 0.086 0.072 0.073 0.088
σP,Q (0.4) 0.344 0.355 0.372 0.391 0.429 0.433
λ (0.1) 0.073 0.076 0.144 0.102 0.097 0.129
LSE 0.58 1.03 1.75 1.85 2.13 2.81

Table 6.1: Black-Scholes Model Estimates.

and we use both stocks and option prices spanning a long time period so that
our results are not driven by a specific episode.

To assess the quality (both on the historical and risk neutral sides) of our
particle algorithm, the final sample can be plotted, cf. Figure 6.1.

Figure 6.1: Distributions of Simulated Particles.

We also illustrate, in this particular case, the interest of the simulated an-
nealing. In the Figure 6.2, one can observe the convexification/discrimination
effects with the evolution of the scales.
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Figure 6.2: Simulated Particles on the Utility Surface.

Using Heston Model

In the second series of simulation, our goal is two-fold. First, we examine how
risk premiums affect option prices and then test the efficiency of our algorithm
to recover the historical latent stochastic volatility. The analysis has been
conducted in the Heston (1993) [88] framework. Stock returns and volatil-
ity paths were generated under a specified historical measure P, while option
prices were computed under an appropriate measure Q for 21 equidistant strike
values. The system for (S, V ) can be written as:

dSt = µStdt+ St

√
VtdW

s
t − Stµsλdt (6.15)

dVt = κv (θv − Vt) dt+ σv

√
VtdW

v
t (6.16)

where W k
t , k = (s, v) are two Brownian motions with E [dW s

t dW
v
t ] = ρdt. As

Eraker (2004) [61], we chose the following shape of market prices of risk:

• return market price of risk:

λS(t) =
µP − µQ√
V (t)
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• volatility market price of risk:

λV (t) = − κP − κQ

σv

√
1− ρ2

We led the same estimation strategy that for Black-Scholes model and
produced separate estimates for time horizon ranging from T = 5 to T = 30.
The estimated parameters for both measures are reported in Table 6.2.

Horizon
Parameters T = 5 T = 10 T = 15 T = 20 T = 25 T = 30
µP (0.08) 0.077 0.075 0.075 0.075 0.075 0.076
κP

v (3.21) 3.317 3.322 3.263 3.330 3.427 3.515
θP

v (0.25) 0.19 0.283 0.208 0.201 0.239 0.192
σP,Q

v (0.81) 0.706 0.720 0.762 0.821 0.879 0.856
ρP,Q (−0.2) -0.11 -0.32 -0.431 -0.525 -0.224 -0.184
κQ

v (4.41) 4.249 4.425 4.464 4.49 4.556 4.533
θQ

v (0.35) 0.302 0.26 0.353 0.39 0.327 0.26
λS (0.048) 0.045 0.043 0.044 0.043 0.043 0.044
λV (−1.2) -1.383 -1.565 -1.14 -1.212 -1.129 -1.018
LSE 0.0017 0.0012 0.0024 0.0036 0.0037 0.0068

Table 6.2: Heston Model Estimates.

Once again, the results are satisfying and bear some interesting comments.
Indeed, without using a huge number of simulations and particles, a good level
of accuracy has been reached. Therefore, it is far from being absurd to rely
on the results produced by our procedure. Though, we can notice that the
joint calibration is more cumbersome for long time horizon data which was
predictable because of the more complex and numerous effects to catch. It was
not true with Black Scholes: it can be explained by the difficulty entailed by
the diffusion of the volatility. But in practice, this procedure will not be of
any interest for horizons larger than 10 days. Besides, a kind of stability over
time seems to emerge from the results. This is an important point to examine.
This could confirm one of the motivations of the resolution of this problem.

6.4. Real-World Risk Premiums Investigation

In order to assess the usefulness of our joint calibration approach, we address
two option pricing issues: selecting the appropriate model and quantifying the
risk premiums of the various underlying factors. In this attempt, we used the
information from the cross-section of EuroStoxx 50 stocks and options series
for the period June 2003 to April 2004.
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6.4.1 Models Specification

We consider the general framework displayed in Section 6.2 and study models
incorporating stochastic volatility and jumps in both returns and volatility. On
the probability space (Ω,F ,P), the equity price index St and its spot variance
Vt are assumed to jointly verify:

dSt = µStdt+ St

√
VtdW

s
t + d

(
Nt∑

n=1

Sτn−

[
eZs

n − 1
])

− Stµsλdt (6.17)

dVt = κv (θv − Vt) dt+ σv

√
VtdW

v
t + d

(
Nt∑

n=1

Zv
n

)
(6.18)

where W k
t , k = (s, v) are two Brownian motions with E [dW s

t dW
v
t ] = ρdt

and Nt is a Poisson process with intensity λ, independent of the two diffusion
processes. Zs

n|Zv
n ∼ N

(
µs + ρsZ

v
n, σ

2
s

)
are the jumps in returns and Zv

n ∼
exp (µv) are the jumps in volatility and µs = exp

(
µs + 1

2 (σs)
2
)
.

From this very general formulation, augmenting Bates (1996) [14] and close
to Eraker (2004) [61], we derive four specifications: SV and SVJ models assume
that there are respectively no jumps at all and no jumps in volatility, SVIJ
and SVCJ models allow both types of jumps and consider respectively that
jumps sizes in returns are independent, correlated (parameter ρs) with those
in volatility.

