Geometrie tt* et applications pluriharmoniques

par Lars Schäfer

Thèse de doctorat en Mathématiques

Sous la direction de Vicente Cortés et de Werner Ballmann.

Soutenue en 2006

à Nancy 1 , en partenariat avec Université Henri Poincaré Nancy 1. Faculté des sciences et techniques (autre partenaire) .


  • Résumé

    Dans cette thèse nous introduisons la notion de fibré tt* (E,D,S), de fibré tt* métrique (E,D,S,g) et de fibré tt* symplectique (E,D,S,omega) sur un fibré vectoriel E au-dessus d'une variété complexe, dans le langage de la géométrie différentielle réelle. Grâce à cette notion on obtient une correspondance entre des fibrés tt* métriques et des applications pluriharmoniques admissibles de (M,J) dans l'espace symétrique pseudo-Riemannien GL(r,R)/O(p,q), avec (p,q) la signature de la métrique g. En utilisant ce résultat on obtient dans le cas, où M est compact Kählérienne, un résultat de rigidité, puis un cas particulier du the��orème de Lu. De plus, nous étudions des fibrés tt* sur le fibré tangent TM et caractérisons une classe spéciale qui contient les variétés spéciales complexes et les variétés nearly Kählériennes plates, et la sous-classe qui admet un fibré tt* métrique ou symplectique. En outre on analyse les fibrés tt* qui proviennent de variations de structures de Hodge (VHS) et de fibrés harmoniques. Pour les fibrés harmoniques, la correspondance permet de généraliser un résultat de Simpson. L'application pluriharmonique associée à une variété spécialement Kählérienne est reliée à l'application de Gauss duale, et celle associée à une VHS de poid impair est l'application de périodes. Si la structure complexe n'est pas intégrable, on doit généraliser la notion de pluriharmonicité. Hors la rigidité ces résultats sont généralisés au cas para-complexe.

  • Titre traduit

    Geometrie tt* et applications pluriharmoniques


  • Résumé

    In this work we introduce the real differential geometric notion of a tt*-bundle (E,D,S), a metric tt*-bundle (E,D,S,g) and a symplectic tt*-bundle (E,D,S,omega) on an abstract vector bundle E over an almost complex manifold (M,J). With this notion we construct, generalizing Dubrovin, a correspondence between metric tt*-bundles over complex manifolds (M,J) and admissible pluriharmonic maps from (M,J) into the pseudo-Riemannian symmetric space GL(r,R)/O(p,q) where (p,q) is the signature of the metric g. Moreover, we show a rigidity result for tt*-bundles over compact Kähler manifolds and we obtain as application a special case of Lu's theorem. In addition we study solutions of tt*-bundles (TM,D,S) on the tangent bundle TM of (M,J) and characterize an interesting class of these solutions which contains special complex manifolds and flat nearly Kähler manifolds. We analyze which elements of this class admit metric or symplectic tt*-bundles. Further we consider solutions coming from varitations of Hodge structures (VHS) and harmonic bundles. Applying our correspondence to harmonic bundles we generalize a correspondence given by Simpson. Analyzing the associated pluriharmonic maps we obtain roughly speaking for special Kähler manifolds the dual Gauss map and for VHS of odd weight the period map. In the case of non-integrable complex structures, we need to generalize the notions of pluriharmonic maps and some results. Apart from the rigidity result we generalize all above results to para-complex geometry.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (123 p.)
  • Notes : Publication autorisée par le jury
  • Annexes : Bibliogr. p. 119-121

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Lorraine (Villers-lès-Nancy, Meurthe-et-Moselle). Direction de la Documentation et de l'Edition - BU Sciences et Techniques.
  • Disponible pour le PEB
  • Cote : SC N2006 41

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Université de Lille. Service commun de la documentation. Bibliothèque universitaire de Sciences Humaines et Sociales.
  • Non disponible pour le PEB
  • Cote : 2006NAN10041
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.