Le problème de la descente galoisienne finie

par Sylvie Monier Derviaux

Thèse de doctorat en Mathématiques pures

Sous la direction de Richard Massy.

Soutenue en 1997

à Valenciennes .


  • Résumé

    Cette thèse concerne la théorie de Galois classique des extensions de corps de degré fini. On s'attache principalement à décrire des p-extensions galoisiennes non kummériennes. Connaissant une p-extension galoisienne qui contient les racines p-iemes de l'unité, comment décrire une p-extension de même groupe de Galois mais ne contenant plus ces racines ? Pour répondre à cette question, on introduit une notion de descente galoisienne qui consiste intuitivement à translater sur un sous-corps une extension galoisienne donnée. On résout explicitement un problème de plongement non kummerien via les solutions du problème kummerien translaté. La descente galoisienne induit une notion de parallélogramme galoisien. On met en évidence que dans un tel parallélogramme, les propriétés des extensions parallèles sont très liées, parfois semblables. Via une notion d'opérateur galoisien, on montre comment prolonger la diagonale d'un parallélogramme galoisien par une extension kummerienne de degré premier, ceci en fournissant un élément primitif du prolongement. Enfin, on aborde le problème de la généralisation des décompositions numériques de classes de cohomologie introduites par richard Massy pour une p-extension de base kummerienne, en élargissant la notion a une p-extension homocyclique d'exposant p#2, sous la seule hypothèse que le corps de base contienne les racines p-iemes de l'unité.

  • Titre traduit

    The finite Galois descent problem


  • Pas de résumé disponible.

Consulter en bibliothèque

La version de soutenance existe sous forme papier

Informations

  • Détails : 1 vol. (152 p.)
  • Annexes : Bibliogr. p. 149-152

Où se trouve cette thèse\u00a0?

  • Bibliothèque : Université Polytechnique Hauts-de-France. Service commun de la documentation. Site du Mont Houy.
  • Disponible sous forme de reproduction pour le PEB
  • Cote : 905112 TH
  • Bibliothèque : Université Polytechnique Hauts-de-France. Service commun de la documentation. Site du Mont Houy.
  • Disponible sous forme de reproduction pour le PEB
  • Cote : 905113 TH

Cette version existe également sous forme de microfiche :

  • Bibliothèque : Service interétablissements de Documentation (Saint-Martin d'Hères, Isère). Bibliothèque universitaire Joseph-Fourier.
  • Non disponible pour le PEB
  • Cote : MF-1997-MON
Voir dans le Sudoc, catalogue collectif des bibliothèques de l'enseignement supérieur et de la recherche.