The market generated by the structure (6.17) and (6.18) is incomplete.
Therefore, there is a multiplicity of equivalent martingale measures, corre-
sponding to the absence of arbitrage. For the highest flexibility of the equiv-
alent martingale measure, we assume a very general change of measures. Ac-
cording to the generalized Girsanov theorem recalled in Section 6.2, the mea-
sure transformation for Brownian motions only shifts the drift of the stochas-
tic differential equations, while measure transformation for jump processes are
more flexible. As we choose a specification with constant intensity and time-
independent jump sizes, we only require that the two distributions are abso-
lutely continuous with respect to the other one. Finally, under the risk-neutral
probability measure Q, the equity index and its variance verify:

dSt = rStdt+ St

√
VtdW

s
t (Q) + d

Nt(Q)∑
n=1

Sτn−

[
eZs

n(Q) − 1
]− Stµ

Q
s λ

Qdt

(6.19)

dVt = κQ
v

(
θQ

v − Vt

)
dt+ σv

√
VtdW

v
t (Q) + d

Nt(Q)∑
n=1

Zv
n (Q)

 (6.20)
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where µQ
s = exp

(
µQ

s + 1
2

(
σQ

s

)2). We define the sets of structural:

γP = (µ, κv, θv, λ, µs, ρs, σs, µv)

and implicit:
γQ =

(
κQ

v , θ
Q
v , λ

Q, µQ
s , ρ

Q
s , σ

Q
s , µ

Q
v

)
parameters. We also note that the change of measures constrains σv and ρ to
be the same under both measures.

6.4.2 Parameters Estimation using Cross-Section

The methodology has been applied to the cross-section of stock returns and
option prices. Nevertheless, the extreme computational burden generated when
using both sources of data severely constrained how much and what type of
data could be used. Therefore, we focused on three sub-periods of different
horizons of our data set and discussed the option pricing implications of our
results. These three Eurostoxx 50 scenarios are denoted by Si, i = (1, 2, 3).

Parameter Estimates

Table 6.3 reports parameter estimates under both measures P and Q for the SV
and SVJ models and the three scenarios. The first scenario lasts from 02/06/03
to 06/06/03, the second from 09/06/03 to 13/06/03 and the third one is the
joint of the two preceding, spanning from 02/06/03 to 13/06/03. Maturity of
all the scenarios is 183 days. The estimates are quoted in annualized form in
order to be comparable with existing results in option pricing literature, e.g.
Bates (1996) [14] and Pan (2002) [137].

There are several interesting features to point out from these estimates.
First, we note that for a specified model, reported values are relatively stable
across scenarios. Moreover, the joint scenario S3 produces estimates close to
those obtained in sub-samples S1 and S2. These results give evidence of the
stabilization effect of our procedure in estimating model parameters across
time. By incorporating both stocks and options cross-sectional aspects in the
calibration, our joint approach may capture trend effects and produces also
a sort of benchmark model. Second, the difference between estimates under
the two measures (historical minus risk-neutral) is the risk premium associated
with Brownian, volatility or jump risk. All of these premiums were estimated
to be positive across all models and scenarios. This implies that investors are
averse to changes in Brownian, volatility or jump dimensions. This remark is
of particular interest from the perspective of option prices: when the market is
more (resp. less) volatile or jumpy, the options are more (resp. less) expensive
than those implied by the objective measure as investors require higher (resp.
lower) premiums.
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SV SVJ
S1 S2 S3 S1 S2 S3

µ 0.072 0.078 0.069 0.069 0.075 0.064
κv 7.009 6.874 7.109 7.127 6.938 7.261
θv 0.028 0.027 0.023 0.028 0.026 0.022
λ . . . 0.06 0.07 0.06

µs (%) . . . −3.75 −4.01 −4.66
σs (%) . . . 4.07 3.17 6.63
σP,Q

v 0.541 0.558 0.472 0.542 0.612 0.529
ρP,Q −0.306 −0.381 −0.540 −0.379 −0.431 −0.582
µQ = r 0.03 0.03 0.03 0.03 0.03 0.03
κQ

v 4.521 4.756 4.781 4.368 4.679 4.804
θQ

v 0.031 0.024 0.022 0.028 0.025 0.026
λQ . . . 0.002 0.002 0.002

µQ
s (%) . . . −2.59 −2.89 −3.23
σQ

s (%) . . . 2.89 2.21 4.91

Table 6.3: Joint P and Q Parameters Estimates.

Market Smiles Fit

Having estimated the P and Q parameters, we now discuss the empirical per-
formance of the various models in fitting the historical implied volatility smiles.
Figure 6.3 plots the model and market Black-Scholes implied volatilities (IVs)
and presents evidence on the fit of the SV and SVJ models. We can notice
that the IVs curves are very similar from one model to another one and on
average they fit quite well the data.

The upper left and right graphs in Figure 6.3 superimposes the five daily
IVs curves for respectively scenarios S1 and S2. As moneyness is different
from one day to another, we represent volatility curves with respect to op-
tions instead of moneyness, so that to each X-axis point corresponds an option
whose daily implied volatilities are reported along the Y-axis ranging from the
first to the last day. Besides, for each day, market curve goes through the
big points, while model smile is represented by a solid line. We remark that
for each day and scenario, SV or SVJ model smiles fit relatively well market
values. The lower graphs present how the presented methodology allows to re-
construct term-structure of implied volatilities across options and time. While
the reconstructed volatility surface (right) is more perturbed than the original
model surface (left), the error is reasonably small.
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Figure 6.3: Calibrated Black-Scholes Implied Volatility Curves.

