Thèse soutenue

FR
Auteur / Autrice : Guillaume Carazzo
Direction : Steve TaitÉdouard Kaminski
Type : Thèse de doctorat
Discipline(s) : Géophysique
Date : Soutenance en 2007
Etablissement(s) : Paris 7

Mots clés

FR

Mots clés contrôlés

Résumé

FR  |  
EN

Les gaz et les cendres injectés dans l'atmosphère au cours d'une éruption volcanique explosive représentent une menace pour les populations, les biens et l'environnement. Cette menace est d'autant plus élevée lorsque le jet volcanique s'effondre sur lui-même et génère des écoulements pyroclastiques. L'étude des éruptions Pliniennes du volcan de la Montagne Pelée révèle que les modèles théoriques de prédiction d'effondrement de colonne souffrent d'un décalage avec les données recueillies sur le terrain. Le but de cette thèse est de comprendre quel est l'ingrédient physique qui manque aux modèles pour être en accord avec les données géologiques. Un nouveau modèle d'entraînement de fluide environnant au sein d'un jet turbulent est présenté. Celui-ci permet de remettre en cohérence de nombreuses données expérimentales sur des jets turbulents générés en laboratoire, et son application à la prédiction d'effondrement de colonnes volcaniques est tout à fait satisfaisante. L'effet nouvellement mis en lumière a une forte influence sur le comportement du jet volcanique et a des implications importantes sur les estimations de flux mis en jeu lors d'éruptions explosives. Pour aller plus loin dans l'étude de la dynamique des colonnes explosives, un dispositif expérimental inédit produisant des jets de gaz chaud chargés en particules a été élaboré. Ce dispositif permet de reproduire pour la première fois le régime d'effondrement partiel où le jet volcanique se sépare en une partie dense et une partie plus légère. Ces résultats apportent une meilleure compréhension de la dynamique d'un jet turbulent en général, et améliorent les modèles théoriques actuels de colonnes volcaniques.