Apport des polynomes d'hermite a la modelisation non gaussienne et tests statistiques associes

par David Declercq

Thèse de doctorat en Traitement du signal

Sous la direction de Patrick Duvaut.


  • Résumé

    L'objectif de cette these est d'etudier les apports des polynomes d'hermite, lorsqu'ils ont pour arguments des variables aleatoires gaussiennes, a certains domaines du traitement du signal et des statistiques. Une famille de tests statistiques de gaussianite, appelee tests d'hermite, a ete introduite. Cette derniere utilise l'orthonogonalite des polynomes d'hermite par rapport au poids gaussien, au travers d'une statistique de sphericite. Nous avons conduit l'etude asymptotique du test d'hermite dans le cas de donnees standards, et une etude non asymptotique (avec comparaison de puissance) dans un cadre invariant. Les puissances exhibees montrent qu'outre l'avantage apporte par la modularite intrinseque des tests d'hermite, ceux-ci exhibent de bonnes performances par rapport aux tests habituellement utilises. Une classe de processus non-lineaires / non-gaussiens, appeles h-arma est etudiee. Ceux-ci se composent d'un filtrage lineaire du type arma d'une entree gaussienne, suivi d'une transformation polynomiale d'hermite instantanee. L'utilisation des polynomes d'hermite, et en particulier des formules de mehler et de kibble-slepian, a permis l'ecriture des cumulants temporels et spectraux de ces processus, ainsi que le calcul non asymptotique de leur variance d'estimation empirique. L'identification de ces modeles a tout d'abord ete conduite dans un contexte supervise, puis en aveugle. L'identification aveugle se heurte a la non-inversibilite de ces processus des que la non-linearite polynomiale n'est plus bi-univoque. Apres avoir souligne les limitations des methodes d'estimation traditionnelles (maximum de vraisemblance, methodes de cumulant, etc), nous avons employe des algorithmes stochastiques mcmc, tirant parti de l'augmentation du modele par des variables d'etat cachees. Mises en oeuvre dans le paradigme bayesien, ces methodes forunissent une premiere solution a l'identification de modeles non-lineaires / non-inversibles.


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 190 p.
  • Annexes : 133 ref.

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université de Cergy-Pontoise. Service commune de la documentation. Bibliothèque universitaire de Neuville.
  • Disponible pour le PEB
  • Cote : TS CERG 1998 DEC
  • Bibliothèque : Ecole nationale supérieure de l'électronique et de ses applications. Centre de documentation.
  • Disponible pour le PEB
  • Cote : ARCH-3112
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.