6.4.3 Premiums Estimates and Option Prices Effects

Our joint calibration approach attempts to simultaneously capture the effect of
both the historical and implied probability measures in a one-stage procedure.
Since the methodology requires the absence of arbitrage, σv and ρ should be
the same under P and Q. Therefore, the estimation of risk premium parameters
is central to our methodology. A thorough analysis of risk premium estimates
and effects is therefore of interest.

Inference on Risk Premiums

To see how risk premiums affect conditional moments of returns and volatility,
Table 6.4 provides the instantaneous first and second moments of Yt = ln (St)
and Vt for the SV and SVJ models.

For example, risk premiums affect both the level and mean-reversion of
volatility, which implies that a positive volatility risk premium generates a
structural volatility higher than its risk-neutral counterpart. Besides, jumps in
returns and volatility generate different patterns of conditional non-normalities.
Jumps in returns result in decreasing amounts of excess skewness and kurtosis
while jumps in volatility provide a factor that combines features from both
jumps in volatility and diffusive stochastic volatility.
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SV SVJ
E [Yt] µ− 0.5E [Vt] µ− 0.5E [Vt]− λ (µ− µs)
V ar [Yt] Vt Vt + λ

(
µ2

s + σ2
s

)
E [Vt] θv θv + (κv)−1

λµv

V ar [Vt] σ2
vVt σ2

vVt

Table 6.4: Conditional First and Second Moments.

An analysis of conditional moments provides a theoretical description of
why risk premiums are difficult to estimate. In fact, variations in these pa-
rameters slightly affect the first moment of Yt and Vt and should have a small
effect on the cross-section of returns and options series. A satisfactory identifi-
cation of these parameters would thus require derivative contracts which solely
depend on how quickly the conditional moments of the state variables Yt and
Vt fluctuate.

To assess further the estimation challenge of risk premiums, we illustrate in
a smiles variation study why such parameters are difficult to identify. Figure
6.4 shows how variations of risk premiums affect implied volatility.

Figure 6.4: Effects of Variations of Volatility and Jump Risk Premiums on
IVCs for Two Maturities in the SV and SVJ Models.
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From P to Q implied volatility

The effects of risk premiums can also be assessed on the basis of option prices.
Figure 6.5 displays Black-Scholes implied volatility curves for the SV and SVJ
models for two maturities and prices computed under P and Q.

Figure 6.5: IVCs for SV and SVJ Models Based on Parameters from P and Q.

The first smile is based on Q parameters while the second one is based on P
parameters which include the effects of risk premiums estimates. One can no-
tice that the two models generated quite similar implied volatility curves. Be-
sides, spreads between the two measures are more severe as maturity increases
and assess for uncertainty and risk averse behaviour of investors. Therefore,
given a sufficient number of parameters and allowing them to change from one
measure to another without constrains, one cannot distinguish different mod-
els in an analysis only based on option prices. And quite naturally, a simpler
model will always be preferred. From a classical calibration perspective where
ease and reliability are of first importance, this is not a problem. However, if
one wishes to jointly fit both cross-section of returns and options series and to
determine a relevant benchmark model, another strategy has to be set up. As
a consequence, our joint calibration procedure might help to select the best
model(s) to take into account all aspects of the data set.
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6.4.4 Aversion to Model Misspecification

Given our joint calibration procedure, we next investigate the time homoge-
neous property of the models specification and the behaviour of investors to-
wards Brownian, volatility and jump risk, described by risk premiums, across
time. To answer this question in a satisfactory way, we set up a procedure
which consists of estimating risk premiums parameters for SV model for each
month of our data set. The Table 6.5 reports relevant parameter estimates.

SV Options Returns
κP

v θP
v κQ

v θQ
v Skew Kurt Skew Kurt

jun 03 7.35 0.028 3.91 0.033 1.15 3.90 0.06 2.27
jul 03 7.99 0.028 4.69 0.030 1.42 4.88 −0.36 3.06
aug 03 7.89 0.023 3.94 0.028 1.18 3.94 −0.34 1.69
sep 03 7.46 0.033 3.61 0.051 1.18 4.16 −0.92 3.38
oct 03 8.09 0.024 3.46 0.035 1.11 4.09 −0.52 2.09
nov 03 6.97 0.031 4.16 0.032 1.45 5.77 −0.73 2.53
dec 03 8.76 0.024 5.63 0.024 1.60 5.81 0.63 2.37
jan 04 8.23 0.030 5.76 0.033 1.47 5.79 −0.01 1.57
feb 04 8.76 0.025 6.69 0.024 1.51 5.69 −0.16 1.97
mar 04 7.74 0.030 5.59 0.029 1.15 4.13 0.28 1.59
apr 04 7.49 0.027 4.86 0.025 0.92 3.13 −0.59 3.25

Table 6.5: Volatility Risk Premiums Estimates Across Time.

An important conclusion emerges from this result. The divergence between
the information embedded in the measures P andQ is indicative of time-varying
risk premiums. More interestingly, returns and options series displayed oppo-
site effect in terms of moments properties as measured by the skewness and
kurtosis: while returns displayed negative skewness and slight kurtosis, op-
tions are characterized by strong and positive values of these moments. This
effect could be related to investor’s anticipations towards model misspecifica-
tion which lead to overprice Brownian, volatility and jump risk by putting high
risk premiums. In fact, if the models are misspecified along certain dimensions
and agents are both risk and uncertainty-averse to this model failure, then the
historical and implied distributions present a form of time-varying aversion.
Here again, in a classical calibration perspective, this aspect is not crucial as
practitioners preclude model indeterminacy by frequently rebalancing model
parameters. On the contrary, our joint and cross-sections calibration procedure
may benefit from studying models that allow time-varying parameters in their
specification and under this setup might help to investigate time inhomogeneity
of the historical and implied distributions.
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6.5. Conclusion

We developed an innovative and practicable methodology for a joint calibration
challenge: from a time series of stock returns and option prices, we managed
to determine the characteristic parameters of both historical and risk-neutral
measures. This was made possible by a sophisticated particle sampler where
usual methods would have failed. Our theoretical study of it led us to efficiently
tune the algorithmic preferences.

The interest of this approach is two-fold: first, it stands for a quest for
information embedded in real data, complementary to the one led through
classical calibration (embedded in the stochastic model). It operates a kind
of average of this calibration and might be used as a benchmark. Moreover,
it takes advantage of more information which could be notably used to cali-
brate parameters usually determined by rough calculations or intuition or a
simple historical study. For instance, the idea briefly alluded to in the intro-
duction remains a good one: the determination of unobservable parameters like
correlations in the multi-dimensional case is often achieved through historical
statistics independently from other parameters. With this algorithm, it could
be done in a more sophisticated way and since the at-stake of these correlation
products is tremendous, it is not a pointless remark.

The second interest is directly linked to the theoretical and more general
information brought by the joint calibration. In particular, the last study on
risk premiums is quite precious, and must be deepened. In fact, our work sheds
light on the relationship between the investors and the model used: leading
this study through different periods of time could be very enriching regarding
our understanding of the models, their limitations and the trust investors have
in them.

Then, this work gives way to a lot of interesting tracks to be explored.
The first one is to optimize the conception of the algorithm. It would be very
helpful to try a more dynamical optimization with less rough approximations
as suggested in Section E.5. It could allow us to establish a clear and refined
dependency between the cooling schedule, the shape of the utility function and
the size of the compact considered. Besides we could exploit in a better way
the impact of entropy with a dynamic determination of the constant imposing
the utility to be positive. It would prevent it from exploding in the calculation
of the entropy and so the entropy could bring its convexification effect as
suggested by our first attempts. After these improvements the convergence
could be faster and the algorithm could give quicker accurate results.
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In this Appendix, we present convergence results for particle systems. Es-
pecially, we provide a uniform convergence theorem for our Markov Chain
Monte-Carlo with Interacting Particle System algorithm, cf. Section 5.3.

E.1. Existing Convergence Theorems

Let πn be the probability measure over the Borel set D with Lebesgue density
UJ , up to a normalization constant. In the following, we will extensively resort
on the next notation for some sets of test functions:

• Cb(D) is the set of continuous bounded functions on D,

• Cb,1(D) is the subset of Cb(D) of the functions φ with ‖φ‖ ≤ 1 where:

‖φ‖ = sup
x∈D

|φ(x)|

• C0,∞
b,1 (D) is the subset of Cb(D), continuous and infinitely differentiable.



152 E Convergence Results

We first recall a simple convergence result shown in Amzal et al. (2005)
[5], for the two previously presented algorithms, cf. Section 5.3. To this end,
for any fixed iteration n, we introduce a set of assumptions.

Assumption E.1.1 Assume that:

• u is continuous, positive and bounded,

• for all d and n, K1,n(d, . ) > 0 on the support of hJ ,

• (1/N)
∑N

i=1 varK1,n(d
(n−1)
i , . )⊗np

(w(n)
i ) is bounded independently of N ,

• there exists δ > 0 s.t. conditionally to formerly drawn particles (d(n−1)
i ):(

1/
N∑

i=1

varK1,n⊗np(w
(n)
i )

)2+δ N∑
i=1

EK1,n⊗np

[
(w(n)

i )2+δ
]
−→0, N → +∞

• d 7→ var [K2,n(d, . )] is bounded.

Assumption E.1.1 corresponds to regularity hypothesis on Markov kernels
that are easy to meet in practice. Under these conditions, one can prove the
following step-by-step theorem:

Theorem E.1.2 (Step-by-Step Convergence) Under Assumption E.1.1,
for any iteration n, there exists a constant an s.t. for any measurable and
bounded function φ over D, we have:

E

( 1
N

N∑
i=1

δ
d
(n)
i

(φ)− πn(φ)

)2

|Fn−1

 ≤ an||φ||2∞
N

(E.1)

where Fn−1 stands for the conditioning on the previous sample (d(n−1)
i )i=1..N .

A detailed proof of this result can be found in Amzal et al. (2005) [5],
using Lindeberg’s types of arguments. It states that, for each iteration n, the
simulated sample generated by our algorithm will get closer to the searched
optimum for a big enough sample size N . The main limit of this result is that
we have no clue about how an might grow with n. We then aim to establish
an explicit dependency of an on n. Once this obtained, it may be used to
know the required number of particles to be used to achieve a certain level of
accuracy of the optimization algorithm. Indeed, this level imposes a minimal
value of J(n) through the convergence of the target law towards the Dirac
measure on the mode of the utility function. Then we only have to find the
optimal cooling schedule to deduce a minimal value of n.

In the particular case of the Resampling-Markov (RM) Algorithm 5.3.2, a
stronger result can be shown, as presented in the following theorem.
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Theorem E.1.3 (Convergence of the RM Algorithm) Assuming that u
is bounded by strictly positive constants, for any iteration n, there exists a
constant cn such that for any φ in Cb(D), we have:

E
[(
πN

n (φ)− πn(φ)
)2] ≤ cn

||φ||2∞
N

Let B be a neighborhood of the targeted optimum. Let fN
n (B) be the frequency

of visiting B for the RM Algorithm, and fn(B) be the frequency of visiting B
for a theoretical trajectory from π0 ⊗ ...⊗ πn. If the cooling schedule is linear:

E
[(
fN

n (B)− fn(B)
)4]1/4

≤ c√
N

A simple proof of it is also available in Amzal et al. (2005) [5]. Recalling
that our goal is the optimum determination, this convergence of the visiting
frequencies around optimum’s neighborhoods brings a valuable evidence for
the effectiveness of the RM Algorithm with a linear cooling schedule. We are
now concerned by extending those convergence results.

E.2. The Feynman-Kac Formalism

Usual central limit type of statistical theorems, cf. Jacod-Shiryaev (2003) [93],
are not refined enough for our purpose. That’s why we should analyze our
particle systems algorithm in terms of measure processes, as pioneered by Del
Moral (1998) [39]. Our demonstration will be strongly inspired by Del Moral-
Guionnet (2001) [40] in which an uniform convergence result is brought up for
sequential particle filtering. Let us introduce some useful notations related to
measure theory.

E.2.1 Notation

On the space of signed measures on the Borel set D, we define, for a signed
measure µ, its total variation norm by:

‖µ‖TV = sup{µ(f), f ∈ C0,∞
b,1 (D)}

We also introduce M1(D) as the space of all probability measures on D,
equipped with the weak topology. Then, if K is a Markov transition on D
with set of Borelians given by B(D), we define the Dobrushin ergodic coeffi-
cient, cf. Dobrushin (1970) [52], by:

Dob(K) = 1− sup
x,z∈D

|K(x,A)−K(z,A)| , A ∈ B(D)
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At this point, we can notice that if K is independent from the starting
point, its Dobrushin coefficient will be equal to 1. To interpret our algorithm
in terms of discrete-time measure-valued stochastic process, we consider the
following measure-valued dynamical system:

πn = φn(πn−1)

where π0 ∈M1(D) and φn : M1(D) →M1(D) is a continuous function s.t.:

φn(π) = ψn(K⊗
1,nπ)K⊗

2,n (E.2)

ψn(π)f =
(1⊗ 1)(π)(gnf)
(1⊗ 1)(π)(gn)

(E.3)

where:

• 1⊗ 1 is the identity tensor M1(D) 7→M1(D×D) s.t. (1⊗ 1)(π) = π⊗π,

• {K⊗
1,n = δ⊗K1,n, n ≥ 1} and {K⊗

2,n = δ⊗K2,n, n ≥ 1} are two sequences
of Markov transition kernels on D×D, where δ is the identity kernel on
D and K1,n et K2,n are sequences of transition kernels on D correspond-
ing respectively to the importance sampling steps and to the Markov
renewal steps. We shall underline that, for time, the Markov kernel is
not anymore of Metropolis-Hastings type, we will re-discuss this issue in
Section E.5. We will slightly abuse of the notations by identifying Ki,n

and K⊗
i,n as well as any test function f (on D) and 1⊗ f (on D ×D),

• {gn, n ≥ 1} is a sequence of bounded positive random functions on D×D.
In our case, they stand for the non-normalized weights and can be written
as a deterministic function gn:

gn(d, d′) =

∏J(n)
j=1 u(d

′, F−1(d′, Vj))
K1,n(d, d′)

where F−1(d′, . ) is the vector of inverse cumulative distribution function
of p(. | d′) taken on as an independent uniform random vector Vj .

By construction, the equation π̃n = πn ⊗U⊗J(n)
[0,1] is solution of the transport

equation µn = φn(µn−1). This is also true for the empirical measure πN
n =

1
N

∑N
i=1 δdn

i
. Indeed, recalling that d̂n

i is the state of the i−th particle after
n iterations of the importance sampling step, and dn

i the state of the i−th
particle after n iterations, we can write:

ψn(
1
N

N∑
q=1

δbdn
q
/dn

1 , ..., d
n
N ) =

N∑
i=1

gn(d̂n
i , d

n
i )K2,n(d̂n

i , .)∑j=N
j=1 gn(d̂n

i , d
n
i )

Similarly, we note by π̃N
n , the joint empirical measure over the augmented

probability space, namely 1
N

∑N
i=1 δdn

i ,Vi1,..,ViJ(n) .
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E.2.2 Relations

Before giving the main theorem, let us introduce the fundamental relations
that will help us to both formulate and prove it. We have:

φn/p = φn ◦ ... ◦ φp+1, 0 ≤ p ≤ n.

with convention φn/n =Id. A simple but careful induction gives the relation:

φn/p(π)f =
(1⊗ 1)(π)

(
K1,pgn/p

(
K2,n/pf

))
(1⊗ 1)(π)(K1,pgn/p)

, ∀f ∈ Cb(D)

where:

K2,n/p−1f =
K2,pK1,p

(
gn/p

(
K2,n/pf

))
K2,pK1,p(gn/p)

, gn/p−1 = gpK2,pK1,p(gn/p) (E.4)

with the conventions gn/n = 1 and K2,n/n =Id.

Another useful notation will be to call Sn/p the operator:

Sn/pf =
K2,pK1,p(gn/pf)
K2,pK1,p(gn/p)

, 0 ≤ p ≤ n (E.5)

so that one can easily check the following equality

K2,n/p−1 = Sn/pSn/p+1...Sn/n

Finally, we denote:

K2,p,n = K2,pK2,p+1...K2,p+n

E.3. A General Convergence Result

Assumption E.1.1 are clearly checked by the problem we propose to solve. In-
deed, a sufficient reason is that we work on truncated functions, cf. Section E.5
for practical developments on this. So the step-by-step convergence Theorem
E.1.2 holds, but we are aiming to prove a stronger result.

The convergence theorem we sought must prove the convergence of the
empirical laws towards the Dirac measure in the mode of our utility function
and must establish a dependency between the number of simulations needed
and the number of particles used to achieve a certain level of precision.
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We will denote by D the largest diameter over all the coordinates of D and
K3,k = K2,kK1,k. Also, let σ be such that:

var (K3,k) ≥ σ2

J(k)
(E.6)

In the following demonstration, we consider a Markov step which is contin-
uous relatively to Lebesgue measure. The constants displayed are computed
for Gaussian random walks, without any loss of generality. For further details
on practical aspects, the reader can refer to Section E.5.

Our first useful, in its own, result is the control on the Dobrushin coefficient
of the operators Sp+T,k given by (E.5).

Lemma E.3.1 For every k, p, T verifying p+ 1 ≤ k ≤ p+ T , we get:

Dob(Sp+T/k) ≥ ε2k, a.s.

with:

εk = exp
(
−J(k)

2

(
mD2

σ2
+ ln

(
Umax

Umin

)))
Proof. Computations with rough inequalities give, that, for all borelians
A ⊂ D and for all d ∈ D:

εkπk(A) ≤ K3,k(d,A) ≤ 1
εk

Leb(A)

with Leb the Lebesgue measure. Then, as

Sp+T,kf =
K3,k(gp+T/kf)
K3,k(gp+T/k)

with f ∈ Cb,1(D), we easily get that

Sp+T,kf ≥ ε2k
Leb(gp+T/kf)
Leb(gp+T/k)

which gives the expected result.

Now we can state the main result of this section.

Theorem E.3.2 (General Convergence Result) For any f ∈ Cb,1(E), n ∈
N , T ≤ n, we have:

E
(∣∣πN

n f − πnf
∣∣) ≤ 2T√

N

n∏
k=n−T+1

1
ε2k

+
n∏

k=n−T+1

(1− ε2k)
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When:

J(k) = c ln(k)
(
mD2

σ2
+ ln

(
Umax

Umin

))−1

(E.7)

with c ≤ 1 and T ∝ nb with c < b < 1, this inequality gives us the dependency
sought between n and N for a given required level of accuracy.

Proof. With the convenient notation introduced in Section E.2, the demon-
stration relies on the following, telescopic sum, decomposition:

π̃N
n f − π̃nf =

n∑
p=n−T+1

(
φn/p(π̃N

p )f − φn/p(φp(π̃N
p−1))f

)
(E.8)

+
(
φn/n−T (π̃N

n−T )f − φn/n−T (π̃n−T )f
)

By the triangular inequality, we get:

∣∣π̃N
n f − π̃nf

∣∣ ≤ n∑
p=n−T+1

∣∣φn/p(π̃N
p )f − φn/p(φp(π̃N

p−1))f
∣∣ (E.9)

+
∣∣φn/n−T (π̃N

n−T )f − φn/n−T (π̃n−T )f
∣∣

Let us notice here that we can control the gn and the gn/p corresponding to
the weights involved in the selection step:

Cn−p β
Pn

k=p J(k) ≤ gn/p ≤ Cn−p α
Pn

k=p J(k), a.s.

with:
α = Umaxe

mD2

2σ2 , β = Umine
−mD2

2σ2 , C = V ol(D)

Using (E.4), we can bound a.s. each term of the sum by:

bn/p

an/p

(∣∣π̃N
p f1 − φp(π̃N

p−1)f1
∣∣+ ∣∣π̃N

p f2 − φp(π̃N
p−1)f2

∣∣)
with:

f1 = K1,pgn/pK2,n/pf, f2 = K1,pgn/p

so that f1, f2 ∈ Cb,1(D). This can be classically proved by introducing a
third appropriate term, φp(π̃N

p−1)(K1,pgn/pK2,n/pf)π̃N
p (K1,pgn/p)−1 and using

the triangular inequality. Since π̃N
p is the empirical measure associated to N

independent random variables, with common law φp(π̃N
p−1), the central limit

theorem gives us that:

E
(∣∣π̃N

p f1 − φp(π̃N
p−1)f1

∣∣) ≤ 1√
N
E
(∣∣π̃N

p f2 − φp(π̃N
p−1)f2

∣∣) ≤ 1√
N
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Summing these inequalities in (E.9), and using Jensen inequality, we get:

E
(
|πN

n f − πnf |
)
≤ 2T√

N

(
α

β

)Pn
k=n−T+1 J(k)

which is exactly equals to:

E
(
|πN

n f − πnf |
)
≤ 2T√

N

n∏
k=n−T+1

1
ε2k

(E.10)

The second term is bounded. Indeed Lemma E.3.1 entails, a.s., that:∥∥φn/n−T (µ)− φn/n−T (ν)
∥∥

TV

=
∥∥µn/n−TK2,n/n−T − νn/n−TK2,n/n−T

∥∥
TV

≤
n∏

k=n−T+1

(1−Dob(Sn/k))
∥∥µn/n−T − νn/n−T

∥∥
TV

≤
n∏

k=n−T+1

(1− ε2k)

This gives us the announced result which was the first part of the theorem.
Then, if J(k) is given by (E.7) with c ≤ 1, we get ε2k = 1

kc , and (E.10) becomes:

E
(∣∣πN

n f − πnf
∣∣) ≤ 2T√

N
(n!)c + e

−T
nc (E.11)

If T = E(nb) with b as above, we only have to take n large enough to have the
second term in (E.11) small enough. Then, the first term in (E.10) gives us
the adjustment needed over N . This ends the proof of the theorem.

Theorem E.3.2 proves the effectiveness of our optimization algorithm. Ac-
cording to the proof of this theorem, both the numbers of particles and iter-
ations needed to achieve a good level of accuracy are relatively huge, a fact
that already appeared in the field of particle filter convergence, cf Doucet et
al. (2001) [54]. Martingale arguments can be used to improve the derived
constants, cf. Del Moral and Jacod (2002) [42]. In Section E.5, we explain
how in practice these constants are not so big.

E.4. A Uniform Convergence Theorem

Now, we want to analyze the convergence issue in the particular case of the
Resampling-Markov Algorithm 5.3.2. We can notice that if we choose a linear



E.4 A Uniform Convergence Theorem 159

cooling schedule for J , then gn are uniformly bounded, which means that one
can find a constant 0 < a < 1 such that, for any n:

a ≤ gn ≤ 1/a, a.s.

Moreover, it has appeared that regularity conditions on the Markov kernel
are needed to control the convergence. We will therefore assume that the
Markov step Kn verifies the following mixing property. For each n, there exists
0 < ε < 1 and a probability measure µn s.t., for all measurable A:

µn(A)ε ≤ Kn(x,A) ≤ 1/εµn(A) (E.12)

This, in turn, leads to the following uniform convergence theorem.

Theorem E.4.1 (Uniform Convergence Result for RM Algorithm) Let
the cooling schedule be linear and Kn verifying the mixing property (E.12) with
ε = 1− e−θ. Then, for any f ∈ Cb,1(D), we have:

sup
n∈N
E
(∣∣πN

n f − πnf
∣∣) ≤ C

Nα

with:

C =
5
a2
, α ≥ θ

2θ − 2 log a
> 0

Proof. The proof of this result is an obvious particular case of the proof of
Theorem E.3.2, with εk = ε in Lemma E.3.1. The same calculations lead to:

sup
n∈N

E
[
|πN

n f − πnf |
]
≤ 4T√

N

1
aT

+ (1− ε)T

Choosing the linking function:

T (N) = 1 +
[
1
4

− logN
log a(1− ε)

]
where [.] stands for the integer part, it comes:

sup
n∈N

E
[
|πN

n f − πnf |
]
≤ C

Nα

which concludes the proof.
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E.5. A Practical Point of View

In this section, we want to precise the choices of jump functions, according to
convergence aspects presented in Sections E.3 and E.4. Also, we discuss the
hypothesis used to prove our main convergence Theorem E.3.2.

E.5.1 On the Importance Sampling Proposal

As formerly said, a major concern is the choice for the range of the variance
of the transition functions over D. Let us first analyze how one can propose a
smart choice for the variance of the importance sampling proposal K1,n. For
this purpose, we should recall the normalized weights at iteration n:

w
(n)
i =

∏J
j=1 u(d̃

(n)
i , ỹ

(n)
i,j )/K1,n(d(n−1)

i , d̃
(n)
i )∑N

i=1[
∏J

j=1 u(d̃
(n)
i , ỹ

(n)
i,j )/K1,n(d(n−1)

i , d̃
(n)
i )]

Considering that N and J are big enough to allow Large Number Law’s
type of approximations, it comes:

log(w(n)
i ) = J

 1
J

J∑
j=1

log(u(d̃(n)
i , ỹ

(n)
i,j ))

− log(K1,n(d(n−1)
i , d̃

(n)
i ))

− log(
1
N

N∑
i=1

[
J∏

j=1

u(d̃(n)
i , ỹ

(n)
i,j )/K1,n(d(n−1)

i , d̃
(n)
i )])− log(N)

Then, the following approximation for the weights holds:

w
(n)
i =

exp
(
J I(d̃(n)

i )
)
UJ(d̃(n)

i )

NK1,n(d(n−1)
i , d̃

(n)
i )

∫
UJ(d)dγ

(
1 +O

(
1√
J

))
(E.13)

where I(d) = Ey|d[log(u(d, y)/U(d))].

From (E.13), we can first notice that:

EK1,n(dn−1
i ,·)

[
ω

(n)
i

]
=

1
N

∫
eJI(d)dπn (d)

(
1 +O

(
1√
J

))
So, for our order of approximation, we get that:∫

eJI(d)dπn(d) = 1 +O

(
1√
J

)
(E.14)
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Moreover, assuming that K1,n is chosen as a Gaussian random walk with
variance σ2

1,n, and using (E.13), it comes:

w
(n)
i =

(√
2πσ1,n

N
exp

(
J I(d̃(n)

i ) +
1
2
X2

)
UJ(d̃(n)

i )∫
UJ(d)dγ

)(
1 +O

(
1√
J

))

where X  N(0, 1). Considering we want to achieve E
K1,n(d

(n−1)
i ,.)

[
w

(n)
i

]
=

1/N and that exp(
√

(var(X))/2) =
(
1 +O

(
1√
J

))
, we can obtain an equation

that σ1,n should verified, say:

σ1,n =
1 +O

(
1√
J

)
e1/2

√
2πE

K1,n(d
(n−1)
i ,.)

[
eJI(d) UJ (d)/

∫
UJ (d′) dγ′

] (E.15)

We want now to get an approximation of UJ(d̃(n)
i )/

∫
UJ(d)dγ in (E.15).

Assuming that the points d̃(n)
i are relatively close to the optimum, which arrives

when J is large enough as supposed, we are allowed to use a Taylor development
of U around its mode:

UJ(d̃(n)
i ) =

(
U∗ − 1

2
H∗(d̃(n)

i − d∗)2 + o(σ2
1,n)
)J

(E.16)

And using the fact that:(
1− H∗

2U∗
(d̃(n)

i − d∗)2
)J

= exp
(
−JH

∗

2U∗
(d̃(n)

i − d∗)2
)

(1 + o(σ2
1,n))

it comes: ∫
UJ(d)dγ =

√
2π U∗

JH∗ (1 + o(σ2
1,n)) (E.17)

In addition, as we want to reach d∗ from d̃
(n)
i byK1,n, we need (d̃(n)

i −d∗)2 =
σ2

1,n + o(σ2
1,n), so, using (E.16) and (E.17), we can write:

UJ(d̃(n)
i )∫

UJ(d)dγ
=

√
JH∗

2πU∗
exp

(
−JH

∗

2U∗
σ2

1,n

)
(1 + o(σ2

1,n))

This last approximation represents the fact that, for a sufficiently large J , the
density of πn can be locally approximated around the mode d∗ by a Gaussian
distribution with mean d∗ and with variance U∗/JH∗. Then, injecting this
approximation in (E.15), we can easily check that:

σ2
1,n =

U∗

JH∗ (E.18)
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is a solution of (E.15), noticing that, with this choice of σ1,n and using (E.14):

EK1,n(dn−1
i ,·) [exp (JI (d))] =

∫
eJI(d)dπn (d) +O

(
1√
J

)
= 1 +O

(
1√
J

)
Following the same line of computations, it is easy to show that we can

generalize this result for dim(D) > 1 choosing:

σ2
1,n = det

(
U∗

JH∗

)
(E.19)

where H∗ is now the Hessian matrix of U at the optimum.

E.5.2 On the Markov Renewal Step

As we saw in the convergence analysis, a key property of the Markov kernels for
fast convergence is the mixing property (E.12), which can be typically met when
K2,n has a continuous Lebesgue derivative, as supposed in the demonstration.
However, as we introduced it, a convenient choice to build such Markov steps
which converge adequately to the true target distribution is the Metropolis-
Hastings kernel, which is definitely not Lebesgue-derivable. A practical and
heuristic conclusion from this may be: the higher is the acceptance probability
in the Metropolis-Hastings step, the faster is the convergence of the algorithm.
As a consequence, using an adaptive Markov step, in which this acceptance
rate is made to be larger, see Haario et al. (2003) [81], could significantly
improve the convergence. More case-specific Markov steps could be used, such
as Gibbs kernels which are then Lebesgue-derivable.

As for the variance of this Markov proposal, we choose it lower bounded.
Combined with the choice of the variance of the importance sampling proposal,
cf (E.19), this would roughly ensure the variance assumption, cf. (E.6). It
also allows us a larger scale of exploration of D, as desired. Note that this
condition on the variance proposal does not imply any bounding condition on
the resulting Metropolis-Hastings kernel.

Empirical Remarks on the Convergence

We end this practical point of view by considerations on the effective conver-
gence speed in practice. Indeed, the constant involved in the upper bound
of Theorem E.3.2 can be very large in all generality, as noticed in a particle
filter environment in Doucet et al. (2001) [54]. As a matter of fact, the de-
termination of this constant was made by rough inequalities which could be
obviously improved, as managed in Jacod-Del Moral (2002) [42] by martingale
arguments. Indeed, the total variation distance between the empirical and the
target distributions was roughly bounded by 1 although it should empirically
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tend towards 0 with iterations. More subtle bounds might be found by linking
this distance to iteration n, but this should be either mathematically more
complicated, or less general (only for specific kernels). Another consequence of
this fact is that the utility function could be adapted by proper dynamic trun-
catures when samples get closer to the mode as iterations increase, in order to
reduce the ratio Umax/Umin (which obviously improves the convergence).

Let us conclude with the following remark. Using the logarithmic cooling
schedule of Theorem E.3.2 would require

(
mD2/σ2 + ln (Umax/Umin)

)
to be

small in order to quickly reach the final J determined by the wanted level of
accuracy. However, this is equivalent to reduce the compact size and/or the
ratio Umax/Umin, driving to an over-simplified optimization problem or to a
hopeless algorithm. Let us recall that the constants displayed are not optimal,
but they give an intuition of the different variables impacts.
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